This book is a collection of RFCs and Internet-Drafts related to specific working group. The RFC and Internet-Drafts files are normally stored in plain ascii text format and they are converted to html suitable for eBook use by automatic scripts. Those scripts try to detect headers, pictures, lists, references etc and create special html for each of those. For text paragraphs those scripts remove indentation and hard linebreaks and makes text paragraphs as normal text so font size of the eBook can be adjusted at will and features like text-to-speech work.
As this conversion is completely automatic there might be errors in the converted files. I have tried to fix the issues when I find them, but sometimes fixing issue in one RFC cause problems in others, so not all errors can be easily fixed, this is especially true for very old RFCs which do not follow the formatting specifications. If you notice errors in the formatting please send email to the <kivinen+rfc-ebook@iki.fi> and describle the problem. Please, remember to include the RFC number and the version number of the eBook file (found from the cover page).
As the collection of RFCs is quite large there has been some issues with the conversion to kindle, and some features do not seem to work properly when full set of RFCs is used. Because of this some work-arounds have been made to make the eBook still usable. If the kindle software gets updated some of those work-arounds might be removed. For more information about those see the Conversion section.
The primary output format of the scripts is the .mobi format used in the kindle, and I have been using Kindle 3 as my primary testing device, so if other reader devices are used, there might be more issues. The automatic tools also create the .ePub file, which can be used on platforms which do not support .mobi format. There is program called mobipocket for reading .mobi files, and that program is available for wide range of devices including PalmOS, Symbian, PC, Windows Mobile, Blackberry etc, so also those devices can be used in addition to normal eBook readers.
In this section I will concentrate mostly on how to use this on Kindle 3. This eBook contains 5 main parts:
The cover page includes the date when this eBook was created (i.e. eBook version).
The conversion section includes technical information how this eBook was created and some known issues etc.
There are four main ways to navigate through the book in addition to normal page up and down.
Fastest way to go to specific RFC or Internet-Draft is to press menu button on the Kindle 3, and then select Index from the menu. This will give you the automatic index of the contents of the this file. This allows quick access to the RFC by just typing the numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y will jump you to the RFC 5996 and then you can use arrow down to select RFC and hit enter to go there. For internet draft start typing the draft name.
Another option is to use the RFC Index in the beginning of the file (You can ge to there by either pressing menu, selecting Index and then clicking on the Index in the beginning of the index, or by pressing menu, selecting Go to... and then selecting Table of Contents).
Third option is to use left and right arrows to navigate the next and previous RFC/Internet-Drafts.
The fourth way to navigate inside the book is to use the links inside the files. The RFC Index has direct links to every 100th RFC. Each file contains links to back 5, forward 5, next and previous rfc. Also any reference inside the documents pointing to other RFCs gets you directly there. Some of the links inside RFC moves you inside the RFC, i.e. clicking link on the table of contents inside the RFC moves you to that section etc. Also references inside the RFC will move you to the refences section etc.
6172 - Deprecation of the Internet Fibre Channel Protocol (iFCP) Address Transla
Internet Engineering Task Force (IETF)
Request for Comments: 6172
Updates: 4172
Category: Standards Track
ISSN: 2070-1721
D. Black
EMC
D. Peterson
Brocade
March 2011
Changes to Fibre Channel have caused the specification of the Internet Fibre Channel Protocol (iFCP) address translation mode to become incorrect. Due to the absence of usage of iFCP address translation mode, it is deprecated by this document. iFCP address transparent mode remains correctly specified.
iFCP address transparent mode has been implemented and is in current use; therefore, it is not affected by this document.
This document also records the state of Protocol Number 133, which was allocated for a pre-standard version of the Fibre Channel Internet Protocol (FCIP).
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6172.
Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
See Section 3 of [RFC4172] for introductory material on Fibre Channel concepts.
The Internet Fibre Channel Protocol (iFCP) [RFC4172] operates in two modes with respect to Fibre Channel N_PORT fabric addresses (24-bit N_PORT_IDs): address transparent mode and address translation mode (both modes are specified in [RFC4172]):
o Address transparent mode is a pass-through mode that preserves Fibre Channel N_PORT fabric addresses.
o Address translation mode is a Fibre Channel analog to Network Address Translation (NAT) in which iFCP gateways change Fibre Channel N_PORT fabric addresses at the boundary between Fibre Channel and the Internet. Both the source (S_ID) and destination (D_ID) N_PORT fabric addresses may be changed by the iFCP gateways.
This document deprecates iFCP address translation mode because the specification has not tracked changes in Fibre Channel and because there are no known implementations.
Protocol Number 133 was allocated for a pre-standard version of the Fibre Channel Internet Protocol (FCIP) that encapsulated FC frames directly in IP packets. That protocol number is not used by the standard FCIP protocol [RFC3821] [FC-BB-3], but implementations of the pre-standard protocol were deployed. Therefore, this document makes no change to the current allocation of Protocol Number 133.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
iFCP address translation mode has to translate addresses embedded in transmitted data. This is analogous to NAT translation of IP addresses embedded in IP packets. Fibre Channel restricts the occurrence of embedded fabric addresses to control messages (frames); N_PORTs send and receive two types of control frames that may contain embedded fabric addresses:
o Extended Link Services (ELSs); and
o FC-4 Link Services (FC-4 LSs) for the Small Computer System Interface (SCSI) over Fibre Channel Protocol (FCP).
The embedded fabric address translations for N_PORT control frames are specified in Section 7.3 of [RFC4172]. These translations were correct as specified for Fibre Channel as of approximately 2003, based on the [FC-FS] standard for ELSs and the [FCP] standard for FCP FC-4 LSs.
Significant changes have been made to FC control frames since the iFCP specification [RFC4172] was published; the currently applicable FC standards are [FC-LS] and [FCP-3], and additional changes are forthcoming in the [FC-LS-2] and [FCP-4] standards projects, which are nearing completion. These changes have caused Section 7.3 of [RFC4172] to become incorrect.
Actual iFCP deployment has diverged significantly from that anticipated during the development of [RFC4172]. All deployments of iFCP known to the authors of this document use iFCP address transparent mode and are used only for FC inter-switch links. iFCP address translation mode as specified in [RFC4172] cannot be used for FC inter-switch links because the necessary embedded fabric address translations for FC inter-switch control messages (Switch Fabric Internal Link Services (ILSs)) have not been specified.
For the reasons described above, it is prudent to deprecate iFCP address translation mode in preference to updating it to the current state of Fibre Channel standards. Updating iFCP address translation mode would create a continuing requirement to update an unused protocol mode to match future changes to FC control frames.
Therefore, this document deprecates iFCP address translation mode:
o iFCP address translation mode [RFC4172] SHOULD NOT be implemented and SHOULD NOT be used.
o The status of [RFC4172] remains Proposed Standard RFC in order to retain the specification of iFCP address transparent mode.
o The [RFC4172] specification of iFCP address translation mode should be treated as Historic [RFC2026].
Protocol Number 133 was allocated for Fibre Channel (FC) [IANA-IP] and used by a pre-standard version of the FCIP protocol that encapsulates FC frames directly in IP packets. The standard FCIP protocol [RFC3821] [FC-BB-3] encapsulates FC frames in TCP and hence does not use Protocol Number 133, but implementations of the pre- standard version of the FCIP protocol were deployed [MR]. Based on this deployment, the protocol number needs to remain allocated.
The security considerations for iFCP continue to apply; see Section 10 of [RFC4172].
IANA has added this document as a supplemental reference for the allocation of Protocol Number 133 but hasn't changed that allocation.
For the reasons described in this document, iFCP Address Translation mode is deprecated, and the allocation of Protocol Number 133 remains unchanged at this time.
[IANA-IP] Assigned Internet Protocol Numbers, IANA Registry,
http://www.iana.org, visited October 2010.
[RFC2026]
Bradner, S., "The Internet Standards Process -- Revision 3", BCP 9, RFC 2026, October 1996.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC4172]
Monia, C., Mullendore, R., Travostino, F., Jeong, W., and M. Edwards, "iFCP - A Protocol for Internet Fibre Channel Storage Networking", RFC 4172, September 2005.
[FC-BB-3] Fibre Channel Backbone - 3 (FC-BB-3), ANSI INCITS 414-2006,
July 2006.
[FC-LS-2] Fibre Channel - Link Services - 2 (FC-LS-2), INCITS Project
2103-D, Technical Committee T11 (www.t11.org).
[RFC3821]
Rajagopal, M., Rodriguez, E., and R. Weber, "Fibre Channel Over TCP/IP (FCIP)", RFC 3821, July 2004.
The authors would like to thank Tom Talpey, David Harrington, Joe Touch, Paul Hoffman, and Pekka Savola for helpful comments on this document.
Authors' Addresses
6173 - Definitions of Managed Objects for the Internet Fibre Channel Protocol (i
Internet Engineering Task Force (IETF)
Request for Comments: 6173
Obsoletes: 4369
Category: Standards Track
ISSN: 2070-1721
P. Venkatesen, Ed.
HCL Technologies
March 2011
This document defines Management Information Base (MIB) objects to monitor and control the Internet Fibre Channel Protocol (iFCP) gateway instances and their associated sessions, for use with network management protocols.
This document obsoletes RFC 4369.
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6173.
Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.
For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].
Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
iFCP (RFC 4172 [RFC4172]) provides Fibre Channel fabric functionality on an IP network in which TCP/IP switching and routing elements replace Fibre Channel components. iFCP is used between iFCP gateways. This protocol can be used by FC-to-IP-based storage gateways for Fibre Channel Protocol (FCP) storage interconnects.
Figure 1 provides an example of an interconnect between iFCP gateways.
Figure 1: Interconnect between iFCP Gateways
The iFCP MIB module is designed to allow a network management protocol such as SNMP to be used to monitor and manage local iFCP gateway instances, including the configuration of iFCP sessions between gateways.
The iFCP MIB module is divided into sections for iFCP local gateway instance management, iFCP session management, and iFCP session statistics.
The section for iFCP gateway management provides default settings and information about each local instance. A single management entity can monitor multiple local gateway instances. Each local gateway is conceptually an independent gateway that has both Fibre Channel and IP interfaces. The default IP Time Out Value (IP_TOV) is configurable for each gateway. Other standard MIBs, such as the Fibre Management MIB [RFC4044] or Interfaces Group MIB [RFC2863], can be used to manage non-iFCP-specific gateway parameters. The local gateway instance section provides iFCP-specific information as well as optional links to other standard management MIBs.
The iFCP session management section provides information on iFCP sessions that use one of the local iFCP gateway instances. This section allows the management of specific iFCP parameters, including changing the IP_TOV from the default setting of the gateway.
The iFCP session statistics section provides statistical information on the iFCP sessions that use one of the local iFCP gateways. These tables augment the session management table. Additional statistical information for an iFCP gateway or session, that is not iFCP- specific, can be obtained using other standard MIBs. The iFCP statistics are provided in both high-capacity (Counter64) and low- capacity (Counter32) methods.
The following MIB module imports from SNMPv2-SMI [RFC2578], SNMPv2-TC [RFC2579], SNMPv2-CONF [RFC2580], HCNUM-TC [RFC2856], IF-MIB [RFC2863], SNMP-FRAMEWORK-MIB [RFC3411], INET-ADDRESS-MIB [RFC4001], FC-MGMT-MIB [RFC4044], ENTITY-MIB (v3) [RFC4133], and RMON2-MIB [RFC4502].
As explained in [RFC6172], the iFCP address translation mode is deprecated. This document obsoletes the iFCP MIB module [RFC4369] for this change.
IFCP-MGMT-MIB DEFINITIONS ::= BEGIN
DESCRIPTION
"This module defines management information specific to Internet Fibre Channel Protocol (iFCP) gateway management.
Copyright (c) 2011 IETF Trust and the persons identified as authors of the code. All rights reserved.
ifcpLclGatewayInfo OBJECT IDENTIFIER ::= {ifcpGatewayObjects 1}
ifcpNportSessionInfo
OBJECT IDENTIFIER ::= {ifcpGatewayObjects 2}
Soon after an entry is created in this table for an iFCP session, it will correspond to an entry in the tcpConnectionTable of the TCP-MIB (RFC 4022). The corresponding entry might represent a preexisting TCP connection, or it might be a newly created entry. (Note that if IPv4 is being used, an entry in RFC 2012's tcpConnTable may also correspond.) The values of ifcpSessionLclPrtlAddrType and ifcpSessionRmtPrtlIfAddrType in this table and the values of tcpConnectionLocalAddressType and tcpConnectionRemAddressType used as INDEX values for the corresponding entry in the tcpConnectionTable should be the same; this makes it simpler to locate a session's TCP connection in the TCP-MIB. (Of course, all four values need to be 'ipv4' if there's a corresponding entry in the tcpConnTable.)
::= {ifcpSessionStatsEntry 2}
::= {ifcpSessionStatsEntry 6}
ifcpCompliances
OBJECT IDENTIFIER ::= {ifcpGatewayConformance 1}
::= {ifcpCompliances 1}
::= {ifcpCompliances 2}
ifcpGroups OBJECT IDENTIFIER ::= {ifcpGatewayConformance 2}
END
There are a number of management objects defined in this MIB module with a MAX-ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations.
Changing the following object values, with a MAX-ACCESS of read- write, may cause disruption in storage traffic:
Changing the following object value, with a MAX-ACCESS of read-write, may cause a user to lose track of the iFCP gateway:
ifcpLclGtwyInstDescr
Some of the readable objects in this MIB module (i.e., objects with a MAX-ACCESS other than not-accessible) may be considered sensitive or vulnerable in some network environments. It is thus important to control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP.
The following object tables provide information about storage traffic sessions, and can indicate to a user who is communicating and exchanging storage data:
SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example, by using IPsec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.
It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).
Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.
The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER value recorded in the SMI Numbers registry:
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2578]
McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Structure of Management Information Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.
[RFC2579]
McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Textual Conventions for SMIv2", STD 58, RFC 2579, April 1999.
[RFC2580]
McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Conformance Statements for SMIv2", STD 58, RFC 2580, April 1999.
[RFC2856]
Bierman, A., McCloghrie, K., and R. Presuhn, "Textual Conventions for Additional High Capacity Data Types", RFC 2856, June 2000.
[RFC2863]
McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB", RFC 2863, June 2000.
[RFC3411]
Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks", STD 62, RFC 3411, December 2002.
[RFC4001]
Daniele, M., Haberman, B., Routhier, S., and J. Schoenwaelder, "Textual Conventions for Internet Network Addresses", RFC 4001, February 2005.
[RFC4044]
McCloghrie, K., "Fibre Channel Management MIB", RFC 4044, May 2005.
[RFC4133]
Bierman, A. and K. McCloghrie, "Entity MIB (Version 3)", RFC 4133, August 2005.
[RFC4172]
Monia, C., Mullendore, R., Travostino, F., Jeong, W., and M. Edwards, "iFCP - A Protocol for Internet Fibre Channel Storage Networking", RFC 4172, September 2005.
[RFC4369]
Gibbons, K., Monia, C., Tseng, J., and F. Travostino, "Definitions of Managed Objects for Internet Fibre Channel Protocol (iFCP)", RFC 4369, January 2006.
[RFC4502]
Waldbusser, S., "Remote Network Monitoring Management Information Base Version 2", RFC 4502, May 2006.
[RFC6172]
Black, D. and D. Peterson, "Deprecation of the Internet Fibre Channel Protocol (iFCP) Address Translation Mode", RFC 6172, March 2011.
[RFC3410]
Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction and Applicability Statements for Internet Standard Management Framework", RFC 3410, December 2002.
Credit goes to the authors of [RFC4369] (listed below) for preparing the first version of the iFCP MIB module. I wish to thank David Black, Tom Talpey, and David Harrington for their significant inputs on this update.
Authors of RFC 4369:
Author's Address
6580 - IANA Registries for the Remote Direct Data Placement (RDDP) Protocols
Internet Engineering Task Force (IETF)
Request for Comments: 6580
Category: Standards Track
ISSN: 2070-1721
M. Ko
Consultant
D. Black
EMC
April 2012
The original RFCs that specified the Remote Direct Data Placement (RDDP) protocol suite did not create IANA registries for RDDP error codes, operation codes, and function codes. Extensions to the RDDP protocols now require these registries to be created. This memo creates the RDDP registries, populates them with values defined in the original RDDP RFCs, and provides guidance to IANA for future assignment of code points within these registries.
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6580.
Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
The original RFCs that specified the RDDP protocol suite [RFC5040] [RFC5041] [RFC5043] [RFC5044] did not create IANA registries. Extensions to the RDDP protocols [RFC6581] [RMP-EXT] now require creation and use of IANA registries. This memo creates the RDDP- related IANA registries, specifies their initial contents based on the values defined in the original RDDP RFCs, and provides guidance to IANA for future assignments from these registries. In addition, this memo allocates operation code and function code points for experimental use [RFC3692].
Since this document is only concerned with creation and IANA management of RDDP registries, it raises no new security issues.
However, a few words are necessary about the use of the experimental code points defined in Sections 3.4 and 3.5. Potentially harmful side effects from the use of the experimental values need to be carefully evaluated before deploying any experiment across networks that the owner of the experiment does not entirely control. Guidance given in [RFC3692] about the use of experimental values needs to be followed.
Allocation requests for the registries created by this memo may come with a suggested numerical value or values that should be assigned. Such suggestions are useful when early implementations have already chosen particular code points before the final RFC is published. If the allocation request in general is accepted, such suggestions may be honored if the suggested value is still free to be assigned. This memo creates the following RDDP registries for IANA to manage:
Each of the following sections specifies a registry, its initial contents, and the allocation policy in more detail.
Name of the registry: "RDMAP Errors"
Namespace details: An RDMAP (Remote Direct Memory Access Protocol) error is a 16-bit field divided into three subfields [RFC5040]:
The Error Code field is optional for this registry, as Error Codes are not used with all RDMAP Error Types. When no numerical Error Code is registered, any 8-bit value may be used as the Error Code, as the Layer and Error Type values are sufficient to specify the error. For this reason, if an RDMAP Error Type is registered without an Error Code, an entry must not be added to this registry with an Error Code for the same Error Type.
Information that must be provided to assign a new value: An IESG- approved Standards-Track specification defining the semantics and interoperability requirements of the proposed new value and the fields to be recorded in the registry.
Fields to record in the registry: Layer/Error-Type/Error-Code, Error- Type-Name/Error-Code-Name, RFC Reference. The Error-Code and Error- Code-Name are omitted for Error-Types that do not have Error-Codes.
When a specific Error Code is not registered, the registry entry contains the string "ALL" for the Error Code instead of a numerical value, and the Error Code Name is omitted from the registry entry. Initial registry contents:
0x0/0x0/ALL , Local Catastrophic Error, [RFC5040]
0x0/0x1/0x00, Remote Protection Error / Invalid Steering Tag, [RFC5040]
0x0/0x1/0x01, Remote Protection Error / Base or bounds violation, [RFC5040]
0x0/0x1/0x02, Remote Protection Error / Access rights violation, [RFC5040]
0x0/0x1/0x03, Remote Protection Error / Steering Tag not associated with RDMAP Stream, [RFC5040]
0x0/0x1/0x04, Remote Protection Error / Tagged Offset wrap, [RFC5040]
0x0/0x1/0x09, Remote Protection Error / Steering Tag cannot be invalidated, [RFC5040]
0x0/0x1/0xff, Remote Protection Error / Unspecified Error, [RFC5040]
0x0/0x2/0x05, Remote Operation Error / Invalid RDMAP version, [RFC5040]
0x0/0x2/0x06, Remote Operation Error / Unexpected OpCode, [RFC5040]
0x0/0x2/0x07, Remote Operation Error / Catastrophic error, localized to RDMAP Stream, [RFC5040]
0x0/0x2/0x08, Remote Operation Error / Catastrophic error, global, [RFC5040]
0x0/0x2/0x09, Remote Operation Error / Steering Tag cannot be Invalidated, [RFC5040]
0x0/0x2/0xff, Remote Operation Error / Unspecified Error, [RFC5040]
All combinations not listed above that combine 0x0 as the Layer with an Error Type and Error Code are Unassigned and available to IANA for assignment.
Allocation Policy: Standards Action [RFC5226]
Name of the registry: "DDP Errors"
Namespace details: A DDP (Direct Data Placement) error is a 16-bit field divided into three subfields [RFC5041]:
The Error Code field is required for this registry, except for the registry entry that reserves a set of errors for use by the Lower Layer Protocol. When no numerical Error Code is registered, any 8-bit value may be used as the Error Code, as the Layer and Error Type values are sufficient to specify the error. For this reason, if a DDP Error Type is registered without an Error Code, an entry must not be added to this registry with an Error Code for the same Error Type.
Information that must be provided to assign a new value: An IESG- approved Standards-Track specification defining the semantics and interoperability requirements of the proposed new value and the fields to be recorded in the registry.
Fields to record in the registry: Layer/Error-Type/Error-Code, Error- Type-Name/Error-Code-Name, RFC Reference.
The last registry entry in the initial registry contents below reserves a set of errors for use by the Lower Layer Protocol. That entry uses "ALL" for the Error Code and omits the Error Code Name. The use of "ALL" is unique to that entry; all other entries in this registry are required to contain a numeric Error Code and an Error Code Name.
Initial registry contents:
0x1/0x0/0x00, Local Catastrophic, [RFC5041]
0x1/0x1/0x00, Tagged Buffer Error / Invalid Steering Tag, [RFC5041]
0x1/0x1/0x01, Tagged Buffer Error / Base or bounds violation, [RFC5041]
0x1/0x1/0x02, Tagged Buffer Error / Steering Tag not associated with DDP Stream, [RFC5041]
0x1/0x1/0x03, Tagged Buffer Error / Tagged Offset wrap, [RFC5041]
0x1/0x1/0x04, Tagged Buffer Error / Invalid DDP version, [RFC5041]
0x1/0x2/0x01, Untagged Buffer Error / Invalid Queue Number, [RFC5041]
0x1/0x2/0x02, Untagged Buffer Error / Invalid Message Sequence Number - no buffer available, [RFC5041]
0x1/0x2/0x03, Untagged Buffer Error / Invalid Message Sequence Number - Message Sequence Number range is not valid, [RFC5041]
0x1/0x2/0x04, Untagged Buffer Error / Invalid Message Offset, [RFC5041]
0x1/0x2/0x05, Untagged Buffer Error / DDP Message too long for available buffer, [RFC5041]
0x1/0x2/0x06, Untagged Buffer Error / Invalid DDP version, [RFC5041]
0x1/0x3/ALL , Reserved for use by Lower Layer Protocol, [RFC5041]
All combinations not listed above that combine 0x1 as the Layer with an Error Type and Error Code are Unassigned and available to IANA for assignment.
Allocation Policy: Standards Action [RFC5226]
Name of the registry: "MPA Errors"
Namespace details: An MPA (Marker PDU Aligned Framing) error is a 16-bit field divided into three subfields [RFC5044]:
The Error Code field is required for this registry.
Information that must be provided to assign a new value: An IESG- approved Standards-Track specification defining the semantics and interoperability requirements of the proposed new value and the fields to be recorded in the registry.
Fields to record in the registry: Layer/Error-Type/Error-Code, Error- Type-Name/Error-Code-Name, RFC Reference.
The string "ALL" is not used for the Error Code in this registry; every entry is required to contain a numeric Error Code and an Error Code Name.
Initial registry contents:
0x2/0x0/0x01, MPA Error / TCP connection closed, terminated, or lost, [RFC5044]
0x2/0x0/0x02, MPA Error / MPA CRC Error, [RFC5044]
0x2/0x0/0x03, MPA Error / MPA Marker and ULPDU Length field mismatch, [RFC5044]
0x2/0x0/0x04, MPA Error / Invalid MPA Request Frame or MPA Response Frame, [RFC5044]
All combinations not listed above that combine 0x2 as the Layer with an Error Type and Error Code are Unassigned and available to IANA for assignment.
Allocation Policy: Standards Action [RFC5226]
Name of the registry: "RDMAP Message Operation Codes"
Namespace details: RDMAP Operation Codes are 4-bit values [RFC5040].
Information that must be provided to assign a new value: An IESG- approved Standards-Track specification defining the semantics and interoperability requirements of the proposed new value and the fields to be recorded in the registry.
Fields to record in the registry: RDMAP Message Operation Code, Message Type, RFC Reference
Initial registry contents:
0x0, RDMA Write, [RFC5040]
0x1, RDMA Read Request, [RFC5040]
0x2, RDMA Read Response, [RFC5040]
0x3, Send, [RFC5040]
0x4, Send with Invalidate, [RFC5040]
0x5, Send with Solicited Event, [RFC5040]
0x6, Send with Solicited Event and Invalidate, [RFC5040]
0x7, Terminate, [RFC5040]
0xF, Reserved (Experimental) [RFC6580]
All other values are Unassigned and available to IANA for assignment.
Allocation Policy: Standards Action [RFC5226]
Name of the registry: "SCTP Function Codes for DDP Session Control"
Namespace details: SCTP (Stream Control Transmission Protocol) function codes for DDP session control are 16-bit values [RFC5043].
Information that must be provided to assign a new value: An IESG- approved Standards-Track specification defining the semantics and interoperability requirements of the proposed new value and the fields to be recorded in the registry.
Fields to record in the registry: SCTP Function Code, SCTP Function Name, RFC Reference
Initial registry contents:
0x0001, DDP Stream Session Initiate, [RFC5043]
0x0002, DDP Stream Session Accept, [RFC5043]
0x0003, DDP Stream Session Reject, [RFC5043]
0x0004, DDP Stream Session Terminate, [RFC5043]
0xFFFF, Reserved (Experimental) [RFC6580]
All other values are Unassigned and available to IANA for assignment.
Allocation Policy: Standards Action [RFC5226]
[RFC5040]
Recio, R., Metzler, B., Culley, P., Hilland, J., and D. Garcia, "A Remote Direct Memory Access Protocol Specification", RFC 5040, October 2007.
[RFC5041]
Shah, H., Pinkerton, J., Recio, R., and P. Culley, "Direct Data Placement over Reliable Transports", RFC 5041, October 2007.
[RFC5043]
Bestler, C., Ed., and R. Stewart, Ed., "Stream Control Transmission Protocol (SCTP) Direct Data Placement (DDP) Adaptation", RFC 5043, October 2007.
[RFC5044]
Culley, P., Elzur, U., Recio, R., Bailey, S., and J. Carrier, "Marker PDU Aligned Framing for TCP Specification", RFC 5044, October 2007.
[RFC5226]
Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.
[RMP-EXT]
Shah, H., Marti, F., Noureddine, W., Eiriksson, A., and R. Sharp, "RDMA Protocol Extensions", Work in Progress, January 2012.
[RFC3692]
Narten, T., "Assigning Experimental and Testing Numbers Considered Useful", BCP 82, RFC 3692, January 2004.
[RFC6581]
Kanevsky, A., Ed., Bestler, C., Ed., Sharp, R., and S. Wise, "Enhanced Remote Direct Memory Access (RDMA) Connection Establishment", RFC 6581, April 2012.
IANA's review of a draft version of this document indicated the need for some corrections; the authors thank IANA for that review. The authors would also like to thank Pete Resnick and Jari Arkko for their helpful comments from IESG review.
Authors' Address
6581 - Enhanced Remote Direct Memory Access (RDMA) Connection Establishment
Internet Engineering Task Force (IETF)
Request for Comments: 6581
Updates: 5043, 5044
Category: Standards Track
ISSN: 2070-1721
A. Kanevsky, Ed.
Dell Inc.
C. Bestler, Ed.
Nexenta Systems
R. Sharp
Intel
S. Wise
Open Grid Computing
April 2012
This document updates RFC 5043 and RFC 5044 by extending Marker Protocol Data Unit (PDU) Aligned Framing (MPA) negotiation for Remote Direct Memory Access (RDMA) connection establishment. The first enhancement extends RFC 5044, enabling peer-to-peer connection establishment over MPA / Transmission Control Protocol (TCP). The second enhancement extends both RFC 5043 and RFC 5044, by providing an option for standardized exchange of RDMA-layer connection configuration.
This is an Internet Standards Track document.
Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
When used over the Transmission Control Protocol (TCP), the current Remote Direct Data Placement (RDDP) [RFC5041] suite of protocols relies on the MPA [RFC5044] protocol for both connection establishment and for markers for TCP layering.
A typical model for establishing an RDMA connection has the following steps:
o The passive side (responder) Upper Layer Protocol (ULP) listens for connection requests.
o The active side (initiator) ULP submits a connection request using an RDMA endpoint, the desired destination, and the parameters to be used for the connection. Those parameters include both RDMA- layer characteristics, such as the number of simultaneous RDMA Read Requests to be allowed, and application-specific data.
o The passive side ULP receives a connection request that includes the identity of the active side and the requested connection characteristics. The passive side ULP uses this information to decide whether to accept the connection, and if it is to be accepted, how to create and/or configure the local RDMA endpoint.
o If accepting, the responder submits its acceptance of the connection request, which in turn generates the accept message to the initiator. This responder accept operation includes the RDMA endpoint to be used and the connection characteristics (both the RDMA configuration and any application-specific Private Data to be transferred to the initiator).
o The active side receives confirmation that the connection has been accepted, what the configured connection characteristics are, and any application-supplied Private Data.
Currently, MPA only supports a client-server model for connection establishment, forcing peer-to-peer applications to interact as though they had a client-server relationship. In addition, negotiation of some parameters specific to the Remote Direct Memory Access Protocol (RDMAP) [RFC5040] are left to ULP negotiation. Providing an optional ULP-independent format for exchanging these parameters would be of benefit to transport neutral RDMA applications.
This document enhances the MPA connection setup protocol [RFC5044]. First, it adds exchange and negotiation of the parameters necessary to support RDMA Read Requests. Second, it adds a message that serves as a Ready to Receive (RTR) indication from the initiator to the responder as the last message of connection establishment and adds negotiation of which type of message to use for carrying the RTR indication into MPA Request/Reply Frames.
RTR indications are optional and are carried by existing RDMA message types, specifically a zero-length FULPDU Send message, a zero-length RDMA Read message, or a zero-length RDMA write message. The presence vs. absence of the RTR indication and the type of RDMA message to use are negotiated by control flags in Enhanced RDMA connection establishment data specified by this document (see Section 9). RDMA implementations are often tightly integrated with application libraries and hardware, hence the flexibility to use more than one type of RDMA message enables implementations to choose message types that are less disruptive to the implementation structure. When an RTR indication is used, and MPA connection setup negotiation indicates support for multiple RDMA message types as RTR indications by both the initiator and responder, the initiator selects one of the supported RDMA message types as the RTR indication at the initiator's sole discretion.
This document enhances [RFC5043] by adding new Enhanced Session Control Chunks that extend the currently defined Chunks with the addition of Inbound RDMA Read Queue Depth (IRD) and Outbound RDMA Read Queue Depth (ORD) negotiation.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
The goal of this document is two-fold. The first is to extend support from the current client-server model for RDMA connection setup to a peer-to-peer model. The second is to add negotiation of the RDMA Read Queue size for both sides of an RDMA connection.
Most RDMA applications are developed using a transport-neutral Application Programming Interface (API) to access RDMA services based on a "Queue Pair" paradigm as originally defined by the Virtual Interface Architecture [VIA], refined by the Direct Access Programming Library [DAPL], and most commonly deployed with the OpenFabrics API [OFA].
These transport-neutral APIs seek to provide a common set of RDMA services whether the underlying transport is, for example, RDDP over MPA, RDDP over SCTP, or InfiniBand.
The common model for establishing an RDMA connection has the following steps:
o The passive side ULP listens for connection requests.
o The active side ULP submits a connection request using an RDMA endpoint ("Queue Pair"), the desired destination, and the parameters to be used for the connection. Those parameters include both RDMA-layer characteristics, such as the number of simultaneous RDMA Read Requests to be allowed, and application- specific data (typically referred to as "Private Data").
o The passive side ULP receives a connection request, which includes the identity of the active side and the requested connection characteristics. The passive side ULP uses this information to decide whether to accept the connection, and if it is to be accepted, how to create and/or configure the RDMA endpoint.
o If accepting, the passive side ULP submits its acceptance of the connection request. This local accept operation includes the RDMA endpoint to be used and the connection characteristics (both the RDMA configuration and any application-specific Private Data to be returned).
o The active side receives confirmation that the connection has been accepted, what the configured connection characteristics are, and any application-supplied Private Data.
As currently defined, DDP connection establishment requires the ULP to encode the RDMA configuration in the application-specific Private Data. This results in undesirable duplication of logic to cover RDMA characteristics of both InfiniBand and RDDP for each ULP, and to specify for InfiniBand and RDDP the extraction of the RDMA characteristics for each ULP.
Both RDDP and InfiniBand support an initial Private Data exchange; therefore, a standard definition of the RDMA characteristics within the Private Data section would enable common connection establishment APIs to format the RDMA characteristics based on the same API information used when establishing either protocol to form the connection. The application would then only have to indicate that it was using this standard format to enable common connection establishment procedures to apply common code to properly parse these fields and configure the RDMA endpoints accordingly. Exchange of parameters necessary to perform RDMA Read operations is a common usage of the initial Private Data exchange.
One of the RDMA operations that is defined in [RDMAC] is an RDMA Read. RDMA Read operations are performed using an untagged message sent from a Queue Pair (QP) on the local endpoint to a QP on the remote endpoint targeting the Inbound RDMA Read Request Queue (QN=1 or Inbound RDMA Read Request Queue (IRRQ)) associated with the connection. RDMA Read responses transfer data associated with each RDMA Read Request from the remote endpoint to the local endpoint using tagged messages. An inbound RDMA Read Request remains on the IRRQ from the time that it is received until the time that the last tagged message associated with the RDMA request is acknowledged. The IRRQ is associated with a QP but is not a Work Queue. Instead, the IRRQ is a stand-alone queue that is used to manage RDMA Read Requests associated with a QP. See [RDMAC], Section 6 for more information regarding QPs and IRRQ. One of the characteristics that must be configured for a QP is the size of the IRRQ. This parameter is called the Inbound RDMA Read Queue Depth (IRD). Another characteristic of a QP that must be configured is a local limit on the number of simultaneous outbound RDMA Read Requests based on the size of the remote endpoint QP's IRRQ. This parameter is call the Outbound RDMA Read Queue Depth (ORD). ORD is used to limit the number of simultaneous RDMA Read Requests such that the local endpoint does not overrun the remote endpoint's IRRQ depth or IRD. Note that outbound RDMA Reads are submitted to a QP's Send Queue at the local peer, not to a separate outbound RDMA Read Request queue on the local peer. The local endpoint uses ORD to strictly limit simultaneous Read Requests so that IRRQ overruns do not occur at the remote endpoint.
Determination of the values of the ORD and IRD are left to the ULP by the current RDDP suite of protocols and also by [RDMAC]. Since this negotiation of ORD and IRD is typical, it is desirable to provide a common mechanism as described in this document.
MPA defines encoding of DDP Segments in Framed Upper Layer Protocol PDUs (FULPDUs). Generation of FULPDUs requires the ability to periodically insert MPA Markers and to generate the MPA CRC-32c for each frame. Reception may require parsing/removing the markers after using them to identify MPA Frame boundaries and validation of the MPA-CRC32c.
A major design objective for MPA was to ensure that the resulting TCP stream would be fully compliant for any and all TCP-aware middleboxes. The challenge is that while only some TCP payload streams are a valid stream of MPA FULPDUs, any sequence of bytes is a valid TCP payload stream. The determination that a given stream is in a specific MPA mode cannot be made at the MPA or TCP layer. Therefore, enabling of MPA mode is handled by the ULP.
The MPA protocol can be viewed as having two parts:
o a specification of generation and reception of MPA FULPDUs. This is unchanged by enhanced RDMA connection establishment.
o a pre-MPA exchange of messages to enable a specific MPA mode for the TCP connection. Enhanced RDMA connection establishment extends this protocol with two new features.
In typical implementations, generation and reception of MPA FULPDUs is handled by hardware. The exchange of the MPA Request and Reply Frames is then handled by host software. As will be explained, this implementation split impedes applications that are not compatible with the client-server assumptions in the current MPA Request/Reply exchange.
The exchange of MPA Request and Reply messages to place a TCP connection in MPA mode is specified in [RFC5044]. This protocol provides many benefits to the design of MPA FULPDU hardware:
o The ULP is responsible for specifying the exact MPA Mode (Markers enabled or disabled, CRC-32c enabled or suppressed) and the point in the TCP streams (inbound and outbound) where MPA Frames will begin.
o Before the first MPA Frame is transmitted, all pre-MPA mode TCP payloads will have been acknowledged by the peer. Therefore, it is never necessary to generate a retransmission that mixes pre-MPA and MPA payload.
o Before MPA reception is enabled, all incoming pre-MPA mode TCP payloads will have been acknowledged. Therefore, the host will never receive a TCP segment that mixes pre-MPA and MPA payload.
The limitation of the current MPA Request/Reply exchange is that it does not define a Ready to Receive (RTR) indication that the active side would send, so that the passive side can know that the last non- MPA payload (the MPA Reply) had been received.
Instead, the role of an RTR indication is piggybacked on the first MPA FULPDU sent by the active side. This is actually a valuable optimization for all applications that fit the classic client-server model. The client only initiates the connection when it has a request to send to the server, and the server has nothing to send until it has received and processed the client request.
Even applications where the server sends some configuration data immediately can easily send the same information as application Private Data in the MPA Reply. So the currently defined exchange works for almost all applications.
Many peer-to-peer applications, especially those involving cluster calculations (frequently using Message Passing Interface (MPI) [UsingMPI] or [RDS]), have no natural client or server roles ([PPMPI] [OpenMP]). Typically, one member of the cluster is arbitrarily selected to initiate the connection when the distributed task is launched, while the other accepts it. At startup time, however, there is no way to predict which node will have the first message to actually send. Immediately establishing the connections is valuable because it reduces latency once results are ready to transmit and it validates connectivity throughout the cluster.
The lack of an explicit RTR indication in the MPA Request/Reply exchange forces all applications to have a first message from the connection initiator, whether or not this matches the application communication model.
The requirement that the RDMA connection initiator sends the first message does not appear to be onerous on first examination. The natural question is why the application layer would not simply generate a dummy message when there is no other message to submit.
There are three factors that make this workaround unsuitable for many peer-to-peer applications:
o Transport-Neutral APIs.
o Work/Completion Queue Accounting.
o Host-based implementation of MPA Fencing.
Many of these applications access RDMA services using a transport- neutral API such as [DAPL] or [OFA]. Only RDDP over TCP [RFC5044] has a first message requirement. Other RDMA transports, including RDDP over SCTP (see [RFC5043]) and InfiniBand (see [IBTA]), do not.
Application or middleware communications can be expressed as transport-neutral RDMA operations, allowing lower software layers to translate to transport and device specifics. Having a distinct extra message that is required only for one transport undermines the application's goal of being transport neutral.
RDMA local APIs conventionally use Work Queues to submit requests (Work Queue elements or WQEs) and to asynchronously receive completions (in Completion Queues or CQs).
Each Work Request can generate a Completion Queue Entry (CQE). Completions for successful transmit Work Requests are frequently suppressed, but the CQ capacity must account for the possibility that each will complete in error. A CQ can receive completions from multiple Work Queues.
CQs are defined to allow hardware RDMA implementations to generate CQEs directly to a user-space-mapped buffer. This enables a user- space RDMA Consumer to reap completions without requiring kernel intervention.
A hardware RDMA implementation cannot reasonably wait for an available slot in the CQ. The queue must be sized such that an overflow will not occur. When an overflow does occur, it is considered a catastrophic error and will typically require tearing down all RDMA connections using that CQ.
This style of interface is very efficient, but places a burden on the application to properly size each CQ to match the Work Queues that feed it.
While the format of both WQEs and CQEs is transport and device dependent, a transport-neutral API can deal with WQEs and CQEs as abstract transport- and device-neutral objects. Therefore, the number of WQEs and CQEs required for an application can be transport and device neutral.
The capacity of the Work Queues and CQs can be calculated in an abstract transport- and device-neutral fashion. If a dummy operation approach is used, it would require lower layers to know the usage model, and would disrupt the calculations by inserting a dummy "operation" Work Request and filtering out the matching completion. The lower layer does not know the usage model on which the queue sizes are built, nor does it know how frequently an insertion will be required.
Many hardware implementations of RDDP using MPA/TCP do not handle the MPA Request/Reply exchange in hardware, rather they are handled by the host processor in software. With such designs, it is common for the MPA Fencing to be implemented in the user-space, device-specific library (commonly referred to as a 'User Verbs' library or module).
When the generation and reception of MPA FULPDUs are already dedicated to hardware, a Work Completion can only be generated by an untagged message, since arrival of a message for a tagged buffer does not necessarily generate a completion and is done without any interaction with ULP [RFC5040].
Below we provide an overview of Enhanced Connection Setup. The goal is to allow standard negotiation of the ORD/IRD setting on both sides of the RDMA connection and/or to negotiate the initial data transfer operation by the initiator when the existing 'client sends first' rule does not match application requirements.
The RDMA connection initiator sends an MPA Request, as specified in [RFC5044]; the new format defined here allows for:
o Standardized negotiation of ORD and IRD.
o Negotiation of RTR functionality and the RDMA message type to use as the RTR indication.
The RDMA connection responder processes the MPA Request and generates an MPA Reply, as specified in [RFC5044]; the new format completes the negotiation.
The local interface needs to provide a way for a ULP to request the use of explicit RTR indication on a per-application or per-connection basis when an explicit RTR indication will be required. Piggybacking the RTR on a Client's first message is a valuable optimization for most connections.
The RDMA connection initiator MUST NOT allow any later FULPDUs to be transmitted before the RTR indication. One method to achieve this is to delay notifying the ULP that the RDMA connection has been established until after any required RTR indication has been transmitted.
All MPA exchanges are performed via TCP prior to RDMA establishment, and are therefore signaled via TCP and not via RDMA completion.
Enhanced RDMA connection establishment uses an alternate format for MPA Requests and Replies as follows:
Enhanced RDMA connection establishment uses the first 32 bits of the Private Data field for IRD and ORD negotiation in the "DDP Stream Session Initiate" and "DDP Stream Session Accept" SCTP Session Control Chunks.
The type of the SCTP Session Control Chunk is defined by a Function Code (see [RFC4960]). [RFC5043] already defines codes for 'DDP Stream Session Initiate' and 'DDP Stream Session Accept', which are equivalent to an MPA Request Frame and an accepting MPA Reply Frame.
Enhanced RDMA connection establishment requires three additional function codes listed below:
The Enhanced Reject function code MUST be used to indicate rejection of enhanced DDP stream session for a configuration that would have been accepted for unenhanced DDP stream session negotiation.
The enhanced DDP stream session establishment follows the same rules as the standard DDP stream session establishment as defined in [RFC5043]. ULP-supplied Private Data MUST be included for Enhanced DDP Stream Session Initiate, Enhanced DDP Stream Session Accept, and Enhanced DDP Stream Session Reject messages, and MUST follow the enhanced RDMA connection establishment data in the DDP Stream Session Initiate and the Enhanced DDP Stream Session Accept messages. Private Data length MUST NOT exceed 512 bytes in any message, including enhanced RDMA connection establishment data.
Private Data MUST NOT be included in the DDP Stream Session TERM message.
Received Extended DDP Stream Session Control messages SHOULD be reported to the ULP. If reported, any supplied Private Data MUST be available for the ULP to examine. For example, a received Extended DDP Stream Session Control message is not reported to ULP if none of the requested RTR indication types are supported by the receiver. In this case, the Provider MAY generate a reject reply message indicating which RTR indication types it supports.
The enhanced DDP stream management MUST use the DDP stream session termination function code to terminate a stream established using enhanced DDP stream session function codes.
[RFC5043] already supports either side sending the first DDP Message since the Payload Protocol Identifier (PPID) already distinguishes between Session Establishment and DDP Segments. The enhanced RDMA connection establishment provides the ULP a transport-independent way to support the peer-to-peer model.
The following additional Legal Sequences of DDP Stream Session messages are defined:
o Enhanced Active/Passive Session Accepted: as with Section 6.2 of [RFC5043], but with the extended opcodes as defined in this document.
o Enhanced Active/Passive Session Rejected: as with Section 6.3 of [RFC5043], but with the extended opcodes as defined in this document.
o Enhanced Active/Passive Session Non-ULP Rejected: as with Section 6.4 of [RFC5043], but with the extended opcodes as defined in this document.
The RDMA connection establishment protocol is layered upon the protocols defined in [RFC5040] and [RFC5041]. Any enhanced RDMA connection establishment error generates an MPA termination message to a peer. [RFC5040] defines a triplet of protocol layers, error types, and error codes for error specification. MPA negotiation for RDMA connection establishment uses the following layer and error type for MPA error reporting:
While [RFC5044] defines four error codes, [RFC5043] does not define any. Enhanced RDMA connection establishment extends the error codes defined in [RFC5044] by adding three new error codes. Thus, enhanced RDMA connection establishment is backward compatible with both [RFC5043] and [RFC5044].
The following error codes are defined for enhanced RDMA connection establishment negotiation:
Enhanced RDMA connection establishment places the following 32 bits at the beginning of the Private Data field of the MPA Request and Reply Frames or the "DDP Stream Session Initiate" and "DDP Stream Session Accept" SCTP Session Control Chunks. ULP-specified Private Data follows this field. The maximum amount of ULP-specified Private Data is therefore reduced by 4 bytes. Note that this field MUST be sent in network byte order, with the IRD and ORD encoded as 14-bit unsigned integers.
A: Control Flag for connection model.
B: Control Flag for use of a zero-length FULPDU (Send) RTR
indication.
C: Control Flag for use of a zero-length RDMA Write RTR indication.
D: Control Flag for use of a zero-length RDMA Read RTR indication.
The IRD and ORD are used for negotiation of Inbound RDMA Read Request Queue depths for both endpoints of the RDMA connection. The IRD is used to configure the depth of the Inbound RDMA Read Request Queue (IRRQ) on each endpoint. ORD is used to limit the number of simultaneous outbound RDMA Read Requests allowed at any given point in time in order to avoid IRRQ overruns at the remote endpoint. In order to describe the negotiation of both local endpoint and remote endpoint ORD and IRD values, four terms are defined:
The relationships between these parameters after a successful negotiation is complete are the following:
initiator ORD <= responder IRD
responder ORD <= initiator IRD
The responder and initiator MUST pass the peer's provided IRD and ORD values to the ULP, in addition to using the values as calculated by the preceding rules.
The responder ORD SHOULD be set to a value less than or equal to the initiator IRD. If the initiator ORD is insufficient to support the selected connection model, the responder IRD MAY be increased; for example, if the initiator ORD is 0 (RDMA Reads will not be used by the ULP) and the responder supports use of a zero-length RDMA Read RTR indication, then the responder IRD can be set to 1. The responder MUST set its ORD at most to the initiator IRD. The responder MAY reject the connection request if the initiator IRD is not sufficient for the ULP-required ORD and specify the required ORD in the MPA Reject Frame responder ORD. Thus, the TERM message MUST contain Layer 2, Error Type 0, Error Code 6.
Upon receiving the MPA Accept Frame from the responder, the initiator MUST set its IRD at least to the responder ORD and its ORD at most to the responder IRD. If the initiator does not have sufficient resources for the required IRD, it MUST send a TERM message to the responder indicating insufficient resources and terminate the connection due to insufficient resources. Thus, the TERM message MUST contain Layer 2, Error Type 0, Error Code 6.
The initiator MUST pass the responder provided IRD and ORD to the ULP for both MPA Accept and Reject messages. The initiator ULP can decide its course of action. For example, the initiator ULP may terminate the established connection and renegotiate the responder ORD.
An all ones value (0x3FFF) indicates that automatic negotiation of the IRD or ORD is not desired, and that the ULP will be responsible for it. The responder MUST respond to an initiator ORD value of 0x3FFF by leaving its local endpoint IRD value unchanged and setting the IRD to 0x3FFF in its reply message. The initiator MUST leave its local endpoint ORD value unchanged upon receiving a responder IRD value of 0x3FFF. The responder MUST respond to an initiator IRD value of 0x3FFF by leaving its local endpoint ORD value unchanged, and setting ORD to 0x3FFF in its reply message. The initiator MUST leave its local endpoint IRD value unchanged upon receiving a responder ORD value of 0x3FFF.
Control Flag A value 1 indicates that a peer-to-peer connection model is being performed, and value 0 indicates a client-server model. Control Flag B value 1 indicates that a zero-length FULPDU (Send) RTR indication is requested for the initiator and supported by the responder, respectively, 0 otherwise. Control Flag C value 1 indicates that a zero-length RDMA Write RTR indication is requested for the initiator and supported by the responder, respectively, 0 otherwise. Control Flag D value 1 indicates that a zero-length RDMA Read RTR indication is requested for the initiator and supported by the responder, respectively, 0 otherwise. The initiator MUST set Control Flag A to 1 for the peer-to-peer model. The initiator MUST set each Control Flag B, C, and D to 1 for each of the options it supports, if Control Flag A is set to 1.
The responder MUST support at least one RTR indication option if it supports Enhanced RDMA connection establishment. If Control Flag A is 1 in the MPA Request message, then the responder MUST set Control Flag A to 1 in the MPA reply message. For each initiator-supported RTR indication option, the responder SHOULD set the corresponding Control Flag if the responder can support that option in an MPA reply. The responder is not required to specify all RTR indication options it supports. The responder MUST set at least one RTR indication option if it supports more than one initiator-specified RTR indication option. The responder MAY include additional RTR indication options it supports, even if not requested by any initiator specified RTR indication options. If the responder does not support any of the initiator-specified RTR indication options, then the responder MUST set at least one RTR indication type option it supports.
Upon receiving the MPA Accept Frame with Control Flag A set to 1, the initiator MUST generate one of the negotiated RTR indications. If the initiator is not able to generate any of the responder-supported RTR indications, then it MUST send a TERM message to the responder indicating failure to negotiate a mutually compatible connection model or RTR option, and terminate the connection. Thus, the TERM message MUST contain Layer 2, Error Type 0, Error Code 7. The ULP can negotiate a ULP-level RTR indication when a Provider-level RTR indication cannot be negotiated.
The initiator MUST set Control Flag A to 0 for the client-server model. The responder MUST set Control Flag A to 0 if Control Flag A is 0 in the request. If Control Flag A is set to 0, then Control Flags B, C, and D MUST also be set to 0. On reception, if Control Flag A is set to 0, then Control Flags B, C, and D MUST be ignored.
The RTR indication type and ORD/IRD negotiation follows the following order:
The initiator or responder MUST generate the TERM message that contains Layer 2, Error Type 0, Error Code 5 when it encounters any error locally for which the special Error Code is not defined in Section 8 before resetting the connection.
The initiator requests enhanced RDMA connection establishment by sending an enhanced RDMA establishment request; an enhanced responder is REQUIRED to respond with an enhanced RDMA connection establishment response, whereas an unenhanced responder treats the enhanced request as incorrectly formatted and closes the TCP connection. All responders are REQUIRED to issue unenhanced RDMA connection establishment responses in response to unenhanced RDMA connection establishment requests.
The initiator MUST NOT use the enhanced RDMA connection establishment formats or function codes when no enhanced functionality is desired.
The responder MUST continue to accept unenhanced connection requests.
There are three initiator/responder cases that involve enhanced MPA: both the initiator and responder, only the responder, and only the initiator. The enhanced MPA Frame is defined by field 'S' set to 1.
A note for potential future enhancements for connection establishment negotiation: It is possible to further extend formatting of Private Data of the MPA Request and Reply Frames and to use other bits from the "Res" field to indicate additional Private Data formatting.
IANA has added the following entries to the "SCTP Function Codes for DDP Session Control" registry created by Section 3.5 of [RFC6580]:
IANA has added the following entries to the "MPA Errors" registry created by Section 3.3 of [RFC6580]:
The security considerations from RFC 5044 and RFC 5043 apply and the changes in this document do not introduce new security considerations. However, it is recommended that implementations do sanity checking for the input parameters, including ORD, IRD, and the control flags used for RTR indication option negotiation.
The authors wish to thank Sean Hefty, Dave Minturn, Tom Talpey, David Black, and David Harrington for their valuable contributions and reviews of this document.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC4960]
Stewart, R., "Stream Control Transmission Protocol", RFC 4960, September 2007.
[RFC5040]
Recio, R., Metzler, B., Culley, P., Hilland, J., and D. Garcia, "A Remote Direct Memory Access Protocol Specification", RFC 5040, October 2007.
[RFC5041]
Shah, H., Pinkerton, J., Recio, R., and P. Culley, "Direct Data Placement over Reliable Transports", RFC 5041, October 2007.
[RFC5043]
Bestler, C. and R. Stewart, "Stream Control Transmission Protocol (SCTP) Direct Data Placement (DDP) Adaptation", RFC 5043, October 2007.
[RFC5044]
Culley, P., Elzur, U., Recio, R., Bailey, S., and J. Carrier, "Marker PDU Aligned Framing for TCP Specification", RFC 5044, October 2007.
[RFC6580]
Ko, M. and D. Black, "IANA Registries for the Remote Direct Data Placement (RDDP) Protocols", RFC 6580, April 2012.
[DAPL]
"Direct Access Programming Library", <http://www.datcollaborative.org/uDAPL_doc_062102.pdf>.
[IBTA]
"InfiniBand Architecture Specification Release 1.2.1", <http://www.infinibandta.org>.
[OFA]
"OFA verbs & APIs", <http://www.openfabrics.org/>.
[OpenMP]
McGraw-Hill, "Parallel Programming in C with MPI and OpenMP", 2003.
[PPMPI]
Morgan Kaufmann Publishers Inc., "Parallel Programming with MPI", 2008.
[RDMAC]
"RDMA Protocol Verbs Specification (Version 1.0)", <http://www.rdmaconsortium.org/home/ draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf>.
[RDS]
Open Fabrics Association, "Reliable Datagram Socket", 2008, <http://www.openfabrics.org/archives/spring2008sonoma>.
[UsingMPI]
MIT Press, "Using MPI-2: Advanced Features of the Message Passing Interface", 1999.
[VIA]
Cameron, Don and Greg Regnier, "Virtual Interface Architecture", Intel, April 2002.
Authors' Addresses
7143 - Internet Small Computer System Interface (iSCSI) Protocol (Consolidated)
Internet Engineering Task Force (IETF)
Request for Comments: 7143
Obsoletes: 3720, 3980, 4850, 5048
Updates: 3721
Category: Standards Track
ISSN: 2070-1721
M. Chadalapaka
Microsoft
J. Satran
Infinidat Ltd.
K. Meth
IBM
D. Black
EMC
April 2014
This document describes a transport protocol for SCSI that works on top of TCP. The iSCSI protocol aims to be fully compliant with the standardized SCSI Architecture Model (SAM-2). RFC 3720 defined the original iSCSI protocol. RFC 3721 discusses iSCSI naming examples and discovery techniques. Subsequently, RFC 3980 added an additional naming format to the iSCSI protocol. RFC 4850 followed up by adding a new public extension key to iSCSI. RFC 5048 offered a number of clarifications as well as a few improvements and corrections to the original iSCSI protocol.
This document obsoletes RFCs 3720, 3980, 4850, and 5048 by consolidating them into a single document and making additional updates to the consolidated specification. This document also updates RFC 3721. The text in this document thus supersedes the text in all the noted RFCs wherever there is a difference in semantics.
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7143.
Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
The Small Computer System Interface (SCSI) is a popular family of protocols for communicating with I/O devices, especially storage devices. SCSI is a client-server architecture. Clients of a SCSI interface are called "initiators". Initiators issue SCSI "commands" to request services from components -- logical units of a server known as a "target". A "SCSI transport" maps the client-server SCSI protocol to a specific interconnect. An initiator is one endpoint of a SCSI transport, and a target is the other endpoint.
The SCSI protocol has been mapped over various transports, including Parallel SCSI, Intelligent Peripheral Interface (IPI), IEEE 1394 (FireWire), and Fibre Channel. These transports are I/O-specific and have limited distance capabilities.
The iSCSI protocol defined in this document describes a means of transporting SCSI packets over TCP/IP, providing for an interoperable solution that can take advantage of existing Internet infrastructure, Internet management facilities, and address distance limitations.
- Alias: An alias string can also be associated with an iSCSI node. The alias allows an organization to associate a user-friendly string with the iSCSI name. However, the alias string is not a substitute for the iSCSI name.
- CID (connection ID): Connections within a session are identified by a connection ID. It is a unique ID for this connection within the session for the initiator. It is generated by the initiator and presented to the target during Login Requests and during logouts that close connections.
- Connection: A connection is a TCP connection. Communication between the initiator and target occurs over one or more TCP connections. The TCP connections carry control messages, SCSI commands, parameters, and data within iSCSI Protocol Data Units (iSCSI PDUs).
- I/O Buffer: An I/O Buffer is a buffer that is used in a SCSI read or write operation so SCSI data may be sent from or received into that buffer. For a read or write data transfer to take place for a task, an I/O Buffer is required on the initiator and at least one is required on the target.
- INCITS: "INCITS" stands for InterNational Committee for Information Technology Standards. The INCITS has a broad standardization scope within the field of Information and Communications Technologies (ICT), encompassing storage, processing, transfer, display, management, organization, and retrieval of information. INCITS serves as ANSI's Technical Advisory Group for the ISO/IEC Joint Technical Committee 1 (JTC 1). See <http://www.incits.org>.
- InfiniBand: InfiniBand is an I/O architecture originally intended to replace Peripheral Component Interconnect (PCI) and address high-performance server interconnectivity [IB].
- iSCSI Device: An iSCSI device is a SCSI device using an iSCSI service delivery subsystem. The Service Delivery Subsystem is defined by [SAM2] as a transport mechanism for SCSI commands and responses.
- iSCSI Initiator Name: The iSCSI Initiator Name specifies the worldwide unique name of the initiator.
- iSCSI Initiator Node: An iSCSI initiator node is the "initiator" device. The word "initiator" has been appropriately qualified as either a port or a device in the rest of the document when the context is ambiguous. All unqualified usages of "initiator" refer to an initiator port (or device), depending on the context.
- iSCSI Layer: This layer builds/receives iSCSI PDUs and relays/receives them to/from one or more TCP connections that form an initiator-target "session".
- iSCSI Name: This is the name of an iSCSI initiator or iSCSI target.
- iSCSI Node: The iSCSI node represents a single iSCSI initiator or iSCSI target, or a single instance of each. There are one or more iSCSI nodes within a Network Entity. The iSCSI node is accessible via one or more Network Portals. An iSCSI node is identified by its iSCSI name. The separation of the iSCSI name from the addresses used by and for the iSCSI node allows multiple iSCSI nodes to use the same address and the same iSCSI node to use multiple addresses.
- iSCSI Target Name: The iSCSI Target Name specifies the worldwide unique name of the target.
- iSCSI Target Node: The iSCSI target node is the "target" device. The word "target" has been appropriately qualified as either a port or a device in the rest of the document when the context is ambiguous. All unqualified usages of "target" refer to a target port (or device), depending on the context.
- iSCSI Task: An iSCSI task is an iSCSI request for which a response is expected.
- iSCSI Transfer Direction: The iSCSI transfer direction is defined with regard to the initiator. Outbound or outgoing transfers are transfers from the initiator to the target, while inbound or incoming transfers are from the target to the initiator.
- ISID: The ISID is the initiator part of the session identifier. It is explicitly specified by the initiator during login.
- I_T Nexus: According to [SAM2], the I_T nexus is a relationship between a SCSI initiator port and a SCSI target port. For iSCSI, this relationship is a session, defined as a relationship between an iSCSI initiator's end of the session (SCSI initiator port) and the iSCSI target's portal group. The I_T nexus can be identified by the conjunction of the SCSI port names; that is, the I_T nexus identifier is the tuple (iSCSI Initiator Name + ',i,' + ISID, iSCSI Target Name + ',t,' + Target Portal Group Tag).
- I_T_L Nexus: An I_T_L nexus is a SCSI concept and is defined as the relationship between a SCSI initiator port, a SCSI target port, and a Logical Unit (LU).
- NAA: "NAA" refers to Network Address Authority, a naming format defined by the INCITS T11 Fibre Channel protocols [FC-FS3].
- Network Entity: The Network Entity represents a device or gateway that is accessible from the IP network. A Network Entity must have one or more Network Portals, each of which can be used to gain access to the IP network by some iSCSI nodes contained in that Network Entity.
- Network Portal: The Network Portal is a component of a Network Entity that has a TCP/IP network address and that may be used by an iSCSI node within that Network Entity for the connection(s) within one of its iSCSI sessions. A Network Portal in an initiator is identified by its IP address. A Network Portal in a target is identified by its IP address and its listening TCP port.
- Originator: In a negotiation or exchange, the originator is the party that initiates the negotiation or exchange.
- PDU (Protocol Data Unit): The initiator and target divide their communications into messages. The term "iSCSI Protocol Data Unit" (iSCSI PDU) is used for these messages.
- Portal Groups: iSCSI supports multiple connections within the same session; some implementations will have the ability to combine connections in a session across multiple Network Portals. A portal group defines a set of Network Portals within an iSCSI Network Entity that collectively supports the capability of coordinating a session with connections spanning these portals. Not all Network Portals within a portal group need participate in every session connected through that portal group. One or more portal groups may provide access to an iSCSI node. Each Network Portal, as utilized by a given iSCSI node, belongs to exactly one portal group within that node.
- Portal Group Tag: This 16-bit quantity identifies a portal group within an iSCSI node. All Network Portals with the same Portal Group Tag in the context of a given iSCSI node are in the same portal group.
- Recovery R2T: A recovery R2T is an R2T generated by a target upon detecting the loss of one or more Data-Out PDUs through one of the following means: a digest error, a sequence error, or a sequence reception timeout. A recovery R2T carries the next unused R2TSN but requests all or part of the data burst that an earlier R2T (with a lower R2TSN) had already requested.
- Responder: In a negotiation or exchange, the responder is the party that responds to the originator of the negotiation or exchange.
- SAS: The Serial Attached SCSI (SAS) standard contains both a physical layer compatible with Serial ATA, and protocols for transporting SCSI commands to SAS devices and ATA commands to SATA devices [SAS] [SPL].
- SCSI Device: This is the SAM-2 term for an entity that contains one or more SCSI ports that are connected to a service delivery subsystem and supports a SCSI application protocol. For example, a SCSI initiator device contains one or more SCSI initiator ports and zero or more application clients. A target device contains one or more SCSI target ports and one or more device servers and associated LUs. For iSCSI, the SCSI device is the component within an iSCSI node that provides the SCSI functionality. As such, there can be at most one SCSI device within a given iSCSI node. Access to the SCSI device can only be achieved in an iSCSI Normal operational session. The SCSI device name is defined to be the iSCSI name of the node.
- SCSI Layer: This builds/receives SCSI CDBs (Command Descriptor Blocks) and relays/receives them with the remaining Execute Command [SAM2] parameters to/from the iSCSI Layer.
- Session: The group of TCP connections that link an initiator with a target form a session (loosely equivalent to a SCSI I_T nexus). TCP connections can be added and removed from a session. Across all connections within a session, an initiator sees one and the same target.
- SCSI Port: This is the SAM-2 term for an entity in a SCSI device that provides the SCSI functionality to interface with a service delivery subsystem. For iSCSI, the definitions of the SCSI initiator port and the SCSI target port are different.
- SCSI Initiator Port: This maps to the endpoint of an iSCSI Normal operational session. An iSCSI Normal operational session is negotiated through the login process between an iSCSI initiator node and an iSCSI target node. At successful completion of this process, a SCSI initiator port is created within the SCSI initiator device. The SCSI initiator port name and SCSI initiator port identifier are both defined to be the iSCSI Initiator Name together with (a) a label that identifies it as an initiator port name/identifier and (b) the ISID portion of the session identifier.
- SCSI Port Name: This is a name consisting of UTF-8 [RFC3629] encoding of Unicode [UNICODE] characters and includes the iSCSI name + 'i' or 't' + ISID or Target Portal Group Tag.
- SCSI-Presented Data Transfer Length (SPDTL): SPDTL is the aggregate data length of the data that the SCSI layer logically "presents" to the iSCSI layer for a Data-In or Data-Out transfer in the context of a SCSI task. For a bidirectional task, there are two SPDTL values -- one for Data-In and one for Data-Out. Note that the notion of "presenting" includes immediate data per the data transfer model in [SAM2] and excludes overlapping data transfers, if any, requested by the SCSI layer.
- SCSI Target Port: This maps to an iSCSI target portal group.
- SCSI Target Port Name and SCSI Target Port Identifier: These are both defined to be the iSCSI Target Name together with (a) a label that identifies it as a target port name/identifier and (b) the Target Portal Group Tag.
- SSID (Session ID): A session between an iSCSI initiator and an iSCSI target is defined by a session ID that is a tuple composed of an initiator part (ISID) and a target part (Target Portal Group Tag). The ISID is explicitly specified by the initiator at session establishment. The Target Portal Group Tag is implied by the initiator through the selection of the TCP endpoint at connection establishment. The TargetPortalGroupTag key must also be returned by the target as a confirmation during connection establishment.
- T10: T10 is a technical committee within INCITS that develops standards and technical reports on I/O interfaces, particularly the series of SCSI (Small Computer System Interface) standards. See <http://www.t10.org>.
- T11: T11 is a technical committee within INCITS responsible for standards development in the areas of Intelligent Peripheral Interface (IPI), High-Performance Parallel Interface (HIPPI), and Fibre Channel (FC). See <http://www.t11.org>.
- Target Portal Group Tag: This is a numerical identifier (16-bit) for an iSCSI target portal group.
- Target Transfer Tag (TTT): The TTT is an iSCSI protocol field used in a few iSCSI PDUs (e.g., R2T, NOP-In) that is always sent from the target to the initiator first and then quoted as a reference in initiator-sent PDUs back to the target relating to the same task/exchange. Therefore, the TTT effectively acts as an opaque handle to an existing task/exchange to help the target associate the incoming PDUs from the initiator to the proper execution context.
- Third-party: This term is used in this document as a qualifier to nexus objects (I_T or I_T_L) and iSCSI sessions, to indicate that these objects and sessions reap the side effects of actions that take place in the context of a separate iSCSI session. One example of a third-party session is an iSCSI session discovering that its I_T_L nexus to a LU got reset due to a LU reset operation orchestrated via a separate I_T nexus.
- TSIH (Target Session Identifying Handle): This is a target-assigned tag for a session with a specific named initiator. The target generates it during session establishment. Other than defining it as a 16-bit binary string, its internal format and content are not defined by this protocol but for the value with all bits set to 0 that is reserved and used by the initiator to indicate a new session. It is given to the target during additional connection establishment for the same session.
1) Consolidated RFCs 3720, 3980, 4850, and 5048, and made the necessary editorial changes.
2) Specified iSCSIProtocolLevel as "1" in Section 13.24 and added a related normative reference to [RFC7144].
3) Removed markers and related keys.
4) Removed SPKM authentication and related keys.
5) Added a new Section 13.25 on responding to obsoleted keys.
6) Have explicitly allowed initiator+target implementations throughout the text.
7) Clarified in Section 4.2.7 that implementations SHOULD NOT rely on SLP-based discovery.
8) Added Unified Modeling Language (UML) diagrams and related conventions in Section 3.
9) Made FastAbort implementation a "SHOULD" requirement in Section 4.2.3.4, rather than the previous "MUST" requirement.
10) Required in Section 4.2.7.1 that iSCSI Target Name be the same as iSCSI Initiator Name for SCSI (composite) devices with both roles.
11) Changed the "MUST NOT" to "should be avoided" in Section 4.2.7.2 regarding usage of characters such as punctuation marks in iSCSI names.
12) Updated Section 9.3 to require the following: MUST implement IPsec, 2400-series RFCs (IPsec v2, IKEv1); and SHOULD implement IPsec, 4300-series RFCs (IPsec v3, IKEv2).
13) Clarified in Section 10.2 that ACA is a "SHOULD" only for iSCSI targets.
14) Prohibited usage of X# name prefix for new public keys in Section 6.2.
15) Prohibited usage of Y# name prefix for new digest extensions in Section 13.1 and Z# name prefix for new authentication method extensions in Section 12.1.
16) Added a "SHOULD" in Section 6.2 that initiators and targets support at least six (6) exchanges during text negotiation.
17) Added a clarification that Appendix C is normative.
18) Added a normative requirement on [RFC7146] and made a few related changes in Section 9.3 to align the text in this document with that of [RFC7146].
19) Added a new Section 9.2.3 covering Kerberos authentication considerations.
21) Added text in Section 9.3.1 specifying that extended sequence numbers (ESNs) are now required for ESPv2 (part of IPsec v2).
In examples, "I->" and "T->" show iSCSI PDUs sent by the initiator and target, respectively.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
The SCSI Architecture Model (SAM) uses class diagrams and object diagrams with notation that is based on the Unified Modeling Language [UML]. Therefore, this document also uses UML to model the relationships for SCSI and iSCSI objects.
A treatise on the graphical notation used in UML is beyond the scope of this document. However, given the use of ASCII drawing for UML static class diagrams, a description of the notational conventions used in this document is included in the remainder of this section.
The previous three diagrams are examples of a class with no attributes and with no operations.
The preceding two diagrams are examples of a class with attributes and with no operations.
The preceding diagram is an example of a class with attributes that have a specified multiplicity and operations.
The preceding diagram is an example where Class A knows about Class B (i.e., read as "Class A association_name Class B") and Class B knows about Class A (i.e., read as "Class B association_name Class A"). The use of association_name is optional. The multiplicity notation (1..* and 0..1) indicates the number of instances of the object.
The preceding diagram is an example where Class B knows about Class A (i.e., read as "Class B knows about Class A") but Class A does not know about Class B.
The preceding diagram is an example where Class A knows about Class B (i.e., read as "Class A knows about Class B") but Class B does not know about Class A.
The preceding diagram is an example where Class whole is an aggregate that contains Class part and where Class part may continue to exist even if Class whole is removed (i.e., read as "the whole contains the part").
The preceding diagram is an example where Class whole is an aggregate that contains Class part where Class part only belongs to one Class whole, and the Class part does not continue to exist if the Class whole is removed (i.e., read as "the whole contains the part").
The preceding diagram is an example where there is a constraint between the associations, where the (a) footnote describes the constraint.
The preceding diagram is an example where the subclass is a kind of superclass. A subclass shares all the attributes and operations of the superclass (i.e., the subclass inherits from the superclass).
The SCSI Architecture Model - 2 [SAM2] describes in detail the architecture of the SCSI family of I/O protocols. This section provides a brief background of the SCSI architecture and is intended to familiarize readers with its terminology.
At the highest level, SCSI is a family of interfaces for requesting services from I/O devices, including hard drives, tape drives, CD and DVD drives, printers, and scanners. In SCSI terminology, an individual I/O device is called a "logical unit" (LU).
SCSI is a client-server architecture. Clients of a SCSI interface are called "initiators". Initiators issue SCSI "commands" to request services from components -- LUs of a server known as a "target". The "device server" on the LU accepts SCSI commands and processes them.
A "SCSI transport" maps the client-server SCSI protocol to a specific interconnect. The initiator is one endpoint of a SCSI transport. The "target" is the other endpoint. A target can contain multiple LUs. Each LU has an address within a target called a Logical Unit Number (LUN).
A SCSI task is a SCSI command or possibly a linked set of SCSI commands. Some LUs support multiple pending (queued) tasks, but the queue of tasks is managed by the LU. The target uses an initiator- provided "task tag" to distinguish between tasks. Only one command in a task can be outstanding at any given time.
Each SCSI command results in an optional data phase and a required response phase. In the data phase, information can travel from the initiator to the target (e.g., write), from the target to the initiator (e.g., read), or in both directions. In the response phase, the target returns the final status of the operation, including any errors.
Command Descriptor Blocks (CDBs) are the data structures used to contain the command parameters that an initiator sends to a target. The CDB content and structure are defined by [SAM2] and device-type specific SCSI standards.
The iSCSI protocol is a mapping of the SCSI command, event, and task management model (see [SAM2]) over the TCP protocol. SCSI commands are carried by iSCSI requests, and SCSI responses and status are carried by iSCSI responses. iSCSI also uses the request-response mechanism for iSCSI protocol mechanisms.
For the remainder of this document, the terms "initiator" and "target" refer to "iSCSI initiator node" and "iSCSI target node", respectively (see iSCSI), unless otherwise qualified.
As its title suggests, Section 4 presents an overview of the iSCSI concepts, and later sections in the rest of the specification contain the normative requirements -- in many cases covering the same concepts discussed in Section 4. Such normative requirements text overrides the overview text in Section 4 if there is a disagreement between the two.
In keeping with similar protocols, the initiator and target divide their communications into messages. This document uses the term "iSCSI Protocol Data Unit" (iSCSI PDU) for these messages.
For performance reasons, iSCSI allows a "phase-collapse". A command and its associated data may be shipped together from initiator to target, and data and responses may be shipped together from targets.
The iSCSI transfer direction is defined with respect to the initiator. Outbound or outgoing transfers are transfers from an initiator to a target, while inbound or incoming transfers are from a target to an initiator.
An iSCSI task is an iSCSI request for which a response is expected.
In this document, "iSCSI request", "iSCSI command", request, or (unqualified) command have the same meaning. Also, unless otherwise specified, status, response, or numbered response have the same meaning.
The following conceptual layering model is used to specify initiator and target actions and the way in which they relate to transmitted and received Protocol Data Units:
- The SCSI layer builds/receives SCSI CDBs (Command Descriptor Blocks) and passes/receives them with the remaining Execute Command [SAM2] parameters to/from
- the iSCSI layer that builds/receives iSCSI PDUs and relays/receives them to/from one or more TCP connections; the group of connections form an initiator-target "session".
Communication between the initiator and target occurs over one or more TCP connections. The TCP connections carry control messages, SCSI commands, parameters, and data within iSCSI Protocol Data Units (iSCSI PDUs). The group of TCP connections that link an initiator with a target form a session (equivalent to a SCSI I_T nexus; see Section 4.4.2). A session is defined by a session ID that is composed of an initiator part and a target part. TCP connections can be added and removed from a session. Each connection within a session is identified by a connection ID (CID).
Across all connections within a session, an initiator sees one "target image". All target-identifying elements, such as a LUN, are the same. A target also sees one "initiator image" across all connections within a session. Initiator-identifying elements, such as the Initiator Task Tag, are global across the session, regardless of the connection on which they are sent or received.
iSCSI targets and initiators MUST support at least one TCP connection and MAY support several connections in a session. For error recovery purposes, targets and initiators that support a single active connection in a session SHOULD support two connections during recovery.
iSCSI uses command and status numbering schemes and a data sequencing scheme.
Command numbering is session-wide and is used for ordered command delivery over multiple connections. It can also be used as a mechanism for command flow control over a session.
Status numbering is per connection and is used to enable missing status detection and recovery in the presence of transient or permanent communication errors.
Data sequencing is per command or part of a command (R2T-triggered sequence) and is used to detect missing data and/or R2T PDUs due to header digest errors.
Typically, fields in the iSCSI PDUs communicate the sequence numbers between the initiator and target. During periods when traffic on a connection is unidirectional, iSCSI NOP-Out/NOP-In PDUs may be utilized to synchronize the command and status ordering counters of the target and initiator.
The iSCSI session abstraction is equivalent to the SCSI I_T nexus, and the iSCSI session provides an ordered command delivery from the SCSI initiator to the SCSI target. For detailed design considerations that led to the iSCSI session model as it is defined here and how it relates the SCSI command ordering features defined in SCSI specifications to the iSCSI concepts, see [RFC3783].
iSCSI performs ordered command delivery within a session. All commands (initiator-to-target PDUs) in transit from the initiator to the target are numbered.
iSCSI considers a task to be instantiated on the target in response to every request issued by the initiator. A set of task management operations, including abort and reassign (see Section 11.5), may be performed on an iSCSI task; however, an abort operation cannot be performed on a task management operation, and usage of reassign operations has certain constraints. See Section 11.5.1 for details.
Some iSCSI tasks are SCSI tasks, and many SCSI activities are related to a SCSI task ([SAM2]). In all cases, the task is identified by the Initiator Task Tag for the life of the task.
The command number is carried by the iSCSI PDU as the CmdSN (command sequence number). The numbering is session-wide. Outgoing iSCSI PDUs carry this number. The iSCSI initiator allocates CmdSNs with a 32-bit unsigned counter (modulo 2**32). Comparisons and arithmetic on CmdSNs use Serial Number Arithmetic as defined in [RFC1982] where SERIAL_BITS = 32.
Commands meant for immediate delivery are marked with an immediate delivery flag; they MUST also carry the current CmdSN. The CmdSN MUST NOT advance after a command marked for immediate delivery is sent.
Command numbering starts with the first Login Request on the first connection of a session (the leading login on the leading connection), and the CmdSN MUST be incremented by 1 in a Serial Number Arithmetic sense, as defined in [RFC1982], for every non-immediate command issued afterwards.
