

Working Group ID and RFC eBook

Introduction

This book is a collection of RFCs and Internet-Drafts related to
specific working group. The RFC and Internet-Drafts files are normally
stored in plain ascii text format and they are converted to html
suitable for eBook use by automatic scripts. Those scripts try to
detect headers, pictures, lists, references etc and create special
html for each of those. For text paragraphs those scripts remove
indentation and hard linebreaks and makes text paragraphs as normal
text so font size of the eBook can be adjusted at will and features
like text-to-speech work.

As this conversion is completely automatic there might be errors in
the converted files. I have tried to fix the issues when I find them,
but sometimes fixing issue in one RFC cause problems in others, so not
all errors can be easily fixed, this is especially true for very old
RFCs which do not follow the formatting specifications. If you notice
errors in the formatting please send email to the
<kivinen+rfc-ebook@iki.fi> and describle the problem.
Please, remember to include the RFC number and the version number of
the eBook file (found from the cover page).

As the collection of RFCs is quite large there has been some issues
with the conversion to kindle, and some features do not seem to work
properly when full set of RFCs is used. Because of this some
work-arounds have been made to make the eBook still usable. If the
kindle software gets updated some of those work-arounds might be
removed. For more information about those see the Conversion section.

The primary output format of the scripts is the .mobi
format used in the kindle, and I have been using Kindle 3 as my
primary testing device, so if other reader devices are used, there
might be more issues. The automatic tools also create the
.ePub file, which can be used on platforms which do not
support .mobi format. There is program called mobipocket for
reading .mobi files, and that program is available for wide
range of devices including PalmOS, Symbian, PC, Windows Mobile,
Blackberry etc, so also those devices can be used in addition to
normal eBook readers.

How to use this book

In this section I will concentrate mostly on how to use this on
Kindle 3. This eBook contains 5 main parts:

	Cover page

	This introduction

	Index

	RFCs and Internet-Drafts

	Description of the conversion process

The cover page includes the date when this
eBook was created (i.e. eBook version).

The conversion section includes technical information how this
eBook was created and some known issues etc.

Navigation

There are four main ways to navigate through the book in addition
to normal page up and down.

Fastest way to go to specific RFC or Internet-Draft is to press
menu button on the Kindle 3, and then select Index from
the menu. This will give you the automatic index of the contents of
the this file. This allows quick access to the RFC by just typing the
numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y
will jump you to the RFC 5996 and then you can use arrow down to
select RFC and hit enter to go there. For internet draft start typing
the draft name.

Another option is to use the RFC Index in the beginning of the file
(You can get to there by either pressing menu, selecting
Index and then clicking on the Index in the beginning
of the index, or by pressing menu, selecting Go to...
and then selecting Table of Contents).

Third option is to use left and right arrows to navigate the next
and previous RFC/Internet-Drafts.

The fourth way to navigate inside the book is to use the links
inside the files. The RFC Index has direct links to every 100th RFC.
Each file contains links to back 5, forward 5, next and previous rfc.
Also any reference inside the documents pointing to other RFCs gets
you directly there. Some of the links inside RFC moves you inside the
RFC, i.e. clicking link on the table of contents inside the RFC moves
you to that section etc. Also references inside the RFC will move you
to the refences section etc.

teas RFC and Internet-Draft Index

Index

Active

	draft-ietf-teas-actn-vn-yang-02 A Yang Data Model for ACTN VN Operation

	draft-ietf-teas-actn-yang-02 Applicability of YANG models for Abstraction and Control of Traffic Engineered Networks

	draft-ietf-teas-assoc-corouted-bidir-frr-07 Updates to the Fast Reroute Procedures for Co-routed Associated Bidirectional Label Switched Paths (LSPs)

	draft-ietf-teas-native-ip-scenarios-02 Scenario, Simulation and Suggestion of PCE in Native IP Network

	draft-ietf-teas-pce-native-ip-02 PCE in Native IP Network

	draft-ietf-teas-pcecc-use-cases-02 The Use Cases for Path Computation Element (PCE) as a Central Controller (PCECC).

	draft-ietf-teas-rsvp-rmr-extension-01 RSVP Extensions for RMR

	draft-ietf-teas-sf-aware-topo-model-02 SF Aware TE Topology YANG Model

	draft-ietf-teas-te-metric-recording-07 Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) extension for recording TE Metric of a Label Switched Path

	draft-ietf-teas-te-topo-and-tunnel-modeling-03 TE Topology and Tunnel Modeling for Transport Networks

	draft-ietf-teas-yang-l3-te-topo-03 YANG Data Model for Layer 3 TE Topologies

	draft-ietf-teas-yang-path-computation-04 Yang model for requesting Path Computation

	draft-ietf-teas-yang-rsvp-te-04 A YANG Data Model for RSVP-TE

	draft-ietf-teas-yang-sr-te-topo-03 YANG Data Model for SR and SR TE Topologies

	draft-ietf-teas-yang-te-17 A YANG Data Model for Traffic Engineering Tunnels and Interfaces

	draft-ietf-teas-yang-te-topo-18 YANG Data Model for Traffic Engineering (TE) Topologies

	draft-ietf-teas-yang-te-types-01 Traffic Engineering Common YANG Types

RFC

	RFC7551 RSVP-TE Extensions for Associated Bidirectional Label Switched Paths (LSPs)

	RFC7570 Label Switched Path (LSP) Attribute in the Explicit Route Object (ERO)

	RFC7571 GMPLS RSVP-TE Extensions for Lock Instruct and Loopback

	RFC7709 Requirements for Very Fast Setup of GMPLS Label Switched Paths (LSPs)

	RFC7823 Performance-Based Path Selection for Explicitly Routed Label Switched Paths (LSPs) Using TE Metric Extensions

	RFC7898 Domain Subobjects for Resource Reservation Protocol - Traffic Engineering (RSVP-TE)

	RFC7926 Problem Statement and Architecture for Information Exchange between Interconnected Traffic-Engineered Networks

	RFC8001 RSVP-TE Extensions for Collecting Shared Risk Link Group (SRLG) Information

	RFC8131 RSVP-TE Signaling Procedure for End-to-End GMPLS Restoration and Resource Sharing

	RFC8149 RSVP Extensions for Reoptimization of Loosely Routed Point-to-Multipoint Traffic Engineering Label Switched Paths (LSPs)

	RFC8258 Generalized SCSI: A Generic Structure for Interface Switching Capability Descriptor (ISCD) Switching Capability Specific Information (SCSI)

	RFC8271 Updates to the Resource Reservation Protocol for Fast Reroute of Traffic Engineering GMPLS Label Switched Paths (LSPs)

	RFC8283 An Architecture for Use of PCE and the PCE Communication Protocol (PCEP) in a Network with Central Control

	RFC8359 Network-Assigned Upstream Label

	RFC8370 Techniques to Improve the Scalability of RSVP-TE Deployments

	RFC8390 RSVP-TE Path Diversity Using Exclude Route

	RFC8400 Extensions to RSVP-TE for Label Switched Path (LSP) Egress Protection

	RFC8413 Framework for Scheduled Use of Resources

	RFC8424 Extensions to RSVP-TE for Label Switched Path (LSP) Ingress Fast Reroute (FRR) Protection

	RFC8426 Recommendations for RSVP-TE and Segment Routing (SR) Label Switched Path (LSP) Coexistence

	RFC8453 Framework for Abstraction and Control of TE Networks (ACTN)

	RFC8454 Information Model for Abstraction and Control of TE Networks (ACTN)

Related Active

	draft-bryskin-teas-service-tunnel-steering-model-01 Basic YANG Model for Steering Client Services To Server Tunnels

	draft-dong-teas-enhanced-vpn-03 A Framework for Enhanced Virtual Private Networks (VPN+) Service

	draft-he-teas-gmpls-signaling-smp-00 GMPLS Signaling Extensions for Shared Mesh Protection

	draft-king-teas-applicability-actn-slicing-04 Applicability of Abstraction and Control of Traffic Engineered Networks (ACTN) to Network Slicing

	draft-lee-teas-actn-pm-telemetry-autonomics-08 YANG models for ACTN TE Performance Monitoring Telemetry and Network Autonomics

	draft-lee-teas-actn-vpn-poi-00 Abstract

	draft-lee-teas-te-service-mapping-yang-12 Traffic Engineering and Service Mapping Yang Model

	draft-li-teas-hierarchy-ip-controllers-01 Hierarchy of IP Controllers (HIC)

	draft-vandesompel-citeas-03 cite-as: A Link Relation to Convey a Preferred URI for Referencing

	draft-zheng-teas-gmpls-controller-inter-work-02 Interworking of GMPLS Control and Centralized Controller System

	draft-zzhang-teas-rmr-rsvp-p2mp-00 RSVP-TE P2MP Tunnels on RMR

draft-ietf-teas-actn-vn-yang-02 - September 19, 2018

Index
Next
Forward 5

TEAS Working Group

Internet Draft

Intended Status: Standard Track

Expires: March 19, 2019

Y. Lee (Editor)

Dhruv Dhody (Editor)

Huawei

D. Ceccarelli

Ericsson

Igor Bryskin

Huawei

Bin Yeong Yoon

ETRI

Qin Wu

Huawei

Peter Park

KT

September 19, 2018

 A Yang Data Model for ACTN VN Operation

 draft-ietf-teas-actn-vn-yang-02

Abstract

 This document provides a YANG data model for the Abstraction and
 Control of Traffic Engineered (TE) networks (ACTN) Virtual Network
 Service (VNS) operation.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with
 the provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

 This Internet-Draft will expire on March 19, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Tree diagram

	 1.3. Prefixes in Data Node Names

	2. ACTN CMI context
	 2.1. Type 1 VN

	 2.2. Type 2 VN

	3. High-Level Control Flows with Examples
	 3.1. Type 1 VN Illustration

	 3.2. Type 2 VN Illustration

	4. Justification of the ACTN VN Model on the CMI
	 4.1. Customer view of VN

	 4.2. Innovative Services
	 4.2.1. VN Compute

	 4.2.2. Multi-sources and Multi-destinations

	 4.2.3. Others

	 4.3. Summary

	5. ACTN VN YANG Model (Tree Structure)

	6. ACTN-VN YANG Code

	7. JSON Example
	 7.1. ACTN VN JSON

	 7.2. TE-topology JSON

	8. Security Considerations

	9. IANA Considerations

	10. Acknowledgments

	11. References
	 11.1. Normative References

	 11.2. Informative References

	12. Contributors

	Authors' Addresses

1. Introduction

 Abstraction and Control of Traffic Engineered Networks (ACTN)
 describes a set of management and control functions used to operate
 one or more TE networks to construct virtual networks that can be
 represented to customers and that are built from abstractions of the
 underlying TE networks [RFC8453].