If immediate delivery is used with task management commands, these commands may reach the target before the tasks on which they are supposed to act. However, their CmdSN serves as a marker of their position in the stream of commands. The initiator and target MUST ensure that the SCSI task management functions specified in [SAM2] act in accordance with the [SAM2] specification. For example, both commands and responses appear as if delivered in order. Whenever the CmdSN for an outgoing PDU is not specified by an explicit rule, the CmdSN will carry the current value of the local CmdSN variable (see later in this section).
The means by which an implementation decides to mark a PDU for immediate delivery or by which iSCSI decides by itself to mark a PDU for immediate delivery are beyond the scope of this document.
The number of commands used for immediate delivery is not limited, and their delivery to execution is not acknowledged through the numbering scheme. An iSCSI target MAY reject immediate commands, e.g., due to lack of resources to accommodate additional commands. An iSCSI target MUST be able to handle at least one immediate task management command and one immediate non-task-management iSCSI command per connection at any time.
In this document, delivery for execution means delivery to the SCSI execution engine or an iSCSI protocol-specific execution engine (e.g., for Text Requests with public or private extension keys involving an execution component). With the exception of the commands marked for immediate delivery, the iSCSI target layer MUST deliver the commands for execution in the order specified by the CmdSN. Commands marked for immediate delivery may be delivered by the iSCSI target layer for execution as soon as detected. iSCSI may avoid delivering some commands to the SCSI target layer if required by a prior SCSI or iSCSI action (e.g., a CLEAR TASK SET task management request received before all the commands on which it was supposed to act).
On any connection, the iSCSI initiator MUST send the commands in increasing order of CmdSN, except for commands that are retransmitted due to digest error recovery and connection recovery.
For the numbering mechanism, the initiator and target maintain the following three variables for each session:
- CmdSN: the current command sequence number, advanced by 1 on each command shipped except for commands marked for immediate delivery as discussed above. The CmdSN always contains the number to be assigned to the next command PDU.
- ExpCmdSN: the next expected command by the target. The target acknowledges all commands up to, but not including, this number. The initiator treats all commands with a CmdSN less than the ExpCmdSN as acknowledged. The target iSCSI layer sets the ExpCmdSN to the largest non-immediate CmdSN that it can deliver for execution "plus 1" per [RFC1982]. There MUST NOT be any holes in the acknowledged CmdSN sequence.
The initiator's ExpCmdSN and MaxCmdSN are derived from target-to- initiator PDU fields. Comparisons and arithmetic on the ExpCmdSN and MaxCmdSN MUST use Serial Number Arithmetic as defined in [RFC1982] where SERIAL_BITS = 32.
MaxCmdSN and ExpCmdSN fields are processed by the initiator as follows:
- If the PDU MaxCmdSN is less than the PDU ExpCmdSN - 1 (in a Serial Number Arithmetic sense), they are both ignored.
- If the PDU MaxCmdSN is greater than the local MaxCmdSN (in a Serial Number Arithmetic sense), it updates the local MaxCmdSN; otherwise, it is ignored.
- If the PDU ExpCmdSN is greater than the local ExpCmdSN (in a Serial Number Arithmetic sense), it updates the local ExpCmdSN; otherwise, it is ignored.
This sequence is required because updates may arrive out of order (e.g., the updates are sent on different TCP connections).
iSCSI initiators and targets MUST support the command numbering scheme.
A numbered iSCSI request will not change its allocated CmdSN, regardless of the number of times and circumstances in which it is reissued (see Section 7.2.1). At the target, the CmdSN is only relevant while the command has not created any state related to its execution (execution state); afterwards, the CmdSN becomes irrelevant. Testing for the execution state (represented by identifying the Initiator Task Tag) MUST precede any other action at the target. If no execution state is found, it is followed by ordering and delivery. If an execution state is found, it is followed by delivery if it has not already been delivered.
If an initiator issues a command retry for a command with CmdSN R on a connection when the session CmdSN value is Q, it MUST NOT advance the CmdSN past R + 2**31 - 1 unless
- the connection is no longer operational (i.e., it has returned to the FREE state; see Section 8.1.3),
- the connection has been reinstated (see Section 6.3.4), or
- a non-immediate command with a CmdSN equal to or greater than Q was issued subsequent to the command retry on the same connection and the reception of that command is acknowledged by the target (see Section 10.4).
A target command response or Data-In PDU with status MUST NOT precede the command acknowledgment. However, the acknowledgment MAY be included in the response or the Data-In PDU.
Responses in transit from the target to the initiator are numbered. The StatSN (status sequence number) is used for this purpose. The StatSN is a counter maintained per connection. The ExpStatSN is used by the initiator to acknowledge status. The status sequence number space is 32-bit unsigned integers, and the arithmetic operations are the regular mod(2**32) arithmetic.
Status numbering starts with the Login Response to the first Login Request of the connection. The Login Response includes an initial value for status numbering (any initial value is valid).
To enable command recovery, the target MAY maintain enough state information for data and status recovery after a connection failure. A target doing so can safely discard all of the state information maintained for recovery of a command after the delivery of the status for the command (numbered StatSN) is acknowledged through the ExpStatSN.
A large absolute difference between the StatSN and the ExpStatSN may indicate a failed connection. Initiators MUST undertake recovery actions if the difference is greater than an implementation-defined constant that MUST NOT exceed 2**31 - 1.
Initiators and targets MUST support the response-numbering scheme.
Whenever an iSCSI session is composed of multiple connections, the Response PDUs (task responses or TMF Responses) originating in the target SCSI layer are distributed onto the multiple connections by the target iSCSI layer according to iSCSI connection allegiance rules. This process generally may not preserve the ordering of the responses by the time they are delivered to the initiator SCSI layer.
Since ordering is not expected across SCSI Response PDUs anyway, this approach works fine in the general case. However, to address the special cases where some ordering is desired by the SCSI layer, we introduce the notion of a "Response Fence": a Response Fence is logically the attribute/property of a SCSI response message handed off to a target iSCSI layer that indicates that there are special SCSI-level ordering considerations associated with this particular response message. Whenever a Response Fence is set or required on a SCSI response message, we define the semantics in Section 4.2.2.3.2 with respect to the target iSCSI layer's handling of such SCSI response messages.
The target SCSI protocol layer hands off the SCSI response messages to the target iSCSI layer by invoking the "Send Command Complete" protocol data service ([SAM2], Clause 5.4.2) and "Task Management Function Executed" ([SAM2], Clause 6.9) service. On receiving the SCSI response message, the iSCSI layer exhibits the Response Fence behavior for certain SCSI response messages (Section 4.2.2.3.4 describes the specific instances where the semantics must be realized).
Whenever the Response Fence behavior is required for a SCSI response message, the target iSCSI layer MUST ensure that the following conditions are met in delivering the response message to the initiator iSCSI layer:
- A response with a Response Fence MUST be delivered chronologically after all the "preceding" responses on the I_T_L nexus, if the preceding responses are delivered at all, to the initiator iSCSI layer.
- A response with a Response Fence MUST be delivered chronologically prior to all the "following" responses on the I_T_L nexus.
The notions of "preceding" and "following" refer to the order of handoff of a response message from the target SCSI protocol layer to the target iSCSI layer.
Whenever the TaskReporting key (Section 13.23) is negotiated to ResponseFence or FastAbort for an iSCSI session and the Response Fence behavior is required for a SCSI response message, the target iSCSI layer MUST perform the actions described in this section for that session.
a) If it is a single-connection session, no special processing is required. The standard SCSI Response PDU build and dispatch process happens.
b) If it is a multi-connection session, the target iSCSI layer takes note of the last-sent and unacknowledged StatSN on each of the connections in the iSCSI session, and waits for an acknowledgment (NOP-In PDUs MAY be used to solicit acknowledgments as needed in order to accelerate this process) of each such StatSN to clear the fence. The SCSI Response PDU requiring the Response Fence behavior MUST NOT be sent to the initiator before acknowledgments are received for each of the unacknowledged StatSNs.
c) The target iSCSI layer must wait for an acknowledgment of the SCSI Response PDU that carried the SCSI response requiring the Response Fence behavior. The fence MUST be considered cleared only after receiving the acknowledgment.
d) All further status processing for the LU is resumed only after clearing the fence. If any new responses for the I_T_L nexus are received from the SCSI layer before the fence is cleared, those Response PDUs MUST be held and queued at the iSCSI layer until the fence is cleared.
This section lists the situations in which fenced response behavior is REQUIRED in iSCSI target implementations. Note that the following list is an exhaustive enumeration as currently identified -- it is expected that as SCSI protocol specifications evolve, the specifications will enumerate when response fencing is required on a case-by-case basis.
Whenever the TaskReporting key (Section 13.23) is negotiated to ResponseFence or FastAbort for an iSCSI session, the target iSCSI layer MUST assume that the Response Fence is required for the following SCSI completion messages:
a) The first completion message carrying the UA after the multi- task abort on issuing and third-party sessions. See Section 4.2.3.2 for related TMF discussion.
b) The TMF Response carrying the multi-task TMF Response on the issuing session.
c) The completion message indicating ACA establishment on the issuing session.
d) The first completion message carrying the ACA ACTIVE status after ACA establishment on issuing and third-party sessions.
e) The TMF Response carrying the CLEAR ACA response on the issuing session.
f) The response to a PERSISTENT RESERVE OUT/PREEMPT AND ABORT command.
Notes:
- Due to the absence of ACA-related fencing requirements in [RFC3720], initiator implementations SHOULD NOT use ACA on multi-connection iSCSI sessions with targets complying only with [RFC3720]. This can be determined via TaskReporting key (Section 13.23) negotiation -- when the negotiation results in either "RFC3720" or "NotUnderstood".
- Initiators that want to employ ACA on multi-connection iSCSI sessions SHOULD first assess response-fencing behavior via negotiating for the "ResponseFence" or "FastAbort" value for the TaskReporting (Section 13.23) key.
Data and R2T PDUs transferred as part of some command execution MUST be sequenced. The DataSN field is used for data sequencing. For input (read) data PDUs, the DataSN starts with 0 for the first data PDU of an input command and advances by 1 for each subsequent data PDU. For output data PDUs, the DataSN starts with 0 for the first data PDU of a sequence (the initial unsolicited sequence or any data PDU sequence issued to satisfy an R2T) and advances by 1 for each subsequent data PDU. R2Ts are also sequenced per command. For example, the first R2T has an R2TSN of 0 and advances by 1 for each subsequent R2T. For bidirectional commands, the target uses the DataSN/R2TSN to sequence Data-In and R2T PDUs in one continuous sequence (undifferentiated). Unlike command and status, data PDUs and R2Ts are not acknowledged by a field in regular outgoing PDUs. Data-In PDUs can be acknowledged on demand by a special form of the SNACK PDU. Data and R2T PDUs are implicitly acknowledged by status for the command. The DataSN/R2TSN field enables the initiator to detect missing data or R2T PDUs.
For any read or bidirectional command, a target MUST issue less than 2**32 combined R2T and Data-In PDUs. Any output data sequence MUST contain less than 2**32 Data-Out PDUs.
iSCSI task management features allow an initiator to control the active iSCSI tasks on an operational iSCSI session that it has with an iSCSI target. Section 11.5 defines the task management function types that this specification defines -- ABORT TASK, ABORT TASK SET, CLEAR ACA, CLEAR TASK SET, LOGICAL UNIT RESET, TARGET WARM RESET, TARGET COLD RESET, and TASK REASSIGN.
Out of these function types, ABORT TASK and TASK REASSIGN functions manage a single active task, whereas ABORT TASK SET, CLEAR TASK SET, LOGICAL UNIT RESET, TARGET WARM RESET, and TARGET COLD RESET functions can each potentially affect multiple active tasks.
This section defines the notion of "affected tasks" in multi-task abort scenarios. Scope definitions in this section apply to both the standard multi-task abort semantics (Section 4.2.3.3) and the FastAbort multi-task abort semantics behavior (Section 4.2.3.4).
ABORT TASK SET: All outstanding tasks for the I_T_L nexus identified
by the LUN field in the ABORT TASK SET TMF Request PDU.
CLEAR TASK SET: All outstanding tasks in the task set for the LU
identified by the LUN field in the CLEAR TASK SET TMF Request PDU. See [SPC3] for the definition of a "task set".
TARGET WARM RESET/TARGET COLD RESET: All outstanding tasks from all
initiators across all LUs to which the TMF-issuing session has access on the SCSI target device hosting the iSCSI session.
Usage: An "ABORT TASK SET TMF Request PDU" in the preceding text is
an iSCSI TMF Request PDU with the "Function" field set to "ABORT TASK SET" as defined in Section 11.5. Similar usage is employed for other scope descriptions.
All iSCSI implementations MUST support the protocol behavior defined in this section as the default behavior. The execution of ABORT TASK SET, CLEAR TASK SET, LOGICAL UNIT RESET, TARGET WARM RESET, and TARGET COLD RESET TMF Requests consists of the following sequence of actions in the specified order on the specified party.
The initiator iSCSI layer:
a) MUST continue to respond to each TTT received for the affected tasks.
b) SHOULD process any responses received for affected tasks in the normal fashion. This is acceptable because the responses are guaranteed to have been sent prior to the TMF Response.
c) SHOULD receive the TMF Response concluding all the tasks in the set of affected tasks, unless the initiator has done something (e.g., LU reset, connection drop) that may prevent the TMF Response from being sent or received. The initiator MUST thus conclude all affected tasks as part of this step in either case and MUST discard any TMF Response received after the affected tasks are concluded.
The target iSCSI layer:
a) MUST wait for responses on currently valid Target Transfer Tags of the affected tasks from the issuing initiator. MAY wait for responses on currently valid Target Transfer Tags of the affected tasks from third-party initiators.
b) MUST wait (concurrent with the wait in Step a) for all commands of the affected tasks to be received based on the CmdSN ordering. SHOULD NOT wait for new commands on third-party affected sessions -- only the instantiated tasks have to be considered for the purpose of determining the affected tasks. However, in the case of target-scoped requests (i.e., TARGET WARM RESET and TARGET COLD RESET), all of the commands that are not yet received on the issuing session in the command stream can be considered to have been received with no command waiting period -- i.e., the entire CmdSN space up to the CmdSN of the task management function can be "plugged".
c) MUST propagate the TMF Request to, and receive the response from, the target SCSI layer.
d) MUST provide the Response Fence behavior for the TMF Response on the issuing session as specified in Section 4.2.2.3.2.
e) MUST provide the Response Fence behavior on the first post-TMF Response on third-party sessions as specified in Section 4.2.2.3.3. If some tasks originate from non-iSCSI I_T_L nexuses, then the means by which the target ensures that all affected tasks have returned their status to the initiator are defined by the specific non-iSCSI transport protocol(s).
Technically, the TMF servicing is complete in Step d). Data transfers corresponding to terminated tasks may, however, still be in progress on third-party iSCSI sessions even at the end of Step e). The TMF Response MUST NOT be sent by the target iSCSI layer before the end of Step d) and MAY be sent at the end of Step d) despite these outstanding data transfers until after Step e).
Protocol behavior defined in this section SHOULD be implemented by all iSCSI implementations complying with this document, noting that some steps below may not be compatible with [RFC3720] semantics. However, protocol behavior defined in this section MUST be exhibited by iSCSI implementations on an iSCSI session when they negotiate the TaskReporting (Section 13.23) key to "FastAbort" on that session. The execution of ABORT TASK SET, CLEAR TASK SET, LOGICAL UNIT RESET, TARGET WARM RESET, and TARGET COLD RESET TMF Requests consists of the following sequence of actions in the specified order on the specified party.
The initiator iSCSI layer:
a) MUST NOT send any more Data-Out PDUs for affected tasks on the issuing connection of the issuing iSCSI session once the TMF is sent to the target.
b) SHOULD process any responses received for affected tasks in the normal fashion. This is acceptable because the responses are guaranteed to have been sent prior to the TMF Response.
c) MUST respond to each Async Message PDU with a Task Termination AsyncEvent (5) as defined in Section 11.9.
d) MUST treat the TMF Response as terminating all affected tasks for which responses have not been received and MUST discard any responses for affected tasks received after the TMF Response is passed to the SCSI layer (although the semantics defined in this section ensure that such an out-of-order scenario will never happen with a compliant target implementation).
The target iSCSI layer:
a) MUST wait for all commands of the affected tasks to be received based on the CmdSN ordering on the issuing session. SHOULD NOT wait for new commands on third-party affected sessions -- only the instantiated tasks have to be considered for the purpose of determining the affected tasks. In the case of target-scoped requests (i.e., TARGET WARM RESET and TARGET COLD RESET), all the commands that are not yet received on the issuing session in the command stream can be considered to have been received with no command waiting period -- i.e., the entire CmdSN space up to the CmdSN of the task management function can be "plugged".
b) MUST propagate the TMF Request to, and receive the response from, the target SCSI layer.
c) MUST leave all active "affected TTTs" (i.e., active TTTs associated with affected tasks) valid.
d) MUST send an Asynchronous Message PDU with AsyncEvent=5 (Section 11.9) on:
1) each connection of each third-party session to which at least one affected task is allegiant if TaskReporting=FastAbort is operational on that third-party session, and
2) each connection except the issuing connection of the issuing session that has at least one allegiant affected task.
If there are multiple affected LUs (say, due to a target reset), then one Async Message PDU MUST be sent for each such LU on each connection that has at least one allegiant affected task. The LUN field in the Asynchronous Message PDU MUST be set to match the LUN for each such LU.
e) MUST address the Response Fence flag on the TMF Response on the issuing session as defined in Section 4.2.2.3.3.
f) MUST address the Response Fence flag on the first post-TMF Response on third-party sessions as defined in Section 4.2.2.3.3. If some tasks originate from non-iSCSI I_T_L nexuses, then the means by which the target ensures that all affected tasks have returned their status to the initiator are defined by the specific non-iSCSI transport protocol(s).
g) MUST free up the affected TTTs (and STags for iSER, if applicable) and the corresponding buffers, if any, once it receives each associated NOP-Out acknowledgment that the initiator generated in response to each Async Message.
Technically, the TMF servicing is complete in Step e). Data transfers corresponding to terminated tasks may, however, still be in progress even at the end of Step f). A TMF Response MUST NOT be sent by the target iSCSI layer before the end of Step e) and MAY be sent at the end of Step e) despite these outstanding Data transfers until Step g). Step g) specifies an event to free up any such resources that may have been reserved to support outstanding data transfers.
If an iSCSI target implementation is capable of supporting TaskReporting=FastAbort functionality (Section 13.23), it may end up in a situation where some sessions have TaskReporting=RFC3720 operational (RFC 3720 sessions) while some other sessions have TaskReporting=FastAbort operational (FastAbort sessions) even while accessing a shared set of affected tasks (Section 4.2.3.2). If the issuing session is an RFC 3720 session, the iSCSI target implementation is FastAbort-capable, and the third-party affected session is a FastAbort session, the following behavior SHOULD be exhibited by the iSCSI target layer:
a) Between Steps c) and d) of the target behavior in Section 4.2.3.3, send an Asynchronous Message PDU with AsyncEvent=5 (Section 11.9) on each connection of each third- party session to which at least one affected task is allegiant. If there are multiple affected LUs, then send one Async Message PDU for each such LU on each connection that has at least one allegiant affected task. When sent, the LUN field in the Asynchronous Message PDU MUST be set to match the LUN for each such LU.
b) After Step e) of the target behavior in Section 4.2.3.3, free up the affected TTTs (and STags for iSER, if applicable) and the corresponding buffers, if any, once each associated NOP-Out acknowledgment is received that the third-party initiator generated in response to each Async Message sent in Step a).
If the issuing session is a FastAbort session, the iSCSI target implementation is FastAbort-capable, and the third-party affected session is an RFC 3720 session, the iSCSI target layer MUST NOT send Asynchronous Message PDUs on the third-party session to prompt the FastAbort behavior.
If the third-party affected session is a FastAbort session and the issuing session is a FastAbort session, the initiator in the third- party role MUST respond to each Async Message PDU with AsyncEvent=5 as defined in Section 11.9. Note that an initiator MAY thus receive these Async Messages on a third-party affected session even if the session is a single-connection session.
There are fundamentally three basic objectives behind the semantics specified in Sections 4.2.3.3 and 4.2.3.4.
a) Maintaining an ordered command flow I_T nexus abstraction to the target SCSI layer even with multi-connection sessions.
- Target iSCSI processing of a TMF Request must maintain the single flow illusion. The target behavior in Step b) of Section 4.2.3.3 and the target behavior in Step a) of Section 4.2.3.4 correspond to this objective.
b) Maintaining a single ordered response flow I_T nexus abstraction to the initiator SCSI layer even with multi- connection sessions when one response (i.e., TMF Response) could imply the status of other unfinished tasks from the initiator's perspective.
- The target must ensure that the initiator does not see "old" task responses (that were placed on the wire chronologically earlier than the TMF Response) after seeing the TMF Response. The target behavior in Step d) of Section 4.2.3.3 and the target behavior in Step e) of Section 4.2.3.4 correspond to this objective.
- Whenever the result of a TMF action is visible across multiple I_T_L nexuses, [SAM2] requires the SCSI device server to trigger a UA on each of the other I_T_L nexuses. Once an initiator is notified of such a UA, the application client on the receiving initiator is required to clear its task state (Clause 5.5 of [SAM2]) for the affected tasks. It would thus be inappropriate to deliver a SCSI Response for a task after the task state is cleared on the initiator, i.e., after the UA is notified. The UA notification contained in the first SCSI Response PDU on each affected third-party I_T_L nexus after the TMF action thus MUST NOT pass the affected task responses on any of the iSCSI sessions accessing the LU. The target behavior in Step e) of Section 4.2.3.3 and the target behavior in Step f) of Section 4.2.3.4 correspond to this objective.
c) Draining all active TTTs corresponding to affected tasks in a deterministic fashion.
- Data-Out PDUs with stale TTTs arriving after the tasks are terminated can create a buffer management problem even for traditional iSCSI implementations and is fatal for the connection for iSCSI/iSER implementations. Either the termination of affected tasks should be postponed until the TTTs are retired (as in Step a) of Section 4.2.3.3), or the TTTs and the buffers should stay allocated beyond task termination to be deterministically freed up later (as in Steps c) and g) of Section 4.2.3.4).
The only other notable optimization is the plugging. If all tasks on an I_T nexus will be aborted anyway (as with a target reset), there is no need to wait to receive all commands to plug the CmdSN holes. The target iSCSI layer can simply plug all missing CmdSN slots and move on with TMF processing. The first objective (maintaining a single ordered command flow) is still met with this optimization because the target SCSI layer only sees ordered commands.
The purpose of the iSCSI login is to enable a TCP connection for iSCSI use, authentication of the parties, negotiation of the session's parameters, and marking of the connection as belonging to an iSCSI session.
A session is used to identify to a target all the connections with a given initiator that belong to the same I_T nexus. (For more details on how a session relates to an I_T nexus, see Section 4.4.2.)
The targets listen on a well-known TCP port or other TCP port for incoming connections. The initiator begins the login process by connecting to one of these TCP ports.
As part of the login process, the initiator and target SHOULD authenticate each other and MAY set a security association protocol for the session. This can occur in many different ways and is subject to negotiation; see Section 12.
To protect the TCP connection, an IPsec security association MAY be established before the Login Request. For information on using IPsec security for iSCSI, see Section 9, [RFC3723], and [RFC7146].
The iSCSI Login Phase is carried through Login Requests and Responses. Once suitable authentication has occurred and operational parameters have been set, the session transitions to the Full Feature Phase and the initiator may start to send SCSI commands. The security policy for whether and by what means a target chooses to authorize an initiator is beyond the scope of this document. For a more detailed description of the Login Phase, see Section 6.
The login PDU includes the ISID part of the session ID (SSID). The target portal group that services the login is implied by the selection of the connection endpoint. For a new session, the TSIH is zero. As part of the response, the target generates a TSIH.
During session establishment, the target identifies the SCSI initiator port (the "I" in the "I_T nexus") through the value pair (InitiatorName, ISID). We describe InitiatorName later in this section. Any persistent state (e.g., persistent reservations) on the target that is associated with a SCSI initiator port is identified based on this value pair. Any state associated with the SCSI target port (the "T" in the "I_T nexus") is identified externally by the TargetName and Target Portal Group Tag (see Section 4.4.1). The ISID is subject to reuse restrictions because it is used to identify a persistent state (see Section 4.4.3).
Before the Full Feature Phase is established, only Login Request and Login Response PDUs are allowed. Login Requests and Responses MUST be used exclusively during login. On any connection, the Login Phase MUST immediately follow TCP connection establishment, and a subsequent Login Phase MUST NOT occur before tearing down the connection.
A target receiving any PDU except a Login Request before the Login Phase is started MUST immediately terminate the connection on which the PDU was received. Once the Login Phase has started, if the target receives any PDU except a Login Request, it MUST send a Login reject (with Status "invalid during login") and then disconnect. If the initiator receives any PDU except a Login Response, it MUST immediately terminate the connection.
Once the two sides successfully conclude the login on the first -- also called the leading -- connection in the session, the iSCSI session is in the iSCSI Full Feature Phase. A connection is in the Full Feature Phase if the session is in the Full Feature Phase and the connection login has completed successfully. An iSCSI connection is not in the Full Feature Phase when
a) it does not have an established transport connection, or
In a normal Full Feature Phase, the initiator may send SCSI commands and data to the various LUs on the target by encapsulating them in iSCSI PDUs that go over the established iSCSI session.
For any iSCSI request issued over a TCP connection, the corresponding response and/or other related PDU(s) MUST be sent over the same connection. We call this "connection allegiance". If the original connection fails before the command is completed, the connection allegiance of the command may be explicitly reassigned to a different transport connection as described in detail in Section 7.2.
Thus, if an initiator issues a read command, the target MUST send the requested data, if any, followed by the status, to the initiator over the same TCP connection that was used to deliver the SCSI command. If an initiator issues a write command, the initiator MUST send the data, if any, for that command over the same TCP connection that was used to deliver the SCSI command. The target MUST return Ready To Transfer (R2T), if any, and the status over the same TCP connection that was used to deliver the SCSI command. Retransmission requests (SNACK PDUs), and the data and status that they generate, MUST also use the same connection.
However, consecutive commands that are part of a SCSI linked command- chain task (see [SAM2]) MAY use different connections. Connection allegiance is strictly per command and not per task. During the iSCSI Full Feature Phase, the initiator and target MAY interleave unrelated SCSI commands, their SCSI data, and responses over the session.
Outgoing SCSI data (initiator-to-target user data or command parameters) is sent as either solicited data or unsolicited data. Solicited data are sent in response to R2T PDUs. Unsolicited data can be sent as part of an iSCSI Command PDU ("immediate data") or in separate iSCSI data PDUs.
Immediate data are assumed to originate at offset 0 in the initiator SCSI write-buffer (outgoing data buffer). All other data PDUs have the buffer offset set explicitly in the PDU header.
An initiator may send unsolicited data up to FirstBurstLength (see Section 13.14) as immediate (up to the negotiated maximum PDU length), in a separate PDU sequence, or both. All subsequent data MUST be solicited. The maximum length of an individual data PDU or the immediate-part of the first unsolicited burst MAY be negotiated at login.
The maximum amount of unsolicited data that can be sent with a command is negotiated at login through the FirstBurstLength (see Section 13.14) key. A target MAY separately enable immediate data (through the ImmediateData key) without enabling the more general (separate data PDUs) form of unsolicited data (through the InitialR2T key).
Unsolicited data for a write are meant to reduce the effect of latency on throughput (no R2T is needed to start sending data). In addition, immediate data is meant to reduce the protocol overhead (both bandwidth and execution time).
An iSCSI initiator MAY choose not to send unsolicited data, only immediate data or FirstBurstLength bytes of unsolicited data with a command. If any non-immediate unsolicited data is sent, the total unsolicited data MUST be either FirstBurstLength or all of the data, if the total amount is less than the FirstBurstLength.
It is considered an error for an initiator to send unsolicited data PDUs to a target that operates in R2T mode (only solicited data are allowed). It is also an error for an initiator to send more unsolicited data, whether immediate or as separate PDUs, than FirstBurstLength.
An initiator MUST honor an R2T data request for a valid outstanding command (i.e., carrying a valid Initiator Task Tag) and deliver all the requested data, provided the command is supposed to deliver outgoing data and the R2T specifies data within the command bounds. The initiator action is unspecified for receiving an R2T request that specifies data, all or in part, outside of the bounds of the command.
A target SHOULD NOT silently discard data and then request retransmission through R2T. Initiators SHOULD NOT keep track of the data transferred to or from the target (scoreboarding). SCSI targets perform residual count calculation to check how much data was actually transferred to or from the device by a command. This may differ from the amount the initiator sent and/or received for reasons such as retransmissions and errors. Read or bidirectional commands implicitly solicit the transmission of the entire amount of data covered by the command. SCSI data packets are matched to their corresponding SCSI commands by using tags specified in the protocol.
In addition, iSCSI initiators and targets MUST enforce some ordering rules. When unsolicited data is used, the order of the unsolicited data on each connection MUST match the order in which the commands on that connection are sent. Command and unsolicited data PDUs may be interleaved on a single connection as long as the ordering requirements of each are maintained (e.g., command N + 1 MAY be sent before the unsolicited Data-Out PDUs for command N, but the unsolicited Data-Out PDUs for command N MUST precede the unsolicited Data-Out PDUs of command N + 1). A target that receives data out of order MAY terminate the session.
Initiator tags for pending commands are unique initiator-wide for a session. Target tags are not strictly specified by the protocol. It is assumed that target tags are used by the target to tag (alone or in combination with the LUN) the solicited data. Target tags are generated by the target and "echoed" by the initiator.
These mechanisms are designed to accomplish efficient data delivery along with a large degree of control over the data flow.
As the Initiator Task Tag is used to identify a task during its execution, the iSCSI initiator and target MUST verify that all other fields used in task-related PDUs have values that are consistent with the values used at the task instantiation, based on the Initiator Task Tag (e.g., the LUN used in an R2T PDU MUST be the same as the one used in the SCSI Command PDU used to instantiate the task). Using inconsistent field values is considered a protocol error.
SCSI task management assumes that individual tasks and task groups can be aborted based solely on the task tags (for individual tasks) or the timing of the task management command (for task groups) and that the task management action is executed synchronously -- i.e., no message involving an aborted task will be seen by the SCSI initiator after receiving the task management response. In iSCSI, initiators and targets interact asynchronously over several connections. iSCSI specifies the protocol mechanism and implementation requirements needed to present a synchronous SCSI view while using an asynchronous iSCSI infrastructure.
An iSCSI connection may be terminated via a transport connection shutdown or a transport reset. A transport reset is assumed to be an exceptional event.
Graceful TCP connection shutdowns are done by sending TCP FINs. A graceful transport connection shutdown SHOULD only be initiated by either party when the connection is not in the iSCSI Full Feature Phase. A target MAY terminate a Full Feature Phase connection on internal exception events, but it SHOULD announce the fact through an Asynchronous Message PDU. Connection termination with outstanding commands may require recovery actions.
If a connection is terminated while in the Full Feature Phase, connection cleanup (see Section 7.14) is required prior to recovery. By doing connection cleanup before starting recovery, the initiator and target will avoid receiving stale PDUs after recovery.
Both targets and initiators require names for the purpose of identification. In addition, names enable iSCSI storage resources to be managed, regardless of location (address). An iSCSI Node Name is also the SCSI device name contained in the iSCSI node. The iSCSI name of a SCSI device is the principal object used in authentication of targets to initiators and initiators to targets. This name is also used to identify and manage iSCSI storage resources.
iSCSI names must be unique within the operation domain of the end user. However, because the operation domain of an IP network is potentially worldwide, the iSCSI name formats are architected to be worldwide unique. To assist naming authorities in the construction of worldwide unique names, iSCSI provides three name formats for different types of naming authorities.
iSCSI names are associated with iSCSI nodes, and not iSCSI network adapter cards, to ensure that the replacement of network adapter cards does not require reconfiguration of all SCSI and iSCSI resource allocation information.
Some SCSI commands require that protocol-specific identifiers be communicated within SCSI CDBs. See Section 2.2 for the definition of the SCSI port name/identifier for iSCSI ports.
An initiator may discover the iSCSI Target Names to which it has access, along with their addresses, using the SendTargets Text Request, or other techniques discussed in [RFC3721].
iSCSI equipment that needs discovery functions beyond SendTargets SHOULD implement iSNS (see [RFC4171]) for extended discovery management capabilities and interoperability. Although [RFC3721] implies an SLP ([RFC2608]) implementation requirement, SLP has not been widely implemented or deployed for use with iSCSI in practice. iSCSI implementations therefore SHOULD NOT rely on SLP-based discovery interoperability.
Each iSCSI node, whether it is an initiator, a target, or both, MUST have an iSCSI name. Whenever an iSCSI node contains an iSCSI initiator node and an iSCSI target node, the iSCSI Initiator Name MUST be the same as the iSCSI Target Name for the contained Nodes such that there is only one iSCSI Node Name for the iSCSI node overall. Note the related requirements in Section 9.2.1 on how to map CHAP names to iSCSI names in such a scenario.
Initiators and targets MUST support the receipt of iSCSI names of up to the maximum length of 223 bytes.
The initiator MUST present both its iSCSI Initiator Name and the iSCSI Target Name to which it wishes to connect in the first Login Request of a new session or connection. The only exception is if a Discovery session (see Section 4.3) is to be established. In this case, the iSCSI Initiator Name is still required, but the iSCSI Target Name MAY be omitted.
iSCSI names have the following properties:
- iSCSI names are globally unique. No two initiators or targets can have the same name.
- iSCSI names are permanent. An iSCSI initiator node or target node has the same name for its lifetime.
- iSCSI names do not imply a location or address. An iSCSI initiator or target can move or have multiple addresses. A change of address does not imply a change of name.
- iSCSI names do not rely on a central name broker; the naming authority is distributed.
- iSCSI names support integration with existing unique naming schemes.
- iSCSI names rely on existing naming authorities. iSCSI does not create any new naming authority.
The encoding of an iSCSI name has the following properties:
- iSCSI names have the same encoding method, regardless of the underlying protocols.
- iSCSI names are relatively simple to compare. The algorithm for comparing two iSCSI names for equivalence does not rely on an external server.
- iSCSI names are composed only of printable ASCII and Unicode characters. iSCSI names allow the use of international character sets, but uppercase characters are prohibited. The iSCSI stringprep profile [RFC3722] maps uppercase characters to lowercase and SHOULD be used to prepare iSCSI names from input that may include uppercase characters. No whitespace characters are used in iSCSI names; see [RFC3722] for details.
- iSCSI names may be transported using both binary and ASCII-based protocols.
An iSCSI name really names a logical software entity and is not tied to a port or other hardware that can be changed. For instance, an Initiator Name should name the iSCSI initiator node, not a particular NIC or HBA. When multiple NICs are used, they should generally all present the same iSCSI Initiator Name to the targets, because they are simply paths to the same SCSI layer. In most operating systems, the named entity is the operating system image.
Similarly, a target name should not be tied to hardware interfaces that can be changed. A target name should identify the logical target and must be the same for the target, regardless of the physical portion being addressed. This assists iSCSI initiators in determining that the two targets it has discovered are really two paths to the same target.
The iSCSI name is designed to fulfill the functional requirements for Uniform Resource Names (URNs) [RFC1737]. For example, it is required that the name have a global scope, be independent of address or location, and be persistent and globally unique. Names must be extensible and scalable with the use of naming authorities. The name encoding should be both human and machine readable. See [RFC1737] for further requirements.
An iSCSI name MUST be a UTF-8 (see [RFC3629]) encoding of a string of Unicode characters with the following properties:
- It is in Normalization Form C (see "Unicode Normalization Forms" [UNICODE]).
- It only contains characters allowed by the output of the iSCSI stringprep template (described in [RFC3722]).
- The following characters are used for formatting iSCSI names:
dash ('-'=U+002d)
dot ('.'=U+002e)
colon (':'=U+003a)
- The UTF-8 encoding of the name is not larger than 223 bytes.
The stringprep process is described in [RFC3454]; iSCSI's use of the stringprep process is described in [RFC3722]. The stringprep process is a method designed by the Internationalized Domain Name (IDN) working group to translate human-typed strings into a format that can be compared as opaque strings. iSCSI names are expected to be used by administrators for purposes such as system configuration; for this reason, characters that may lead to human confusion among different iSCSI names (e.g., punctuation, spacing, diacritical marks) should be avoided, even when such characters are allowed as stringprep processing output by [RFC3722]. The stringprep process also converts strings into equivalent strings of lowercase characters.
The stringprep process does not need to be implemented if the names are generated using only characters allowed as output by the stringprep processing specified in [RFC3722]. Those allowed characters include all ASCII lowercase and numeric characters, as well as lowercase Unicode characters as specified in [RFC3722]. Once iSCSI names encoded in UTF-8 are "normalized" as described in this section, they may be safely compared byte for byte.
An iSCSI name consists of two parts -- a type designator followed by a unique name string.
iSCSI uses three existing naming authorities in constructing globally unique iSCSI names. The type designator in an iSCSI name indicates the naming authority on which the name is based. The three iSCSI name formats are the following:
a) iSCSI-Qualified Name: based on domain names to identify a naming authority
b) NAA format Name: based on a naming format defined by [FC-FS3] for constructing globally unique identifiers, referred to as the Network Address Authority (NAA)
c) EUI format Name: based on EUI names, where the IEEE Registration Authority assists in the formation of worldwide unique names (EUI-64 format)
The corresponding type designator strings currently defined are:
a) iqn. - iSCSI Qualified name
b) naa. - Remainder of the string is an INCITS T11-defined Network Address Authority identifier, in ASCII-encoded hexadecimal
c) eui. - Remainder of the string is an IEEE EUI-64 identifier, in ASCII-encoded hexadecimal
These three naming authority designators were considered sufficient at the time of writing this document. The creation of additional naming type designators for iSCSI may be considered by the IETF and detailed in separate RFCs.
The following table summarizes the current SCSI transport protocols and their naming formats.
This iSCSI name type can be used by any organization that owns a domain name. This naming format is useful when an end user or service provider wishes to assign iSCSI names for targets and/or initiators.
Since a domain name can expire, be acquired by another entity, or may be used to generate iSCSI names by both owners, the domain name must be additionally qualified by a date during which the naming authority owned the domain name. A date code is provided as part of the "iqn." format for this reason.
The iSCSI qualified name string consists of:
- The string "iqn.", used to distinguish these names from "eui." formatted names.
- A date code, in yyyy-mm format. This date MUST be a date during which the naming authority owned the domain name used in this format and SHOULD be the first month in which the domain name was owned by this naming authority at 00:01 GMT of the first day of the month. This date code uses the Gregorian calendar. All four digits in the year must be present. Both digits of the month must be present, with January == "01" and December == "12". The dash must be included.
- A dot "."
- The reverse domain name of the naming authority (person or organization) creating this iSCSI name.
- An optional, colon (:)-prefixed string within the character set and length boundaries that the owner of the domain name deems appropriate. This may contain product types, serial numbers, host identifiers, or software keys (e.g., it may include colons to separate organization boundaries). With the exception of the colon prefix, the owner of the domain name can assign everything after the reverse domain name as desired. It is the responsibility of the entity that is the naming authority to ensure that the iSCSI names it assigns are worldwide unique. For example, "Example Storage Arrays, Inc." might own the domain name "example.com".
The following are examples of iSCSI qualified names that might be generated by "EXAMPLE Storage Arrays, Inc."
iqn.2001-04.com.example:storage:diskarrays-sn-a8675309 iqn.2001-04.com.example iqn.2001-04.com.example:storage.tape1.sys1.xyz iqn.2001-04.com.example:storage.disk2.sys1.xyz
The IEEE Registration Authority provides a service for assigning globally unique identifiers [EUI]. The EUI-64 format is used to build a global identifier in other network protocols. For example, Fibre Channel defines a method of encoding it into a WorldWideName. For more information on registering for EUI identifiers, see [OUI].
The format is "eui." followed by an EUI-64 identifier (16 ASCII- encoded hexadecimal digits).
Example iSCSI name:
The IEEE EUI-64 iSCSI name format might be used when a manufacturer is already registered with the IEEE Registration Authority and uses EUI-64 formatted worldwide unique names for its products.
More examples of name construction are discussed in [RFC3721].
The INCITS T11 Framing and Signaling Specification [FC-FS3] defines a format called the Network Address Authority (NAA) format for constructing worldwide unique identifiers that use various identifier registration authorities. This identifier format is used by the Fibre Channel and SAS SCSI transport protocols. As FC and SAS constitute a large fraction of networked SCSI ports, the NAA format is a widely used format for SCSI transports. The objective behind iSCSI supporting a direct representation of an NAA format Name is to facilitate construction of a target device name that translates easily across multiple namespaces for a SCSI storage device containing ports served by different transports. More specifically, this format allows implementations wherein one NAA identifier can be assigned as the basis for the SCSI device name for a SCSI target with both SAS ports and iSCSI ports.
The iSCSI NAA naming format is "naa.", followed by an NAA identifier represented in ASCII-encoded hexadecimal digits.
An example of an iSCSI name with a 64-bit NAA value follows:
An example of an iSCSI name with a 128-bit NAA value follows:
The iSCSI NAA naming format might be used in an implementation when the infrastructure for generating NAA worldwide unique names is already in place because the device contains both SAS and iSCSI SCSI ports.
The NAA identifier formatted in an ASCII-hexadecimal representation has a maximum size of 32 characters (128-bit NAA format). As a result, there is no issue with this naming format exceeding the maximum size for iSCSI Node Names.
iSCSI does not require any persistent state maintenance across sessions. However, in some cases, SCSI requires persistent identification of the SCSI initiator port name (see Sections 4.4.2 and 4.4.3.)
iSCSI sessions do not persist through power cycles and boot operations.
All iSCSI session and connection parameters are reinitialized on session and connection creation.
Commands persist beyond connection termination if the session persists and command recovery within the session is supported. However, when a connection is dropped, command execution, as perceived by iSCSI (i.e., involving iSCSI protocol exchanges for the affected task), is suspended until a new allegiance is established by the "TASK REASSIGN" task management function. See Section 11.5.
iSCSI presents a mapping of the SCSI protocol onto TCP. This encapsulation is accomplished by sending iSCSI PDUs of varying lengths. Unfortunately, TCP does not have a built-in mechanism for signaling message boundaries at the TCP layer. iSCSI overcomes this obstacle by placing the message length in the iSCSI message header. This serves to delineate the end of the current message as well as the beginning of the next message.
In situations where IP packets are delivered in order from the network, iSCSI message framing is not an issue and messages are processed one after the other. In the presence of IP packet reordering (i.e., frames being dropped), legacy TCP implementations store the "out of order" TCP segments in temporary buffers until the missing TCP segments arrive, at which time the data must be copied to the application buffers. In iSCSI, it is desirable to steer the SCSI data within these out-of-order TCP segments into the preallocated SCSI buffers rather than store them in temporary buffers. This decreases the need for dedicated reassembly buffers as well as the latency and bandwidth related to extra copies.
Relying solely on the "message length" information from the iSCSI message header may make it impossible to find iSCSI message boundaries in subsequent TCP segments due to the loss of a TCP segment that contains the iSCSI message length. The missing TCP segment(s) must be received before any of the following segments can be steered to the correct SCSI buffers (due to the inability to determine the iSCSI message boundaries). Since these segments cannot be steered to the correct location, they must be saved in temporary buffers that must then be copied to the SCSI buffers.
Different schemes can be used to recover synchronization. The details of any such schemes are beyond this protocol specification, but it suffices to note that [RFC4297] provides an overview of the direct data placement problem on IP networks, and [RFC5046] specifies a protocol extension for iSCSI that facilitates this direct data placement objective. The rest of this document refers to any such direct data placement protocol usage as an example of a "Sync and Steering layer".
Under normal circumstances (no PDU loss or data reception out of order), iSCSI data steering can be accomplished by using the identifying tag and the data offset fields in the iSCSI header in addition to the TCP sequence number from the TCP header. The identifying tag helps associate the PDU with a SCSI buffer address, while the data offset and TCP sequence number are used to determine the offset within the buffer.
When a large iSCSI message is sent, the TCP segment(s) that contains the iSCSI header may be lost. The remaining TCP segment(s) up to the next iSCSI message must be buffered (in temporary buffers) because the iSCSI header that indicates to which SCSI buffers the data are to be steered was lost. To minimize the amount of buffering, it is recommended that the iSCSI PDU length be restricted to a small value (perhaps a few TCP segments in length). During login, each end of the iSCSI session specifies the maximum iSCSI PDU length it will accept.
iSCSI defines two types of sessions:
a) Normal operational session - an unrestricted session.
b) Discovery session - a session only opened for target discovery. The target MUST ONLY accept Text Requests with the SendTargets key and a Logout Request with reason "close the session". All other requests MUST be rejected.
The session type is defined during login with the SessionType=value parameter in the login command.
The following diagram shows an example of how multiple iSCSI nodes (targets in this case) can coexist within the same Network Entity and can share Network Portals (IP addresses and TCP ports). Other more complex configurations are also possible. For detailed descriptions of the components of these diagrams, see Section 4.4.1.
This section describes the part of the iSCSI Architecture Model that has the most bearing on the relationship between iSCSI and the SCSI Architecture Model.
- Network Entity - represents a device or gateway that is accessible from the IP network. A Network Entity must have one or more Network Portals (see the "Network Portal" item below), each of which can be used by some iSCSI nodes (see the next item) contained in that Network Entity to gain access to the IP network.
- iSCSI Node - represents a single iSCSI initiator or iSCSI target, or an instance of each. There are one or more iSCSI nodes within a Network Entity. The iSCSI node is accessible via one or more Network Portals (see below). An iSCSI node is identified by its iSCSI name (see Sections 4.2.7 and 13). The separation of the iSCSI name from the addresses used by and for the iSCSI node allows multiple iSCSI nodes to use the same addresses and allows the same iSCSI node to use multiple addresses.
- An alias string may also be associated with an iSCSI node. The alias allows an organization to associate a user-friendly string with the iSCSI name. However, the alias string is not a substitute for the iSCSI name.
- Network Portal - a component of a Network Entity that has a TCP/IP network address and that may be used by an iSCSI node within that Network Entity for the connection(s) within one of its iSCSI sessions. In an initiator, it is identified by its IP address. In a target, it is identified by its IP address and its listening TCP port.
- Portal Groups - iSCSI supports multiple connections within the same session; some implementations will have the ability to combine connections in a session across multiple Network Portals. A portal group defines a set of Network Portals within an iSCSI node that collectively supports the capability of coordinating a session with connections that span these portals. Not all Network Portals within a portal group need to participate in every session connected through that portal group. One or more portal groups may provide access to an iSCSI node. Each Network Portal, as utilized by a given iSCSI node, belongs to exactly one portal group within that node. Portal groups are identified within an iSCSI node by a Portal Group Tag, a simple unsigned integer between 0 and 65535 (see Section 13.9). All Network Portals with the same Portal Group Tag in the context of a given iSCSI node are in the same portal group.
Both iSCSI initiators and iSCSI targets have portal groups, though only the iSCSI target portal groups are used directly in the iSCSI protocol (e.g., in SendTargets). For references to the initiator portal Groups, see Section 10.1.2.
- Portals within a portal group should support similar session parameters, because they may participate in a common session.
The following diagram shows an example of one such configuration on a target and how a session that shares Network Portals within a portal group may be established.
This section describes the relationship between the SCSI Architecture Model [SAM2] and constructs of the SCSI device, SCSI port and I_T nexus, and the iSCSI constructs described in Section 4.4.1.
This relationship implies implementation requirements in order to conform to the SAM-2 model and other SCSI operational functions. These requirements are detailed in Section 4.4.3.
The following list outlines mappings of SCSI architectural elements to iSCSI.
a) SCSI Device - This is the SAM-2 term for an entity that contains one or more SCSI ports that are connected to a service delivery subsystem and supports a SCSI application protocol. For example, a SCSI initiator device contains one or more SCSI initiator ports and zero or more application clients. A SCSI target device contains one or more SCSI target ports and one or more LUs. For iSCSI, the SCSI device is the component within an iSCSI node that provides the SCSI functionality. As such, there can be at most one SCSI device within an iSCSI node. Access to the SCSI device can only be achieved in an iSCSI Normal operational session (see Section 4.3). The SCSI device name is defined to be the iSCSI name of the node and MUST be used in the iSCSI protocol.
b) SCSI Port - This is the SAM-2 term for an entity in a SCSI device that provides the SCSI functionality to interface with a service delivery subsystem or transport. For iSCSI, the definitions of the SCSI initiator port and the SCSI target port are different.
SCSI initiator port: This maps to one endpoint of an iSCSI Normal operational session (see Section 4.3). An iSCSI Normal operational session is negotiated through the login process between an iSCSI initiator node and an iSCSI target node. At successful completion of this process, a SCSI initiator port is created within the SCSI initiator device. The SCSI initiator port Name and SCSI initiator port Identifier are both defined to be the iSCSI Initiator Name together with (a) a label that identifies it as an initiator port name/identifier and (b) the ISID portion of the session identifier.
SCSI target port: This maps to an iSCSI target portal group. The SCSI Target Port Name and the SCSI Target Port Identifier are both defined to be the iSCSI Target Name together with (a) a label that identifies it as a target port name/identifier and (b) the Target Portal Group Tag.
The SCSI port name MUST be used in iSCSI. When used in SCSI parameter data, the SCSI port name MUST be encoded as:
1) the iSCSI name in UTF-8 format, followed by
2) a comma separator (1 byte), followed by
3) the ASCII character 'i' (for SCSI initiator port) or the ASCII character 't' (for SCSI target port) (1 byte), followed by
4) a comma separator (1 byte), followed by
5) a text encoding as a hex-constant (see Section 6.1) of the ISID (for SCSI initiator port) or the Target Portal Group Tag (for SCSI target port), including the initial 0X or 0x and the terminating null (15 bytes for iSCSI initiator port, 7 bytes for iSCSI target port).
The ASCII character 'i' or 't' is the label that identifies this port as either a SCSI initiator port or a SCSI target port.
c) I_T nexus - This indicates a relationship between a SCSI initiator port and a SCSI target port, according to [SAM2]. For iSCSI, this relationship is a session, defined as a relationship between an iSCSI initiator's end of the session (SCSI initiator port) and the iSCSI target's portal group. The I_T nexus can be identified by the conjunction of the SCSI port names or by the iSCSI session identifier (SSID). iSCSI defines the I_T nexus identifier to be the tuple (iSCSI Initiator Name + ",i,0x" + ISID in text format, iSCSI Target Name + ",t,0x" + Target Portal Group Tag in text format). An uppercase hex prefix "0X" may alternatively be used in place of "0x".
NOTE: The I_T nexus identifier is not equal to the SSID.
This section describes implementation and behavioral requirements that result from the mapping of SCSI constructs to the iSCSI constructs defined above. Between a given SCSI initiator port and a given SCSI target port, only one I_T nexus (session) can exist. No more than one nexus relationship (parallel nexus) is allowed by [SAM2]. Therefore, at any given time, only one session with the same SSID can exist between a given iSCSI initiator node and an iSCSI target node.
These assumptions lead to the following conclusions and requirements:
ISID RULE: Between a given iSCSI initiator and iSCSI target portal group (SCSI target port), there can only be one session with a given value for the ISID that identifies the SCSI initiator port. See Section 11.12.5.
The structure of the ISID that contains a naming authority component (see Section 11.12.5 and [RFC3721]) provides a mechanism to facilitate compliance with the ISID RULE. See Section 10.1.1.
The iSCSI initiator node should manage the assignment of ISIDs prior to session initiation. The "ISID RULE" does not preclude the use of the same ISID from the same iSCSI initiator with different target portal groups on the same iSCSI target or on other iSCSI targets (see Section 10.1.1). Allowing this would be analogous to a single SCSI initiator port having relationships (nexus) with multiple SCSI target ports on the same SCSI target device or SCSI target ports on other SCSI target devices. It is also possible to have multiple sessions with different ISIDs to the same target portal group. Each such session would be considered to be with a different initiator even when the sessions originate from the same initiator device. The same ISID may be used by a different iSCSI initiator because it is the iSCSI name together with the ISID that identifies the SCSI initiator port.
NOTE: A consequence of the ISID RULE and the specification for the I_T nexus identifier is that two nexuses with the same identifier should never exist at the same time.
TSIH RULE: The iSCSI target selects a non-zero value for the TSIH at session creation (when an initiator presents a 0 value at login). After being selected, the same TSIH value MUST be used whenever the initiator or target refers to the session and a TSIH is required.
Certain nexus relationships contain an explicit state (e.g., initiator-specific mode pages) that may need to be preserved by the device server [SAM2] in a LU through changes or failures in the iSCSI layer (e.g., session failures). In order for that state to be restored, the iSCSI initiator should reestablish its session (re-login) to the same target portal group using the previous ISID. That is, it should reinstate the session via iSCSI session reinstatement (Section 6.3.5) or continue via session continuation (Section 6.3.6). This is because the SCSI initiator port identifier and the SCSI target port identifier (or relative target port) form the datum that the SCSI LU device server uses to identify the I_T nexus.
There are two reservation management methods defined in the SCSI standards: reserve/release reservations, based on the RESERVE and RELEASE commands [SPC2]; and persistent reservations, based on the PERSISTENT RESERVE IN and PERSISTENT RESERVE OUT commands [SPC3]. Reserve/release reservations are obsolete [SPC3] and should not be used. Persistent reservations are suggested as an alternative; see Annex B of [SPC4].
State for persistent reservations is required to persist through changes and failures at the iSCSI layer that result in I_T nexus failures; see [SPC3] for details and specific requirements.
In contrast, [SPC2] does not specify detailed persistence requirements for reserve/release reservation state after an I_T nexus failure. Nonetheless, when reserve/release reservations are supported by an iSCSI target, the preferred implementation approach is to preserve reserve/release reservation state for iSCSI session reinstatement (see Section 6.3.5) or session continuation (see Section 6.3.6).
Two additional caveats apply to reserve/release reservations:
- Retention of a failed session's reserve/release reservation state by an iSCSI target, even after that failed iSCSI session is not reinstated or continued, may require an initiator to issue a reset (e.g., LOGICAL UNIT RESET; see Section 11.5) in order to remove that reservation state.
- Reserve/release reservations may not behave as expected when persistent reservations are also used on the same LU; see the discussion of "Exceptions to SPC-2 RESERVE and RELEASE behavior" in [SPC4].
This section presents the application of the UML modeling concepts discussed in Section 3 to the iSCSI and SCSI Architecture Model discussed in Section 4.4.
(a) Each instance of an iSCSI node class MUST contain one iSCSI
target node instance, one iSCSI initiator node instance, or both.
(b) Each instance of an iSCSI node class MUST contain one iSCSI
target node instance, one iSCSI initiator node instance, or both. However, in all scenarios, note that an iSCSI node MUST only have a single iSCSI name. Note the related requirement in Section 4.2.7.1.
This section lists and briefly describes all the iSCSI PDU types (requests and responses).
All iSCSI PDUs are built as a set of one or more header segments (basic and auxiliary) and zero or one data segments. The header group and the data segment may each be followed by a CRC (digest).
The basic header segment has a fixed length of 48 bytes.
This request carries the SCSI CDB and all the other SCSI Execute Command [SAM2] procedure call IN arguments, such as task attributes, Expected Data Transfer Length for one or both transfer directions (the latter for bidirectional commands), and a task tag (as part of the I_T_L_x nexus). The I_T_L nexus is derived by the initiator and target from the LUN field in the request, and the I_T nexus is implicit in the session identification.
In addition, the SCSI Command PDU carries information required for the proper operation of the iSCSI protocol -- the command sequence number (CmdSN) and the expected status sequence number (ExpStatSN) on the connection it is issued.
All or part of the SCSI output (write) data associated with the SCSI command may be sent as part of the SCSI Command PDU as a data segment.
The SCSI Response carries all the SCSI Execute Command procedure call (see [SAM2]) OUT arguments and the SCSI Execute Command procedure call return value.
The SCSI Response contains the residual counts from the operation, if any; an indication of whether the counts represent an overflow or an underflow; and the SCSI status if the status is valid or a response code (a non-zero return value for the Execute Command procedure call) if the status is not valid.
For a valid status that indicates that the command has been processed but resulted in an exception (e.g., a SCSI CHECK CONDITION), the PDU data segment contains the associated sense data. The use of Autosense ([SAM2]) is REQUIRED by iSCSI.
Some data segment content may also be associated (in the data segment) with a non-zero response code.
In addition, the SCSI Response PDU carries information required for the proper operation of the iSCSI protocol:
- ExpDataSN - the number of Data-In PDUs that a target has sent (to enable the initiator to check that all have arrived)
- StatSN - the status sequence number on this connection
- ExpCmdSN - the next expected command sequence number at the target
- MaxCmdSN - the maximum CmdSN acceptable at the target from this initiator
The Task Management Function Request provides an initiator with a way to explicitly control the execution of one or more SCSI tasks or iSCSI functions. The PDU carries a function identifier (i.e., which task management function to perform) and enough information to unequivocally identify the task or task set on which to perform the action, even if the task(s) to act upon has not yet arrived or has been discarded due to an error.
The referenced tag identifies an individual task if the function refers to an individual task.
The I_T_L nexus identifies task sets. In iSCSI, the I_T_L nexus is identified by the LUN and the session identification (the session identifies an I_T nexus).
For task sets, the CmdSN of the Task Management Function Request helps identify the tasks upon which to act, namely all tasks associated with a LUN and having a CmdSN preceding the Task Management Function Request CmdSN.
For a task management function, the coordination between responses to the tasks affected and the Task Management Function Response is done by the target.
The Task Management Function Response carries an indication of function completion for a Task Management Function Request, including how it completed (response and qualifier) and additional information for failure responses.
After the Task Management Function Response indicates task management function completion, the initiator will not receive any additional responses from the affected tasks.
SCSI Data-Out and SCSI Data-In are the main vehicles by which SCSI data payload is carried between the initiator and target. Data payload is associated with a specific SCSI command through the Initiator Task Tag. For target convenience, outgoing solicited data also carries a Target Transfer Tag (copied from R2T) and the LUN. Each PDU contains the payload length and the data offset relative to the buffer address contained in the SCSI Execute Command procedure call.
In each direction, the data transfer is split into "sequences". An end-of-sequence is indicated by the F bit.
An outgoing sequence is either unsolicited (only the first sequence can be unsolicited) or consists of all the Data-Out PDUs sent in response to an R2T.
Input sequences enable the switching of direction for bidirectional commands as required.
For input, the target may request positive acknowledgment of input data. This is limited to sessions that support error recovery and is implemented through the A bit in the SCSI Data-In PDU header.
Data-In and Data-Out PDUs also carry the DataSN to enable the initiator and target to detect missing PDUs (discarded due to an error).
In addition, the StatSN is carried by the Data-In PDUs.
To enable a SCSI command to be processed while involving a minimum number of messages, the last SCSI Data-In PDU passed for a command may also contain the status if the status indicates termination with no exceptions (no sense or response involved).
R2T is the mechanism by which the SCSI target "requests" the initiator for output data. R2T specifies to the initiator the offset of the requested data relative to the buffer address from the Execute Command procedure call and the length of the solicited data.
To help the SCSI target associate the resulting Data-Out with an R2T, the R2T carries a Target Transfer Tag that will be copied by the initiator in the solicited SCSI Data-Out PDUs. There are no protocol-specific requirements with regard to the value of these tags, but it is assumed that together with the LUN, they will enable the target to associate data with an R2T.
R2T also carries information required for proper operation of the iSCSI protocol, such as:
- R2TSN (to enable an initiator to detect a missing R2T)
- StatSN
- ExpCmdSN
- MaxCmdSN
Asynchronous Message PDUs are used to carry SCSI asynchronous event notifications (AENs) and iSCSI asynchronous messages.
When carrying an AEN, the event details are reported as sense data in the data segment.
Text Requests and Responses are designed as a parameter negotiation vehicle and as a vehicle for future extension.
In the data segment, Text Requests/Responses carry text information using a simple "key=value" syntax.
Text Requests/Responses may form extended sequences using the same Initiator Task Tag. The initiator uses the F (Final) flag bit in the Text Request header to indicate its readiness to terminate a sequence. The target uses the F bit in the Text Response header to indicate its consent to sequence termination.
Text Requests and Responses also use the Target Transfer Tag to indicate continuation of an operation or a new beginning. A target that wishes to continue an operation will set the Target Transfer Tag in a Text Response to a value different from the default 0xffffffff. An initiator willing to continue will copy this value into the Target Transfer Tag of the next Text Request. If the initiator wants to restart the current target negotiation (start fresh), it will set the Target Transfer Tag to 0xffffffff.
Although a complete exchange is always started by the initiator, specific parameter negotiations may be initiated by the initiator or target.
Login Requests and Responses are used exclusively during the Login Phase of each connection to set up the session and connection parameters. (The Login Phase consists of a sequence of Login Requests and Responses carrying the same Initiator Task Tag.)
A connection is identified by an arbitrarily selected connection ID (CID) that is unique within a session.
Similar to the Text Requests and Responses, Login Requests/Responses carry key=value text information with a simple syntax in the data segment.
The Login Phase proceeds through several stages (security negotiation, operational parameter negotiation) that are selected with two binary coded fields in the header -- the Current Stage (CSG) and the Next Stage (NSG) -- with the appearance of the latter being signaled by the "Transit" flag (T).
The first Login Phase of a session plays a special role, called the leading login, which determines some header fields (e.g., the version number, the maximum number of connections, and the session identification).
The CmdSN initial value is also set by the leading login.
The StatSN for each connection is initiated by the connection login.
A Login Request may indicate an implied logout (cleanup) of the connection to be logged in (a connection restart) by using the same connection ID (CID) as an existing connection as well as the same session-identifying elements of the session to which the old connection was associated.
Logout Requests and Responses are used for the orderly closing of connections for recovery or maintenance. The Logout Request may be issued following a target prompt (through an Asynchronous Message) or at an initiator's initiative. When issued on the connection to be logged out, no other request may follow it.
The Logout Response indicates that the connection or session cleanup is completed and no other responses will arrive on the connection (if received on the logging-out connection). In addition, the Logout Response indicates how long the target will continue to hold resources for recovery (e.g., command execution that continues on a new connection) in the Time2Retain field and how long the initiator must wait before proceeding with recovery in the Time2Wait field.
With the SNACK Request, the initiator requests retransmission of numbered responses or data from the target. A single SNACK Request covers a contiguous set of missing items, called a run, of a given type of items. The type is indicated in a type field in the PDU header. The run is composed of an initial item (StatSN, DataSN, R2TSN) and the number of missed Status, Data, or R2T PDUs. For long Data-In sequences, the target may request (at predefined minimum intervals) a positive acknowledgment for the data sent. A SNACK Request with a type field that indicates ACK and the number of Data-In PDUs acknowledged conveys this positive acknowledgment.
Reject enables the target to report an iSCSI error condition (e.g., protocol, unsupported option) that uses a Reason field in the PDU header and includes the complete header of the bad PDU in the Reject PDU data segment.
This request/response pair may be used by an initiator and target as a "ping" mechanism to verify that a connection/session is still active and all of its components are operational. Such a ping may be triggered by the initiator or target. The triggering party indicates that it wants a reply by setting a value different from the default 0xffffffff in the corresponding Initiator/Target Transfer Tag.
NOP-In/NOP-Out may also be used in "unidirectional" fashion to convey to the initiator/target command, status, or data counter values when there is no other "carrier" and there is a need to update the initiator/target.
There are no iSCSI-specific mode pages.
iSCSI parameters are negotiated at session or connection establishment by using Login Requests and Responses (see Section 4.2.4) and during the Full Feature Phase (Section 4.2.5) by using Text Requests and Responses. In both cases, the mechanism used is an exchange of iSCSI-text-key=value pairs. For brevity, iSCSI-text-keys are called just "keys" in the rest of this document.
Keys are either declarative or require negotiation, and the key description indicates whether the key is declarative or requires negotiation.
For the declarative keys, the declaring party sets a value for the key. The key specification indicates whether the key can be declared by the initiator, the target, or both.
For the keys that require negotiation, one of the parties (the proposing party) proposes a value or set of values by including the key=value in the data part of a Login or Text Request or Response. The other party (the accepting party) makes a selection based on the value or list of values proposed and includes the selected value in a key=value in the data part of the following Login or Text Response or Request. For most of the keys, both the initiator and target can be proposing parties.
The login process proceeds in two stages -- the security negotiation stage and the operational parameter negotiation stage. Both stages are optional, but at least one of them has to be present to enable setting some mandatory parameters.
If present, the security negotiation stage precedes the operational parameter negotiation stage.
The text negotiation process is used to negotiate or declare operational parameters. The negotiation process is controlled by the F (Final) bit in the PDU header. During text negotiations, the F bit is used by the initiator to indicate that it is ready to finish the negotiation and by the target to acquiesce the end of negotiation.
Since some key=value pairs may not fit entirely in a single PDU, the C (Continue) bit is used (both in Login and Text) to indicate that "more follows".
The text negotiation uses an additional mechanism by which a target may deliver larger amounts of data to an inquiring initiator. The target sets a Target Task Tag to be used as a bookmark that, when returned by the initiator, means "go on". If reset to a "neutral value", it means "forget about the rest".
This section details the types of keys and values used, the syntax rules for parameter formation, and the negotiation schemes to be used with different types of parameters.
The initiator and target send a set of key=value pairs encoded in UTF-8 Unicode. All the text keys and text values specified in this document are case sensitive; they are to be presented and interpreted as they appear in this document without change of case.
The following character symbols are used in this document for text items (the hexadecimal values represent Unicode code points):
Key=value pairs may span PDU boundaries. An initiator or target that sends partial key=value text within a PDU indicates that more text follows by setting the C bit in the Text or Login Request or the Text or Login Response to 1. Data segments in a series of PDUs that have the C bit set to 1 and end with a PDU that has the C bit set to 0, or that include a single PDU that has the C bit set to 0, have to be considered as forming a single logical-text-data-segment (LTDS).
Every key=value pair, including the last or only pair in a LTDS, MUST be followed by one null (0x00) delimiter.
A key-name is whatever precedes the first "=" in the key=value pair. The term "key" is used frequently in this document in place of "key-name".
A value is whatever follows the first "=" in the key=value pair up to the end of the key=value pair, but not including the null delimiter.
The following definitions will be used in the rest of this document:
- standard-label: A string of one or more characters that consists of letters, digits, dot, minus, plus, commercial at, or underscore. A standard-label MUST begin with a capital letter and must not exceed 63 characters.
- key-name: A standard-label.
- text-value: A string of zero or more characters that consists of letters, digits, dot, minus, plus, commercial at, underscore, slash, left bracket, right bracket, or colon.
- iSCSI-name-value: A string of one or more characters that consists of minus, dot, colon, or any character allowed by the output of the iSCSI stringprep template as specified in [RFC3722] (see also Section 4.2.7.2).
- iSCSI-local-name-value: A UTF-8 string; no null characters are allowed in the string. This encoding is to be used for localized (internationalized) aliases.
- boolean-value: The string "Yes" or "No".
- hex-constant: A hexadecimal constant encoded as a string that starts with "0x" or "0X" followed by one or more digits or the letters a, b, c, d, e, f, A, B, C, D, E, or F. Hex-constants are used to encode numerical values or binary strings. When used to encode numerical values, the excessive use of leading 0 digits is discouraged. The string following 0X (or 0x) represents a base16 number that starts with the most significant base16 digit, followed by all other digits in decreasing order of significance and ending with the least significant base16 digit. When used to encode binary strings, hexadecimal constants have an implicit byte-length that includes four bits for every hexadecimal digit of the constant, including leading zeroes. For example, a hex-constant of n hexadecimal digits has a byte-length of (the integer part of) (n + 1)/2.
- decimal-constant: An unsigned decimal number with the digit 0 or a string of one or more digits that starts with a non-zero digit. Decimal-constants are used to encode numerical values or binary strings. Decimal-constants can only be used to encode binary strings if the string length is explicitly specified. There is no implicit length for decimal strings. Decimal-constants MUST NOT be used for parameter values if the values can be equal to or greater than 2**64 (numerical) or for binary strings that can be longer than 64 bits.
- base64-constant: Base64 constant encoded as a string that starts with "0b" or "0B" followed by 1 or more digits, letters, plus sign, slash, or equals sign. The encoding is done according to [RFC4648].
- numerical-value: An unsigned integer always less than 2**64 encoded as a decimal-constant or a hex-constant. Unsigned integer arithmetic applies to numerical-values.
- large-numerical-value: An unsigned integer that can be larger than or equal to 2**64 encoded as a hex-constant or base64-constant. Unsigned integer arithmetic applies to large- numerical-values.
- numerical-range: Two numerical-values separated by a tilde, where the value to the right of the tilde must not be lower than the value to the left.
- regular-binary-value: A binary string not longer than 64 bits encoded as a decimal-constant, hex-constant, or base64-constant. The length of the string is either specified by the key definition or is the implicit byte-length of the encoded string.
- large-binary-value: A binary string longer than 64 bits encoded as a hex-constant or base64-constant. The length of the string is either specified by the key definition or is the implicit byte-length of the encoded string.
- binary-value: A regular-binary-value or a large-binary-value. Operations on binary values are key-specific.
- simple-value: Text-value, iSCSI-name-value, boolean-value, numerical-value, a numerical-range, or a binary-value.
- list-of-values: A sequence of text-values separated by a comma.
If not otherwise specified, the maximum length of a simple-value (not its encoded representation) is 255 bytes, not including the delimiter (comma or zero byte).
During login, and thereafter, some session or connection parameters are either declared or negotiated through an exchange of textual information.
A target receiving a Text or Login Request with the C bit set to 1 MUST answer with a Text or Login Response with no data segment (DataSegmentLength 0). An initiator receiving a Text or Login Response with the C bit set to 1 MUST answer with a Text or Login Request with no data segment (DataSegmentLength 0).
A target or initiator SHOULD NOT use a Text or Login Response or a Text or Login Request with no data segment (DataSegmentLength 0) unless explicitly required by a general or a key-specific negotiation rule.
There MUST NOT be more than one outstanding Text Request, or Text Response PDU on an iSCSI connection. An outstanding PDU in this context is one that has not been acknowledged by the remote iSCSI side.
The format of a declaration is:
Declarer-> <key>=<valuex>
The general format of text negotiation is:
Proposer-> <key>=<valuex>
Acceptor-> <key>={<valuey>|NotUnderstood|Irrelevant|Reject}
Thus, a declaration is a one-way textual exchange (unless the key is not understood by the receiver), while a negotiation is a two-way exchange.
The proposer or declarer can be either the initiator or the target, and the acceptor can be either the target or initiator, respectively. Targets are not limited to respond to key=value pairs as proposed by the initiator. The target may propose key=value pairs of its own.
All negotiations are explicit (i.e., the result MUST only be based on newly exchanged or declared values). There are no implicit proposals. If a proposal is not made, then a reply cannot be expected. Conservative design also requires that default values should not be relied upon when the use of some other value has serious consequences.
The value proposed or declared can be a numerical-value, a numerical- range defined by the lower and upper value with both integers separated by a tilde, a binary value, a text-value, an iSCSI-name- value, an iSCSI-local-name-value, a boolean-value (Yes or No), or a list of comma-separated text-values. A range, a large-numerical- value, an iSCSI-name-value, and an iSCSI-local-name-value MAY ONLY be used if explicitly allowed. An accepted value can be a numerical- value, a large-numerical-value, a text-value, or a boolean-value.
If a specific key is not relevant for the current negotiation, the acceptor may answer with the constant "Irrelevant" for all types of negotiations. However, the negotiation is not considered to have failed if the answer is "Irrelevant". The "Irrelevant" answer is meant for those cases in which several keys are presented by a proposing party but the selection made by the acceptor for one of the keys makes other keys irrelevant. The following example illustrates the use of "Irrelevant":
Any key not understood by the acceptor may be ignored by the acceptor without affecting the basic function. However, the answer for a key that is not understood MUST be key=NotUnderstood. Note that NotUnderstood is a valid answer for both declarative and negotiated keys. The general iSCSI philosophy is that comprehension precedes processing for any iSCSI key. A proposer of an iSCSI key, negotiated or declarative, in a text key exchange MUST thus be able to properly handle a NotUnderstood response.
The proper way to handle a NotUnderstood response depends on where the key is specified and whether the key is declarative or negotiated. An iSCSI implementation MUST comprehend all text keys defined in this document. Returning a NotUnderstood response on any of these text keys therefore MUST be considered a protocol error and handled accordingly. For all other "later" keys, i.e., text keys defined in later specifications, a NotUnderstood answer concludes the negotiation for a negotiated key, whereas for a declarative key a NotUnderstood answer simply informs the declarer of a lack of comprehension by the receiver.
In either case, a NotUnderstood answer always requires that the protocol behavior associated with that key not be used within the scope of the key (connection/session) by either side.
The constants "None", "Reject", "Irrelevant", and "NotUnderstood" are reserved and MUST ONLY be used as described here. Violation of this rule is a protocol error (in particular, the use of "Reject", "Irrelevant", and "NotUnderstood" as proposed values).
"Reject" or "Irrelevant" are legitimate negotiation options where allowed, but their excessive use is discouraged. A negotiation is considered complete when the acceptor has sent the key value pair even if the value is "Reject", "Irrelevant", or "NotUnderstood". Sending the key again would be a renegotiation and is forbidden for many keys.
If the acceptor sends "Reject" as an answer, the negotiated key is left at its current value (or default if no value was set). If the current value is not acceptable to the proposer on the connection or to the session in which it is sent, the proposer MAY choose to terminate the connection or session.
All keys in this document MUST be supported by iSCSI initiators and targets when used as specified here. If used as specified, these keys MUST NOT be answered with NotUnderstood.
Implementers may introduce new private keys by prefixing them with X- followed by their (reverse) domain name, or with new public keys registered with IANA. For example, the entity owning the domain example.com can issue:
X-com.example.bar.foo.do_something=3
Each new public key in the course of standardization MUST define the acceptable responses to the key, including NotUnderstood as appropriate. Unlike [RFC3720], note that this document prohibits the X# prefix for new public keys. Based on iSCSI implementation experience, we know that there is no longer a need for a standard name prefix for keys that allow a NotUnderstood response. Note that NotUnderstood will generally have to be allowed for new public keys for backwards compatibility, as well as for private X- keys. Thus, the name prefix "X#" in new public key-names does not carry any significance. To avoid confusion, new public key-names MUST NOT begin with an "X#" prefix.
Implementers MAY also introduce new values, but ONLY for new keys or authentication methods (see Section 12) or digests (see Section 13.1).
Whenever parameter actions or acceptance are dependent on other parameters, the dependency rules and parameter sequence must be specified with the parameters.
In the Login Phase (see Section 6.3), every stage is a separate negotiation. In the Full Feature Phase, a Text Request/Response sequence is a negotiation. Negotiations MUST be handled as atomic operations. For example, all negotiated values go into effect after the negotiation concludes in agreement or are ignored if the negotiation fails.
Some parameters may be subject to integrity rules (e.g., parameter-x must not exceed parameter-y, or parameter-u not 1 implies that parameter-v be Yes). Whenever required, integrity rules are specified with the keys. Checking for compliance with the integrity rule must only be performed after all the parameters are available (the existent and the newly negotiated). An iSCSI target MUST perform integrity checking before the new parameters take effect. An initiator MAY perform integrity checking.
An iSCSI initiator or target MAY terminate a negotiation that does not terminate within an implementation-specific reasonable time or number of exchanges but SHOULD allow at least six (6) exchanges.
In list negotiation, the originator sends a list of values (which may include "None"), in order of preference.
The responding party MUST respond with the same key and the first value that it supports (and is allowed to use for the specific originator) selected from the originator list.
The constant "None" MUST always be used to indicate a missing function. However, "None" is only a valid selection if it is explicitly proposed. When "None" is proposed as a selection item in a negotiation for a key, it indicates to the responder that not supporting any functionality related to that key is legal, and if "None" is the negotiation result for such a key, it means that key- specific semantics are not operational for the negotiation scope (connection or session) of that key.
If an acceptor does not understand any particular value in a list, it MUST ignore it. If an acceptor does not support, does not understand, or is not allowed to use any of the proposed options with a specific originator, it may use the constant "Reject" or terminate the negotiation. The selection of a value not proposed MUST be handled by the originator as a protocol error.
For simple-value negotiations, the accepting party MUST answer with the same key. The value it selects becomes the negotiation result.
Proposing a value not admissible (e.g., not within the specified bounds) MAY be answered with the constant "Reject"; otherwise, the acceptor MUST select an admissible value.
The selection, by the acceptor, of a value not admissible under the selection rules is considered a protocol error. The selection rules are key-specific.
For a numerical range, the value selected MUST be an integer within the proposed range or "Reject" (if the range is unacceptable).
For Boolean negotiations (i.e., keys taking the values "Yes" or "No"), the accepting party MUST answer with the same key and the result of the negotiation when the received value does not determine that result by itself. The last value transmitted becomes the negotiation result. The rules for selecting the value with which to answer are expressed as Boolean functions of the value received, and the value that the accepting party would have selected if given a choice.
Specifically, the two cases in which answers are OPTIONAL are:
- The Boolean function is "AND" and the value "No" is received. The outcome of the negotiation is "No".