 This document provides a YANG data model for the Abstraction and
 Control of Traffic Engineered (TE) networks (ACTN) Virtual Network
 Service (VNS) operation that is going to be implemented for the
 Customer Network Controller (CNC)- Multi-Domain Service Coordinator
 (MSDC) interface (CMI).

 The YANG model on the CMI is also known as customer service model in
 [RFC8309]. The YANG model discussed in this document is used to
 operate customer-driven VNs during the VN instantiation, VN
 computation, and its life-cycle service management and operations.

 The VN model defined in this document can also work together with
 other customer service models such as L3SM [RFC8299], L2SM [L2SM]
 and L1CSM [L1CSM] to provide a complete life-cycle service
 management and operations.

 The YANG model discussed in this document basically provides the
 following:

 o Characteristics of Access Points (APs) that describe customer's
 end point characteristics;

 o Characteristics of Virtual Network Access Points (VNAP) that
 describe How an AP is partitioned for multiple VNs sharing the AP
 and its reference to a Link Termination Point (LTP) of the
 Provider Edge (PE) Node;

 o Characteristics of Virtual Networks (VNs) that describe the
 customer's VNs in terms of VN Members comprising a VN, multi-
 source and/or multi-destination characteristics of VN Member, the
 VN's reference to TE-topology's Abstract Node;

 The actual VN instantiation and computation is performed with
 Connectivity Matrices sub-module of TE-Topology Model [TE-Topo]
 which provides TE network topology abstraction and management
 operation. Once TE-topology Model is used in triggering VN
 instantiation over the networks, TE-tunnel [TE-tunnel] Model will
 inevitably interact with TE-Topology model for setting up actual
 tunnels and LSPs under the tunnels.

 The ACTN VN operational state is included in the same tree as the
 configuration consistent with Network Management Datastore
 Architecture (NMDA) [RFC8342]. The origin of the data is indicated
 as per the origin metadata annotation.

1.1. Terminology

 Refer to [RFC8453], [RFC7926], and [RFC8309] for the key terms used
 in this document.

1.2. Tree diagram

 A simplified graphical representation of the data model is used in
 Section 5 of this this document. The meaning of the symbols in
 these diagrams is defined in [RFC8340].

1.3. Prefixes in Data Node Names

 In this document, names of data nodes and other data model objects
 are prefixed using the standard prefix associated with the
 corresponding YANG imported modules, as shown in Table 1.

+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Prefix | YANG module | Reference |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
vn	ietf‑actn‑vn	[RFCXXXX]
nw	ietf‑network	[RFC8345]
te‑types	ietf‑te‑types	[TE‑Tunnel]
te‑topo	ietf‑te‑topology	[TE‑TOPO]
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1: Prefixes and corresponding YANG modules

 Note: The RFC Editor will replace XXXX with the number assigned to
 the RFC once this draft becomes an RFC.

2. ACTN CMI context

 The model presented in this document has the following ACTN context.

 +‑‑‑‑‑‑‑+
 | CNC |
 +‑‑‑‑‑‑‑+
 |
 | VN YANG + TE‑topology YANG
 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| MDSC |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1. ACTN CMI

 Both ACTN VN YANG and TE-topology models are used over the CMI to
 establish a VN over TE networks.

2.1. Type 1 VN

 As defined in [RFC8453], a Virtual Network is a customer view of the
 TE network. To recapitulate VN types from [RFC8453], Type 1 VN is
 defined as follows:

 The VN can be seen as a set of edge-to-edge abstract links (a Type 1
 VN). Each abstract link is referred to as a VN member and is formed
 as an end-to-end tunnel across the underlying networks. Such tunnels
 may be constructed by recursive slicing or abstraction of paths in
 the underlying networks and can encompass edge points of the
 customer's network, access links, intra-domain paths, and inter-
 domain links.

 If we were to create a VN where we have four VN-members as follows:

VN‑Member 1 L1‑L4
VN‑Member 2 L1‑L7
VN‑Member 3 L2‑L4
VN‑Member 4 L3‑L8

 Where L1, L2, L3, L4, L7 and L8 correspond to a Customer
 End-Point, respectively.

 This VN can be modeled as one abstract node representation as
 follows in Figure 2:

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
L1 ‑‑‑‑‑‑| |‑‑‑‑‑‑ L4
L2 ‑‑‑‑‑‑| AN 1 |‑‑‑‑‑‑ L7
L3 ‑‑‑‑‑‑| |‑‑‑‑‑‑ L8
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 2. Abstract Node (One node topology)

 Modeling a VN as one abstract node is the easiest way for customers
 to express their end-to-end connectivity; however, customers are not
 limited to express their VN only with one abstract node. In some
 cases, more than one abstract nodes can be employed to express their
 VN.

2.2. Type 2 VN

 For some VN members of a VN, the customers are allowed to configure
 the actual path (i.e., detailed virtual nodes and virtual links)
 over the VN/abstract topology agreed mutually between CNC and MDSC
 prior to or a topology created by the MDSC as part of VN
 instantiation. Type 2 VN is always built on top of a Type 1 VN.

 If a Type 2 VN is desired for some or all of VN members of a type 1
 VN (see the example in Section 2.1), the TE-topology model can
 provide the following abstract topology (that consists of virtual
 nodes and virtual links) which is built on top of the Type 1 VN.

 +‑‑+
 | S1 S2 |
 | O‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑O |
 | ________/ ______ \ |
 | / \ \ |
 |S3 / \ S4 \ S5 |
 L1‑‑‑‑|‑O‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑O‑‑‑‑‑‑‑‑‑O‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑L4
 | \ \ \ |
 | \ \ \ |
 | \ S6 \ S7 \ S8 |

 | O ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑O‑‑‑‑‑‑‑‑‑O‑‑‑‑‑‑‑|‑‑‑‑‑‑L7
 | / \ / \ ____/ |
 |S9 / \ /S10 \ / |
L2‑‑‑‑‑|‑‑‑O‑‑‑‑‑O‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑O‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑L8
 | / S11 |
L3‑‑‑‑‑|‑‑ |
 | |
 +‑‑+

 Figure 3. Type 2 topology

 As you see from Figure 3, the Type 1 abstract node is depicted as a
 Type 1 abstract topology comprising of detailed virtual nodes and
 virtual links.

 As an example, if VN-member 1 (L1-L4) is chosen to configure its own
 path over Type 2 topology, it can select, say, a path that consists
 of the ERO {S3,S4,S5} based on the topology and its service
 requirement. This capability is enacted via TE-topology
 configuration by the customer.

3. High-Level Control Flows with Examples

3.1. Type 1 VN Illustration

 If we were to create a VN where we have four VN-members as follows:

VN‑Member 1 L1‑L4
VN‑Member 2 L1‑L7
VN‑Member 3 L2‑L4
VN‑Member 4 L3‑L8

 Where L1, L2, L3, L4, L7 and L8 correspond to Customer End-Point,
 respectively.

 This VN can be modeled as one abstract node representation as
 follows:

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
L1 ‑‑‑‑‑‑| |‑‑‑‑‑‑ L4

L2 ‑‑‑‑‑‑| AN 1 |‑‑‑‑‑‑ L7
L3 ‑‑‑‑‑‑| |‑‑‑‑‑‑ L8
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 If this VN is Type 1, the following diagram shows the message flow
 between CNC and MDSC to instantiate this VN using ACTN VN and TE-
 Topology Model.

 +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
 | CNC | | MDSC |
 +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
 | |
 | |
CNC POST TE‑topo | POST /nw:networks/nw:network/ |
model(with Conn. | nw:node/te‑node‑id/tet:connectivity‑ |
Matrix on one | matrices/tet:connectivity‑matrix |
Abstract node |‑‑>|
 | HTTP 200 |
 |<‑‑|
 | |
CNC POST the ACTN| POST /ACTN VN |
VN identifying |‑‑>| If there is
AP, VNAP and VN‑ | | multi‑dest'n
Members and maps | | module, then
to the TE‑topo | HTTP 200 | MDSC selects a
 |<‑‑| src or dest'n
 | | and update
 | | ACTN VN YANG
CNC GET the ACTN | GET /ACTN VN |
VN YANG status |‑‑>|
 | |
 | HTTP 200 (ACTN VN with status: selected|
 | VN‑members in case of multi s‑d |
 |<‑‑|
 | |

3.2. Type 2 VN Illustration

 For some VN members, the customer may want to "configure" explicit
 routes over the path that connects its two end-points. Let us
 consider the following example.

VN‑Member 1 L1‑L4

VN‑Member 2 L1‑L7 (via S4 and S7)

VN‑Member 3 L2‑L4

VN‑Member 4 L3‑L8 (via S10)

 Where the following topology is the underlay for Abstraction Node 1
 (AN1).

 S1 S2
 O‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑O
 ________/ ______ \
 / \ \
 S3 / \ S4 \ S5
 L1‑‑‑‑‑‑O‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑O‑‑‑‑‑‑‑‑‑O‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑L4
 \ \ \
 \ \ \
 \ S6 \ S7 \ S8
 O ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑O‑‑‑‑‑‑‑‑‑O‑‑‑‑‑‑‑‑‑‑‑‑‑‑L5
 / \ / \ ____/ _____________L6
 S9 / \ /S10 \ /
L2‑‑‑‑‑‑‑‑‑O‑‑‑‑‑O‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑O‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑L7
 / S11____________________L8
L3‑‑‑‑‑‑‑‑

 If CNC creates the single abstract topology, the following diagram
 shows the message flow between CNC and MDSC to instantiate this VN
 using ACTN VN and TE-Topology Model.