- The Boolean function is "OR" and the value "Yes" is received. The outcome of the negotiation is "Yes".
Responses are REQUIRED in all other cases, and the value chosen and sent by the acceptor becomes the outcome of the negotiation.
The Login Phase establishes an iSCSI connection between an initiator and a target; it also creates a new session or associates the connection to an existing session. The Login Phase sets the iSCSI protocol parameters and security parameters, and authenticates the initiator and target to each other.
The Login Phase is only implemented via Login Requests and Responses. The whole Login Phase is considered as a single task and has a single Initiator Task Tag (similar to the linked SCSI commands).
There MUST NOT be more than one outstanding Login Request or Login Response on an iSCSI connection. An outstanding PDU in this context is one that has not been acknowledged by the remote iSCSI side.
The default MaxRecvDataSegmentLength is used during login.
The Login Phase sequence of requests and responses proceeds as follows:
- Login initial request
- Login partial response (optional)
- More Login Requests and Responses (optional)
- Login Final-Response (mandatory)
The initial Login Request of any connection MUST include the InitiatorName key=value pair. The initial Login Request of the first connection of a session MAY also include the SessionType key=value pair. For any connection within a session whose type is not "Discovery", the first Login Request MUST also include the TargetName key=value pair.
The Login Final-Response accepts or rejects the Login Request.
The Login Phase MAY include a SecurityNegotiation stage and a LoginOperationalNegotiation stage and MUST include at least one of them, but the included stage MAY be empty except for the mandatory names.
The Login Requests and Responses contain a field (CSG) that indicates the current negotiation stage (SecurityNegotiation or LoginOperationalNegotiation). If both stages are used, the SecurityNegotiation MUST precede the LoginOperationalNegotiation.
Some operational parameters can be negotiated outside the login through Text Requests and Responses.
Authentication-related security keys (Section 12) MUST be completely negotiated within the Login Phase. The use of underlying IPsec security is specified in Section 9.3, in [RFC3723], and in [RFC7146]. iSCSI support for security within the protocol only consists of authentication in the Login Phase.
In some environments, a target or an initiator is not interested in authenticating its counterpart. It is possible to bypass authentication through the Login Request and Response.
The initiator and target MAY want to negotiate iSCSI authentication parameters. Once this negotiation is completed, the channel is considered secure.
Most of the negotiation keys are only allowed in a specific stage. The keys used during the SecurityNegotiation stage are listed in Section 12, and the keys used during the LoginOperationalNegotiation stage are discussed in Section 13. Only a limited set of keys (marked as Any-Stage in Section 13) may be used in either of the two stages.
Any given Login Request or Response belongs to a specific stage; this determines the negotiation keys allowed with the request or response. Sending a key that is not allowed in the current stage is considered a protocol error.
Stage transition is performed through a command exchange (request/response) that carries the T bit and the same CSG code. During this exchange, the next stage is selected by the target via the Next Stage code (NSG). The selected NSG MUST NOT exceed the value stated by the initiator. The initiator can request a transition whenever it is ready, but a target can only respond with a transition after one is proposed by the initiator.
In a negotiation sequence, the T bit settings in one Login Request- Login Response pair have no bearing on the T bit settings of the next pair. An initiator that has the T bit set to 1 in one pair and is answered with a T bit setting of 0 may issue the next request with the T bit set to 0.
When a transition is requested by the initiator and acknowledged by the target, both the initiator and target switch to the selected stage.
Targets MUST NOT submit parameters that require an additional initiator Login Request in a Login Response with the T bit set to 1.
Stage transitions during login (including entering and exit) are only possible as outlined in the following table:
The Login Final-Response that accepts a Login Request can only come as a response to a Login Request with the T bit set to 1, and both the request and response MUST indicate FullFeaturePhase as the next phase via the NSG field.
Neither the initiator nor the target should attempt to declare or negotiate a parameter more than once during login, except for responses to specific keys that explicitly allow repeated key declarations (e.g., TargetAddress). An attempt to renegotiate/redeclare parameters not specifically allowed MUST be detected by the initiator and target. If such an attempt is detected by the target, the target MUST respond with a Login reject (initiator error); if detected by the initiator, the initiator MUST drop the connection.
The Login Phase starts with a Login Request from the initiator to the target. The initial Login Request includes:
- Protocol version supported by the initiator
- iSCSI Initiator Name and iSCSI Target Name
- ISID, TSIH, and connection IDs
- Negotiation stage that the initiator is ready to enter
A login may create a new session, or it may add a connection to an existing session. Between a given iSCSI initiator node (selected only by an InitiatorName) and a given iSCSI target defined by an iSCSI TargetName and a Target Portal Group Tag, the login results are defined by the following table:
The determination of "existing" or "new" is made by the target.
Optionally, the Login Request may include:
- Security parameters OR
- iSCSI operational parameters AND/OR
- The next negotiation stage that the initiator is ready to
enter
The target can answer the login in the following ways:
- Login Response with Login reject. This is an immediate rejection from the target that causes the connection to terminate and the session to terminate if this is the first (or only) connection of a new session. The T bit, the CSG field, and the NSG field are reserved.
- Login Response with Login accept as the Final-Response (T bit set to 1 and the NSG in both request and response is set to FullFeaturePhase). The response includes the protocol version supported by the target and the session ID and may include iSCSI operational or security parameters (that depend on the current stage).
- Login Response with Login accept as a partial response (NSG not set to FullFeaturePhase in both request and response) that indicates the start of a negotiation sequence. The response includes the protocol version supported by the target and either security or iSCSI parameters (when no security mechanism is chosen) supported by the target.
If the initiator decides to forego the SecurityNegotiation stage, it issues the Login with the CSG set to LoginOperationalNegotiation, and the target may reply with a Login Response that indicates that it is unwilling to accept the connection (see Section 11.13) without SecurityNegotiation and will terminate the connection with a response of Authentication failure (see Section 11.13.5).
If the initiator is willing to negotiate iSCSI security, but is unwilling to make the initial parameter proposal and may accept a connection without iSCSI security, it issues the Login with the T bit set to 1, the CSG set to SecurityNegotiation, and the NSG set to LoginOperationalNegotiation. If the target is also ready to skip security, the Login Response only contains the TargetPortalGroupTag key (see Section 13.9), the T bit set to 1, the CSG set to SecurityNegotiation, and the NSG set to LoginOperationalNegotiation.
An initiator that chooses to operate without iSCSI security and with all the operational parameters taking the default values issues the Login with the T bit set to 1, the CSG set to LoginOperationalNegotiation, and the NSG set to FullFeaturePhase. If the target is also ready to forego security and can finish its LoginOperationalNegotiation, the Login Response has the T bit set to 1, the CSG set to LoginOperationalNegotiation, and the NSG set to FullFeaturePhase in the next stage.
During the Login Phase, the iSCSI target MUST return the TargetPortalGroupTag key with the first Login Response PDU with which it is allowed to do so (i.e., the first Login Response issued after the first Login Request with the C bit set to 0) for all session types. The TargetPortalGroupTag key value indicates the iSCSI portal group servicing the Login Request PDU. If the reconfiguration of iSCSI portal groups is a concern in a given environment, the iSCSI initiator should use this key to ascertain that it had indeed initiated the Login Phase with the intended target portal group.
The security exchange sets the security mechanism and authenticates the initiator and the target to each other. The exchange proceeds according to the authentication method chosen in the negotiation phase and is conducted using the key=value parameters carried in the Login Requests and Responses.
An initiator-directed negotiation proceeds as follows:
- The initiator sends a Login Request with an ordered list of the options it supports (authentication algorithm). The options are listed in the initiator's order of preference. The initiator MAY also send private or public extension options.
- The target MUST reply with the first option in the list it supports and is allowed to use for the specific initiator, unless it does not support any, in which case it MUST answer with "Reject" (see Section 6.2). The parameters are encoded in UTF-8 as key=value. For security parameters, see Section 12.
- When the initiator considers itself ready to conclude the SecurityNegotiation stage, it sets the T bit to 1 and the NSG to what it would like the next stage to be. The target will then set the T bit to 1 and set the NSG to the next stage in the Login Response when it finishes sending its security keys. The next stage selected will be the one the target selected. If the next stage is FullFeaturePhase, the target MUST reply with a Login Response with the TSIH value.
If the security negotiation fails at the target, then the target MUST send the appropriate Login Response PDU. If the security negotiation fails at the initiator, the initiator SHOULD close the connection.
It should be noted that the negotiation might also be directed by the target if the initiator does support security but is not ready to direct the negotiation (propose options); see Appendix B for an example.
Operational parameter negotiation during the Login Phase MAY be done:
- starting with the first Login Request if the initiator does not propose any security/integrity option.
- starting immediately after the security negotiation if the initiator and target perform such a negotiation.
Operational parameter negotiation MAY involve several Login Request- Login Response exchanges started and terminated by the initiator. The initiator MUST indicate its intent to terminate the negotiation by setting the T bit to 1; the target sets the T bit to 1 on the last response.
Even when the initiator indicates its intent to switch stages by setting the T bit to 1 in a Login Request, the target MAY respond with a Login Response with the T bit set to 0. In that case, the initiator SHOULD continue to set the T bit to 1 in subsequent Login Requests (even empty requests) that it sends, until the target sends a Login Response with the T bit set to 1 or sends a key that requires the initiator to set the T bit to 0.
Some session-specific parameters can only be specified during the Login Phase of the first connection of a session (i.e., begun by a Login Request that contains a zero-valued TSIH) -- the leading Login Phase (e.g., the maximum number of connections that can be used for this session).
A session is operational once it has at least one connection in the Full Feature Phase. New or replacement connections can only be added to a session after the session is operational.
For operational parameters, see Section 13.
Connection reinstatement is the process of an initiator logging in with an ISID-TSIH-CID combination that is possibly active from the target's perspective, which causes the implicit logging out of the connection corresponding to the CID and reinstatement of a new Full Feature Phase iSCSI connection in its place (with the same CID). Thus, the TSIH in the Login Request PDU MUST be non-zero, and the CID does not change during a connection reinstatement. The Login Request performs the logout function of the old connection if an explicit logout was not performed earlier. In sessions with a single connection, this may imply the opening of a second connection with the sole purpose of cleaning up the first. Targets MUST support opening a second connection even when they do not support multiple connections in the Full Feature Phase if ErrorRecoveryLevel is 2 and SHOULD support opening a second connection if ErrorRecoveryLevel is less than 2.
If the operational ErrorRecoveryLevel is 2, connection reinstatement enables future task reassignment. If the operational ErrorRecoveryLevel is less than 2, connection reinstatement is the replacement of the old CID without enabling task reassignment. In this case, all the tasks that were active on the old CID must be immediately terminated without further notice to the initiator.
The initiator connection state MUST be CLEANUP_WAIT (Section 8.1.3) when the initiator attempts a connection reinstatement.
In practical terms, in addition to the implicit logout of the old connection, reinstatement is equivalent to a new connection login.
Session reinstatement is the process of an initiator logging in with an ISID that is possibly active from the target's perspective for that initiator, thus implicitly logging out the session that corresponds to the ISID and reinstating a new iSCSI session in its place (with the same ISID). Therefore, the TSIH in the Login PDU MUST be zero to signal session reinstatement. Session reinstatement causes all the tasks that were active on the old session to be immediately terminated by the target without further notice to the initiator.
The initiator session state MUST be FAILED (Section 8.3) when the initiator attempts a session reinstatement.
Session closure is an event defined to be one of the following:
- a successful "session close" logout.
- a successful "connection close" logout for the last Full Feature Phase connection when no other connection in the session is waiting for cleanup (Section 8.2) and no tasks in the session are waiting for reassignment.
Session timeout is an event defined to occur when the last connection state timeout expires and no tasks are waiting for reassignment. This takes the session to the FREE state (see the session state diagrams in Section 8.3).
The iSCSI layer provides the SCSI layer with the "I_T nexus loss" notification when any one of the following events happens:
- successful completion of session reinstatement
- session closure event
- session timeout event
Certain SCSI object clearing actions may result due to the notification in the SCSI end nodes, as documented in Appendix E.
Session continuation is the process by which the state of a preexisting session continues to be used by connection reinstatement (Section 6.3.4) or by adding a connection with a new CID. Either of these actions associates the new transport connection with the session state.
Session failure is an event where the last Full Feature Phase connection reaches the CLEANUP_WAIT state (Section 8.2) or completes a successful recovery logout, thus causing all active tasks (that are formerly allegiant to the connection) to start waiting for task reassignment.
Some operational parameters MAY be negotiated outside (after) the Login Phase.
Parameter negotiation in the Full Feature Phase is done through Text Requests and Responses. Operational parameter negotiation MAY involve several Text Request-Text Response exchanges, all of which use the same Initiator Task Tag; the initiator always starts and terminates each of these exchanges. The initiator MUST indicate its intent to finish the negotiation by setting the F bit to 1; the target sets the F bit to 1 on the last response.
If the target responds to a Text Request with the F bit set to 1 with a Text Response with the F bit set to 0, the initiator should keep sending the Text Request (even empty requests) with the F bit set to 1 while it still wants to finish the negotiation, until it receives the Text Response with the F bit set to 1. Responding to a Text Request with the F bit set to 1 with an empty (no key=value pairs) response with the F bit set to 0 is discouraged.
Even when the initiator indicates its intent to finish the negotiation by setting the F bit to 1 in a Text Request, the target MAY respond with a Text Response with the F bit set to 0. In that case, the initiator SHOULD continue to set the F bit to 1 in subsequent Text Requests (even empty requests) that it sends, until the target sends the final Text Response with the F bit set to 1. Note that in the same case of a Text Request with the F bit set to 1, the target SHOULD NOT respond with an empty (no key=value pairs) Text Response with the F bit set to 0, because such a response may cause the initiator to abandon the negotiation.
Targets MUST NOT submit parameters that require an additional initiator Text Request in a Text Response with the F bit set to 1.
In a negotiation sequence, the F bit settings in one Text Request- Text Response pair have no bearing on the F bit settings of the next pair. An initiator that has the F bit set to 1 in a request and is being answered with an F bit setting of 0 may issue the next request with the F bit set to 0.
Whenever the target responds with the F bit set to 0, it MUST set the Target Transfer Tag to a value other than the default 0xffffffff.
An initiator MAY reset an operational parameter negotiation by issuing a Text Request with the Target Transfer Tag set to the value 0xffffffff after receiving a response with the Target Transfer Tag set to a value other than 0xffffffff. A target may reset an operational parameter negotiation by answering a Text Request with a Reject PDU.
Neither the initiator nor the target should attempt to declare or negotiate a parameter more than once during any negotiation sequence, except for responses to specific keys that explicitly allow repeated key declarations (e.g., TargetAddress). If such an attempt is detected by the target, the target MUST respond with a Reject PDU with a reason of "Protocol Error". The initiator MUST reset the negotiation as outlined above.
Parameters negotiated by a text exchange negotiation sequence only become effective after the negotiation sequence is completed.
The following two considerations prompted the design of much of the error recovery functionality in iSCSI:
- An iSCSI PDU may fail the digest check and be dropped, despite being received by the TCP layer. The iSCSI layer must optionally be allowed to recover such dropped PDUs.
- A TCP connection may fail at any time during the data transfer. All the active tasks must optionally be allowed to be continued on a different TCP connection within the same session.
Implementations have considerable flexibility in deciding what degree of error recovery to support, when to use it, and by which mechanisms to achieve the required behavior. Only the externally visible actions of the error recovery mechanisms must be standardized to ensure interoperability.
This section describes a general model for recovery in support of interoperability. See Appendix D for further details on how the described model may be implemented. Compliant implementations do not have to match the implementation details of this model as presented, but the external behavior of such implementations must correspond to the externally observable characteristics of the presented model.
The major design goals of the iSCSI error recovery scheme are as follows:
- Allow iSCSI implementations to meet different requirements by defining a collection of error recovery mechanisms from which implementations may choose.
- Ensure interoperability between any two implementations supporting different sets of error recovery capabilities.
- Define the error recovery mechanisms to ensure command ordering even in the face of errors, for initiators that demand ordering.
- Do not make additions in the fast path, but allow moderate complexity in the error recovery path.
- Prevent both the initiator and target from attempting to recover the same set of PDUs at the same time. For example, there must be a clear "error recovery functionality distribution" between the initiator and target.
The initiator mechanisms defined in connection with error recovery are:
a) NOP-Out to probe sequence numbers of the target (Section 11.18)
b) Command retry (Section 7.2.1)
c) Recovery R2T support (Section 7.8)
d) Requesting retransmission of status/data/R2T using the SNACK facility (Section 11.16)
e) Acknowledging the receipt of the data (Section 11.16)
f) Reassigning the connection allegiance of a task to a different TCP connection (Section 7.2.2)
g) Terminating the entire iSCSI session to start afresh
(Section 7.1.4.4)
The target mechanisms defined in connection with error recovery are:
a) NOP-In to probe sequence numbers of the initiator
(Section 11.19)
b) Requesting retransmission of data using the recovery R2T feature (Section 7.8)
c) SNACK support (Section 11.16)
d) Requesting that parts of read data be acknowledged
(Section 11.7.2)
e) Allegiance reassignment support (Section 7.2.2)
f) Terminating the entire iSCSI session to force the initiator to start over (Section 7.1.4.4)
For any outstanding SCSI command, it is assumed that iSCSI, in conjunction with SCSI at the initiator, is able to keep enough information to be able to rebuild the command PDU and that outgoing data is available (in host memory) for retransmission while the command is outstanding. It is also assumed that at the target, incoming data (read data) MAY be kept for recovery, or it can be reread from a device server.
It is further assumed that a target will keep the "status and sense" for a command it has executed if it supports status retransmission.
A target that agrees to support data retransmission is expected to be prepared to retransmit the outgoing data (i.e., Data-In) on request until either the status for the completed command is acknowledged or the data in question has been separately acknowledged.
iSCSI enables the following classes of recovery (in the order of increasing scope of affected iSCSI tasks):
- within a command (i.e., without requiring command restart)
- within a connection (i.e., without requiring the connection to be rebuilt, but perhaps requiring command restart)
- connection recovery (i.e., perhaps requiring connections to be rebuilt and commands to be reissued)
- session recovery
The recovery scenarios detailed in the rest of this section are representative rather than exclusive. In every case, they detail the lowest recovery class that MAY be attempted. The implementer is left to decide under which circumstances to escalate to the next recovery class and/or what recovery classes to implement. Both the iSCSI target and initiator MAY escalate the error handling to an error recovery class, which impacts a larger number of iSCSI tasks in any of the cases identified in the following discussion.
In all classes, the implementer has the choice of deferring errors to the SCSI initiator (with an appropriate response code), in which case the task, if any, has to be removed from the target and all the side effects, such as ACA, must be considered.
The use of within-connection and within-command recovery classes MUST NOT be attempted before the connection is in the Full Feature Phase. In the detailed description of the recovery classes, the mandating terms (MUST, SHOULD, MAY, etc.) indicate normative actions to be executed if the recovery class is supported (see Section 7.1.5 for the related negotiation semantics) and used.
At the target, the following cases lend themselves to within-command recovery:
Lost data PDU - realized through one of the following:
a) Data digest error - dealt with as specified in Section 7.8, using the option of a recovery R2T
b) Sequence reception timeout (no data or partial-data-and-no- F-bit) - considered an implicit sequence error and dealt with as specified in Section 7.9, using the option of a recovery R2T
c) Header digest error, which manifests as a sequence reception timeout or a sequence error - dealt with as specified in Section 7.9, using the option of a recovery R2T
At the initiator, the following cases lend themselves to within- command recovery:
Lost data PDU or lost R2T - realized through one of the following:
a) Data digest error - dealt with as specified in Section 7.8, using the option of a SNACK
b) Sequence reception timeout (no status) or response reception timeout - dealt with as specified in Section 7.9, using the option of a SNACK
c) Header digest error, which manifests as a sequence reception timeout or a sequence error - dealt with as specified in Section 7.9, using the option of a SNACK
To avoid a race with the target, which may already have a recovery R2T or a termination response on its way, an initiator SHOULD NOT originate a SNACK for an R2T based on its internal timeouts (if any). Recovery in this case is better left to the target.
The timeout values used by the initiator and target are outside the scope of this document. A sequence reception timeout is generally a large enough value to allow the data sequence transfer to be complete.
At the initiator, the following cases lend themselves to within- connection recovery:
a) Requests not acknowledged for a long time. Requests are acknowledged explicitly through the ExpCmdSN or implicitly by receiving data and/or status. The initiator MAY retry non-acknowledged commands as specified in Section 7.2.
b) Lost iSCSI numbered response. It is recognized by either identifying a data digest error on a Response PDU or a Data-In PDU carrying the status, or receiving a Response PDU with a higher StatSN than expected. In the first case, digest error handling is done as specified in Section 7.8, using the option of a SNACK. In the second case, sequence error handling is done as specified in Section 7.9, using the option of a SNACK.
At the target, the following cases lend themselves to within- connection recovery:
- Status/Response not acknowledged for a long time. The target MAY issue a NOP-In (with a valid Target Transfer Tag or otherwise) that carries the next status sequence number it is going to use in the StatSN field. This helps the initiator detect any missing StatSN(s) and issue a SNACK for the status.
The timeout values used by the initiator and the target are outside the scope of this document.
At an iSCSI initiator, the following cases lend themselves to connection recovery:
a) TCP connection failure: The initiator MUST close the connection. It then MUST either implicitly or explicitly log out the failed connection with the reason code "remove the connection for recovery" and reassign connection allegiance for all commands still in progress associated with the failed connection on one or more connections (some or all of which MAY be newly established connections) using the "TASK REASSIGN" task management function (see Section 11.5.1). For an initiator, a command is in progress as long as it has not received a response or a Data-In PDU including status.
Note: The logout function is mandatory. However, a new connection establishment is only mandatory if the failed connection was the last or only connection in the session.
b) Receiving an Asynchronous Message that indicates that one or all connections in a session have been dropped. The initiator MUST handle it as a TCP connection failure for the connection(s) referred to in the message.
At an iSCSI target, the following cases lend themselves to connection recovery:
- TCP connection failure: The target MUST close the connection and, if more than one connection is available, the target SHOULD send an Asynchronous Message that indicates that it has dropped the connection. Then, the target will wait for the initiator to continue recovery.
Session recovery should be performed when all other recovery attempts have failed. Very simple initiators and targets MAY perform session recovery on all iSCSI errors and rely on recovery on the SCSI layer and above.
Session recovery implies the closing of all TCP connections, internally aborting all executing and queued tasks for the given initiator at the target, terminating all outstanding SCSI commands with an appropriate SCSI service response at the initiator, and restarting a session on a new set of connection(s) (TCP connection establishment and login on all new connections).
For possible clearing effects of session recovery on SCSI and iSCSI objects, refer to Appendix E.
The error recovery classes described so far are organized into a hierarchy for ease in understanding and to limit the complexity of the implementation. With a few well-defined recovery levels, interoperability is easier to achieve. The attributes of this hierarchy are as follows:
a) Each level is a superset of the capabilities of the previous level. For example, Level 1 support implies supporting all capabilities of Level 0 and more.
b) As a corollary, supporting a higher error recovery level means increased sophistication and possibly an increase in resource requirements.
c) Supporting error recovery level "n" is advertised and negotiated by each iSCSI entity by exchanging the text key "ErrorRecoveryLevel=n". The lower of the two exchanged values is the operational ErrorRecoveryLevel for the session.
The following diagram represents the error recovery hierarchy.
The following table lists the error recovery (ER) capabilities expected from the implementations that support each error recovery level.
Note: Digest failure recovery is comprised of two recovery classes: the Within-connection recovery class (recovery within-connection) and the Within-command recovery class (recovery within-command).
When a defined value of ErrorRecoveryLevel is proposed by an originator in a text negotiation, the originator MUST support the functionality defined for the proposed value and, additionally, functionality corresponding to any defined value numerically less than the proposed value. When a defined value of ErrorRecoveryLevel is returned by a responder in a text negotiation, the responder MUST support the functionality corresponding to the ErrorRecoveryLevel it is accepting.
Implementations MUST support error recovery level "0", while the rest are OPTIONAL to implement. In implementation terms, the above striation means that the following incremental sophistication with each level is required:
This section summarizes two important and somewhat related iSCSI protocol features used in error recovery.
By resending the same iSCSI Command PDU ("retry") in the absence of a command acknowledgment (by way of an ExpCmdSN update) or a response, an initiator attempts to "plug" (what it thinks are) the discontinuities in CmdSN ordering on the target end. Discarded command PDUs, due to digest errors, may have created these discontinuities.
Retry MUST NOT be used for reasons other than plugging command sequence gaps and, in particular, cannot be used for requesting PDU retransmissions from a target. Any such PDU retransmission requests for a currently allegiant command in progress may be made using the SNACK mechanism described in Section 11.16, although the usage of SNACK is OPTIONAL.
If initiators, as part of plugging command sequence gaps as described above, inadvertently issue retries for allegiant commands already in progress (i.e., targets did not see the discontinuities in CmdSN ordering), the duplicate commands are silently ignored by targets as specified in Section 4.2.2.1.
When an iSCSI command is retried, the command PDU MUST carry the original Initiator Task Tag and the original operational attributes (e.g., flags, function names, LUN, CDB, etc.) as well as the original CmdSN. The command being retried MUST be sent on the same connection as the original command, unless the original connection was already successfully logged out.
In reassigning connection allegiance for a command, the target SHOULD continue the command from its current state. For example, when reassigning read commands, the target SHOULD take advantage of the ExpDataSN field provided by the Task Management Function Request (which must be set to 0 if there was no data transfer) and bring the read command to completion by sending the remaining data and sending (or resending) the status. The ExpDataSN acknowledges all data sent up to, but not including, the Data-In PDU and/or R2T with the DataSN (or R2TSN) equal to the ExpDataSN. However, targets may choose to send/receive all unacknowledged data or all of the data on a reassignment of connection allegiance if unable to recover or maintain accurate state. Initiators MUST NOT subsequently request data retransmission through Data SNACK for PDUs numbered less than the ExpDataSN (i.e., prior to the acknowledged sequence number). For all types of commands, a reassignment request implies that the task is still considered in progress by the initiator, and the target must conclude the task appropriately if the target returns the "Function complete" response to the reassignment request. This might possibly involve retransmission of data/R2T/status PDUs as necessary but MUST involve the (re)transmission of the status PDU.
It is OPTIONAL for targets to support the allegiance reassignment. This capability is negotiated via the ErrorRecoveryLevel text key during the login time. When a target does not support allegiance reassignment, it MUST respond with a task management response code of "Task allegiance reassignment not supported". If allegiance reassignment is supported by the target but the task is still allegiant to a different connection, or a successful recovery Logout of the previously allegiant connection was not performed, the target MUST respond with a task management response code of "Task still allegiant".
If allegiance reassignment is supported by the target, the task management response to the reassignment request MUST be issued before the reassignment becomes effective.
If a SCSI command that involves data input is reassigned, any SNACK Tag it holds for a final response from the original connection is deleted, and the default value of 0 MUST be used instead.
Targets MUST NOT implicitly terminate an active task by sending a Reject PDU for any PDU exchanged during the life of the task. If the target decides to terminate the task, a Response PDU (SCSI, Text, Task, etc.) must be returned by the target to conclude the task. If the task had never been active before the Reject (i.e., the Reject is on the command PDU), targets should not send any further responses because the command itself is being discarded.
The above rule means that the initiator can eventually expect a response on receiving Rejects, if the received Reject is for a PDU other than the command PDU itself. The non-command Rejects only have diagnostic value in logging the errors, and they can be used for retransmission decisions by the initiators.
The CmdSN of the rejected command PDU (if it is a non-immediate command) MUST NOT be considered received by the target (i.e., a command sequence gap must be assumed for the CmdSN), even though the CmdSN of the rejected command PDU may be reliably ascertained. Upon receiving the Reject, the initiator MUST plug the CmdSN gap in order to continue to use the session. The gap may be plugged by either transmitting a command PDU with the same CmdSN or aborting the task (see Section 7.11 for information regarding how an abort may plug a CmdSN gap).
When a data PDU is rejected and its DataSN can be ascertained, a target MUST advance the ExpDataSN for the current data burst if a recovery R2T is being generated. The target MAY advance its ExpDataSN if it does not attempt to recover the lost data PDU.
The negotiation of the key ErrorRecoveryLevel is not required for Discovery sessions -- i.e., for sessions that negotiated "SessionType=Discovery" -- because the default value of 0 is necessary and sufficient for Discovery sessions. It is, however, possible that some legacy iSCSI implementations might attempt to negotiate the ErrorRecoveryLevel key on Discovery sessions. When such a negotiation attempt is made by the remote side, a compliant iSCSI implementation MUST propose a value of 0 (zero) in response. The operational ErrorRecoveryLevel for Discovery sessions thus MUST be 0. This naturally follows from the functionality constraints that Section 4.3 imposes on Discovery sessions.
Discovery sessions are intended to be relatively short-lived. Initiators are not expected to establish multiple Discovery sessions to the same iSCSI Network Portal. An initiator may use the same iSCSI Initiator Name and ISID when establishing different unique sessions with different targets and/or different portal groups. This behavior is discussed in Section 10.1.1 and is, in fact, encouraged as conservative reuse of ISIDs.
The ISID RULE in Section 4.4.3 states that there must not be more than one session with a matching 4-tuple: <InitiatorName, ISID, TargetName, TargetPortalGroupTag>. While the spirit of the ISID RULE applies to Discovery sessions the same as it does for Normal sessions, note that some Discovery sessions differ from the Normal sessions in two important aspects:
a) Because Appendix C allows a Discovery session to be established without specifying a TargetName key in the Login Request PDU (let us call such a session an "Unnamed" Discovery session), there is no target node context to enforce the ISID RULE.
b) Portal groups are defined only in the context of a target node. When the TargetName key is NULL-valued (i.e., not specified), the TargetPortalGroupTag thus cannot be ascertained to enforce the ISID RULE.
The following two sections describe Unnamed Discovery sessions and Named Discovery sessions, respectively.
For Unnamed Discovery sessions, neither the TargetName nor the TargetPortalGroupTag is available to the targets in order to enforce the ISID RULE. Therefore, the following rule applies.
UNNAMED ISID RULE: Targets MUST enforce the uniqueness of the following 4-tuple for Unnamed Discovery sessions: <InitiatorName, ISID, NULL, TargetAddress>. The following semantics are implied by this uniqueness requirement.
Targets SHOULD allow concurrent establishment of one Discovery session with each of its Network Portals by the same initiator port with a given iSCSI Node Name and an ISID. Each of the concurrent Discovery sessions, if established by the same initiator port to other Network Portals, MUST be treated as independent sessions -- i.e., one session MUST NOT reinstate the other.
A new Unnamed Discovery session that has a matching <InitiatorName, ISID, NULL, TargetAddress> to an existing Discovery session MUST reinstate the existing Unnamed Discovery session. Note thus that only an Unnamed Discovery session may reinstate another Unnamed Discovery session.
For Named Discovery sessions, the TargetName key is specified by the initiator, and thus the target can unambiguously ascertain the TargetPortalGroupTag as well. Since all the four elements of the 4-tuple are known, the ISID RULE MUST be enforced by targets with no changes from Section 4.4.3 semantics. A new session with a matching <InitiatorName, ISID, TargetName, TargetPortalGroupTag> thus will reinstate an existing session. Note in this case that any new iSCSI session (Discovery or Normal) with the matching 4-tuple may reinstate an existing Named Discovery iSCSI session.
Targets SHOULD NOT send any responses other than a Text Response and Logout Response on a Discovery session, once in the Full Feature Phase.
Implementation Note: A target may simply drop the connection in a Discovery session when it would have requested a Logout via an Async Message on Normal sessions.
iSCSI defines two session-global timeout values (in seconds) -- Time2Wait and Time2Retain -- that are applicable when an iSCSI Full Feature Phase connection is taken out of service either intentionally or by an exception. Time2Wait is the initial "respite time" before attempting an explicit/implicit Logout for the CID in question or task reassignment for the affected tasks (if any). Time2Retain is the maximum time after the initial respite interval that the task and/or connection state(s) is/are guaranteed to be maintained on the target to cater to a possible recovery attempt. Recovery attempts for the connection and/or task(s) SHOULD NOT be made before Time2Wait seconds but MUST be completed within Time2Retain seconds after that initial Time2Wait waiting period.
A transport connection shutdown or a transport reset without any preceding iSCSI protocol interactions informing the endpoints of the fact causes a Full Feature Phase iSCSI connection to be abruptly terminated. The timeout values to be used in this case are the negotiated values of DefaultTime2Wait (Section 13.15) and DefaultTime2Retain (Section 13.16) text keys for the session.
Any planned decommissioning of a Full Feature Phase iSCSI connection is preceded by either a Logout Response PDU or an Async Message PDU. The Time2Wait and Time2Retain field values (Section 11.15) in a Logout Response PDU, and the Parameter2 and Parameter3 fields of an Async Message (AsyncEvent types "drop the connection" or "drop all the connections"; see Section 11.9.1), specify the timeout values to be used in each of these cases.
These timeout values are only applicable for the affected connection and the tasks active on that connection. These timeout values have no bearing on initiator timers (if any) that are already running on connections or tasks associated with that session.
A target implicitly terminates the active tasks due to iSCSI protocol dynamics in the following cases:
a) When a connection is implicitly or explicitly logged out with the reason code "close the connection" and there are active tasks allegiant to that connection.
b) When a connection fails and eventually the connection state times out (state transition M1 in Section 8.2.2), and there are active tasks allegiant to that connection.
c) When a successful Logout with the reason code "remove the connection for recovery" is performed while there are active tasks allegiant to that connection, and those tasks eventually time out after the Time2Wait and Time2Retain periods without allegiance reassignment.
d) When a connection is implicitly or explicitly logged out with the reason code "close the session" and there are active tasks in that session.
If the tasks terminated in cases a), b), c), and d) above are SCSI tasks, they must be internally terminated as if with CHECK CONDITION status. This status is only meaningful for appropriately handling the internal SCSI state and SCSI side effects with respect to ordering, because this status is never communicated back as a terminating status to the initiator. However, additional actions may have to be taken at the SCSI level, depending on the SCSI context as defined by the SCSI standards (e.g., queued commands and ACA; UA for the next command on the I_T nexus in cases a), b), and c); etc. -- see [SAM2] and [SPC3]).
The following two explicit violations of PDU layout rules are format errors:
a) Illegal contents of any PDU header field except the Opcode (legal values are specified in Section 11).
b) Inconsistent field contents (consistent field contents are specified in Section 11).
Format errors indicate a major implementation flaw in one of the parties.
When a target or an initiator receives an iSCSI PDU with a format error, it MUST immediately terminate all transport connections in the session with either a connection close or a connection reset, and escalate the format error to session recovery (see Section 7.1.4.4).
All initiator-detected PDU construction errors MUST be considered as format errors. Some examples of such errors are:
- NOP-In with a valid TTT but an invalid LUN
- NOP-In with a valid ITT (i.e., a NOP-In response) and also a valid TTT
- SCSI Response PDU with Status=CHECK CONDITION, but DataSegmentLength = 0
The discussion below regarding the legal choices in handling digest errors excludes session recovery as an explicit option, but either party detecting a digest error may choose to escalate the error to session recovery.
When a target or an initiator receives any iSCSI PDU with a header digest error, it MUST either discard the header and all data up to the beginning of a later PDU or close the connection. Because the digest error indicates that the length field of the header may have been corrupted, the location of the beginning of a later PDU needs to be reliably ascertained by other means, such as the operation of a Sync and Steering layer.
When a target receives any iSCSI PDU with a payload digest error, it MUST answer with a Reject PDU with a reason code of Data-Digest-Error and discard the PDU.
- If the discarded PDU is a solicited or unsolicited iSCSI data PDU (for immediate data in a command PDU, the non-data PDU rule below applies), the target MUST do one of the following:
a) Request retransmission with a recovery R2T.
b) Terminate the task with a SCSI Response PDU with a CHECK CONDITION Status and an iSCSI Condition of "Protocol Service CRC error" (Section 11.4.7.2). If the target chooses to implement this option, it MUST wait to receive all the data (signaled by a data PDU with the Final bit set for all outstanding R2Ts) before sending the SCSI Response PDU. A task management command (such as an ABORT TASK) from the initiator during this wait may also conclude the task.
- No further action is necessary for targets if the discarded PDU is a non-data PDU. In the case of immediate data being present on a discarded command, the immediate data is implicitly recovered when the task is retried (see Section 7.2.1), followed by the entire data transfer for the task.
When an initiator receives any iSCSI PDU with a payload digest error, it MUST discard the PDU.
- If the discarded PDU is an iSCSI data PDU, the initiator MUST do one of the following:
a) Request the desired data PDU through SNACK. In response to the SNACK, the target MUST either resend the data PDU or reject the SNACK with a Reject PDU with a reason code of "SNACK reject", in which case:
a.1) If the status has not already been sent for the command,
the target MUST terminate the command with a CHECK CONDITION Status and an iSCSI Condition of "SNACK rejected" (Section 11.4.7.2).
a.2) If the status was already sent, no further action is
necessary for the target. The initiator in this case MUST wait for the status to be received and then discard it, so as to internally signal the completion with CHECK CONDITION Status and an iSCSI Condition of "Protocol Service CRC error" (Section 11.4.7.2).
b) Abort the task and terminate the command with an error.
- If the discarded PDU is a response PDU or an unsolicited PDU (e.g., Async, Reject), the initiator MUST do one of the following:
a) Request PDU retransmission with a status of SNACK.
b) Log out the connection for recovery, and continue the tasks on a different connection instance as described in Section 7.2.
c) Log out to close the connection (abort all the commands associated with the connection).
Note that an unsolicited PDU carries the next StatSN value on an iSCSI connection, thereby advancing the StatSN. When an initiator discards one of these PDUs due to a payload digest error, the entire PDU, including the header, MUST be discarded. Consequently, the initiator MUST treat the exception like a loss of any other solicited response PDU.
When an initiator receives an iSCSI R2T/data PDU with an out-of-order R2TSN/DataSN or a SCSI Response PDU with an ExpDataSN that implies missing data PDU(s), it means that the initiator must have detected a header or payload digest error on one or more earlier R2T/data PDUs. The initiator MUST address these implied digest errors as described in Section 7.8. When a target receives a data PDU with an out-of- order DataSN, it means that the target must have hit a header or payload digest error on at least one of the earlier data PDUs. The target MUST address these implied digest errors as described in Section 7.8.
When an initiator receives an iSCSI status PDU with an out-of-order StatSN that implies missing responses, it MUST address the one or more missing status PDUs as described in Section 7.8. As a side effect of receiving the missing responses, the initiator may discover missing data PDUs. If the initiator wants to recover the missing data for a command, it MUST NOT acknowledge the received responses that start from the StatSN of the relevant command until it has completed receiving all the data PDUs of the command.
When an initiator receives duplicate R2TSNs (due to proactive retransmission of R2Ts by the target) or duplicate DataSNs (due to proactive SNACKs by the initiator), it MUST discard the duplicates.
In iSCSI implementations to date, there has been some uncertainty regarding the extent to which incoming messages have to be checked for protocol errors, beyond what is strictly required for processing the inbound message. This section addresses this question.
Unless this document requires it, an iSCSI implementation is not required to do an exhaustive protocol conformance check on an incoming iSCSI PDU. The iSCSI implementation in particular is not required to double-check the remote iSCSI implementation's conformance to protocol requirements.
An iSCSI initiator MAY attempt to plug a command sequence gap on the target end (in the absence of an acknowledgment of the command by way of the ExpCmdSN) before the ULP timeout by retrying the unacknowledged command, as described in Section 7.2.
On a ULP timeout for a command (that carried a CmdSN of n), if the iSCSI initiator intends to continue the session it MUST abort the command by using either an appropriate Task Management Function Request for the specific command or a "close the connection" logout. When using an ABORT TASK, if the ExpCmdSN is still less than (n + 1), the target may see the abort request while missing the original command itself, due to one of the following reasons:
- The original command was dropped due to digest error.
- The connection on which the original command was sent was successfully logged out. On logout, the unacknowledged commands issued on the connection being logged out are discarded.
If the abort request is received and the original command is missing, targets MUST consider the original command with that RefCmdSN as received and issue a task management response with the response code "Function complete". This response concludes the task on both ends. If the abort request is received and the target can determine (based on the Referenced Task Tag) that the command was received and executed, and also that the response was sent prior to the abort, then the target MUST respond with the response code "Task Does Not Exist".
Text Request and Response sequences, when used to set/negotiate operational parameters, constitute the negotiation/parameter setting. A negotiation failure is considered to be one or more of the following:
- For a negotiated key, none of the choices are acceptable to one of the sides in the negotiation.
- For a declarative key, the declared value is not acceptable to the other side in the negotiation.
- The Text Request timed out and possibly terminated.
- The Text Request was answered with a Reject PDU.
The following two rules should be used to address negotiation failures:
a) During login, any failure in negotiation MUST be considered a login process failure; the Login Phase, along with the connection, MUST be terminated. If the target detects the failure, it must terminate the login with the appropriate Login response code.
b) A failure in negotiation during the Full Feature Phase will terminate the entire negotiation sequence, which may consist of a series of Text Requests that use the same Initiator Task Tag. The operational parameters of the session or the connection MUST continue to be the values agreed upon during an earlier successful negotiation (i.e., any partial results of this unsuccessful negotiation MUST NOT take effect and MUST be discarded).
Mapping framed messages over a "streaming" connection such as TCP makes the proposed mechanisms vulnerable to simple software framing errors. On the other hand, the introduction of framing mechanisms to limit the effects of these errors may be onerous on performance for simple implementations. Command sequence numbers and the mechanisms for dropping and reestablishing connections (discussed earlier in Section 7 and its subsections) help handle this type of mapping errors.
All violations of iSCSI PDU exchange sequences specified in this document are also protocol errors. This category of errors can only be addressed by fixing the implementations; iSCSI defines Reject and response codes to enable this.
iSCSI can keep a session in operation if it is able to keep/establish at least one TCP connection between the initiator and the target in a timely fashion. Targets and/or initiators may recognize a failing connection by either transport-level means (TCP), a gap in the command sequence number, a response stream that is not filled for a long time, or a failing iSCSI NOP (acting as a ping). The latter MAY be used periodically to increase the speed and likelihood of detecting connection failures. As an example for transport-level means, initiators and targets MAY also use the keep-alive option (see [RFC1122]) on the TCP connection to enable early link failure detection on otherwise idle links.
On connection failure, the initiator and target MUST do one of the following:
a) Attempt connection recovery within the session (Connection Recovery).
b) Log out the connection with the reason code "close the connection" (Section 11.14.5), reissue missing commands, and implicitly terminate all active commands. This option requires support for the Within-connection recovery class (recovery within-connection).
c) Perform session recovery (Session Recovery).
Either side may choose to escalate to session recovery (via the initiator dropping all the connections or via an Async Message that announces the similar intent from a target), and the other side MUST give it precedence. On a connection failure, a target MUST terminate and/or discard all of the active immediate commands, regardless of which of the above options is used (i.e., immediate commands are not recoverable across connection failures).
If all of the connections of a session fail and cannot be reestablished in a short time, or if initiators detect protocol errors repeatedly, an initiator may choose to terminate a session and establish a new session.
In this case, the initiator takes the following actions:
- Resets or closes all the transport connections.
- Terminates all outstanding requests with an appropriate response before initiating a new session. If the same I_T nexus is intended to be reestablished, the initiator MUST employ session reinstatement (see Section 6.3.5).
When the session timeout (the connection state timeout for the last failed connection) happens on the target, it takes the following actions:
- Resets or closes the TCP connections (closes the session).
- Terminates all active tasks that were allegiant to the connection(s) that constituted the session.
A target MUST also be prepared to handle a session reinstatement request from the initiator that may be addressing session errors.
iSCSI connections and iSCSI sessions go through several well-defined states from the time they are created to the time they are cleared.
The connection state transitions are described in two separate but dependent sets of state diagrams for ease in understanding. The first set of diagrams, "standard connection state diagrams", describes the connection state transitions when the iSCSI connection is not waiting for, or undergoing, a cleanup by way of an explicit or implicit logout. The second set, "connection cleanup state diagram", describes the connection state transitions while performing the iSCSI connection cleanup. While the first set has two diagrams -- one each for initiator and target -- the second set has a single diagram applicable to both initiators and targets.
The "session state diagram" describes the state transitions an iSCSI session would go through during its lifetime, and it depends on the states of possibly multiple iSCSI connections that participate in the session.
States and transitions are described in text, tables, and diagrams. The diagrams are used for illustration. The text and the tables are the governing specification.
State descriptions for the standard connection state diagram are as follows:
S1: FREE
- initiator: State on instantiation, or after successful connection closure.
- target: State on instantiation, or after successful
connection closure.
S2: XPT_WAIT
- initiator: Waiting for a response to its transport
connection establishment request.
- target: Illegal.
S3: XPT_UP
- initiator: Illegal.
- target: Waiting for the login process to commence.
S4: IN_LOGIN
- initiator: Waiting for the login process to conclude,
possibly involving several PDU exchanges.
- target: Waiting for the login process to conclude,
possibly involving several PDU exchanges.
S5: LOGGED_IN
- initiator: In the Full Feature Phase, waiting for all internal, iSCSI, and transport events.
- target: In the Full Feature Phase, waiting for all internal, iSCSI, and transport events.
S6: IN_LOGOUT
- initiator: Waiting for a Logout Response.
- target: Waiting for an internal event signaling completion
of logout processing.
S7: LOGOUT_REQUESTED
- initiator: Waiting for an internal event signaling
readiness to proceed with Logout.
- target: Waiting for the Logout process to start after
having requested a Logout via an Async Message.
S8: CLEANUP_WAIT
- initiator: Waiting for the context and/or resources to initiate the cleanup processing for this CSM.
- target: Waiting for the cleanup process to start for this CSM.
T1:
- initiator: Transport connect request was made (e.g., TCP SYN sent).
- target: Illegal.
T2:
- initiator: Transport connection request timed out, a
transport reset was received, or an internal event of receiving a Logout Response (success) on another connection for a "close the session" Logout Request was received.
- target: Illegal.
T3:
- initiator: Illegal.
- target: Received a valid transport connection request that establishes the transport connection.
T4:
- initiator: Transport connection established, thus
prompting the initiator to start the iSCSI Login.
- target: Initial iSCSI Login Request was received.
T5:
- initiator: The final iSCSI Login Response with a Status-Class of zero was received.
- target: The final iSCSI Login Request to conclude the
Login Phase was received, thus prompting the target to send the final iSCSI Login Response with a Status-Class of zero.
T6:
- initiator: Illegal.
T7:
- initiator: One of the following events caused the transition:
a) The final iSCSI Login Response was received with a
non-zero Status-Class.
b) Login timed out.
c) A transport disconnect indication was received.
d) A transport reset was received.
e) An internal event indicating a transport timeout was received.
In all these cases, the transport connection is closed.
- target: One of the following events caused the transition:
b) Login timed out.
c) A transport disconnect indication was received.
d) A transport reset was received.
e) An internal event indicating a transport timeout was received.
f) On another connection, a "close the session" Logout Request was received.
In all these cases, the connection is to be closed.
T8:
- initiator: An internal event of receiving a Logout
Response (success) on another connection for a "close the session" Logout Request was received, thus closing this connection and requiring no further cleanup.
T9, T10:
- initiator: An internal event that indicates the readiness
to start the Logout process was received, thus prompting an iSCSI Logout to be sent by the initiator.
- target: An iSCSI Logout Request was received.
T11, T12:
- initiator: An Async PDU with AsyncEvent "Request Logout"
was received.
- target: An internal event that requires the decommissioning
of the connection was received, thus causing an Async PDU with an AsyncEvent "Request Logout" to be sent.
T13:
- initiator: An iSCSI Logout Response (success) was received,
or an internal event of receiving a Logout Response (success) on another connection for a "close the session" Logout Request was received.
T14:
- initiator: An Async PDU with AsyncEvent "Request Logout"
was received again.
- target: Illegal.
T15, T16:
- initiator: One or more of the following events caused this transition:
b) A transport reset was received.
c) A transport disconnect indication was received.
d) An Async PDU with AsyncEvent "Drop connection" (for this CID) was received.
e) An Async PDU with AsyncEvent "Drop all connections" was received.
- target: One or more of the following events caused this transition:
b) An internal event of a failed connection/session reinstatement was received.
c) A transport reset was received.
d) A transport disconnect indication was received.
e) An internal emergency cleanup event was received, which prompts an Async PDU with AsyncEvent "Drop connection" (for this CID), or event "Drop all connections".
T17:
- initiator: One or more of the following events caused this transition:
a) A Logout Response (failure, i.e., a non-zero status)
was received, or Logout timed out.
b) Any of the events specified for T15 and T16 occurred.
- target: One or more of the following events caused this transition:
b) Any of the events specified for T15 and T16 occurred.
T18:
- initiator: An internal event of receiving a Logout
Response (success) on another connection for a "close the session" Logout Request was received.
The CLEANUP_WAIT state (S8) implies that there are possible iSCSI tasks that have not reached conclusion and are still considered busy.
Symbolic names for states:
S1: FREE
S2: XPT_WAIT
S4: IN_LOGIN
S5: LOGGED_IN
S6: IN_LOGOUT
S7: LOGOUT_REQUESTED
S8: CLEANUP_WAIT
States S5, S6, and S7 constitute the Full Feature Phase operation of the connection.
The state diagram is as follows:
Symbolic names for states:
S1: FREE
S3: XPT_UP
S4: IN_LOGIN
S5: LOGGED_IN
S6: IN_LOGOUT
S7: LOGOUT_REQUESTED
S8: CLEANUP_WAIT
States S5, S6, and S7 constitute the Full Feature Phase operation of the connection.
The state diagram is as follows:
The following state transition table represents the above diagram and follows the conventions described for the initiator diagram.
Symbolic names for states:
R1: CLEANUP_WAIT (same as S8)
R2: IN_CLEANUP
R3: FREE (same as S1)
Whenever a connection state machine in cleanup (let's call it CSM-C) enters the CLEANUP_WAIT state (S8), it must go through the state transitions described in the connection cleanup state diagram, using either a) a separate Full Feature Phase connection (let's call it CSM-E, for explicit) in the LOGGED_IN state in the same session or b) a new transport connection (let's call it CSM-I, for implicit) in the FREE state that is to be added to the same session. In the CSM-E case, an explicit logout for the CID that corresponds to CSM-C (as either a connection or session logout) needs to be performed to complete the cleanup. In the CSM-I case, an implicit logout for the CID that corresponds to CSM-C needs to be performed by way of connection reinstatement (Section 6.3.4) for that CID. In either case, the protocol exchanges on CSM-E or CSM-I determine the state transitions for CSM-C. Therefore, this cleanup state diagram is only applicable to the instance of the connection in cleanup (i.e., CSM-C). In the case of an implicit logout, for example, CSM-C reaches FREE (R3) at the time CSM-I reaches LOGGED_IN. In the case of an explicit logout, CSM-C reaches FREE (R3) when CSM-E receives a successful Logout Response while continuing to be in the LOGGED_IN state.
An initiator must initiate an explicit or implicit connection logout for a connection in the CLEANUP_WAIT state, if the initiator intends to continue using the associated iSCSI session.
The following state diagram applies to both initiators and targets. (M1, M2, M3, and M4 are defined in Section 8.2.2.)
The following state transition table represents the above diagram and follows the same conventions as in earlier sections.
R1: CLEANUP_WAIT (same as S8)
- initiator: Waiting for the internal event to initiate the cleanup processing for CSM-C.
- target: Waiting for the cleanup process to start for CSM-C.
R2: IN_CLEANUP
- initiator: Waiting for the connection cleanup process to conclude for CSM-C.
- target: Waiting for the connection cleanup process to conclude for CSM-C.
R3: FREE (same as S1)
- initiator: End state for CSM-C.
- target: End state for CSM-C.
M1: One or more of the following events was received:
- initiator:
* An internal event that indicates connection state timeout.
* An internal event of receiving a successful Logout Response on a different connection for a "close the session" Logout.
- target:
* An internal event that indicates connection state timeout.
* An internal event of sending a Logout Response (success) on a different connection for a "close the session" Logout Request.
M2: An implicit/explicit logout process was initiated by the
initiator.
- In CSM-I usage:
* initiator: An internal event requesting the connection (or session) reinstatement was received, thus prompting a connection (or session) reinstatement Login to be sent, transitioning CSM-I to state IN_LOGIN.
* target: A connection/session reinstatement Login was received while in state XPT_UP.
- In CSM-E usage:
* initiator: An internal event was received that indicates that an explicit logout was sent for this CID in state LOGGED_IN.
* target: An explicit logout was received for this CID in state LOGGED_IN.
M3: Logout failure was detected.
- In CSM-I usage:
* initiator: CSM-I failed to reach LOGGED_IN and arrived into FREE instead.
* target: CSM-I failed to reach LOGGED_IN and arrived into FREE instead.
- In CSM-E usage:
* initiator: either CSM-E moved out of LOGGED_IN, or Logout timed out and/or aborted, or Logout Response (failure) was received.
* target: either CSM-E moved out of LOGGED_IN, Logout timed out and/or aborted, or an internal event that indicates that a failed Logout processing was received. A Logout Response (failure) was sent in the last case.
M4: Successful implicit/explicit logout was performed.
- In CSM-I usage:
* initiator: CSM-I reached state LOGGED_IN, or an internal event of receiving a Logout Response (success) on another connection for a "close the session" Logout Request was received.
* target: CSM-I reached state LOGGED_IN, or an internal event of sending a Logout Response (success) on a different connection for a "close the session" Logout Request was received.
- In CSM-E usage:
* initiator: CSM-E stayed in LOGGED_IN and received a Logout Response (success), or an internal event of receiving a Logout Response (success) on another connection for a "close the session" Logout Request was received.
* target: CSM-E stayed in LOGGED_IN and an internal event indicating a successful Logout processing was received, or an internal event of sending a Logout Response (success) on a different connection for a "close the session" Logout Request was received.
Symbolic names for states:
Q1: FREE
Q3: LOGGED_IN
Q4: FAILED
State Q3 represents the Full Feature Phase operation of the session.
The state diagram is as follows. (N1, N3, N4, N5, and N6 are defined in Section 8.3.4.)
The state transition table is as follows:
Symbolic names for states:
Q1: FREE
Q2: ACTIVE
Q3: LOGGED_IN
Q4: FAILED
Q5: IN_CONTINUE
State Q3 represents the Full Feature Phase operation of the session.
The state diagram is as follows:
The state transition table is as follows:
Q1: FREE
- initiator: State on instantiation or after cleanup.
- target: State on instantiation or after cleanup.
Q2: ACTIVE
- initiator: Illegal.
- target: The first iSCSI connection in the session transitioned to IN_LOGIN, waiting for it to complete the login process.
Q3: LOGGED_IN
- initiator: Waiting for all session events.
- target: Waiting for all session events.
Q4: FAILED
- initiator: Waiting for session recovery or session continuation.
- target: Waiting for session recovery or session continuation.
Q5: IN_CONTINUE
- initiator: Illegal.
- target: Waiting for session continuation attempt to reach a conclusion.
N1:
- initiator: At least one transport connection reached the LOGGED_IN state.
- target: The first iSCSI connection in the session had reached the IN_LOGIN state.
N2:
- initiator: Illegal.
- target: At least one iSCSI connection reached the LOGGED_IN state.
N3:
- initiator: Graceful closing of the session via session closure (Section 6.3.6).
- target: Graceful closing of the session via session closure (Section 6.3.6) or a successful session reinstatement cleanly closed the session.
N4:
- initiator: A session continuation attempt succeeded.
- target: Illegal.
N5:
- initiator: Session failure (Section 6.3.6) occurred.
- target: Session failure (Section 6.3.6) occurred.
N6:
- initiator: Session state timeout occurred, or a session reinstatement cleared this session instance. This results in the freeing of all associated resources, and the session state is discarded.
- target: Session state timeout occurred, or a session reinstatement cleared this session instance. This results in the freeing of all associated resources, and the session state is discarded.
N7:
- initiator: Illegal.
- target: A session continuation attempt was initiated.
N8:
- initiator: Illegal.
- target: The last session continuation attempt failed.
N9:
- initiator: Illegal.
- target: Login attempt on the leading connection failed.
N10:
- initiator: Illegal.
- target: A session continuation attempt succeeded.
N11:
- initiator: Illegal.
- target: A successful session reinstatement cleanly closed the session.
Historically, native storage systems have not had to consider security, because their environments offered minimal security risks. That is, these environments consisted of storage devices either directly attached to hosts or connected via a Storage Area Network (SAN) distinctly separate from the communications network. The use of storage protocols, such as SCSI, over IP networks requires that security concerns be addressed. iSCSI implementations must provide means of protection against active attacks (e.g., pretending to be another identity; message insertion, deletion, modification, and replaying) and passive attacks (e.g., eavesdropping, gaining advantage by analyzing the data sent over the line).
Although technically possible, iSCSI SHOULD NOT be configured without security, specifically in-band authentication; see Section 9.2. iSCSI configured without security should be confined to closed environments that have very limited and well-controlled security risks. [RFC3723] specifies the mechanisms that must be used in order to mitigate risks fully described in that document.
The following section describes the security mechanisms provided by an iSCSI implementation.
The entities involved in iSCSI security are the initiator, target, and the IP communication endpoints. iSCSI scenarios in which multiple initiators or targets share a single communication endpoint are expected. To accommodate such scenarios, iSCSI supports two separate security mechanisms: in-band authentication between the initiator and the target at the iSCSI connection level (carried out by exchange of iSCSI Login PDUs), and packet protection (integrity, authentication, and confidentiality) by IPsec at the IP level. The two security mechanisms complement each other. The in-band authentication provides end-to-end trust (at login time) between the iSCSI initiator and the target, while IPsec provides a secure channel between the IP communication endpoints. iSCSI can be used to access sensitive information for which significant security protection is appropriate. As further specified in the rest of this security considerations section, both iSCSI security mechanisms are mandatory to implement (MUST). The use of in-band authentication is strongly recommended (SHOULD). In contrast, the use of IPsec is optional (MAY), as the security risks that it addresses may only be present over a subset of the networks used by an iSCSI connection or a session; a specific example is that when an iSCSI session spans data centers, IPsec VPN gateways at the data center boundaries to protect the WAN connectivity between data centers may be appropriate in combination with in-band iSCSI authentication.
Further details on typical iSCSI scenarios and the relationship between the initiators, targets, and the communication endpoints can be found in [RFC3723].
During login, the target MAY authenticate the initiator and the initiator MAY authenticate the target. The authentication is performed on every new iSCSI connection by an exchange of iSCSI Login PDUs using a negotiated authentication method.
The authentication method cannot assume an underlying IPsec protection, because IPsec is optional to use. An attacker should gain as little advantage as possible by inspecting the authentication phase PDUs. Therefore, a method using cleartext (or equivalent) passwords MUST NOT be used; on the other hand, identity protection is not strictly required.
The authentication mechanism protects against an unauthorized login to storage resources by using a false identity (spoofing). Once the authentication phase is completed, if the underlying IPsec is not used, all PDUs are sent and received in the clear. The authentication mechanism alone (without underlying IPsec) should only be used when there is no risk of eavesdropping or of message insertion, deletion, modification, and replaying.
Section 12 defines several authentication methods and the exact steps that must be followed in each of them, including the iSCSI-text-keys and their allowed values in each step. Whenever an iSCSI initiator gets a response whose keys, or their values, are not according to the step definition, it MUST abort the connection.
For some of the authentication methods, a key specifies the identity of the iSCSI initiator or target for authentication purposes. The value associated with that key MAY be different from the iSCSI name and SHOULD be configurable (CHAP_N: see Section 12.1.3; SRP_U: see Section 12.1.2). For this reason, iSCSI implementations SHOULD manage authentication in a way that impersonation across iSCSI names via these authentication identities is not possible. Specifically, implementations SHOULD allow configuration of an authentication identity for a Name if different, and authentication credentials for that identity. During the login time, implementations SHOULD verify the Name-to-identity relationship in addition to authenticating the identity through the negotiated authentication method.
When an iSCSI session has multiple TCP connections, either concurrently or sequentially, the authentication method and identities should not vary among the connections. Therefore, all connections in an iSCSI session SHOULD use the same authentication method, iSCSI name, and authentication identity (for authentication methods that use an authentication identity). Implementations SHOULD check this and cause an authentication failure on a new connection that uses a different authentication method, iSCSI name, or authentication identity from those already used in the session. In addition, implementations SHOULD NOT support both authenticated and unauthenticated TCP connections in the same iSCSI session, added either concurrently or sequentially to the session.
Compliant iSCSI initiators and targets MUST implement the CHAP authentication method [RFC1994] (according to Section 12.1.3, including the target authentication option).
When CHAP is performed over a non-encrypted channel, it is vulnerable to an off-line dictionary attack. Implementations MUST support the use of up to 128-bit random CHAP secrets, including the means to generate such secrets and to accept them from an external generation source. Implementations MUST NOT provide secret generation (or expansion) means other than random generation.
An administrative entity of an environment in which CHAP is used with a secret that has less than 96 random bits MUST enforce IPsec encryption (according to the implementation requirements in Section 9.3.2) to protect the connection. Moreover, in this case, IKE authentication with group pre-shared cryptographic keys SHOULD NOT be used unless it is not essential to protect group members against off-line dictionary attacks by other members.
CHAP secrets MUST be an integral number of bytes (octets). A compliant implementation SHOULD NOT continue with the login step in which it should send a CHAP response (CHAP_R; see Section 12.1.3) unless it can verify that the CHAP secret is at least 96 bits or that IPsec encryption is being used to protect the connection.
Any CHAP secret used for initiator authentication MUST NOT be configured for authentication of any target, and any CHAP secret used for target authentication MUST NOT be configured for authentication of any initiator. If the CHAP response received by one end of an iSCSI connection is the same as the CHAP response that the receiving endpoint would have generated for the same CHAP challenge, the response MUST be treated as an authentication failure and cause the connection to close (this ensures that the same CHAP secret is not used for authentication in both directions). Also, if an iSCSI implementation can function as both initiator and target, different CHAP secrets and identities MUST be configured for these two roles. The following is an example of the attacks prevented by the above requirements:
a) "Rogue" wants to impersonate "Storage" to Alice and knows that a single secret is used for both directions of Storage-Alice authentication.
b) Rogue convinces Alice to open two connections to itself and identifies itself as Storage on both connections.
c) Rogue issues a CHAP challenge on Connection 1, waits for Alice to respond, and then reflects Alice's challenge as the initial challenge to Alice on Connection 2.
d) If Alice doesn't check for the reflection across connections, Alice's response on Connection 2 enables Rogue to impersonate Storage on Connection 1, even though Rogue does not know the Alice-Storage CHAP secret.
Originators MUST NOT reuse the CHAP challenge sent by the responder for the other direction of a bidirectional authentication. Responders MUST check for this condition and close the iSCSI TCP connection if it occurs.
The same CHAP secret SHOULD NOT be configured for authentication of multiple initiators or multiple targets, as this enables any of them to impersonate any other one of them, and compromising one of them enables the attacker to impersonate any of them. It is recommended that iSCSI implementations check for the use of identical CHAP secrets by different peers when this check is feasible and take appropriate measures to warn users and/or administrators when this is detected.
When an iSCSI initiator or target authenticates itself to counterparts in multiple administrative domains, it SHOULD use a different CHAP secret for each administrative domain to avoid propagating security compromises across domains.
Within a single administrative domain:
- A single CHAP secret MAY be used for authentication of an initiator to multiple targets.
- A single CHAP secret MAY be used for an authentication of a target to multiple initiators when the initiators use an external server (e.g., RADIUS [RFC2865]) to verify the target's CHAP responses and do not know the target's CHAP secret.
If an external response verification server (e.g., RADIUS) is not used, employing a single CHAP secret for authentication of a target to multiple initiators requires that all such initiators know that target's secret. Any of these initiators can impersonate the target to any other such initiator, and compromise of such an initiator enables an attacker to impersonate the target to all such initiators. Targets SHOULD use separate CHAP secrets for authentication to each initiator when such risks are of concern; in this situation, it may be useful to configure a separate logical iSCSI target with its own iSCSI Node Name for each initiator or group of initiators among which such separation is desired.
The above requirements strengthen the security properties of CHAP authentication for iSCSI by comparison to the basic CHAP authentication mechanism [RFC1994]. It is very important to adhere to these requirements, especially the requirements for strong (large randomly generated) CHAP secrets, as iSCSI implementations and deployments that fail to use strong CHAP secrets are likely to be highly vulnerable to off-line dictionary attacks on CHAP secrets.
Replacement of CHAP with a better authentication mechanism is anticipated in a future version of iSCSI. The FC-SP-2 standard [FC-SP-2] has specified the Extensible Authentication Protocol - Generalized Pre-Shared Key (EAP-GPSK) authentication mechanism [RFC5433] as an alternative to (and possible future replacement for) Fibre Channel's similar usage of strengthened CHAP. Another possible replacement for CHAP is a secure password mechanism, e.g., an updated version of iSCSI's current SRP authentication mechanism.
The list of allowed SRP groups is provided in [RFC3723].
iSCSI uses raw Kerberos V5 [RFC4120] for authenticating a client (iSCSI initiator) principal to a service (iSCSI target) principal. Note that iSCSI does not use the Generic Security Service Application Program Interface (GSS-API) [RFC2743] or the Kerberos V5 GSS-API security mechanism [RFC4121]. This means that iSCSI implementations supporting the KRB5 AuthMethod (Section 12.1) are directly involved in the Kerberos protocol. When Kerberos V5 is used for authentication, the following actions MUST be performed as specified in [RFC4120]:
- The target MUST validate KRB_AP_REQ to ensure that the initiator can be trusted.
- When mutual authentication is selected, the initiator MUST validate KRB_AP_REP to determine the outcome of mutual authentication.
As Kerberos V5 is capable of providing mutual authentication, implementations SHOULD support mutual authentication by default for login authentication.
Note, however, that Kerberos authentication only assures that the server (iSCSI target) can be trusted by the Kerberos client (initiator) and vice versa; an initiator should employ appropriately secured service discovery techniques (e.g., iSNS; see Section 4.2.7) to ensure that it is talking to the intended target principal.
iSCSI does not use Kerberos v5 for either integrity or confidentiality protection of the iSCSI protocol. iSCSI uses IPsec for those purposes as specified in Section 9.3.
iSCSI uses the IPsec mechanism for packet protection (cryptographic integrity, authentication, and confidentiality) at the IP level between the iSCSI communicating endpoints. The following sections describe the IPsec protocols that must be implemented for data authentication and integrity; confidentiality; and cryptographic key management.
An iSCSI initiator or target may provide the required IPsec support fully integrated or in conjunction with an IPsec front-end device. In the latter case, the compliance requirements with regard to IPsec support apply to the "combined device". Only the "combined device" is to be considered an iSCSI device.
Detailed considerations and recommendations for using IPsec for iSCSI are provided in [RFC3723] as updated by [RFC7146]. The IPsec requirements are reproduced here for convenience and are intended to match those in [RFC7146]; in the event of a discrepancy, the requirements in [RFC7146] apply.
Data authentication and integrity are provided by a cryptographic keyed Message Authentication Code in every sent packet. This code protects against message insertion, deletion, and modification. Protection against message replay is realized by using a sequence counter.
An iSCSI-compliant initiator or target MUST provide data authentication and integrity by implementing IPsec v2 [RFC2401] with ESPv2 [RFC2406] in tunnel mode, SHOULD provide data authentication and integrity by implementing IPsec v3 [RFC4301] with ESPv3 [RFC4303] in tunnel mode, and MAY provide data authentication and integrity by implementing either IPsec v2 or v3 with the appropriate version of ESP in transport mode. The IPsec implementation MUST fulfill the following iSCSI-specific requirements:
- HMAC-SHA1 MUST be implemented in the specific form of HMAC-SHA-1-96 [RFC2404].
- AES CBC MAC with XCBC extensions using 128-bit keys SHOULD be implemented [RFC3566].
- Implementations that support IKEv2 [RFC5996] SHOULD also implement AES Galois Message Authentication Code (GMAC) [RFC4543] using 128-bit keys.
The ESP anti-replay service MUST also be implemented.
At the high speeds at which iSCSI is expected to operate, a single IPsec SA could rapidly exhaust the ESP 32-bit sequence number space, requiring frequent rekeying of the SA, as rollover of the ESP sequence number within a single SA is prohibited for both ESPv2 [RFC2406] and ESPv3 [RFC4303]. In order to provide the means to avoid this potentially undesirable frequent rekeying, implementations that are capable of operating at speeds of 1 gigabit/second or higher MUST implement extended (64-bit) sequence numbers for ESPv2 (and ESPv3, if supported) and SHOULD use extended sequence numbers for all iSCSI traffic. Extended sequence number negotiation as part of security association establishment is specified in [RFC4304] for IKEv1 and [RFC5996] for IKEv2.
Confidentiality is provided by encrypting the data in every packet. When confidentiality is used, it MUST be accompanied by data authentication and integrity to provide comprehensive protection against eavesdropping and against message insertion, deletion, modification, and replaying.
An iSCSI-compliant initiator or target MUST provide confidentiality by implementing IPsec v2 [RFC2401] with ESPv2 [RFC2406] in tunnel mode, SHOULD provide confidentiality by implementing IPsec v3 [RFC4301] with ESPv3 [RFC4303] in tunnel mode, and MAY provide confidentiality by implementing either IPsec v2 or v3 with the appropriate version of ESP in transport mode, with the following iSCSI-specific requirements that apply to IPsec v2 and IPsec v3:
- 3DES in CBC mode MAY be implemented [RFC2451].
- AES in CBC mode with 128-bit keys MUST be implemented [RFC3602]; other key sizes MAY be supported.
- AES in Counter mode MAY be implemented [RFC3686].
- Implementations that support IKEv2 [RFC5996] SHOULD also implement AES Galois/Counter Mode (GCM) with 128-bit keys [RFC4106]; other key sizes MAY be supported.
Due to its inherent weakness, DES in CBC mode MUST NOT be used.
The NULL encryption algorithm MUST also be implemented.
A compliant iSCSI implementation MUST meet the cryptographic key management requirements of the IPsec protocol suite. Authentication, security association negotiation, and cryptographic key management MUST be provided by implementing IKE [RFC2409] using the IPsec DOI [RFC2407] and SHOULD be provided by implementing IKEv2 [RFC5996], with the following iSCSI-specific requirements:
a) Peer authentication using a pre-shared cryptographic key MUST be supported. Certificate-based peer authentication using digital signatures MAY be supported. For IKEv1 ([RFC2409]), peer authentication using the public key encryption methods outlined in Sections 5.2 and 5.3 of [RFC2409] SHOULD NOT be used.
b) When digital signatures are used to achieve authentication, an IKE negotiator SHOULD use IKE Certificate Request Payload(s) to specify the certificate authority. IKE negotiators SHOULD check certificate validity via the pertinent Certificate Revocation List (CRL) or via the use of the Online Certificate Status Protocol (OCSP) [RFC6960] before accepting a PKI certificate for use in IKE authentication procedures. OCSP support within the IKEv2 protocol is specified in [RFC4806]. These checks may not be needed in environments where a small number of certificates are statically configured as trust anchors.
c) Conformant iSCSI implementations of IKEv1 MUST support Main Mode and SHOULD support Aggressive Mode. Main Mode with a pre-shared key authentication method SHOULD NOT be used when either the initiator or the target uses dynamically assigned addresses. While in many cases pre-shared keys offer good security, situations in which dynamically assigned addresses are used force the use of a group pre-shared key, which creates vulnerability to a man-in-the-middle attack.
d) In the IKEv1 Phase 2 Quick Mode, in exchanges for creating the Phase 2 SA, the Identification Payload MUST be present.
e) The following identification type requirements apply to IKEv1: ID_IPV4_ADDR, ID_IPV6_ADDR (if the protocol stack supports IPv6), and ID_FQDN Identification Types MUST be supported; ID_USER_FQDN SHOULD be supported. The IP Subnet, IP Address Range, ID_DER_ASN1_DN, and ID_DER_ASN1_GN Identification Types SHOULD NOT be used. The ID_KEY_ID Identification Type MUST NOT be used.
The reasons for the "MUST NOT" and "SHOULD NOT" for identification type requirements in preceding bullets e) and f) are:
- IP Subnet and IP Address Range are too broad to usefully identify an iSCSI endpoint.
- The DN and GN types are X.500 identities; it is usually better to use an identity from subjectAltName in a PKI certificate.
- ID_KEY_ID is not interoperable as specified.
Manual cryptographic keying MUST NOT be used, because it does not provide the necessary rekeying support.
When Diffie-Hellman (DH) groups are used, a DH group of at least 2048 bits SHOULD be offered as a part of all proposals to create IPsec security associations to protect iSCSI traffic, with both IKEv1 and IKEv2.
When IPsec is used, the receipt of an IKEv1 Phase 2 delete message or an IKEv2 INFORMATIONAL exchange that deletes the SA SHOULD NOT be interpreted as a reason for tearing down the iSCSI TCP connection. If additional traffic is sent on it, a new IKE SA will be created to protect it.
The method used by the initiator to determine whether the target should be connected using IPsec is regarded as an issue of IPsec policy administration and thus not defined in the iSCSI standard.
The method used by an initiator that supports both IPsec v2 and v3 to determine which versions of IPsec are supported by the target is also regarded as an issue of IPsec policy administration and thus not defined in the iSCSI standard. If both IPsec v2 and v3 are supported by both the initiator and target, the use of IPsec v3 is recommended.
If an iSCSI target is discovered via a SendTargets request in a Discovery session not using IPsec, the initiator should assume that it does not need IPsec to establish a session to that target. If an iSCSI target is discovered using a Discovery session that does use IPsec, the initiator SHOULD use IPsec when establishing a session to that target.
The security considerations in this section are specific to the X#NodeArchitecture discussed in Section 13.26.
This extension key transmits specific implementation details about the node that sends it; such details may be considered sensitive in some environments. For example, if a certain software or firmware version is known to contain security weaknesses, announcing the presence of that version via this key may not be desirable. The countermeasures for this security concern are:
a) sending less detailed information in the key values,
b) not sending the extension key, or
c) using IPsec ([RFC4303]) to provide confidentiality for the iSCSI connection on which the key is sent.
To support the first and second countermeasures, all implementations of this extension key MUST provide an administrative mechanism to disable sending the key. In addition, all implementations SHOULD provide an administrative mechanism to configure a verbosity level of the key value, thereby controlling the amount of information sent. For example, a lower verbosity level might enable transmission of node architecture component names only, but no version numbers. The choice of which countermeasure is most appropriate depends on the environment. However, sending less detailed information in the key values may be an acceptable countermeasure in many environments, since it provides a compromise between sending too much information and the other more complete countermeasures of not sending the key at all or using IPsec.
In addition to security considerations involving transmission of the key contents, any logging method(s) used for the key values MUST keep the information secure from intruders. For all implementations, the requirements to address this security concern are as follows:
a) Display of the log MUST only be possible with administrative rights to the node.
b) Options to disable logging to disk and to keep logs for a fixed duration SHOULD be provided.
Finally, it is important to note that different nodes may have different levels of risk, and these differences may affect the implementation. The components of risk include assets, threats, and vulnerabilities. Consider the following example iSCSI nodes, which demonstrate differences in assets and vulnerabilities of the nodes, and, as a result, differences in implementation:
a) One iSCSI target based on a special-purpose operating system: Since the iSCSI target controls access to the data storage containing company assets, the asset level is seen as very high. Also, because of the special-purpose operating system, in which vulnerabilities are less well known, the vulnerability level is viewed as low.
b) Multiple iSCSI initiators in a blade farm, each running a general-purpose operating system: The asset level of each node is viewed as low, since blades are replaceable and low cost. However, the vulnerability level is viewed as high, since there may be many well-known vulnerabilities to that general-purpose operating system. For this target, an appropriate implementation might be the logging of received key values but no transmission of the key. For this initiator, an appropriate implementation might be transmission of the key but no logging of received key values.
iSCSI is a SCSI transport protocol and as such does not apply any access controls on SCSI-level operations such as SCSI task management functions (e.g., LU reset; see Section 11.5.1). SCSI-level access controls (e.g., ACCESS CONTROL OUT; see [SPC3]) have to be appropriately deployed in practice to address SCSI-level security considerations, in addition to security via iSCSI connection and packet protection mechanisms that were already discussed in preceding sections.
This section notes some of the performance and reliability considerations of the iSCSI protocol. This protocol was designed to allow efficient silicon and software implementations. The iSCSI task tag mechanism was designed to enable Direct Data Placement (DDP -- a DMA form) at the iSCSI level or lower.
The guiding assumption made throughout the design of this protocol is that targets are resource constrained relative to initiators.
Implementers are also advised to consider the implementation consequences of the iSCSI-to-SCSI mapping model as outlined in Section 4.4.3.
The iSCSI protocol allows multiple connections, not all of which need to go over the same network adapter. If multiple network connections are to be utilized with hardware support, the iSCSI protocol command- data-status allegiance to one TCP connection ensures that there is no need to replicate information across network adapters or otherwise require them to cooperate.