 +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
 | CNC | | MDSC |
 +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
 | |
 | |
CNC POST TE‑topo | POST /nw:networks/nw:network/ |
model(with Conn. | nw:node/te‑node‑id/tet:connectivity‑ |
Matrix on one | matrices/tet:connectivity‑matrix |
Abstract node and|‑‑>|

Explicit paths in| |
The conn. Matrix | HTTP 200 |
 |<‑‑|
 | |
CNC POST the ACTN| POST /ACTN VN |
VN identifying |‑‑>|
AP, VNAP and VN‑ | |
Members and maps | |
to the TE‑topo | HTTP 200 |
 |<‑‑|
 | |
 | |
CNC GET the ACTN | GET /ACTN VN |
VN YANG status |‑‑>|
 | |
 | HTTP 200 (ACTN VN with status) |
 |<‑‑|
 | |

 On the other hand, if MDSC create single node topology based ACTN VN
 YANG posted by the CNC, the following diagram shows the message flow
 between CNC and MDSC to instantiate this VN using ACTN VN and TE-
 Topology Model.

 +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
 | CNC | | MDSC |
 +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
 | |
 | |
CNC POST ACTN VN | |
Identifying AP, | |
VNAP and VN‑ | POST /ACTN VN | MDSC populates
Members |‑‑>| a single Abst.
 | HTTP 200 | node topology
 |<‑‑| by itself
 | |
CNC POST the ACTN| POST /ACTN VN |
VN identifying |‑‑>|
AP, VNAP and VN‑ | |
Members and maps | |
to the TE‑topo | HTTP 200 |
 |<‑‑|
 | |
 | |

CNC GET the ACTN | GET /ACTN VN |
VN YANG status |‑‑>|
 | |
 | HTTP 200 (ACTN VN with status) |
 |<‑‑|
 | |

4. ACTN VN Model Usage

4.1. Customer view of VN

 The VN-Yang model allows to define a customer view, and allows the
 customer to communicate using the VN constructs as described in the
 [ACTN-INFO]. It also allows to group the set of edge-to-edge links
 (i.e., VN members) under a common umbrella of VN. This allows the
 customer to instantiate and view the VN as one entity, making it
 easier for some customers to work on VN without worrying about the
 details of the provider based YANG models.

 This is similar to the benefits of having a separate YANG model for
 the customer services as described in [RFC8309], which states that
 service models do not make any assumption of how a service is
 actually engineered and delivered for a customer.

4.2. Auto-creation of VN by MDSC

 The VN could be configured at the MDSC explicitly by the CNC using
 the ACTN VN yang model. In some other cases, the VN is not
 explicitly configured, but created automatically by the MDSC based
 on the customer service model and local policy, even in these case
 the ACTN VN yang model can be used by the CNC to learn details of
 the underlying VN created to meet the requirements of customer
 service model.

4.3. Innovative Services

4.3.1. VN Compute

 ACTN VN supports VN compute (pre-instantiation mode) to view the
 full VN as a single entity before instantiation. Achieving this via
 path computation or "compute only" tunnel setup does not provide the
 same functionality.

4.3.2. Multi-sources and Multi-destinations

 In creating a virtual network, the list of sources or destinations
 or both may not be pre-determined by the customer. For instance, for
 a given source, there may be a list of multiple-destinations to
 which the optimal destination may be chosen depending on the network
 resource situations. Likewise, for a given destination, there may
 also be multiple-sources from which the optimal source may be
 chosen. In some cases, there may be a pool of multiple sources and
 destinations from which the optimal source-destination may be
 chosen. The following YANG module is shown for describing source
 container and destination container. The following YANG tree shows
 how to model multi-sources and multi-destinations.

+‑‑rw actn
 . . .
 +‑‑rw vn
 +‑‑rw vn‑list* [vn‑id]
 +‑‑rw vn‑id uint32
 +‑‑rw vn‑name? string
 +‑‑rw vn‑topology‑id? te‑types:te‑topology‑id
 +‑‑rw abstract‑node? ‑> /nw:networks/network/node/tet:te‑node‑id
 +‑‑rw vn‑member‑list* [vn‑member‑id]
 | +‑‑rw vn‑member‑id uint32
 | +‑‑rw src
 | | +‑‑rw src? ‑> /actn/ap/access‑point‑list/access‑point‑id
 | | +‑‑rw src‑vn‑ap‑id? ‑> /actn/ap/access‑point‑list/vn‑ap/vn‑ap‑id
 | | +‑‑rw multi‑src? boolean {multi‑src‑dest}?
 | +‑‑rw dest
 | | +‑‑rw dest? ‑> /actn/ap/access‑point‑list/access‑point‑
id
 | | +‑‑rw dest‑vn‑ap‑id? ‑> /actn/ap/access‑point‑list/vn‑ap/vn‑ap‑id
 | | +‑‑rw multi‑dest? boolean {multi‑src‑dest}?
 | +‑‑rw connetivity‑matrix‑id? ‑> /nw:networks/network/node/tet:te/te‑
node‑attributes/connectivity‑matrices/connectivity‑matrix/id
 | +‑‑ro oper‑status? identityref
 +‑‑ro if‑selected? boolean {multi‑src‑dest}?
 +‑‑rw admin‑status? identityref
 +‑‑ro oper‑status? identityref

4.3.3. Others

 The VN Yang model can be easily augmented to support the mapping of
 VN to the Services such as L3SM and L2SM as described in [TE-MAP].

 The VN Yang model can be extended to support telemetry, performance
 monitoring and network autonomics as described in [ACTN-PM].

4.3.4. Summary

 This section summarizes the innovative service features of the ACTN
 VN Yang.

 o Maintenance of AP and VNAP along with VN.

 o VN construct to group of edge-to-edge links

 o VN Compute (pre-instantiate)

 o Multi-Source / Multi-Destination

 o Ability to support various VN and VNS Types

* VN Type 1: Customer configures the VN as a set of VN
 Members.
 No other details need to be set by customer, making for a
 simplified operations for the customer.

 * VN Type 2: Along with VN Members, the customer could also
 provide an abstract topology, this topology is provided by
 the Abstract TE Topology Yang Model.

5. ACTN VN YANG Model (Tree Structure)

module: ietf‑actn‑vn
 +‑‑rw actn
 +‑‑rw ap
 | +‑‑rw access‑point‑list* [access‑point‑id]
 | +‑‑rw access‑point‑id uint32
 | +‑‑rw access‑point‑name? string
 | +‑‑rw max‑bandwidth? te‑types:te‑bandwidth
 | +‑‑rw avl‑bandwidth? te‑types:te‑bandwidth
 | +‑‑rw vn‑ap* [vn‑ap‑id]

 | +‑‑rw vn‑ap‑id uint32
 | +‑‑rw vn? ‑> /actn/vn/vn‑list/vn‑id
 | +‑‑rw abstract‑node? ‑> /nw:networks/network/node/tet:te‑node‑id
 | +‑‑rw ltp? te‑types:te‑tp‑id
 +‑‑rw vn
 +‑‑rw vn‑list* [vn‑id]
 +‑‑rw vn‑id uint32
 +‑‑rw vn‑name? string
 +‑‑rw vn‑topology‑id? te‑types:te‑topology‑id
 +‑‑rw abstract‑node? ‑> /nw:networks/network/node/tet:te‑node‑id
 +‑‑rw vn‑member‑list* [vn‑member‑id]
 | +‑‑rw vn‑member‑id uint32
 | +‑‑rw src
 | | +‑‑rw src? ‑> /actn/ap/access‑point‑list/access‑point‑id
 | | +‑‑rw src‑vn‑ap‑id? ‑> /actn/ap/access‑point‑list/vn‑ap/vn‑ap‑id
 | | +‑‑rw multi‑src? boolean {multi‑src‑dest}?
 | +‑‑rw dest
 | | +‑‑rw dest? ‑> /actn/ap/access‑point‑list/access‑point‑id
 | | +‑‑rw dest‑vn‑ap‑id? ‑> /actn/ap/access‑point‑list/vn‑ap/vn‑ap‑id
 | | +‑‑rw multi‑dest? boolean {multi‑src‑dest}?
 | +‑‑rw connetivity‑matrix‑id? ‑> /nw:networks/network/node/tet:te/te‑node‑
attributes/connectivity‑matrices/connectivity‑matrix/id
 | +‑‑ro oper‑status? identityref
 +‑‑ro if‑selected? boolean {multi‑src‑dest}?
 +‑‑rw admin‑status? identityref
 +‑‑ro oper‑status? identityref
 +‑‑rw vn‑level‑diversity? vn‑disjointness

 rpcs:
 +‑‑‑x vn‑compute
 +‑‑‑w input
 | +‑‑‑w abstract‑node? ‑> /nw:networks/network/node/tet:te‑node‑id
 | +‑‑‑w vn‑member‑list* [vn‑member‑id]
 | | +‑‑‑w vn‑member‑id uint32
 | | +‑‑‑w src
 | | | +‑‑‑w src? ‑> /actn/ap/access‑point‑list/access‑point‑id
 | | | +‑‑‑w src‑vn‑ap‑id? ‑> /actn/ap/access‑point‑list/vn‑ap/vn‑ap‑id
 | | | +‑‑‑w multi‑src? boolean {multi‑src‑dest}?
 | | +‑‑‑w dest
 | | | +‑‑‑w dest? ‑> /actn/ap/access‑point‑list/access‑point‑id
 | | | +‑‑‑w dest‑vn‑ap‑id? ‑> /actn/ap/access‑point‑list/vn‑ap/vn‑ap‑id
 | | | +‑‑‑w multi‑dest? boolean {multi‑src‑dest}?
 | | +‑‑‑w connetivity‑matrix‑id? ‑> /nw:networks/network/node/tet:te/te‑node‑
attributes/connectivity‑matrices/connectivity‑matrix/id
 | +‑‑‑w vn‑level‑diversity? vn‑disjointness
 +‑‑ro output
 +‑‑ro vn‑member‑list* [vn‑member‑id]
 +‑‑ro vn‑member‑id uint32
 +‑‑ro src
 | +‑‑ro src? ‑> /actn/ap/access‑point‑list/access‑point‑id
 | +‑‑ro src‑vn‑ap‑id? ‑> /actn/ap/access‑point‑list/vn‑ap/vn‑ap‑id
 | +‑‑ro multi‑src? boolean {multi‑src‑dest}?
 +‑‑ro dest
 | +‑‑ro dest? ‑> /actn/ap/access‑point‑list/access‑point‑id
 | +‑‑ro dest‑vn‑ap‑id? ‑> /actn/ap/access‑point‑list/vn‑ap/vn‑ap‑id

 | +‑‑ro multi‑dest? boolean {multi‑src‑dest}?
 +‑‑ro connetivity‑matrix‑id? ‑> /nw:networks/network/node/tet:te/te‑node‑
attributes/connectivity‑matrices/connectivity‑matrix/id
 +‑‑ro if‑selected? boolean {multi‑src‑dest}?
 +‑‑ro compute‑status? identityref

6. ACTN-VN YANG Code

 The YANG code is as follows:

 <CODE BEGINS> file "ietf-actn-vn@2018-02-27.yang"

module ietf‑actn‑vn {
 namespace "urn:ietf:params:xml:ns:yang:ietf‑actn‑vn";
 prefix "vn";

 /* Import network */
 import ietf‑network {
 prefix "nw";
 }

 /* Import TE generic types */
 import ietf‑te‑types {
 prefix "te‑types";
 }

 /* Import Abstract TE Topology */
 import ietf‑te‑topology {
 prefix "tet";
 }

 organization
 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";
 contact
 "Editor: Young Lee <leeyoung@huawei.com>
 : Dhruv Dhody <dhruv.ietf@gmail.com>";
 description
 "This module contains a YANG module for the ACTN VN. It
 describes a VN operation module that takes place in the
 context of the CNC‑MDSC Interface (CMI) of the ACTN
 architecture where the CNC is the actor of a VN
 Instantiation/modification /deletion.";

 revision 2018‑02‑27 {
 description
 "initial version.";
 reference
 "TBD";
 }
 /*
 * Features
 */
 feature multi‑src‑dest {
 description
 "Support for selection of one src or destination
 among multiple.";
 }

 /*identity path‑metric‑delay {
 base te‑types:path‑metric‑type;
 description
 "delay path metric";
 }
 identity path‑metric‑delay‑variation {
 base te‑types:path‑metric‑type;
 description
 "delay‑variation path metric";
 }
 identity path‑metric‑loss {
 base te‑types:path‑metric‑type;
 description
 "loss path metric";
 }*/

 identity vn‑state‑type {
 description
 "Base identity for VN state";
 }
 identity vn‑state‑up {
 base vn‑state‑type;
 description "VN state up";
 }
 identity vn‑state‑down {
 base vn‑state‑type;
 description "VN state down";
 }
 identity vn‑admin‑state‑type {
 description

 "Base identity for VN admin states";
 }
 identity vn‑admin‑state‑up {
 base vn‑admin‑state‑type;
 description "VN administratively state up";
 }
 identity vn‑admin‑state‑down {
 base vn‑admin‑state‑type;
 description "VN administratively state down";
 }
 identity vn‑compute‑state‑type {
 description
 "Base identity for compute states";
 }
 identity vn‑compute‑state‑computing {
 base vn‑compute‑state‑type;
 description
 "State path compute in progress";
 }
 identity vn‑compute‑state‑computation‑ok {
 base vn‑compute‑state‑type;
 description
 "State path compute successful";
 }
 identity vn‑compute‑state‑computatione‑failed {
 base vn‑compute‑state‑type;
 description
 "State path compute failed";
 }
 /*
 * Groupings
 */

 typedef vn‑disjointness {
 type bits {
 bit node {
 position 0;
 description "node disjoint";
 }
 bit link {
 position 1;
 description "link disjoint";
 }
 bit srlg {
 position 2;

 description "srlg disjoint";
 }
 }
 description
 "type of the resource disjointness for
 VN level applied across all VN members
 in a VN";
 }

 grouping vn‑ap {
 description
 "VNAP related information";
 leaf vn‑ap‑id {
 type uint32;
 description
 "unique identifier for the referred
 VNAP";
 }
 leaf vn {
 type leafref {
 path "/actn/vn/vn‑list/vn‑id";
 }
 description
 "reference to the VN";
 }
 leaf abstract‑node {
 type leafref {
 path "/nw:networks/nw:network/nw:node/"
 + "tet:te‑node‑id";
 }
 description
 "a reference to the abstract node in TE
 Topology";
 }
 leaf ltp {
 type te‑types:te‑tp‑id;
 description
 "Reference LTP in the TE‑topology";
 }
 }
 grouping access‑point{
 description
 "AP related information";
 leaf access‑point‑id {
 type uint32;

 description
 "unique identifier for the referred
 access point";
 }
 leaf access‑point‑name {
 type string;
 description
 "ap name";
 }

 leaf max‑bandwidth {
 type te‑types:te‑bandwidth;
 description
 "max bandwidth of the AP";
 }
 leaf avl‑bandwidth {
 type te‑types:te‑bandwidth;
 description
 "available bandwidth of the AP";
 }
 /*add details and any other properties of AP,
 not associated by a VN
 CE port, PE port etc.
 */
 list vn‑ap {
 key vn‑ap‑id;
 uses vn‑ap;
 description
 "list of VNAP in this AP";
 }
 }//access‑point
 grouping vn‑member {
 description
 "vn‑member is described by this container";
 leaf vn‑member‑id {
 type uint32;
 description
 "vn‑member identifier";
 }
 container src
 {
 description
 "the source of VN Member";
 leaf src {
 type leafref {

 path "/actn/ap/access‑point‑list/access‑point‑id";
 }
 description
 "reference to source AP";
 }
 leaf src‑vn‑ap‑id{
 type leafref {
 path "/actn/ap/access‑point‑list/vn‑ap/vn‑ap‑id";
 }
 description
 "reference to source VNAP";
 }
 leaf multi‑src {
 if‑feature multi‑src‑dest;
 type boolean;
 description
 "Is source part of multi‑source, where
 only one of the source is enabled";
 }
 }
 container dest
 {
 description
 "the destination of VN Member";
 leaf dest {
 type leafref {
 path "/actn/ap/access‑point‑list/access‑point‑id";
 }
 description
 "reference to destination AP";
 }
 leaf dest‑vn‑ap‑id{
 type leafref {
 path "/actn/ap/access‑point‑list/vn‑ap/vn‑ap‑id";
 }
 description
 "reference to dest VNAP";
 }
 leaf multi‑dest {
 if‑feature multi‑src‑dest;
 type boolean;
 description
 "Is destination part of multi‑destination, where
 only one of the destination is enabled";
 }

 }
 leaf connetivity‑matrix‑id{
 type leafref {
 path "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/"
 + "tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix/tet:id";
 }
 description
 "reference to connetivity‑matrix";
 }
 }//vn‑member
 /*
 grouping policy {
 description
 "policy related to vn‑member‑id";
 leaf local‑reroute {
 type boolean;
 description
 "Policy to state if reroute
 can be done locally";
 }
 leaf push‑allowed {
 type boolean;
 description
 "Policy to state if changes
 can be pushed to the customer";
 }
 leaf incremental‑update {
 type boolean;
 description
 "Policy to allow only the
 changes to be reported";
 }
 }//policy
 */
 grouping vn‑policy {
 description
 "policy for VN‑level diverisity";
 leaf vn‑level‑diversity {
 type vn‑disjointness;
 description
 "the type of disjointness on the VN level
 (i.e., across all VN members)";
 }

 }
 /*
 grouping metrics‑op {
 description
 "metric related information";
 list metric{
 key "metric‑type";
 config false;
 description
 "The list of metrics for VN";
 leaf metric‑type {
 type identityref {
 base te‑types:path‑metric‑type;
 }
 description
 "The VN metric type.";
 }
 leaf value{
 type uint32;
 description
 "The limit value";
 }
 }
 }
 */
 /*
 grouping metrics {
 description
 "metric related information";
 list metric{
 key "metric‑type";
 description
 "The list of metrics for VN";
 uses te:path‑metrics‑bounds_config;
 container optimize{
 description
 "optimizing constraints";
 leaf enabled{
 type boolean;
 description
 "Metric to optimize";
 }
 leaf value{
 type uint32;
 description

 "The computed value";
 }
 }
 }
 }
 */
 /*
 grouping service‑metric {
 description
 "service‑metric";
 uses te:path‑objective‑function_config;
 uses metrics;
 uses te‑types:common‑constraints_config;
 uses te:protection‑restoration‑params_config;
 uses policy;
 }//service‑metric
 */
 /*
 * Configuration data nodes
 */
 container actn {
 description
 "actn is described by this container";
 container ap {
 description
 "AP configurations";
 list access‑point‑list {
 key "access‑point‑id";
 description
 "access‑point identifier";
 uses access‑point{
 description
 "access‑point information";
 }
 }
 }
 container vn {
 description
 "VN configurations";
 list vn‑list {
 key "vn‑id";
 description
 "a virtual network is identified by a vn‑id";
 leaf vn‑id {
 type uint32;

 description
 "a unique vn identifier";
 }
 leaf vn‑name {
 type string;
 description "vn name";
 }
 leaf vn‑topology‑id{
 type te‑types:te‑topology‑id;
 description
 "An optional identifier to the TE Topology
 Model where the abstract nodes and links
 of the Topology can be found for Type 2
 VNS";
 }
 leaf abstract‑node {
 type leafref {
 path "/nw:networks/nw:network/nw:node/"
 + "tet:te‑node‑id";
 }
 description
 "a reference to the abstract node in TE
 Topology";
 }
 list vn‑member‑list{
 key "vn‑member‑id";
 description
 "List of VN‑members in a VN";
 uses vn‑member;
 /*uses metrics‑op;*/
 leaf oper‑status {
 type identityref {
 base vn‑state‑type;
 }
 config false;
 description
 "VN‑member operational state.";
 }

 }
 leaf if‑selected{
 if‑feature multi‑src‑dest;
 type boolean;
 default false;
 config false;

 description
 "Is the vn‑member is selected among the
 multi‑src/dest options";
 }
 /*
 container multi‑src‑dest{
 if‑feature multi‑src‑dest;
 config false;
 description
 "The selected VN Member when multi‑src
 and/or mult‑destination is enabled.";
 leaf selected‑vn‑member{
 type leafref {
 path "/actn/vn/vn‑list/vn‑member‑list"
 + "/vn‑member‑id";
 }
 description
 "The selected VN Member along the set
 of source and destination configured
 with multi‑source and/or multi‑destination";
 }
 }
 */
 /*uses service‑metric;*/
 leaf admin‑status {
 type identityref {
 base vn‑admin‑state‑type;
 }
 default vn‑admin‑state‑up;
 description "VN administrative state.";
 }
 leaf oper‑status {
 type identityref {
 base vn‑state‑type;
 }
 config false;
 description "VN operational state.";
 }
 uses vn‑policy;
 }//vn‑list
 }//vn
 }//actn
 /*
 * Notifications ‑ TBD
 */