However, some task management commands may require some loose form of cooperation or replication at least on the target.
Historically, the SCSI model (and implementations and applications based on that model) has assumed that SCSI ports are static, physical entities. Recent extensions to the SCSI model have taken advantage of persistent worldwide unique names for these ports. In iSCSI, however, the SCSI initiator ports are the endpoints of dynamically created sessions, so the presumptions of "static and physical" do not apply. In any case, the "model" sections (particularly, Section 4.4.1) provide for persistent, reusable names for the iSCSI-type SCSI initiator ports even though there does not need to be any physical entity bound to these names.
To both minimize the disruption of legacy applications and better facilitate the SCSI features that rely on persistent names for SCSI ports, iSCSI implementations SHOULD attempt to provide a stable presentation of SCSI initiator ports (both to the upper OS layers and the targets to which they connect). This can be achieved in an initiator implementation by conservatively reusing ISIDs. In other words, the same ISID should be used in the login process to multiple target portal groups (of the same iSCSI target or different iSCSI targets). The ISID RULE (Section 4.4.3) only prohibits reuse to the same target portal group. It does not "preclude" reuse to other target portal groups. The principle of conservative reuse "encourages" reuse to other target portal groups. When a SCSI target device sees the same (InitiatorName, ISID) pair in different sessions to different target portal groups, it can identify the underlying SCSI initiator port on each session as the same SCSI port. In effect, it can recognize multiple paths from the same source.
The designers of the iSCSI protocol are aware that legacy SCSI transports rely on initiator identity to assign access to storage resources. Although newer techniques that simplify access control are available, support for configuration and authentication schemes that are based on initiator identity is deemed important in order to support legacy systems and administration software. iSCSI thus supports the notion that it should be possible to assign access to storage resources based on "initiator device" identity.
When there are multiple hardware or software components coordinated as a single iSCSI node, there must be some (logical) entity that represents the iSCSI node that makes the iSCSI Node Name available to all components involved in session creation and login. Similarly, this entity that represents the iSCSI node must be able to coordinate session identifier resources (the ISID for initiators) to enforce both the ISID RULE and the TSIH RULE (see Section 4.4.3).
For targets, because of the closed environment, implementation of this entity should be straightforward. However, vendors of iSCSI hardware (e.g., NICs or HBAs) intended for targets SHOULD provide mechanisms for configuration of the iSCSI Node Name across the portal groups instantiated by multiple instances of these components within a target.
However, complex targets making use of multiple Target Portal Group Tags may reconfigure them to achieve various quality goals. The initiators have two mechanisms at their disposal to discover and/or check reconfiguring targets -- the Discovery session type and a key returned by the target during login to confirm the TPGT. An initiator should attempt to "rediscover" the target configuration whenever a session is terminated unexpectedly.
For initiators, in the long term, it is expected that operating system vendors will take on the role of this entity and provide standard APIs that can inform components of their iSCSI Node Name and can configure and/or coordinate ISID allocation, use, and reuse.
Recognizing that such initiator APIs are not available today, other implementations of the role of this entity are possible. For example, a human may instantiate the (common) node name as part of the installation process of each iSCSI component involved in session creation and login. This may be done by pointing the component to either a vendor-specific location for this datum or a system-wide location. The structure of the ISID namespace (see Section 11.12.5 and [RFC3721]) facilitates implementation of the ISID coordination by allowing each component vendor to independently (of other vendor's components) coordinate allocation, use, and reuse of its own partition of the ISID namespace in a vendor-specific manner. Partitioning of the ISID namespace within initiator portal groups managed by that vendor allows each such initiator portal group to act independently of all other portal groups when selecting an ISID for a login; this facilitates enforcement of the ISID RULE (see Section 4.4.3) at the initiator.
A vendor of iSCSI hardware (e.g., NICs or HBAs) intended for use in initiators MUST implement a mechanism for configuring the iSCSI Node Name. Vendors and administrators must ensure that iSCSI Node Names are worldwide unique. It is therefore important that when one chooses to reuse the iSCSI Node Name of a disabled unit one does not reassign that name to the original unit unless its worldwide uniqueness can be ascertained again.
In addition, a vendor of iSCSI hardware must implement a mechanism to configure and/or coordinate ISIDs for all sessions managed by multiple instances of that hardware within a given iSCSI node. Such configuration might be either permanently preassigned at the factory (in a necessarily globally unique way), statically assigned (e.g., partitioned across all the NICs at initialization in a locally unique way), or dynamically assigned (e.g., on-line allocator, also in a locally unique way). In the latter two cases, the configuration may be via public APIs (perhaps driven by an independent vendor's software, such as the OS vendor) or private APIs driven by the vendor's own software.
The process of name assignment and coordination has to be as encompassing and automated as possible, as years of legacy usage have shown that it is highly error-prone. It should be mentioned that today SCSI has alternative schemes of access control that can be used by all transports, and their security is not dependent on strict naming coordination.
"Autosense" refers to the automatic return of sense data to the initiator in cases where a command did not complete successfully. iSCSI initiators and targets MUST support and use Autosense.
ACA helps preserve ordered command execution in the presence of errors. As there can be many commands in-flight between an initiator and a target, SCSI initiator functionality in some operating systems depends on ACA to enforce ordered command execution during error recovery, and hence iSCSI initiator implementations for those operating systems need to support ACA. In order to support error recovery for these operating systems and iSCSI initiators, iSCSI targets SHOULD support ACA.
iSCSI recovery actions are often dependent on iSCSI timeouts being recognized and acted upon before SCSI timeouts. Determining the right timeouts to use for various iSCSI actions (command acknowledgments expected, status acknowledgments, etc.) is very much dependent on infrastructure (e.g., hardware, links, TCP/IP stack, iSCSI driver). As a guide, the implementer may use an average NOP-Out/NOP-In turnaround delay multiplied by a "safety factor" (e.g., 4) as a good estimate for the basic delay of the iSCSI stack for a given connection. The safety factor should account for network load variability. For connection teardown, the implementer may want to also consider TCP common practice for the given infrastructure.
Text negotiations MAY also be subject to either time limits or limits in the number of exchanges. Those limits SHOULD be generous enough to avoid affecting interoperability (e.g., allowing each key to be negotiated on a separate exchange).
The relationship between iSCSI timeouts and SCSI timeouts should also be considered. SCSI timeouts should be longer than iSCSI timeouts plus the time required for iSCSI recovery whenever iSCSI recovery is planned. Alternatively, an implementer may choose to interlock iSCSI timeouts and recovery with SCSI timeouts so that SCSI recovery will become active only where iSCSI is not planned to, or failed to, recover.
The implementer may also want to consider the interaction between various iSCSI exception events -- such as a digest failure -- and subsequent timeouts. When iSCSI error recovery is active, a digest failure is likely to result in discovering a missing command or data PDU. In these cases, an implementer may want to lower the timeout values to enable faster initiation for recovery procedures.
To avoid having old, retried command instances appear in a valid command window after a command sequence number wraparound, the protocol requires (see Section 4.2.2.1) that on every connection on which a retry has been issued a non-immediate command be issued and acknowledged within an interval of 2**31 - 1 commands from the CmdSN of the retried command. This requirement can be fulfilled by an implementation in several ways.
The simplest technique to use is to send a (non-retry) non-immediate SCSI command (or a NOP if no SCSI command is available for a while) after every command retry on the connection on which the retry was attempted. Because errors are deemed rare events, this technique is probably the most effective, as it does not involve additional checks at the initiator when issuing commands.
While a Sync and Steering layer is optional, an initiator/target that does not have it working against a target/initiator that demands sync and steering may experience performance degradation caused by packet reordering and loss. Providing a sync and steering mechanism is recommended for all high-speed implementations.
10.6. Considerations for State-Dependent Devices and Long-Lasting SCSI Operations
Sequential access devices operate on the principle that the position of the device is based on the last command processed. As such, command processing order, and knowledge of whether or not the previous command was processed, are of the utmost importance to maintain data integrity. For example, inadvertent retries of SCSI commands when it is not known if the previous SCSI command was processed is a potential data integrity risk.
For a sequential access device, consider the scenario in which a SCSI SPACE command to backspace one filemark is issued and then reissued due to no status received for the command. If the first SPACE command was actually processed, the reissued SPACE command, if processed, will cause the position to change. Thus, a subsequent write operation will write data to the wrong position, and any previous data at that position will be overwritten.
For a medium changer device, consider the scenario in which an EXCHANGE MEDIUM command (the SOURCE ADDRESS and DESTINATION ADDRESS are the same, thus performing a swap) is issued and then reissued due to no status received for the command. If the first EXCHANGE MEDIUM command was actually processed, the reissued EXCHANGE MEDIUM command, if processed, will perform the swap again. The net effect is that no swap was performed, thus putting data integrity at risk.
All commands that change the state of the device (e.g., SPACE commands for sequential access devices and EXCHANGE MEDIUM commands for medium changer devices) MUST be issued as non-immediate commands for deterministic and ordered delivery to iSCSI targets.
For many of those state-changing commands, the execution model also assumes that the command is executed exactly once. Devices implementing READ POSITION and LOCATE provide a means for SCSI-level command recovery, and new tape-class devices should support those commands. In their absence, a retry at the SCSI level is difficult, and error recovery at the iSCSI level is advisable.
Devices operating on long-latency delivery subsystems and performing long-lasting SCSI operations may need mechanisms that enable connection replacement while commands are running (e.g., during an extended copy operation).
The implementation and use of a specific ErrorRecoveryLevel should be determined based on the deployment scenarios of a given iSCSI implementation. Generally, the following factors must be considered before deciding on the proper level of recovery:
a) Application resilience to I/O failures.
b) Required level of availability in the face of transport connection failures.
c) Probability of transport-layer "checksum escape" (message error undetected by TCP checksum -- see [RFC3385] for related discussion). This in turn decides the iSCSI digest failure frequency and thus the criticality of iSCSI-level error recovery. The details of estimating this probability are outside the scope of this document.
A consideration of the above factors for SCSI tape devices as an example suggests that implementations SHOULD use ErrorRecoveryLevel=1 when transport connection failure is not a concern and SCSI-level recovery is unavailable, and ErrorRecoveryLevel=2 when there is a high likelihood of connection failure during a backup/retrieval.
For extended copy operations, implementations SHOULD use ErrorRecoveryLevel=2 whenever there is a relatively high likelihood of connection failure.
Multi-task abort operations are typically issued in emergencies, such as clearing a device lock-up, HA failover/failback, etc. In these circumstances, it is desirable to rapidly go through the error- handling process as opposed to the target waiting on multiple third- party initiators that may not even be functional anymore -- especially if this emergency is triggered because of one such initiator failure. Therefore, both iSCSI target and initiator implementations SHOULD support FastAbort multi-task abort semantics (Section 4.2.3.4).
All multi-byte integers that are specified in formats defined in this document are to be represented in network byte order (i.e., big-endian). Any field that appears in this document assumes that the most significant byte is the lowest numbered byte and the most significant bit (within byte or field) is the lowest numbered bit unless specified otherwise.
Any compliant sender MUST set all bits not defined and all reserved fields to 0, unless specified otherwise. Any compliant receiver MUST ignore any bit not defined and all reserved fields unless specified otherwise. Receipt of reserved code values in defined fields MUST be reported as a protocol error.
Reserved fields are marked by the word "reserved", some abbreviation of "reserved", or by "." for individual bits when no other form of marking is technically feasible.
iSCSI PDUs are padded to the closest integer number of 4-byte words. The padding bytes SHOULD be sent as 0.
All iSCSI PDUs have one or more header segments and, optionally, a data segment. After the entire header segment group, a header digest MAY follow. The data segment MAY also be followed by a data digest.
The Basic Header Segment (BHS) is the first segment in all of the iSCSI PDUs. The BHS is a fixed-length 48-byte header segment. It MAY be followed by Additional Header Segments (AHS), a Header-Digest, a Data Segment, and/or a Data-Digest.
The overall structure of an iSCSI PDU is as follows:
All PDU segments and digests are padded to the closest integer number of 4-byte words. For example, all PDU segments and digests start at a 4-byte word boundary, and the padding ranges from 0 to 3 bytes. The padding bytes SHOULD be sent as 0.
iSCSI Response PDUs do not have AH Segments.
The BHS is 48 bytes long. The Opcode and DataSegmentLength fields appear in all iSCSI PDUs. In addition, when used, the Initiator Task Tag and Logical Unit Number always appear in the same location in the header.
The format of the BHS is:
For Request PDUs, the I bit set to 1 is an immediate delivery marker.
The Opcode indicates the type of iSCSI PDU the header encapsulates.
The Opcodes are divided into two categories: initiator Opcodes and target Opcodes. Initiator Opcodes are in PDUs sent by the initiator (Request PDUs). Target Opcodes are in PDUs sent by the target (Response PDUs).
Initiators MUST NOT use target Opcodes, and targets MUST NOT use initiator Opcodes.
Initiator Opcodes defined in this specification are:
0x00 NOP-Out
0x01 SCSI Command (encapsulates a SCSI Command Descriptor
Block)
0x02 SCSI Task Management Function Request
0x03 Login Request
0x04 Text Request
0x05 SCSI Data-Out (for write operations)
0x06 Logout Request
0x10 SNACK Request
0x1c-0x1e Vendor-specific codes
Target Opcodes are:
0x20 NOP-In
0x21 SCSI Response - contains SCSI status and possibly sense
information or other response information
0x22 SCSI Task Management Function Response
0x23 Login Response
0x24 Text Response
0x25 SCSI Data-In (for read operations)
0x26 Logout Response
0x31 Ready To Transfer (R2T) - sent by target when it is ready
to receive data
0x32 Asynchronous Message - sent by target to indicate certain
special conditions
0x3c-0x3e Vendor-specific codes
0x3f Reject
All other Opcodes are unassigned.
When set to 1 it indicates the final (or only) PDU of a sequence.
These fields have different meanings for different Opcode types.
This is the total length of all AHS header segments in units of 4-byte words, including padding, if any.
The TotalAHSLength is only used in PDUs that have an AHS and MUST be 0 in all other PDUs.
This is the data segment payload length in bytes (excluding padding). The DataSegmentLength MUST be 0 whenever the PDU has no data segment.
Some Opcodes operate on a specific LU. The Logical Unit Number (LUN) field identifies which LU. If the Opcode does not relate to a LU, this field is either ignored or may be used in an Opcode-specific way. The LUN field is 64 bits and should be formatted in accordance with [SAM2]. For example, LUN[0] from [SAM2] is BHS byte 8 and so on up to LUN[7] from [SAM2], which is BHS byte 15.
The initiator assigns a task tag to each iSCSI task it issues. While a task exists, this tag MUST uniquely identify the task session-wide. SCSI may also use the Initiator Task Tag as part of the SCSI task identifier when the timespan during which an iSCSI Initiator Task Tag must be unique extends over the timespan during which a SCSI task tag must be unique. However, the iSCSI Initiator Task Tag must exist and be unique even for untagged SCSI commands.
An ITT value of 0xffffffff is reserved and MUST NOT be assigned for a task by the initiator. The only instance in which it may be seen on the wire is in a target-initiated NOP-In PDU (Section 11.19) and in the initiator response to that PDU, if necessary.
The general format of an AHS is:
The AHSType field is coded as follows:
bit 0-1 - Reserved
bit 2-7 - AHS code
0 - Reserved
1 - Extended CDB
2 - Bidirectional Read Expected Data Transfer Length
3 - 63 Reserved
This field contains the effective length in bytes of the AHS, excluding AHSType and AHSLength and padding, if any. The AHS is padded to the smallest integer number of 4-byte words (i.e., from 0 up to 3 padding bytes).
The format of the Extended CDB AHS is:
This type of AHS MUST NOT be used if the CDBLength is less than 17.
The length includes the reserved byte 3.
The format of the Bidirectional Read Expected Data Transfer Length AHS is:
Optional header and data digests protect the integrity of the header and data, respectively. The digests, if present, are located, respectively, after the header and PDU-specific data and cover, respectively, the header and the PDU data, each including the padding bytes, if any.
The existence and type of digests are negotiated during the Login Phase.
The separation of the header and data digests is useful in iSCSI routing applications, in which only the header changes when a message is forwarded. In this case, only the header digest should be recalculated.
Digests are not included in data or header length fields.
A zero-length Data Segment also implies a zero-length Data-Digest.
The (optional) Data Segment contains PDU-associated data. Its payload effective length is provided in the BHS field -- DataSegmentLength. The Data Segment is also padded to an integer number of 4-byte words.
The format of the SCSI Command PDU is:
The flags for a SCSI Command PDU are:
Task Attributes (ATTR) have one of the following integer values (see [SAM2] for details):
0 - Untagged
1 - Simple
2 - Ordered
3 - Head of queue
4 - ACA
5-7 - Reserved
At least one of the W and F bits MUST be set to 1.
Either or both of R and W MAY be 1 when the Expected Data Transfer Length and/or the Bidirectional Read Expected Data Transfer Length are 0, but they MUST NOT both be 0 when the Expected Data Transfer Length and/or Bidirectional Read Expected Data Transfer Length are not 0 (i.e., when some data transfer is expected, the transfer direction is indicated by the R and/or W bit).
The CmdSN enables ordered delivery across multiple connections in a single session.
Command responses up to ExpStatSN - 1 (modulo 2**32) have been received (acknowledges status) on the connection.
For unidirectional operations, the Expected Data Transfer Length field contains the number of bytes of data involved in this SCSI operation. For a unidirectional write operation (W flag set to 1 and R flag set to 0), the initiator uses this field to specify the number of bytes of data it expects to transfer for this operation. For a unidirectional read operation (W flag set to 0 and R flag set to 1), the initiator uses this field to specify the number of bytes of data it expects the target to transfer to the initiator. It corresponds to the SAM-2 byte count.
For bidirectional operations (both R and W flags are set to 1), this field contains the number of data bytes involved in the write transfer. For bidirectional operations, an additional header segment MUST be present in the header sequence that indicates the Bidirectional Read Expected Data Transfer Length. The Expected Data Transfer Length field and the Bidirectional Read Expected Data Transfer Length field correspond to the SAM-2 byte count.
If the Expected Data Transfer Length for a write and the length of the immediate data part that follows the command (if any) are the same, then no more data PDUs are expected to follow. In this case, the F bit MUST be set to 1.
If the Expected Data Transfer Length is higher than the FirstBurstLength (the negotiated maximum amount of unsolicited data the target will accept), the initiator MUST send the maximum amount of unsolicited data OR ONLY the immediate data, if any.
Upon completion of a data transfer, the target informs the initiator (through residual counts) of how many bytes were actually processed (sent and/or received) by the target.
There are 16 bytes in the CDB field to accommodate the commonly used CDBs. Whenever the CDB is larger than 16 bytes, an Extended CDB AHS MUST be used to contain the CDB spillover.
Some SCSI commands require additional parameter data to accompany the SCSI command. This data may be placed beyond the boundary of the iSCSI header in a data segment. Alternatively, user data (e.g., from a write operation) can be placed in the data segment (both cases are referred to as immediate data). These data are governed by the rules for solicited vs. unsolicited data outlined in Section 4.2.5.2.
The format of the SCSI Response PDU is:
bit 3 - (o) set for Bidirectional Read Residual Overflow. In this
case, the Bidirectional Read Residual Count indicates the number of bytes that were not transferred to the initiator because the initiator's Bidirectional Read Expected Data Transfer Length was not sufficient.
bit 4 - (u) set for Bidirectional Read Residual Underflow. In this
case, the Bidirectional Read Residual Count indicates the number of bytes that were not transferred to the initiator out of the number of bytes expected to be transferred.
bit 5 - (O) set for Residual Overflow. In this case, the Residual
Count indicates the number of bytes that were not transferred because the initiator's Expected Data Transfer Length was not sufficient. For a bidirectional operation, the Residual Count contains the residual for the write operation.
bit 6 - (U) set for Residual Underflow. In this case, the Residual
Count indicates the number of bytes that were not transferred out of the number of bytes that were expected to be transferred. For a bidirectional operation, the Residual Count contains the residual for the write operation.
bit 7 - (0) Reserved.
Bits O and U and bits o and u are mutually exclusive (i.e., having both o and u or O and U set to 1 is a protocol error).
For a response other than "Command Completed at Target", bits 3-6 MUST be 0.
The Status field is used to report the SCSI status of the command (as specified in [SAM2]) and is only valid if the response code is Command Completed at Target.
Some of the status codes defined in [SAM2] are:
0x00 GOOD
0x02 CHECK CONDITION
0x08 BUSY
0x18 RESERVATION CONFLICT
0x28 TASK SET FULL
0x30 ACA ACTIVE
0x40 TASK ABORTED
See [SAM2] for the complete list and definitions.
If a SCSI device error is detected while data from the initiator is still expected (the command PDU did not contain all the data and the target has not received a data PDU with the Final bit set), the target MUST wait until it receives a data PDU with the F bit set in the last expected sequence before sending the Response PDU.
This field contains the iSCSI service response.
iSCSI service response codes defined in this specification are:
0x00 - Command Completed at Target
0x01 - Target Failure
0x80-0xff - Vendor specific
All other response codes are reserved.
The Response field is used to report a service response. The mapping of the response code into a SCSI service response code value, if needed, is outside the scope of this document. However, in symbolic terms, response value 0x00 maps to the SCSI service response (see [SAM2] and [SPC3]) of TASK COMPLETE or LINKED COMMAND COMPLETE. All other Response values map to the SCSI service response of SERVICE DELIVERY OR TARGET FAILURE.
If a SCSI Response PDU does not arrive before the session is terminated, the SCSI service response is SERVICE DELIVERY OR TARGET FAILURE.
A non-zero response field indicates a failure to execute the command, in which case the Status and Flag fields are undefined and MUST be ignored on reception.
This field contains a copy of the SNACK Tag of the last SNACK Tag accepted by the target on the same connection and for the command for which the response is issued. Otherwise, it is reserved and should be set to 0.
After issuing a R-Data SNACK, the initiator must discard any SCSI status unless contained in a SCSI Response PDU carrying the same SNACK Tag as the last issued R-Data SNACK for the SCSI command on the current connection.
For a detailed discussion on R-Data SNACK, see Section 11.16.3.
The Residual Count field MUST be valid in the case where either the U bit or the O bit is set. If neither bit is set, the Residual Count field MUST be ignored on reception and SHOULD be set to 0 when sending. Targets may set the residual count, and initiators may use it when the response code is Command Completed at Target (even if the status returned is not GOOD). If the O bit is set, the Residual Count indicates the number of bytes that were not transferred because the initiator's Expected Data Transfer Length was not sufficient. If the U bit is set, the Residual Count indicates the number of bytes that were not transferred out of the number of bytes expected to be transferred.
"SCSI-Presented Data Transfer Length (SPDTL)" is the term this document uses (see Section 2.2 for definition) to represent the aggregate data length that the target SCSI layer attempts to transfer using the local iSCSI layer for a task. "Expected Data Transfer Length (EDTL)" is the iSCSI term that represents the length of data that the iSCSI layer expects to transfer for a task. EDTL is specified in the SCSI Command PDU.
When SPDTL = EDTL for a task, the target iSCSI layer completes the task with no residuals. Whenever SPDTL differs from EDTL for a task, that task is said to have a residual.
If SPDTL > EDTL for a task, iSCSI Overflow MUST be signaled in the SCSI Response PDU as specified in Section 11.4.5.1. The Residual Count MUST be set to the numerical value of (SPDTL - EDTL).
If SPDTL < EDTL for a task, iSCSI Underflow MUST be signaled in the SCSI Response PDU as specified in Section 11.4.5.1. The Residual Count MUST be set to the numerical value of (EDTL - SPDTL).
Note that the Overflow and Underflow scenarios are independent of Data-In and Data-Out. Either scenario is logically possible in either direction of data transfer.
This section discusses the residual overflow issues, citing the example of the SCSI REPORT LUNS command. Note, however, that there are several SCSI commands (e.g., INQUIRY) with ALLOCATION LENGTH fields following the same underlying rules. The semantics in the rest of the section apply to all such SCSI commands.
The specification of the SCSI REPORT LUNS command requires that the SCSI target limit the amount of data transferred to a maximum size (ALLOCATION LENGTH) provided by the initiator in the REPORT LUNS CDB.
If the Expected Data Transfer Length (EDTL) in the iSCSI header of the SCSI Command PDU for a REPORT LUNS command is set to at least as large as that ALLOCATION LENGTH, the SCSI-layer truncation prevents an iSCSI Residual Overflow from occurring. A SCSI initiator can detect that such truncation has occurred via other information at the SCSI layer. The rest of the section elaborates on this required behavior.
The SCSI REPORT LUNS command requests a target SCSI layer to return a LU inventory (LUN list) to the initiator SCSI layer (see Clause 6.21 of [SPC3]). The size of this LUN list may not be known to the initiator SCSI layer when it issues the REPORT LUNS command; to avoid transferring more LUN list data than the initiator is prepared for, the REPORT LUNS CDB contains an ALLOCATION LENGTH field to specify the maximum amount of data to be transferred to the initiator for this command. If the initiator SCSI layer has underestimated the number of LUs at the target, it is possible that the complete LU inventory does not fit in the specified ALLOCATION LENGTH. In this situation, Clause 4.3.4.6 of [SPC3] requires that the target SCSI layer "shall terminate transfers to the Data-In Buffer" when the number of bytes specified by the ALLOCATION LENGTH field have been transferred.
Therefore, in response to a REPORT LUNS command, the SCSI layer at the target presents at most ALLOCATION LENGTH bytes of data (LU inventory) to iSCSI for transfer to the initiator. For a REPORT LUNS command, if the iSCSI EDTL is at least as large as the ALLOCATION LENGTH, the SCSI truncation ensures that the EDTL will accommodate all of the data to be transferred. If all of the LU inventory data presented to the iSCSI layer -- i.e., the data remaining after any SCSI truncation -- is transferred to the initiator by the iSCSI layer, an iSCSI Residual Overflow has not occurred and the iSCSI (O) bit MUST NOT be set in the SCSI Response or final SCSI Data-Out PDU. Note that this behavior is implied in Section 11.4.5.1, along with the specification of the REPORT LUNS command in [SPC3]. However, if the iSCSI EDTL is larger than the ALLOCATION LENGTH in this scenario, note that the iSCSI Underflow MUST be signaled in the SCSI Response PDU. An iSCSI Underflow MUST also be signaled when the iSCSI EDTL is equal to the ALLOCATION LENGTH but the LU inventory data presented to the iSCSI layer is smaller than the ALLOCATION LENGTH.
The LUN LIST LENGTH field in the LU inventory (the first field in the inventory) is not affected by truncation of the inventory to fit in ALLOCATION LENGTH; this enables a SCSI initiator to determine that the received inventory is incomplete by noticing that the LUN LIST LENGTH in the inventory is larger than the ALLOCATION LENGTH that was sent in the REPORT LUNS CDB. A common initiator behavior in this situation is to reissue the REPORT LUNS command with a larger ALLOCATION LENGTH.
The Bidirectional Read Residual Count field MUST be valid in the case where either the u bit or the o bit is set. If neither bit is set, the Bidirectional Read Residual Count field is reserved. Targets may set the Bidirectional Read Residual Count, and initiators may use it when the response code is Command Completed at Target. If the o bit is set, the Bidirectional Read Residual Count indicates the number of bytes that were not transferred to the initiator because the initiator's Bidirectional Read Expected Data Transfer Length was not sufficient. If the u bit is set, the Bidirectional Read Residual Count indicates the number of bytes that were not transferred to the initiator out of the number of bytes expected to be transferred.
iSCSI targets MUST support and enable Autosense. If Status is CHECK CONDITION (0x02), then the data segment MUST contain sense data for the failed command.
For some iSCSI responses, the response data segment MAY contain some response-related information (e.g., for a target failure, it may contain a vendor-specific detailed description of the failure).
If the DataSegmentLength is not 0, the format of the data segment is as follows:
This field indicates the length of Sense Data.
The Sense Data contains detailed information about a CHECK CONDITION. [SPC3] specifies the format and content of the Sense Data.
Certain iSCSI conditions result in the command being terminated at the target (response code of Command Completed at Target) with a SCSI CHECK CONDITION Status as outlined in the next table:
The target reports the "Incorrect amount of data" condition if, during data output, the total data length to output is greater than FirstBurstLength and the initiator sent unsolicited non-immediate data but the total amount of unsolicited data is different than FirstBurstLength. The target reports the same error when the amount of data sent as a reply to an R2T does not match the amount requested.
This field indicates the number of Data-In (read) PDUs the target has sent for the command.
This field MUST be 0 if the response code is not Command Completed at Target or the target sent no Data-In PDUs for the command.
The StatSN is a sequence number that the target iSCSI layer generates per connection and that in turn enables the initiator to acknowledge status reception. The StatSN is incremented by 1 for every response/status sent on a connection, except for responses sent as a result of a retry or SNACK. In the case of responses sent due to a retransmission request, the StatSN MUST be the same as the first time the PDU was sent, unless the connection has since been restarted.
The MaxCmdSN is a sequence number that the target iSCSI returns to the initiator to indicate the maximum CmdSN the initiator can send. It is used to update a local variable with the same name. If the MaxCmdSN is equal to ExpCmdSN - 1, this indicates to the initiator that the target cannot receive any additional commands. When the MaxCmdSN changes at the target while the target has no pending PDUs to convey this information to the initiator, it MUST generate a NOP-In to carry the new MaxCmdSN.
The task management functions provide an initiator with a way to explicitly control the execution of one or more tasks (SCSI and iSCSI tasks). The task management function codes are listed below. For a more detailed description of SCSI task management, see [SAM2].
Values 9-12 are assigned in [RFC7144]. All other possible values for the Function field are unassigned.
For all these functions, the Task Management Function Response MUST be returned as detailed in Section 11.6. All these functions apply to the referenced tasks, regardless of whether they are proper SCSI tasks or tagged iSCSI operations. Task management requests must act on all the commands from the same session having a CmdSN lower than the task management CmdSN. LOGICAL UNIT RESET, TARGET WARM RESET, and TARGET COLD RESET may affect commands from other sessions or commands from the same session, regardless of their CmdSN value.
If the task management request is marked for immediate delivery, it must be considered immediately for execution, but the operations involved (all or part of them) may be postponed to allow the target to receive all relevant tasks. According to [SAM2], for all the tasks covered by the task management response (i.e., with a CmdSN lower than the task management command CmdSN), except for the task management response to a TASK REASSIGN, additional responses MUST NOT be delivered to the SCSI layer after the task management response. The iSCSI initiator MAY deliver to the SCSI layer all responses received before the task management response (i.e., it is a matter of implementation if the SCSI responses that are received before the task management response but after the task management request was issued are delivered to the SCSI layer by the iSCSI layer in the initiator). The iSCSI target MUST ensure that no responses for the tasks covered by a task management function are delivered to the iSCSI initiator after the task management response, except for a task covered by a TASK REASSIGN.
For ABORT TASK SET and CLEAR TASK SET, the issuing initiator MUST continue to respond to all valid Target Transfer Tags (received via R2T, Text Response, NOP-In, or SCSI Data-In PDUs) related to the affected task set, even after issuing the task management request. The issuing initiator SHOULD, however, terminate (i.e., by setting the F bit to 1) these response sequences as quickly as possible. The target for its part MUST wait for responses on all affected Target Transfer Tags before acting on either of these two task management requests. If all or part of the response sequence is not received (due to digest errors) for a valid TTT, the target MAY treat it as a case of a within-command error recovery class (see Section 7.1.4.1) if it is supporting ErrorRecoveryLevel >= 1 or, alternatively, may drop the connection to complete the requested task set function.
If an ABORT TASK is issued for a task created by an immediate command, then the RefCmdSN MUST be that of the task management request itself (i.e., the CmdSN and RefCmdSN are equal); otherwise, the RefCmdSN MUST be set to the CmdSN of the task to be aborted (lower than the CmdSN).
If the connection is still active (i.e., it is not undergoing an implicit or explicit logout), an ABORT TASK MUST be issued on the same connection to which the task to be aborted is allegiant at the time the task management request is issued. If the connection is implicitly or explicitly logged out (i.e., no other request will be issued on the failing connection and no other response will be received on the failing connection), then an ABORT TASK function request may be issued on another connection. This task management request will then establish a new allegiance for the command to be aborted as well as abort it (i.e., the task to be aborted will not have to be retried or reassigned, and its status, if sent but not acknowledged, will be resent followed by the task management response).
At the target, an ABORT TASK function MUST NOT be executed on a task management request; such a request MUST result in a task management response of "Function rejected".
For the LOGICAL UNIT RESET function, the target MUST behave as dictated by the Logical Unit Reset function in [SAM2].
The implementation of the TARGET WARM RESET function and the TARGET COLD RESET function is OPTIONAL and, when implemented, should act as described below. The TARGET WARM RESET is also subject to SCSI access controls on the requesting initiator as defined in [SPC3]. When authorization fails at the target, the appropriate response as described in Section 11.6.1 MUST be returned by the target. The TARGET COLD RESET function is not subject to SCSI access controls, but its execution privileges may be managed by iSCSI mechanisms such as login authentication.
When executing the TARGET WARM RESET and TARGET COLD RESET functions, the target cancels all pending operations on all LUs known by the issuing initiator. Both functions are equivalent to the TARGET RESET function specified by [SAM2]. They can affect many other initiators logged in with the servicing SCSI target port.
Additionally, the target MUST treat the TARGET COLD RESET function as a power-on event, thus terminating all of its TCP connections to all initiators (all sessions are terminated). For this reason, the service response (defined by [SAM2]) for this SCSI task management function may not be reliably delivered to the issuing initiator port.
For the TASK REASSIGN function, the target should reassign the connection allegiance to this new connection (and thus resume iSCSI exchanges for the task). TASK REASSIGN MUST ONLY be received by the target after the connection on which the command was previously executing has been successfully logged out. The task management response MUST be issued before the reassignment becomes effective.
For additional usage semantics, see Section 7.2.
At the target, a TASK REASSIGN function request MUST NOT be executed to reassign the connection allegiance of a Task Management Function Request, an active text negotiation task, or a Logout task; such a request MUST result in a task management response of "Function rejected".
TASK REASSIGN MUST be issued as an immediate command.
For this PDU, TotalAHSLength and DataSegmentLength MUST be 0.
This field is required for functions that address a specific LU (ABORT TASK, CLEAR TASK SET, ABORT TASK SET, CLEAR ACA, LOGICAL UNIT RESET) and is reserved in all others.
This is the Initiator Task Tag of the task to be aborted for the ABORT TASK function or reassigned for the TASK REASSIGN function. For all the other functions, this field MUST be set to the reserved value 0xffffffff.
If an ABORT TASK is issued for a task created by an immediate command, then the RefCmdSN MUST be that of the task management request itself (i.e., the CmdSN and RefCmdSN are equal).
For an ABORT TASK of a task created by a non-immediate command, the RefCmdSN MUST be set to the CmdSN of the task identified by the Referenced Task Tag field. Targets must use this field as described in Section 11.6.1 when the task identified by the Referenced Task Tag field is not with the target.
Otherwise, this field is reserved.
For recovery purposes, the iSCSI target and initiator maintain a data acknowledgment reference number -- the first input DataSN number unacknowledged by the initiator. When issuing a new command, this number is set to 0. If the function is TASK REASSIGN, which establishes a new connection allegiance for a previously issued read or bidirectional command, the ExpDataSN will contain an updated data acknowledgment reference number or the value 0; the latter indicates that the data acknowledgment reference number is unchanged. The initiator MUST discard any data PDUs from the previous execution that it did not acknowledge, and the target MUST transmit all Data-In PDUs (if any) starting with the data acknowledgment reference number. The number of retransmitted PDUs may or may not be the same as the original transmission, depending on if there was a change in MaxRecvDataSegmentLength in the reassignment. The target MAY also send no more Data-In PDUs if all data has been acknowledged.
The value of ExpDataSN MUST be 0 or higher than the DataSN of the last acknowledged Data-In PDU, but not larger than DataSN + 1 of the last Data-IN PDU sent by the target. Any other value MUST be ignored by the target.
For other functions, this field is reserved.
For the functions ABORT TASK, ABORT TASK SET, CLEAR ACA, CLEAR TASK SET, LOGICAL UNIT RESET, TARGET COLD RESET, TARGET WARM RESET, and TASK REASSIGN, the target performs the requested task management function and sends a task management response back to the initiator. For TASK REASSIGN, the new connection allegiance MUST ONLY become effective at the target after the target issues the task management response.
The target provides a response, which may take on the following values:
In addition to the above values, the value 7 is defined by [RFC7144].
For a discussion on the usage of response codes 3 and 4, see Section 7.2.2.
For the TARGET COLD RESET and TARGET WARM RESET functions, the target cancels all pending operations across all LUs known to the issuing initiator. For the TARGET COLD RESET function, the target MUST then close all of its TCP connections to all initiators (terminates all sessions).
The mapping of the response code into a SCSI service response code value, if needed, is outside the scope of this document. However, in symbolic terms, Response values 0 and 1 map to the SCSI service response of FUNCTION COMPLETE. Response value 2 maps to the SCSI service response of INCORRECT LOGICAL UNIT NUMBER. All other Response values map to the SCSI service response of FUNCTION REJECTED. If a Task Management Function Response PDU does not arrive before the session is terminated, the SCSI service response is SERVICE DELIVERY OR TARGET FAILURE.
The response to ABORT TASK SET and CLEAR TASK SET MUST only be issued by the target after all of the commands affected have been received by the target, the corresponding task management functions have been executed by the SCSI target, and the delivery of all responses delivered until the task management function completion has been confirmed (acknowledged through the ExpStatSN) by the initiator on all connections of this session. For the exact timeline of events, refer to Sections 4.2.3.3 and 4.2.3.4.
For the ABORT TASK function,
a) if the Referenced Task Tag identifies a valid task leading to a successful termination, then targets must return the "Function complete" response.
b) if the Referenced Task Tag does not identify an existing task but the CmdSN indicated by the RefCmdSN field in the Task Management Function Request is within the valid CmdSN window and less than the CmdSN of the Task Management Function Request itself, then targets must consider the CmdSN as received and return the "Function complete" response.
c) if the Referenced Task Tag does not identify an existing task and the CmdSN indicated by the RefCmdSN field in the Task Management Function Request is outside the valid CmdSN window, then targets must return the "Task does not exist" response.
For response semantics on function types that can potentially impact multiple active tasks on the target, see Section 4.2.3.
For this PDU, TotalAHSLength and DataSegmentLength MUST be 0.
The SCSI Data-Out PDU for write operations has the following format:
The SCSI Data-In PDU for read operations has the following format:
Status can accompany the last Data-In PDU if the command did not end with an exception (i.e., the status is "good status" -- GOOD, CONDITION MET, or INTERMEDIATE-CONDITION MET). The presence of status (and of a residual count) is signaled via the S flag bit. Although targets MAY choose to send even non-exception status in separate responses, initiators MUST support non-exception status in Data-In PDUs.
For outgoing data, this bit is 1 for the last PDU of unsolicited data or the last PDU of a sequence that answers an R2T.
For incoming data, this bit is 1 for the last input (read) data PDU of a sequence. Input can be split into several sequences, each having its own F bit. Splitting the data stream into sequences does not affect DataSN counting on Data-In PDUs. It MAY be used as a "change direction" indication for bidirectional operations that need such a change.
DataSegmentLength MUST NOT exceed MaxRecvDataSegmentLength for the direction it is sent, and the total of all the DataSegmentLength of all PDUs in a sequence MUST NOT exceed MaxBurstLength (or FirstBurstLength for unsolicited data). However, the number of individual PDUs in a sequence (or in total) may be higher than the ratio of MaxBurstLength (or FirstBurstLength) to MaxRecvDataSegmentLength (as PDUs may be limited in length by the capabilities of the sender). Using a DataSegmentLength of 0 may increase beyond what is reasonable for the number of PDUs and should therefore be avoided.
For bidirectional operations, the F bit is 1 for both the end of the input sequences and the end of the output sequences.
For sessions with ErrorRecoveryLevel=1 or higher, the target sets this bit to 1 to indicate that it requests a positive acknowledgment from the initiator for the data received. The target should use the A bit moderately; it MAY only set the A bit to 1 once every MaxBurstLength bytes, or on the last Data-In PDU that concludes the entire requested read data transfer for the task from the target's perspective, and it MUST NOT do so more frequently. The target MUST NOT set to 1 the A bit for sessions with ErrorRecoveryLevel=0. The initiator MUST ignore the A bit set to 1 for sessions with ErrorRecoveryLevel=0.
On receiving a Data-In PDU with the A bit set to 1 on a session with ErrorRecoveryLevel greater than 0, if there are no holes in the read data until that Data-In PDU, the initiator MUST issue a SNACK of type DataACK, except when it is able to acknowledge the status for the task immediately via the ExpStatSN on other outbound PDUs if the status for the task is also received. In the latter case (acknowledgment through the ExpStatSN), sending a SNACK of type DataACK in response to the A bit is OPTIONAL, but if it is done, it must not be sent after the status acknowledgment through the ExpStatSN. If the initiator has detected holes in the read data prior to that Data-In PDU, it MUST postpone issuing the SNACK of type DataACK until the holes are filled. An initiator also MUST NOT acknowledge the status for the task before those holes are filled. A status acknowledgment for a task that generated the Data-In PDUs is considered by the target as an implicit acknowledgment of the Data-In PDUs if such an acknowledgment was requested by the target.
The last SCSI data packet sent from a target to an initiator for a SCSI command that completed successfully (with a status of GOOD, CONDITION MET, INTERMEDIATE, or INTERMEDIATE-CONDITION MET) may also optionally contain the Status for the data transfer. In this case, Sense Data cannot be sent together with the Command Status. If the command is completed with an error, then the response and sense data MUST be sent in a SCSI Response PDU (i.e., MUST NOT be sent in a SCSI data packet). For bidirectional commands, the status MUST be sent in a SCSI Response PDU.
bit 7 S (status) - set to indicate that the Command Status field
contains status. If this bit is set to 1, the F bit MUST also be set to 1.
The fields StatSN, Status, and Residual Count only have meaningful content if the S bit is set to 1. The values for these fields are defined in Section 11.4.
On outgoing data, the Target Transfer Tag is provided to the target if the transfer is honoring an R2T. In this case, the Target Transfer Tag field is a replica of the Target Transfer Tag provided with the R2T.
On incoming data, the Target Transfer Tag and LUN MUST be provided by the target if the A bit is set to 1; otherwise, they are reserved. The Target Transfer Tag and LUN are copied by the initiator into the SNACK of type DataACK that it issues as a result of receiving a SCSI Data-In PDU with the A bit set to 1.
The Target Transfer Tag values are not specified by this protocol, except that the value 0xffffffff is reserved and means that the Target Transfer Tag is not supplied. If the Target Transfer Tag is provided, then the LUN field MUST hold a valid value and be consistent with whatever was specified with the command; otherwise, the LUN field is reserved.
For input (read) or bidirectional Data-In PDUs, the DataSN is the input PDU number within the data transfer for the command identified by the Initiator Task Tag.
R2T and Data-In PDUs, in the context of bidirectional commands, share the numbering sequence (see Section 4.2.2.4).
For output (write) data PDUs, the DataSN is the Data-Out PDU number within the current output sequence. Either the current output sequence is identified by the Initiator Task Tag (for unsolicited data) or it is a data sequence generated for one R2T (for data solicited through R2T).
The Buffer Offset field contains the offset of this PDU payload data within the complete data transfer. The sum of the buffer offset and length should not exceed the expected transfer length for the command.
The order of data PDUs within a sequence is determined by DataPDUInOrder. When set to Yes, it means that PDUs have to be in increasing buffer offset order and overlays are forbidden.
The ordering between sequences is determined by DataSequenceInOrder. When set to Yes, it means that sequences have to be in increasing buffer offset order and overlays are forbidden.
This is the data payload length of a SCSI Data-In or SCSI Data-Out PDU. The sending of 0-length data segments should be avoided, but initiators and targets MUST be able to properly receive 0-length data segments.
The data segments of Data-In and Data-Out PDUs SHOULD be filled to the integer number of 4-byte words (real payload), unless the F bit is set to 1.
When an initiator has submitted a SCSI command with data that passes from the initiator to the target (write), the target may specify which blocks of data it is ready to receive. The target may request that the data blocks be delivered in whichever order is convenient for the target at that particular instant. This information is passed from the target to the initiator in the Ready To Transfer (R2T) PDU.
In order to allow write operations without an explicit initial R2T, the initiator and target MUST have negotiated the key InitialR2T to No during login.
An R2T MAY be answered with one or more SCSI Data-Out PDUs with a matching Target Transfer Tag. If an R2T is answered with a single Data-Out PDU, the buffer offset in the data PDU MUST be the same as the one specified by the R2T, and the data length of the data PDU MUST be the same as the Desired Data Transfer Length specified in the R2T. If the R2T is answered with a sequence of data PDUs, the buffer offset and length MUST be within the range of those specified by the R2T, and the last PDU MUST have the F bit set to 1. If the last PDU (marked with the F bit) is received before the Desired Data Transfer Length is transferred, a target MAY choose to reject that PDU with the "Protocol Error" reason code. DataPDUInOrder governs the Data-Out PDU ordering. If DataPDUInOrder is set to Yes, the buffer offsets and lengths for consecutive PDUs MUST form a continuous non-overlapping range, and the PDUs MUST be sent in increasing offset order.
The target may send several R2T PDUs. It therefore can have a number of pending data transfers. The number of outstanding R2T PDUs is limited by the value of the negotiated key MaxOutstandingR2T. Within a task, outstanding R2Ts MUST be fulfilled by the initiator in the order in which they were received.
R2T PDUs MAY also be used to recover Data-Out PDUs. Such an R2T (Recovery-R2T) is generated by a target upon detecting the loss of one or more Data-Out PDUs due to:
- Digest error
- Sequence error
- Sequence reception timeout
A Recovery-R2T carries the next unused R2TSN but requests part of or the entire data burst that an earlier R2T (with a lower R2TSN) had already requested.
DataSequenceInOrder governs the buffer offset ordering in consecutive R2Ts. If DataSequenceInOrder is Yes, then consecutive R2Ts MUST refer to continuous non-overlapping ranges, except for Recovery-R2Ts.
For this PDU, TotalAHSLength and DataSegmentLength MUST be 0.
R2TSN is the R2T PDU input PDU number within the command identified by the Initiator Task Tag.
For bidirectional commands, R2T and Data-In PDUs share the input PDU numbering sequence (see Section 4.2.2.4).
The StatSN field will contain the next StatSN. The StatSN for this connection is not advanced after this PDU is sent.
The target specifies how many bytes it wants the initiator to send because of this R2T PDU. The target may request the data from the initiator in several chunks, not necessarily in the original order of the data. The target therefore also specifies a buffer offset that indicates the point at which the data transfer should begin, relative to the beginning of the total data transfer. The Desired Data Transfer Length MUST NOT be 0 and MUST NOT exceed MaxBurstLength.
The target assigns its own tag to each R2T request that it sends to the initiator. This tag can be used by the target to easily identify the data it receives. The Target Transfer Tag and LUN are copied in the outgoing data PDUs and are only used by the target. There is no protocol rule about the Target Transfer Tag except that the value 0xffffffff is reserved and MUST NOT be sent by a target in an R2T.
An Asynchronous Message may be sent from the target to the initiator without corresponding to a particular command. The target specifies the reason for the event and sense data.
Some Asynchronous Messages are strictly related to iSCSI, while others are related to SCSI [SAM2].
The StatSN counts this PDU as an acknowledgeable event (the StatSN is advanced), which allows for initiator and target state synchronization.
The codes used for iSCSI Asynchronous Messages (events) are:
0 (SCSI Async Event) - a SCSI asynchronous event is reported in
the sense data. Sense Data that accompanies the report, in the data segment, identifies the condition. The sending of a SCSI event ("asynchronous event reporting" in SCSI terminology) is dependent on the target support for SCSI asynchronous event reporting (see [SAM2]) as indicated in the standard INQUIRY data (see [SPC3]). Its use may be enabled by parameters in the SCSI Control mode page (see [SPC3]).
1 (Logout Request) - the target requests Logout. This Async
Message MUST be sent on the same connection as the one requesting to be logged out. The initiator MUST honor this request by issuing a Logout as early as possible but no later than Parameter3 seconds. The initiator MUST send a Logout with a reason code of "close the connection" OR "close the session" to close all the connections. Once this message is received, the initiator SHOULD NOT issue new iSCSI commands on the connection to be logged out. The target MAY reject any new I/O requests that it receives after this message with the reason code "Waiting for Logout". If the initiator does not log out in Parameter3 seconds, the target should send an Async PDU with iSCSI event code "Dropped the connection" if possible or simply terminate the transport connection. Parameter1 and Parameter2 are reserved.
2 (Connection Drop Notification) - the target indicates that it
will drop the connection.
The Parameter1 field indicates the CID of the connection that is going to be dropped.
The Parameter2 field (Time2Wait) indicates, in seconds, the minimum time to wait before attempting to reconnect or reassign.
The Parameter3 field (Time2Retain) indicates the maximum time allowed to reassign commands after the initial wait (in Parameter2).
If the initiator does not attempt to reconnect and/or reassign the outstanding commands within the time specified by Parameter3, or if Parameter3 is 0, the target will terminate all outstanding commands on this connection. In this case, no other responses should be expected from the target for the outstanding commands on this connection.
A value of 0 for Parameter2 indicates that reconnect can be attempted immediately.
3 (Session Drop Notification) - the target indicates that it
will drop all the connections of this session.
The Parameter1 field is reserved.
The Parameter2 field (Time2Wait) indicates, in seconds, the minimum time to wait before attempting to reconnect.
The Parameter3 field (Time2Retain) indicates the maximum time allowed to reassign commands after the initial wait (in Parameter2).
If the initiator does not attempt to reconnect and/or reassign the outstanding commands within the time specified by Parameter3, or if Parameter3 is 0, the session is terminated. In this case, the target will terminate all outstanding commands in this session; no other responses should be expected from the target for the outstanding commands in this session. A value of 0 for Parameter2 indicates that reconnect can be attempted immediately.
4 (Negotiation Request) - the target requests parameter
negotiation on this connection. The initiator MUST honor this request by issuing a Text Request (that can be empty) on the same connection as early as possible, but no later than Parameter3 seconds, unless a Text Request is already pending on the connection, or by issuing a Logout Request. If the initiator does not issue a Text Request, the target may reissue the Asynchronous Message requesting parameter negotiation.
5 (Task Termination) - all active tasks for a LU with a matching
LUN field in the Async Message PDU are being terminated. The receiving initiator iSCSI layer MUST respond to this message by taking the following steps, in order:
- Stop Data-Out transfers on that connection for all active TTTs for the affected LUN quoted in the Async Message PDU.
- Acknowledge the StatSN of the Async Message PDU via a NOP-Out PDU with ITT=0xffffffff (i.e., non-ping flavor), while copying the LUN field from the Async Message to NOP-Out.
This value of AsyncEvent, however, MUST NOT be used on an iSCSI session unless the new TaskReporting text key defined in Section 13.23 was negotiated to FastAbort on the session.
248-255 (Vendor-unique) - vendor-specific iSCSI event. The
AsyncVCode details the vendor code, and data MAY accompany the report.
All other event codes are unassigned.
AsyncVCode is a vendor-specific detail code that is only valid if the AsyncEvent field indicates a vendor-specific event. Otherwise, it is reserved.
The LUN field MUST be valid if AsyncEvent is 0. Otherwise, this field is reserved.
For a SCSI event, this data accompanies the report in the data segment and identifies the condition.
For an iSCSI event, additional vendor-unique data MAY accompany the Async event. Initiators MAY ignore the data when not understood, while processing the rest of the PDU.
If the DataSegmentLength is not 0, the format of the DataSegment is as follows:
This is the length of Sense Data. When the Sense Data field is empty (e.g., the event is not a SCSI event), SenseLength is 0.
The Text Request is provided to allow for the exchange of information and for future extensions. It permits the initiator to inform a target of its capabilities or request some special operations.
An initiator MUST NOT have more than one outstanding Text Request on a connection at any given time.
On a connection failure, an initiator must either explicitly abort any active allegiant text negotiation task or cause such a task to be implicitly terminated by the target.
When set to 1, this bit indicates that this is the last or only Text Request in a sequence of Text Requests; otherwise, it indicates that more Text Requests will follow.
When set to 1, this bit indicates that the text (set of key=value pairs) in this Text Request is not complete (it will be continued on subsequent Text Requests); otherwise, it indicates that this Text Request ends a set of key=value pairs. A Text Request with the C bit set to 1 MUST have the F bit set to 0.
This is the initiator-assigned identifier for this Text Request. If the command is sent as part of a sequence of Text Requests and responses, the Initiator Task Tag MUST be the same for all the requests within the sequence (similar to linked SCSI commands). The I bit for all requests in a sequence also MUST be the same.
When the Target Transfer Tag is set to the reserved value 0xffffffff, it tells the target that this is a new request, and the target resets any internal state associated with the Initiator Task Tag (resets the current negotiation state).
The target sets the Target Transfer Tag in a Text Response to a value other than the reserved value 0xffffffff whenever it indicates that it has more data to send or more operations to perform that are associated with the specified Initiator Task Tag. It MUST do so whenever it sets the F bit to 0 in the response. By copying the Target Transfer Tag from the response to the next Text Request, the initiator tells the target to continue the operation for the specific Initiator Task Tag. The initiator MUST ignore the Target Transfer Tag in the Text Response when the F bit is set to 1.
This mechanism allows the initiator and target to transfer a large amount of textual data over a sequence of text-command/text-response exchanges or to perform extended negotiation sequences.
If the Target Transfer Tag is not 0xffffffff, the LUN field MUST be sent by the target in the Text Response.
A target MAY reset its internal negotiation state if an exchange is stalled by the initiator for a long time or if it is running out of resources.
Long Text Responses are handled as shown in the following example:
I->T Text SendTargets=All (F = 1, TTT = 0xffffffff)
T->I Text <part 1> (F = 0, TTT = 0x12345678)
I->T Text <empty> (F = 1, TTT = 0x12345678)
T->I Text <part 2> (F = 0, TTT = 0x12345678)
I->T Text <empty> (F = 1, TTT = 0x12345678)
...
T->I Text <part n> (F = 1, TTT = 0xffffffff)
The data lengths of a Text Request MUST NOT exceed the iSCSI target MaxRecvDataSegmentLength (a parameter that is negotiated per connection and per direction). The text format is specified in Section 6.2.
Sections 12 and 13 list some basic Text key=value pairs, some of which can be used in Login Requests/Responses and some in Text Requests/Responses.
A key=value pair can span Text Request or Text Response boundaries. A key=value pair can start in one PDU and continue on the next. In other words, the end of a PDU does not necessarily signal the end of a key=value pair.
The target responds by sending its response back to the initiator. The response text format is similar to the request text format. The Text Response MAY refer to key=value pairs presented in an earlier Text Request, and the text in the request may refer to earlier responses.
Section 6.2 details the rules for the Text Requests and Responses.
Text operations are usually meant for parameter setting/negotiations but can also be used to perform some long-lasting operations.
Text operations that take a long time should be placed in their own Text Request.
The Text Response PDU contains the target's responses to the initiator's Text Request. The format of the Text field matches that of the Text Request.
When set to 1, in response to a Text Request with the Final bit set to 1, the F bit indicates that the target has finished the whole operation. Otherwise, if set to 0 in response to a Text Request with the Final Bit set to 1, it indicates that the target has more work to
A Text Response with the F bit set to 1 MUST NOT contain key=value pairs that may require additional answers from the initiator.
A Text Response with the F bit set to 1 MUST have a Target Transfer Tag field set to the reserved value 0xffffffff.
A Text Response with the F bit set to 0 MUST have a Target Transfer Tag field set to a value other than the reserved value 0xffffffff.
The Initiator Task Tag matches the tag used in the initial Text Request.
When a target has more work to do (e.g., cannot transfer all the remaining text data in a single Text Response or has to continue the negotiation) and has enough resources to proceed, it MUST set the Target Transfer Tag to a value other than the reserved value 0xffffffff. Otherwise, the Target Transfer Tag MUST be set to 0xffffffff.
When the Target Transfer Tag is not 0xffffffff, the LUN field may be significant.
The initiator MUST copy the Target Transfer Tag and LUN in its next request to indicate that it wants the rest of the data.
When the target receives a Text Request with the Target Transfer Tag set to the reserved value 0xffffffff, it resets its internal information (resets state) associated with the given Initiator Task Tag (restarts the negotiation).
When a target cannot finish the operation in a single Text Response and does not have enough resources to continue, it rejects the Text Request with the appropriate Reject code.
A target may reset its internal state associated with an Initiator Task Tag (the current negotiation state) as expressed through the Target Transfer Tag if the initiator fails to continue the exchange for some time. The target may reject subsequent Text Requests with the Target Transfer Tag set to the "stale" value.
The target StatSN variable is advanced by each Text Response sent.
The data lengths of a Text Response MUST NOT exceed the iSCSI initiator MaxRecvDataSegmentLength (a parameter that is negotiated per connection and per direction).
The text in the Text Response Data is governed by the same rules as the text in the Text Request Data (see Section 11.11.2).
Although the initiator is the requesting party and controls the request-response initiation and termination, the target can offer key=value pairs of its own as part of a sequence and not only in response to the initiator.
After establishing a TCP connection between an initiator and a target, the initiator MUST start a Login Phase to gain further access to the target's resources.
The Login Phase (see Section 6.3) consists of a sequence of Login Requests and Login Responses that carry the same Initiator Task Tag.
Login Requests are always considered as immediate.
When set to 1, this bit indicates that the initiator is ready to transit to the next stage.
If the T bit is set to 1 and the NSG is set to FullFeaturePhase, then this also indicates that the initiator is ready for the Login Final-Response (see Section 6.3).
Through these fields -- Current Stage (CSG) and Next Stage (NSG) -- the Login negotiation requests and responses are associated with a specific stage in the session (SecurityNegotiation, LoginOperationalNegotiation, FullFeaturePhase) and may indicate the next stage to which they want to move (see Section 6.3). The Next Stage value is only valid when the T bit is 1; otherwise, it is reserved.
The stage codes are:
0 - SecurityNegotiation
1 - LoginOperationalNegotiation
3 - FullFeaturePhase
All other codes are reserved.
The version number for this document is 0x00. Therefore, both Version-min and Version-max MUST be set to 0x00.
Version-max indicates the maximum version number supported.
All Login Requests within the Login Phase MUST carry the same Version-max.
The target MUST use the value presented with the first Login Request.
All Login Requests within the Login Phase MUST carry the same Version-min. The target MUST use the value presented with the first Login Request.
This is an initiator-defined component of the session identifier and is structured as follows (see Section 10.1.1 for details):
The T field identifies the format and usage of A, B, C, and D as indicated below:
T
A and B: 22-bit OUI
(the I/G and U/L bits are omitted)
C and D: 24-bit Qualifier
A: Reserved
B and C: EN (IANA Enterprise Number)
D: Qualifier
A: Reserved
B and C: Random
D: Qualifier
For the T field values 00b and 01b, a combination of A and B (for 00b) or B and C (for 01b) identifies the vendor or organization whose component (software or hardware) generates this ISID. A vendor or organization with one or more OUIs, or one or more Enterprise Numbers, MUST use at least one of these numbers and select the appropriate value for the T field when its components generate ISIDs. An OUI or EN MUST be set in the corresponding fields in network byte order (byte big-endian).
If the T field is 10b, B and C are set to a random 24-bit unsigned integer value in network byte order (byte big-endian). See [RFC3721] for how this affects the principle of "conservative reuse".
The Qualifier field is a 16-bit or 24-bit unsigned integer value that provides a range of possible values for the ISID within the selected namespace. It may be set to any value within the constraints specified in the iSCSI protocol (see Sections 4.4.3 and 10.1.1).
The T field value of 11b is reserved.
If the ISID is derived from something assigned to a hardware adapter or interface by a vendor as a preset default value, it MUST be configurable to a value assigned according to the SCSI port behavior desired by the system in which it is installed (see Sections 10.1.1 and 10.1.2). The resultant ISID MUST also be persistent over power cycles, reboot, card swap, etc.
The TSIH must be set in the first Login Request. The reserved value 0 MUST be used on the first connection for a new session. Otherwise, the TSIH sent by the target at the conclusion of the successful login of the first connection for this session MUST be used. The TSIH identifies to the target the associated existing session for this new connection.
All Login Requests within a Login Phase MUST carry the same TSIH.
The target MUST check the value presented with the first Login Request and act as specified in Section 6.3.1.
The CID provides a unique ID for this connection within the session.
All Login Requests within the Login Phase MUST carry the same CID.
The target MUST use the value presented with the first Login Request.
A Login Request with a non-zero TSIH and a CID equal to that of an existing connection implies a logout of the connection followed by a login (see Section 6.3.4). For details regarding the implicit Logout Request, see Section 11.14.
The CmdSN is either the initial command sequence number of a session (for the first Login Request of a session -- the "leading" login) or the command sequence number in the command stream if the login is for a new connection in an existing session.
Examples:
- Login on a leading connection: If the leading login carries the CmdSN 123, all other Login Requests in the same Login Phase carry the CmdSN 123, and the first non-immediate command in the Full Feature Phase also carries the CmdSN 123.
- Login on other than a leading connection: If the current CmdSN at the time the first login on the connection is issued is 500, then that PDU carries CmdSN=500. Subsequent Login Requests that are needed to complete this Login Phase may carry a CmdSN higher than 500 if non-immediate requests that were issued on other connections in the same session advance the CmdSN.
If the Login Request is a leading Login Request, the target MUST use the value presented in the CmdSN as the target value for the ExpCmdSN.
For the first Login Request on a connection, this is the ExpStatSN for the old connection, and this field is only valid if the Login Request restarts a connection (see Section 6.3.4).
For subsequent Login Requests, it is used to acknowledge the Login Responses with their increasing StatSN values.
The initiator MUST provide some basic parameters in order to enable the target to determine if the initiator may use the target's resources and the initial text parameters for the security exchange.
All the rules specified in Section 11.10.5 for Text Requests also hold for Login Requests. Keys and their explanations are listed in Section 12 (security negotiation keys) and in Section 13 (operational parameter negotiation keys). All keys listed in Section 13, except for the X extension formats, MUST be supported by iSCSI initiators and targets. Keys listed in Section 12 only need to be supported when the function to which they refer is mandatory to implement.
The Login Response indicates the progress and/or end of the Login Phase.
This is the highest version number supported by the target.
All Login Responses within the Login Phase MUST carry the same Version-max.
The initiator MUST use the value presented as a response to the first Login Request.
Version-active indicates the highest version supported by the target and initiator. If the target does not support a version within the range specified by the initiator, the target rejects the login and this field indicates the lowest version supported by the target.
All Login Responses within the Login Phase MUST carry the same Version-active.
The initiator MUST use the value presented as a response to the first Login Request.
The TSIH is the target-assigned session-identifying handle. Its internal format and content are not defined by this protocol, except for the value 0, which is reserved. With the exception of the Login Final-Response in a new session, this field should be set to the TSIH provided by the initiator in the Login Request. For a new session, the target MUST generate a non-zero TSIH and ONLY return it in the Login Final-Response (see Section 6.3).
For the first Login Response (the response to the first Login Request), this is the starting status sequence number for the connection. The next response of any kind -- including the next Login Response, if any, in the same Login Phase -- will carry this number + 1. This field is only valid if the Status-Class is 0.
The Status returned in a Login Response indicates the execution status of the Login Phase. The status includes:
Status-Class
Status-Detail
A Status-Class of 0 indicates success.
A non-zero Status-Class indicates an exception. In this case, Status-Class is sufficient for a simple initiator to use when handling exceptions, without having to look at the Status-Detail. The Status-Detail allows finer-grained exception handling for more sophisticated initiators and for better information for logging.
The Status-Classes are as follows:
The table below shows all of the currently allocated status codes. The codes are in hexadecimal; the first byte is the Status-Class, and the second byte is the status detail.
(*1) If the response T bit is set to 1 in both the request and the
matching response, and the NSG is set to FullFeaturePhase in both the request and the matching response, the Login Phase is finished, and the initiator may proceed to issue SCSI commands.
If the Status-Class is not 0, the initiator and target MUST close the TCP connection.
If the target wishes to reject the Login Request for more than one reason, it should return the primary reason for the rejection.
The T bit is set to 1 as an indicator of the end of the stage. If the T bit is set to 1 and the NSG is set to FullFeaturePhase, then this is also the Login Final-Response (see Section 6.3). A T bit of 0 indicates a "partial" response, which means "more negotiation needed".
A Login Response with the T bit set to 1 MUST NOT contain key=value pairs that may require additional answers from the initiator within the same stage.
If the Status-Class is 0, the T bit MUST NOT be set to 1 if the T bit in the request was set to 0.
When set to 1, this bit indicates that the text (set of key=value pairs) in this Login Response is not complete (it will be continued on subsequent Login Responses); otherwise, it indicates that this Login Response ends a set of key=value pairs. A Login Response with the C bit set to 1 MUST have the T bit set to 0.
The target MUST provide some basic parameters in order to enable the initiator to determine if it is connected to the correct port and the initial text parameters for the security exchange.
All the rules specified in Section 11.11.6 for Text Responses also hold for Login Responses. Keys and their explanations are listed in Section 12 (security negotiation keys) and in Section 13 (operational parameter negotiation keys). All keys listed in Section 13, except for the X extension formats, MUST be supported by iSCSI initiators and targets. Keys listed in Section 12 only need to be supported when the function to which they refer is mandatory to implement.
The Logout Request is used to perform a controlled closing of a connection.
An initiator MAY use a Logout Request to remove a connection from a session or to close an entire session.
After sending the Logout Request PDU, an initiator MUST NOT send any new iSCSI requests on the closing connection. If the Logout Request is intended to close the session, new iSCSI requests MUST NOT be sent on any of the connections participating in the session.
When receiving a Logout Request with the reason code "close the connection" or "close the session", the target MUST terminate all pending commands, whether acknowledged via the ExpCmdSN or not, on that connection or session, respectively.
When receiving a Logout Request with the reason code "remove the connection for recovery", the target MUST discard all requests not yet acknowledged via the ExpCmdSN that were issued on the specified connection and suspend all data/status/R2T transfers on behalf of pending commands on the specified connection.
The target then issues the Logout Response and half-closes the TCP connection (sends FIN). After receiving the Logout Response and attempting to receive the FIN (if still possible), the initiator MUST completely close the logging-out connection. For the terminated commands, no additional responses should be expected.
A Logout for a CID may be performed on a different transport connection when the TCP connection for the CID has already been terminated. In such a case, only a logical "closing" of the iSCSI connection for the CID is implied with a Logout.
All commands that were not terminated or not completed (with status) and acknowledged when the connection is closed completely can be reassigned to a new connection if the target supports connection recovery.
If an initiator intends to start recovery for a failing connection, it MUST use the Logout Request to "clean up" the target end of a failing connection and enable recovery to start, or use the Login Request with a non-zero TSIH and the same CID on a new connection for the same effect. In sessions with a single connection, the connection can be closed and then a new connection reopened. A connection reinstatement login can be used for recovery (see Section 6.3.4).
A successful completion of a Logout Request with the reason code "close the connection" or "remove the connection for recovery" results at the target in the discarding of unacknowledged commands received on the connection being logged out. These are commands that have arrived on the connection being logged out but that have not been delivered to SCSI because one or more commands with a smaller CmdSN have not been received by iSCSI. See Section 4.2.2.1. The resulting holes in the command sequence numbers will have to be handled by appropriate recovery (see Section 7), unless the session is also closed.
The entire logout discussion in this section is also applicable for an implicit Logout realized by way of a connection reinstatement or session reinstatement. When a Login Request performs an implicit Logout, the implicit Logout is performed as if having the reason codes specified below:
The Reason Code field indicates the reason for Logout as follows:
0 - close the session. All commands associated with the
session (if any) are terminated.
1 - close the connection. All commands associated with the
connection (if any) are terminated.
All other values are reserved.
For this PDU, TotalAHSLength and DataSegmentLength MUST be 0.
This is the connection ID of the connection to be closed (including closing the TCP stream). This field is only valid if the reason code is not "close the session".
This is the last ExpStatSN value for the connection to be closed.
A target implicitly terminates the active tasks due to the iSCSI protocol in the following cases:
a) When a connection is implicitly or explicitly logged out with the reason code "close the connection" and there are active tasks allegiant to that connection.
b) When a connection fails and eventually the connection state times out (state transition M1 in Section 8.2.2) and there are active tasks allegiant to that connection.
c) When a successful recovery Logout is performed while there are active tasks allegiant to that connection and those tasks eventually time out after the Time2Wait and Time2Retain periods without allegiance reassignment.
d) When a connection is implicitly or explicitly logged out with the reason code "close the session" and there are active tasks in that session.
If the tasks terminated in any of the above cases are SCSI tasks, they must be internally terminated as if with CHECK CONDITION status. This status is only meaningful for appropriately handling the internal SCSI state and SCSI side effects with respect to ordering, because this status is never communicated back as a terminating status to the initiator. However, additional actions may have to be taken at the SCSI level, depending on the SCSI context as defined by the SCSI standards (e.g., queued commands and ACA; UA for the next command on the I_T nexus in cases a), b), and c) above). After the tasks are terminated, the target MUST report a Unit Attention condition on the next command processed on any connection for each affected I_T_L nexus with the status of CHECK CONDITION, the ASC/ASCQ value of 47h/7Fh ("SOME COMMANDS CLEARED BY ISCSI PROTOCOL EVENT"), etc.; see [SPC3].
The Logout Response is used by the target to indicate if the cleanup operation for the connection(s) has completed.
After Logout, the TCP connection referred by the CID MUST be closed at both ends (or all connections must be closed if the logout reason was session close).
Response field settings are as follows:
0 - connection or session closed successfully.
1 - CID not found.
2 - connection recovery is not supported (i.e., the Logout reason
code was "remove the connection for recovery" and the target does not support it as indicated by the operational ErrorRecoveryLevel).
3 - cleanup failed for various reasons.
For this PDU, TotalAHSLength and DataSegmentLength MUST be 0.
If the Logout response code is 0 and the operational ErrorRecoveryLevel is 2, this is the minimum amount of time, in seconds, to wait before attempting task reassignment. If the Logout response code is 0 and the operational ErrorRecoveryLevel is less than 2, this field is to be ignored.
This field is invalid if the Logout response code is 1.
If the Logout response code is 2 or 3, this field specifies the minimum time to wait before attempting a new implicit or explicit logout.
If Time2Wait is 0, the reassignment or a new Logout may be attempted immediately.
If the Logout response code is 0 and the operational ErrorRecoveryLevel is 2, this is the maximum amount of time, in seconds, after the initial wait (Time2Wait) that the target waits for the allegiance reassignment for any active task, after which the task state is discarded. If the Logout response code is 0 and the operational ErrorRecoveryLevel is less than 2, this field is to be ignored.
This field is invalid if the Logout response code is 1.
If the Logout response code is 2 or 3, this field specifies the maximum amount of time, in seconds, after the initial wait (Time2Wait) that the target waits for a new implicit or explicit logout.
If it is the last connection of a session, the whole session state is discarded after Time2Retain.
If Time2Retain is 0, the target has already discarded the connection (and possibly the session) state along with the task states. No reassignment or Logout is required in this case.
If the implementation supports ErrorRecoveryLevel greater than zero, it MUST support all SNACK types.
The SNACK is used by the initiator to request the retransmission of numbered responses, data, or R2T PDUs from the target. The SNACK Request indicates the numbered responses or data "runs" whose retransmission is requested, where the run starts with the first StatSN, DataSN, or R2TSN whose retransmission is requested and indicates the number of Status, Data, or R2T PDUs requested, including the first. 0 has special meaning when used as a starting number and length:
- When used in RunLength, it means all PDUs starting with the initial.
- When used in both BegRun and RunLength, it means all unacknowledged PDUs.
The numbered response(s) or R2T(s) requested by a SNACK MUST be delivered as exact replicas of the ones that the target transmitted originally, except for the fields ExpCmdSN, MaxCmdSN, and ExpDataSN, which MUST carry the current values. R2T(s)requested by SNACK MUST also carry the current value of the StatSN.
The numbered Data-In PDUs requested by a Data SNACK MUST be delivered as exact replicas of the ones that the target transmitted originally, except for the fields ExpCmdSN and MaxCmdSN, which MUST carry the current values; and except for resegmentation (see Section 11.16.3).
Any SNACK that requests a numbered response, data, or R2T that was not sent by the target or was already acknowledged by the initiator MUST be rejected with a reason code of "Protocol Error".
This field encodes the SNACK function as follows:
0 - Data/R2T SNACK: requesting retransmission of one or more
Data-In or R2T PDUs.
1 - Status SNACK: requesting retransmission of one or more
numbered responses.
2 - DataACK: positively acknowledges Data-In PDUs.
3 - R-Data SNACK: requesting retransmission of Data-In PDUs with
possible resegmentation and status tagging.
All other values are reserved.
Data/R2T SNACK, Status SNACK, or R-Data SNACK for a command MUST precede status acknowledgment for the given command.
If an initiator operates at ErrorRecoveryLevel 1 or higher, it MUST issue a SNACK of type DataACK after receiving a Data-In PDU with the A bit set to 1. However, if the initiator has detected holes in the input sequence, it MUST postpone issuing the SNACK of type DataACK until the holes are filled. An initiator MAY ignore the A bit if it deems that the bit is being set aggressively by the target (i.e., before the MaxBurstLength limit is reached).
The DataACK is used to free resources at the target and not to request or imply data retransmission.
An initiator MUST NOT request retransmission for any data it had already acknowledged.
If the initiator MaxRecvDataSegmentLength changed between the original transmission and the time the initiator requests retransmission, the initiator MUST issue a R-Data SNACK (see Section 11.16.1). With R-Data SNACK, the initiator indicates that it discards all the unacknowledged data and expects the target to resend it. It also expects resegmentation. In this case, the retransmitted Data-In PDUs MAY be different from the ones originally sent in order to reflect changes in MaxRecvDataSegmentLength. Their DataSN starts with the BegRun of the last DataACK received by the target if any was received; otherwise, it starts with 0 and is increased by 1 for each resent Data-In PDU.
A target that has received a R-Data SNACK MUST return a SCSI Response that contains a copy of the SNACK Tag field from the R-Data SNACK in the SCSI Response SNACK Tag field as its last or only Response. For example, if it has already sent a response containing another value in the SNACK Tag field or had the status included in the last Data-In PDU, it must send a new SCSI Response PDU. If a target sends more than one SCSI Response PDU due to this rule, all SCSI Response PDUs must carry the same StatSN (see Section 11.4.4). If an initiator attempts to recover a lost SCSI Response (with a Status-SNACK; see Section 11.16.1) when more than one response has been sent, the target will send the SCSI Response with the latest content known to the target, including the last SNACK Tag for the command.
For considerations in allegiance reassignment of a task to a connection with a different MaxRecvDataSegmentLength, refer to Section 7.2.2.
For a Status SNACK and DataACK, the Initiator Task Tag MUST be set to the reserved value 0xffffffff. In all other cases, the Initiator Task Tag field MUST be set to the Initiator Task Tag of the referenced command.
For a R-Data SNACK, this field MUST contain a value that is different from 0 or 0xffffffff and is unique for the task (identified by the Initiator Task Tag). This value MUST be copied by the iSCSI target in the last or only SCSI Response PDU it issues for the command.
For DataACK, the Target Transfer Tag MUST contain a copy of the Target Transfer Tag and LUN provided with the SCSI Data-In PDU with the A bit set to 1.
In all other cases, the Target Transfer Tag field MUST be set to the reserved value 0xffffffff.
This field indicates the DataSN, R2TSN, or StatSN of the first PDU whose retransmission is requested (Data/R2T and Status SNACK), or the next expected DataSN (DataACK SNACK).
A BegRun of 0, when used in conjunction with a RunLength of 0, means "resend all unacknowledged Data-In, R2T or Response PDUs".
BegRun MUST be 0 for a R-Data SNACK.
This field indicates the number of PDUs whose retransmission is requested.
A RunLength of 0 signals that all Data-In, R2T, or Response PDUs carrying the numbers equal to or greater than BegRun have to be resent.
The RunLength MUST also be 0 for a DataACK SNACK in addition to a R-Data SNACK.
Reject is used to indicate an iSCSI error condition (protocol, unsupported option, etc.).
The reject Reason is coded as follows:
Note 1: For iSCSI, Data-Out PDU retransmission is only done if the
target requests retransmission with a recovery R2T. However, if this is the data digest error on immediate data, the initiator may choose to retransmit the whole PDU, including the immediate data.
Note 2: A target should use this reason code for all invalid values
of PDU fields that are meant to describe a task, a response, or a data transfer. Some examples are invalid TTT/ITT, buffer offset, LUN qualifying a TTT, and an invalid sequence number in a SNACK.
Note 3: Reason code 0x0b ("Negotiation Reset") as defined in
Section 10.17.1 of [RFC3720] is deprecated and MUST NOT be used by implementations. An implementation receiving reason code 0x0b MUST treat it as a negotiation failure that terminates the Login Phase and the TCP connection, as specified in Section 7.12.
All other values for Reason are unassigned.
In all the cases in which a pre-instantiated SCSI task is terminated because of the reject, the target MUST issue a proper SCSI command response with CHECK CONDITION as described in Section 11.4.3. In these cases in which a status for the SCSI task was already sent before the reject, no additional status is required. If the error is detected while data from the initiator is still expected (i.e., the command PDU did not contain all the data and the target has not received a Data-Out PDU with the Final bit set to 1 for the unsolicited data, if any, and all outstanding R2Ts, if any), the target MUST wait until it receives the last expected Data-Out PDUs with the F bit set to 1 before sending the Response PDU.
For additional usage semantics of the Reject PDU, see Section 7.3.
This field is only valid if the rejected PDU is a Data/R2T SNACK and the Reject reason code is "Protocol Error" (see Section 11.16). The DataSN/R2TSN is the next Data/R2T sequence number that the target would send for the task, if any.
These fields carry their usual values and are not related to the rejected command. The StatSN is advanced after a Reject.
The target returns the header (not including the digest) of the PDU in error as the data of the response.
NOP-Out may be used by an initiator as a "ping request" to verify that a connection/session is still active and all its components are operational. The NOP-In response is the "ping echo".
A NOP-Out is also sent by an initiator in response to a NOP-In.
A NOP-Out may also be used to confirm a changed ExpStatSN if another PDU will not be available for a long time.
Upon receipt of a NOP-In with the Target Transfer Tag set to a valid value (not the reserved value 0xffffffff), the initiator MUST respond with a NOP-Out. In this case, the NOP-Out Target Transfer Tag MUST contain a copy of the NOP-In Target Transfer Tag. The initiator SHOULD NOT send a NOP-Out in response to any other received NOP-In, in order to avoid lengthy sequences of NOP-In and NOP-Out PDUs sent in response to each other.
The NOP-Out MUST have the Initiator Task Tag set to a valid value only if a response in the form of a NOP-In is requested (i.e., the NOP-Out is used as a ping request). Otherwise, the Initiator Task Tag MUST be set to 0xffffffff.
When a target receives the NOP-Out with a valid Initiator Task Tag, it MUST respond with a NOP-In Response (see Section 4.6.3.6).
If the Initiator Task Tag contains 0xffffffff, the I bit MUST be set to 1, and the CmdSN is not advanced after this PDU is sent.
The Target Transfer Tag is a target-assigned identifier for the operation.
The NOP-Out MUST only have the Target Transfer Tag set if it is issued in response to a NOP-In with a valid Target Transfer Tag. In this case, it copies the Target Transfer Tag from the NOP-In PDU. Otherwise, the Target Transfer Tag MUST be set to 0xffffffff.
When the Target Transfer Tag is set to a value other than 0xffffffff, the LUN field MUST also be copied from the NOP-In.
Ping data is reflected in the NOP-In Response. The length of the reflected data is limited to MaxRecvDataSegmentLength. The length of ping data is indicated by the DataSegmentLength. 0 is a valid value for the DataSegmentLength and indicates the absence of ping data.
NOP-In is sent by a target as either a response to a NOP-Out, a "ping" to an initiator, or a means to carry a changed ExpCmdSN and/or MaxCmdSN if another PDU will not be available for a long time (as determined by the target).
When a target receives the NOP-Out with a valid Initiator Task Tag (not the reserved value 0xffffffff), it MUST respond with a NOP-In with the same Initiator Task Tag that was provided in the NOP-Out request. It MUST also duplicate up to the first MaxRecvDataSegmentLength bytes of the initiator-provided Ping Data. For such a response, the Target Transfer Tag MUST be 0xffffffff. The target SHOULD NOT send a NOP-In in response to any other received NOP-Out in order to avoid lengthy sequences of NOP-In and NOP-Out PDUs sent in response to each other.
Otherwise, when a target sends a NOP-In that is not a response to a NOP-Out received from the initiator, the Initiator Task Tag MUST be set to 0xffffffff, and the data segment MUST NOT contain any data (DataSegmentLength MUST be 0).
If the target is responding to a NOP-Out, this field is set to the reserved value 0xffffffff.
If the target is sending a NOP-In as a ping (intending to receive a corresponding NOP-Out), this field is set to a valid value (not the reserved value 0xffffffff).
If the target is initiating a NOP-In without wanting to receive a corresponding NOP-Out, this field MUST hold the reserved value 0xffffffff.
The StatSN field will always contain the next StatSN. However, when the Initiator Task Tag is set to 0xffffffff, the StatSN for the connection is not advanced after this PDU is sent.
A LUN MUST be set to a correct value when the Target Transfer Tag is valid (not the reserved value 0xffffffff).
Only the following keys are used during the SecurityNegotiation stage of the Login Phase:
SessionType
InitiatorName
TargetName
TargetAddress
InitiatorAlias
TargetAlias
TargetPortalGroupTag
AuthMethod and the keys used by the authentication methods
specified in Section 12.1, along with all of their associated keys, as well as Vendor-Specific Authentication Methods.
Other keys MUST NOT be used.
SessionType, InitiatorName, TargetName, InitiatorAlias, TargetAlias, and TargetPortalGroupTag are described in Section 13 as they can be used in the OperationalNegotiation stage as well.
All security keys have connection-wide applicability.
AuthMethod = <list-of-values>
The main item of security negotiation is the authentication method (AuthMethod).
The authentication methods that can be used (appear in the list-of- values) are either vendor-unique methods or those listed in the following table:
The AuthMethod selection is followed by an "authentication exchange" specific to the authentication method selected.
The authentication method proposal may be made by either the initiator or the target. However, the initiator MUST make the first step specific to the selected authentication method as soon as it is selected. It follows that if the target makes the authentication method proposal, the initiator sends the first key(s) of the exchange together with its authentication method selection.
The authentication exchange authenticates the initiator to the target and, optionally, the target to the initiator. Authentication is OPTIONAL to use but MUST be supported by the target and initiator.
The initiator and target MUST implement CHAP. All other authentication methods are OPTIONAL.
Private or public extension algorithms MAY also be negotiated for authentication methods. Whenever a private or public extension algorithm is part of the default offer (the offer made in the absence of explicit administrative action), the implementer MUST ensure that CHAP is listed as an alternative in the default offer and "None" is not part of the default offer.
Extension authentication methods MUST be named using one of the following two formats:
1) Z-reversed.vendor.dns_name.do_something=
2) New public key with no name prefix constraints
Authentication methods named using the Z- format are used as private extensions. New public keys must be registered with IANA using the IETF Review process ([RFC5226]). New public extensions for authentication methods MUST NOT use the Z# name prefix.
For all of the public or private extension authentication methods, the method-specific keys MUST conform to the format specified in Section 6.1 for standard-label.
To identify the vendor for private extension authentication methods, we suggest using the reversed DNS-name as a prefix to the proper digest names.
The part of digest-name following Z- MUST conform to the format for standard-label specified in Section 6.1.
Support for public or private extension authentication methods is OPTIONAL.
The following subsections define the specific exchanges for each of the standardized authentication methods. As mentioned earlier, the first step is always done by the initiator.
For KRB5 (Kerberos V5) [RFC4120] [RFC1964], the initiator MUST use:
KRB_AP_REQ=<KRB_AP_REQ>
where KRB_AP_REQ is the client message as defined in [RFC4120].
The default principal name assumed by an iSCSI initiator or target (prior to any administrative configuration action) MUST be the iSCSI Initiator Name or iSCSI Target Name, respectively, prefixed by the string "iscsi/".
If the initiator authentication fails, the target MUST respond with a Login reject with "Authentication Failure" status. Otherwise, if the initiator has selected the mutual authentication option (by setting MUTUAL-REQUIRED in the ap-options field of the KRB_AP_REQ), the target MUST reply with:
KRB_AP_REP=<KRB_AP_REP>
where KRB_AP_REP is the server's response message as defined in [RFC4120].
If mutual authentication was selected and target authentication fails, the initiator MUST close the connection.
KRB_AP_REQ and KRB_AP_REP are binary-values, and their binary length (not the length of the character string that represents them in encoded form) MUST NOT exceed 65536 bytes. Hex or Base64 encoding may be used for KRB_AP_REQ and KRB_AP_REP; see Section 6.1.
For SRP [RFC2945], the initiator MUST use:
The target MUST answer with a Login reject with the "Authorization Failure" status or reply with:
SRP_GROUP=<G1,G2...> SRP_s=<s>
where G1,G2... are proposed groups, in order of preference.
The initiator MUST either close the connection or continue with:
SRP_A=<A> SRP_GROUP=<G>
where G is one of G1,G2... that were proposed by the target.
The target MUST answer with a Login reject with the "Authentication Failure" status or reply with:
SRP_B=
The initiator MUST close the connection or continue with:
SRP_M=<M>
If the initiator authentication fails, the target MUST answer with a Login reject with "Authentication Failure" status. Otherwise, if the initiator sent TargetAuth=Yes in the first message (requiring target authentication), the target MUST reply with:
SRP_HM=<H(A | M | K)>
If the target authentication fails, the initiator MUST close the connection:
where U, s, A, B, M, and H(A | M | K) are defined in [RFC2945] (using the SHA1 hash function, such as SRP-SHA1)
and
G,Gn ("Gn" stands for G1,G2...) are identifiers of SRP groups specified in [RFC3723].
G, Gn, and U are text strings; s,A,B,M, and H(A | M | K) are binary-values. The length of s,A,B,M and H(A | M | K) in binary form (not the length of the character string that represents them in encoded form) MUST NOT exceed 1024 bytes. Hex or Base64 encoding may be used for s,A,B,M and H(A | M | K); see Section 6.1.
See Appendix B for the related login example.
For CHAP [RFC1994], the initiator MUST use:
CHAP_A=<A1,A2...>
where A1,A2... are proposed algorithms, in order of preference.
The target MUST answer with a Login reject with the "Authentication Failure" status or reply with:
CHAP_A=<A> CHAP_I=<I> CHAP_C=<C>
where A is one of A1,A2... that were proposed by the initiator.
The initiator MUST continue with:
CHAP_N=<N> CHAP_R=<R>
or, if it requires target authentication, with:
CHAP_N=<N> CHAP_R=<R> CHAP_I=<I> CHAP_C=<C>
If the initiator authentication fails, the target MUST answer with a Login reject with "Authentication Failure" status. Otherwise, if the initiator required target authentication, the target MUST either answer with a Login reject with "Authentication Failure" or reply with:
CHAP_N=<N> CHAP_R=<R>
If the target authentication fails, the initiator MUST close the connection:
where N, (A,A1,A2), I, C, and R are (correspondingly) the Name, Algorithm, Identifier, Challenge, and Response as defined in [RFC1994].
See Appendix B for the related login example.
For the Algorithm, as stated in [RFC1994], one value is required to be implemented:
To guarantee interoperability, initiators MUST always offer it as one of the proposed algorithms.
Some session-specific parameters MUST only be carried on the leading connection and cannot be changed after the leading connection login (e.g., MaxConnections -- the maximum number of connections). This holds for a single connection session with regard to connection restart. The keys that fall into this category have the "use: LO" (Leading Only).
Keys that can only be used during login have the "use: IO" (Initialize Only), while those that can be used in both the Login Phase and Full Feature Phase have the "use: ALL".
Keys that can only be used during the Full Feature Phase use FFPO (Full Feature Phase Only).
Keys marked as Any-Stage may also appear in the SecurityNegotiation stage, while all other keys described in this section are operational keys.
Keys that do not require an answer are marked as Declarative.
Key scope is indicated as session-wide (SW) or connection-only (CO).
"Result function", wherever mentioned, states the function that can be applied to check the validity of the responder selection. "Minimum" means that the selected value cannot exceed the offered value. "Maximum" means that the selected value cannot be lower than the offered value. "AND" means that the selected value must be a possible result of a Boolean "and" function with an arbitrary Boolean value (e.g., if the offered value is No the selected value must be No). "OR" means that the selected value must be a possible result of a Boolean "or" function with an arbitrary Boolean value (e.g., if the offered value is Yes the selected value must be Yes).
Default is None for both HeaderDigest and DataDigest.
Digests enable the checking of end-to-end, non-cryptographic data integrity beyond the integrity checks provided by the link layers and the covering of the whole communication path, including all elements that may change the network-level PDUs, such as routers, switches, and proxies.
The following table lists cyclic integrity checksums that can be negotiated for the digests and MUST be implemented by every iSCSI initiator and target. These digest options only have error detection significance.
The generator polynomial G(x) for this digest is given in hexadecimal notation (e.g., "0x3b" stands for 0011 1011, and the polynomial is x**5 + x**4 + x**3 + x + 1).
When the initiator and target agree on a digest, this digest MUST be used for every PDU in the Full Feature Phase.
Padding bytes, when present in a segment covered by a CRC, SHOULD be set to 0 and are included in the CRC.
The CRC MUST be calculated by a method that produces the same results as the following process:
- The PDU bits are considered as the coefficients of a polynomial M(x) of degree n - 1; bit 7 of the lowest numbered byte is considered the most significant bit (x**n - 1), followed by bit 6 of the lowest numbered byte through bit 0 of the highest numbered byte (x**0).
- The most significant 32 bits are complemented.
- The polynomial is multiplied by x**32, then divided by G(x). The generator polynomial produces a remainder R(x) of degree <= 31.
- The coefficients of R(x) are formed into a 32-bit sequence.
- The bit sequence is complemented, and the result is the CRC.
- The CRC bits are mapped into the digest word. The x**31 coefficient is mapped to bit 7 of the lowest numbered byte of the digest, and the mapping continues with successive coefficients and bits so that the x**24 coefficient is mapped to bit 0 of the lowest numbered byte. The mapping continues further with the x**23 coefficient mapped to bit 7 of the next byte in the digest until the x**0 coefficient is mapped to bit 0 of the highest numbered byte of the digest.
- Computing the CRC over any segment (data or header) extended to include the CRC built using the generator 0x11edc6f41 will always get the value 0x1c2d19ed as its final remainder (R(x)). This value is given here in its polynomial form (i.e., not mapped as the digest word).
For a discussion about selection criteria for the CRC, see [RFC3385]. For a detailed analysis of the iSCSI polynomial, see [Castagnoli93].
Private or public extension algorithms MAY also be negotiated for digests. Whenever a private or public digest extension algorithm is part of the default offer (the offer made in the absence of explicit administrative action), the implementer MUST ensure that CRC32C is listed as an alternative in the default offer and "None" is not part of the default offer.
Extension digest algorithms MUST be named using one of the following two formats:
1) Y-reversed.vendor.dns_name.do_something=
2) New public key with no name prefix constraints
Digests named using the Y- format are used for private purposes (unregistered). New public keys must be registered with IANA using the IETF Review process ([RFC5226]). New public extensions for digests MUST NOT use the Y# name prefix.
For private extension digests, to identify the vendor we suggest using the reversed DNS-name as a prefix to the proper digest names. The part of digest-name following Y- MUST conform to the format for standard-label specified in Section 6.1.
Support for public or private extension digests is OPTIONAL.
MaxConnections=<numerical-value-from-1-to-65535>
The initiator and target negotiate the maximum number of connections requested/acceptable.
For a complete description, see Appendix C.
TargetName=<iSCSI-name-value>
Examples:
TargetName=iqn.1993-11.com.disk-vendor:diskarrays.sn.45678
TargetName=eui.020000023B040506
TargetName=naa.62004567BA64678D0123456789ABCDEF
The initiator of the TCP connection MUST provide this key to the remote endpoint in the first Login Request if the initiator is not establishing a Discovery session. The iSCSI Target Name specifies the worldwide unique name of the target.
The TargetName key may also be returned by the SendTargets Text Request (which is its only use when issued by a target).
The TargetName MUST NOT be redeclared within the Login Phase.
InitiatorName=<iSCSI-name-value>
Examples:
InitiatorName=iqn.1992-04.com.os-vendor.plan9:cdrom.12345
InitiatorName=iqn.2001-02.com.ssp.users:customer235.host90
InitiatorName=naa.52004567BA64678D
The initiator of the TCP connection MUST provide this key to the remote endpoint at the first login of the Login Phase for every connection. The InitiatorName key enables the initiator to identify itself to the remote endpoint.
The InitiatorName MUST NOT be redeclared within the Login Phase.
TargetAlias=<iSCSI-local-name-value>
Examples:
TargetAlias=Bob-s Disk
TargetAlias=Database Server 1 Log Disk
TargetAlias=Web Server 3 Disk 20
If a target has been configured with a human-readable name or description, this name SHOULD be communicated to the initiator during a Login Response PDU if SessionType=Normal (see Section 13.21). This string is not used as an identifier, nor is it meant to be used for authentication or authorization decisions. It can be displayed by the initiator's user interface in a list of targets to which it is connected.
InitiatorAlias=<iSCSI-local-name-value>
Examples:
InitiatorAlias=Web Server 4
InitiatorAlias=spyalley.nsa.gov
InitiatorAlias=Exchange Server
If an initiator has been configured with a human-readable name or description, it SHOULD be communicated to the target during a Login Request PDU. If not, the host name can be used instead. This string is not used as an identifier, nor is it meant to be used for authentication or authorization decisions. It can be displayed by the target's user interface in a list of initiators to which it is connected.
TargetAddress=domainname[:port][,portal-group-tag]
The domainname can be specified as either a DNS host name, a dotted- decimal IPv4 address, or a bracketed IPv6 address as specified in [RFC3986].
If the TCP port is not specified, it is assumed to be the IANA- assigned default port for iSCSI (see Section 14).
If the TargetAddress is returned as the result of a redirect status in a Login Response, the comma and portal-group-tag MUST be omitted.
If the TargetAddress is returned within a SendTargets response, the portal-group-tag MUST be included.
Examples:
TargetAddress=10.0.0.1:5003,1
TargetAddress=[1080:0:0:0:8:800:200C:417A],65
TargetAddress=[1080::8:800:200C:417A]:5003,1
TargetAddress=computingcenter.example.com,23
The use of the portal-group-tag is described in Appendix C. The formats for the port and portal-group-tag are the same as the one specified in TargetPortalGroupTag.
TargetPortalGroupTag=<16-bit-binary-value>
Example:
TargetPortalGroupTag=1
The TargetPortalGroupTag key is a 16-bit binary-value that uniquely identifies a portal group within an iSCSI target node. This key carries the value of the tag of the portal group that is servicing the Login Request. The iSCSI target returns this key to the initiator in the Login Response PDU to the first Login Request PDU that has the C bit set to 0 when TargetName is given by the initiator.
[SAM2] notes in its informative text that the TPGT value should be non-zero; note that this is incorrect. A zero value is allowed as a legal value for the TPGT. This discrepancy currently stands corrected in [SAM4].
For the complete usage expectations of this key, see Section 6.3.
InitialR2T=<boolean-value>
Examples:
I->InitialR2T=No
T->InitialR2T=No
The InitialR2T key is used to turn off the default use of R2T for unidirectional operations and the output part of bidirectional commands, thus allowing an initiator to start sending data to a target as if it has received an initial R2T with Buffer Offset=Immediate Data Length and Desired Data Transfer Length=(min(FirstBurstLength, Expected Data Transfer Length) - Received Immediate Data Length).
The default action is that R2T is required, unless both the initiator and the target send this key-pair attribute specifying InitialR2T=No. Only the first outgoing data burst (immediate data and/or separate PDUs) can be sent unsolicited (i.e., not requiring an explicit R2T).
ImmediateData=<boolean-value>
The initiator and target negotiate support for immediate data. To turn immediate data off, the initiator or target must state its desire to do so. ImmediateData can be turned on if both the initiator and target have ImmediateData=Yes.
If ImmediateData is set to Yes and InitialR2T is set to Yes (default), then only immediate data are accepted in the first burst.
If ImmediateData is set to No and InitialR2T is set to Yes, then the initiator MUST NOT send unsolicited data and the target MUST reject unsolicited data with the corresponding response code.
If ImmediateData is set to No and InitialR2T is set to No, then the initiator MUST NOT send unsolicited immediate data but MAY send one unsolicited burst of Data-OUT PDUs.
If ImmediateData is set to Yes and InitialR2T is set to No, then the initiator MAY send unsolicited immediate data and/or one unsolicited burst of Data-OUT PDUs.
The following table is a summary of unsolicited data options:
MaxRecvDataSegmentLength=<numerical-value-512-to-(2**24 - 1)>
Default is 8192 bytes.
The initiator or target declares the maximum data segment length in bytes it can receive in an iSCSI PDU.
The transmitter (initiator or target) is required to send PDUs with a data segment that does not exceed MaxRecvDataSegmentLength of the receiver.
A target receiver is additionally limited by MaxBurstLength for solicited data and FirstBurstLength for unsolicited data. An initiator MUST NOT send solicited PDUs exceeding MaxBurstLength nor unsolicited PDUs exceeding FirstBurstLength (or FirstBurstLength- Immediate Data Length if immediate data were sent).
MaxBurstLength=<numerical-value-512-to-(2**24 - 1)>
The initiator and target negotiate the maximum SCSI data payload in bytes in a Data-In or a solicited Data-Out iSCSI sequence. A sequence consists of one or more consecutive Data-In or Data-Out PDUs that end with a Data-In or Data-Out PDU with the F bit set to 1.
FirstBurstLength=<numerical-value-512-to-(2**24 - 1)>
The initiator and target negotiate the maximum amount in bytes of unsolicited data an iSCSI initiator may send to the target during the execution of a single SCSI command. This covers the immediate data (if any) and the sequence of unsolicited Data-Out PDUs (if any) that follow the command.
FirstBurstLength MUST NOT exceed MaxBurstLength.
DefaultTime2Wait=<numerical-value-0-to-3600>
The initiator and target negotiate the minimum time, in seconds, to wait before attempting an explicit/implicit logout or an active task reassignment after an unexpected connection termination or a connection reset.
A value of 0 indicates that logout or active task reassignment can be attempted immediately.
DefaultTime2Retain=<numerical-value-0-to-3600>
The initiator and target negotiate the maximum time, in seconds, after an initial wait (Time2Wait), before which an active task reassignment is still possible after an unexpected connection termination or a connection reset.
This value is also the session state timeout if the connection in question is the last LOGGED_IN connection in the session.
A value of 0 indicates that connection/task state is immediately discarded by the target.
MaxOutstandingR2T=<numerical-value-from-1-to-65535>
Irrelevant when: SessionType=Discovery
The initiator and target negotiate the maximum number of outstanding R2Ts per task, excluding any implied initial R2T that might be part of that task. An R2T is considered outstanding until the last data PDU (with the F bit set to 1) is transferred or a sequence reception timeout (Section 7.1.4.1) is encountered for that data sequence.
DataPDUInOrder=<boolean-value>
"No" is used by iSCSI to indicate that the data PDUs within sequences can be in any order. "Yes" is used to indicate that data PDUs within sequences have to be at continuously increasing addresses and overlays are forbidden.
DataSequenceInOrder=<boolean-value>
A data sequence is a sequence of Data-In or Data-Out PDUs that end with a Data-In or Data-Out PDU with the F bit set to 1. A Data-Out sequence is sent either unsolicited or in response to an R2T. Sequences cover an offset-range.
If DataSequenceInOrder is set to No, data PDU sequences may be transferred in any order.
If DataSequenceInOrder is set to Yes, data sequences MUST be transferred using continuously non-decreasing sequence offsets (R2T buffer offset for writes, or the smallest SCSI Data-In buffer offset within a read data sequence).
If DataSequenceInOrder is set to Yes, a target may retry at most the last R2T, and an initiator may at most request retransmission for the last read data sequence. For this reason, if ErrorRecoveryLevel is not 0 and DataSequenceInOrder is set to Yes, then MaxOutstandingR2T MUST be set to 1.
ErrorRecoveryLevel=<numerical-value-0-to-2>
The initiator and target negotiate the recovery level supported.
Recovery levels represent a combination of recovery capabilities. Each recovery level includes all the capabilities of the lower recovery levels and adds some new ones to them.
In the description of recovery mechanisms, certain recovery classes are specified. Section 7.1.5 describes the mapping between the classes and the levels.
SessionType=<Discovery|Normal>
Default is Normal.
The initiator indicates the type of session it wants to create. The target can either accept it or reject it.
A Discovery session indicates to the target that the only purpose of this session is discovery. The only requests a target accepts in this type of session are a Text Request with a SendTargets key and a Logout Request with reason "close the session".
The Discovery session implies MaxConnections = 1 and overrides both the default and an explicit setting. As Section 7.4.1 states, ErrorRecoveryLevel MUST be 0 (zero) for Discovery sessions.
Depending on the type of session, a target may decide on resources to allocate, the security to enforce, etc., for the session. If the SessionType key is thus going to be offered as "Discovery", it SHOULD be offered in the initial Login Request by the initiator.
X-reversed.vendor.dns_name.do_something=
Keys with this format are used for private extension purposes. These keys always start with X- if unregistered with IANA (private). New public keys (if registered with IANA via an IETF Review [RFC5226]) no longer have an X# name prefix requirement; implementers may propose any intuitive unique name.
For unregistered keys, to identify the vendor we suggest using the reversed DNS-name as a prefix to the key-proper.
The part of key-name following X- MUST conform to the format for key-name specified in Section 6.1.
Vendor-specific keys MUST ONLY be used in Normal sessions.
Support for public or private extension keys is OPTIONAL.
Default is RFC3720.
This key is used to negotiate the task completion reporting semantics from the SCSI target. The following table describes the semantics that an iSCSI target MUST support for respective negotiated key values. Whenever this key is negotiated, at least the RFC3720 and ResponseFence values MUST be offered as options by the negotiation originator.
When TaskReporting is not negotiated to FastAbort, the standard multi-task abort semantics in Section 4.2.3.3 MUST be used.
The iSCSIProtocolLevel associated with this document is "1". As a responder or an originator in a negotiation of this key, an iSCSI implementation compliant to this document alone, without any future protocol extensions, MUST use this value as defined by [RFC7144].
This document obsoletes the following keys defined in [RFC3720]: IFMarker, OFMarker, OFMarkInt, and IFMarkInt. However, iSCSI implementations compliant to this document may still receive these obsoleted keys -- i.e., in a responder role -- in a text negotiation.
When an IFMarker or OFMarker key is received, a compliant iSCSI implementation SHOULD respond with the constant "Reject" value. The implementation MAY alternatively respond with a "No" value. However, the implementation MUST NOT respond with a "NotUnderstood" value for either of these keys.
When an IFMarkInt or OFMarkInt key is received, a compliant iSCSI implementation MUST respond with the constant "Reject" value. The implementation MUST NOT respond with a "NotUnderstood" value for either of these keys.
X#NodeArchitecture=<list-of-values>
Default is None.
Examples:
X#NodeArchitecture=ExampleOS/v1234,ExampleInc_SW_Initiator/1.05a
X#NodeArchitecture=ExampleInc_HW_Initiator/4010,Firmware/2.0.0.5
X#NodeArchitecture=ExampleInc_SW_Initiator/2.1,CPU_Arch/i686
This document does not define the structure or content of the list of values.
The initiator or target declares the details of its iSCSI node architecture to the remote endpoint. These details may include, but are not limited to, iSCSI vendor software, firmware, or hardware versions; the OS version; or hardware architecture. This key may be declared on a Discovery session or a Normal session.
The length of the key value (total length of the list-of-values) MUST NOT be greater than 255 bytes.
X#NodeArchitecture MUST NOT be redeclared during the Login Phase.
Functional behavior of the iSCSI node (this includes the iSCSI protocol logic -- the SCSI, iSCSI, and TCP/IP protocols) MUST NOT depend on the presence, absence, or content of the X#NodeArchitecture key. The key MUST NOT be used by iSCSI nodes for interoperability or for exclusion of other nodes. To ensure proper use, key values SHOULD be set by the node itself, and there SHOULD NOT be provisions for the key values to contain user-defined text.
Nodes implementing this key MUST choose one of the following implementation options:
- only transmit the key,
- only log the key values received from other nodes, or
- both transmit and log the key values.
Each node choosing to implement transmission of the key values MUST be prepared to handle the response of iSCSI nodes that do not understand the key.
Nodes that implement transmission and/or logging of the key values may also implement administrative mechanisms that disable and/or change the logging and key transmission details (see Section 9.4). Thus, a valid behavior for this key may be that a node is completely silent (the node does not transmit any key value and simply discards any key values it receives without issuing a NotUnderstood response).
This document makes rather significant changes in this area, and this section outlines the reasons behind the changes. As previously specified in [RFC3720], iSCSI had used text string prefixes, such as X- and X#, to distinguish extended login/text keys, digest algorithms, and authentication methods from their standardized counterparts. Based on experience with other protocols, [RFC6648], however, strongly recommends against this practice, in large part because extensions that use such prefixes may become standard over time, at which point it can be infeasible to change their text string names due to widespread usage under the existing text string name.
iSCSI's experience with public extensions supports the recommendations in [RFC6648], as the only extension item ever registered with IANA, the X#NodeArchitecture key, was specified as a standard key in a Standards Track RFC [RFC4850] and hence did not require the X# prefix. In addition, that key is the only public iSCSI extension that has been registered with IANA since RFC 3720 was originally published, so there has been effectively no use of the X#, Y#, and Z# public extension formats.
Therefore, this document makes the following changes to the IANA registration procedures for iSCSI:
1) The separate registries for X#, Y#, and Z# public extensions are removed. The single entry in the registry for X# login/text keys (X#NodeArchitecture) is transferred to the main "iSCSI Login/Text Keys" registry. IANA has never created the latter two registries because there have been no registration requests for them. These public extension formats (X#, Y#, Z#) MUST NOT be used, with the exception of the existing X#NodeArchitecture key.
2) The registration procedures for the main "iSCSI Login/Text Keys", "iSCSI digests", and "iSCSI authentication methods" IANA registries are changed to IETF Review [RFC5226] for possible future extensions to iSCSI. This change includes a deliberate decision to remove the possibility of specifying an IANA- registered iSCSI extension in an RFC published via an RFC Editor Independent Submission, as the level of review in that process is insufficient for iSCSI extensions.
3) The restriction against registering items using the private extension formats (X-, Y-, Z-) in the main IANA registries is removed. Extensions using these formats MAY be registered under the IETF Review registration procedures, but each format is restricted to the type of extension for which it is specified in this RFC and MUST NOT be used for other types. For example, the X- extension format for extension login/text keys MUST NOT be used for digest algorithms or authentication methods.
The well-known TCP port number for iSCSI connections assigned by IANA is 3260, and this is the default iSCSI port. Implementations needing a system TCP port number may use port 860, the port assigned by IANA as the iSCSI system port; however, in order to use port 860, it MUST be explicitly specified -- implementations MUST NOT default to the use of port 860, as 3260 is the only allowed default.
IANA has replaced the references for ports 860 and 3260, both TCP and UDP, with references to this document. Please see http://www.iana.org/assignments/service-names-port-numbers.
IANA has updated all references to RFC 3720, RFC 4850, and RFC 5048 to instead reference this RFC in all of the iSCSI registries that are part of the "Internet Small Computer System Interface (iSCSI) Parameters" set of registries. This change reflects the fact that those three RFCs are obsoleted by this RFC. References to other RFCs that are not being obsoleted (e.g., RFC 3723, RFC 5046) should not be changed.
IANA has performed the following actions on the "iSCSI Login/Text Keys" registry:
- Changed the registration procedure to IETF Review from Standard Required.
- Changed the RFC 5048 reference for the registry to reference this RFC.
- Added the X#NodeArchitecture key from the "iSCSI extended key" registry, and changed its reference to this RFC.
- Changed all references to RFC 3720 and RFC 5048 to instead reference this RFC.
IANA has changed the registration procedures for the "iSCSI authentication methods" and "iSCSI digests" registries to IETF Review from RFC Required.
IANA has removed the "iSCSI extended key" registry, as its one entry has been added to the "iSCSI Login/Text Keys" registry.
IANA has marked as obsolete the values 4 and 5 for SPKM1 and SPKM2, respectively, in the "iSCSI authentication methods" subregistry of the "Internet Small Computer System Interface (iSCSI) Parameters" set of registries.
IANA has added this document to the "iSCSI Protocol Level" registry with value 1, as mentioned in Section 13.24.
All the other IANA considerations stated in [RFC3720] and [RFC5048] remain unchanged. The assignments contained in the following subregistries are not repeated in this document:
- iSCSI authentication methods (from Section 13 of [RFC3720])
- iSCSI digests (from Section 13 of [RFC3720])
This document obsoletes the SPKM1 and SPKM2 key values for the AuthMethod text key. Consequently, the SPKM_ text key prefix MUST be treated as obsolete and not be reused.
[EUI]
"Guidelines for 64-bit Global Identifier (EUI-64(TM))", <http://standards.ieee.org/regauth/oui/tutorials/ EUI64.html>.
[FC-FS3]
INCITS Technical Committee T11, "Fibre Channel - Framing and Signaling - 3 (FC-FS-3)", ANSI INCITS 470-2011, 2011.
[OUI]
"IEEE OUI and "company_id" Assignments", <http://standards.ieee.org/regauth/oui>.
[RFC1122]
Braden, R., Ed., "Requirements for Internet Hosts - Communication Layers", STD 3, RFC 1122, October 1989.
[RFC1964]
Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC 1964, June 1996.
[RFC1982]
Elz, R. and R. Bush, "Serial Number Arithmetic", RFC 1982, August 1996.
[RFC1994]
Simpson, W., "PPP Challenge Handshake Authentication Protocol (CHAP)", RFC 1994, August 1996.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2404]
Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within ESP and AH", RFC 2404, November 1998.
[RFC2406]
Kent, S. and R. Atkinson, "IP Encapsulating Security Payload (ESP)", RFC 2406, November 1998.
[RFC2451]
Pereira, R. and R. Adams, "The ESP CBC-Mode Cipher Algorithms", RFC 2451, November 1998.
[RFC2945]
Wu, T., "The SRP Authentication and Key Exchange System", RFC 2945, September 2000.
[RFC3454]
Hoffman, P. and M. Blanchet, "Preparation of Internationalized Strings ("stringprep")", RFC 3454, December 2002.
[RFC3566]
Frankel, S. and H. Herbert, "The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec", RFC 3566, September 2003.
[RFC3629]
Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, November 2003.
[RFC3686]
Housley, R., "Using Advanced Encryption Standard (AES) Counter Mode With IPsec Encapsulating Security Payload (ESP)", RFC 3686, January 2004.
[RFC3722]
Bakke, M., "String Profile for Internet Small Computer Systems Interface (iSCSI) Names", RFC 3722, April 2004.
[RFC3723]
Aboba, B., Tseng, J., Walker, J., Rangan, V., and F. Travostino, "Securing Block Storage Protocols over IP", RFC 3723, April 2004.
[RFC3986]
Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, January 2005.
[RFC4106]
Viega, J. and D. McGrew, "The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP)", RFC 4106, June 2005.
[RFC4120]
Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The Kerberos Network Authentication Service (V5)", RFC 4120, July 2005.
[RFC4171]
Tseng, J., Gibbons, K., Travostino, F., Du Laney, C., and J. Souza, "Internet Storage Name Service (iSNS)", RFC 4171, September 2005.
[RFC4291]
Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC 4291, February 2006.
[RFC4301]
Kent, S. and K. Seo, "Security Architecture for the Internet Protocol", RFC 4301, December 2005.
[RFC4303]
Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, December 2005.
[RFC4304]
Kent, S., "Extended Sequence Number (ESN) Addendum to IPsec Domain of Interpretation (DOI) for Internet Security Association and Key Management Protocol (ISAKMP)", RFC 4304, December 2005.
[RFC4543]
McGrew, D. and J. Viega, "The Use of Galois Message Authentication Code (GMAC) in IPsec ESP and AH", RFC 4543, May 2006.
[RFC4648]
Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, October 2006.
[RFC5226]
Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.
[RFC5996]
Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen, "Internet Key Exchange Protocol Version 2 (IKEv2)", RFC 5996, September 2010.
[RFC6960]
Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., and C. Adams, "X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP", RFC 6960, June 2013.
[RFC7144]
Knight, F. and M. Chadalapaka, "Internet Small Computer System Interface (iSCSI) SCSI Features Update", RFC 7144, April 2014.
[RFC7145]
Ko, M. and A. Nezhinsky, "Internet Small Computer System Interface (iSCSI) Extensions for the Remote Direct Memory Access (RDMA) Specification", RFC 7145, April 2014.
[RFC7146]
Black, D. and P. Koning, "Securing Block Storage Protocols over IP: RFC 3723 Requirements Update for IPsec v3", RFC 7146, April 2014.
[SAM2]
INCITS Technical Committee T10, "SCSI Architecture Model - 2 (SAM-2)", ANSI INCITS 366-2003, ISO/IEC 14776-412, 2003.
[SAM4]
INCITS Technical Committee T10, "SCSI Architecture Model - 4 (SAM-4)", ANSI INCITS 447-2008, ISO/IEC 14776-414, 2008.
[SPC2]
INCITS Technical Committee T10, "SCSI Primary Commands - 2", ANSI INCITS 351-2001, ISO/IEC 14776-452, 2001.
[SPC3]
INCITS Technical Committee T10, "SCSI Primary Commands - 3", ANSI INCITS 408-2005, ISO/IEC 14776-453, 2005.
[UML]
ISO, "Unified Modeling Language (UML) Version 1.4.2", ISO/IEC 19501:2005.
[UNICODE]
The Unicode Consortium, "Unicode Standard Annex #15: Unicode Normalization Forms", 2013, <http://www.unicode.org/unicode/reports/tr15>.
[Castagnoli93]
Castagnoli, G., Brauer, S., and M. Herrmann, "Optimization of Cyclic Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transact. on Communications, Vol. 41, No. 6, June 1993.
[FC-SP-2]
INCITS Technical Committee T11, "Fibre Channel Security Protocols 2", ANSI INCITS 496-2012, 2012.
[IB]
InfiniBand, "InfiniBand(TM) Architecture Specification", Vol. 1, Rel. 1.2.1, InfiniBand Trade Association, <http://www.infinibandta.org>.
[RFC1737]
Sollins, K. and L. Masinter, "Functional Requirements for Uniform Resource Names", RFC 1737, December 1994.
[RFC2401]
Kent, S. and R. Atkinson, "Security Architecture for the Internet Protocol", RFC 2401, November 1998.
[RFC2407]
Piper, D., "The Internet IP Security Domain of Interpretation for ISAKMP", RFC 2407, November 1998.
[RFC2409]
Harkins, D. and D. Carrel, "The Internet Key Exchange (IKE)", RFC 2409, November 1998.
[RFC2608]
Guttman, E., Perkins, C., Veizades, J., and M. Day, "Service Location Protocol, Version 2", RFC 2608, June 1999.
[RFC2743]
Linn, J., "Generic Security Service Application Program Interface Version 2, Update ", RFC 2743, January 2000.
[RFC2865]
Rigney, C., Willens, S., Rubens, A., and W. Simpson, "Remote Authentication Dial In User Service (RADIUS)", RFC 2865, June 2000.
[RFC3385]
Sheinwald, D., Satran, J., Thaler, P., and V. Cavanna, "Internet Protocol Small Computer System Interface (iSCSI) Cyclic Redundancy Check (CRC)/Checksum Considerations", RFC 3385, September 2002.
[RFC3602]
Frankel, S., Glenn, R., and S. Kelly, "The AES-CBC Cipher Algorithm and Its Use with IPsec", RFC 3602, September 2003.
[RFC3720]
Satran, J., Meth, K., Sapuntzakis, C., Chadalapaka, M., and E. Zeidner, "Internet Small Computer Systems Interface (iSCSI)", RFC 3720, April 2004.
[RFC3721]
Bakke, M., Hafner, J., Hufferd, J., Voruganti, K., and M. Krueger, "Internet Small Computer Systems Interface (iSCSI) Naming and Discovery", RFC 3721, April 2004.
[RFC3783]
Chadalapaka, M. and R. Elliott, "Small Computer Systems Interface (SCSI) Command Ordering Considerations with iSCSI", RFC 3783, May 2004.
[RFC4121]
Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos Version 5 Generic Security Service Application Program Interface (GSS-API) Mechanism: Version 2", RFC 4121, July 2005.
[RFC4297]
Romanow, A., Mogul, J., Talpey, T., and S. Bailey, "Remote Direct Memory Access (RDMA) over IP Problem Statement", RFC 4297, December 2005.
[RFC4806]
Myers, M. and H. Tschofenig, "Online Certificate Status Protocol (OCSP) Extensions to IKEv2", RFC 4806, February 2007.
[RFC4850]
Wysochanski, D., "Declarative Public Extension Key for Internet Small Computer Systems Interface (iSCSI) Node Architecture", RFC 4850, April 2007.
[RFC5046]
Ko, M., Chadalapaka, M., Hufferd, J., Elzur, U., Shah, H., and P. Thaler, "Internet Small Computer System Interface (iSCSI) Extensions for Remote Direct Memory Access (RDMA)", RFC 5046, October 2007.
[RFC5048]
Chadalapaka, M., Ed., "Internet Small Computer System Interface (iSCSI) Corrections and Clarifications", RFC 5048, October 2007.
[RFC5433]
Clancy, T. and H. Tschofenig, "Extensible Authentication Protocol - Generalized Pre-Shared Key (EAP-GPSK) Method", RFC 5433, February 2009.
[RFC6648]
Saint-Andre, P., Crocker, D., and M. Nottingham, "Deprecating the "X-" Prefix and Similar Constructs in Application Protocols", BCP 178, RFC 6648, June 2012.
[SAS]
INCITS Technical Committee T10, "Serial Attached SCSI - 2.1 (SAS-2.1)", ANSI INCITS 457-2010, 2010.
[SBC2]
INCITS Technical Committee T10, "SCSI Block Commands - 2 (SBC-2)", ANSI INCITS 405-2005, ISO/IEC 14776-322, 2005.
[SPC4]
INCITS Technical Committee T10, "SCSI Primary Commands - 4", ANSI INCITS 513-201x.
[SPL]
INCITS Technical Committee T10, "SAS Protocol Layer - 2 (SPL-2)", ANSI INCITS 505-2013, ISO/IEC 14776-262, 2013.
* Send Data and Receive Data may be transferred simultaneously as in an atomic Read-Old-Write-New or sequentially as in an atomic Read-Update-Write (in the latter case, the R2T may follow the received data).
A.3.4. Unsolicited and Immediate Output (Write) Data with DataSN Example
Note: All values are hexadecimal.
32 bytes of zeroes:
32 bytes of ones:
32 bytes of incrementing 00..1f:
32 bytes of decrementing 1f..00:
An iSCSI - SCSI Read (10) Command PDU:
In the first example, the initiator and target authenticate each other via Kerberos:
I-> Login (CSG,NSG=0,1 T=1)
InitiatorName=iqn.1999-07.com.os:hostid.77 TargetName=iqn.1999-07.com.example:diskarray.sn.88 AuthMethod=KRB5,SRP,None
T-> Login (CSG,NSG=0,0 T=0)
AuthMethod=KRB5
I-> Login (CSG,NSG=0,1 T=1)
KRB_AP_REQ=<krb_ap_req>
(krb_ap_req contains the Kerberos V5 ticket and authenticator with MUTUAL-REQUIRED set in the ap-options field)
If the authentication is successful, the target proceeds with:
T-> Login (CSG,NSG=0,1 T=1)
KRB_AP_REP=<krb_ap_rep>
(krb_ap_rep is the Kerberos V5 mutual authentication reply)
I-> Login (CSG,NSG=1,0 T=0) FirstBurstLength=8192
T-> Login (CSG,NSG=1,0 T=0) FirstBurstLength=4096
MaxBurstLength=8192
I-> Login (CSG,NSG=1,0 T=0) MaxBurstLength=8192
... more iSCSI Operational Parameters
T-> Login (CSG,NSG=1,0 T=0)
... more iSCSI Operational Parameters
And at the end:
I-> Login (CSG,NSG=1,3 T=1)
optional iSCSI parameters
T-> Login (CSG,NSG=1,3 T=1) "login accept"
If the initiator's authentication by the target is not successful, the target responds with:
T-> Login "login reject"
instead of the Login KRB_AP_REP message, and it terminates the connection.
If the target's authentication by the initiator is not successful, the initiator terminates the connection (without responding to the Login KRB_AP_REP message).
In the next example, only the initiator is authenticated by the target via Kerberos:
I-> Login (CSG,NSG=0,1 T=1)
InitiatorName=iqn.1999-07.com.os:hostid.77 TargetName=iqn.1999-07.com.example:diskarray.sn.88 AuthMethod=SRP,KRB5,None
T-> Login-PR (CSG,NSG=0,0 T=0)
AuthMethod=KRB5
I-> Login (CSG,NSG=0,1 T=1)
KRB_AP_REQ=krb_ap_req
(MUTUAL-REQUIRED not set in the ap-options field of krb_ap_req)
If the authentication is successful, the target proceeds with:
T-> Login (CSG,NSG=0,1 T=1)
I-> Login (CSG,NSG=1,0 T=0)
... iSCSI parameters
T-> Login (CSG,NSG=1,0 T=0)
... iSCSI parameters
. . .
T-> Login (CSG,NSG=1,3 T=1)"login accept"
In the next example, the initiator and target authenticate each other via SRP:
I-> Login (CSG,NSG=0,1 T=1)
InitiatorName=iqn.1999-07.com.os:hostid.77 TargetName=iqn.1999-07.com.example:diskarray.sn.88 AuthMethod=KRB5,SRP,None
T-> Login-PR (CSG,NSG=0,0 T=0)
AuthMethod=SRP
I-> Login (CSG,NSG=0,0 T=0)
SRP_A=<A>
T-> Login (CSG,NSG=0,0 T=0)
SRP_B=
I-> Login (CSG,NSG=0,1 T=1)
SRP_M=<M>
If the initiator authentication is successful, the target proceeds with:
T-> Login (CSG,NSG=0,1 T=1)
SRP_HM=<H(A | M | K)>
where N, g, s, A, B, M, and H(A | M | K) are defined in [RFC2945].
If the target authentication is not successful, the initiator terminates the connection; otherwise, it proceeds.
I-> Login (CSG,NSG=1,0 T=0)
... iSCSI parameters
T-> Login (CSG,NSG=1,0 T=0)
... iSCSI parameters
And at the end:
I-> Login (CSG,NSG=1,3 T=1)
optional iSCSI parameters
T-> Login (CSG,NSG=1,3 T=1) "login accept"
If the initiator authentication is not successful, the target responds with:
T-> Login "login reject"
instead of the T-> Login SRP_HM=<H(A | M | K)> message, and it terminates the connection.
In the next example, only the initiator is authenticated by the target via SRP:
I-> Login (CSG,NSG=0,1 T=1)
InitiatorName=iqn.1999-07.com.os:hostid.77 TargetName=iqn.1999-07.com.example:diskarray.sn.88 AuthMethod=KRB5,SRP,None
T-> Login-PR (CSG,NSG=0,0 T=0)
AuthMethod=SRP
I-> Login (CSG,NSG=0,0 T=0)
SRP_A=<A>
T-> Login (CSG,NSG=0,0 T=0)
SRP_B=
I-> Login (CSG,NSG=0,1 T=1)
SRP_M=<M>
If the initiator authentication is successful, the target proceeds with:
T-> Login (CSG,NSG=0,1 T=1)
I-> Login (CSG,NSG=1,0 T=0)
... iSCSI parameters
T-> Login (CSG,NSG=1,0 T=0)
... iSCSI parameters
And at the end:
I-> Login (CSG,NSG=1,3 T=1)
optional iSCSI parameters
T-> Login (CSG,NSG=1,3 T=1) "login accept"
In the next example, the initiator and target authenticate each other via CHAP:
I-> Login (CSG,NSG=0,0 T=0)
InitiatorName=iqn.1999-07.com.os:hostid.77 TargetName=iqn.1999-07.com.example:diskarray.sn.88 AuthMethod=KRB5,CHAP,None
T-> Login-PR (CSG,NSG=0,0 T=0)
AuthMethod=CHAP
I-> Login (CSG,NSG=0,0 T=0)
CHAP_A=<A1,A2>
If the initiator authentication is successful, the target proceeds with:
If the target authentication is not successful, the initiator aborts the connection; otherwise, it proceeds.
I-> Login (CSG,NSG=1,0 T=0)
... iSCSI parameters
T-> Login (CSG,NSG=1,0 T=0)
... iSCSI parameters
And at the end:
I-> Login (CSG,NSG=1,3 T=1)
optional iSCSI parameters
T-> Login (CSG,NSG=1,3 T=1) "login accept"
If the initiator authentication is not successful, the target responds with:
T-> Login "login reject"
instead of the Login CHAP_R=<response> "proceed and change stage" message, and it terminates the connection.
In the next example, only the initiator is authenticated by the target via CHAP:
I-> Login (CSG,NSG=0,1 T=0)
InitiatorName=iqn.1999-07.com.os:hostid.77 TargetName=iqn.1999-07.com.example:diskarray.sn.88 AuthMethod=KRB5,CHAP,None
T-> Login-PR (CSG,NSG=0,0 T=0)
AuthMethod=CHAP
I-> Login (CSG,NSG=0,0 T=0)
CHAP_A=<A1,A2>
If the initiator authentication is successful, the target proceeds with:
T-> Login (CSG,NSG=0,1 T=1)
I-> Login (CSG,NSG=1,0 T=0)
... iSCSI parameters
T-> Login (CSG,NSG=1,0 T=0)
... iSCSI parameters
And at the end:
I-> Login (CSG,NSG=1,3 T=1)
optional iSCSI parameters
T-> Login (CSG,NSG=1,3 T=1) "login accept"
In the next example, the initiator does not offer any security parameters. It therefore may offer iSCSI parameters on the Login PDU with the T bit set to 1, and the target may respond with a final Login Response PDU immediately:
T-> Login (CSG,NSG=1,3 T=1) "login accept"
... ISCSI parameters
In the next example, the initiator does offer security parameters on the Login PDU, but the target does not choose any (i.e., chooses the "None" values):
I-> Login (CSG,NSG=0,1 T=1)
InitiatorName=iqn.1999-07.com.os:hostid.77 TargetName=iqn.1999-07.com.example:diskarray.sn.88 AuthMethod=KRB5,SRP,None
T-> Login-PR (CSG,NSG=0,1 T=1)
AuthMethod=None
I-> Login (CSG,NSG=1,0 T=0)
... iSCSI parameters
T-> Login (CSG,NSG=1,0 T=0)
... iSCSI parameters
And at the end:
I-> Login (CSG,NSG=1,3 T=1)
optional iSCSI parameters
T-> Login (CSG,NSG=1,3 T=1) "login accept"
The text in this appendix is a normative part of this document.
To reduce the amount of configuration required on an initiator, iSCSI provides the SendTargets Text Request. The initiator uses the SendTargets request to get a list of targets to which it may have access, as well as the list of addresses (IP address and TCP port) on which these targets may be accessed.
To make use of SendTargets, an initiator must first establish one of two types of sessions. If the initiator establishes the session using the key "SessionType=Discovery", the session is a Discovery session, and a target name does not need to be specified. Otherwise, the session is a Normal operational session. The SendTargets command MUST only be sent during the Full Feature Phase of a Normal or Discovery session.
A system that contains targets MUST support Discovery sessions on each of its iSCSI IP address-port pairs and MUST support the SendTargets command on the Discovery session. In a Discovery session, a target MUST return all path information (IP address-port pairs and Target Portal Group Tags) for the targets on the target Network Entity that the requesting initiator is authorized to access.
A target MUST support the SendTargets command on operational sessions; these will only return path information about the target to which the session is connected and do not need to return information about other target names that may be defined in the responding system.
An initiator MAY make use of the SendTargets command as it sees fit.
A SendTargets command consists of a single Text Request PDU. This PDU contains exactly one text key and value. The text key MUST be SendTargets. The expected response depends upon the value, as well as whether the session is a Discovery session or an operational session.
The value must be one of:
All
The initiator is requesting that information on all relevant targets known to the implementation be returned. This value MUST be supported on a Discovery session and MUST NOT be supported on an operational session.
<iSCSI-target-name>
If an iSCSI Target Name is specified, the session should respond with addresses for only the named target, if possible. This value MUST be supported on Discovery sessions. A Discovery session MUST be capable of returning addresses for those targets that would have been returned had value=All been designated.
<nothing>
The session should only respond with addresses for the target to which the session is logged in. This MUST be supported on operational sessions and MUST NOT return targets other than the one to which the session is logged in.
The response to this command is a Text Response that contains a list of zero or more targets and, optionally, their addresses. Each target is returned as a target record. A target record begins with the TargetName text key, followed by a list of TargetAddress text keys, and bounded by the end of the Text Response or the next TargetName key, which begins a new record. No text keys other than TargetName and TargetAddress are permitted within a SendTargets response.
For the format of the TargetName, see Section 13.4.
A Discovery session MAY respond to a SendTargets request with its complete list of targets, or with a list of targets that is based on the name of the initiator logged in to the session.
A SendTargets response MUST NOT contain target names if there are no targets for the requesting initiator to access.
Each target record returned includes zero or more TargetAddress fields.
Each target record starts with one text key of the form:
TargetName=<target-name-goes-here>
followed by zero or more address keys of the form:
TargetAddress=<hostname-or-ipaddress>[:<tcp-port>],
<portal-group-tag>
The hostname-or-ipaddress contains a domain name, IPv4 address, or IPv6 address ([RFC4291]), as specified for the TargetAddress key.
A hostname-or-ipaddress duplicated in TargetAddress responses for a given node (the port is absent or equal) would probably indicate that multiple address families are in use at once (IPv6 and IPv4).
Each TargetAddress belongs to a portal group, identified by its numeric Target Portal Group Tag (see Section 13.9). The iSCSI Target Name, together with this tag, constitutes the SCSI port identifier; the tag only needs to be unique within a given target's name list of addresses.
Multiple-connection sessions can span iSCSI addresses that belong to the same portal group.
Multiple-connection sessions cannot span iSCSI addresses that belong to different portal groups.
If a SendTargets response reports an iSCSI address for a target, it SHOULD also report all other addresses in its portal group in the same response.
A SendTargets Text Response can be longer than a single Text Response PDU and makes use of the long Text Responses as specified.
After obtaining a list of targets from the Discovery session, an iSCSI initiator may initiate new sessions to log in to the discovered targets for full operation. The initiator MAY keep the Discovery session open and MAY send subsequent SendTargets commands to discover new targets.
Examples:
This example is the SendTargets response from a single target that has no other interface ports.
The initiator sends a Text Request that contains:
SendTargets=All
The target sends a Text Response that contains:
TargetName=iqn.1993-11.com.example:diskarray.sn.8675309
All the target had to return in this simple case was the target name. It is assumed by the initiator that the IP address and TCP port for this target are the same as those used on the current connection to the default iSCSI target.
The next example has two internal iSCSI targets, each accessible via two different ports with different IP addresses. The following is the Text Response:
TargetName=iqn.1993-11.com.example:diskarray.sn.8675309
TargetAddress=10.1.0.45:3000,1
TargetAddress=10.1.1.45:3000,2
TargetName=iqn.1993-11.com.example:diskarray.sn.1234567
TargetAddress=10.1.0.45:3000,1
TargetAddress=10.1.1.45:3000,2
Both targets share both addresses; the multiple addresses are likely used to provide multi-path support. The initiator may connect to either target name on either address. Each of the addresses has its own Target Portal Group Tag; they do not support spanning multiple- connection sessions with each other. Keep in mind that the Target Portal Group Tags for the two named targets are independent of one another; portal group "1" on the first target is not necessarily the same as portal group "1" on the second target.
In the above example, a DNS host name or an IPv6 address could have been returned instead of an IPv4 address.
The next Text Response shows a target that supports spanning sessions across multiple addresses and further illustrates the use of the Target Portal Group Tags:
TargetName=iqn.1993-11.com.example:diskarray.sn.8675309
TargetAddress=10.1.0.45:3000,1
TargetAddress=10.1.1.46:3000,1
TargetAddress=10.1.0.47:3000,2
TargetAddress=10.1.1.48:3000,2
TargetAddress=10.1.1.49:3000,3
In this example, any of the target addresses can be used to reach the same target. A single-connection session can be established to any of these TCP addresses. A multiple-connection session could span addresses .45 and .46 or .47 and .48 but cannot span any other combination. A TargetAddress with its own tag (.49) cannot be combined with any other address within the same session.
This SendTargets response does not indicate whether .49 supports multiple connections per session; it is communicated via the MaxConnections text key upon login to the target.
This appendix illustrates the error recovery classes using a pseudo-programming language. The procedure names are chosen to be obvious to most implementers. Each of the recovery classes described has initiator procedures as well as target procedures. These algorithms focus on outlining the mechanics of error recovery classes and do not exhaustively describe all other aspects/cases. Examples of this approach are as follows:
- Handling for only certain Opcode types is shown.
- Only certain reason codes (e.g., Recovery in Logout command) are outlined.
- Resultant cases, such as recovery of Synchronization on a header digest error, are considered out of scope in these algorithms. In this particular example, a header digest error may lead to connection recovery if some type of Sync and Steering layer is not implemented.
These algorithms strive to convey the iSCSI error recovery concepts in the simplest terms and are not designed to be optimal.
This section defines the procedures and data structures that are commonly used by all the error recovery algorithms. The structures may not be the exhaustive representations of what is required for a typical implementation.
Data structure definitions:
Procedure descriptions:
Notes:
- One procedure used in this section: the Handle-Status-SNACK-request is defined in Appendix D.3.
- The response-processing pseudocode shown in the target algorithms applies to all solicited PDUs that carry the StatSN -- SCSI Response, Text Response, etc.
}
Procedure descriptions:
Implementation-specific parameters that are tunable:
InitiatorProactiveSNACKEnabled
Notes:
- The initiator algorithms only deal with unsolicited NOP-In PDUs for generating Status SNACKs. A solicited NOP-In PDU has an assigned StatSN that, when out of order, could trigger the out-of-order StatSN handling in within-command algorithms, again leading to Recover-Status-if-Possible.
- The pseudocode shown may result in the retransmission of unacknowledged commands in more cases than necessary. This will not, however, affect the correctness of the operation because the target is required to discard the duplicate CmdSNs.
- The procedure Build-And-Send-Async is defined in the connection recovery algorithms.
- The procedure Status-Expect-Timeout-Handler describes how initiators may proactively attempt to retrieve the Status if they so choose. This procedure is assumed to be triggered much before the standard ULP timeout.
}
Note:
- Transport exception conditions such as unexpected connection termination, connection reset, and hung connection while the connection is in the Full Feature Phase are all assumed to be asynchronously signaled to the iSCSI layer using the Transport_Exception_Handler procedure.
}
}
The following tables describe the target behavior on receiving the events specified in the rows of the table. The second table is an extension of the first table and defines clearing actions for more objects on the same events. The legend is:
Y = Yes (cleared/discarded/reset on the event specified in the row).
Unless otherwise noted, the clearing action is only applicable for the issuing initiator port.
N = No (not affected on the event specified in the row, i.e., stays
at previous value).
NA = Not Applicable or Not Defined.
(1) Incomplete TTTs (IT) are Target Transfer Tags on which the
target is still expecting PDUs to be received. Examples include TTTs received via R2T, NOP-In, etc.
(2) Immediate Commands (IC) are immediate commands, but waiting
for execution on a target (for example, ABORT TASK SET).
(5) Connection Tasks (CT) are tasks that are active on the iSCSI
connection in question.
(6) Session Tasks (ST) are tasks that are active on the entire
iSCSI session. A union of "connection tasks" on all participating connections.
(7) Partial PDUs (PP) (if any) are PDUs that are partially sent
and waiting for transport window credit to complete the transmission.
(8) Connection failure is a connection exception condition - one
of the transport connections shut down, transport connections reset, or transport connections timed out, which abruptly terminated the iSCSI Full Feature Phase connection. A connection failure always takes the connection state machine to the CLEANUP_WAIT state.
(9) Connection state timeout happens if a connection spends more
time than agreed upon during login negotiation in the CLEANUP_WAIT state, and this takes the connection to the FREE state (M1 transition in connection cleanup state diagram; see Section 8.2).
(10) Session timeout, closure, and reinstatement are defined in
Section 6.3.5.
(11) This clearing effect is "Y" only if it is a connection
reinstatement and the operational ErrorRecoveryLevel is less than 2.
(12) Session continuation is defined in Section 6.3.6.
(13) This clearing effect is only valid if the connection is being
logged out on a different connection and when the connection being logged out on the target may have some partial PDUs pending to be sent. In all other cases, the effect is "NA".
(14) This clearing effect is only valid for a "close the session"
logout in a multi-connection session. In all other cases, the effect is "NA".
(15) Only applicable if this leading connection login is a session
reinstatement. If this is not the case, it is "NA".
(16) This operation affects all logged-in initiators.
(18) Session failure is defined in Section 6.3.6.
(19) This operation affects all logged-in initiators, and the
clearing effects are only applicable to the LU being reset.
(20) With standard multi-task abort semantics (Section 4.2.3.3), a
TARGET WARM RESET or a TARGET COLD RESET or a LU reset would clear the active TTTs upon completion. However, the FastAbort multi-task abort semantics defined by Section 4.2.3.4 do not guarantee that the active TTTs are cleared by the end of the reset operations. In fact, the FastAbort semantics are designed to allow clearing the TTTs in a "lazy" fashion after the TMF Response is delivered. Thus, when TaskReporting=FastAbort (Section 13.23) is operational on a session, the clearing effects of reset operations on "Incomplete TTTs" is "N".
(1) Discontiguous Commands (DC) are commands allegiant to the
connection in question and waiting to be reordered in the iSCSI layer. All "Y"s in this column assume that the task causing the event (if indeed the event is the result of a task) is issued as an immediate command, because the discontiguities can be ahead of the task.
(2) Discontiguous Data (DD) are data PDUs received for the task in
question and waiting to be reordered due to prior discontiguities in the DataSN.
(3) "SS" refers to the StatSN.
(4) "CS" refers to the CmdSN.
(5) "DS" refers to the DataSN.
(7) This action clears the StatSN on all the connections.
(8) This sequence number is instantiated on this event.
(9) A logout failure drives the connection state machine to the
CLEANUP_WAIT state, similar to the connection failure event. Hence, it has a similar effect on this and several other protocol aspects.
(10) This is cleared by virtue of the fact that all sessions with
all initiators are terminated.
(11) This clearing effect is "Y" if it is a connection
reinstatement.
(12) This clearing effect is "Y" only if it is a connection
reinstatement and the operational ErrorRecoveryLevel is 2.
(13) This clearing effect is "N" only if it is a connection
reinstatement and the operational ErrorRecoveryLevel is 2.
The only iSCSI protocol action that can effect clearing actions on SCSI objects is the "I_T nexus loss" notification (Section 6.3.5.1 ("Loss of Nexus Notification")). [SPC3] describes the clearing effects of this notification on a variety of SCSI attributes. In addition, SCSI standards documents (such as [SAM2] and [SBC2]) define additional clearing actions that may take place for several SCSI objects on SCSI events such as LU resets and power-on resets.
Since iSCSI defines a TARGET COLD RESET as a "protocol-equivalent" to a target power-cycle, the iSCSI TARGET COLD RESET must also be considered as the power-on reset event in interpreting the actions defined in the SCSI standards.
When the iSCSI session is reconstructed (between the same SCSI ports with the same nexus identifier) reestablishing the same I_T nexus, all SCSI objects that are defined to not clear on the "I_T nexus loss" notification event, such as persistent reservations, are automatically associated to this new session.
Acknowledgments
Specifically, the authors of the original RFCs -- which herein are consolidated into a single document -- were the following:
RFC 3720: Julian Satran, Kalman Meth, Costa Sapuntzakis, Mallikarjun Chadalapaka, Efri Zeidner
RFC 3980: Marjorie Krueger, Mallikarjun Chadalapaka, Rob Elliott
RFC 4850: David Wysochanski
RFC 5048: Mallikarjun Chadalapaka
Many thanks to Fred Knight for contributing to the UML notations and drawings in this document.
We would in addition like to acknowledge the following individuals who contributed to this revised document: David Harrington, Paul Koning, Mark Edwards, Rob Elliott, and Martin Stiemerling.
Thanks to Yi Zeng and Nico Williams for suggesting and/or reviewing Kerberos-related security considerations text.
The authors gratefully acknowledge the valuable feedback during the Last Call review process from a number of individuals; their feedback significantly improved this document. The individuals were Stephen Farrell, Brian Haberman, Barry Leiba, Pete Resnick, Sean Turner, Alexey Melnikov, Kathleen Moriarty, Fred Knight, Mike Christie, Qiang Wang, Shiv Rajpal, and Andy Banta.
Finally, this document also benefited from significant review contributions from the Storm Working Group at large.
Comments may be sent to Mallikarjun Chadalapaka.
Authors' Addresses
EMail: cbm@chadalapaka.com
EMail: julians@infinidat.com, julian@satran.net
7144 - Internet Small Computer System Interface (iSCSI) SCSI Features Update
Index Back 5 Prev Next Forward 5
Internet Engineering Task Force (IETF)
Request for Comments: 7144
Category: Standards Track
ISSN: 2070-1721
F. Knight
NetApp
M. Chadalapaka
Microsoft
April 2014
This document is a companion document to RFC 7143.
This is an Internet Standards Track document.
Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
The original iSCSI protocol [RFC3720] was built based on the [SAM2] model for SCSI. Several new features and capabilities have been added to the SCSI Architecture Model in the intervening years (at the time of publication of this document, SAM-5 was the current version of the SCSI Architecture Model). This document is not a complete revision of [RFC3720]. Instead, this document is intended as a companion document to RFC 7143; this document may also be used as a companion document to the combination of [RFC3720] and [RFC5048], although both of those RFCs have been obsoleted by [RFC7143].
For more information on the SCSI Architecture Model and SCSI Primary Commands - 4, contact the INCITS T10 Technical Committee for SCSI Storage Interfaces at <http://www.t10.org>.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
This document specifies new iSCSI semantics. This section summarizes the contents of the document.
The iSCSI model (defined in [RFC7143]) uses different terminology than the SCSI Architecture Model. In some cases, iSCSI uses multiple terms to describe what in the SCSI Architecture Model is described with a single term. The iSCSI terms and SAM-5 terms are not necessarily equivalent, but rather, the iSCSI terms represent examples of the objects or classes described in SAM-5 as follows:
** The text encoding of the ISID value and the Target Portal Group
Tag value includes an initial ,,0X or ,,0x (see [RFC7143]).
The following diagram shows an example of a combination target device and initiator device. Such a configuration may exist in a target device that implements a SCSI Copy Manager. This example shows how a session that shares Network Portals within a Portal Group may be established (see Target Portal Group 1). In addition, this example shows the initiator using a different portal group than the target portal group, but the initiator portal group sharing Network Portal A with the target portal group.
The iSCSIProtocolLevel operational text key (see Section 7.1.1) containing a value of "2" MUST be negotiated to enable the use of features described in this RFC.
This is an iSCSI negotiation mechanism that enabled iSCSI support for corresponding SCSI capabilities (see [SAM5] and [SPC4]). For this reason, negotiation of this key to a value of "2" is necessary but not sufficient for use of the SCSI capabilities enabled by the iSCSI features in this RFC.
For example, an iSCSI implementation may negotiate this new key to "2" but respond to the new task management functions (see Section 6.3) with "Task management function not supported" (which indicates a SCSI error that prevents the function from being performed). In contrast, if the key is negotiated to "2", an iSCSI implementation MUST NOT reject a Task Management Function Request PDU that requests one of the new task management functions (as such a reject would report an iSCSI protocol error).
The negotiated value of the iSCSIProtocolLevel key is an increment from the base iSCSI version descriptor value (0960h); see [SPC4]. If the SCSI device server returns an iSCSI version descriptor in the standard INQUIRY data, then the value returned in that iSCSI version descriptor MUST be set to the sum of the base value (0960h) plus the negotiated value of the iSCSIProtocolLevel key. (For example, if the negotiated iSCSIProtocolLevel=2, then if an iSCSI version descriptor is returned in the standard INQUIRY data, it is set to 0962h.)
In support of this functionality, INCITS Technical Committee T10, which is responsible for SCSI standards, has assigned SCSI version descriptor codes 0961h-097Fh to RFC 7144 for IANA to manage via the values 1-31 of the iSCSIProtocolLevel key; see Section 9. The "No version claimed" description for the value 0 of the iSCSIProtocolLevel key corresponds to the existing T10 assignment of the 0960h SCSI version descriptor code to "iSCSI (no version claimed)" -- for this reason, the assignment of the value 0 in the IANA registry for the iSCSIProtocolLevel key must not be changed.
The format of the SCSI Command PDU is:
The SCSI Command PDU above is duplicated from [RFC7143] for reference to show the PRI field. For any field other than the PRI field, the text in [RFC7143] supersedes the text in Section 5.1 of this document in the event the two documents conflict.
The Command Priority (PRI) is a four-bit field that specifies the relative scheduling importance of this command in relation to other commands already in the task set with SIMPLE task attributes (see [SAM5]).
Section 11 ("iSCSI PDU Formats") of [RFC7143] requires that senders set this field to zero. A sender MUST NOT set this field to a value other than zero unless the iSCSIProtocolLevel text key defined in Section 7.1.1 has been negotiated on the session with a value of "2".
This field MUST be ignored by iSCSI targets unless the iSCSIProtocolLevel text key with a value of "2" as defined in Section 7.1.1 was negotiated on the session.
See [SAM5] for additional considerations on the use of the Command Priority field.
The format of the SCSI Response PDU is:
The SCSI Response PDU above is duplicated from [RFC7143] for reference to show the Status Qualifier field. For any field other than the Status field, the Status Qualifier field, and the Data Segment - Sense and Response Data Segment field, the text in [RFC7143] supersedes the text in Section 5.2 of this document in the event the two documents conflict.
The Status Qualifier provides additional status information (see [SAM5]).
As defined in Section 11 ("iSCSI PDU Formats") of [RFC7143], compliant senders already set this field to zero. Compliant senders MUST NOT set this field to a value other than zero unless the iSCSIProtocolLevel text key with a value of "2" as defined in Section 7.1.1 was negotiated on the session.
This field MUST be ignored by receivers unless the iSCSIProtocolLevel text key with a value of "2" as defined in Section 7.1.1 was negotiated on the session.
Section 11.4.7 of [RFC7143] specifies that iSCSI targets MUST support and enable Autosense. If Status is CHECK CONDITION (0x02), then the Data Segment MUST contain sense data for the failed command. While [RFC7143] does not make any statements about the state of the Data Segment when the Status is not CHECK CONDITION (0x02) (i.e., the Data Segment is not prohibited from containing sense data when the Status is not CHECK CONDITION), negotiation of the iSCSIProtocolLevel text key with a value of "2" as defined in Section 7.1.1 explicitly indicates that the Data Segment MAY contain sense data at any time, no matter what value is set in the Status field.
The Task Management Function Request PDU above is duplicated from [RFC7143] for reference only. [RFC7143] supersedes the text in Sections 6.1 and 6.2 of this document in the event the two documents conflict.
Section 11.5 of [RFC7143] defines the semantics used to request that SCSI task management functions be performed. The following task management functions are defined:
Additional task management function codes are listed below. For a more detailed description of SCSI task management, see [SAM5].
10 - QUERY TASK SET - determine if any command is present in the
task set for the I_T_L Nexus on which the task management function was received.
11 - I_T NEXUS RESET - perform an I_T nexus loss function (see
[SAM5]) for the I_T nexus on which the task management function was received.
12 - QUERY ASYNCHRONOUS EVENT - determine if there is a unit
attention condition or a deferred error pending for the I_T_L nexus on which the task management function was received.
These task management function requests MUST NOT be sent unless the iSCSIProtocolLevel text key with a value of "2" as defined in Section 7.1.1 was negotiated on the session.
Any compliant initiator that sends any of the new task management functions defined in this section MUST also support all new task management function responses (as specified in Section 6.4.2).
For all of the task management functions detailed in this section, the Task Management Function Response MUST be returned as detailed in Section 6.4.
The iSCSI target MUST ensure that no responses for the commands covered by a task management function are sent to the iSCSI initiator port after the Task Management response except for commands covered by a TASK REASSIGN, QUERY TASK, or QUERY TASK SET.
If a QUERY TASK is issued for a task created by an immediate command, then RefCmdSN MUST be that of the Task Management request itself (i.e., CmdSN and RefCmdSN are equal); otherwise, RefCmdSN MUST be set to the CmdSN of the task to be queried (lower than CmdSN).
If the connection is still active (it is not undergoing an implicit or explicit logout), QUERY TASK MUST be issued on the same connection to which the task to be queried is allegiant at the time the Task Management request is issued. If the connection is implicitly or explicitly logged out (i.e., no other request will be issued on the failing connection and no other response will be received on the failing connection), then a QUERY TASK function request may be issued on another connection. This Task Management request will then establish a new allegiance for the command being queried.
At the target, a QUERY TASK function MUST NOT be executed on a Task Management request; such a request MUST result in Task Management response of "Function rejected".
For the I_T NEXUS RESET function, the target device MUST respond to the function as defined in [SAM5]. Each logical unit accessible via the receiving I_T NEXUS MUST behave as dictated by the I_T nexus loss function in [SAM5] for the I_T nexus on which the task management function was received. The target device MUST drop all connections in the session over which this function is received. Independent of the DefaultTime2Wait and DefaultTime2Retain values applicable to the session over which this function is received, the target device MUST consider each participating connection in the session to have immediately timed out, leading to FREE state. The resulting timeouts cause the session timeout event defined in [RFC7143], which in turn triggers the I_T nexus loss notification to the SCSI layer as described in [RFC7143].
This field is required for functions that address a specific LU (i.e., ABORT TASK, CLEAR TASK SET, ABORT TASK SET, CLEAR ACA, LOGICAL UNIT RESET, QUERY TASK, QUERY TASK SET, and QUERY ASYNCHRONOUS EVENT) and is reserved in all others.
The Reference Task Tag is the Initiator Task Tag of the task to be aborted for the ABORT TASK function, reassigned for the TASK REASSIGN function, or queried for the QUERY TASK function. For all other functions, this field MUST be set to the reserved value 0xffffffff.
If a QUERY TASK is issued for a task created by an immediate command then RefCmdSN MUST be that of the Task Management request itself (i.e., CmdSN and RefCmdSN are equal).
For a QUERY TASK of a task created by non-immediate command RefCmdSN MUST be set to the CmdSN of the task identified by the Referenced Task Tag field. Targets must use this field as described in section 11.6.1 of [RFC7143] when the task identified by the Referenced Task Tag field is not in the task set.
Section 11.6 of [RFC7143] defines the semantics used for responses to SCSI task management functions. The following responses are defined in [RFC7143]:
The Task Management Function Response PDU above and the list of task management function responses above are duplicated from [RFC7143] for reference only. [RFC7143] supersedes the text in section 6.4.1 of this document in the event the two documents conflict.
Responses to new task management functions (see Section 6.4.2) are listed below. In addition, a new task Management response is listed below. For a more detailed description of SCSI task management responses, see [SAM5].
For the functions QUERY TASK, QUERY TASK SET, I_T NEXUS RESET, and QUERY ASYNCHRONOUS EVENT, the target performs the requested Task Management function and sends a Task Management response back to the initiator.
The new response is listed below:
7 - Function succeeded
In symbolic terms Response value 7 maps to the SCSI service response of FUNCTION SUCCEEDED in [SAM5].
The Task Management Function Response of "Function succeeded" MUST be supported by an initiator that sends any of the new task management functions (see Section 6.3).
For the QUERY TASK function, if the specified task is in the task set, then the logical unit returns a Response value of "Function succeeded", and additional response information is returned as specified in [SAM5]. If the specified task is not in the task set, then the logical unit returns a Response value of "Function complete".
For the QUERY TASK SET function, if there is any command present in the task set from the specified I_T_L nexus, then the logical unit returns a Response value of "Function succeeded". If there are no commands present in the task set from the specified I_T_L nexus, then the logical unit returns a Response value of "Function complete".
For the I_T NEXUS RESET function, after completion of the events described in Section 6.3 for this function, the logical unit returns a Response value of "Function complete". However, because the target drops all connections, the Service Response (defined by [SAM5]) for this SCSI task management function may not be reliably delivered to the issuing initiator port.
For the QUERY ASYNCHRONOUS EVENT, if there is a unit attention condition or deferred error pending for the specified I_T_L nexus, then the logical unit returns a Response value of "Function succeeded", and additional response information is returned as specified in [SAM5]. If there is no unit attention or deferred error pending for the specified I_T_L nexus, then the logical unit returns a Response value of "Function complete".
Section 4.1 of [RFC5048] defines the notion of "affected tasks" in multi-task abort scenarios. This section adds to the list included in that section by defining the tasks affected by the I_T NEXUS RESET function.
I_T NEXUS RESET: All outstanding tasks received on the I_T nexus
on which the function request was received for all logical units accessible to the I_T nexus.
Sections 4.1.2 and 4.1.3 of [RFC5048] identify semantics for task management functions that involve multi-task abort operations. If an iSCSI implementation supports the I_T NEXUS RESET function, it MUST also support the protocol behavior as defined in those sections and follow the sequence of actions as described in those sections when processing the I_T NEXUS RESET function.
iSCSIProtocolLevel=<numerical-value-from-0-to-31>
This key is used to negotiate the use of iSCSI features that require different levels of protocol support (e.g., PDU formats, end-node semantics) for proper operation.