 /*
 * RPC
 */
 rpc vn‑compute{
 description
 "The VN computation without actual
 instantiation";
 input {
 leaf abstract‑node {
 type leafref {
 path "/nw:networks/nw:network/nw:node/"
 + "tet:te‑node‑id";
 }
 description
 "a reference to the abstract node in TE
 Topology";
 }
 list vn‑member‑list{
 key "vn‑member‑id";
 description
 "List of VN‑members in a VN";
 uses vn‑member;
 }
 uses vn‑policy;
 /*uses service‑metric;*/
 }
 output {
 list vn‑member‑list{
 key "vn‑member‑id";
 description
 "List of VN‑members in a VN";
 uses vn‑member;
 leaf if‑selected{
 if‑feature multi‑src‑dest;
 type boolean;
 default false;
 description
 "Is the vn‑member is selected among
 the multi‑src/dest options";
 }
 /*uses metrics‑op;*/
 leaf compute‑status {
 type identityref {
 base vn‑compute‑state‑type;
 }

 description
 "VN‑member compute state.";
 }
 }
 /*
 container multi‑src‑dest{
 if‑feature multi‑src‑dest;
 description
 "The selected VN Member when multi‑src
 and/or mult‑destination is enabled.";
 leaf selected‑vn‑member‑id{
 type uint32;
 description
 "The selected VN Member‑id from the
 input";
 }
 }*/
 }
 }
}

 <CODE ENDS>

7. JSON Example

 This section provides json implementation examples as to how ACTN VN
 YANG model and TE topology model are used together to instantiate
 virtual networks.

 The example in this section includes following VN

 o VN1 (Type 1): Which maps to the single node topology abstract1
 (node D1) and consist of VN Members 104 (L1 to L4), 107 (L1 to
 L7), 204 (L2 to L4), 308 (L3 to L8) and 108 (L1 to L8). We also
 show how disjointness (node, link, srlg) is supported in the
 example on the global level (i.e., connectivity matrices level).

 o VN2 (Type 2): Which maps to the single node topology abstract2
 (node D2), this topology has an underlay topology (absolute) (see
 figure in section 3.2). This VN has a single VN member 105 (L1 to
 L5) and an underlay path (S4 and S7) has been set in the
 connectivity matrix of abstract2 topology;

 o VN3 (Type 1): This VN has a multi-source, multi-destination
 feature enable for VN Member 104 (L1 to L4)/107 (L1 to L7)
 [multi-src] and VN Member 204 (L2 to L4)/304 (L3 to L4) [multi-
 dest] usecase. The selected VN-member is known via the field "if-
 selected" and the corresponding connectivity-matrix-id.

 Note that the ACTN VN YANG model also include the AP and VNAP which
 shows various VN using the same AP.
7.1. ACTN VN JSON

 {
 "actn":{
 "ap":{
 "access‑point‑list": [
 {
 "access‑point‑id": 101,
 "access‑point‑name": "101",
 "vn‑ap": [
 {
 "vn‑ap‑id": 10101,
 "vn": 1,
 "abstract‑node": "D1",
 "ltp": "1‑0‑1"
 },
 {
 "vn‑ap‑id": 10102,
 "vn": 2,
 "abstract‑node": "D2",
 "ltp": "1‑0‑1"
 },
 {
 "vn‑ap‑id": 10103,
 "vn": 3,
 "abstract‑node": "D3",
 "ltp": "1‑0‑1"
 },
]
 },
 {
 "access‑point‑id": 202,
 "access‑point‑name": "202",
 "vn‑ap": [

 {
 "vn‑ap‑id": 20201,
 "vn": 1,
 "abstract‑node": "D1",
 "ltp": "2‑0‑2"
 }
]
 },
 {
 "access‑point‑id": 303,
 "access‑point‑name": "303",
 "vn‑ap": [
 {
 "vn‑ap‑id": 30301,
 "vn": 1,
 "abstract‑node": "D1",
 "ltp": "3‑0‑3"
 },
 {
 "vn‑ap‑id": 30303,
 "vn": 3,
 "abstract‑node": "D3",
 "ltp": "3‑0‑3"
 }
]
 },
 {
 "access‑point‑id": 440,
 "access‑point‑name": "440",
 "vn‑ap": [
 {
 "vn‑ap‑id": 44001,
 "vn": 1,
 "abstract‑node": "D1",
 "ltp": "4‑4‑0"
 }
]
 },
 {
 "access‑point‑id": 550,
 "access‑point‑name": "550",
 "vn‑ap": [
 {
 "vn‑ap‑id": 55002,
 "vn": 2,
 "abstract‑node": "D2",
 "ltp": "5‑5‑0"
 }
]

 },
 {
 "access‑point‑id": 770,
 "access‑point‑name": "770",
 "vn‑ap": [
 {
 "vn‑ap‑id": 77001,
 "vn": 1,
 "abstract‑node": "D1",
 "ltp": "7‑7‑0"
 },
 {
 "vn‑ap‑id": 77003,
 "vn": 3,
 "abstract‑node": "D3",
 "ltp": "7‑7‑0"
 }
]
 },
 {
 "access‑point‑id": 880,
 "access‑point‑name": "880",
 "vn‑ap": [
 {
 "vn‑ap‑id": 88001,
 "vn": 1,
 "abstract‑node": "D1",
 "ltp": "8‑8‑0"
 },
 {
 "vn‑ap‑id": 88003,
 "vn": 3,
 "abstract‑node": "D3",
 "ltp": "8‑8‑0"
 }
]
 }
]
 },
 "vn":{
 "vn‑list": [
 {
 "vn‑id": 1,
 "vn‑name": "vn1",
 "vn‑topology‑id": "te‑topology:abstract1",
 "abstract‑node": "D1",
 "vn‑member‑list": [
 {
 "vn‑member‑id": 104,

 "src": {
 "src": 101,
 "src‑vn‑ap‑id": 10101,
 },
 "dest": {
 "dest": 440,
 "dest‑vn‑ap‑id": 44001,
 },
 "connectivity‑matrix‑id": 104
 },
 {
 "vn‑member‑id": 107,
 "src": {
 "src": 101,
 "src‑vn‑ap‑id": 10101,
 },
 "dest": {
 "dest": 770,
 "dest‑vn‑ap‑id": 77001,
 },
 "connectivity‑matrix‑id": 107
 },
 {
 "vn‑member‑id": 204,
 "src": {
 "src": 202,
 "dest‑vn‑ap‑id": 20401,
 },
 "dest": {
 "dest": 440,
 "dest‑vn‑ap‑id": 44001,
 },
 "connectivity‑matrix‑id": 204
 },
 {
 "vn‑member‑id": 308,
 "src": {
 "src": 303,
 "src‑vn‑ap‑id": 30301,
 },
 "dest": {
 "dest": 880,
 "src‑vn‑ap‑id": 88001,
 },
 "connectivity‑matrix‑id": 308
 },
 {
 "vn‑member‑id": 108,
 "src": {

 "src": 101,
 "src‑vn‑ap‑id": 10101,
 },
 "dest": {
 "dest": 880,
 "dest‑vn‑ap‑id": 88001,
 },
 "connectivity‑matrix‑id": 108
 }
]
 },
 {
 "vn‑id": 2,
 "vn‑name": "vn2",
 "vn‑topology‑id": "te‑topology:abstract2",
 "abstract‑node": "D2",
 "vn‑member‑list": [
 {
 "vn‑member‑id": 105,
 "src": {
 "src": 101,
 "src‑vn‑ap‑id": 10102,
 },
 "dest": {
 "dest": 550,
 "dest‑vn‑ap‑id": 55002,
 },
 "connectivity‑matrix‑id": 105
 }
]
 },
 {
 "vn‑id": 3,
 "vn‑name": "vn3",
 "vn‑topology‑id": "te‑topology:abstract3",
 "abstract‑node": "D3",
 "vn‑member‑list": [
 {
 "vn‑member‑id": 104,
 "src": {
 "src": 101,
 },
 "dest": {
 "dest": 440,
 "multi‑dest": true
 }
 },
 {
 "vn‑member‑id": 107,

 "src": {
 "src": 101,
 "src‑vn‑ap‑id": 10103,
 },
 "dest": {
 "dest": 770,
 "dest‑vn‑ap‑id": 77003,
 "multi‑dest": true
 },
 "connectivity‑matrix‑id": 107,
 "if‑selected":true,
 },
 {
 "vn‑member‑id": 204,
 "src": {
 "src": 202,
 "multi‑src": true,
 },
 "dest": {
 "dest": 440,
 },
 },
 {
 "vn‑member‑id": 304,
 "src": {
 "src": 303,
 "src‑vn‑ap‑id": 30303,
 "multi‑src": true,
 },
 "dest": {
 "dest": 440,
 "src‑vn‑ap‑id": 44003,
 },
 "connectivity‑matrix‑id": 304,
 "if‑selected":true,
 },
]
 },

]
 }

 }
 }

7.2. TE-topology JSON

 {

 "networks": {

 "network": [
 {
 "network‑types": {
 "te‑topology": {}
 },
 "network‑id": "abstract1",
 "provider‑id": 201,
 "client‑id": 600,
 "te‑topology‑id": "te‑topology:abstract1",
 "node": [
 {
 "node‑id": "D1",
 "te‑node‑id": "2.0.1.1",
 "te": {
 "te‑node‑attributes": {
 "domain‑id" : 1,
 "is‑abstract": [null],
 "connectivity‑matrices": {
 "is‑allowed": true,
 "path‑constraints": {
 "bandwidth‑generic": {
 "te‑bandwidth": {
 "generic": [
 {
 "generic": "0x1p10",
 }
]
 }
 }
 "disjointness": "node link srlg",

 },
 "connectivity‑matrix": [
 {
 "id": 104,
 "from": "1‑0‑1",
 "to": "4‑4‑0"
 },
 {
 "id": 107,
 "from": "1‑0‑1",
 "to": "7‑7‑0"
 },
 {
 "id": 204,
 "from": "2‑0‑2",
 "to": "4‑4‑0"
 },
 {

 "id": 308,
 "from": "3‑0‑3",
 "to": "8‑8‑0"
 },
 {
 "id": 108,
 "from": "1‑0‑1",
 "to": "8‑8‑0"
 },
]
 }
 }
 },
 "termination‑point": [
 {
 "tp‑id": "1‑0‑1",
 "te‑tp‑id": 10001,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑1‑0",
 "te‑tp‑id": 10100,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "2‑0‑2",
 "te‑tp‑id": 20002,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }

 },
 {
 "tp‑id": "2‑2‑0",
 "te‑tp‑id": 20200,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "3‑0‑3",
 "te‑tp‑id": 30003,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "3‑3‑0",
 "te‑tp‑id": 30300,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "4‑0‑4",
 "te‑tp‑id": 40004,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },

 {
 "tp‑id": "4‑4‑0",
 "te‑tp‑id": 40400,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "5‑0‑5",
 "te‑tp‑id": 50005,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "5‑5‑0",
 "te‑tp‑id": 50500,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "6‑0‑6",
 "te‑tp‑id": 60006,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {

 "tp‑id": "6‑6‑0",
 "te‑tp‑id": 60600,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "7‑0‑7",
 "te‑tp‑id": 70007,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "7‑7‑0",
 "te‑tp‑id": 70700,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "8‑0‑8",
 "te‑tp‑id": 80008,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "8‑8‑0",

 "te‑tp‑id": 80800,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 }
]
 }
]
 },
 {
 "network‑types": {
 "te‑topology": {}
 },
 "network‑id": "abstract2",
 "provider‑id": 201,
 "client‑id": 600,
 "te‑topology‑id": "te‑topology:abstract2",
 "node": [
 {
 "node‑id": "D2",
 "te‑node‑id": "2.0.1.2",
 "te": {
 "te‑node‑attributes": {
 "domain‑id" : 1,
 "is‑abstract": [null],
 "connectivity‑matrices": {
 "is‑allowed": true,
 "underlay": {
 "enabled": true
 },
 "path‑constraints": {
 "bandwidth‑generic": {
 "te‑bandwidth": {
 "generic": [
 {
 "generic": "0x1p10"
 }
]
 }
 }
 },
 "optimizations": {
 "objective‑function": {

 "objective‑function‑type": "of‑maximize‑residual‑
bandwidth"
 }
 },
 "connectivity‑matrix": [
 {
 "id": 105,
 "from": "1‑0‑1",
 "to": "5‑5‑0",
 "underlay": {
 "enabled": true,
 "primary‑path": {
 "network‑ref": "absolute",
 "path‑element": [
 {
 "path‑element‑id": 1,
 "index": 1,
 "numbered‑hop": {
 "address": "4.4.4.4",
 "hop‑type": "STRICT"
 }
 },
 {
 "path‑element‑id": 2,
 "index": 2,
 "numbered‑hop": {
 "address": "7.7.7.7",
 "hop‑type": "STRICT"
 }
 }
]
 }
 }
 }
]
 }
 }
 },
 "termination‑point": [
 {
 "tp‑id": "1‑0‑1",
 "te‑tp‑id": 10001,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]

 }
 },
 {
 "tp‑id": "1‑1‑0",
 "te‑tp‑id": 10100,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "2‑0‑2",
 "te‑tp‑id": 20002,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "2‑2‑0",
 "te‑tp‑id": 20200,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "3‑0‑3",
 "te‑tp‑id": 30003,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }

 },
 {
 "tp‑id": "3‑3‑0",
 "te‑tp‑id": 30300,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "4‑0‑4",
 "te‑tp‑id": 40004,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "4‑4‑0",
 "te‑tp‑id": 40400,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "5‑0‑5",
 "te‑tp‑id": 50005,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },

 {
 "tp‑id": "5‑5‑0",
 "te‑tp‑id": 50500,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "6‑0‑6",
 "te‑tp‑id": 60006,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "6‑6‑0",
 "te‑tp‑id": 60600,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "7‑0‑7",
 "te‑tp‑id": 70007,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {

 "tp‑id": "7‑7‑0",
 "te‑tp‑id": 70700,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "8‑0‑8",
 "te‑tp‑id": 80008,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "8‑8‑0",
 "te‑tp‑id": 80800,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 }
]
 }
]
 },
 {
 "network‑types": {
 "te‑topology": {}
 },
 "network‑id": "abstract3",
 "provider‑id": 201,
 "client‑id": 600,
 "te‑topology‑id": "te‑topology:abstract3",
 "node": [
 {

 "node‑id": "D3",
 "te‑node‑id": "3.0.1.1",
 "te": {
 "te‑node‑attributes": {
 "domain‑id" : 3,
 "is‑abstract": [null],
 "connectivity‑matrices": {
 "is‑allowed": true,
 "path‑constraints": {
 "bandwidth‑generic": {
 "te‑bandwidth": {
 "generic": [
 {
 "generic": "0x1p10",
 }
]
 }
 }
 },
 "connectivity‑matrix": [
 {
 "id": 107,
 "from": "1‑0‑1",
 "to": "7‑7‑0"
 },
 {
 "id": 308,
 "from": "3‑0‑3",
 "to": "8‑8‑0"
 },
]
 }
 }
 },
 "termination‑point": [
 {
 "tp‑id": "1‑0‑1",
 "te‑tp‑id": 10001,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑1‑0",

 "te‑tp‑id": 10100,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "2‑0‑2",
 "te‑tp‑id": 20002,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "2‑2‑0",
 "te‑tp‑id": 20200,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "3‑0‑3",
 "te‑tp‑id": 30003,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "3‑3‑0",
 "te‑tp‑id": 30300,

 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "4‑0‑4",
 "te‑tp‑id": 40004,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "4‑4‑0",
 "te‑tp‑id": 40400,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "5‑0‑5",
 "te‑tp‑id": 50005,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "5‑5‑0",
 "te‑tp‑id": 50500,
 "te": {

 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "6‑0‑6",
 "te‑tp‑id": 60006,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "6‑6‑0",
 "te‑tp‑id": 60600,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "7‑0‑7",
 "te‑tp‑id": 70007,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "7‑7‑0",
 "te‑tp‑id": 70700,
 "te": {
 "interface‑switching‑capability": [

 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "8‑0‑8",
 "te‑tp‑id": 80008,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "8‑8‑0",
 "te‑tp‑id": 80800,
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 }
]
 }
]
 },
]
 }
 }

8. Security Considerations

 The configuration, state, and action data defined in this document
 are designed to be accessed via a management protocol with a secure
 transport layer, such as NETCONF [RFC6241] or RESTCONF [RFC8040].
 The lowest NETCONF layer is the secure transport layer, and the
 mandatory-to-implement secure transport is Secure Shell (SSH)
 [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-
 to-implement secure transport is TLS [RFC8446].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF users to a preconfigured
 subset of all available NETCONF protocol operations and content.

 The model presented in this document is used in the interface
 between the Customer Network Controller (CNC) and Multi-Domain
 Service Coordinator (MDSC), which is referred to as CNC-MDSC
 Interface (CMI). Therefore, many security risks such as malicious
 attack and rogue elements attempting to connect to various ACTN
 components. Furthermore, some ACTN components (e.g., MSDC)
 represent a single point of failure and threat vector and must also
 manage policy conflicts and eavesdropping of communication between
 different ACTN components.

 A number of configuration data nodes defined in this document are
 writable/deletable (i.e., "config true") These data nodes may be
 considered sensitive or vulnerable in some network environments.

 These are the subtrees and data nodes and their
 sensitivity/vulnerability:

‑ access‑point‑list:
 o access‑point‑id
 o max‑bandwidth
 o avl‑bandwidth

‑ vn‑ap:
 o vn‑ap‑id
 o vn
 o abstract‑node
 o ltp

‑ vn‑list
 o vn‑id
 o vn‑topology‑id
 o abstract‑node

‑ vn‑member‑id
 o src
 o src‑vn‑ap‑id
 o dest
 o dest‑vn‑ap‑id
 o connectivity‑matrix‑id

9. IANA Considerations

 This document registers the following namespace URIs in the IETF XML
 registry [RFC3688]:

‑‑
URI: urn:ietf:params:xml:ns:yang:ietf‑actn‑vn
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
‑‑

 This document registers the following YANG modules in the YANG
 Module

 Names registry [RFC6020]:

‑‑
name: ietf‑actn‑vn
namespace: urn:ietf:params:xml:ns:yang:ietf‑actn‑vn
reference: RFC XXXX (TDB)
‑‑

10. Acknowledgments

 The authors would like to thank Xufeng Liu for his helpful comments
 and valuable suggestions.

11. References

 11.1. Normative References

 [TE-TOPO]
 X. Liu, et al., "YANG Data Model for TE Topologies", work
 in progress: draft-ietf-teas-yang-te-topo.

 [TE-tunnel]
 T. Saad, et al., "A YANG Data Model for Traffic
 Engineering Tunnels and Interfaces", work in progress:
 draft-ietf-teas-yang-te.

 11.2. Informative References

 [RFC7926]
 A. Farrel (Ed.), "Problem Statement and Architecture for
 Information Exchange between Interconnected Traffic-
 Engineered Networks", RFC 7926, July 2016.

 [RFC8453]
 D. Ceccarelli and Y. Lee (Editors), "Framework for
 Abstraction and Control of Traffic Engineered Networks",
 RFC 8453, August 2018.

 [TE-MAP]
 Y. Lee, D. Dhody, and D. Ceccarelli, "Traffic Engineering
 and Service Mapping Yang Model", draft-lee-teas-te-
 service-mapping-yang, work in progress.

 [ACTN-PM]
 Y. Lee, et al., "YANG models for ACTN TE Performance
 Monitoring Telemetry and Network Autonomics", draft-lee-
 teas-actn-pm-telemetry-autonomics, work in progress.

 [L1CSM]
 G. Fioccola, Ed. & Y. Lee, Ed., "A Yang Data Model for L1
 Connectivity Service Model (L1CSM)", draft-ietf-ccamp-
 l1csm-yang, work in progress.
 [L2SM] G. Fioccola, Ed., "A YANG Data Model for L2VPN Service
 Delivery", draft-ietf-l2sm-l2vpn-service-model, work in
 progress.