Negotiation of the iSCSIProtocolLevel key to a value corresponding to an RFC indicates that both negotiating parties are compliant to the RFC in question and agree to support the corresponding PDU formats and semantics on that iSCSI session. Features using this key are expected to be cumulative.
An iSCSIProtocolLevel key negotiated to "0" indicates that the implementation does not claim a specific iSCSI protocol level.
An iSCSIProtocolLevel key negotiated to "1" indicates that the implementation claims compliance with [RFC7143].
An iSCSIProtocolLevel key negotiated to "2" is required to enable use of features defined in this RFC.
If the negotiation answer is ignored by the acceptor, or the answer from the remote iSCSI end point is key=NotUnderstood, then the features defined in this RFC, and the features defined in any RFC requiring a key value greater than "2", MUST NOT be used.
Command priorities are relative values, not absolute values (see [SAM5], and affect collections of commands, not necessarily individual commands (see [SAM5]). If command priority is supported, it should be implemented in a fashion that avoids unwanted reduction or denial of service.
All the iSCSI-related security text in [RFC3723] is directly applicable to this document. The security text in [RFC7143] is directly applicable as well.
This document modifies or creates a number of iSCSI-related registries.
The following iSCSI-related registries are modified.
1. iSCSI Task Management Functions Codes
Name of the existing registry: "iSCSI Task Management Function Codes"
The following entries have been added:
10 - QUERY TASK SET, RFC 7144
11 - I_T NEXUS RESET, RFC 7144
12 - QUERY ASYNCHRONOUS EVENT, RFC 7144
13-127 - Unassigned
2. iSCSI Login/Text Keys
Name of the existing registry: "iSCSI Login/Text Keys"
Fields to record in the registry: Assigned value and its associated RFC reference.
The following entry has been added:
IANA has created the following iSCSI-related registries.
3. iSCSI Protocol Level
Name of new registry: "iSCSI Protocol Level"
Namespace details: Numerical values from 0 to 31
Information that must be provided to assign a new value: An IESG- approved Standards Track specification defining the semantics and interoperability requirements of the proposed new value and the fields to be recorded in the registry.
Assignment policy:
The assignments of these values must be coordinated with the INCITS T10 committee; therefore, review by an expert that maintains an association with that committee is required prior to IESG approval of the associated specification. After creation of the registry, values are to be assigned sequentially (for example, any value greater than 4 will not be assigned until after the value 4 has been assigned).
Special care must be taken in the assignment of new values in this registry. Compatibility and interoperability will be adversely impacted if proper care is not exercised. Features using this key are expected to be cumulative. For example, since this document explicitly lists only value 2 for the features listed in this document, it is expected that a new RFC assigning value 3 will also have the features listed in this RFC, and therefore such an RFC is expected to either revise or replace this RFC. Assignments that do not follow this policy should be reviewed and approved by the INCITS T10 committee.
3-31: range available to IANA for assignment in this registry.
Fields to record in the registry: Assigned value, description, and its associated RFC reference.
The following entries have been added:
Allocation Policy: Expert Review and Standards Action [RFC5226]
4. iSCSI Task Management Function Response Codes
Name of new registry: "iSCSI Task Management Function Response Codes"
Namespace details: Numerical values that can fit in 8 bits.
Information that must be provided to assign a new value: An IESG- approved specification defining the semantics and interoperability requirements of the proposed new value and the fields to be recorded in the registry.
Assignment policy:
If the requested value is not already assigned, it may be assigned to the requester.
8-254: Range available to IANA for assignment in this registry.
Fields to record in the registry: Assigned value, Operation Name, and its associated RFC reference.
The following entries have been added:
0 - Function complete, [RFC7143]
1 - Task does not exist, [RFC7143]
2 - LUN does not exist, [RFC7143]
3 - Task still allegiant, [RFC7143]
4 - Task allegiance reassignment not supported, [RFC7143]
5 - Task management function not supported, [RFC7143]
6 - Function authorization failed, [RFC7143]
7 - Function succeeded, RFC 7144
8-254 - Unassigned
255 - Function rejected, [RFC7143]
Allocation Policy: Standards Action [RFC5226]
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC3723]
Aboba, B., Tseng, J., Walker, J., Rangan, V., and F. Travostino, "Securing Block Storage Protocols over IP", RFC 3723, April 2004.
[RFC5048]
Chadalapaka, M., Ed., "Internet Small Computer System Interface (iSCSI) Corrections and Clarifications", RFC 5048, October 2007.
[RFC5226]
Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.
[RFC7143]
Chadalapaka, M., Satran, J., Meth, K., and D. Black, "Internet Small Computer System Interface (iSCSI) Protocol (Consolidated)", RFC 7143, April 2014.
[SAM2]
INCITS Technical Committee T10, "SCSI Architecture Model - 2 (SAM-2)", ANSI INCITS 366-2003, ISO/IEC 14776-412, 2003.
[SAM5]
INCITS Technical Committee T10, "SCSI Architecture Model - 5 (SAM-5)", T10/BSR INCITS 515 rev 04, Committee Draft.
[SPC4]
INCITS Technical Committee T10, "SCSI Primary Commands - 4", ANSI INCITS 513-201x.
[RFC3720]
Satran, J., Meth, K., Sapuntzakis, C., Chadalapaka, M., and E. Zeidner, "Internet Small Computer Systems Interface (iSCSI)", RFC 3720, April 2004.
The Storage Maintenance (STORM) Working Group in the Transport Area of the IETF has been responsible for defining these additions to the iSCSI protocol (apart from other relevant IP Storage protocols). The authors acknowledge the contributions of the entire working group and other IETF reviewers.
The following individuals directly contributed to identifying issues and/or suggesting resolutions to the issues clarified in this document: David Black, Rob Elliott. This document benefited from all of these contributions.
Authors' Addresses
EMail: cbm@chadalapaka.com
7145 - Internet Small Computer System Interface (iSCSI) Extensions for the Remot
Internet Engineering Task Force (IETF)
Request for Comments: 7145
Obsoletes: 5046
Category: Standards Track
ISSN: 2070-1721
M. Ko
A. Nezhinsky
Mellanox
April 2014
Internet Small Computer System Interface (iSCSI) Extensions for Remote Direct Memory Access (RDMA) provides the RDMA data transfer capability to iSCSI by layering iSCSI on top of an RDMA-Capable Protocol. An RDMA-Capable Protocol provides RDMA Read and Write services, which enable data to be transferred directly into SCSI I/O Buffers without intermediate data copies. This document describes the extensions to the iSCSI protocol to support RDMA services as provided by an RDMA-Capable Protocol.
This document obsoletes RFC 5046.
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7145.
Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Table of Figures
The iSCSI protocol ([iSCSI]) is a mapping of the SCSI Architecture Model (see [SAM5] and [iSCSI-SAM]) over the TCP protocol. SCSI commands are carried by iSCSI requests, and SCSI responses and status are carried by iSCSI responses. Other iSCSI protocol exchanges and SCSI Data are also transported in iSCSI PDUs.
Out-of-order TCP segments in the Traditional iSCSI model have to be stored and reassembled before the iSCSI protocol layer within an end node can place the data in the iSCSI buffers. This reassembly is required because not every TCP segment is likely to contain an iSCSI header to enable its placement and TCP itself does not have a built- in mechanism for signaling ULP (Upper Level Protocol) message boundaries to aid placement of out-of-order segments. This TCP reassembly at high network speeds is quite counterproductive for the following reasons: wasted memory bandwidth in data copying, need for reassembly memory, wasted CPU cycles in data copying, and the general store-and-forward latency from an application perspective.
The generic term RDMA-Capable Protocol (RCaP) is used to refer to protocol stacks that provide the Remote Direct Memory Access (RDMA) functionality, such as iWARP and InfiniBand.
With the availability of RDMA-Capable Controllers within a host system, it is appropriate for iSCSI to be able to exploit the direct data placement function of the RDMA-Capable Controller like other applications.
iSCSI Extensions for RDMA (iSER) is designed precisely to take advantage of generic RDMA technologies -- iSER's goal is to permit iSCSI to employ direct data placement and RDMA capabilities using a generic RDMA-Capable Controller. In summary, the iSCSI/iSER protocol stack is designed to enable scaling to high speeds by relying on a generic data placement process and RDMA technologies and products that enable direct data placement of both in-order and out-of-order data.
This document describes iSER as a protocol extension to iSCSI, both for convenience of description and also because it is true in a very strict protocol sense. However, it is to be noted that iSER is in reality extending the connectivity of the iSCSI protocol defined in [iSCSI], and the name "iSER" reflects this reality.
When the iSCSI protocol as defined in [iSCSI] (i.e., without the iSER enhancements) is intended in the rest of the document, the term "Traditional iSCSI" is used to make the intention clear.
This document obsoletes RFC 5046. See Appendix A for the list of changes from RFC 5046.
iSCSI Extensions for RDMA (iSER) is layered between the iSCSI layer and the RCaP layer.
Figure 1: Example of iSCSI/iSER Layering in Full Feature Phase
Figure 1 shows an example of the relationship between SCSI, iSCSI, iSER, and the different RCaP layers. For TCP, the RCaP is iWARP. For InfiniBand, the RCaP is the Reliable Connected Transport Service. Note that the iSCSI layer as described here supports the RDMA Extensions as used in iSER.
This section summarizes the architectural goals that guided the design of iSER.
1. Provide an RDMA data transfer model for iSCSI that enables direct in-order or out-of-order data placement of SCSI data into pre- allocated SCSI buffers while maintaining in-order data delivery.
2. Do not require any major changes to the SCSI Architecture Model [SAM5] and SCSI command set standards.
3. Utilize the existing iSCSI infrastructure (sometimes referred to as "iSCSI ecosystem") including but not limited to MIB, bootstrapping, negotiation, naming and discovery, and security.
4. Enable a session to operate in the Traditional iSCSI data transfer mode if iSER is not supported by either the initiator or the target. (Do not require iSCSI Full Feature Phase interoperability between an end node operating in Traditional iSCSI mode and an end node operating in iSER-assisted mode.)
5. Allow initiator and target implementations to utilize generic RDMA-Capable Controllers such as RNICs or to implement iSCSI and iSER in software. (Do not require iSCSI- or iSER-specific assists in the RCaP implementation or RDMA-Capable Controller.)
6. Implement a lightweight Datamover protocol for iSCSI with minimal state maintenance.
Consistent with the architectural goals stated in Section 1.3, the iSER protocol does not require changes in the iSCSI ecosystem or any related SCSI specifications. The iSER protocol defines the mapping of iSCSI PDUs to RCaP Messages in such a way that it is entirely feasible to realize iSCSI/iSER implementations that are based on generic RDMA-Capable Controllers. The iSER protocol layer requires minimal state maintenance to assist a connection during the iSCSI Full Feature Phase, besides being oblivious to the notion of an iSCSI session. The crucial protocol aspects of iSER may be summarized as follows:
1. iSER-assisted mode is negotiated during the iSCSI login in the leading connection for each session, and an entire iSCSI session can only operate in one mode (i.e., a connection in a session cannot operate in iSER-assisted mode if a different connection of the same session is already in Full Feature Phase in the Traditional iSCSI mode).
2. Once in iSER-assisted mode, all iSCSI interactions on that connection use RCaP Messages.
3. A Send Message is used for carrying an iSCSI control-type PDU preceded by an iSER header. See Section 7.2 for more details on iSCSI control-type PDUs.
4. RDMA Write, RDMA Read Request, and RDMA Read Response Messages are used for carrying control and all data information associated with the iSCSI data-type PDUs (i.e., SCSI Data-In PDUs and R2T PDUs). iSER does not use SCSI Data-Out PDUs for solicited data, and SCSI Data-Out PDUs for unsolicited data are not treated as iSCSI data-type PDUs by iSER because RDMA is not used. See Section 7.1 for more details on iSCSI data-type PDUs.
5. The target drives all data transfer (with the exception of iSCSI unsolicited data) for SCSI writes and SCSI reads, by issuing RDMA Read Requests and RDMA Writes, respectively.
6. RCaP is responsible for ensuring data integrity. (For example, iWARP includes a CRC-enhanced framing layer called MPA on top of TCP; and for InfiniBand, the CRCs are included in the Reliable Connection mode). For this reason, iSCSI header and data digests are negotiated to "None" for iSCSI/iSER sessions.
7. The iSCSI error recovery hierarchy defined in [iSCSI] is fully supported by iSER. (However, see Section 7.3.11 on the handling of SNACK Request PDUs.)
8. iSER requires no changes to iSCSI security and text mode negotiation mechanisms.
Note that Traditional iSCSI implementations may have to be adapted to employ iSER. It is expected that the adaptation when required is likely to be centered around the upper-layer interface requirements of iSER (Section 3).
iSER is designed to work with software and/or hardware protocol stacks providing the protocol services defined in RCaP documents such as [RDMAP], [IB], etc. The following subsections describe the key protocol elements of RCaP services on which iSER relies.
An STag is the identifier of an I/O Buffer unique to an RDMA-Capable Controller that the iSER layer Advertises to the remote iSCSI/iSER node in order to complete a SCSI I/O.
In iSER, Advertisement is the act of informing the target by the initiator that an I/O Buffer is available at the initiator for RDMA Read or RDMA Write access by the target. The initiator Advertises the I/O Buffer by including the STag and the Base Offset in the header of an iSER Message containing the SCSI Command PDU to the target. The buffer length is as specified in the SCSI Command PDU.
The iSER layer at the initiator Advertises the STag and the Base Offset for the I/O Buffer of each SCSI I/O to the iSER layer at the target in the iSER header of a Send Message containing the SCSI Command PDU, unless the I/O can be completely satisfied by unsolicited data alone. The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP).
The iSER layer at the target provides the STag for the I/O Buffer that is the Data Sink of an RDMA Read Operation (Section 1.5.4) to the RCaP layer on the initiator node -- i.e., this is completely transparent to the iSER layer at the initiator.
The iSER layer at the initiator SHOULD invalidate the Advertised STag upon a normal completion of the associated task. The Send with Invalidate Message, if supported by the RCaP layer (e.g., iWARP), can be used for automatic invalidation when it is used to carry the SCSI Response PDU. There are two exceptions to this automatic invalidation -- bidirectional commands and abnormal completion of a command. The iSER layer at the initiator SHOULD explicitly invalidate the STag in these two cases. That iSER layer MUST check that STag invalidation has occurred whenever receipt of a Send with Invalidate message is the expected means of causing an STag to be invalidated, and it MUST perform the STag invalidation if the STag has not already been invalidated (e.g., because a Send Message was used instead of Send with Invalidate).
If the Advertised STag is not invalidated as recommended in the foregoing paragraph (e.g., in order to cache the STag for future reuse), the I/O Buffer remains exposed to the network for access by the RCaP. Such an I/O Buffer is capable of being read or written by the RCaP outside the scope of the iSCSI operation for which it was originally established; this fact has both robustness and security considerations. The robustness considerations are that the system containing the iSER initiator may react poorly to an unexpected modification of its memory. For the security considerations, see Section 11.
Send is the RDMA Operation that is not addressed to an Advertised buffer and uses Untagged buffers as the message is received.
The iSER layer at the initiator uses the Send Operation to transmit any iSCSI control-type PDU to the target. As an example, the initiator uses Send Operations to transfer iSER Messages containing SCSI Command PDUs to the iSER layer at the target.
An iSER layer at the target uses the Send Operation to transmit any iSCSI control-type PDU to the initiator. As an example, the target uses Send Operations to transfer iSER Messages containing SCSI Response PDUs to the iSER layer at the initiator.
For interoperability, iSER implementations SHOULD accept and correctly process SendSE and SendInvSE messages. However, SendSE and SendInvSE messages are to be regarded as optimizations or enhancements to the basic Send Message, and their support may vary by RCaP protocol and specific implementation. In general, these messages SHOULD NOT be used, unless the RCaP requires support for them in all implementations. If these messages are used, the implementation SHOULD be capable of reverting to use of Send in order to work with a receiver that does not support these messages. Attempted use of these messages with a peer that does not support them may result in a fatal error that closes the RCaP connection. For example, these messages SHOULD NOT be used with the InfiniBand RCaP because InfiniBand does not require support for them in all cases. New iSER implementations SHOULD use Send (and not SendSE or SendInvSE) unless there are compelling reasons for doing otherwise. Similarly, iSER implementations SHOULD NOT rely on events triggered by SendSE and SendInvSE, as these messages may not be used.
RDMA Write is the RDMA Operation that is used to place data into an Advertised buffer at the Data Sink. The Data Source addresses the Message using an STag and a Tagged Offset that are valid on the Data Sink.
The iSER layer at the target uses the RDMA Write Operation to transfer the contents of a local I/O Buffer to an Advertised I/O Buffer at the initiator. The iSER layer at the target uses the RDMA Write to transfer the whole data or part of the data required to complete a SCSI Read command.
The iSER layer at the initiator does not employ RDMA Writes.
RDMA Read is the RDMA Operation that is used to retrieve data from an Advertised buffer at the Data Source. The sender of the RDMA Read Request addresses the Message using an STag and a Tagged Offset that are valid on the Data Source in addition to providing a valid local STag and Tagged Offset that identify the Data Sink.
The iSER layer at the target uses the RDMA Read Operation to transfer the contents of an Advertised I/O Buffer at the initiator to a local I/O Buffer at the target. The iSER layer at the target uses the RDMA Read to fetch whole or part of the data required to complete a SCSI Write Command.
The iSER layer at the initiator does not employ RDMA Reads.
The iSER layer at the initiator receives the SCSI Command PDU from the iSCSI layer. The iSER layer at the initiator generates an STag for the I/O Buffer of the SCSI Read and Advertises the buffer by including the STag and the Base Offset as part of the iSER header for the PDU. The iSER Message is transferred to the target using a Send Message. The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP).
The iSER layer at the target uses one or more RDMA Writes to transfer the data required to complete the SCSI Read.
The iSER layer at the target uses a Send Message to transfer the SCSI Response PDU back to the iSER layer at the initiator. The iSER layer at the initiator invalidates the STag and notifies the iSCSI layer of the availability of the SCSI Response PDU. The Send with Invalidate Message, if supported by the RCaP layer (e.g., iWARP), can be used for automatic invalidation of the STag.
The iSER layer at the initiator receives the SCSI Command PDU from the iSCSI layer. If solicited data transfer is involved, the iSER layer at the initiator generates an STag for the I/O Buffer of the SCSI Write and Advertises the buffer by including the STag and the Base Offset as part of the iSER header for the PDU. The iSER Message is transferred to the target using a Send Message. The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP).
The iSER layer at the initiator may optionally send one or more non- immediate unsolicited data PDUs to the target using Send Messages.
If solicited data transfer is involved, the iSER layer at the target uses one or more RDMA Reads to transfer the data required to complete the SCSI Write.
The iSER layer at the target uses a Send Message to transfer the SCSI Response PDU back to the iSER layer at the initiator. The iSER layer at the initiator invalidates the STag and notifies the iSCSI layer of the availability of the SCSI Response PDU. The Send with Invalidate Message, if supported by the RCaP layer (e.g., iWARP), can be used for automatic invalidation of the STag.
Advertisement (Advertised, Advertise, Advertisements, Advertises) --
The act of informing a remote iSER (iSCSI Extensions for RDMA) layer that a local node's buffer is available to it. A node makes a buffer available for incoming RDMA Read Request Message or incoming RDMA Write Message access by informing the remote iSER layer of the Tagged Buffer identifiers (STag, Base Offset, and buffer length). Note that this Advertisement of Tagged Buffer information is the responsibility of the iSER layer on either end and is not defined by the RDMA-Capable Protocol. A typical method would be for the iSER layer to embed the Tagged Buffer's STag, Base Offset, and buffer length in a message destined for the remote iSER layer.
Base Offset - A value when added to the Buffer Offset forms the
Tagged Offset.
Completion (Completed, Complete, Completes) - Completion is defined
as the process by which the RDMA-Capable Protocol layer informs the iSER layer that a particular RDMA Operation has performed all functions specified for the RDMA Operation.
Connection - A connection is a logical bidirectional communication
channel between the initiator and the target, e.g., a TCP connection. Communication between the initiator and the target occurs over one or more connections. The connections carry control messages, SCSI commands, parameters, and data within iSCSI Protocol Data Units (iSCSI PDUs).
Connection Handle - An information element that identifies the
particular iSCSI connection and is unique for a given iSCSI layer and the underlying iSER layer. Every invocation of an Operational Primitive is qualified with the Connection Handle.
Data Sink - The peer receiving a data payload. Note that the Data
Sink can be required to both send and receive RCaP (RDMA-Capable Protocol) Messages to transfer a data payload.
Data Source - The peer sending a data payload. Note that the Data
Source can be required to both send and receive RCaP Messages to transfer a data payload.
Datamover Interface (DI) - The interface between the iSCSI layer and
the Datamover Layer as described in [DA].
Datamover Layer - A layer that is directly below the iSCSI layer and
above the underlying transport layers. This layer exposes and uses a set of transport-independent Operational Primitives for the communication between the iSCSI layer and itself. The Datamover layer, operating in conjunction with the transport layers, moves the control and data information on the iSCSI connection. In this specification, the iSER layer is the Datamover layer.
Datamover Protocol - A Datamover protocol is the wire protocol that
is defined to realize the Datamover-layer functionality. In this specification, the iSER protocol is the Datamover protocol.
Inbound RDMA Read Queue Depth (IRD) - The maximum number of incoming
outstanding RDMA Read Requests that the RDMA-Capable Controller can handle on a particular RCaP Stream at the Data Source. For some RDMA-Capable Protocol layers, the term "IRD" may be known by a different name. For example, for InfiniBand, the equivalent to IRD is the Responder Resources.
I/O Buffer - A buffer that is used in a SCSI Read or Write operation
so SCSI data may be sent from or received into that buffer.
iSCSI - The iSCSI protocol as defined in [iSCSI] is a mapping of the
SCSI Architecture Model of SAM-5 over TCP.
iSCSI control-type PDU - Any iSCSI PDU that is not an iSCSI data-
type PDU and also not a SCSI Data-Out PDU carrying solicited data is defined as an iSCSI control-type PDU. Specifically, it is to be noted that SCSI Data-Out PDUs for unsolicited data are defined as iSCSI control-type PDUs.
iSCSI data-type PDU - An iSCSI data-type PDU is defined as an iSCSI
PDU that causes data transfer via RDMA operations at the iSER layer, transparent to the remote iSCSI layer, to take place between the peer iSCSI nodes on a Full Feature Phase iSCSI connection. An iSCSI data-type PDU, when requested for transmission by the sender iSCSI layer, results in the associated data transfer without the participation of the remote iSCSI layer, i.e., the PDU itself is not delivered as-is to the remote iSCSI layer. The following iSCSI PDUs constitute the set of iSCSI data- type PDUs -- SCSI Data-In PDU and R2T PDU.
iSCSI Layer - A layer in the protocol stack implementation within an
end node that implements the iSCSI protocol and interfaces with the iSER layer via the Datamover Interface.
iSCSI PDU (iSCSI Protocol Data Unit) - The iSCSI layer at the
initiator and the iSCSI layer at the target divide their communications into messages. The term "iSCSI Protocol Data Unit" (iSCSI PDU) is used for these messages.
iSCSI/iSER Connection - An iSER-assisted iSCSI connection. An iSCSI
connection that is not iSER assisted always maps onto a TCP connection at the transport level. But an iSER-assisted iSCSI connection may not have an underlying TCP connection. For some RCaP implementations (e.g., iWARP), an iSER-assisted iSCSI connection has an underlying TCP connection. For other RCaP implementations (e.g., InfiniBand), there is no underlying TCP connection. (In the specific example of InfiniBand [IB], an iSER- assisted iSCSI connection is directly mapped onto the InfiniBand Reliable Connection-based (RC) channel.)
iSCSI/iSER Session - An iSER-assisted iSCSI session. All connections
of an iSCSI/iSER session are iSCSI/iSER connections.
iSER - iSCSI Extensions for RDMA, the protocol defined in this
document.
iSER-assisted - A term generally used to describe the operation of
iSCSI when the iSER functionality is also enabled below the iSCSI layer for the specific iSCSI/iSER connection in question.
iSER-IRD - This variable represents the maximum number of incoming
outstanding RDMA Read Requests that the iSER layer at the initiator grants on a particular RCaP Stream.
iSER-ORD - This variable represents the maximum number of outstanding
RDMA Read Requests that the iSER layer can initiate on a particular RCaP Stream. This variable is maintained only by the iSER layer at the target.
iSER Layer - The layer that implements the iSCSI Extensions for RDMA
(iSER) protocol.
iWARP - A suite of wire protocols comprising of [RDMAP], [DDP], and
[MPA] when layered above [TCP]. [RDMAP] and [DDP] may be layered above SCTP or other transport protocols.
Local Mapping - A task state record maintained by the iSER layer that
associates the Initiator Task Tag to the Local STag(s). The specifics of the record structure are implementation dependent.
Local Peer - The implementation of the RDMA-Capable Protocol on the
local end of the connection. Used to refer to the local entity when describing protocol exchanges or other interactions between two nodes.
Node - A computing device attached to one or more links of a network.
A node in this context does not refer to a specific application or protocol instantiation running on the computer. A node may consist of one or more RDMA-Capable Controllers installed in a host computer.
Operational Primitive - An Operational Primitive is an abstract
functional interface procedure that requests another layer to perform a specific action on the requestor's behalf or notifies the other layer of some event. The Datamover Interface between an iSCSI layer and a Datamover layer within an iSCSI end node uses a set of Operational Primitives to define the functional interface between the two layers. Note that not every invocation of an Operational Primitive may elicit a response from the requested layer. A full discussion of the Operational Primitive types and request-response semantics available to iSCSI and iSER can be found in [DA].
Outbound RDMA Read Queue Depth (ORD) - The maximum number of
outstanding RDMA Read Requests that the RDMA-Capable Controller can initiate on a particular RCaP Stream at the Data Sink. For some RDMA-Capable Protocol layer, the term "ORD" may be known by a different name. For example, for InfiniBand, the equivalent to ORD is the Initiator Depth.
Phase Collapse - Refers to the optimization in iSCSI where the SCSI
status is transferred along with the final SCSI Data-In PDU from a target. See Section 4.2 in [iSCSI].
RCaP Message - One or more packets of the network layer that
constitute a single RDMA operation or a part of an RDMA Read Operation of the RDMA-Capable Protocol. For iWARP, an RCaP Message is known as an RDMAP Message.
RCaP Stream - A single bidirectional association between the peer
RDMA-Capable Protocol layers on two nodes over a single transport- level stream. For iWARP, an RCaP Stream is known as an RDMAP Stream, and the association is created following a successful Login Phase during which iSER support is negotiated.
RDMA-Capable Protocol (RCaP) - The protocol or protocol suite that
provides a reliable RDMA transport functionality, e.g., iWARP, InfiniBand, etc.
RDMA-Capable Controller - A network I/O adapter or embedded
controller with RDMA functionality. For example, for iWARP, this could be an RNIC, and for InfiniBand, this could be a HCA (Host Channel Adapter) or TCA (Target Channel Adapter).
RDMA-enabled Network Interface Controller (RNIC) - A network I/O
adapter or embedded controller with iWARP functionality.
RDMA Operation - A sequence of RCaP Messages, including control
messages, to transfer data from a Data Source to a Data Sink. The following RDMA Operations are defined -- RDMA Write Operation, RDMA Read Operation, and Send Operation.
RDMA Protocol (RDMAP) - A wire protocol that supports RDMA Operations
to transfer ULP data between a Local Peer and the Remote Peer as described in [RDMAP].
RDMA Read Operation - An RDMA Operation used by the Data Sink to
transfer the contents of a Data Source buffer from the Remote Peer to a Data Sink buffer at the Local Peer. An RDMA Read operation consists of a single RDMA Read Request Message and a single RDMA Read Response Message.
RDMA Read Request - An RCaP Message used by the Data Sink to request
the Data Source to transfer the contents of a buffer. The RDMA Read Request Message describes both the Data Source and the Data Sink buffers.
RDMA Read Response - An RCaP Message used by the Data Source to
transfer the contents of a buffer to the Data Sink, in response to an RDMA Read Request. The RDMA Read Response Message only describes the Data Sink buffer.
RDMA Write Operation - An RDMA Operation used by the Data Source to
transfer the contents of a Data Source buffer from the Local Peer to a Data Sink buffer at the Remote Peer. The RDMA Write Message only describes the Data Sink buffer.
Remote Direct Memory Access (RDMA) - A method of accessing memory on
a remote system in which the local system specifies the remote location of the data to be transferred. Employing an RDMA- Capable Controller in the remote system allows the access to take place without interrupting the processing of the CPU(s) on the system.
Remote Mapping - A task state record maintained by the iSER layer
that associates the Initiator Task Tag to the Advertised STag(s) and the Base Offset(s). The specifics of the record structure are implementation dependent.
Remote Peer - The implementation of the RDMA-Capable Protocol on the
opposite end of the connection. Used to refer to the remote entity when describing protocol exchanges or other interactions between two nodes.
SCSI Layer - This layer builds/receives SCSI CDBs (Command Descriptor
Blocks) and sends/receives them with the remaining command execute [SAM5] parameters to/from the iSCSI layer.
Send - An RDMA Operation that transfers the content of a buffer from
the Local Peer to an untagged buffer at the Remote Peer.
SendInvSE Message - A Send with Solicited Event and Invalidate
Message.
SendSE Message - A Send with Solicited Event Message.
Sequence Number (SN) - DataSN for a SCSI Data-In PDU and R2TSN for an
R2T PDU. The semantics for both types of sequence numbers are as defined in [iSCSI].
Session, iSCSI Session - The group of connections that link an
initiator SCSI port with a target SCSI port form an iSCSI session (equivalent to a SCSI Initiator-Target (I-T) nexus). Connections can be added to and removed from a session even while the I-T nexus is intact. Across all connections within a session, an initiator sees one and the same target.
Steering Tag (STag) - An identifier of a Tagged Buffer on a node
(Local or Remote) as defined in [RDMAP] and [DDP]. For other RDMA-Capable Protocols, the Steering Tag may be known by different names but will be referred to herein as STags. For example, for InfiniBand, a Remote STag is known as an R-Key, and a Local STag is known as an L-Key, and both will be considered STags.
Tagged Buffer - A buffer that is explicitly Advertised to the iSER
layer at the remote node through the exchange of an STag, Base Offset, and length.
Tagged Offset - The offset within a Tagged Buffer.
Traditional iSCSI - Refers to the iSCSI protocol as defined in
[iSCSI] (i.e., without the iSER enhancements).
Untagged Buffer - A buffer that is not explicitly Advertised to the
iSER layer at the remode node.
Sequence Number Acknowledgement for data
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
This section discusses the upper-layer interface requirements in the form of an abstract model of the required interactions between the iSCSI layer and the iSER layer. The abstract model used here is derived from the architectural model described in [DA]. [DA] also provides a functional overview of the interactions between the iSCSI layer and the Datamover layer as intended by the Datamover Architecture.
The interface requirements are specified by Operational Primitives. An Operational Primitive is an abstract functional interface procedure between the iSCSI layer and the iSER layer that requests one layer to perform a specific action on behalf of the other layer or notifies the other layer of some event. Whenever an Operational Primitive in invoked, the Connection_Handle qualifier is used to identify a particular iSCSI connection. For some Operational Primitives, a Data_Descriptor is used to identify the iSCSI/SCSI data buffer associated with the requested or completed operation.
The abstract model and the Operational Primitives defined in this section facilitate the description of the iSER protocol. In the rest of the iSER specification, the compliance statements related to the use of these Operational Primitives are only for the purpose of the required interactions between the iSCSI layer and the iSER layer. Note that the compliance statements related to the Operational Primitives in the rest of this specification only mandate functional equivalence on implementations, but do not put any requirements on the implementation specifics of the interface between the iSCSI layer and the iSER layer.
Each Operational Primitive is invoked with a set of qualifiers which specify the information context for performing the specific action being requested of the Operational Primitive. While the qualifiers are required, the method of realizing the qualifiers (e.g., by passing synchronously with invocation, or by retrieving from task context, or by retrieving from shared memory, etc.) is implementation dependent.
The iSER protocol layer MUST support the following Operational Primitives to be used by the iSCSI protocol layer.
This is used by the iSCSI layers at the initiator and the target to request the outbound transfer of an iSCSI control-type PDU (see Section 7.2). Qualifiers that only apply for a particular control- type PDU are known as PDU-specific qualifiers, e.g., ImmediateDataSize for a SCSI Write command. For details on PDU- specific qualifiers, see Section 7.3. The iSCSI layer can only invoke the Send_Control Operational Primitive when the connection is in iSER-assisted mode.
This is used by the iSCSI layer at the target to request the outbound transfer of data for a SCSI Data-In PDU from the buffer identified by the Data_Descriptor qualifier. The iSCSI layer can only invoke the Put_Data Operational Primitive when the connection is in iSER- assisted mode.
The Notify_Enable qualifier is used to indicate to the iSER layer whether or not it should generate an eventual local completion notification to the iSCSI layer. See Section 3.2.2 on Data_Completion_Notify for details.
This is used by the iSCSI layer at the target to request the inbound transfer of solicited data requested by an R2T PDU into the buffer identified by the Data_Descriptor qualifier. The iSCSI layer can only invoke the Get_Data Operational Primitive when the connection is in iSER-assisted mode.
The Notify_Enable qualifier is used to indicate to the iSER layer whether or not it should generate the eventual local completion notification to the iSCSI layer. See Section 3.2.2 on Data_Completion_Notify for details.
This is used by the iSCSI layers at the initiator and the target to request the allocation of all connection resources necessary to support RCaP for an operational iSCSI/iSER connection. The iSCSI layer may optionally specify the implementation-specific resource requirements for the iSCSI connection using the Resource_Descriptor qualifier.
A return result of Status=success means the invocation succeeded, and a return result of Status=failure means that the invocation failed. If the invocation is for a Connection_Handle for which an earlier invocation succeeded, the request will be ignored by the iSER layer and the result of Status=success will be returned. Only one Allocate_Connection_Resources Operational Primitive invocation can be outstanding for a given Connection_Handle at any time.
This is used by the iSCSI layers at the initiator and the target to request the deallocation of all connection resources that were allocated earlier as a result of a successful invocation of the Allocate_Connection_Resources Operational Primitive.
This is used by the iSCSI layers at the initiator and the target to request that iSER-assisted mode be used for the connection. The Transport_Connection_Descriptor qualifier is used to identify the specific connection associated with the Connection_Handle. The iSCSI layer can only invoke the Enable_Datamover Operational Primitive when there was a corresponding prior resource allocation.
The Final_Login_Response_PDU input qualifier is applicable only for a target and contains the final Login Response PDU that concludes the iSCSI Login Phase.
This is used by the iSCSI layers at the initiator and the target to request that a specified iSCSI/iSER connection be terminated and all associated connection and task resources be freed. When this Operational Primitive invocation returns to the iSCSI layer, the iSCSI layer may assume full ownership of all iSCSI-level resources, e.g., I/O Buffers, associated with the connection.
This is used by the iSCSI layers at the initiator and the target to request the iSER layer to take note of the specified Key-Value pairs that were negotiated by the iSCSI peers for the connection.
This is used by the iSCSI layers at the initiator and the target to request the deallocation of all RCaP-specific resources allocated by the iSER layer for the task identified by the ITT qualifier. The iSER layer may require a certain number of RCaP-specific resources associated with the ITT for each new iSCSI task. In the normal course of execution, these task-level resources in the iSER layer are assumed to be transparently allocated on each task initiation and deallocated on the conclusion of each task as appropriate. In exception scenarios where the task does not conclude with a SCSI Response PDU, the iSER layer needs to be notified of the individual task terminations to aid its task-level resource management. This Operational Primitive is used for this purpose and is not needed when a SCSI Response PDU normally concludes a task. Note that RCaP- specific task resources are deallocated by the iSER layer when a SCSI Response PDU normally concludes a task, even if the SCSI status was not success.
The iSER layer MUST use the following Operational Primitives offered by the iSCSI protocol layer when the connection is in iSER-assisted mode.
This is used by the iSER layers at the initiator and the target to notify the iSCSI layer of the availability of an inbound iSCSI control-type PDU. A PDU is described as "available" to the iSCSI layer when the iSER layer notifies the iSCSI layer of the reception of that inbound PDU, along with an implementation-specific indication as to where the received PDU is.
This is used by the iSER layer to notify the iSCSI layer of the completion of the outbound data transfer that was requested by the iSCSI layer only if the invocation of the Put_Data Operational Primitive (see Section 3.1.2) was qualified with Notify_Enable set. SN refers to the DataSN associated with the SCSI Data-In PDU.
This is used by the iSER layer to notify the iSCSI layer of the completion of the inbound data transfer that was requested by the iSCSI layer only if the invocation of the Get_Data Operational Primitive (see Section 3.1.3) was qualified with Notify_Enable set. SN refers to the R2TSN associated with the R2T PDU.
This is used by the iSER layer at the target to notify the iSCSI layer of the arrival of the data acknowledgement (as defined in [iSCSI]) requested earlier by the iSCSI layer for the outbound data transfer via an invocation of the Put_Data Operational Primitive where the A-bit in the SCSI Data-In PDU is set to one. See Section 7.3.5. DataSN refers to the expected DataSN of the next SCSI Data-In PDU that immediately follows the SCSI Data-In PDU with the A-bit set to which this notification corresponds, with semantics as defined in [iSCSI].
This is used by the iSER layers at the initiator and the target to notify the iSCSI layer of the unsolicited termination or failure of an iSCSI/iSER connection. The iSER layer MUST deallocate the connection and task resources associated with the terminated connection before the invocation of this Operational Primitive. Note that the Connection_Terminate_Notify Operational Primitive is not invoked when the termination of the connection was earlier requested by the local iSCSI layer.
To operate in iSER-assisted mode, the iSCSI layers at both the initiator and the target MUST negotiate the RDMAExtensions key (see Section 6.3) to "Yes" on the leading connection. If the RDMAExtensions key is not negotiated to "Yes", then iSER-assisted mode MUST NOT be used. If the RDMAExtensons key is negotiated to "Yes", but the invocation of the Allocate_Connection_Resources Operational Primitive to the iSER layer fails, the iSCSI layer MUST fail the iSCSI Login process or terminate the connection as appropriate. See Section 10.1.3.1 for details.
If the RDMAExtensions key is negotiated to "Yes", the iSCSI layer MUST satisfy the following protocol usage requirements from the iSER protocol:
1. The iSCSI layer at the initiator MUST set ExpDataSN to zero in Task Management Function Requests for Task Allegiance Reassignment for read/bidirectional commands, so as to cause the target to send all unacknowledged read data.
2. The iSCSI layer at the target MUST always return the SCSI status in a separate SCSI Response PDU for read commands, i.e., there MUST NOT be a "phase collapse" in concluding a SCSI Read Command.
3. The iSCSI layers at both the initiator and the target MUST support the keys as defined in Section 6 on Login/Text Operational Keys. If used as specified, these keys MUST NOT be answered with NotUnderstood, and the semantics as defined MUST be followed for each iSER-assisted connection.
4. The iSCSI layer at the initiator MUST NOT issue SNACKs for PDUs.
The iSER protocol layer is layered on top of an RCaP layer (see Figure 1) and the following are the key features that are assumed to be supported by any RCaP layer:
* The RCaP layer supports all basic RDMA operations, including the RDMA Write Operation, RDMA Read Operation, and Send Operation.
* The RCaP layer provides reliable, in-order message delivery and direct data placement.
* When the iSER layer initiates an RDMA Read Operation following an RDMA Write Operation on one RCaP Stream, the RDMA Read Response Message processing on the remote node will be started only after the preceding RDMA Write Message payload is placed in the memory of the remote node.
* The RCaP layer encapsulates a single iSER Message into a single RCaP Message on the Data Source side. The RCaP layer decapsulates the iSER Message before delivering it to the iSER layer on the Data Sink side.
* For an RCaP layer that supports the Send with Invalidate Message (e.g., iWARP), when the iSER layer provides the STag to be remotely invalidated to the RCaP layer for a Send with Invalidate Message, the RCaP layer uses this STag as the STag to be invalidated in the Send with Invalidate Message.
* The RCaP layer uses the STag and Tagged Offset provided by the iSER layer for the RDMA Write and RDMA Read Request Messages.
* When the RCaP layer delivers the content of an RDMA Send Message to the iSER layer, the RCaP layer provides the length of the RDMA Send Message. This ensures that the iSER layer does not have to carry a length field in the iSER header.
* When the RCaP layer delivers the Send Message to the iSER layer, it notifies the iSER layer with the mechanism provided on that interface.
* For an RCaP layer that supports the Send with Invalidate Message (e.g., iWARP), when the RCaP layer delivers a Send with Invalidate Message to the iSER layer, it passes the value of the STag that was invalidated.
* The RCaP layer propagates all status and error indications to the iSER layer.
* For a transport layer that operates in byte stream mode such as TCP, the RCaP implementation supports the enabling of the RDMA mode after connection establishment and the exchange of Login parameters in byte stream mode. For a transport layer that provides message delivery capability such as [IB], the RCaP implementation supports the direct use of the messaging capability by the iSCSI layer for the Login Phase after connection establishment and before enabling iSER-assisted mode. (In the specific example of InfiniBand [IB], the iSCSI layer uses IB messages to transfer iSCSI PDUs for the Login Phase after connection establishment and before enabling iSER-assisted mode.)
* Whenever the iSER layer terminates the RCaP Stream, the RCaP layer terminates the associated connection.
After the iSER connection is established, the RCaP layer and the underlying transport layer are responsible for maintaining the connection and reporting to the iSER layer any connection failures.
During connection setup, the iSCSI layer at the initiator is responsible for establishing a connection with the target. After the connection is established, the iSCSI layers at the initiator and the target enter the Login Phase using the same rules as outlined in [iSCSI]. The connection transitions into the iSCSI Full Feature Phase in iSER-assisted mode following a successful login negotiation between the initiator and the target in which iSER-assisted mode is negotiated and the connection resources necessary to support RCaP have been allocated at both the initiator and the target. The same connection MUST be used for both the iSCSI Login Phase and the subsequent iSER-assisted Full Feature Phase.
For a transport layer that operates in byte stream mode such as TCP, the RCaP implementation supports the enabling of the RDMA mode after connection establishment and the exchange of Login parameters in byte stream mode. For a transport layer that provides message delivery capability such as [IB], the RCaP implementation supports the use of the messaging capability by the iSCSI layer directly for the Login Phase after connection establishment before enabling iSER-assisted mode.
iSER-assisted mode MUST NOT be enabled unless it is negotiated on the leading connection during the LoginOperationalNegotiation stage of the iSCSI Login Phase. iSER-assisted mode is negotiated using the RDMAExtensions=<boolean-value> key. Both the initiator and the target MUST exchange the RDMAExtensions key with the value set to "Yes" to enable iSER-assisted mode. If both the initiator and the target fail to negotiate the RDMAExtensions key set to "Yes", then the connection MUST continue with the login semantics as defined in [iSCSI]. If the RDMAExtensions key is not negotiated to Yes, then for some RCaP implementation (such as [IB]), the existing connection may need to be torn down and a new connection may need to be established in TCP-capable mode. (For InfiniBand, this will require a connection like [IPoIB].)
iSER-assisted mode is defined for a Normal session only, and the RDMAExtensions key MUST NOT be negotiated for a Discovery session. Discovery sessions are always conducted using the transport layer as described in [iSCSI].
An iSER-enabled node is not required to initiate the RDMAExtensions key exchange if its preference is for the Traditional iSCSI mode. The RDMAExtensions key, if offered, MUST be sent in the first available Login Response or Login Request PDU in the LoginOperationalNegotiation stage. This is due to the fact that the value of some Login parameters might depend on whether or not iSER- assisted mode is enabled.
iSER-assisted mode is a session-wide attribute. If both the initiator and the target negotiated RDMAExtensions="Yes" on the leading connection of a session, then all subsequent connections of the same session MUST enable iSER-assisted mode without having to exchange RDMAExtensions keys during the iSCSI Login Phase. Conversely, if both the initiator and the target failed to negotiate RDMAExtensions to "Yes" on the leading connection of a session, then the RDMAExtensions key MUST NOT be negotiated further on any additional subsequent connection of the session.
When the RDMAExtensions key is negotiated to "Yes", the HeaderDigest and the DataDigest keys MUST be negotiated to "None" on all iSCSI/iSER connections participating in that iSCSI session. This is because, for an iSCSI/iSER connection, RCaP is responsible for providing error detection that is at least as good as a 32-bit CRC for all iSER Messages. Furthermore, all SCSI Read data are sent using RDMA Write Messages instead of the SCSI Data-In PDUs, and all solicited SCSI Write data are sent using RDMA Read Response Messages instead of the SCSI Data-Out PDUs. HeaderDigest and DataDigest that apply to iSCSI PDUs would not be appropriate for RDMA Read and RDMA Write operations used with iSER.
If the outcome of the iSCSI negotiation is to enable iSER-assisted mode, then on the initiator side, prior to sending the Login Request with the T (Transit) bit set to one and the NSG (Next Stage) field set to FullFeaturePhase, the iSCSI layer SHOULD request the iSER layer to allocate the connection resources necessary to support RCaP by invoking the Allocate_Connection_Resources Operational Primitive. The connection resources required are defined by the implementation and are outside the scope of this specification. The iSCSI layer may invoke the Notice_Key_Values Operational Primitive before invoking the Allocate_Connection_Resources Operational Primitive to request the iSER layer to take note of the negotiated values of the iSCSI keys for the connection. The specific keys to be passed in as input qualifiers are implementation dependent. These may include, but are not limited to, MaxOutstandingR2T and ErrorRecoveryLevel.
Among the connection resources allocated at the initiator is the Inbound RDMA Read Queue Depth (IRD). As described in Section 9.5.1, R2Ts are transformed by the target into RDMA Read operations. IRD limits the maximum number of simultaneously incoming outstanding RDMA Read Requests per an RCaP Stream from the target to the initiator. The required value of IRD is outside the scope of the iSER specification. The iSER layer at the initiator MUST set IRD to 1 or higher if R2Ts are to be used in the connection. However, the iSER layer at the initiator MAY set IRD to zero based on implementation configuration; setting IRD to zero indicates that no R2Ts will be used on that connection. Initially, the iSER-IRD value at the initiator SHOULD be set to the IRD value at the initiator and MUST NOT be more than the IRD value.
On the other hand, the Outbound RDMA Read Queue Depth (ORD) MAY be set to zero since the iSER layer at the initiator does not issue RDMA Read Requests to the target.
Failure to allocate the requested connection resources locally results in a login failure, and its handling is described in Section 10.1.3.1.
The iSER layer MUST return a success status to the iSCSI layer in response to the Allocate_Connection_Resources Operational Primitive. After the target returns the Login Response with the T bit set to one and the NSG field set to FullFeaturePhase, and a Status-Class of 0x00 (Success), the iSCSI layer MUST invoke the Enable_Datamover Operational Primitive with the following qualifiers. (See Section 10.1.4.6 for the case when the Status-Class is not Success.)
a. Connection_Handle that identifies the iSCSI connection.
b. Transport_Connection_Descriptor that identifies the specific transport connection associated with the Connection_Handle.
The iSER layer MUST send the iSER Hello Message as the first iSER Message only if iSERHelloRequired is negotiated to "Yes". See Section 5.1.3 on iSER Hello Exchange.
If the iSCSI layer on the initiator side allocates the connection resources to support RCaP only after it receives the final Login Response PDU from the target, then it may not be able to handle the number of unexpected iSCSI control-type PDUs (as declared by the MaxOutstandingUnexpectedPDUs key from the initiator) that can be sent by the target before the buffer resources are allocated at the initiator side. In this case, the iSERHelloRequired key SHOULD be negotiated to "Yes" so that the initiator can allocate the connection resources before sending the iSER Hello Message. See Section 5.1.3 for more details.
If the outcome of the iSCSI negotiation is to enable iSER-assisted mode, then on the target side, prior to sending the Login Response with the T (Transit) bit set to one and the NSG (Next Stage) field set to FullFeaturePhase, the iSCSI layer MUST request the iSER layer to allocate the resources necessary to support RCaP by invoking the Allocate_Connection_Resources Operational Primitive. The connection resources required are defined by implementation and are outside the scope of this specification. Optionally, the iSCSI layer may invoke the Notice_Key_Values Operational Primitive before invoking the Allocate_Connection_Resources Operational Primitive to request the iSER layer to take note of the negotiated values of the iSCSI keys for the connection. The specific keys to be passed in as input qualifiers are implementation dependent. These may include, but not limited to, MaxOutstandingR2T and ErrorRecoveryLevel.
Premature allocation of RCaP connection resources can expose an iSER target to a resource exhaustion attack on those resources via multiple iSER connections that progress only to the point at which the implementation allocates the RCaP connection resources. The countermeasure for this attack is initiator authentication; the iSCSI layer MUST NOT request the iSER layer to allocate the connection resources necessary to support RCaP until the iSCSI layer is sufficiently far along in the iSCSI Login Phase that it is reasonably certain that the peer side is not an attacker. In particular, if the Login Phase includes a SecurityNegotiation stage, the iSCSI layer MUST defer the connection resource allocation (i.e., invoking the Allocate_Connection_Resources Operational Primitive) to the LoginOperationalNegotiation stage ([iSCSI]) so that the resource allocation occurs after the authentication phase is completed.
Among the connection resources allocated at the target is the Outbound RDMA Read Queue Depth (ORD). As described in Section 9.5.1, R2Ts are transformed by the target into RDMA Read operations. The ORD limits the maximum number of simultaneously outstanding RDMA Read Requests per RCaP Stream from the target to the initiator. Initially, the iSER-ORD value at the target SHOULD be set to the ORD value at the target.
On the other hand, the IRD at the target MAY be set to zero since the iSER layer at the target does not expect RDMA Read Requests to be issued by the initiator.
Failure to allocate the requested connection resources locally results in a login failure, and its handling is described in Section 10.1.3.1.
If the iSER layer at the target is successful in allocating the connection resources necessary to support RCaP, the following events MUST occur in the specified sequence:
1. The iSER layer MUST return a success status to the iSCSI layer in response to the Allocate_Connection_Resources Operational Primitive.
2. The iSCSI layer MUST invoke the Enable_Datamover Operational Primitive with the following qualifiers:
a. Connection_Handle that identifies the iSCSI connection.
b. Transport_Connection_Descriptor that identifies the specific transport connection associated with the Connection_Handle.
c. The final transport-layer (e.g., TCP) message containing the Login Response with the T bit set to one and the NSG field set to FullFeaturePhase.
3. The iSER layer MUST send the final Login Response PDU in the native transport mode to conclude the iSCSI Login Phase. If the underlying transport is TCP, then the iSER layer MUST send the final Login Response PDU in byte stream mode.
4. After receiving the iSER Hello Message from the initiator, the iSER layer MUST respond with the iSER HelloReply Message to be sent as the first iSER Message if iSERHelloRequired is negotiated to "Yes". If the iSER layer receives an iSER Hello Message when iSERHelloRequired is negotiated to "No", then this MUST be treated as an iSER protocol error. See Section 5.1.3 on iSER Hello Exchange for more details.
Note: In the above sequence, the operations as described in items 3 and 4 MUST be performed atomically for iWARP connections. Failure to do this may result in race conditions.
If iSERHelloRequired is negotiated to "Yes", the first iSER Message sent by the iSER layer at the initiator to the target MUST be the iSER Hello Message. The iSER Hello Message is used by the iSER layer at the initiator to declare iSER parameters to the target. See Section 9.3 on iSER Header Format for iSER Hello Message. Conversely, if iSERHelloRequired is negotiated to "No", then the iSER layer at the initiator MUST NOT send an iSER Hello Message.
In response to the iSER Hello Message, the iSER layer at the target MUST return the iSER HelloReply Message as the first iSER Message sent by the target if iSERHelloRequired is negotiated to "Yes". The iSER HelloReply Message is used by the iSER layer at the target to declare iSER parameters to the initiator. See Section 9.4 on iSER Header Format for iSER HelloReply Message. If the iSER layer receives an iSER Hello Message when iSERHelloRequired is negotiated to "No", then this MUST be treated as an iSER protocol error. See Section 10.1.3.4 on iSER Protocol Errors on for more details.
In the iSER Hello Message, the iSER layer at the initiator declares the iSER-IRD value to the target.
Upon receiving the iSER Hello Message, the iSER layer at the target MUST set the iSER-ORD value to the minimum of the iSER-ORD value at the target and the iSER-IRD value declared by the initiator. In order to free up the unused resources, the iSER layer at the target MAY adjust (lower) its ORD value to match the iSER-ORD value if the iSER-ORD value is smaller than the ORD value at the target.
In the iSER HelloReply Message, the iSER layer at the target declares the iSER-ORD value to the initiator.
Upon receiving the iSER HelloReply Message, the iSER layer at the initiator MAY adjust (lower) its IRD value to match the iSER-ORD value in order to free up the unused resources, if the iSER-ORD value declared by the target is smaller than the iSER-IRD value declared by the initiator.
It is an iSER-level negotiation failure if the iSER parameters declared in the iSER Hello Message by the initiator are unacceptable to the target. This includes the following:
* The initiator-declared iSER-IRD value is greater than 0, and the target-declared iSER-ORD value is 0.
* The initiator-supported and the target-supported iSER protocol versions do not overlap.
See Section 10.1.3.2 on the handling of the error situation.
An initiator that conforms to [RFC5046] allocates connection resources before sending the Login Request with the T (Transit) bit set to one and the NSG (Next Stage) field set to FullFeaturePhase. (For brevity, this is referred to as "early" connection allocation.) The current iSER specification relaxes this requirement to allow an initiator to allocate connection resources after it receives the final Login Response PDU from the target. (For brevity, this is referred to as "late" connection allocation.) An initiator that employs "late" connection allocation may encounter problems (e.g., RCaP connection closure) with a target that sends unexpected iSCSI PDUs immediately upon transitioning to Full Feature Phase, as allowed by the negotiated value of the MaxOutstandingUnexpectedPDUs key. The only way to prevent this situation in full generality is to use iSER Hello Messages, as they enable the initiator to allocate its connection resources before sending its iSER Hello Message. The iSERHelloRequired key is used by the initiator to determine if it is dealing with a target that supports the iSER Hello exchanges. Fortunately, known iSER target implementations do not take full advantage of the number of allowed unexpected PDUs immediately upon transitioning into Full Feature Phase, thus enabling an initiator workaround that involves a smaller quantity of connection resources prior to Full Feature Phase, as explained further below.
In the following summary, where "late" connection allocation is practiced, an initiator that follows [RFC5046] is referred to as an "old" initiator; otherwise, it is referred to as a "new" initiator. Similarly, a target that does not support the iSERHelloRequired key (and responds with "NotUnderstood" when negotiating the iSERHelloRequired key) is referred to as an "old" target; otherwise, it is referred to as a "new" target. Note that an "old" target can still support the iSER Hello exchanges, but this fact is not known by the initiator. A "new" target can also respond with "No" when negotiating the iSERHelloRequired key. In this case, its behavior with respect to "late" connection allocation is similar to an "old" target.
A "new" initiator will work fine with a "new" target.
For an "old" initiator and an "old" target, the failure by the initiator to handle the number of unexpected iSCSI control-type PDUs that are sent by the target before the buffer resources are allocated at the initiator can result in the failure of the iSER session caused by closure of the underlying RCaP connection. For the "old" target, there is a known implementation that sends one unexpected iSCSI control-type PDU after sending the final Login Response and then waits awhile before sending the next one. This tends to alleviate somewhat the buffer allocation problem at the initiator.
For a "new" initiator and an "old" target, the failure by the initiator to handle the number of unexpected iSCSI control-type PDUs that are sent by the target before the buffer resources are allocated at the initiator can result in the failure of the iSER session caused by closure of the underlying RCaP connection. A "new" initiator MAY choose to terminate the connection; otherwise, it SHOULD do one of the following:
1. Allocate the connection resources before sending the final Login Request PDU.
2. Allocate one or more buffers for receiving unexpected control-type PDUs from the target before sending the final Login Request PDU. This reduces the possibility of the unexpected control-type PDUs causing the RCaP connection to close before the connection resources have been allocated.
For an "old" initiator and a "new" target, if the iSERHelloRequired key is not negotiated, a "new" target MUST still respond with the iSER HelloReply Message when it receives the iSER Hello Message. If the iSERHelloRequired key is negotiated to "No" or "NotUnderstood", a "new" target MAY choose to terminate the connection; otherwise, it SHOULD delay sending any unexpected control-type PDUs until one of the following events has occurred:
1. A PDU is received from the initiator after it sends the final Login Response PDU.
2. A system-configurable timeout period (say, one second) has expired.
The iSCSI layer at the initiator terminates an iSCSI/iSER connection normally by invoking the Send_Control Operational Primitive qualified with the Logout Request PDU. The iSER layer at the initiator MUST use a Send Message to send the Logout Request PDU to the target. The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP). After the iSER layer at the initiator receives the Send Message containing the Logout Response PDU from the target, it MUST notify the iSCSI layer by invoking the Control_Notify Operational Primitive qualified with the Logout Response PDU.
After the iSCSI logout process is complete, the iSCSI layer at the target is responsible for closing the iSCSI/iSER connection as described in Section 5.2.2. After the RCaP layer at the initiator reports that the connection has been closed, the iSER layer at the initiator MUST deallocate all connection and task resources (if any) associated with the connection, and invalidate the Local Mappings (if any) before notifying the iSCSI layer by invoking the Connection_Terminate_Notify Operational Primitive.
Upon receiving the Send Message containing the Logout Request PDU, the iSER layer at the target MUST notify the iSCSI layer at the target by invoking the Control_Notify Operational Primitive qualified with the Logout Request PDU. The iSCSI layer completes the logout process by invoking the Send_Control Operational Primitive qualified with the Logout Response PDU. The iSER layer at the target MUST use a Send Message to send the Logout Response PDU to the initiator. The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP). After the iSCSI logout process is complete, the iSCSI layer at the target MUST request the iSER layer at the target to terminate the RCaP Stream by invoking the Connection_Terminate Operational Primitive.
As part of the termination process, the RCaP layer MUST close the connection. When the RCaP layer notifies the iSER layer after the RCaP Stream and the associated connection are terminated, the iSER layer MUST deallocate all connection and task resources (if any) associated with the connection, and invalidate the Local and Remote Mappings (if any).
The Connection_Terminate Operational Primitive MAY be invoked by the iSCSI layer to request the iSER layer to terminate the RCaP Stream without having previously exchanged the Logout Request and Logout Response PDUs between the two iSCSI/iSER nodes. As part of the termination process, the RCaP layer will close the connection. When the RCaP layer notifies the iSER layer after the RCaP Stream and the associated connection are terminated, the iSER layer MUST perform the following actions.
If the Connection_Terminate Operational Primitive is invoked by the iSCSI layer at the target, then the iSER layer at the target MUST deallocate all connection and task resources (if any) associated with the connection, and invalidate the Local and Remote Mappings (if any).
If the Connection_Terminate Operational Primitive is invoked by the iSCSI layer at the initiator, then the iSER layer at the initiator MUST deallocate all connection and task resources (if any) associated with the connection, and invalidate the Local Mappings (if any).
If the iSCSI/iSER connection is terminated without the invocation of Connection_Terminate from the iSCSI layer, the iSER layer MUST notify the iSCSI layer that the iSCSI/iSER connection has been terminated by invoking the Connection_Terminate_Notify Operational Primitive.
Prior to invoking Connection_Terminate_Notify, the iSER layer at the target MUST deallocate all connection and task resources (if any) associated with the connection, and invalidate the Local and Remote Mappings (if any).
Prior to invoking Connection_Terminate_Notify, the iSER layer at the initiator MUST deallocate all connection and task resources (if any) associated with the connection, and invalidate the Local Mappings (if any).
If the remote iSCSI/iSER node initiated the closing of the connection (e.g., by sending a TCP FIN or TCP RST), the iSER layer MUST notify the iSCSI layer after the RCaP layer reports that the connection is closed by invoking the Connection_Terminate_Notify Operational Primitive.
Another example of a connection termination without a preceding logout is when the iSCSI layer at the initiator does an implicit logout (connection reinstatement).
Certain iSCSI login/text operational keys have restricted usage in iSER, and additional keys are used to support the iSER protocol functionality. All other keys defined in [iSCSI] and not discussed in this section may be used on iSCSI/iSER connections with the same semantics.
Irrelevant when: RDMAExtensions=Yes
Negotiations resulting in RDMAExtensions=Yes for a session imply HeaderDigest=None and DataDigest=None for all connections in that session and override the settings, whether default or configured.
For an iSCSI connection belonging to a session in which RDMAExtensions=Yes was negotiated on the leading connection of the session, MaxRecvDataSegmentLength need not be declared in the Login Phase, and MUST be ignored if it is declared. Instead, InitiatorRecvDataSegmentLength (as described in Section 6.5) and TargetRecvDataSegmentLength (as described in Section 6.4) keys are negotiated. The values of the local and remote MaxRecvDataSegmentLength are derived from the InitiatorRecvDataSegmentLength and TargetRecvDataSegmentLength keys.
In the Full Feature Phase, the initiator MUST consider the value of its local MaxRecvDataSegmentLength (that it would have declared to the target) as having the value of InitiatorRecvDataSegmentLength, and the value of the remote MaxRecvDataSegmentLength (that would have been declared by the target) as having the value of TargetRecvDataSegmentLength. Similarly, the target MUST consider the value of its local MaxRecvDataSegmentLength (that it would have declared to the initiator) as having the value of TargetRecvDataSegmentLength, and the value of the remote MaxRecvDataSegmentLength (that would have been declared by the initiator) as having the value of InitiatorRecvDataSegmentLength.
Note that RFC 3720 requires that when a target receives a NOP-Out request with a valid Initiator Task Tag, it responds with a NOP-In with the same Initiator Task Tag that was provided in the NOP-Out request. Furthermore, it returns the first MaxRecvDataSegmentLength bytes of the initiator-provided Ping Data. Since there is no MaxRecvDataSegmentLength common to the initiator and the target in iSER, the length of the data sent with the NOP-Out request MUST NOT exceed InitiatorMaxRecvDataSegmentLength.
The MaxRecvDataSegmentLength key is applicable only for iSCSI control-type PDUs.
Use: LO (leading only)
Senders: Initiator and Target
Scope: SW (session-wide)
RDMAExtensions=<boolean-value>
Irrelevant when: SessionType=Discovery
Default is No
Result function is AND
This key is used by the initiator and the target to negotiate the support for iSER-assisted mode. To enable the use of iSER-assisted mode, both the initiator and the target MUST exchange RDMAExtensions=Yes. iSER-assisted mode MUST NOT be used if either the initiator or the target offers RDMAExtensions=No.
An iSER-enabled node is not required to initiate the RDMAExtensions key exchange if it prefers to operate in the Traditional iSCSI mode. However, if the RDMAExtensions key is to be negotiated, an initiator MUST offer the key in the first Login Request PDU in the LoginOperationalNegotiation stage of the leading connection, and a target MUST offer the key in the first Login Response PDU with which it is allowed to do so (i.e., the first Login Response PDU issued after the first Login Request PDU with the C bit set to zero) in the LoginOperationalNegotiation stage of the leading connection. In response to the offered key=value pair of RDMAExtensions=yes, an initiator MUST respond in the next Login Request PDU with which it is allowed to do so, and a target MUST respond in the next Login Response PDU with which it is allowed to do so.
Negotiating the RDMAExtensions key first enables a node to negotiate the optimal value for other keys. Certain iSCSI keys such as MaxBurstLength, MaxOutstandingR2T, ErrorRecoveryLevel, InitialR2T, ImmediateData, etc., may be negotiated differently depending on whether the connection is in Traditional iSCSI mode or iSER-assisted mode.
Use: IO (Initialize only)
Senders: Initiator and Target
Scope: CO (connection-only)
Irrelevant when: RDMAExtensions=No
TargetRecvDataSegmentLength=<numerical-value-512-to-(2**24-1)>
Default is 8192 bytes
Result function is minimum
This key is relevant only for the iSCSI connection of an iSCSI session if RDMAExtensions=Yes was negotiated on the leading connection of the session. It is used by the initiator and the target to negotiate the maximum size of the data segment that an initiator may send to the target in an iSCSI control-type PDU in the Full Feature Phase. For SCSI Command PDUs and SCSI Data-Out PDUs containing non-immediate unsolicited data to be sent by the initiator, the initiator MUST send all non-Final PDUs with a data segment size of exactly TargetRecvDataSegmentLength whenever the PDUs constitute a data sequence whose size is larger than TargetRecvDataSegmentLength.
Use: IO (Initialize only)
Senders: Initiator and Target
Scope: CO (connection-only)
Irrelevant when: RDMAExtensions=No
InitiatorRecvDataSegmentLength=<numerical-value-512-to-(2**24-1)>
Default is 8192 bytes
Result function is minimum
This key is relevant only for the iSCSI connection of an iSCSI session if RDMAExtensions=Yes was negotiated on the leading connection of the session. It is used by the initiator and the target to negotiate the maximum size of the data segment that a target may send to the initiator in an iSCSI control-type PDU in the Full Feature Phase.
Irrelevant when: RDMAExtensions=Yes
Negotiations resulting in RDMAExtensions=Yes for a session imply OFMarker=No and IFMarker=No for all connections in that session and override the settings, whether default or configured.
Use: LO (leading only), Declarative
Senders: Initiator and Target
Scope: SW (session-wide)
Irrelevant when: RDMAExtensions=No
MaxOutstandingUnexpectedPDUs=
<numerical-value-from-2-to-(2**32-1) | 0>
Default is 0
This key is used by the initiator and the target to declare the maximum number of outstanding "unexpected" iSCSI control-type PDUs that it can receive in the Full Feature Phase. It is intended to allow the receiving side to determine the amount of buffer resources needed beyond the normal flow control mechanism available in iSCSI. An initiator or target should select a value such that it would not impose an unnecessary constraint on the iSCSI layer under normal circumstances. The value of 0 is defined to indicate that the declarer has no limit on the maximum number of outstanding "unexpected" iSCSI control-type PDUs that it can receive. See Sections 8.1.1 and 8.1.2 for the usage of this key. Note that iSER Hello and HelloReply Messages are not iSCSI control-type PDUs and are not affected by this key.
For interoperability with implementations based on [RFC5046], this key SHOULD be negotiated because the default value of 0 in [RFC5046] is problematic for most implementations as it does not impose a bound on resources consumable by unexpected PDUs.
Use: LO (leading only), Declarative
Senders: Initiator and Target
Scope: SW (session-wide)
Irrelevant when: RDMAExtensions=No
MaxAHSLength=<numerical-value-from-2-to-(2**32-1) | 0>
Default is 256
This key is used by the initiator and target to declare the maximum size of AHS in an iSCSI control-type PDU that it can receive in the Full Feature Phase. It is intended to allow the receiving side to determine the amount of resources needed for receive buffering. An initiator or target should select a value such that it would not impose an unnecessary constraint on the iSCSI layer under normal circumstances. The value of 0 is defined to indicate that the declarer has no limit on the maximum size of AHS in iSCSI control- type PDUs that it can receive.
For interoperability with implementations based on [RFC5046], an initiator or target MAY terminate the connection if it anticipates MaxAHSLength to be greater than 256 and the key is not understood by its peer.
Use: LO (leading only), Declarative
Senders: Initiator
Scope: SW (session-wide)
RDMAExtensions=<boolean-value>
Irrelevant when: RDMAExtensions=No
Default is No
This key is used by the initiator to declare to the target the usage of the Write Base Offset in the iSER header of an iSCSI control-type PDU. When set to No, the Base Offset is associated with an I/O buffer that contains all the write data, including both unsolicited and solicited data. When set to Yes, the Base Offset is associated with an I/O buffer that only contains solicited data.
Use: LO (leading only), Declarative
Senders: Initiator
Scope: SW (session-wide)
RDMAExtensions=<boolean-value>
Irrelevant when: RDMAExtensions=No
Default is No
This key is relevant only for the iSCSI connection of an iSCSI session if RDMAExtensions=Yes was negotiated on the leading connection of the session. It is used by the initiator to declare to the target whether the iSER Hello Exchange is required. When set to Yes, the iSER layers MUST perform the iSER Hello Exchange as described in Section 5.1.3. When set to No, the iSER layers MUST NOT perform the iSER Hello Exchange.
When a connection is in the iSER-assisted mode, two types of message transfers are allowed between the iSCSI layer (at the initiator) and the iSCSI layer (at the target). These are known as the iSCSI data- type PDUs and the iSCSI control-type PDUs, and these terms are described in the following sections.
An iSCSI data-type PDU is defined as an iSCSI PDU that causes data transfer, transparent to the remote iSCSI layer, to take place between the peer iSCSI nodes in the Full Feature Phase of an iSCSI/iSER connection. An iSCSI data-type PDU, when requested for transmission by the iSCSI layer in the sending node, results in the data's transfer without the participation of the iSCSI layers at the sending and the receiving nodes. This is due to the fact that the PDU itself is not delivered as-is to the iSCSI layer in the receiving node. Instead, the data transfer operations are transformed into the appropriate RDMA operations, which are handled by the RDMA-Capable Controller. The set of iSCSI data-type PDUs consists of SCSI Data-In PDUs and R2T PDUs.
If the invocation of the Operational Primitive by the iSCSI layer to request the iSER layer to process an iSCSI data-type PDU is qualified with Notify_Enable set, then upon completing the RDMA operation, the iSER layer at the target MUST notify the iSCSI layer at the target by invoking the Data_Completion_Notify Operational Primitive qualified with the ITT and SN. There is no data completion notification at the initiator since the RDMA operations are completely handled by the RDMA-Capable Controller at the initiator and the iSER layer at the initiator is not involved with the data transfer associated with iSCSI data-type PDUs.
If the invocation of the Operational Primitive by the iSCSI layer to request the iSER layer to process an iSCSI data-type PDU is qualified with Notify_Enable cleared, then upon completing the RDMA operation, the iSER layer at the target MUST NOT notify the iSCSI layer at the target and MUST NOT invoke the Data_Completion_Notify Operational Primitive.
If an operation associated with an iSCSI data-type PDU fails for any reason, the contents of the Data Sink buffers associated with the operation are considered indeterminate.
Any iSCSI PDU that is not an iSCSI data-type PDU and also not a SCSI Data-Out PDU carrying solicited data is defined as an iSCSI control- type PDU. The iSCSI layer invokes the Send_Control Operational Primitive to request the iSER layer to process an iSCSI control-type PDU. iSCSI control-type PDUs are transferred using Send Messages of RCaP. Specifically, it is to be noted that SCSI Data-Out PDUs carrying unsolicited data are defined as iSCSI control-type PDUs. See Section 7.3.4 on the treatment of SCSI Data-Out PDUs.
When the iSER layer receives an iSCSI control-type PDU, it MUST notify the iSCSI layer by invoking the Control_Notify Operational Primitive qualified with the iSCSI control-type PDU.
This section describes the handling of each of the iSCSI PDU types by the iSER layer. The iSCSI layer requests the iSER layer to process the iSCSI PDU by invoking the appropriate Operational Primitive. A Connection_Handle MUST qualify each of these invocations. In addition, the BHS and the optional AHS of the iSCSI PDU as defined in [iSCSI] MUST qualify each of the invocations. The qualifying Connection_Handle, the BHS, and the AHS are not explicitly listed in the subsequent sections.
PDU-specific qualifiers (for SCSI Write or bidirectional command): ImmediateDataSize, UnsolicitedDataSize, DataDescriptorOut
PDU-specific qualifiers (for SCSI Read or bidirectional command): DataDescriptorIn
The iSER layer at the initiator MUST send the SCSI command in a Send Message to the target. The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP).
For a SCSI Write or bidirectional command, the iSCSI layer at the initiator MUST invoke the Send_Control Operational Primitive as follows:
* If there is immediate data to be transferred for the SCSI write or bidirectional command, the qualifier ImmediateDataSize MUST be used to define the number of bytes of immediate unsolicited data to be sent with the write or bidirectional command, and the qualifier DataDescriptorOut MUST be used to define the initiator's I/O Buffer containing the SCSI Write data.
* If there is unsolicited data to be transferred for the SCSI Write or bidirectional command, the qualifier UnsolicitedDataSize MUST be used to define the number of bytes of immediate and non- immediate unsolicited data for the command. The iSCSI layer will issue one or more SCSI Data-Out PDUs for the non-immediate unsolicited data. See Section 7.3.4 on SCSI Data-Out.
* If there is solicited data to be transferred for the SCSI Write or bidirectional command, as indicated when the Expected Data Transfer Length in the SCSI Command PDU exceeds the value of UnsolicitedDataSize, the iSER layer at the initiator MUST do the following:
a. It MUST allocate a Write STag for the I/O Buffer defined by the qualifier DataDescriptorOut. DataDescriptorOut describes the I/O buffer starting with the immediate unsolicited data (if any), followed by the non-immediate unsolicited data (if any) and solicited data. When TaggedBufferForSolicitedDataOnly is negotiated to No, the Base Offset is associated with this I/O Buffer. When TaggedBufferForSolicitedDataOnly is negotiated to Yes, the Base Offset is associated with an I/O Buffer that contains only solicited data.
b. It MUST establish a Local Mapping that associates the Initiator Task Tag (ITT) to the Write STag.
c. It MUST Advertise the Write STag and the Base Offset to the target by sending them in the iSER header of the iSER Message (the payload of the Send Message of RCaP) containing the SCSI Write or bidirectional command PDU. The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP). See Section 9.2 on iSER Header Format for iSCSI Control-Type PDU.
For a SCSI Read or bidirectional command, the iSCSI layer at the initiator MUST invoke the Send_Control Operational Primitive qualified with DataDescriptorIn, which defines the initiator's I/O Buffer for receiving the SCSI Read data. The iSER layer at the initiator MUST do the following:
a. It MUST allocate a Read STag for the I/O Buffer and note the Base Offset for this I/O Buffer.
b. It MUST establish a Local Mapping that associates the Initiator Task Tag (ITT) to the Read STag.
c. It MUST Advertise the Read STag and the Base Offset to the target by sending them in the iSER header of the iSER Message (the payload of the Send Message of RCaP) containing the SCSI Read or bidirectional command PDU. The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP). See Section 9.2 on iSER Header Format for iSCSI Control-Type PDU.
If the amount of unsolicited data to be transferred in a SCSI Command exceeds TargetRecvDataSegmentLength, then the iSCSI layer at the initiator MUST segment the data into multiple iSCSI control-type PDUs, with the data segment length in all generated PDUs (except the last one) having exactly the size TargetRecvDataSegmentLength. The data segment length of the last iSCSI control-type PDU carrying the unsolicited data can be up to TargetRecvDataSegmentLength.
When the iSER layer at the target receives the SCSI Command, it MUST establish a Remote Mapping that associates the ITT to the Base Offset(s) and the Advertised STag(s) in the iSER header. The Write STag is used by the iSER layer at the target in handling the data transfer associated with the R2T PDU(s) as described in Section 7.3.6. The Read STag is used in handling the SCSI Data-In PDU(s) from the iSCSI layer at the target as described in Section 7.3.5.
The iSCSI layer at the target MUST invoke the Send_Control Operational Primitive qualified with DataDescriptorStatus, which defines the buffer containing the sense and response information. The iSCSI layer at the target MUST always return the SCSI status for a SCSI command in a separate SCSI Response PDU. "Phase collapse" for transferring SCSI status in a SCSI Data-In PDU MUST NOT be used. The iSER layer at the target sends the SCSI Response PDU according to the following rules:
* If no STags were Advertised by the initiator in the iSER Message containing the SCSI command PDU, then the iSER layer at the target MUST send a Send Message containing the SCSI Response PDU. The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP).
* If the initiator Advertised a Read STag in the iSER Message containing the SCSI Command PDU, then the iSER layer at the target MUST send a Send Message containing the SCSI Response PDU. The header of the Send Message MUST carry the Read STag to be invalidated at the initiator. The Send with Invalidate Message, if supported by the RCaP layer (e.g., iWARP), can be used for the automatic invalidation of the STag.
* If the initiator Advertised only the Write STag in the iSER Message containing the SCSI command PDU, then the iSER layer at the target MUST send a Send Message containing the SCSI Response PDU. The header of the Send Message MUST carry the Write STag to be invalidated at the initiator. The Send with Invalidate Message, if supported by the RCaP layer (e.g., iWARP), can be used for the automatic invalidation of the STag.
When the iSCSI layer at the target invokes the Send_Control Operational Primitive to send the SCSI Response PDU, the iSER layer at the target MUST invalidate the Remote Mapping before transferring the SCSI Response PDU to the initiator.
Upon receiving a Send Message containing the SCSI Response PDU from the target, the iSER layer at the initiator MUST invalidate the STag(s) specified in the header. (If a Send with Invalidate Message is supported by the RCaP layer (e.g., iWARP) and is used to carry the SCSI Response PDU, the RCaP layer at the initiator will invalidate the STag. The iSER layer at the initiator MUST ensure that the correct STag is invalidated. If both the Read and the Write STags were Advertised earlier by the initiator, then the iSER layer at the initiator MUST explicitly invalidate the Write STag upon receiving the Send with Invalidate Message because the header of the Send with Invalidate Message can only carry one STag (in this case, the Read STag) to be invalidated.)