 [RFC8299]
 Q. Wu, Ed., S. Litkowski, L. Tomotaki, and K. Ogaki, "YANG
 Data Model for L3VPN Service Delivery", RFC 8299, January
 2018.

 [RFC8309]
 Q. Wu, W. Cheng, and A. Farrel. "Service Models
 Explained", RFC 8309, January 2018.

 [RFC8340]
 M. Bjorklund and L. Berger (Editors), "YANG Tree
 Diagrams", RFC 8340, March 2018.

 [RFC8345]
 A. Clemm, et al, "A YANG Data Model for Network
 Topologies", RFC 8345, March 2018.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, March 2018.

12. Contributors

Contributor's Addresses

Haomian Zheng
Huawei Technologies
Email: zhenghaomian@huawei.com

Xian Zhang
Huawei Technologies
Email: zhang.xian@huawei.com

Sergio Belotti
Nokia
Email: sergio.belotti@nokia.com

Takuya Miyasaka
KDDI
Email: ta‑miyasaka@kddi.com

Authors' Addresses

Young Lee (ed.)
Huawei Technologies
Email: leeyoung@huawei.com

Dhruv Dhody (ed.)
Huawei Technologies
Email: dhruv.ietf@gmail.com

Daniele Ceccarelli
Ericsson
Torshamnsgatan,48
Stockholm, Sweden
Email: daniele.ceccarelli@ericsson.com

Igor Bryskin
Huawei
Email: Igor.Bryskin@huawei.com

Bin Yeong Yoon
ETRI
Email: byyun@etri.re.kr

Qin Wu
Huawei Technologies
Email: bill.wu@huawei.com

Peter Park
KT
Email: peter.park@kt.com

draft-ietf-teas-actn-yang-02 - Bin Yeong Yoon ETRI

Index
Prev
Next
Forward 5

TEAS WG

Internet Draft

Intended status: Informational

Expires: February 23, 2019

Young Lee

Haomian Zheng

Huawei

Daniele Ceccarelli

Ericsson

Bin Yeong Yoon ETRI

 Oscar Gonzalez de Dios

 Telefonica

 Jong Yoon Shin

 SKT

 Sergio Belotti

 Nokia

 August 22, 2018

 Applicability of YANG models for Abstraction and Control of Traffic

 Engineered Networks

 draft-ietf-teas-actn-yang-02

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with
 the provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on February 23, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

Abstract

 Abstraction and Control of TE Networks (ACTN) refers to the set of
 virtual network operations needed to orchestrate, control and manage
 large-scale multi-domain TE networks, so as to facilitate network
 programmability, automation, efficient resource sharing, and end-to-
 end virtual service aware connectivity and network function
 virtualization services.

 This document explains how the different types of YANG models
 defined in the Operations and Management Area and in the Routing
 Area are applicable to the ACTN framework. This document also shows
 how the ACTN architecture can be satisfied using classes of data
 model that have already been defined, and discusses the
 applicability of specific data models that are under development. It
 also highlights where new data models may need to be developed.

Table of Contents

	1. Introduction

	2. Abstraction and Control of TE Networks (ACTN) Architecture

	3. Service Models

	4. Service Model Mapping to ACTN
	 4.1. Customer Service Models in the ACTN Architecture (CMI)

	 4.2. Service Delivery Models in ACTN Architecture

	 4.3. Network Configuration Models in ACTN Architecture (MPI)

	 4.4. Device Models in ACTN Architecture (SBI)

	5. Examples of Using Different Types of YANG Models
	 5.1. Topology Collection

	 5.2. Connectivity over Two Nodes

	 5.3. VN Service Example

	 5.4. Data Center-Interconnection Example
	 5.4.1. CMI (CNC-MDSC Interface)

	 5.4.2. MPI (MDSC-PNC Interface)

	 5.4.3. SBI (Southbound interface between PNC and devices)

	6. Security

	7. Acknowledgements

	8. References
	 8.1. Informative References

	9. Contributors

	Authors' Addresses

1. Introduction

 Abstraction and Control of TE Networks (ACTN) describes a method for
 operating a Traffic Engineered (TE) network (such as an MPLS-TE
 network or a layer 1 transport network) to provide connectivity and
 virtual network services for customers of the TE network. The
 services provided can be tuned to meet the requirements (such as
 traffic patterns, quality, and reliability) of the applications
 hosted by the customers. More details about ACTN can be found in
 Section 2.

 Data models are a representation of objects that can be configured
 or monitored within a system. Within the IETF, YANG [RFC7950] is the
 language of choice for documenting data models, and YANG models have
 been produced to allow configuration or modelling of a variety of
 network devices, protocol instances, and network services. YANG data
 models have been classified in [RFC8199] and [RFC8309].

 This document shows how the ACTN architecture can be satisfied using
 various classes of data model that have already been defined, and
 discusses the applicability of specific data models that are under
 development. It also highlights where new data models may need to be
 developed.

2. Abstraction and Control of TE Networks (ACTN) Architecture

 [ACTN-Frame] describes the architecture model for ACTN including the
 entities (Customer Network Controller (CNC), Multi-domain Service
 Coordinator (MDSC), and Provisioning Network Controller (PNC)) and
 their interfaces.

 Figure 1 depicts a high-level control and interface architecture for
 ACTN and is a reproduction of Figure 3 from [ACTN-Frame]. A number
 of key ACTN interfaces exist for deployment and operation of ACTN-
 based networks. These are highlighted in Figure 1 (ACTN Interfaces)
 below:

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | CNC‑A | | CNC‑B | | CNC‑C |
 |(DC provider) | | (ISP) | | (MVNO) |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 \ | /
Business \ | /
Boundary =======\========================|=========================/=======
Between \ | CMI /
Customer & ‑‑‑‑‑‑‑‑‑‑‑ | ‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Network Operator \ | /
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | MDSC |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 / | \
 ‑‑‑‑‑‑‑‑‑‑‑‑ |MPI ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 / | \
 +‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+
 | PNC | | PNC | | PNC |
 +‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+
 | GMPLS / | / \
 | trigger / |SBI SBI / \
 ‑‑‑‑‑‑‑‑ ‑‑‑‑‑ | / \
 () () | / \
 ‑ ‑ (Phys.) | / ‑‑‑‑‑
 (GMPLS) (Net) | / ()
 (Physical) ‑‑‑‑ | / (Phys.)
 (Network) ‑‑‑‑‑ ‑‑‑‑‑ (Net)
 ‑ ‑ () () ‑‑‑‑‑
 () (Phys.) (Phys.)
 ‑‑‑‑‑‑‑‑ (Net) (Net)
 ‑‑‑‑‑ ‑‑‑‑‑

 Figure 1 : ACTN Interfaces

 The interfaces and functions are described below (without modifying
 the definitions) in [ACTN-Frame]:

 . The CNC-MDSC Interface (CMI) is an interface between a CNC and

 an MDSC. This interface is used to communicate the service
 request or application demand. A request will include specific
 service properties, for example, services type, bandwidth and
 constraint information. These constraints SHOULD be measurable
 by MDSC and therefore visible to CNC via CMI. The CNC can also
 request the creation of the virtual network service based on
 underlying physical resources to provide network services for
 the applications. The CNC can provide the end-point
 information/characteristics together with traffic matrix
 specifying specific customer constraints. The MDSC may also
 report potential network topology availability if queried for
 current capability from the Customer Network Controller.
 Performance monitoring is also applicable in CMI, which enables
 the MDSC to report network parameters/telemetries that may
 guide the CNC to create/change their services.

 . The MDSC-PNC Interface (MPI) is an interface between an MDSC

 and a PNC. It allows the MDSC to communicate requests to
 create/delete connectivity or to modify bandwidth reservations
 in the physical network. In multi-domain environments, each PNC
 is responsible for a separate domain. The MDSC needs to
 establish multiple MPIs, one for each PNC and perform
 coordination between them to provide cross-domain connectivity.
 MPI plays an important role for multi-vendor operations; inter-
 operability can be achieved by standardized interface modules.

 . The South-Bound Interface (SBI) is the provisioning interface

 for creating forwarding state in the physical network,
 requested via the PNC. The SBI is not in the scope of ACTN,
 however, it is included in this document so that it can be
 compared to models in [Service-Yang].

3. Service Models

 [RFC8309] introduces a reference architecture to explain the nature
 and usage of service YANG models in the context of service
 orchestration. Figure 2 below depicts this relationship and is a
 reproduction of Figure 2 from [RFC8309]. Four models depicted in
 Figure 2 are defined as follows:

 . Customer Service Model: A customer service model is used to
 describe a service as offer or delivered to a customer by a
 network operator.
 . Service Delivery Model: A service delivery model is used by a
 network operator to define and configure how a service is
 provided by the network.

 . Network Configuration Model: A network configuration model is
 used by a network orchestrator to provide network‑level
 configuration model to a controller.
 . Device Configuration Model: A device configuration model is
 used by a controller to configure physical network elements.

 Customer
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ Service ‑‑‑‑‑‑‑‑‑‑
 | | Model | |
 | Service |<‑‑‑‑‑‑‑‑>| Customer |
 | Orchestrator | | |
 | | ‑‑‑‑‑‑‑‑‑‑
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 . . ‑‑‑‑‑‑‑‑‑‑‑
 |Application|
 . . : | BSS/OSS |
 . . : ‑‑‑‑‑‑‑‑‑‑‑
 . Service Delivery . :
 . Model . :
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | | | |
 | Network | | Network |
 | Orchestrator | | Orchestrator |
 | | | |
 .‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.
 . : : .
 . : Network Configuration : .
 . : Model : .
 ‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑
Controller		Controller		Controller		Controller
 ‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑
 : . . : :
 : . . Device : :
 : . . Configuration : :
 : . . Model : :
 ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
| Network | | Network | | Network | | Network | | Network |
| Element | | Element | | Element | | Element | | Element |
 ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑

 Figure 2: An SDN Architecture with a Service Orchestrator

4. Service Model Mapping to ACTN

 YANG models coupled with the RESTCONF/NETCONF protocol
 [RFC6241][RFC8040] provides solutions for the ACTN framework. This
 section explains which types of YANG models apply to each of the
 ACTN interfaces.