The iSER layer at the initiator MUST ensure the invalidation of the STag(s) used in a command before notifying the iSCSI layer at the initiator by invoking the Control_Notify Operational Primitive qualified with the SCSI Response. This precludes the possibility of using the STag(s) after the completion of the command; such use would cause data corruption.
When the iSER layer at the initiator receives a Send Message containing the SCSI Response PDU, it SHOULD invalidate the Local Mapping. The iSER layer MUST ensure that all local STag(s) associated with the ITT are invalidated before notifying the iSCSI layer of the SCSI Response PDU by invoking the Control_Notify Operational Primitive qualified with the SCSI Response PDU.
The iSER layer MUST use a Send Message to send the Task Management Function Request/Response PDU. The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP).
For the Task Management Function Request with the TASK REASSIGN function, the iSER layer at the initiator MUST do the following:
* It MUST use the ITT as specified in the Referenced Task Tag from the Task Management Function Request PDU to locate the existing STags (if any) in the Local Mappings.
* It MUST invalidate the existing STags (if any) and the Local Mappings.
* It MUST allocate a Read STag for the I/O Buffer and note the Base Offset associated with the I/O Buffer as defined by the qualifier DataDescriptorIn if the Send_Control Operational Primitive invocation is qualified with DataDescriptorIn.
* It MUST allocate a Write STag for the I/O Buffer and note the Base Offset associated with the I/O Buffer as defined by the qualifier DataDescriptorOut if the Send_Control Operational Primitive invocation is qualified with DataDescriptorOut.
* If STags are allocated, it MUST establish new Local Mapping(s) that associate the ITT to the allocated STag(s).
* It MUST Advertise the STags and the Base Offsets, if allocated, to the target in the iSER header of the Send Message carrying the iSCSI PDU, as described in Section 9.2. The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP).
For the Task Management Function Request with the TASK REASSIGN function for a SCSI Read or bidirectional command, the iSCSI layer at the initiator MUST set ExpDataSN to zero since the data transfer and acknowledgements happen transparently to the iSCSI layer at the initiator. This provides the flexibility to the iSCSI layer at the target to request transmission of only the unacknowledged data as specified in [iSCSI].
When the iSER layer at the target receives the Task Management Function Request with the TASK REASSIGN function, it MUST do the following:
* It MUST use the ITT as specified in the Referenced Task Tag from the Task Management Function Request PDU to locate the Local and Remote Mappings (if any).
* It MUST invalidate the local STags (if any) associated with the ITT.
* It MUST replace the Base Offset(s) and the Advertised STag(s) in the Remote Mapping with the Base Offset(s) and the Advertised STag(s) in the iSER header. The Write STag is used in the handling of the R2T PDU(s) from the iSCSI layer at the target as described in Section 7.3.6. The Read STag is used in the handling of the SCSI Data-In PDU(s) from the iSCSI layer at the target as described in Section 7.3.5.
The iSCSI layer at the initiator MUST invoke the Send_Control Operational Primitive qualified with DataDescriptorOut, which defines the initiator's I/O Buffer containing unsolicited SCSI Write data.
If the amount of unsolicited data to be transferred as SCSI Data-Out exceeds TargetRecvDataSegmentLength, then the iSCSI layer at the initiator MUST segment the data into multiple iSCSI control-type PDUs, where the DataSegmentLength has the value of TargetRecvDataSegmentLength in all generated PDUs except the last one. The DataSegmentLength of the last iSCSI control-type PDU carrying the unsolicited data can be up to TargetRecvDataSegmentLength. The iSCSI layer at the target MUST perform the reassembly function for the unsolicited data.
For unsolicited data, the iSER layer at the initiator MUST use a Send Message to send the SCSI Data-Out PDU. If the F bit is set to 1, the SendSE Message should be used if supported by the RCaP layer (e.g., iWARP).
Note that for solicited data, the SCSI Data-Out PDUs are not used since R2T PDUs are not delivered to the iSCSI layer at the initiator; instead, R2T PDUs are transformed by the iSER layer at the target into RDMA Read operations. (See Section 7.3.6.)
When the iSCSI layer at the target is ready to return the SCSI Read data to the initiator, it MUST invoke the Put_Data Operational Primitive qualified with DataDescriptorIn, which defines the SCSI Data-In buffer. See Section 7.1 on the general requirement on the handling of iSCSI data-type PDUs. SCSI Data-In PDU(s) are used in SCSI Read data transfer as described in Section 9.5.2.
The iSER layer at the target MUST do the following for each invocation of the Put_Data Operational Primitive:
1. It MUST use the ITT in the SCSI Data-In PDU to locate the remote Read STag and the Base Offset in the Remote Mapping. The Remote Mapping was established earlier by the iSER layer at the target when the SCSI Read Command was received from the initiator.
2. It MUST generate and send an RDMA Write Message containing the read data to the initiator.
a. It MUST use the remote Read STag as the Data Sink STag of the RDMA Write Message.
b. It MUST add the Buffer Offset from the SCSI Data-In PDU to the Base Offset from the Remote Mapping as the Data Sink Tagged Offset of the RDMA Write Message.
c. It MUST use DataSegmentLength from the SCSI Data-In PDU to determine the amount of data to be sent in the RDMA Write Message.
3. It MUST associate the DataSN and ITT from the SCSI Data-In PDU with the RDMA Write operation. If the Put_Data Operational Primitive invocation was qualified with Notify_Enable set, then when the iSER layer at the target receives a completion from the RCaP layer for the RDMA Write Message, the iSER layer at the target MUST notify the iSCSI layer by invoking the Data_Completion_Notify Operational Primitive qualified with the DataSN and ITT. Conversely, if the Put_Data Operational Primitive invocation was qualified with Notify_Enable cleared, then the iSER layer at the target MUST NOT notify the iSCSI layer on completion and MUST NOT invoke the Data_Completion_Notify Operational Primitive.
When the A-bit is set to one in the SCSI Data-In PDU, the iSER layer at the target MUST notify the iSCSI layer at the target when the data transfer is complete at the initiator. To perform this additional function, the iSER layer at the target can take advantage of the operational ErrorRecoveryLevel if previously disclosed by the iSCSI layer via an earlier invocation of the Notice_Key_Values Operational Primitive. There are two approaches that can be taken:
1. If the iSER layer at the target knows that the operational ErrorRecoveryLevel is 2, or if the iSER layer at the target does not know the operational ErrorRecoveryLevel, then the iSER layer at the target MUST issue a zero-length RDMA Read Request Message following the RDMA Write Message. When the iSER layer at the target receives a completion for the RDMA Read Request Message from the RCaP layer, implying that the RDMA-Capable Controller at the initiator has completed processing the RDMA Write Message due to the completion ordering semantics of RCaP, the iSER layer at the target MUST notify the iSCSI layer at the target by invoking the Data_ACK_Notify Operational Primitive qualified with ITT and DataSN (see Section 3.2.3).
2. If the iSER layer at the target knows that the operational ErrorRecoveryLevel is 1, then the iSER layer at the target MUST do one of the following:
a. It MUST notify the iSCSI layer at the target by invoking the Data_ACK_Notify Operational Primitive qualified with ITT and DataSN (see Section 3.2.3) when it receives the local completion from the RCaP layer for the RDMA Write Message. This is allowed since digest errors do not occur in iSER (see Section 10.1.4.2) and a CRC error will cause the connection to be terminated and the task to be terminated anyway. The local RDMA Write completion from the RCaP layer guarantees that the RCaP layer will not access the I/O Buffer again to transfer the data associated with that RDMA Write operation.
b. Alternatively, it MUST use the same procedure for handling the data transfer completion at the initiator as for ErrorRecoveryLevel 2.
It should be noted that the iSCSI layer at the target cannot set the A-bit to 1 if the ErrorRecoveryLevel=0.
SCSI status MUST always be returned in a separate SCSI Response PDU. The S bit in the SCSI Data-In PDU MUST always be set to zero. There MUST NOT be a "phase collapse" in the SCSI Data-In PDU.
Since the RDMA Write Message only transfers the data portion of the SCSI Data-In PDU but not the control information in the header, such as ExpCmdSN, if timely updates of such information are crucial, the iSCSI layer at the initiator MAY issue NOP-Out PDUs to request the iSCSI layer at the target to respond with the information using NOP-In PDUs.
In order to send an R2T PDU, the iSCSI layer at the target MUST invoke the Get_Data Operational Primitive qualified with DataDescriptorOut, which defines the I/O Buffer for receiving the SCSI Write data from the initiator. See Section 7.1 on the general requirements on the handling of iSCSI data-type PDUs.
The iSER layer at the target MUST do the following for each invocation of the Get_Data Operational Primitive:
1. It MUST ensure a valid local STag for the I/O Buffer and a valid Local Mapping. This may involve allocating a valid local STag and establishing a Local Mapping.
2. It MUST use the ITT in the R2T to locate the remote Write STag and the Base Offset in the Remote Mapping. The Remote Mapping was established earlier by the iSER layer at the target when the iSER Message containing the Advertised Write STag, the Base Offset, and the SCSI Command PDU for a SCSI Write or bidirectional command was received from the initiator.
3. If the iSER-ORD value at the target is set to zero, the iSER layer at the target MUST terminate the connection and free up the resources associated with the connection (as described in Section 5.2.3) if it received the R2T PDU from the iSCSI layer at the target. Upon termination of the connection, the iSER layer at the target MUST notify the iSCSI layer at the target by invoking the Connection_Terminate_Notify Operational Primitive.
4. If the iSER-ORD value at the target is set to greater than 0, the iSER layer at the target MUST transform the R2T PDU into an RDMA Read Request Message. While transforming the R2T PDU, the iSER layer at the target MUST ensure that the number of outstanding RDMA Read Request Messages does not exceed the iSER-ORD value. To transform the R2T PDU, the iSER layer at the target:
a. MUST derive the local STag and local Tagged Offset from the DataDescriptorOut that qualified the Get_Data invocation.
b. MUST use the local STag as the Data Sink STag of the RDMA Read Request Message.
c. MUST use the local Tagged Offset as the Data Sink Tagged Offset of the RDMA Read Request Message.
d. MUST use the Desired Data Transfer Length from the R2T PDU as the RDMA Read Message Size of the RDMA Read Request Message.
e. MUST use the remote Write STag as the Data Source STag of the RDMA Read Request Message.
f. MUST add the Buffer Offset from the R2T PDU to the Base Offset from the Remote Mapping as the Data Source Tagged Offset of the RDMA Read Request Message.
5. It MUST associate the R2TSN and ITT from the R2T PDU with the RDMA Read operation. If the Get_Data Operational Primitive invocation was qualified with Notify_Enable set, then when the iSER layer at the target receives a completion from the RCaP layer for the RDMA Read operation, the iSER layer at the target MUST notify the iSCSI layer by invoking the Data_Completion_Notify Operational Primitive qualified with the R2TSN and ITT. Conversely, if the Get_Data Operational Primitive invocation was qualified with Notify_Enable cleared, then the iSER layer at the target MUST NOT notify the iSCSI layer on completion and MUST NOT invoke the Data_Completion_Notify Operational Primitive.
When the RCaP layer at the initiator receives a valid RDMA Read Request Message, it will return an RDMA Read Response Message containing the solicited write data to the target. When the RCaP layer at the target receives the RDMA Read Response Message from the initiator, it will place the solicited data in the I/O Buffer referenced by the Data Sink STag in the RDMA Read Response Message. Since the RDMA Read Request Message from the target does not transfer the control information in the R2T PDU such as ExpCmdSN, if timely updates of such information are crucial, the iSCSI layer at the initiator MAY issue NOP-Out PDUs to request the iSCSI layer at the target to respond with the information using NOP-In PDUs.
Similarly, since the RDMA Read Response Message from the initiator only transfers the data but not the control information normally found in the SCSI Data-Out PDU, such as ExpStatSN, if timely updates of such information are crucial, the iSCSI layer at the target MAY issue NOP-In PDUs to request the iSCSI layer at the initiator to respond with the information using NOP-Out PDUs.
The iSCSI layer MUST invoke the Send_Control Operational Primitive qualified with DataDescriptorSense, which defines the buffer containing the sense and iSCSI event information. The iSER layer MUST use a Send Message to send the Asynchronous Message PDU. The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP).
The iSCSI layer MUST invoke the Send_Control Operational Primitive qualified with DataDescriptorTextOut (or DataDescriptorIn), which defines the Text Request (or Text Response) buffer. The iSER layer MUST use Send Messages to send the Text Request (or Text Response PDUs). The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP).
During the login negotiation, the iSCSI layer interacts with the transport layer directly, and the iSER layer is not involved. See Section 5.1 on iSCSI/iSER Connection Setup. If the underlying transport is TCP, the Login Request PDUs and the Login Response PDUs are exchanged when the connection between the initiator and the target is still in the byte stream mode.
The iSCSI layer MUST NOT send a Login Request (or a Login Response) PDU during the Full Feature Phase. A Login Request (or a Login Response) PDU, if used, MUST be treated as an iSCSI protocol error. The iSER layer MAY reject such a PDU from the iSCSI layer with an appropriate error code. If a Login Request PDU is received by the iSCSI layer at the target, it MUST respond with a Reject PDU with a reason code of "protocol error".
The iSER layer MUST use a Send Message to send the Logout Request or Logout Response PDU. The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP). Sections 5.2.1 and 5.2.2 describe the handling of the Logout Request and the Logout Response at the initiator and the target and the interactions between the initiator and the target to terminate a connection.
Since HeaderDigest and DataDigest must be negotiated to "None", there are no digest errors when the connection is in iSER-assisted mode. Also, since RCaP delivers all messages in the order they were sent, there are no sequence errors when the connection is in iSER-assisted mode. Therefore, the iSCSI layer MUST NOT send SNACK Request PDUs. A SNACK Request PDU, if used, MUST be treated as an iSCSI protocol error. The iSER layer MAY reject such a PDU from the iSCSI layer with an appropriate error code. If a SNACK Request PDU is received by the iSCSI layer at the target, it MUST respond with a Reject PDU with a reason code of "protocol error".
The iSCSI layer MUST invoke the Send_Control Operational Primitive qualified with DataDescriptorReject, which defines the Reject buffer. The iSER layer MUST use a Send Message to send the Reject PDU. The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP).
The iSCSI layer MUST invoke the Send_Control Operational Primitive qualified with DataDescriptorNOPOut (or DataDescriptorNOPIn), which defines the Ping (or Return Ping) data buffer. The iSER layer MUST use Send Messages to send the NOP-Out (or NOP-In) PDU. The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP).
Send Messages in RCaP are used by the iSER layer to transfer iSCSI control-type PDUs. Each Send Message in RCaP consumes an Untagged Buffer at the Data Sink. However, neither the RCaP layer nor the iSER layer provides an explicit flow control mechanism for the Send Messages. Therefore, the iSER layer SHOULD provision enough Untagged buffers for handling incoming Send Messages to prevent buffer exhaustion at the RCaP layer. If buffer exhaustion occurs, it may result in the termination of the connection.
An implementation may choose to satisfy the buffer requirement by using a common buffer pool shared across multiple connections, with usage limits on a per-connection basis and usage limits on the buffer pool itself. In such an implementation, exceeding the buffer usage limit for a connection or the buffer pool itself may trigger interventions from the iSER layer to replenish the buffer pool and/or to isolate the connection causing the problem.
iSER also provides the MaxOutstandingUnexpectedPDUs key to be used by the initiator and the target to declare the maximum number of outstanding "unexpected" control-type PDUs that it can receive. It is intended to allow the receiving side to determine the amount of buffer resources needed beyond the normal flow control mechanism available in iSCSI.
The buffer resources required at both the initiator and the target as a result of control-type PDUs sent by the initiator are described in Section 8.1.1. The buffer resources required at both the initiator and target as a result of control-type PDUs sent by the target are described in Section 8.1.2.
The control-type PDUs that can be sent by an initiator to a target can be grouped into the following categories:
Control-type PDUs that can be sent by the initiator in this category are regulated by the iSCSI CmdSN window mechanism, and the immediate flag is not set.
The queuing capacity required of the iSCSI layer at the target is described in Section 4.2.2.1 of [iSCSI]. For each of the control- type PDUs that can be sent by the initiator in this category, the initiator MUST provision for the buffer resources required for the corresponding control-type PDU sent as a response from the target. The following is a list of the PDUs that can be sent by the initiator and the PDUs that are sent by the target in response:
a. When an initiator sends a SCSI Command PDU, it expects a SCSI Response PDU from the target.
b. When the initiator sends a Task Management Function Request PDU, it expects a Task Management Function Response PDU from the target.
c. When the initiator sends a Text Request PDU, it expects a Text Response PDU from the target.
d. When the initiator sends a Logout Request PDU, it expects a Logout Response PDU from the target.
e. When the initiator sends a NOP-Out PDU as a ping request with ITT != 0xffffffff and TTT = 0xffffffff, it expects a NOP-In PDU from the target with the same ITT and TTT as in the ping request.
The response from the target for any of the PDUs enumerated here may alternatively be in the form of a Reject PDU sent before the task is active, as described in Section 7.3 of [iSCSI].
8.1.1.2. Control-Type PDUs from the Initiator in the Unregulated but Expected Category
For the control-type PDUs in the Unregulated but Expected category, the amount of buffering resources required at the target can be predetermined. The following is a list of the PDUs in this category:
a. SCSI Data-Out PDUs are used by the initiator to send unsolicited data. The amount of buffer resources required by the target can be determined using FirstBurstLength. Note that SCSI Data-Out PDUs are not used for solicited data since the R2T PDU, which is used for solicitation, is transformed into RDMA Read operations by the iSER layer at the target. See Section 7.3.4.
b. A NOP-Out PDU with TTT != 0xffffffff is sent as a ping response by the initiator to the NOP-In PDU sent as a ping request by the target.
8.1.1.3. Control-Type PDUs from the Initiator in the Unregulated and Unexpected Category
PDUs in the Unregulated and Unexpected category are PDUs with the immediate flag set. The number of PDUs that are in this category and can be sent by an initiator is controlled by the value of MaxOutstandingUnexpectedPDUs declared by the target. (See Section 6.7.) After a PDU in this category is sent by the initiator, it is outstanding until it is retired. At any time, the number of outstanding unexpected PDUs MUST NOT exceed the value of MaxOutstandingUnexpectedPDUs declared by the target.
The target uses the value of MaxOutstandingUnexpectedPDUs that it declared to determine the amount of buffer resources required for control-type PDUs in this category that can be sent by an initiator. For the initiator, for each of the control-type PDUs that can be sent in this category, the initiator MUST provision for the buffer resources if required for the corresponding control-type PDU that can be sent as a response from the target.
An outstanding PDU in this category is retired as follows. If the CmdSN of the PDU sent by the initiator in this category is x, the PDU is outstanding until the initiator sends a non-immediate control-type PDU on the same connection with CmdSN = y (where y is at least x) and the target responds with a control-type PDU on any connection where ExpCmdSN is at least y+1.
When the number of outstanding unexpected control-type PDUs equals MaxOutstandingUnexpectedPDUs, the iSCSI layer at the initiator MUST NOT generate any unexpected PDUs, which otherwise it would have generated, even if the unexpected PDU is intended for immediate delivery.
Control-type PDUs that can be sent by a target and are expected by the initiator are listed in the Regulated category. (See Section 8.1.1.1.)
For the control-type PDUs that can be sent by a target and are unexpected by the initiator, the number is controlled by MaxOutstandingUnexpectedPDUs declared by the initiator. (See Section 6.7.) After a PDU in this category is sent by a target, it is outstanding until it is retired. At any time, the number of outstanding unexpected PDUs MUST NOT exceed the value of MaxOutstandingUnexpectedPDUs declared by the initiator. The initiator uses the value of MaxOutstandingUnexpectedPDUs that it declared to determine the amount of buffer resources required for control-type PDUs in this category that can be sent by a target. The following is a list of the PDUs in this category and the conditions for retiring the outstanding PDU:
a. For an Asynchronous Message PDU with StatSN = x, the PDU is outstanding until the initiator sends a control-type PDU with ExpStatSN set to at least x+1.
b. For a Reject PDU with StatSN = x, which is sent after a task is active, the PDU is outstanding until the initiator sends a control-type PDU with ExpStatSN set to at least x+1.
When the number of outstanding unexpected control-type PDUs equals MaxOutstandingUnexpectedPDUs, the iSCSI layer at the target MUST NOT generate any unexpected PDUs, which otherwise it would have generated, even if its intent is to indicate an iSCSI error condition (e.g., Asynchronous Message, Reject). Task timeouts, as in the initiator's waiting for a command completion or other connection and session-level exceptions, will ensure that correct operational behavior will result in these cases despite not generating the PDU. This rule overrides any other requirements elsewhere that require that a Reject PDU MUST be sent.
If iSERHelloRequired is negotiated to "Yes", then the total number of RDMA Read operations that can be active simultaneously on an iSCSI/iSER connection depends on the amount of resources allocated as declared in the iSER Hello exchange described in Section 5.1.3. Exceeding the number of RDMA Read operations allowed on a connection will result in the connection being terminated by the RCaP layer. The iSER layer at the target maintains the iSER-ORD to keep track of the maximum number of RDMA Read Requests that can be issued by the iSER layer on a particular RCaP Stream.
During connection setup (see Section 5.1), iSER-IRD is known at the initiator and iSER-ORD is known at the target after the iSER layers at the initiator and the target have respectively allocated the connection resources necessary to support RCaP, as directed by the Allocate_Connection_Resources Operational Primitive from the iSCSI layer before the end of the iSCSI Login Phase. In the Full Feature Phase, if iSERHelloRequired is negotiated to "Yes", then the first message sent by the initiator is the iSER Hello Message (see Section 9.3), which contains the value of iSER-IRD. In response to the iSER Hello Message, the target sends the iSER HelloReply Message (see Section 9.4), which contains the value of iSER-ORD. The iSER layer at both the initiator and the target MAY adjust (lower) the resources associated with iSER-IRD and iSER-ORD, respectively, to match the iSER-ORD value declared in the HelloReply Message. The iSER layer at the target MUST control the flow of the RDMA Read Request Messages so that it does not exceed the iSER-ORD value at the target.
If iSERHelloRequired is negotiated to "No", then the maximum number of RDMA Read operations that can be active is negotiated via other means outside the scope of this document. For example, in InfiniBand, iSER connection setup uses InfiniBand Connection Manager (CM) Management Datagrams (MADs), with additional iSER information exchanged in the private data.
An STag is an identifier of a Tagged Buffer used in an RDMA operation. If the STags are exposed on the wire by being Advertised in the iSER header or declared in the header of an RCaP Message, then the allocation and the subsequent invalidation of the STags are as specified in this document.
When the iSCSI layer at the initiator invokes the Send_Control Operational Primitive to request the iSER layer at the initiator to process a SCSI Command, zero, one, or two STags may be allocated by the iSER layer. See Section 7.3.1 for details. The number of STags allocated depends on whether the command is unidirectional or bidirectional and whether or not solicited write data transfer is involved.
When the iSCSI layer at the initiator invokes the Send_Control Operational Primitive to request the iSER layer at the initiator to process a Task Management Function Request with the TASK REASSIGN function, besides allocating zero, one, or two STags, the iSER layer MUST invalidate the existing STags (if any) associated with the ITT. See Section 7.3.3 for details.
The iSER layer at the target allocates a local Data Sink STag when the iSCSI layer at the target invokes the Get_Data Operational Primitive to request the iSER layer to process an R2T PDU. See Section 7.3.6 for details.
The invalidation of the STags at the initiator at the completion of a unidirectional or bidirectional command when the associated SCSI Response PDU is sent by the target is described in Section 7.3.2. When a unidirectional or bidirectional command concludes without the associated SCSI Response PDU being sent by the target, the iSCSI layer at the initiator MUST request the iSER layer at the initiator to invalidate the STags by invoking the Deallocate_Task_Resources Operational Primitive qualified with ITT. In response, the iSER layer at the initiator MUST locate the STags (if any) in the Local Mapping. The iSER layer at the initiator MUST invalidate the STags (if any) and the Local Mapping.
For an RDMA Read operation used to realize a SCSI Write data transfer, the iSER layer at the target SHOULD invalidate the Data Sink STag at the conclusion of the RDMA Read operation referencing the Data Sink STag (to permit the immediate reuse of buffer resources).
For an RDMA Write operation used to realize a SCSI Read data transfer, the Data Source STag at the target is not declared to the initiator and is not exposed on the wire. Invalidation of the STag is thus not specified.
When a unidirectional or bidirectional command concludes without the associated SCSI Response PDU being sent by the target, the iSCSI layer at the target MUST request the iSER layer at the target to invalidate the STags by invoking the Deallocate_Task_Resources Operational Primitive qualified with ITT. In response, the iSER layer at the target MUST locate the local STags (if any) in the Local Mapping. The iSER layer at the target MUST invalidate the local STags (if any) and the Local Mapping.
For iSCSI data-type PDUs (see Section 7.1), the iSER layer uses RDMA Read and RDMA Write operations to transfer the solicited data. For iSCSI control-type PDUs (see Section 7.2), the iSER layer uses Send Messages of RCaP.
An iSER header MUST be present in every Send Message of RCaP. The iSER header is located in the first 28 bytes of the message payload of the Send Message of RCaP, as shown in Figure 2.
Figure 2: iSER Header Format
Opcode - Operation Code: 4 bits
The Opcode field identifies the type of iSER Messages:
0001b = iSCSI control-type PDU
0010b = iSER Hello Message
0011b = iSER HelloReply Message
All other Opcodes are unassigned.
The iSER layer uses Send Messages of RCaP to transfer iSCSI control- type PDUs (see Section 7.2). The message payload of each of the Send Messages of RCaP used for transferring an iSER Message contains an iSER Header followed by an iSCSI control-type PDU.
The iSER header in a Send Message of RCaP carrying an iSCSI control- type PDU MUST have the format as described in Figure 3.
Figure 3: iSER Header Format for iSCSI Control-Type PDU
WSV - Write STag Valid flag: 1 bit
This flag indicates the validity of the Write STag field and the Write Base Offset field of the iSER Header. If set to one, the Write STag field and the Write Base Offset field in this iSER Header are valid. If set to zero, the Write STag field and the Write Base Offset field in this iSER Header MUST be ignored at the receiver. The Write STag Valid flag is set to one when there is solicited data to be transferred for a SCSI Write or bidirectional command, or when there are non-immediate unsolicited and solicited data to be transferred for the referenced task specified in a Task Management Function Request with the TASK REASSIGN function.
RSV - Read STag Valid flag: 1 bit
This flag indicates the validity of the Read STag field and the Read Base Offset field of the iSER Header. If set to one, the Read STag field and the Read Base Offset field in this iSER Header are valid. If set to zero, the Read STag field and the Read Base Offset field in this iSER Header MUST be ignored at the receiver. The Read STag Valid flag is set to one for a SCSI Read or bidirectional command, or a Task Management Function Request with the TASK REASSIGN function.
Write STag - Write Steering Tag: 32 bits
This field contains the Write STag when the Write STag Valid flag is set to one. For a SCSI Write or bidirectional command, the Write STag is used to Advertise the initiator's I/O Buffer containing the solicited data. For a Task Management Function Request with the TASK REASSIGN function, the Write STag is used to Advertise the initiator's I/O Buffer containing the non-immediate unsolicited data and solicited data. This Write STag is used as the Data Source STag in the resultant RDMA Read operation(s). When the Write STag Valid flag is set to zero, this field MUST be set to zero and ignored on receive.
Write Base Offset: 64 bits
This field contains the Base Offset associated with the I/O Buffer for the SCSI Write command when the Write STag Valid flag is set to one. When the Write STag Valid flag is set to zero, this field MUST be set to zero and ignored on receive.
Read STag - Read Steering Tag: 32 bits
This field contains the Read STag when the Read STag Valid flag is set to one. The Read STag is used to Advertise the initiator's Read I/O Buffer of a SCSI Read or bidirectional command, or a Task Management Function Request with the TASK REASSIGN function. This Read STag is used as the Data Sink STag in the resultant RDMA Write operation(s). When the Read STag Valid flag is zero, this field MUST be set to zero and ignored on receive.
Read Base Offset: 64 bits
This field contains the Base Offset associated with the I/O Buffer for the SCSI Read command when the Read STag Valid flag is set to one. When the Read STag Valid flag is set to zero, this field MUST be set to zero and ignored on receive.
Reserved:
Reserved fields MUST be set to zero on transmit and MUST be ignored on receive.
An iSER Hello Message MUST only contain the iSER header, which MUST have the format as described in Figure 4. If iSERHelloRequired is negotiated to "Yes", then iSER Hello Message is the first iSER Message sent on the RCaP Stream from the iSER layer at the initiator to the iSER layer at the target.
Figure 4: iSER Header Format for iSER Hello Message
MaxVer - Maximum Version: 4 bits
This field specifies the maximum version of the iSER protocol supported. It MUST be set to 10 to indicate the version of the specification described in this document.
MinVer - Minimum Version: 4 bits
This field specifies the minimum version of the iSER protocol supported. It MUST be set to 10 to indicate the version of the specification described in this document.
iSER-IRD: 16 bits
This field contains the value of the iSER-IRD at the initiator.
Reserved (Rsvd):
Reserved fields MUST be set to zero on transmit and MUST be ignored on receive.
An iSER HelloReply Message MUST only contain the iSER header, which MUST have the format as described in Figure 5. If iSERHelloRequired is negotiated to "Yes", then the iSER HelloReply Message is the first iSER Message sent on the RCaP Stream from the iSER layer at the target to the iSER layer at the initiator.
Figure 5: iSER Header Format for iSER HelloReply Message
REJ - Reject flag: 1 bit
This flag indicates whether the target is rejecting this connection. If set to one, the target is rejecting the connection.
MaxVer - Maximum Version: 4 bits
This field specifies the maximum version of the iSER protocol supported. It MUST be set to 10 to indicate the version of the specification described in this document.
CurVer - Current Version: 4 bits
This field specifies the current version of the iSER protocol supported. It MUST be set to 10 to indicate the version of the specification described in this document.
iSER-ORD: 16 bits
This field contains the value of the iSER-ORD at the target.
Reserved (Rsvd):
Reserved fields MUST be set to zero on transmit and MUST be ignored on receive.
The iSER layer at the initiator and the iSER layer at the target handle each SCSI Write, SCSI Read, and bidirectional operation as described below.
The iSCSI layer at the initiator MUST invoke the Send_Control Operational Primitive to request the iSER layer at the initiator to send the SCSI Write Command. The iSER layer at the initiator MUST request the RCaP layer to transmit a Send Message with the message payload consisting of the iSER header followed by the SCSI Command PDU and immediate data (if any). The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP). If there is solicited data, the iSER layer MUST Advertise the Write STag and the Base Offset in the iSER header of the Send Message, as described in Section 9.2. Upon receiving the Send Message, the iSER layer at the target MUST notify the iSCSI layer at the target by invoking the Control_Notify Operational Primitive qualified with the SCSI Command PDU. See Section 7.3.1 for details on the handling of the SCSI Write Command.
For the non-immediate unsolicited data, the iSCSI layer at the initiator MUST invoke a Send_Control Operational Primitive qualified with the SCSI Data-Out PDU. Upon receiving each Send Message containing the non-immediate unsolicited data, the iSER layer at the target MUST notify the iSCSI layer at the target by invoking the Control_Notify Operational Primitive qualified with the SCSI Data-Out PDU. See Section 7.3.4 for details on the handling of the SCSI Data- Out PDU.
For the solicited data, when the iSCSI layer at the target has an I/O Buffer available, it MUST invoke the Get_Data Operational Primitive qualified with the R2T PDU. See Section 7.3.6 for details on the handling of the R2T PDU.
When the data transfer associated with this SCSI Write operation is complete, the iSCSI layer at the target MUST invoke the Send_Control Operational Primitive when it is ready to send the SCSI Response PDU. Upon receiving a Send Message containing the SCSI Response PDU, the iSER layer at the initiator MUST notify the iSCSI layer at the initiator by invoking the Control_Notify Operational Primitive qualified with the SCSI Response PDU. See Section 7.3.2 for details on the handling of the SCSI Response PDU.
The iSCSI layer at the initiator MUST invoke the Send_Control Operational Primitive to request the iSER layer at the initiator to send the SCSI Read Command. The iSER layer at the initiator MUST request the RCaP layer to transmit a Send Message with the message payload consisting of the iSER header followed by the SCSI Command PDU. The SendSE Message should be used if supported by the RCaP layer (e.g., iWARP). The iSER layer at the initiator MUST Advertise the Read STag and the Base Offset in the iSER header of the Send Message, as described in Section 9.2. Upon receiving the Send Message, the iSER layer at the target MUST notify the iSCSI layer at the target by invoking the Control_Notify Operational Primitive qualified with the SCSI Command PDU. See Section 7.3.1 for details on the handling of the SCSI Read Command.
When the requested SCSI data is available in the I/O Buffer, the iSCSI layer at the target MUST invoke the Put_Data Operational Primitive qualified with the SCSI Data-In PDU. See Section 7.3.5 for details on the handling of the SCSI Data-In PDU.
When the data transfer associated with this SCSI Read operation is complete, the iSCSI layer at the target MUST invoke the Send_Control Operational Primitive when it is ready to send the SCSI Response PDU. The SendInvSE Message should be used if supported by the RCaP layer (e.g., iWARP). Upon receiving the Send Message containing the SCSI Response PDU, the iSER layer at the initiator MUST notify the iSCSI layer at the initiator by invoking the Control_Notify Operational Primitive qualified with the SCSI Response PDU. See Section 7.3.2 for details on the handling of the SCSI Response PDU.
The initiator and the target handle the SCSI Write and the SCSI Read portions of this bidirectional operation the same as described in Sections 9.5.1 and 9.5.2, respectively.
RCaP provides the iSER layer with reliable in-order delivery. Therefore, the error management needs of an iSER-assisted connection are somewhat different than those of a Traditional iSCSI connection.
iSER error handling is described in the following sections, classified loosely based on the sources of errors:
1. Those originating at the transport layer (e.g., TCP).
2. Those originating at the RCaP layer.
3. Those originating at the iSER layer.
4. Those originating at the iSCSI layer.
If the transport layer is TCP, then TCP packets with detected errors are silently dropped by the TCP layer and result in retransmission at the TCP layer. This has no impact on the iSER layer. However, connection loss (e.g., link failure) and unexpected termination (e.g., TCP graceful or abnormal close without the iSCSI Logout exchanges) at the transport layer will cause the iSCSI/iSER connection to be terminated as well.
If the connection is lost or terminated before the iSCSI layer invokes the Allocate_Connection_Resources Operational Primitive, the login process is terminated and no further action is required.
If the connection is lost or terminated after the iSCSI layer has invoked the Allocate_Connection_Resources Operational Primitive, then the iSCSI layer MUST request the iSER layer to deallocate all connection resources by invoking the Deallocate_Connection_Resources Operational Primitive.
If the connection is lost or terminated after the iSCSI layer has invoked the Enable_Datamover Operational Primitive, the iSER layer MUST notify the iSCSI layer of the connection loss by invoking the Connection_Terminate_Notify Operational Primitive. Prior to invoking the Connection_Terminate_Notify Operational Primitive, the iSER layer MUST perform the actions described in Section 5.2.3.2.
The RCaP layer does not have error recovery operations built in. If errors are detected at the RCaP layer, the RCaP layer will terminate the RCaP Stream and the associated connection.
If an error is encountered at the local RCaP layer, the RCaP layer MAY send a Send Message to the Remote Peer to report the error if possible. (For iWARP, see [RDMAP] for the list of errors where a Terminate Message is sent.) The RCaP layer is responsible for terminating the connection. After the RCaP layer notifies the iSER layer that the connection is terminated, the iSER layer MUST notify the iSCSI layer by invoking the Connection_Terminate_Notify Operational Primitive. Prior to invoking the Connection_Terminate_Notify Operational Primitive, the iSER layer MUST perform the actions described in Section 5.2.3.2.
If an error is encountered at the RCaP layer at the Remote Peer, the RCaP layer at the Remote Peer may send a Send Message to report the error if possible. If it is unable to send a Send Message, the connection is terminated. This is treated the same as a failure in the transport layer after RDMA is enabled, as described in Section 10.1.1.2.
If an error is encountered at the RCaP layer at the Remote Peer and it is able to send a Send Message, the RCaP layer at the Remote Peer is responsible for terminating the connection. After the local RCaP layer notifies the iSER layer that the connection is terminated, the iSER layer MUST notify the iSCSI layer by invoking the Connection_Terminate_Notify Operational Primitive. Prior to invoking the Connection_Terminate_Notify Operational Primitive, the iSER layer MUST perform the actions described in Section 5.2.3.2.
The error handling due to errors at the iSER layer is described in the following sections.
10.1.3.1. Insufficient Connection Resources to Support RCaP at Connection Setup
After the iSCSI layer at the initiator invokes the Allocate_Connection_Resources Operational Primitive during the iSCSI login negotiation phase, if the iSER layer at the initiator fails to allocate the connection resources necessary to support RCaP, it MUST return a status of failure to the iSCSI layer at the initiator. The iSCSI layer at the initiator MUST terminate the connection as described in Section 5.2.3.1.
After the iSCSI layer at the target invokes the Allocate_Connection_Resources Operational Primitive during the iSCSI login negotiation phase, if the iSER layer at the target fails to allocate the connection resources necessary to support RCaP, it MUST return a status of failure to the iSCSI layer at the target. The iSCSI layer at the target MUST send a Login Response with a Status- Class of 0x03 (Target Error), and a Status-Code of 0x02 (Out of Resources). The iSCSI layers at the initiator and the target MUST terminate the connection as described in Section 5.2.3.1.
If iSERHelloRequired is negotiated to "Yes" and the RCaP or iSER related parameters declared by the initiator in the iSER Hello Message are unacceptable to the iSER layer at the target, the iSER layer at the target MUST set the Reject (REJ) flag, as described in Section 9.4, in the iSER HelloReply Message. The following are the cases when the iSER layer MUST set the REJ flag to 1 in the HelloReply Message:
* The initiator-declared iSER-IRD value is greater than 0, and the target-declared iSER-ORD value is 0.
* The initiator-supported and the target-supported iSER protocol versions do not overlap.
After requesting the RCaP layer to send the iSER HelloReply Message, the handling of the error situation is the same as that for iSER format errors as described in Section 10.1.3.3.
The following types of errors in an iSER header are considered format errors:
* Illegal contents of any iSER header field
* Inconsistent field contents in an iSER header
* Length error for an iSER Hello or HelloReply Message (see Sections 9.3 and 9.4)
When a format error is detected, the following events MUST occur in the specified sequence:
1. The iSER layer MUST request the RCaP layer to terminate the RCaP Stream. The RCaP layer MUST terminate the associated connection.
2. The iSER layer MUST notify the iSCSI layer of the connection termination by invoking the Connection_Terminate_Notify Operational Primitive. Prior to invoking the Connection_Terminate_Notify Operational Primitive, the iSER layer MUST perform the actions described in Section 5.2.3.2.
If iSERHelloRequired is negotiated to "Yes", then the first iSER Message sent by the iSER layer at the initiator MUST be the iSER Hello Message (see Section 9.3). In this case the first iSER Message sent by the iSER layer at the target MUST be the iSER HelloReply Message (see Section 9.4). Failure to send the iSER Hello or HelloReply Message, as indicated by the wrong Opcode in the iSER header, is a protocol error. Conversely, if the iSER Hello Message is sent by the iSER layer at the initiator when iSERHelloRequired is negotiated to "No", the iSER layer at the target MAY treat this as a protocol error or respond with an iSER HelloReply Message. The handling of iSER protocol errors is the same as that for iSER format errors as described in Section 10.1.3.3.
If the sending side of an iSER-enabled connection acts in a manner not permitted by the negotiated or declared login/text operational key values as described in Section 6, this is a protocol error and the receiving side MAY handle this the same as for iSER format errors as described in Section 10.1.3.3.
The error handling due to errors at the iSCSI layer is described in the following sections. For error recovery, see Section 10.2.
When an iSCSI format error is detected, the iSCSI layer MUST request the iSER layer to terminate the RCaP Stream by invoking the Connection_Terminate Operational Primitive. For more details on connection termination, see Section 5.2.3.1.
In the iSER-assisted mode, the iSCSI layer will not see any digest error because both the HeaderDigest and the DataDigest keys are negotiated to "None".
For Traditional iSCSI, sequence errors are caused by dropped PDUs due to header or data digest errors. Since digests are not used in iSER- assisted mode and the RCaP layer will deliver all messages in the order they were sent, sequence errors will not occur in iSER-assisted mode.
When the iSCSI layer handles certain protocol errors by dropping the connection, the error handling is the same as that for iSCSI format errors as described in Section 10.1.4.1.
When the iSCSI layer uses the iSCSI Reject PDU and response codes to handle certain other protocol errors, no special handling at the iSER layer is required.
This is handled at the iSCSI layer, and no special handling at the iSER layer is required.
For negotiation failures that happen during the Login Phase at the initiator after the iSCSI layer has invoked the Allocate_Connection_Resources Operational Primitive and before the Enable_Datamover Operational Primitive has been invoked, the iSCSI layer MUST request the iSER layer to deallocate all connection resources by invoking the Deallocate_Connection_Resources Operational Primitive. The iSCSI layer at the initiator MUST terminate the connection.
For negotiation failures during the Login Phase at the target, the iSCSI layer can use a Login Response with a Status-Class other than 0 (success) to terminate the Login Phase. If the iSCSI layer has invoked the Allocate_Connection_Resources Operational Primitive and has not yet invoked the Enable_Datamover Operational Primitive, the iSCSI layer at the target MUST request the iSER layer at the target to deallocate all connection resources by invoking the Deallocate_Connection_Resources Operational Primitive. The iSCSI layer at both the initiator and the target MUST terminate the connection.
During the iSCSI Login Phase, if the iSCSI layer at the initiator receives a Login Response from the target with a Status-Class other than 0 (Success) after the iSCSI layer at the initiator has invoked the Allocate_Connection_Resources Operational Primitive, the iSCSI layer MUST request the iSER layer to deallocate all connection resources by invoking the Deallocate_Connection_Resources Operational Primitive. The iSCSI layer MUST terminate the connection in this case.
For negotiation failures during the Full Feature Phase, the error handling is left to the iSCSI layer and no special handling at the iSER layer is required.
Error recovery requirements of iSCSI/iSER are the same as that of Traditional iSCSI. All three ErrorRecoveryLevels as defined in [iSCSI] are supported in iSCSI/iSER.
* For ErrorRecoveryLevel 0, session recovery is handled by iSCSI and no special handling by the iSER layer is required.
* For ErrorRecoveryLevel 1, see Section 10.2.1 on PDU Recovery.
* For ErrorRecoveryLevel 2, see Section 10.2.2 on Connection Recovery.
The iSCSI layer may invoke the Notice_Key_Values Operational Primitive during connection setup to request the iSER layer to take note of the value of the operational ErrorRecoveryLevel, as described in Sections 5.1.1 and 5.1.2.
As described in Sections 10.1.4.2 and 10.1.4.3, digest and sequence errors will not occur in the iSER-assisted mode. If the RCaP layer detects an error, it will close the iSCSI/iSER connection, as described in Section 10.1.2. Therefore, PDU recovery is not useful in the iSER-assisted mode.
The iSCSI layer at the initiator SHOULD disable iSCSI timeout-driven PDU retransmissions.
The iSCSI layer at the initiator MAY reassign connection allegiance for non-immediate commands that are still in progress and are associated with the failed connection by using a Task Management Function Request with the TASK REASSIGN function. See Section 7.3.3 for more details.
When the iSCSI layer at the initiator does a task reassignment for a SCSI Write command, it MUST qualify the Send_Control Operational Primitive invocation with DataDescriptorOut, which defines the I/O Buffer for both the non-immediate unsolicited data and the solicited data. This allows the iSCSI layer at the target to use recovery R2Ts to request data originally sent as unsolicited and solicited from the initiator.
When the iSCSI layer at the target accepts a reassignment request for a SCSI Read command, it MUST request the iSER layer to process SCSI Data-In for all unacknowledged data by invoking the Put_Data Operational Primitive. See Section 7.3.5 on the handling of SCSI Data-In.
When the iSCSI layer at the target accepts a reassignment request for a SCSI Write command, it MUST request the iSER layer to process a recovery R2T for any non-immediate unsolicited data and any solicited data sequences that have not been received by invoking the Get_Data Operational Primitive. See Section 7.3.6 on the handling of Ready To Transfer (R2T).
The iSCSI layer at the target MUST NOT issue recovery R2Ts on an iSCSI/iSER connection for a task for which the connection allegiance was never reassigned. The iSER layer at the target MAY reject such a recovery R2T received via the Get_Data Operational Primitive invocation from the iSCSI layer at the target, with an appropriate error code.
The iSER layer at the target will process the requests invoked by the Put_Data and Get_Data Operational Primitives for a reassigned task in the same way as for the original commands.
When iSER is layered on top of an RCaP layer and provides the RDMA extensions to the iSCSI protocol, the security considerations of iSER are the same as that of the underlying RCaP layer. For iWARP, this is described in [RDMAP] and [RDDPSEC], plus the updates to both of those RFCs that are contained in [IPSEC-IPS].
Since iSER-assisted iSCSI protocol is still functionally iSCSI from a security considerations perspective, all of the iSCSI security requirements as described in [iSCSI] apply. If iSER is layered on top of a non-IP-based RCaP layer, all the security protocol mechanisms applicable to that RCaP layer are also applicable to an iSCSI/iSER connection. If iSER is layered on top of a non-IP protocol, the IPsec mechanism as specified in [iSCSI] MUST be implemented at any point where the iSER protocol enters the IP network (e.g., via gateways), and the non-IP protocol SHOULD implement (optional to use) a packet-by-packet security protocol equal in strength to the IPsec mechanism specified by [iSCSI].
In order to protect target RCaP connection resources from possible resource exhaustion attacks, allocation of such resources for a new connection MUST be delayed until it is reasonably certain that the new connection is not part of a resource exhaustion attack (e.g., until after the SecurityNegotiation stage of Login); see Section 5.1.2.
A valid STag exposes I/O Buffer resources to the network for access via the RCaP. The security measures for the RCAP and iSER described in the above paragraphs can be used to protect data in an I/O buffer from undesired disclosure or modification, and these measures are of heightened importance for implementations that retain (e.g., cache) STags for use in multiple tasks (e.g., iSCSI I/O operations) because the resources are exposed to the network for a longer period of time.
A complementary means of controlling I/O Buffer resource exposure is invalidation of the STag after completion of the associated task, as specified in Section 1.5.1. The use of Send with Invalidate messages (which cause remote STag invalidation) is OPTIONAL, therefore the iSER layer MUST NOT rely on use of a Send with Invalidate by its Remote Peer to cause local STag invalidation. If an STag is expected to be invalid after completion of a task, the iSER layer MUST check the STag and invalidate it if it is still valid.
IANA has added the following entries to the "iSCSI Login/Text Keys" registry:
MaxAHSLength, RFC 7145
TaggedBufferForSolicitedDataOnly, RFC 7145
iSERHelloRequired, RFC 7145
IANA has updated the following entries in the "iSCSI Login/Text Keys" registry to reference this RFC.
InitiatorRecvDataSegmentLength
MaxOutstandingUnexpectedPDUs
RDMAExtensions
TargetRecvDataSegmentLength
IANA has also changed the reference to RFC 5046 for the "iSCSI Login/Text Keys" registry to refer to this RFC.
IANA has updated the registrations of the iSER Opcodes 1-3 in the "iSER Opcodes" registry to reference this RFC. IANA has also changed the reference to RFC 5046 for the "iSER Opcodes" registry to refer to this RFC.
[RFC5046]
Ko, M., Chadalapaka, M., Hufferd, J., Elzur, U., Shah, H., and P. Thaler, "Internet Small Computer System Interface (iSCSI) Extensions for Remote Direct Memory Access (RDMA)", RFC 5046, October 2007.
[iSCSI]
Chadalapaka, M., Satran, J., Meth, K., and D. Black, "Internet Small Computer System Interface (iSCSI) Protocol (Consolidated)", RFC 7143, April 2014.
[RDMAP]
Recio, R., Metzler, B., Culley, P., Hilland, J., and D. Garcia, "A Remote Direct Memory Access Protocol Specification", RFC 5040, October 2007.
[DDP]
Shah, H., Pinkerton, J., Recio, R., and P. Culley, "Direct Data Placement over Reliable Transports", RFC 5041, October 2007.
[MPA]
Culley, P., Elzur, U., Recio, R., Bailey, S., and J. Carrier, "Marker PDU Aligned Framing for TCP Specification", RFC 5044, October 2007.
[RDDPSEC]
Pinkerton, J. and E. Deleganes, "Direct Data Placement Protocol (DDP) / Remote Direct Memory Access Protocol (RDMAP) Security", RFC 5042, October 2007.
[TCP]
Postel, J., "Transmission Control Protocol", STD 7, RFC 793, September 1981.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[IPSEC-IPS]
Black, D. and P. Koning, "Securing Block Storage Protocols over IP: RFC 3723 Requirements Update for IPsec v3", RFC 7146, April 2014.
[SAM5]
INCITS Technical Committee T10, "SCSI Architecture Model - 5 (SAM-5)", T10/BSR INCITS 515 rev 04, Committee Draft.
[iSCSI-SAM]
Knight, F. and M. Chadalapaka, "Internet Small Computer System Interface (iSCSI) SCSI Features Update", RFC 7144, April 2014.
[DA]
Chadalapaka, M., Hufferd, J., Satran, J., and H. Shah, "DA: Datamover Architecture for the Internet Small Computer System Interface (iSCSI)", RFC 5047, October 2007.
[IPoIB]
Chu, J. and V. Kashyap, "Transmission of IP over InfiniBand (IPoIB)", RFC 4391, April 2006.
All changes are backward compatible with RFC 5046 except for item #8, which reflects all known implementations of iSER, each of which has implemented this change, despite its absence in RFC 5046. As a result, a hypothetical implementation based on RFC 5046 will not interoperate with an implementation based on this version of the specification.
1. Removed the requirement that a connection be opened in "normal" TCP mode and transitioned to zero-copy mode. This allows the specification to conform to existing implementations for both InfiniBand and iWARP. Changes were made in Sections 1, 3.1.6, 4.2, 5.1, 5.1.1, 5.1.2, 5.1.3, 10.1.3.4, and 11.
2. Added a clause in Section 6.2 to clarify that MaxRecvDataSegmentLength must be ignored if it is declared in the Login Phase.
3. Added a clause in Section 6.2 to clarify that the initiator must not send more than InitiatorMaxRecvDataSegmentLength worth of data when a NOP-Out request is sent with a valid Initiator Task Tag. Since InitiatorMaxRecvDataSegmentLength can be smaller than TargetMaxRecvDataSegmentLength, returning the original data in the NOP-Out request in this situation can overflow the receive buffer unless the length of the data sent with the NOP-Out request is less than InitiatorMaxRecvDataSegmentLength.
4. Added a SHOULD negotiate recommendation for MaxOutstandingUnexpectedPDUs in Section 6.7.
5. Added MaxAHSLength key in Section 6.8 to set a limit on the AHS Length. This is useful when posting receive buffers in knowing what the maximum possible message length is in a PDU that contains AHS.
6. Added TaggedBufferForSolicitedDataOnly key in Section 6.9 to indicate how the memory region will be used. An initiator can treat the memory regions intended for unsolicited and solicited data differently and can use different registration modes. In contrast, RFC 5046 treats the memory occupied by the data as a contiguous (or virtually contiguous, by means of scatter-gather mechanisms) and homogenous region. Adding a new key will allow different memory models to be accommodated. Changes were also made in Section 7.3.1.
7. Added iSERHelloRequired key in Section 6.10 to allow an initiator to allocate connection resources after the login process by requiring the use of the iSER Hello messages before sending iSCSI PDUs. The default is "No" since iSER Hello messages have not been implemented and are not in use. Changes were made in Sections 5.1.1, 5.1.2, 5.1.3, 8.2, 9.3, 9.4, 10.1.3.2, and 10.1.3.4.
8. Added two 64-bit fields in iSER header in Section 9.2 for the Read Base Offset and the Write Base Offset to accommodate a non- zero Base Offset. This allows one implementation such as the Open Fabrics Enterprise Distribution (OFED) stack to be used in both the InfiniBand and the iWARP environment.
Changes were made in the definitions of Base Offset, Advertisement, and Tagged Buffer. Changes were also made in Sections 1.5.1, 1.6, 1.7, 7.3.1, 7.3.3, 7.3.5, 7.3.6, 9.1, 9.3, 9.4, 9.5.1, and 9.5.2. This change is not backward compatible with RFC 5046, but it was part of all known implementations of iSER at the time this document was developed.
9. Remove iWARP-specific behavior. Changes were made in the definitions of RDMA Operation and Send Message Type.
Clarifications were added in Section 1.5.2 on the use of SendSE and SendInvSE. These clarifications reflect a removal of the requirements in RFC 5046 for the use of these messages, as implementations have not followed RFC 5046 in this area. Changes affecting Send with Invalidate were made in Sections 1.5.1, 1.6, 1.7, 4.1, and 7.3.2. Changes affecting Terminate were made in Sections 10.1.2.1 and 10.1.2.2. Changes were made in Appendix B to remove iWARP headers.
10. Removed denial-of-service descriptions for the initiator in Section 5.1.1 since they are applicable for the target only.
11. Clarified in Section 1.5.1 that STag invalidation is the initiator's responsibility for security reasons, and the initiator cannot rely on the target using an Invalidate version of Send. Added text in Section 11 on Stag invalidation.
This section is for information only and is NOT part of the standard.
The following figure depicts an iSER Hello Message encapsulated in an iWARP SendSE Message.
Figure 6: SendSE Message Containing an iSER Hello Message
The following figure depicts an iSER HelloReply Message encapsulated in an iWARP SendSE Message. The Reject (REJ) flag is set to zero.
Figure 7: SendSE Message Containing an iSER HelloReply Message
The following figure depicts a SCSI Read Command PDU embedded in an iSER Message. For this particular example, in the iSER header, the Write STag Valid flag is set to zero, the Read STag Valid flag is set to one, the Write STag field is set to all zeros, the Write Base Offset field is set to all zeros, the Read STag field contains a valid Read STag, and the Read Base Offset field contains a valid Base Offset for the Read Tagged Buffer.
Figure 8: iSER Header Format for SCSI Read Command PDU
The following figure depicts a SCSI Write Command PDU embedded in an iSER Message. For this particular example, in the iSER header, the Write STag Valid flag is set to one, the Read STag Valid flag is set to zero, the Write STag field contains a valid Write STag, the Write Base Offset field contains a valid Base Offset for the Write Tagged Buffer, the Read STag field is set to all zeros since it is not used, and the Read Base Offset field is set to all zeros.
Figure 9: iSER Header Format for SCSI Write Command PDU
The following figure depicts a SCSI Response PDU embedded in an iSER Message:
Figure 10: iSER Header Format for SCSI Response PDU
This section explains how an InfiniBand network (with Gateways) would be structured. It is informational only and is intended to provide insight on how iSER is used in an InfiniBand environment.
Figure 11 defines the topologies in which iSCSI and iSER will be able to operate on an InfiniBand Network.
Figure 11: iSCSI and iSER on IB
In Figure 11, the Host systems are connected via the InfiniBand Host Channel Adapters (HCAs) to the InfiniBand links. With the use of IB switch(es), the InfiniBand links connect the HCA to InfiniBand Target Channel Adapters (TCAs) located in gateways or Storage Controllers. An iSER-capable IB-IP Gateway converts the iSER Messages encapsulated in IB protocols to either standard iSCSI, or iSER Messages for iWARP. An [IPoIB] Gateway converts the InfiniBand [IPoIB] protocol to IP protocol, and in the iSCSI case, permits iSCSI to be operated on an IB Network between the Hosts and the [IPoIB] Gateway.
Figure 12 shows a storage controller that has three different portal groups: one supporting only iSCSI (TPG-4), one supporting iSER/iWARP or iSCSI (TPG-2), and one supporting iSER/IB (TPG-1). Here, "TPG" stands for "Target Portal Group".
Figure 12: Storage Controller with TCP, iWARP, and IB Connections
The normal iSCSI portal group advertising processes (via the Service Location Protocol (SLP), Internet Storage Name Service (iSNS), or SendTargets) are available to a Storage Controller.
An InfiniBand Host system can gather portal group IP addresses from SLP, iSNS, or the SendTargets discovery processes by using TCP/IP via [IPoIB]. After obtaining one or more remote portal IP addresses, the Initiator uses the standard IP mechanisms to resolve the IP address to a local outgoing interface and the destination hardware address (Ethernet MAC or InfiniBand Global Identifier (GID) of the target or a gateway leading to the target). If the resolved interface is an [IPoIB] network interface, then the target portal can be reached through an InfiniBand fabric. In this case, the Initiator can establish an iSCSI/TCP or iSCSI/iSER session with the Target over that InfiniBand interface, using the hardware address (InfiniBand GID) obtained through the standard Address Resolution Protocol (ARP) processes.
If more than one IP address is obtained through the discovery process, the Initiator should select a Target IP address that is on the same IP subnet as the Initiator, if one exists. This will avoid a potential overhead of going through a gateway when a direct path exists.
In addition, a user can configure manual static IP route entries if a particular path to the target is preferred.
It is outside the scope of this document, but it is expected that the InfiniBand Trade Association (IBTA) has or will define:
* The iSER ServiceID
* A means for permitting a Host to establish a connection with a peer InfiniBand end-node, and that peer indicating when that end- node supports iSER, so the Host would be able to fall back to iSCSI/TCP over [IPoIB].
* A means for permitting the Host to establish connections with IB iSER connections on storage controllers or IB iSER-connected Gateways in preference to IPoIB-connected Gateways/Bridges or connections to Target Storage Controllers that also accept iSCSI via [IPoIB].
* A means for combining the IB ServiceID for iSER and the IP port number such that the IB Host can use normal IB connection processes, yet ensure that the iSER target peer can actually connect to the required IP port number.
The authors acknowledge the following individuals for identifying implementation issues and/or suggesting resolutions to the issues clarified in this document: Robert Russell, Arne Redlich, David Black, Mallikarjun Chadalapaka, Tom Talpey, Felix Marti, Robert Sharp, Caitlin Bestler, Hemal Shah, Spencer Dawkins, Pete Resnick, Ted Lemon, Pete McCann, and Steve Kent. Credit also goes to the authors of the original iSER Specification [RFC5046], including Michael Ko, Mallikarjun Chadalapaka, John Hufferd, Uri Elzur, Hemal Shah, and Patricia Thaler. This document benefited from all of their contributions.
Authors' Addresses
Michael Ko
EMail: mkosjc@gmail.com
7146 - Securing Block Storage Protocols over IP: RFC 3723 Requirements Update fo
Internet Engineering Task Force (IETF)
Request for Comments: 7146
Updates: 3720, 3723, 3821, 3822, 4018, 4172,
Category: Standards Track
ISSN: 2070-1721
D. Black
EMC
P. Koning
4173, 4174, 5040, 5041, 5042, 5043, Dell
5044, 5045, 5046, 5047, 5048 April 2014
RFC 3723 specifies IPsec requirements for block storage protocols over IP (e.g., Internet Small Computer System Interface (iSCSI)) based on IPsec v2 (RFC 2401 and related RFCs); those requirements have subsequently been applied to remote direct data placement protocols, e.g., the Remote Direct Memory Access Protocol (RDMAP). This document updates RFC 3723's IPsec requirements to IPsec v3 (RFC 4301 and related RFCs) and makes some changes to required algorithms based on developments in cryptography since RFC 3723 was published.
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7146.
Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
[RFC3723] specifies IPsec requirements for block storage protocols over IP (e.g., iSCSI [RFC3720]) based on IPsec v2 ([RFC2401] and related RFCs); those requirements have subsequently been applied to remote direct data placement protocols, e.g., RDMAP [RFC5040]. This document updates RFC 3723's IPsec requirements to IPsec v3 ([RFC4301] and related RFCs) to reflect developments since RFC 3723 was published.
For brevity, this document uses the term "block storage protocols" to refer to all protocols to which RFC 3723's requirements apply; see Section 1.3 for details.
In addition to the IPsec v2 requirements in RFC 3723, IPsec v3, as specified in [RFC4301] and related RFCs (e.g., IKEv2 [RFC5996]), SHOULD be implemented for block storage protocols. Retention of the mandatory requirement for IPsec v2 provides interoperability with existing implementations, and the strong recommendation for IPsec v3 encourages implementers to move forward to that newer version of IPsec.
Cryptographic developments since the publication of RFC 3723 necessitate changes to the encryption transform requirements for IPsec v2, as explained further in Section 2.2; these updated requirements also apply to IPsec v3.
Block storage protocols can be expected to operate at high data rates (multiple gigabits/second). The cryptographic requirements in this document are strongly influenced by that expectation; an important example is that Triple Data Encryption Standard Cipher Block Chaining (3DES CBC) is no longer recommended for block storage protocols due to the frequent rekeying impacts of 3DES's 64-bit block size at high data rates.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
This document makes the following changes to RFC 3723:
o Adds requirements that IPsec v3 SHOULD be implemented (Encapsulating Security Payload (ESPv3) and IKEv2) in addition to IPsec v2 (see Section 1).
o Requires extended sequence numbers for both ESPv2 and ESPv3 (see Section 2).
o Clarifies key-size requirements for AES CBC MAC with XCBC extensions (MUST implement 128-bit keys; see Section 2.1).
o Adds IPsec v3 requirements for AES Galois Message Authentication Code (GMAC) and Galois/Counter Mode (GCM) (SHOULD implement when IKEv2 is supported; see Sections 2.1 and 2.2).
o Removes implementation requirements for 3DES CBC and AES in Counter mode (AES CTR) (changes requirements for both to "MAY implement"). Adds a "MUST implement" requirement for AES CBC (see Section 2.2).
o Adds specific IKEv2 implementation requirements (see Section 3).
o Removes the requirement that IKEv1 use UDP port 500 (see Section 3).
o Allows the use of the Online Certificate Status Protocol (OCSP) in addition to Certificate Revocation Lists (CRLs) to check certificates, and changes the Diffie-Hellman group size recommendation to a minimum of 2048 bits (see Section 3).
RFC 3723's IPsec requirements have been applied to a number of protocols. For that reason, in addition to updating RFC 3723's IPsec requirements, this document also updates the IPsec requirements for each protocol that uses RFC 3723; that is, the following RFCs are updated -- in each case, the update is solely to the IPsec requirements:
o [RFC3720] "Internet Small Computer Systems Interface (iSCSI)"
o [RFC3821] "Fibre Channel Over TCP/IP (FCIP)"
o [RFC3822] "Finding Fibre Channel over TCP/IP (FCIP) Entities Using Service Location Protocol version 2 (SLPv2)"
o [RFC4018] "Finding Internet Small Computer Systems Interface (iSCSI) Targets and Name Servers by Using Service Location Protocol version 2 (SLPv2)"
o [RFC4172] "iFCP - A Protocol for Internet Fibre Channel Storage Networking"
o [RFC4173] "Bootstrapping Clients using the Internet Small Computer System Interface (iSCSI) Protocol"
o [RFC4174] "The IPv4 Dynamic Host Configuration Protocol (DHCP) Option for the Internet Storage Name Service"
o [RFC5040] "A Remote Direct Memory Access Protocol Specification"
o [RFC5041] "Direct Data Placement over Reliable Transports"
o [RFC5042] "Direct Data Placement Protocol (DDP) / Remote Direct Memory Access Protocol (RDMAP) Security"
o [RFC5043] "Stream Control Transmission Protocol (SCTP) Direct Data Placement (DDP) Adaptation"
o [RFC5044] "Marker PDU Aligned Framing for TCP Specification"
o [RFC5045] "Applicability of Remote Direct Memory Access Protocol (RDMA) and Direct Data Placement (DDP)"
o [RFC5046] "Internet Small Computer System Interface (iSCSI) Extensions for Remote Direct Memory Access (RDMA)"
o [RFC5047] "DA: Datamover Architecture for the Internet Small Computer System Interface (iSCSI)"
o [RFC5048] "Internet Small Computer System Interface (iSCSI) Corrections and Clarifications"
[RFC3721] and [RFC5387] are not updated by this document, as their usage of RFC 3723 does not encompass its IPsec requirements.
In addition, this document's updated IPsec requirements apply to the new specifications for iSCSI [RFC7143] and iSCSI Extensions for RDMA (iSER) [RFC7145].
This document uses the term "block storage protocols" to refer to the protocols (listed above) to which RFC 3723's requirements (as updated by the requirements in this document) apply.
RFC 3723 requires that implementations MUST support IPsec ESPv2 [RFC2406] in tunnel mode as part of IPsec v2 to provide security for both control packets and data packets; and that when ESPv2 is utilized, per-packet data origin authentication, integrity, and replay protection MUST be provided.
This document modifies RFC 3723 to require that implementations SHOULD also support IPsec ESPv3 [RFC4303] in tunnel mode as part of IPsec v3 to provide security for both control packets and data packets; per-packet data origin authentication, integrity, and replay protection MUST be provided when ESPv3 is utilized.
At the high speeds at which block storage protocols are expected to operate, a single IPsec security association (SA) could rapidly exhaust the ESP 32-bit sequence number space, requiring frequent rekeying of the SA, as rollover of the ESP sequence number within a single SA is prohibited for both ESPv2 [RFC2406] and ESPv3 [RFC4303]. In order to provide the means to avoid this potentially undesirable frequent rekeying, implementations that are capable of operating at speeds of 1 gigabit/second or higher MUST implement extended (64-bit) sequence numbers for ESPv2 (and ESPv3, if supported) and SHOULD use extended sequence numbers for all block storage protocol traffic. Extended sequence number negotiation as part of security association establishment is specified in [RFC4304] for IKEv1 and [RFC5996] for IKEv2.
RFC 3723 requires that:
o HMAC-SHA1 MUST be implemented in the form of HMAC-SHA-1-96 [RFC2404].
o AES CBC MAC with XCBC extensions SHOULD be implemented [RFC3566].
This document clarifies RFC 3723's key-size requirements for implementations of AES CBC MAC with XCBC extensions; 128-bit keys MUST be supported, and other key sizes MAY also be supported.
This document also adds a requirement for IPsec v3:
o Implementations that support IKEv2 [RFC5996] SHOULD also implement AES GMAC [RFC4543]. AES GMAC implementations MUST support 128-bit keys and MAY support other key sizes.
The rationale for the added requirement is that GMAC is more amenable to hardware implementations that may be preferable for the high data rates at which block storage protocols can be expected to operate.
RFC 3723 requires that:
o 3DES in CBC mode (3DES CBC) [RFC2451] [triple-des-spec] MUST be supported.
o AES in Counter mode (AES CTR) [RFC3686] SHOULD be supported.
o NULL encryption [RFC2410] MUST be supported.
The above requirements from RFC 3723 regarding 3DES CBC and AES CTR are replaced in this document by requirements that both 3DES CBC and AES CTR MAY be implemented. The NULL encryption requirement is not changed by this document. The 3DES CBC requirement matched the basic encryption interoperability requirement for IPsec v2. At the time of RFC 3723's publication, AES in Counter mode was the encryption transform that was most amenable to hardware implementation, as hardware implementation may be preferable for the high data rates at which block storage protocols can be expected to operate. This document changes both of these requirements, based on cryptographic developments since the publication of RFC 3723.
The requirement for 3DES CBC has become problematic due to 3DES's 64-bit block size; i.e., the core cipher encrypts or decrypts 64 bits at a time. Security weaknesses in encryption start to appear as the amount of data encrypted under a single key approaches the birthday bound of 32 GiB (gibibytes) for a cipher with a 64-bit block size; see Appendix A and [triple-des-birthday]. It is prudent to rekey well before that bound is reached, and 32 GiB or some significant fraction thereof is less than the amount of data that a block storage protocol may transfer in a single session. This may require frequent rekeying, e.g., to obtain an order-of-magnitude (10x) safety margin by rekeying after 3 GiB on a multi-gigabit/sec link. In contrast, AES has a 128-bit block size, which results in a much larger birthday bound (2^68 bytes); see Appendix A. AES CBC [RFC3602] is the primary mandatory-to-implement encryption transform for interoperability and hence is the appropriate mandatory-to-implement transform replacement for 3DES CBC.
AES in Counter mode (AES CTR) is no longer the encryption transform that is most amenable to hardware implementation. That characterization now applies to AES GCM [RFC4106], which provides both encryption and integrity protection in a single cryptographic mechanism (in contrast, neither HMAC-SHA1 nor AES CBC MAC with XCBC extensions is well suited for hardware implementation, as both transforms do not pipeline well). AES GCM is also capable of providing confidentiality protection for the IKEv2 key exchange protocol, but not the IKEv1 protocol [RFC5282], and therefore the new AES GCM "SHOULD" requirement is based on the presence of support for IKEv2.
For the reasons described in the preceding paragraphs, the confidentiality transform requirements in RFC 3723 are replaced by the following:
o 3DES in CBC mode MAY be implemented (replaces RFC 3723's "MUST implement" requirement).
o AES in CBC mode MUST be implemented. AES CBC implementations MUST support 128-bit keys and MAY support other key sizes.
o Implementations that support IKEv2 SHOULD also implement AES GCM. AES GCM implementations MUST support 128-bit keys and MAY support other key sizes.
o NULL encryption [RFC2410] MUST be supported.
The requirement for support of NULL encryption enables the use of SAs that provide data origin authentication and data integrity, but not confidentiality.
Other transforms MAY be implemented in addition to those listed above.
Note: To avoid ambiguity, the original IKE protocol [RFC2409] is referred to as "IKEv1" in this document.
This document adds requirements for IKEv2 usage with block storage protocols and makes the following two changes to the IKEv1 requirements in RFC 3723 (the new Diffie-Hellman (DH) group requirement also applies to IKEv2):
o When DH groups are used, a DH group of at least 2048 bits SHOULD be offered as a part of all proposals to create IPsec security associations. The recommendation for the use of 1024-bit DH
groups with 3DES CBC and HMAC-SHA1 has been removed; the use of 1024-bit DH groups is NOT RECOMMENDED, and
o The requirement to use UDP port 500 is removed in order to allow NAT traversal [RFC3947].
There are no other changes to RFC 3723's IKEv1 requirements, but many of them are restated in this document in order to provide context for the new IKEv2 requirements.
RFC 3723 requires that IKEv1 [RFC2409] be supported for peer authentication, negotiation of security associations, and key management, using the IPsec domain of interpretation (DOI) [RFC2407], and further requires that manual keying not be used since it does not provide the rekeying support necessary for operation at high data rates. This document adds a requirement that IKEv2 [RFC5996] SHOULD be supported for peer authentication, negotiation of security associations, and key management. The prohibition of manual keying as stated in RFC 3723 is extended to IKEv2; manual keying MUST NOT be used with any version of IPsec for protocols to which the requirements in this document apply.
RFC 3723's requirements for IKEv1 mode implementation and usage are unchanged; this document does not extend those requirements to IKEv2 because IKEv2 does not have modes.
When IPsec is used, the receipt of an IKEv1 Phase 2 delete message or an IKEv2 INFORMATIONAL exchange that deletes the SA SHOULD NOT be interpreted as a reason for tearing down the block storage protocol connection (e.g., TCP-based). If additional traffic is sent, a new SA will be created to protect that traffic.
The method used to determine whether a block storage protocol connection should be established using IPsec is regarded as an issue of IPsec policy administration and thus is not defined in this document. The method used by an implementation that supports both IPsec v2 and v3 to determine which versions of IPsec are supported by a block storage protocol peer is also regarded as an issue of IPsec policy administration and thus is also not defined in this document. If both IPsec v2 and v3 are supported by both endpoints of a block storage protocol connection, the use of IPsec v3 is RECOMMENDED.
The authentication requirements for IKEv1 are unchanged by this document but are restated here for context, along with the authentication requirements for IKEv2:
a. Peer authentication using a pre-shared cryptographic key MUST be supported. Certificate-based peer authentication using digital signatures MAY be supported. For IKEv1 [RFC2409], peer authentication using the public key encryption methods specified in Sections 5.2 and 5.3 of [RFC2409] SHOULD NOT be used.
b. When digital signatures are used for authentication, all IKEv1 and IKEv2 negotiators SHOULD use Certificate Request Payload(s) to specify the certificate authority and SHOULD check the certificate validity via the pertinent Certificate Revocation List (CRL) or the use of the Online Certificate Status Protocol (OCSP) [RFC6960] before accepting a PKI certificate for use in authentication. OCSP support within the IKEv2 protocol is specified in [RFC4806].
c. IKEv1 implementations MUST support Main Mode and SHOULD support Aggressive Mode. Main Mode with the pre-shared key authentication method SHOULD NOT be used when either the initiator or the target uses dynamically assigned IP addresses. While in many cases pre-shared keys offer good security, situations in which dynamically assigned addresses are used force the use of a group pre-shared key, which creates vulnerability to a man-in-the-middle attack. These requirements do not apply to IKEv2 because it has no modes.
d. In the IKEv1 Phase 2 Quick Mode, in exchanges for creating the Phase 2 SA, the Identification Payload MUST be present. This requirement does not apply to IKEv2 because it has no modes.
e. The following identification type requirements apply to IKEv1. ID_IPV4_ADDR, ID_IPV6_ADDR (if the protocol stack supports IPv6), and ID_FQDN Identification Types MUST be supported; ID_USER_FQDN SHOULD be supported. The IP Subnet, IP Address Range, ID_DER_ASN1_DN, and ID_DER_ASN1_GN Identification Types SHOULD NOT be used. The ID_KEY_ID Identification Type MUST NOT be used.
f. When IKEv2 is supported, the following identification requirements apply. ID_IPV4_ADDR, ID_IPV6_ADDR (if the protocol stack supports IPv6), and ID_FQDN Identification Types MUST be supported; ID_RFC822_ADDR SHOULD be supported. The ID_DER_ASN1_DN and ID_DER_ASN1_GN Identification Types SHOULD NOT be used. The ID_KEY_ID Identification Type MUST NOT be used.
The reasons for the identification requirements in items e and f above are as follows:
o IP Subnet and IP Address Range are too broad to usefully identify an iSCSI endpoint.
o The _DN and _GN types are X.500 identities; it is usually better to use an identity from subjectAltName in a PKI certificate.
o ID_KEY_ID is an opaque identifier that is not interoperable among different IPsec implementations as specified. Heterogeneity in some block storage protocol implementations can be expected (e.g., iSCSI initiator vs. iSCSI target implementations), and hence heterogeneity among IPsec implementations is important.
This document does not change the support requirements for Diffie- Hellman (DH) groups and Pseudo-Random Functions (PRFs). See [RFC4109] for IKEv1 requirements and [RFC4307] for IKEv2 requirements. Implementers are advised to check for subsequent RFCs that update either of these RFCs, as such updates may change these requirements.
When DH groups are used, a DH group of at least 2048 bits SHOULD be offered as a part of all proposals to create IPsec security associations for both IKEv1 and IKEv2.
RFC 3723 requires that support for perfect forward secrecy in the IKEv1 Quick Mode key exchange MUST be implemented. This document extends that requirement to IKEv2; support for perfect forward secrecy in the CREATE_CHILD_SA key exchange MUST be implemented for the use of IPsec with block storage protocols.
This entire document is about security.
The security considerations sections of all of the referenced RFCs apply, and particular note should be taken of the security considerations for the encryption transforms whose requirement levels are changed by this RFC:
o AES GMAC [RFC4543] (new requirement -- SHOULD be supported when IKEv2 is supported),
o 3DES CBC [RFC2451] (changed from "MUST be supported" to "MAY be supported"),
o AES CTR [RFC3686] (changed from "SHOULD be supported" to "MAY be supported"),
o AES CBC [RFC3602] (new requirement -- MUST be supported), and
o AES GCM [RFC4106] (new requirement -- SHOULD be supported when IKEv2 is supported).
Of particular interest are the security considerations concerning the use of AES GCM [RFC4106] and AES GMAC [RFC4543]; both modes are vulnerable to catastrophic forgery attacks if a nonce is ever repeated with a given key.
The requirement level for 3DES CBC has been reduced, based on considerations for high-speed implementations; 3DES CBC remains an optional encryption transform that may be suitable for implementations limited to operating at lower speeds where the required rekeying frequency for 3DES is acceptable.
The requirement level for AES CTR has been reduced, based solely on hardware implementation considerations that favor AES GCM, as opposed to changes in AES CTR's security properties. AES CTR remains an optional security transform that is suitable for use in general, as it does not share 3DES CBC's requirement for frequent rekeying when operating at high data rates.
Key sizes with comparable strength SHOULD be used for the cryptographic algorithms and transforms for any individual IPsec security association. See Section 5.6 of [SP800-57] for further discussion.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2401]
Kent, S. and R. Atkinson, "Security Architecture for the Internet Protocol", RFC 2401, November 1998.
[RFC2404]
Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within ESP and AH", RFC 2404, November 1998.
[RFC2406]
Kent, S. and R. Atkinson, "IP Encapsulating Security Payload (ESP)", RFC 2406, November 1998.
[RFC2407]
Piper, D., "The Internet IP Security Domain of Interpretation for ISAKMP", RFC 2407, November 1998.
[RFC2409]
Harkins, D. and D. Carrel, "The Internet Key Exchange (IKE)", RFC 2409, November 1998.
[RFC2410]
Glenn, R. and S. Kent, "The NULL Encryption Algorithm and Its Use With IPsec", RFC 2410, November 1998.
[RFC2451]
Pereira, R. and R. Adams, "The ESP CBC-Mode Cipher Algorithms", RFC 2451, November 1998.
[RFC3566]
Frankel, S. and H. Herbert, "The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec", RFC 3566, September 2003.
[RFC3602]
Frankel, S., Glenn, R., and S. Kelly, "The AES-CBC Cipher Algorithm and Its Use with IPsec", RFC 3602, September 2003.
[RFC3686]
Housley, R., "Using Advanced Encryption Standard (AES) Counter Mode With IPsec Encapsulating Security Payload (ESP)", RFC 3686, January 2004.
[RFC3720]
Satran, J., Meth, K., Sapuntzakis, C., Chadalapaka, M., and E. Zeidner, "Internet Small Computer Systems Interface (iSCSI)", RFC 3720, April 2004.
[RFC3723]
Aboba, B., Tseng, J., Walker, J., Rangan, V., and F. Travostino, "Securing Block Storage Protocols over IP", RFC 3723, April 2004.
[RFC3821]
Rajagopal, M., Rodriguez, E., and R. Weber, "Fibre Channel Over TCP/IP (FCIP)", RFC 3821, July 2004.
[RFC3822]
Peterson, D., "Finding Fibre Channel over TCP/IP (FCIP) Entities Using Service Location Protocol version 2 (SLPv2)", RFC 3822, July 2004.
[RFC3947]
Kivinen, T., Swander, B., Huttunen, A., and V. Volpe, "Negotiation of NAT-Traversal in the IKE", RFC 3947, January 2005.
[RFC4018]
Bakke, M., Hufferd, J., Voruganti, K., Krueger, M., and T. Sperry, "Finding Internet Small Computer Systems Interface (iSCSI) Targets and Name Servers by Using Service Location Protocol version 2 (SLPv2)", RFC 4018, April 2005.
[RFC4106]
Viega, J. and D. McGrew, "The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP)", RFC 4106, June 2005.
[RFC4109]
Hoffman, P., "Algorithms for Internet Key Exchange version 1 (IKEv1)", RFC 4109, May 2005.
[RFC4172]
Monia, C., Mullendore, R., Travostino, F., Jeong, W., and M. Edwards, "iFCP - A Protocol for Internet Fibre Channel Storage Networking", RFC 4172, September 2005.
[RFC4173]
Sarkar, P., Missimer, D., and C. Sapuntzakis, "Bootstrapping Clients using the Internet Small Computer System Interface (iSCSI) Protocol", RFC 4173, September 2005.
[RFC4174]
Monia, C., Tseng, J., and K. Gibbons, "The IPv4 Dynamic Host Configuration Protocol (DHCP) Option for the Internet Storage Name Service", RFC 4174, September 2005.
[RFC4301]
Kent, S. and K. Seo, "Security Architecture for the Internet Protocol", RFC 4301, December 2005.
[RFC4303]
Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, December 2005.
[RFC4304]
Kent, S., "Extended Sequence Number (ESN) Addendum to IPsec Domain of Interpretation (DOI) for Internet Security Association and Key Management Protocol (ISAKMP)", RFC 4304, December 2005.
[RFC4307]
Schiller, J., "Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)", RFC 4307, December 2005.
[RFC4543]
McGrew, D. and J. Viega, "The Use of Galois Message Authentication Code (GMAC) in IPsec ESP and AH", RFC 4543, May 2006.
[RFC5040]
Recio, R., Metzler, B., Culley, P., Hilland, J., and D. Garcia, "A Remote Direct Memory Access Protocol Specification", RFC 5040, October 2007.
[RFC5041]
Shah, H., Pinkerton, J., Recio, R., and P. Culley, "Direct Data Placement over Reliable Transports", RFC 5041, October 2007.
[RFC5042]
Pinkerton, J. and E. Deleganes, "Direct Data Placement Protocol (DDP) / Remote Direct Memory Access Protocol (RDMAP) Security", RFC 5042, October 2007.
[RFC5043]
Bestler, C. and R. Stewart, "Stream Control Transmission Protocol (SCTP) Direct Data Placement (DDP) Adaptation", RFC 5043, October 2007.
[RFC5044]
Culley, P., Elzur, U., Recio, R., Bailey, S., and J. Carrier, "Marker PDU Aligned Framing for TCP Specification", RFC 5044, October 2007.
[RFC5046]
Ko, M., Chadalapaka, M., Hufferd, J., Elzur, U., Shah, H., and P. Thaler, "Internet Small Computer System Interface (iSCSI) Extensions for Remote Direct Memory Access (RDMA)", RFC 5046, October 2007.
[RFC5048]
Chadalapaka, M., "Internet Small Computer System Interface (iSCSI) Corrections and Clarifications", RFC 5048, October 2007.
[RFC5282]
Black, D. and D. McGrew, "Using Authenticated Encryption Algorithms with the Encrypted Payload of the Internet Key Exchange version 2 (IKEv2) Protocol", RFC 5282, August 2008.
[RFC5996]
Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen, "Internet Key Exchange Protocol Version 2 (IKEv2)", RFC 5996, September 2010.
[RFC6960]
Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., and C. Adams, "X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP", RFC 6960, June 2013.
[RFC7143]
Chadalapaka, M., Satran, J., Meth, K., and D. Black, "Internet Small Computer System Interface (iSCSI) Protocol (Consolidated)", RFC 7143, April 2014.
[RFC7145]
Ko, M. and A. Nezhinsky, "Internet Small Computer System Interface (iSCSI) Extensions for the Remote Direct Memory Access (RDMA) Specification", RFC 7145, April 2014.
[SP800-57]
Barker, E., Barker, W., Burr, W., Polk, W., and M. Smid, "NIST Special Publication 800-57: Recommendation for Key Management - Part 1: General (Revision 3)", July 2012, <http://csrc.nist.gov/publications/nistpubs/800-57/ sp800-57_part1_rev3_general.pdf>.
[triple-des-birthday]
McGrew, D., "Impossible plaintext cryptanalysis and probable-plaintext collision attacks of 64-bit block cipher modes (Cryptology ePrint Archive: Report 2012/ 623)", November 2012, <http://eprint.iacr.org/2012/623>.
[triple-des-spec]
American Bankers Association (ABA), "American National Standard for Financial Services X9.52-1998 - Triple Data Encryption Algorithm Modes of Operation", July 1998.
[RFC3721]
Bakke, M., Hafner, J., Hufferd, J., Voruganti, K., and M. Krueger, "Internet Small Computer Systems Interface (iSCSI) Naming and Discovery", RFC 3721, April 2004.
[RFC4806]
Myers, M. and H. Tschofenig, "Online Certificate Status Protocol (OCSP) Extensions to IKEv2", RFC 4806, February 2007.
[RFC5045]
Bestler, C. and L. Coene, "Applicability of Remote Direct Memory Access Protocol (RDMA) and Direct Data Placement (DDP)", RFC 5045, October 2007.
[RFC5047]
Chadalapaka, M., Hufferd, J., Satran, J., and H. Shah, "DA: Datamover Architecture for the Internet Small Computer System Interface (iSCSI)", RFC 5047, October 2007.
[RFC5387]
Touch, J., Black, D., and Y. Wang, "Problem and Applicability Statement for Better-Than-Nothing Security (BTNS)", RFC 5387, November 2008.
This appendix provides the birthday bounds for the 3DES and AES ciphers based on [triple-des-birthday], which states: "Theory advises against using a w-bit block cipher to encrypt more than 2^(w/2) blocks with a single key; this is known as the birthday bound".
For a cipher with a 64-bit block size (e.g., 3DES), w = 64, so the birthday bound is 2^32 blocks. As each block contains 8 (2^3) bytes, the birthday bound is 2^35 bytes = 2^5 gibibytes, i.e., 32 GiB, where 1 gibibyte (GiB) = 2^30 bytes. Note that a gigabyte (decimal quantity) is not the same as a gibibyte (binary quantity); 1 gigabyte (GB) = 10^6 bytes.
David McGrew's observations about the birthday bound implications of 3DES's 64-bit block size on the ipsec@ietf.org mailing list led to changing from 3DES CBC to AES CBC as the mandatory-to-implement encryption algorithm, based on the birthday bound discussion in Appendix A.
The original authors of RFC 3723 were Bernard Aboba, Joshua Tseng, Jesse Walker, Venkat Rangan, and Franco Travostino. Comments from Francis Dupont, Yaron Sheffer, Tom Talpey, Sean Turner, and Tom Yu have improved this document and are gratefully acknowledged.
Authors' Addresses
7147 - Definitions of Managed Objects for the Internet Small Computer System Int
Internet Engineering Task Force (IETF)
Request for Comments: 7147
Obsoletes: 4544
Category: Standards Track
ISSN: 2070-1721
M. Bakke
Dell
P. Venkatesen
HCL Technologies
April 2014
This document defines a portion of the Management Information Base (MIB) for use with network management protocols. In particular, it defines objects for managing a client using the Internet Small Computer System Interface (iSCSI) protocol (SCSI over TCP).
This document obsoletes RFC 4544.
This is an Internet Standards Track document.
Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.
For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].
Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].
This document defines a MIB module for iSCSI [RFC7143], used to manage devices that implement the iSCSI protocol. It obsoletes RFC 4544 [RFC4544].
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
The iSCSI MIB module is normally layered between the SCSI MIB module [RFC4455] and the TCP MIB module [RFC4022], and it makes use of the IP Storage (IPS) Identity Authentication MIB module [RFC4545]. Here is how these modules are related:
This MIB module imports objects from RFCs 2578 [RFC2578], 2579 [RFC2579], 2580 [RFC2580], and 3411 [RFC3411]. It also imports textual conventions from the INET-ADDRESS-MIB [RFC4001].
Each non-scalar object in the iSCSI MIB module is indexed first by an iSCSI instance. Each instance is a collection of nodes, portals, sessions, etc., that can define a physical or virtual partitioning of an iSCSI-capable device. The use of an instance works well with partitionable or hierarchical storage devices and fits in logically with other management schemes. Instances do not replace SNMP contexts; however, they do provide a very simple way to assign a virtual or physical partition of a device to one or more SNMP contexts, without having to do so for each individual node, portal, and session row.
[RFC7143] updates several RFCs, including [RFC3720]. This document updates the iSCSI MIB correspondingly. The document uses iSCSIProtocolLevel as defined in [RFC7144]. It obsoletes [RFC4544]. Below is a brief description of the changes.
This MIB module structure supplies configuration, fault, and statistics information for iSCSI devices [RFC7143]. It is structured around the well-known iSCSI objects, such as targets, initiators, sessions, connections, and the like.
This MIB module may also be used to configure access to iSCSI targets, by creating iSCSI portals and authorization list entries.
It is worthwhile to note that this is an iSCSI MIB module and as such reflects only iSCSI objects. This module does not contain information about the SCSI-layer attributes of a device. If a SCSI layer is present, the SCSI MIB module [RFC4455] may be used to manage SCSI information for a device.
The iSCSI MIB module consists of several "objects", each of which is represented by one or more tables. This section contains a brief description of the object hierarchy and a description of each object, followed by a discussion of the actual table structure within the objects.
The top-level object in this structure is the iSCSI instance, which "contains" all of the other objects.
An iSCSI node can be an initiator, a target, or both. The iSCSI node's portals may be used to initiate connections (initiator) or listen for connections (target), depending on whether the iSCSI node is acting as an initiator or target. The iSCSI MIB module assumes that any target may be accessed via any portal that can take on a target role, although other access controls not reflected in the module might limit this.
Each iSCSI object exports one or more tables: an attributes table, and zero or more statistics tables, which augment the attributes table. Since iSCSI is an evolving standard, it is much cleaner to provide statistics and attributes as separate tables, allowing attributes and statistics to be added independently. In a few cases, there are multiple categories of statistics that will likely grow; in this case, an object will contain multiple statistics tables.
Note that this module does not attempt to count everything that could be counted; it is designed to include only those counters that would be useful for identifying performance, security, and fault problems from a management station.
The iscsiInstanceAttributesTable is the primary table of the iSCSI MIB module. Every table entry in this module is "owned" by exactly one iSCSI instance; all other table entries in the module include this table's index as their primary index.
Most implementations will include just one iSCSI instance row in this table. However, this table exists to allow for multiple virtual instances. For example, many IP routing products now allow multiple virtual routers. The iSCSI MIB module has the same premise; a large system could be "partitioned" into multiple, distinct virtual systems.
This also allows a single SNMP agent to proxy for multiple subsystems, perhaps a set of stackable devices, each of which has one or even more instances.
The instance attributes include the iSCSI vendor and version, as well as information on the last target or initiator at the other end of a session that caused a session failure.
The iscsiInstanceSsnErrorStatsTable augments the attributes table and provides statistics on session failures due to digest, connection, or iSCSI format errors.
The iscsiPortalAttributesTable lists iSCSI portals that can be used to listen for connections to targets, to initiate connections to other targets, or to do both.
Each row in the table includes an IP address (either v4 or v6), and a transport protocol (currently only TCP is defined). Each portal may have additional attributes, depending on whether it is an initiator portal, a target portal, or both. Initiator portals also have portal tags; these are placed in corresponding rows in the iscsiIntrPortalAttributesTable. Target portals have both portal tags and ports (e.g., TCP listen ports if the transport protocol is TCP); these are placed in rows in the iscsiTgtPortalAttributesTable. Portal rows, along with their initiator and target portal counterparts, may be created and destroyed through this MIB module by a management station. Rows in the initiator and target portal tables are created and destroyed automatically by the agent when a row is created or destroyed in the iscsiPortalAttributesTable or when the value of iscsiPortalRoles changes. Attributes in these tables may then be modified by the management station if the agent implementation allows.
When created by a management station, the iscsiPortalRoles attribute is used to control row creation in the initiator and target portal tables. Creating a row with the targetTypePortal bit set in iscsiPortalRoles will cause the implementation to start listening for iSCSI connections on the portal. Creating a row with the initiatorTypePortal bit set in iscsiPortalRoles will not necessarily cause connections to be established; it is left to the implementation whether and when to make use of the portal. Both bits may be set if the portal is to be used by both initiator and target nodes.
When deleting a row in the iscsiPortalAttibutesTable, all connections associated with that row are terminated. The implementation may either terminate the connection immediately or request a clean shutdown as specified in [RFC7143]. An outbound connection (when an iscsiInitiatorPortal is deleted) matches the portal if its iscsiCxnLocalAddr matches the iscsiPortalAddr. An inbound connection (when an iscsiTargetPortal is deleted) matches the portal if its iscsiCxnLocalAddr matches the iscsiPortalAddr and if its iscsiCxnLocalPort matches the iscsiTargetPortalPort.
Individual objects within a row in this table may not be modified while the row is active. For instance, changing the IP address of a portal requires that the rows associated with the old IP address be deleted and that new rows be created (in either order).
The iscsiTgtPortalAttributesTable contains target-specific attributes for iSCSI portals. Rows in this table use the same indices as their corresponding rows in the iscsiPortalAttributesTable, with the addition of iscsiNodeIndex.
Rows in this table are created when the targetTypePortal bit is set in the iscsiPortalRoles attribute of the corresponding iscsiPortalAttributesEntry; they are destroyed when this bit is cleared.
This table contains the TCP (or other protocol) port on which the socket is listening for incoming connections. It also includes a portal group aggregation tag; iSCSI target portals that are within this instance and share the same tag can contain connections within the same session.
This table will be empty for iSCSI instances that contain only initiators (such as iSCSI host driver implementations).
Many implementations use the same Target Portal Group Tag and protocol port for all nodes accessed via a portal. These implementations will create a single row in the iscsiTgtPortalAttributeTable, with an iscsiNodeIndex of zero.
Other implementations do not use the same tag and/or port for all nodes; these implementations will create a row in this table for each (portal, node) tuple, using iscsiNodeIndex to designate the node for this portal tag and port.
The iscsiIntrPortalAttributesTable contains initiator-specific objects for iSCSI portals. Rows in this table use the same indices as their corresponding entries in the iscsiPortalAttributesTable. A row in this table is created when the initiatorTypePortal bit is set in the iscsiPortalRoles attribute; it is destroyed when this bit is cleared.
Each row in this table contains a portal group aggregation tag, indicating which portals an initiator may use together within a multiple-connection session.
This table will be empty for iSCSI instances that contain only targets (such as most iSCSI devices).
Many implementations use the same initiator tag for all nodes accessing targets via a given portal. These implementations will create a single row in iscsiIntrPortalAttributeTable, with an iscsiNodeIndex of zero.
Other implementations do not use the same tag and/or port for all nodes; these implementations will create a row in this table for each (portal, node) tuple, using iscsiNodeIndex to designate the node for this portal tag and port.
The iscsiNodeAttributesTable contains a list of iSCSI nodes, each of which may have an initiator role, a target role, or both.
This table contains the node's attributes that are common to both roles, such as its iSCSI name and alias string. Attributes specific to initiators or targets are available in the iscsiTarget and iscsiInitiator objects. Each row in this table that can fulfill a target role has a corresponding row in the iscsiTarget table; each entry that fulfills an initiator role has a row in the iscsiInitiator table. Nodes such as copy managers that can take on both roles have a corresponding row in each table.
This table also contains the login negotiations preferences for this node. These objects indicate the values this node will offer or prefer in the operational negotiation phase of the login process.
For most implementations, each entry in the table also contains a RowPointer to the transport table entry in the SCSI MIB module that this iSCSI node represents. For implementations without a standard SCSI layer above iSCSI, such as an iSCSI proxy or gateway, this RowPointer can point to a row in an implementation-specific table that this iSCSI node represents.
The iscsiTargetAttributesTable contains target-specific attributes for iSCSI nodes. Each entry in this table uses the same index values as its corresponding iscsiNode entry.
This table contains attributes used to indicate the last failure that was (or should have been) sent as a notification.
This table is augmented by the iscsiTargetLoginStatsTable and the iscsiTargetLogoutStatsTable, which count the numbers of normal and abnormal logins and logouts to this target.
The iscsiTgtAuthAttributesTable contains an entry for each initiator identifier that will be allowed to access the target under which it appears. Each entry contains a RowPointer to a user identity in the IPS Authorization MIB module, which contains the name, address, and credential information necessary to authenticate the initiator.
The iscsiInitiatorAttributesTable contains a list of initiator- specific attributes for iSCSI nodes. Each entry in this table uses the same index values as its corresponding iscsiNode entry.
Most implementations will include a single entry in this table, regardless of the number of physical interfaces the initiator may use.
This table is augmented by the iscsiInitiatorLoginStatsTable and the iscsiInitiatorLogoutStatsTable, which count the numbers of normal and abnormal logins and logouts from this initiator.
The iscsiIntrAuthAttributesTable contains an entry for each target identifier to which the initiator is configured to establish a session.
Each entry contains a RowPointer to a user identity in the IPS Authorization MIB module, which contains the name, address, and credential information necessary to identify (for discovery purposes) and authenticate the target.
The iscsiSessionAttributesTable contains a set of rows that list the sessions known to exist locally for each node in each iSCSI instance.
The session type for each session indicates whether the session is used for normal SCSI commands or for discovery using the SendTargets text command. Discovery sessions that do not belong to any particular node have a node index attribute of zero.
The session direction for each session indicates whether it is an Inbound session or an Outbound session. Inbound sessions are from some other initiator to the target node under which the session appears. Outbound sessions are from the initiator node under which the session appears to a target outside this iSCSI instance.
Many attributes may be negotiated when starting an iSCSI session. Most of these attributes are included in the session object.
Some attributes, such as the integrity and authentication schemes, have some standard values that can be extended by vendors to include their own schemes. These contain an object identifier, rather than the expected enumerated type, to allow these values to be extended by other MIB modules, such as an enterprise MIB module.
The iscsiSessionStatsTable includes statistics related to performance; it counts iSCSI data bytes and PDUs.
For implementations that support error recovery without terminating a session, the iscsiSessionCxnErrorStatsTable contains counters for the numbers of digest and connection errors that have occurred within the session.
The iscsiConnectionAttributesTable contains a list of active connections within each session. It contains the IP addresses and TCP (or other protocol) ports of both the local and remote sides of the connection. These may be used to locate other connection-related information and statistics in the TCP MIB module [RFC4022].
The attributes table also contains a connection state. This state is not meant to directly map to the state tables included within the iSCSI specification; they are meant to be simplified, higher-level definitions of connection state that provide information more useful to a user or network manager.
No statistics are kept for connections.
The IP addresses in this module are represented by two attributes, one of type InetAddressType, and the other of type InetAddress. These are taken from [RFC4001], which specifies how to support addresses that may be either IPv4 or IPv6.
The TCP port numbers that appear in a few of the structures are described as simply port numbers, with a protocol attribute indicating whether they are TCP ports or something else. This will allow the module to be compatible with iSCSI over transports other than TCP in the future.
The iSCSI MIB module has a few attributes, namely, the digest method attributes, where an enumerated type would work well, except that an implementation may need to extend the attribute and add types of its own. To make this work, this MIB module defines a set of object identities within the iscsiDescriptors subtree. Each of these object identities is basically an enumerated type.
Attributes that make use of these object identities have a value that is an Object Identifier (OID) instead of an enumerated type. These OIDs can indicate either the object identities defined in this module or object identities defined elsewhere, such as in an enterprise MIB module. Those implementations that add their own digest methods should also define a corresponding object identity for each of these methods within their own enterprise MIB module, and return its OID whenever one of these attributes is using that method.
Three notifications are provided. One is sent by an initiator detecting a critical login failure, another is sent by a target detecting a critical login failure, and the third is sent upon a session being terminated due to an abnormal connection or digest failure. Critical failures are defined as those that may expose security-related problems that may require immediate action, such as failures due to authentication, authorization, or negotiation problems. Attributes in the initiator, target, and instance objects provide the information necessary to send in the notification, such as the initiator or target name and IP address at the other end that may have caused the failure.
To avoid sending an excessive number of notifications due to multiple errors counted, an SNMP agent implementing the iSCSI MIB module SHOULD NOT send more than three iSCSI notifications in any 10-second period.
The 3-in-10 rule was chosen because one notification every three seconds was deemed often enough, but should two or three different notifications happen at the same time, it would not be desirable to suppress them. Three notifications in 10 seconds is a happy medium, where a short burst of notifications is allowed, without inundating the network and/or notification host with a large number of notifications.
Copyright (c) 2014 IETF Trust and the persons identified as authors of the code. All rights reserved.
::= { mib-2 142 }
-- Textual Conventions
IscsiTransportProtocol ::= TEXTUAL-CONVENTION
--**
iscsiDescriptors OBJECT IDENTIFIER ::= { iscsiAdmin 1 }
iscsiHeaderIntegrityTypes OBJECT IDENTIFIER ::= { iscsiDescriptors 1 }
iscsiDataIntegrityTypes OBJECT IDENTIFIER ::= { iscsiDescriptors 2 }
--**
iscsiInstance OBJECT IDENTIFIER ::= { iscsiObjects 1 }
-- Instance Attributes Table
::= { iscsiInstanceAttributesEntry 2 }
::= { iscsiInstanceAttributesEntry 3 }
iscsiInstNodeNumber OBJECT-TYPE
-- Instance Session Failure Stats Table
iscsiPortal OBJECT IDENTIFIER ::= { iscsiObjects 2 }
-- Portal Attributes Table
iscsiPortalRoles OBJECT-TYPE
iscsiPortalProtocol OBJECT-TYPE
::= { iscsiPortalAttributesEntry 10 }
--** iscsiTargetPortal OBJECT IDENTIFIER ::= { iscsiObjects 3 }
-- Target Portal Attributes Table
--**
iscsiInitiatorPortal OBJECT IDENTIFIER ::= { iscsiObjects 4 }
-- Initiator Portal Attributes Table
::= { iscsiInitiatorPortal 1 }
--**
iscsiNode OBJECT IDENTIFIER ::= { iscsiObjects 5 }
-- Node Attributes Table
iscsiNodeRoles OBJECT-TYPE
This object is designed to accommodate future error-recovery levels.
--**
iscsiTarget OBJECT IDENTIFIER ::= { iscsiObjects 6 }
-- Target Attributes Table
-- Target Login Stats Table
iscsiTgtLoginAuthorizeFails OBJECT-TYPE
If this counter is incremented, an iscsiTgtLoginFailure notification should be generated.
-- Target Logout Stats Table
--**
iscsiTgtAuthorization OBJECT IDENTIFIER ::= { iscsiObjects 7 }
-- Target Authorization Attributes Table
::= { iscsiTgtAuthAttributesEntry 2 }
--**
iscsiInitiator OBJECT IDENTIFIER ::= { iscsiObjects 8 }
-- Initiator Attributes Table
-- Initiator Login Stats Table
No response is generated.
No response is generated.
-- Initiator Logout Stats Table
::= { iscsiInitiatorLogoutStatsEntry 2 }
--**
iscsiIntrAuthorization OBJECT IDENTIFIER ::= { iscsiObjects 9 }
-- Initiator Authorization Attributes Table
iscsiIntrAuthIndex OBJECT-TYPE
Conceptual rows having the value 'permanent' need not
--**
iscsiSession OBJECT IDENTIFIER ::= { iscsiObjects 10 }
-- Session Attributes Table
iscsiSsnISID OBJECT-TYPE
iscsiSsnType OBJECT-TYPE
-- Session Stats Table
::= { iscsiSessionStatsTable 1 }
-- Session Connection Error Stats Table
iscsiSsnCxnTimeoutErrors OBJECT-TYPE
--**
iscsiConnection OBJECT IDENTIFIER ::= { iscsiObjects 11 }
-- Connection Attributes Table
iscsiCxnRemoteAddr OBJECT-TYPE
--** -- Notifications
--**
-- Conformance Statements
--**
that have iSCSI initiator facilities."
::= { iscsiCompliances 1 }
::= { iscsiCompliances 2 }
END
There are a number of management objects defined in this MIB module with a MAX-ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations. These are the tables and objects and their sensitivity/vulnerability:
iscsiPortalAttributesTable, iscsiTgtPortalAttributesTable, and iscsiIntrPortalAttributesTable can be used to add or remove IP addresses to be used by iSCSI.
iscsiTgtAuthAttributesTable entries can be added or removed, to allow or disallow access to a target by an initiator.
Some of the readable objects in this MIB module (i.e., objects with a MAX-ACCESS other than not-accessible) may be considered sensitive or vulnerable in some network environments. It is thus important to control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP. These are the tables and objects and their sensitivity/vulnerability:
iscsiNodeAttributesTable, iscsiTargetAttributesTable, and iscsiTgtAuthorization can be used to glean information needed to make connections to the iSCSI targets this module represents. However, it is the responsibility of the initiators and targets involved to authenticate each other to ensure that an inappropriately advertised or discovered initiator or target does not compromise their security. These issues are discussed in [RFC7143].
SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPsec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.
Implementations SHOULD provide the security features described by the SNMPv3 framework (see [RFC3410]), and implementations claiming compliance to the SNMPv3 standard MUST include full support for authentication and privacy via the User-based Security Model (USM) [RFC3414] with the AES cipher algorithm [RFC3826]. Implementations MAY also provide support for the Transport Security Model (TSM) [RFC5591] in combination with a secure transport such as SSH [RFC5592] or TLS/DTLS [RFC6353].
Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.
The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER value recorded in the "SMI Network Management MGMT Codes Internet-standard MIB" registry:
IANA has updated the reference for the mib-2 142 identifier to refer to this document.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2578]
McCloghrie, K., Ed., Perkins, D., Ed., and J. Schoenwaelder, Ed., "Structure of Management Information Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.
[RFC2579]
McCloghrie, K., Ed., Perkins, D., Ed., and J. Schoenwaelder, Ed., "Textual Conventions for SMIv2", STD 58, RFC 2579, April 1999.
[RFC2580]
McCloghrie, K., Ed., Perkins, D., Ed., and J. Schoenwaelder, Ed., "Conformance Statements for SMIv2", STD 58, RFC 2580, April 1999.
[RFC3411]
Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks", STD 62, RFC 3411, December 2002.
[RFC3414]
Blumenthal, U. and B. Wijnen, "User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.
[RFC3720]
Satran, J., Meth, K., Sapuntzakis, C., Chadalapaka, M., and E. Zeidner, "Internet Small Computer Systems Interface (iSCSI)", RFC 3720, April 2004.
[RFC3826]
Blumenthal, U., Maino, F., and K. McCloghrie, "The Advanced Encryption Standard (AES) Cipher Algorithm in the SNMP User-based Security Model", RFC 3826, June 2004.
[RFC4001]
Daniele, M., Haberman, B., Routhier, S., and J. Schoenwaelder, "Textual Conventions for Internet Network Addresses", RFC 4001, February 2005.
[RFC4545]
Bakke, M. and J. Muchow, "Definitions of Managed Objects for IP Storage User Identity Authorization", RFC 4545, May 2006.
[RFC5591]
Harrington, D. and W. Hardaker, "Transport Security Model for the Simple Network Management Protocol (SNMP)", RFC 5591, June 2009.
[RFC5592]
Harrington, D., Salowey, J., and W. Hardaker, "Secure Shell Transport Model for the Simple Network Management Protocol (SNMP)", RFC 5592, June 2009.
[RFC6353]
Hardaker, W., "Transport Layer Security (TLS) Transport Model for the Simple Network Management Protocol (SNMP)", RFC 6353, July 2011.
[RFC7143]
Chadalapaka, M., Satran, J., Meth, K., and D. Black, "Internet Small Computer System Interface (iSCSI) Protocol (Consolidated)", RFC 7143, April 2014.
[RFC7144]
Knight, F. and M. Chadalapaka, "Internet Small Computer System Interface (iSCSI) SCSI Features Update", RFC 7144, April 2014.
[RFC3410]
Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction and Applicability Statements for Internet- Standard Management Framework", RFC 3410, December 2002.
[RFC4022]
Raghunarayan, R., Ed., "Management Information Base for the Transmission Control Protocol (TCP)", RFC 4022, March 2005.
[RFC4455]
Hallak-Stamler, M., Bakke, M., Lederman, Y., Krueger, M., and K. McCloghrie, "Definition of Managed Objects for Small Computer System Interface (SCSI) Entities", RFC 4455, April 2006.
[RFC4544]
Bakke, M., Krueger, M., McSweeney, T., and J. Muchow, "Definitions of Managed Objects for Internet Small Computer System Interface (iSCSI)", RFC 4544, May 2006.
The contents of this document were largely written as RFC 4544 by Mark Bakke (Cisco), Marjorie Krueger (Hewlett-Packard), Tom McSweeney (IBM), and James Muchow (QLogic). A special thank you to Marjorie, Tom, and James for their hard work and especially to James for his attention to detail on this work.
In addition to the authors, several people contributed to the development of this MIB module. Thanks especially to those who took the time to participate in our weekly conference calls to build our requirements, object models, table structures, and attributes: John Hufferd, Tom McSweeney (IBM), Kevin Gibbons (Nishan Systems), Chad Gregory (Intel), Jack Harwood (EMC), Hari Mudaliar (Adaptec), Ie Wei Njoo (Agilent), Lawrence Lamers (SAN Valley), Satish Mali (Stonefly Networks), and William Terrell (Troika).
Special thanks to Tom McSweeney, Ie Wei Njoo, and Kevin Gibbons, who wrote the descriptions for many of the tables and attributes in this MIB module, to Ayman Ghanem for finding and suggesting changes for many problems in this module, and to Keith McCloghrie for serving as advisor to the team.
Thanks to Mike MacFaden (VMWare), David Black (EMC), and Tom Talpey (Microsoft) for their valuable inputs.
Authors' Addresses
EMail: mark_bakke@dell.com
EMail: prakashvn@hcl.com
7306 - Remote Direct Memory Access (RDMA) Protocol Extensions
Internet Engineering Task Force (IETF)
Request for Comments: 7306
Category: Standards Track
ISSN: 2070-1721
H. Shah
Broadcom Corporation
F. Marti
W. Noureddine
A. Eiriksson
Chelsio Communications, Inc.
R. Sharp
Intel Corporation
June 2014
This document specifies extensions to the IETF Remote Direct Memory Access Protocol (RDMAP) as specified in RFC 5040. RDMAP provides read and write services directly to applications and enables data to be transferred directly into Upper-Layer Protocol (ULP) Buffers without intermediate data copies. The extensions specified in this document provide the following capabilities and/or improvements: Atomic Operations and Immediate Data.
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7306.
Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
The RDMA Protocol [RFC5040] provides capabilities for zero-copy data communications that preserve memory protection semantics, enabling more efficient network protocol implementations. The RDMA Protocol is part of the iWARP family of specifications which also include RFC 5041 [RFC5041], RFC 5044 [RFC5044], and RFC 6581 [RFC6581]. This document specifies the following extensions to the RDMA Protocol (RDMAP):
o Atomic Operations can be performed on remote memory locations. Support for Atomic Operations enhances the usability of RDMAP in distributed shared-memory environments.
o Immediate Data messages allow the ULP at the sender to provide a small amount of data. When an Immediate Data message is sent following an RDMA Write Message, the combination of the two messages is an implementation of RDMA Write with Immediate message that is found in other RDMA transport protocols.
Other RDMA transport protocols define the functionality added by these extensions leading to differences in RDMA applications and/or Upper-Layer Protocols. Removing these differences in the transport protocols simplifies these applications and ULPs, and that is the main motivation for the extensions specified in this document.
RSockets [RSOCKETS] is an example of RDMA-enabled middleware that provides a socket interface as the upper-edge interface and utilizes RDMA to provide more efficient networking for socket-based applications. RSockets is aware of Immediate Data support in InfiniBand [IB]. RSockets cannot utilize the RDMA Write with Immediate Data operation from InfiniBand. The addition of the Immediate Data operation specified in this document will alleviate this difference in RSockets when running on InfiniBand and iWARP.
Structured high-performance computing applications based on the Message-Passing Interface [MPI] may use Atomic Operations defined in this specification. DAT Atomics [DAT_ATOMICS] is an example of RDMA- enabled middleware that provides a portable RDMA programming interface for various RDMA transport protocols. DAT Atomics includes a primitive for InfiniBand that is not supported by iWARP RDMA- enabled Network Interface Controllers or RNICs. The addition of Atomic Operations as specified in this document will allow Atomic Operations in DAT Atomics to work for both InfiniBand and RNICs interchangeably.
For more background on RDMA Protocol applicability, see "Applicability of Remote Direct Memory Access Protocol (RDMA) and Direct Data Placement Protocol (DDP)" [RFC5045].
Today there are RDMA applications and/or ULPs that are aware of the existence of Atomic and Immediate Data operations for RDMA transports such as InfiniBand and application programming interfaces such as Open Fabrics Verbs [OFAVERBS]. Today, these applications need to be aware that RDMAP does not support certain of these operations. Typically, the availability of these capabilities is exposed to the applications through adapter query interfaces in software. Applications then have to decide to use or not use Immediate Data or Atomic Operations based on the results of the query interfaces. Such query interfaces typically return the scope of atomicity guarantees, not the individual Atomic Operations supported. Therefore, this specification requires all Atomic Operations defined within to be supported if an RNIC supports any Atomic Operations.
In cases where heterogeneous hardware, with differing support for Atomic Operations and Immediate Data Operations, is deployed for use by RDMA applications and/or ULPs, applications are either statically configured to use or not use optional features or use application- specific negotiation mechanisms. For the extensions covered by this document, it is RECOMMENDED that RDMA applications and/or ULPs negotiate at the application or ULP level the usage of these extensions. The definition of such application-specific mechanisms is outside the scope of this specification. For backward compatibility, existing applications and/or ULPs should not assume that these extensions are supported.
In the absence of application-specific negotiation of the features defined within this specification, the new operations can be attempted, and reported errors can be used to determine a remote peer's capabilities. In the case of Atomics, a FetchAdd operation with "Add Data" set to 0 can safely be used to determine the existence of Atomic Operations without modifying the content of a remote peer's memory. A Remote Operation Error or Unexpected OpCode error will be reported by the remote peer if there is an Immediate Data or Atomic Operation that is not supported by the remote peer.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
This document is an extension of RFC 5040, and key words are defined in the glossary of that document.
Atomic Operation - an operation that results in an execution of a
memory operation at a specific ULP Buffer address on a remote node using the Tagged Buffer data transfer model. The consumer can use Atomic Operations to read, modify, and write memory at the destination ULP Buffer address, while at the same time guaranteeing that no other Atomic Operation read or write accesses to the ULP Buffer address targeted by the Atomic Operation will occur across any other RDMAP Streams on an RNIC at the Responder.
Atomic Operation Request - an RDMA Message used by the Data Source to
perform an Atomic Operation at the Responder.
Atomic Operation Response - an RDMA Message used by the Responder to
describe the completion of an Atomic Operation at the Responder.
CmpSwap - an Atomic Operation that is used to compare and swap a
value at a specific address on a remote node.
FetchAdd - an Atomic Operation that is used to atomically increment a
value at a specific ULP Buffer address on a remote node.
Immediate Data - a small fixed-size portion of data sent from the
Data Source to a Data Sink.
Immediate Data Message - an RDMA Message used by the Data Source to
send Immediate Data to the Data Sink.
Immediate Data with Solicited Event (SE) Message - an RDMA Message
used by the Data Source to send Immediate Data with Solicited Event to the Data Sink.
iWARP - a suite of wire protocols comprised of RFC 5040, RFC 5041,
RFC 5044, and RFC 6581.
Requester - the sender of an RDMA Atomic Operation request.
Responder - the receiver of an RDMA Atomic Operation request.
RNIC - RDMA-enabled Network Interface Controller. In this context,
this would be a network I/O adapter or embedded controller with iWARP functionality.
ULP - Upper-Layer Protocol. The protocol layer above the one
currently being referenced. The ULP for RFC 5040 / RFC 5041 is expected to be an OS, Application, adaptation layer, or proprietary device. The RFC 5040 / RFC 5041 documents do not specify a ULP -- they provide a set of semantics that allow a ULP to be designed to utilize RFC 5040 / RFC 5041.
The control information of RDMA Messages is included in header fields defined in RFC 5041, the Direct Data Placement (DDP) protocol. RFC 5040 defines the RDMAP header formats layered on the DDP header definition. This specification extends RFC 5040 with the following new formats:
o Four new RDMA Messages carry additional RDMAP headers. The Immediate Data operation and Immediate Data with Solicited Event operation each include 8 bytes of data following the RDMAP header. Atomic Operations include Atomic Request or Atomic Response headers following the RDMAP header. The RDMAP header for Atomic Request messages is 52 bytes long as specified in Figure 4. The RDMAP header for Atomic Response Messages is 32 bytes long as specified in Figure 5.
o Introduction of a new queue for untagged Buffers (QN=3) used for Atomic Response tracking.
For reference, Figure 1 depicts the format of the DDP Control and RDMAP Control Fields, in the style and convention of RFC 5040:
Figure 1: DDP Control and RDMAP Control Fields
The DDP Control Field consists of the T (Tagged), L (Last), Resrv, and DV (DDP protocol Version) fields [RFC5041]. The RDMAP Control Field consists of the RV (RDMA Version), Rsv, and Opcode fields [RFC5040].
This specification adds values for the RDMA Opcode field to those specified in RFC 5040. Figure 2 defines the new values of the RDMA Opcode field that are used for the RDMA Messages defined in this specification.
As shown in Figure 2, STag (Steering Tag) and Tagged Offset are not applicable for the RDMA Messages defined in this specification. Figure 2 also shows the appropriate Queue Number for each Opcode.
All RDMA Messages defined in this specification MUST have:
The RDMA Version (RV) field: 01b.
Opcode field: Set to one of the values in Figure 2.
Invalidate STag: Set to zero by the sender, ignored by the receiver.
Figure 2: Additional RDMA Usage of DDP Fields
This extension defines RDMAP use of Queue Number 3 for Untagged Buffers for Atomic Responses. This queue is used for tracking outstanding Atomic Requests.
All other DDP and RDMAP Control Fields are set as described in RFC 5040.
The following figure defines which RDMA Headers are used on each new RDMA Message and which new RDMA Messages are allowed to carry ULP payload.
Figure 3: RDMA Message Definitions
The RDMA Protocol Specification in RFC 5040 does not include support for Atomic Operations, which are an important building block for implementing distributed shared memory.
This document extends the RDMA Protocol specification with a set of basic Atomic Operations and specifies their resource and ordering rules. The Atomic Operations specified in this document provide equivalent functionality to the InfiniBand RDMA transport as well as extended Atomic Operations defined in Open Fabrics Verbs, to allow applications that use these primitives to work interchangeably over iWARP. Other operations are left for future consideration.
Atomic Operations as specified in this document execute a 64-bit memory operation at a specified destination ULP Buffer address on a Responder node using the Tagged Buffer data transfer model. The operations atomically read, modify, and write back the contents of the destination ULP Buffer address and guarantee that Atomic Operations on this ULP Buffer address by other RDMAP Streams on the same RNIC do not occur between the read and the write caused by the Atomic Operation. Therefore, the Responder RNIC MUST implement mechanisms to prevent Atomic Operations to a memory registered for Atomic Operations while an Atomic Operation targeting the memory is in progress. The Requester of an Atomic Operation cannot rely on Atomic Operation behavior at the Responder across multiple RNICs or with respect to other applications/ULPs running at the Responder that can access the ULP Buffer. It is OPTIONAL for an RNIC to provide such behavior when implementing the Atomic Operations specified in this document. An RNIC that supports Atomic Operations as specified in this document MUST implement both the FetchAdd operation as specified in Section 5.1.1 and the CmpSwap operation as specified in Section 5.1.2. The advertisement of Tagged Buffer information for Atomic Operations is outside the scope of this specification and is handled by the ULPs.
Implementation note: It is RECOMMENDED that the applications do not use the ULP Buffer addresses used for Atomic Operations for other RDMA operations due to the lack of atomicity guarantees between operations other than Atomic Operations.
Implementation note: Errors related to the alignment in the following sections cover Atomic Operations targeted at a ULP Buffer address that is not aligned to a 64-bit boundary.
Atomic Operation Request Messages use the same remote addressing mechanism as RDMA Reads and Writes. The ULP Buffer address specified in the request is in the address space of the Remote Peer to which the Atomic Operation is targeted.
Atomic Operation Response Messages MUST use the Untagged Buffer model with QN=3. Queue number 3 will be used to track outstanding Atomic Operation Request messages at the Requester. When the Atomic Operation Response message is received, the Message Sequence Number (MSN) will be used to locate the corresponding Atomic Operation request in order to complete the Atomic Operation request.
The following subsections describe the Atomic Operations in more detail.
The FetchAdd Atomic Operation requests the Responder to read a 64-bit Original Remote Data Value at a 64-bit aligned ULP Buffer address in the Responder's memory, perform the FetchAdd operation on multiple fields of selectable length specified by 64-bit "Add Mask", and write the result back to the same ULP Buffer address. The Atomic addition is performed independently on each one of these fields. A bit set in the Add Mask field specifies the field boundary; for each field, a bit is set at the most significant bit position for each field, causing any carry out of that bit position to be discarded when the addition is performed.
FetchAdd Atomic Operations MUST target ULP Buffer addresses that are 64-bit aligned. FetchAdd Atomic Operations that target ULP Buffer addresses that are not 64-bit aligned MUST be surfaced as errors, and the Responder's memory MUST NOT be modified in such cases. Additionally, an error MUST be surfaced and a terminate message MUST be generated. The setting of the Add Mask field to 0x0000000000000000 results in Atomic Add of 64-bit Original Remote Data Value and 64-bit "Add Data".
The pseudocode below describes a masked FetchAdd Atomic Operation.
bit_location = 1
carry = 0
Remote Data Value = 0
for bit = 0 to 63
{
if (bit != 0) bit_location = bit_location << 1
val1 = (Original Remote Data Value & bit_location) >> bit
carry = (sum & 2) >> 1
sum = sum & 1
if (sum)
Remote Data Value |= bit_location
carry = ((carry) && (!(Add Mask & bit_location)))
}
The FetchAdd operation is performed in the endian format of the target memory. The "Original Remote Data Value" is converted from the endian format of the target memory for return and returned to the Requester. The fields are in big-endian format on the wire.
The Requester specifies:
o Remote STag
o Remote Tagged Offset
o Add Data
o Add Mask
The Responder returns:
o Original Remote Data
The CmpSwap Atomic Operation requires the Responder to read a 64-bit value at a ULP Buffer address that is 64-bit aligned in the Responder's memory, to perform an AND logical operation using the 64-bit Compare Mask field in the Atomic Operation Request header, then to compare it with the result of a logical AND operation of the Compare Mask and the Compare Data fields in the header. If the two values are equal, the Responder is required to swap masked bits in the same ULP Buffer address with the masked Swap Data. If the two masked compare values are not equal, the contents of the Responder's memory are not changed. In either case, the original value read from the ULP Buffer address is converted from the endian format of the target memory for return and returned to the Requester. The fields are in big-endian format on the wire.
The Requester specifies:
o Remote STag
o Remote Tagged Offset
o Swap Data
o Swap Mask
o Compare Data
o Compare Mask
The Responder returns:
o Original Remote Data Value
The following pseudocode describes the masked CmpSwap operation result.
if (!((Compare Data ^ Original Remote Data Value) &
Compare Mask))
then
Remote Data Value =
(Original Remote Data Value & ~(Swap Mask))
| (Swap Data & Swap Mask)
else
Remote Data Value = Original Remote Data Value
After the operation, the remote data Buffer MUST contain the "Original Remote Data Value" (if comparison did not match) or the masked "Swap Data" (if the comparison did match). CmpSwap Atomic Operations MUST target ULP Buffer addresses that are 64-bit aligned.
If a CmpSwap Atomic Operation is attempted on a target ULP Buffer address that is not 64-bit aligned:
o The operation MUST NOT be performed,
o The Responder's memory MUST NOT be modified,
o The result MUST be surfaced as an error, and
o A terminate message MUST be generated. (See Section 8.2 for the contents of the terminate message.)
The Atomic Operation Request and Response are RDMA Messages. An Atomic Operation makes use of the DDP Untagged Buffer Model. Atomic Operation Request messages MUST use the same Queue Number as RDMA Read Requests (QN=1). Reusing the same Queue Number for Atomic Request messages allows the Atomic Operations to reuse the same infrastructure (e.g., Outbound and Inbound RDMA Read Queue Depth (ORD/IRD) flow control) as defined for RDMA Read Requests. Atomic Operation Response messages MUST set Queue Number (QN) to 3 in the DDP header.
The RDMA Message OpCode for an Atomic Request Message is 1010b. The RDMA Message OpCode for an Atomic Response Message is 1011b.
The Atomic Operation Request Message carries an Atomic Operation Header that describes the ULP Buffer address in the Responder's memory. The Atomic Operation Request header immediately follows the DDP header. The RDMAP layer passes to the DDP layer a RDMAP Control Field. The following figure depicts the Atomic Operation Request Header that is used for all Atomic Operation Request Messages:
Figure 4: Atomic Operation Request Header
Reserved (Not Used): 28 bits
This field is set to zero on transmit, ignored on receive.
Atomic Operation Code (AOpCode): 4 bits.
See Figure 5. All Atomic Operation Codes from Figure 5 MUST be implemented by an RNIC that supports Atomic Operations.
Request Identifier: 32 bits.
The Request Identifier specifies a number that is used to identify the Atomic Operation Request Message. The value used in this field is selected by the RNIC that sends the message, and it is reflected back to the Local Peer in the Atomic Operation Response message.
Remote STag: 32 bits.
The Remote STag identifies the Remote Peer's Tagged Buffer targeted by the Atomic Operation. The Remote STag is associated with the RDMAP Stream through a mechanism that is outside the scope of the RDMAP specification.
Remote Tagged Offset: 64 bits.
The Remote Tagged Offset specifies the starting offset, in octets, from the base of the Remote Peer's Tagged Buffer targeted by the Atomic Operation. The Remote Tagged Offset MAY start at an arbitrary offset but MUST represent a ULP Buffer address that is 64-bit aligned.
Add or Swap Data: 64 bits.
The Add or Swap Data field specifies the 64-bit "Add Data" value in an Atomic FetchAdd Operation or the 64-bit "Swap Data" value in an Atomic Swap or CmpSwap Operation.
Add or Swap Mask: 64 bits
This field is used in masked Atomic Operations (FetchAdd and CmpSwap) to perform a bitwise logical AND operation as specified in the definition of these operations. For non- masked Atomic Operations (Swap), this field is set to ffffffffffffffffh on transmit and ignored by the receiver.
Compare Data: 64 bits.
The Compare Data field specifies the 64-bit "Compare Data" value in an Atomic CmpSwap Operation. For Atomic Operations FetchAdd and Atomic Swap, the Compare Data field is set to zero on transmit and ignored by the receiver.
Compare Mask: 64 bits
This field is used in masked Atomic Operation CmpSwap to perform a bitwise logical AND operation as specified in the definition of these operations. For Atomic Operations FetchAdd and Swap, this field is set to ffffffffffffffffh on transmit and ignored by the receiver.
Figure 5: Atomic Operation Message Definitions
The Atomic Operation Request Message has the following semantics:
1. An Atomic Operation Request Message MUST reference an Untagged Buffer. That is, the Local Peer's RDMAP layer MUST request that the DDP mark the Message as Untagged.
2. One Atomic Operation Request Message MUST consume one Untagged Buffer.
3. The Responder's RDMAP layer MUST process an Atomic Operation Request Message. A valid Atomic Operation Request Message MUST NOT be delivered to the Responder's ULP (i.e., it is processed by the RDMAP layer).
4. At the Responder, an error MUST be surfaced in response to delivery to the Remote Peer's RDMAP layer of an Atomic Operation Request Message with an Atomic Operation Code that the RNIC does not support.
5. An Atomic Operation Request Message MUST reference the RDMA Read Request Queue. That is, the Requester's RDMAP layer MUST request that the DDP layer set the Queue Number field to one.
6. The Requester MUST pass to the DDP layer Atomic Operation Request Messages in the order they were submitted by the ULP.
7. The Responder MUST process the Atomic Operation Request Messages in the order they were sent.
8. If the Responder receives a valid Atomic Operation Request Message, it MUST respond with a valid Atomic Operation Response Message.
The Atomic Operation Response Message carries an Atomic Operation Response Header that contains the "Original Request Identifier" and "Original Remote Data Value". The Atomic Operation Response Header immediately follows the DDP header. The RDMAP layer passes to the DDP layer a RDMAP Control Field. The following figure depicts the Atomic Operation Response header that is used for all Atomic Operation Response Messages:
Figure 6: Atomic Operation Response Header
Original Request Identifier: 32 bits.
The Original Request Identifier is set to the value specified in the Request Identifier field that was originally provided in the corresponding Atomic Operation Request Message.
Original Remote Data Value: 64 bits.
The Original Remote Value specifies the original 64-bit value stored at the ULP Buffer address targeted by the Atomic Operation.
The Atomic Operation Response Message has the following semantics:
1. The Atomic Operation Response Message for the associated Atomic Operation Request Message travels in the opposite direction.
2. An Atomic Operation Response Message MUST consume an Untagged Buffer. That is, the Responder RDMAP layer MUST request that the DDP mark the Message as Untagged.
3. An Atomic Operation Response Message MUST reference the Queue Number 3. That is, the Responder's RDMAP layer MUST request that the DDP layer set the Queue Number field to 3.
4. The Responder MUST ensure that a sufficient number of Untagged Buffers are available on the RDMA Read Request Queue (Queue with DDP Queue Number 1) to support the maximum number of Atomic Operation Requests negotiated by the ULP in addition to the maximum number of RDMA Read Requests negotiated by the ULP.
5. The Requester MUST ensure that a sufficient number of Untagged Buffers are available on the RDMA Atomic Response Queue (Queue with DDP Queue Number 3) to support the maximum number of Atomic Operation Requests negotiated by the ULP.
6. The RDMAP layer MUST Deliver the Atomic Operation Response Message to the ULP.
7. At the Requester, when an invalid Atomic Operation Response Message is delivered to the Remote Peer's RDMAP layer, an error is surfaced.
8. When the Responder receives Atomic Operation Request messages, the Responder RDMAP layer MUST pass Atomic Operation Response Messages to the DDP layer, in the order that the Atomic Operation Request Messages were received by the RDMAP layer, at the Responder.
Atomicity of the Read-Modify-Write (RMW) on the Responder's node by the Atomic Operation MUST be assured in the context of concurrent atomic accesses by other RDMAP Streams on the same RNIC.
In addition to the ordering and completion rules described in RFC 5040, the following rules apply to implementations of the Atomic Operations.
1. For an Atomic Operation, the Requester MUST NOT consider the contents of the Tagged Buffer at the Responder to be modified by that specific Atomic Operation until the Atomic Operation Response Message has been Delivered to RDMAP at the Requester.
2. Atomicity guarantees MUST be provided within the scope of a single RNIC.
Implementation Note: This requirement for atomicity among operations is limited to the scope of a single RNIC. Atomicity guarantees are OPTIONAL with respect to access to the Tagged Buffer by any other method than an Atomic Operation via the same RNIC. Examples of such accesses that may not be atomic with respect to an Atomic Operation include accesses via other RNICs and local processor memory access to the Tagged Buffer.
3. Atomic Operation Request Messages MUST NOT start processing at the Responder until they have been Delivered to RDMAP by DDP.
4. Atomic Operation Response Messages MAY be generated at the Responder after subsequent RDMA Write Messages or Send Messages have been Placed or Delivered.
5. Atomic Operation Response Message processing at the Responder MUST be started only after the Atomic Operation Request Message has been Delivered by the DDP layer (thus, all previous RDMA Messages on that DDP Stream have been Delivered).
6. Send Messages MAY be Completed at the Responder before prior incoming Atomic Operation Request Messages have completed their response processing.
7. An Atomic Operation MUST NOT be Completed at the Requester until the DDP layer Delivers the associated incoming Atomic Operation Response Message.
8. If more than one outstanding Atomic Request Message is supported by both peers, the Atomic Operation Request Messages MUST be processed in the order they were delivered by the DDP layer on the Responder. Atomic Operation Response Messages MUST be submitted to the DDP layer on the Responder in the order the Atomic Operation Request Messages were Delivered by DDP.
The Immediate Data operation is typically used in conjunction with an RDMA Write Operation to improve ULP processing efficiency. The efficiency is gained by causing an RDMA Completion to be generated immediately following the RDMA Write operation. This RDMA Completion delivers 8 bytes of Immediate Data at the Remote Peer. The combination of an RDMA Write Message followed by an Immediate Data Operation has the same behavior as the RDMA Write with Immediate Data operation found in InfiniBand. An Immediate Data operation that is not preceded by an RDMA Write operation causes an RDMA Completion.
For Immediate Data operations, the following are the interactions between the RDMAP Layer and the ULP:
o At the Data Source:
- The ULP passes to the RDMAP Layer the following:
* 8 bytes of ULP Immediate Data
- When the Immediate Data operation Completes, an indication of the Completion results.
o At the Data Sink:
- If the Immediate Data operation is Completed successfully, the RDMAP Layer passes the following information to the ULP Layer:
* 8 bytes of Immediate Data
* An Event, if the Data Sink is configured to generate an Event.
- If the Immediate Data operation is Completed in error, the Data Sink RDMAP Layer will pass up the corresponding error information to the Data Sink ULP and send a Terminate Message to the Data Source RDMAP Layer. The Data Source RDMAP Layer will then pass up the Terminate Message to the ULP.
The Immediate Data and Immediate Data with SE Messages carry Immediate Data as shown in Figure 7. The RDMAP layer passes to the DDP layer an RDMAP Control Field and 8 bytes of Immediate Data. The first 8 bytes of the data following the DDP header contains the Immediate Data. See Appendix A.3 for the DDP segment format of an Immediate Data or Immediate Data with SE Message.
Figure 7: Immediate Data or Immediate Data with SE Message Header
Immediate Data: 64 bits.
8 bytes of data transferred from the Data Source to an untagged Buffer at the Data Sink.
The Immediate Data or Immediate Data with SE Message uses the DDP Untagged Buffer Model to transfer Immediate Data from the Data Source to the Data Sink.
o An Immediate Data or Immediate Data with SE Message MUST reference an Untagged Buffer. That is, the Local Peer's RDMAP Layer MUST request that the DDP layer mark the Message as Untagged.
o One Immediate Data or Immediate Data with SE Message MUST consume one Untagged Buffer.
o At the Remote Peer, the Immediate Data and Immediate Data with SE Messages MUST be Delivered to the Remote Peer's ULP in the order they were sent.
o For an Immediate Data or Immediate Data with SE Message, the Local Peer's RDMAP Layer MUST request that the DDP layer set the Queue Number field to zero.
o For an Immediate Data or Immediate Data with SE Message, the Local Peer's RDMAP Layer MUST request that the DDP layer transmit 8 bytes of data.
o The Local Peer MUST issue Immediate Data and Immediate Data with SE Messages in the order they were submitted by the ULP.
o The Remote Peer MUST check that Immediate Data and Immediate Data with SE Messages include exactly 8 bytes of data from the DDP layer. The DDP header carries the length field that is reported by the DDP layer.
Ordering and completion rules for Immediate Data are the same as those for a Send operation as described in Section 5.5 of RFC 5040.
The following table summarizes the ordering relationships for Atomic and Immediate Data operations from the standpoint of the Local Peer issuing the Operations. Note that in the table that follows, Send includes Send, Send with Invalidate, Send with Solicited Event, and Send with Solicited Event and Invalidate. Also note that in the table below, Immediate Data includes Immediate Data and Immediate Data with Solicited Event.
In addition to the error processing described in Section 7 of RFC 5040, the following rules apply for the new RDMA Messages defined in this specification.
The Local Peer MUST send a Terminate Message for each of the following cases:
1. For errors detected while creating an Atomic Request, Atomic Response, Immediate Data, or Immediate Data with SE Message, or other reasons not directly associated with an incoming Message, the Terminate Message and Error code are sent instead of the Message. In this case, the Error Type and Error Code fields are included in the Terminate Message, but the Terminated DDP Header and Terminated RDMA Header fields are set to zero.
2. For errors detected on an incoming Atomic Request, Atomic Response, Immediate Data, or Immediate Data with SE (after the Message has been Delivered by DDP), the Terminate Message is sent at the earliest possible opportunity, preferably in the next outgoing RDMA Message. In this case, the Error Type, Error Code, and Terminated DDP Header fields are included in the Terminate Message, but the Terminated RDMA Header field is set to zero.
On incoming Atomic Requests, Atomic Responses, Immediate Data, and Immediate Data with Solicited Event, the following MUST be validated:
o The DDP layer MUST validate all DDP Segment fields.
o The RDMA OpCode MUST be valid.
o The RDMA Version MUST be valid.
On incoming Atomic requests the following additional validation MUST be performed:
o The RDMAP layer MUST validate that the Remote Peer's Tagged ULP Buffer address references a ULP Buffer address that is 64-bit aligned. In the case of an error, the RDMAP layer MUST generate a Terminate Message indicating RDMA Layer Remote Operation Error with Error Code Name "Catastrophic error, localized to RDMAP Stream" as described in Section 4.8 of RFC 5040. Implementation Note: A ULP implementation can avoid this error by having the target ULP Buffer of an Atomic Operation 64-bit aligned.
This document specifies extensions to the RDMA Protocol specification in RFC 5040, and as such the Security Considerations discussed in Section 8 of RFC 5040 apply. In particular, Atomic Operations use ULP Buffer addresses for the Remote Peer Buffer addressing used in RFC 5040 as required by the security model described in RFC 5042 [RFC5042].
RDMAP and related protocols may be used by applications that exhibit distinctive traffic characteristics such as message timing, source, destination, and size patterns. Examples include structured high- performance computing applications based on the MPI interface. For such applications, analysis of encrypted traffic could reveal sensitive information, e.g., the nature of the application, size of data set being used, and information about the application's rate of progress. Such information can be hidden from passive observation via use of Encapsulating Security Payload version 3 (ESPv3) Traffic Flow Confidentiality [RFC4303] to obfuscate the encrypted traffic's characteristics. ESPv3 implementation requirements for RDMAP are specified in [RFC7146].
IANA has added the following entries to the "RDMAP Message Operation Codes" registry of "Remote Direct Data Placement (RDDP)" registry:
0x8, Immediate Data, this specification
0x9, Immediate Data with Solicited Event, this specification
0xA, Atomic Request, this specification
0xB, Atomic Response, this specification
In addition, the following registry has been added to the "Remote Direct Data Placement (RDDP)" registry. The following section specifies the registry, its initial contents, and the administration policy in more detail.
Name of the registry: "RDMAP Message Atomic Operation Subcodes"
Namespace details: RDMAP Message Atomic Operation Subcodes are 4-bit values.
Information that must be provided to assign a new value: An IESG- approved Standards Track specification defining the semantics and interoperability requirements of the proposed new value and the fields to be recorded in the registry.
Fields to record in the registry: RDMAP Message Atomic Operation Subcode, Atomic Operation, RFC Reference.
Initial registry contents:
0x0, FetchAdd, this specification
0x1, Reserved, this specification
0x2, CmpSwap, this specification
Note: An experimental RDMAP Message Operation Code has already been allocated; hence, there is no need for an experimental RDMAP Message Atomic Operation Subcode.
All other values are Unassigned and available to IANA for assignment. New RDMAP Message Atomic Operation Subcodes should be assigned sequentially in order to better support implementations that process RDMAP Message Atomic Operations in hardware.
Allocation Policy: Standards Action [RFC5226]
Name of the registry: "RDMAP DDP Untagged Queue Numbers"
Namespace details: RDMAP DDP Untagged Queue numbers are 32-bit values.
Information that must be provided to assign a new value: An IESG- approved Standards Track specification defining the semantics and interoperability requirements of the proposed new value and the fields to be recorded in the registry.
Fields to record in the registry: RDMAP DDP Untagged Queue Numbers, Queue Usage Description, RFC Reference.
Initial registry contents:
0x00000000, Queue 0 (Send operation Variants), [RFC5040]
0x00000001, Queue 1 (RDMA Read Request operations), [RFC5040]
0x00000002, Queue 2 (Terminate operations), [RFC5040]
0x00000003, Queue 3 (Atomic Response operations), this specification
Note: An experimental RDMAP Message Operation Code has already been allocated; hence, there is no need for an experimental RDMAP DDP Untagged Queue Number.
All other values are Unassigned and available to IANA for assignment. New RDMAP queue numbers should be assigned sequentially in order to better support implementations that perform RDMAP queue selection in hardware.
Allocation Policy: Standards Action [RFC5226]
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC4303]
Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, December 2005.
[RFC5040]
Recio, R., Metzler, B., Culley, P., Hilland, J., and D. Garcia, "A Remote Direct Memory Access Protocol Specification", RFC 5040, October 2007.
[RFC5041]
Shah, H., Pinkerton, J., Recio, R., and P. Culley, "Direct Data Placement over Reliable Transports", RFC 5041, October 2007.
[RFC5042]
Pinkerton, J. and E. Deleganes, "Direct Data Placement Protocol (DDP) / Remote Direct Memory Access Protocol (RDMAP) Security", RFC 5042, October 2007.
[RFC5226]
Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.
[RFC7146]
Black, D. and P. Koning, "Securing Block Storage Protocols over IP: RFC 3723 Requirements Update for IPsec v3", RFC 7146, April 2014.
[DAT_ATOMICS]
DAT Collaborative, "IB Transport Specific Extensions for DAT 2.0", User Direct Access Programming Library, <http://www.datcollaborative.org/DAT_IB_Extensions.pdf>.
[IB]
InfiniBand Trade Association, "InfiniBand Architecture Specification Volumes 1 and 2", Release 1.1, November 2002, <http://www.infinibandta.org/specs>.
[MPI]
Message Passing Interface Forum, "MPI: A Message-Passing Interface Standard, Version 3.0", September 2012, <http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf>.
[OFAVERBS]
Rosenstock, H., "Subject: Re: [PATCH 0/2] Add support for enhanced atomic operations", message to the linux-rdma mailing list, <http://www.spinics.net/lists/linux-rdma/msg02405.html>.
[RFC5044]
Culley, P., Elzur, U., Recio, R., Bailey, S., and J. Carrier, "Marker PDU Aligned Framing for TCP Specification", RFC 5044, October 2007.
[RFC5045]
Bestler, C., Ed., and L. Coene, "Applicability of Remote Direct Memory Access Protocol (RDMA) and Direct Data Placement (DDP)", RFC 5045, October 2007.
[RFC6581]
Kanevsky, A., Ed., Bestler, C., Ed., Sharp, R., and S. Wise, "Enhanced Remote Direct Memory Access (RDMA) Connection Establishment", RFC 6581, April 2012.
[RSOCKETS]
Hefty, S., "RDMA CM - RDMA enabled Sockets library for Open Fabrics", <http://git.openfabrics.org/?p=~shefty/ librdmacm.git;a=summary>.
The authors would like to acknowledge the following individuals who provided valuable comments and suggestions.
o David Black
o Arkady Kanevsky
o Bernard Metzler
o Jim Pinkerton
o Tom Talpey
o Steve Wise
o Don Wood
This appendix is for information only and is NOT part of the standard. It simply depicts the DDP Segment format for the various RDMA Messages.
The following figure depicts an Atomic Operation Request, DDP Segment:
The following figure depicts an Atomic Operation Response, DDP Segment:
The following figure depicts an Immediate Data or Immediate Data with SE, DDP Segment:
Authors' Addresses
This text describes the conversion process used to create this ebook.
The conversion process goes like follows:
Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.
The conversion process goes like follows:
This program takes the title, time and logo postscript, and creates a postscript file which it then runs through ghostscript and converts it file suitable for the Kindle 3. The title can have three lines separated with "\n". Normally the top two lines contain the actual title, and third line contains the date of conversion. The time is added to the end of the page with small font, so it can be used during development phase to see which version of ebook this is (during development I did have multiple versions loaded to my Kindle and it was painful to find out which one of them is newest before this was added). The logo is ietf-logo.eps directly from the IETF web page.
The page is initially created at 2400x3200 pixel resolution and then scaled down to 25% of size meaning the final page is 600x800 pixels in size.
For RFC ebook:
For the Internet-Draft ebooks:
NCX file contains list all files and the navigation information. That is used when you press left or right arrows on the kindle to see where to move next. See make-ncx manual page for information about options.
For RFC ebook:
For the Internet-Draft ebooks:
Open package format file describes what files are in the ebook. It also contains information where to start reading and in which order entries are appearing in the book. See make-opf manual page for information about options.
For RFCs the conversion command line is:
For Internet-Drafts the conversion command line is:
This program takes the text formatted RFC or Internet-Draft and formats it to html suitable for ebooks. The first step is to remove page formatting (page breaks, page numbers, page headers and footers). In that phase it also tries to see if one textual paragraph is continuing from the previous page to the next, and if so then it will glue them together. The second phase is to go through all paragraphs and try to find out what type of paragraph it is (text, picture, header, table of contents, authors address section, terminology defination, bulleted or numbered list, references section). After this it goes through the actual text paragraphs and converts them to html suitable for their type. See rfc2html manual page for information about options.
TBF
TBF
TBF
Issues I have found when converting this to kindle 3
It seems there is maximum number of items the ncx file can have, or some other limitation in the ncx file parsing. When I included all the rfcs to the ncx file then the next and previous arrows in the kindle 3 does not work anymore. If the number if items is reduced then they start working.
When I tried to use the best compression of kindlegen, the program did create a eBook file but all the links inside the file pointed in wrong place, i.e. when you used link to go rfc5996 you ended up in the middle of rfc6020 or so.
The mobipockect supports multiple indexes and the eBook originally included titleword and full title text indexes, but those were removed as kindle 3 does not support them.
The automatic index (using the menu and selecting index) sometimes misses the last item in it. Thats why I added this conversion description to the end, so if something is missing it will be this text.
Kindle 3 does support monospace font and the screen is wide enough for 67 charactes if screen is rotated. This allows the normal 32 bit packet frame description pictures to be shown properly using the normal pre-tag. The Kindle 3 will still wrap words to the next line, and this was problematic when combined with hyphens used in pictures. To fix this all the hyphens in the text are converted to the no-breaking hyphens.
Because of the previous issue with word wrap we needed to use non-breaking hyphens, but unfortunately they do not show properly on the kindle for PC, but instead of unknown character box is shown instead.
For some reason the searching from the RFC eBook does not work on the Kindle 3.
make-ncx - Create NCX file
make-ncx [--help|-h] [--version|-V] [--verbose|-v] [--output|-o output-file-name] [--config config-file] [--depth|-d depth-of-toc] [--total-page-count|-T total-page-count] [--max-page-number|-m max-page-number] [--separator|-s separator-regexp] --author|-a author --title|-t title entry ... [--class|-c class] entry ... [--in] entry ... [--out] [--autosplit|-A split-count] entry ... [--include-regexp include-regexp] entry ... [--exclude-regexp exclude-regexp] entry ... [--split-regexp split-regexp] entry ... [--input-file|-i input-file] entry ... entry ...
make-ncx --help
make-ncx takes list of ncx entries and creates NCX (Navigation Control for for XML applications Format) file out of them.
NCX is hierarchical structure, and the make-ncx supports this so that the list of entries can include --in and --out options to in and out in the hierarchy. Note, that the first item is always on level 1 and you can go in only one level per entry, i.e. adding two --in options right after each other is an error. Multiple --out options is allowed, but going out from level 1 is not allowed.
Each entry contain 4 fields separated from each other by separator regexp. The first field is the class of the entry. This can be something like "book", "toc", "entry" etc. Second field is the id of the entry. This should be something unique. Third field is the actual link inside the mobibook, i.e. "index.html", "index.html#s1000" or "rfc1234.html". Last field is the text of the entry.
If only 3 fields are given then they are assumed to be id, link and text, and the class is the one given with --class option.
If only 2 fields are given then they are assumed to be link and text, and the class is processed as with 3 fields, and id is autogenerated from the link, by removing path, prefixes and special chars.
If only one field is given then it is assumed to be link, and class and id is generated as previously, and link is converted to text by removing prefixes and removing some special charactes and replacing '/', '-', '_' to spaces.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to stdout.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
Max depth of the NCX file. If not given this is autodetected from the options.
Sets total page count. If not given this is set to 0.
Sets max page number. If not given this is set to 0.
Separator regexp used to split entries to class, id, link and text. Defaults to ':'
Author of the publication.
Title of the publication.
Go one level into the hierarchy. This option is used inside the entry list and it affects the entries coming after it.
Go one level out in the hierarchy. This option is used inside the entry list and it affects the entries coming after it.
Set the class of the entries coming after this if no class given in the entry. This option is used inside the entry list and it affects the entries coming after it.
Starts autosplitting long list of entries, so that split-count entries are combined so that the first entry stays at current level, and all other entries are moved in one level inside the first entry. This process is repeated until --in, --out, or new --autosplit option is found. This option is used inside the entry list and it affects the entries coming after it.
Filters entries based on the regexp. Only those entries will be processed which are matching this regexp. This allows creating one entry file having all entries, and then filter them so that only parts of them are included to the final ncx file. This option is used inside the entry list and it affects the entries coming after it.
Filters entries based on the regexp. Only those entries will be processed which do not match this regexp. This allows creating one entry file having all entries, and then filter them so that only parts of them are included to the final ncx file. This option is used inside the entry list and it affects the entries coming after it.
Automatically split entries to sublevels based on the regexp. This will match entries against the regexp and when first match is found it will put this entry on current level and then go down one level, and then put all further entries not matching this regexp to that level. Further matching entries are moved to the same level as the first one. This can be used in combination with --autosplit option in which case --autosplit entries will be below this, meaning the hierarchy will have 3 levels. Top level contains the entries matching this regexp. The next level contains every Nth entry and lowest level contains all other entries. Every time matching entry is found the --autosplit counter is reset.
Reads the list of options from the input-file instead of reading them from command line. The options are in the file one option at line, and are processed exactly as they would be on the command line. This means that you can give --class, --in, --autosplit etc options first and then just get the list of filenames from the file.
make-ncx --title foo \ --author bar \ toc:toc:index.html:Index \ book:rfc0001:rfc0001.html:RFC0001
make-ncx --title "RFC Index" \ --author "IETF" \ "toc:toc:index.html:Table of Contents" \ --in \ --class entry \ 0000:index.html#s0000:RFC0000 \ 1000:index.html#s1000:RFC1000 \ 2000:index.html#s2000:RFC2000 \ 3000:index.html#s3000:RFC3000 \ 4000:index.html#s4000:RFC4000 \ 5000:index.html#s5000:RFC5000 \ 6000:index.html#s6000:RFC6000 \ --out \ --class book \ --autosplit 5 \ rfc0001.html rfc0002.html rfc0003.html rfc0004.html rfc0005.html \ rfc0006.html rfc0007.html rfc0008.html rfc0009.html rfc0010.html \ rfc6001.html rfc6002.html rfc6003.html rfc6004.html rfc6005.html \ rfc6006.html rfc6007.html
make-ncx --title "RFC Index" \ --author "IETF" \ "toc:toc:index.html:Table of Contents" \ --in \ --class entry \ --input-file toc-entries.txt \ --out \ --class book \ --autosplit 5 \ --input-file rfc-list.txt
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created when making RFC mobibook files for IETF use.
make-opf - Create OPF file
make-opf [--help|-h] [--version|-V] [--verbose|-v] [--output|-o output-file-name] [--config config-file] [--beginning|-b first-page-filename] [--cover|-c cover-jpg-file-name] [--creator|-C creator] [--date|-D date] [--description|-d description] --id|-i id [--index|-I index-html-file-name] --language|-l language [--publisher|-p publisher] [--role|-r creator-role] [--stylesheet|-S stylesheet-css-file-name] [--subject|-s subject] --title|-t title [--toc|-T toc-ncs-file-name] filename ...
make-opf --help
make-opf takes list of html files inside the mobibook and creates a OPF (Open Packaging Format) file out of them.
Files are added to the spine in the order they appear in the command line. Note, that before any files there is --cover, --beginning and ---index pages, which always come in that order in the beginning of the book.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to stdout.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
File name inside the mobibook which is used as a beginning of the book, i.e. when book is opened it comes to this page.
File name inside the mobibook which is used as a cover page for the publication. Must be jpg file. This is mandatory for Kindle books.
Creator of the publication. Usually the name of the author.
Date of the publication.
Short description of the publication.
Unique ID for the publication.
File name inside the mobibook which is used as index. If included this is also used as table of contents.
Language tag of the publication. Typically "en".
Publisher name.
Role of the creator, i.e. author (aut), collaborator (clb), editor (edt) etc.
File name inside the mobibook which used as css stylesheet.
Subject of the publication.
Title of the publication.
File name inside the mobibook which is used as NCS table of contents file name.
make-opf.pl --title "${partial}RFC Index $d" \ --language en \ --cover rfc.jpg \ --subject Reference \ --id "$id" \ --role clb \ --creator "Tero Kivinen" \ --publisher "IETF" \ --description "All RFCs as mobibook" \ --date "$d" \ --index index.html \ --stylesheet rfc.css \ --toc rfc.ncx \ rfc*.html
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created when making RFC mobibook files for IETF use.
rfc2html - Convert RFC to simple html
rfc2html [--help|-h] [--version|-V] [--verbose|-v] [--key-index] [--navigation|-n navigation-links] [--filelist|-f filelist-file] [--rfc|-r rfc-number] [--title|-t title-prefix] [--output|-o output-file] [--config config-file] filename ...
rfc2html --help
rfc2html takes RFC txt file and converts it to simple html file.
filename is read in and new file is created so that .txt extension is removed from the filename (if it exists) and .html extesion is added.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to <inputfile>.txt.
Gives the RFC number of the current file. Used to make title information correct.
Gives text added to the beginning of the title, for example the file name.
Filename of the file containing list of files in the book. If given only those links pointing to files listed in this file are converted to links.
Creates navigation links at the top of the file. The navigation links text is semicolon separated list of navigation links. Each link consists of file name inside the book, and the link title. The filename can either be full filename like "index.html", or it can be relative filename like "-1" or "+100". Using this option requires that the filelist option is also used and all links given here are found from the filelist. The filelist is also used to find the current file name and then calculate relative filenames from there, i.e. "-1" means the filename in the filename list just before this file.
The filename used for searching this entry from the filelist is the output filename, and if exact match is not found then the path components are removed and file is searched again.
Create key index entries. Those are only useful for mobipacket reader, they do not work on kindle.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created based on the rfcmarkup version 1.90 to convert RFCs to simple html suitable for kindle ebook conversion. The rfcmarkup tries to keep formatting intact, while this actually removes things which are not needed in ebooks, i.e page breaks and page numbers, and makes text paragraphs as html paragraphs, instead of using <pre> around the whole file.