 Refer to Figure 5 of [ACTN-Frame] for details of the mapping between
 ACTN functions and service models. In summary, the following
 mappings are held between and Service Yang Models and the ACTN
 interfaces.

o Customer Service Model <‑> CMI
o Network Configuration Model <‑> MPI
o Device Configuration Model <‑> SBI

4.1. Customer Service Models in the ACTN Architecture (CMI)

 Customer Service Models, which are used between a customer and a
 service orchestrator as in [Service-YANG], should be used between
 the CNC and MDSC (e.g., CMI) serving as providing a simple intent-
 like model/interface.

 Among the key functions of Customer Service Models on the CMI is the
 service request. A request will include specific service properties,
 including: service type and its characteristics, bandwidth,
 constraint information, and end-point characteristics.

 The following table provides a list of functions needed to build the
 CMI. They are mapped with Customer Service Models.

Function Yang Model
‑‑‑
VN Service Request [ACTN‑VN‑YANG]
VN Computation Request [ACTN‑VN‑YANG]*
TE & Service Mapping [TE‑Service‑Mapping]**
VN Performance Monitoring Telemetry [ACTN‑PM‑Telemetry]***
Topology Abstraction [TE‑topology]****
Layer 1 Connectivity Service Model [L1CSM]
Layer 2 VPN Service Model [L2SM]
Layer 3 VPN Service Model [RFC8299]

 *VN computation request in the CMI context means network path
 computation request based on customer service connectivity request
 constraints prior to the instantiation of a VN creation.

 **[TE-Service-Mapping] provides a mapping and cross-references
 between service models (e.g., L3SM, L2SM, L1CSM) and TE models via
 [ACTN-VN-YANG] and [TE-topology]. This model can be used as either
 Customer Service Models, or Service Delivery model described in
 Section 4.2.

 ***[ACTN-PM-Telemetry] describes performance telemetry for e2e
 tunnels and VNs. This module also allows autonomic traffic
 engineering scaling intent configuration mechanism on both the e2e
 tunnel and the VN level. Scale in/out criteria might be used for
 network automation in order the controller to react to a certain set
 of variations in monitored parameters. Moreover, this module also
 provides mechanism to define aggregated telemetry parameters as a
 grouping of underlying Tunnel and VN level telemetry parameters.

 ****TE-Topology's Connectivity Matrices/Matrix construct can be used
 to instantiate VN Service via a suitable referencing and mapping
 with [ACTN-VN-YANG].

4.2. Service Delivery Models in ACTN Architecture

 The Service Delivery Models where the service orchestration and the
 network orchestration could be implemented as separate components as
 seen in [RFC8309]. On the other hand, from an ACTN architecture
 point of view, the service delivery model between the service
 orchestrator and the network orchestrator is an internal interface
 between sub-components of the MDSC in a single MDSC model.

 In the MDSC hierarchical model where there are multiple MDSCs, the
 interface between the top MDSC and the bottom MDSC can be mapped to
 service delivery models.

4.3. Network Configuration Models in ACTN Architecture (MPI)

 The Network Configuration Models is used between the network
 orchestrator and the controller in [Service-YANG]. In ACTN, this
 model is used primarily between a MDSC and a PNC. The Network
 Configuration Model can be also used for the foundation of more
 advanced models, like hierarchical MDSCs (see Section 4.5)

 The Network Configuration Model captures the parameters which are
 network wide information.

 The following table provides a list of functions needed to build the
 MPI. They are mapped with Network Configuration Yang Models. Note
 that various Yang models are work in progress.

Function Yang Model
‑‑
Configuration Scheduling [Schedule]
Path computation [PATH_COMPUTATION‑API]
Tunnel/LSP Provisioning [TE‑Tunnel]
Topology Abstraction [TE‑topology]
Client Signal Description [Client‑signal]
Service Provisioning TBD*

OTN Topology Abstraction [OTN‑topo]
WSON Topology Abstraction [WSON‑topo]
Flexi‑grid Topology Abstraction [Flexi‑topo]
Microwave Topology Abstraction [MW‑topo]
OTN Tunnel Model [OTN‑Tunnel]
WSON TE Tunnel Model [WSON‑Tunnel]
Flexi‑grid Tunnel Model [Flexigrid‑Tunnel]

 * This function needs to be investigated further. This can be a part
 of [TE-Tunnel] which is to be determined. Service provisioning is an
 optional function that builds on top the path provisioning one.

 [TE-topo-tunnel] provides tutorials for the clarification and
 example usage for TE topology model [TE-topology] and TE tunnel
 model [TE-Tunnel]. [T-NBI Applicability] provides a summary on the
 applicability of existing YANG model usage in the current network
 configuration, especially for transport network.

4.4. Device Models in ACTN Architecture (SBI)

 Note that SBI is not in the scope of ACTN, as there is already
 mature protocol solutions for various purpose on the device level of
 ACTN architecture, such as RSVP-TE, OSPF-TE and so on. The
 interworking of such protocols and ACTN controller hierarchies can
 be found in [gmpls-controller-inter-work].

 For the device YANG models are used for per-device configuration
 purpose, they can be used between the PNC and the physical
 network/devices. One example of Device Models is ietf-te-device yang
 module defined in [TE-tunnel].

5. Examples of Using Different Types of YANG Models

 This section provides some examples on the usage of IETF YANG models
 in the network operation. A few typical generic scenarios are
 involved. In [T-NBI Applicability], there are more transport-related
 scenarios and examples.

5.1. Topology Collection

 Before any connection is requested and delivered, the controller
 needs to understand the network topology. The topology information
 is exchanged among controllers with topology models, such as [te-
 topology]. Moreover, technology-specific topology reporting may use
 the model described in [OTN-topo] [WSON-topo], and [Flexi-topo] for
 OTN, WSON and Flexi-grid, respectively. By collecting the network
 topology, each controller can therefore construct a local database,
 which can be used for the further service deployment.

 There can be different types of abstraction applied between each
 pair of controllers, corresponding method can be found in [ACTN-
 frame]. The technology-specific features may be hidden after
 abstraction, to make the network easier for the user to operate.

 When there is a topology change in the physical network, the PNC
 should report the change to upper level of controllers via updating
 messages using topology models. Accordingly, such changes is
 propagated between different controllers for further
 synchronization.

5.2. Connectivity over Two Nodes

 The service models, such as described in [RFC8299], [L2SM] and
 [L1CSM] provide a connectivity service model which can be used in
 connection-oriented networks.

 It would be used as follows in the ACTN architecture:

 . A CNC uses the service models to specify the two client nodes

 that are to be connected, and also indicates the amount of
 traffic (i.e., the bandwidth required) and payload type. What
 may be additionally specified is the SLA that describes the
 required quality and resilience of the service.

 . The MDSC uses the information in the request to pick the right

 network (domain) and also to select the provider edge nodes
 corresponding to the customer edge nodes.

 If there are multiple domains, then the MDSC needs to
 coordinate across domains to set up network tunnels to deliver
 a service. Thus coordination includes, but is not limited to,
 picking the right domain sequence to deliver a service.

 Additionally, an MDSC can initiate the creation of a tunnel (or
 tunnel segment) in order to fulfill the service request from
 CNC based on path computation upon the overall topology
 information it synthesized from different PNCs. The based model
 that can cater this purpose is the TE tunnel model specified in
 [te-tunnel]. Technology-specific tunnel configuration may use
 the model described in [OTN-Tunnel] [WSON-Tunnel], and
 [Flexigrid-Tunnel] for OTN, WSON and Flexi-grid, respectively.

 . Then, the PNCs need to decide the explicit route of such a

 tunnel or tunnel segment (in case of multiple domains) for each
 domain, and then create such a tunnel using protocols such as
 PCEP and RSVP-TE or using per-hop configuration.

5.3. VN Service Example

 The service model defined in [ACTN-VN-YANG] describes a virtual
 network (VN) as a service which is a set of multiple connectivity
 services:

 . A CNC will request VN to the MDSC by specifying a list of VN

 members. Each VN member specifies either a single connectivity
 service, or a source with multiple potential destination points
 in the case that the precise destination sites are to be
 determined by MDSC.

 o In the first case, the procedure is the same as the
 connectivity service, except that in this case, there is a
 list of connections requested.

 o In the second case, where the CNC requests the MDSC to
 select the right destination out of a list of candidates,
 the MDSC needs to evaluate each candidate and then choose
 the best one and reply with the chosen destination for a
 given VN member. After this is selected, the connectivity
 request setup procedure is the same as in the connectivity
 example in section 5.2.

 After the VN is set up, a successful reply message is sent from MDSC
 to CNC, indicating the VN is ready. This message can also be
 achieved by using the model defined in [ACTN-VN-YANG].

5.4. Data Center-Interconnection Example

 This section describes more concretely how existing YANG models
 described in Section 4 map to an ACTN data center interconnection
 use case. Figure 3 shows a use-case which shows service policy-
 driven Data Center selection and is a reproduction of Figure A.1
 from [ACTN-Info].

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | CNC |
 | (Global DC |
 | Operation |
 | Control) |
 +‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
 | | VN Requirement/Policy:
 CMI: | | ‑ Endpoint/DC location info
 Service model | | ‑ Endpoint/DC dynamic
 | | selection policy
 | | (for VM migration, DR, LB)
 | v
 +‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
 | Multi‑domain | Service policy‑driven
 |Service Coordinator| dynamic DC selection
 MPI: +‑‑‑‑‑+‑‑‑+‑‑‑+‑‑‑‑‑+
 Network Configuration | | |
 Model | | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | |
 +‑‑‑‑‑+‑‑‑‑‑+ +‑‑‑‑‑‑+‑‑‑‑‑+ +‑‑‑‑‑‑+‑‑‑‑‑+
 | PNC for | | PNC for | | PNC for |
 | Transport | | Transport | | Transport |
 | Network A | | Network B | | network C |
 +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
 Device | | |
 Model | | |
 | | |
+‑‑‑+ ‑‑‑‑‑‑ ‑‑‑‑‑‑ ‑‑‑‑‑‑ +‑‑‑+
|DC1|‑‑//// \\\\ //// \\\\ //// \\\\‑‑‑+DC5|
+‑‑‑+ | | | | | | +‑‑‑+
 | TN A +‑‑‑‑‑+ TN B +‑‑‑‑+ TN C |
 / | | | | |
 / \\\\ //// / \\\\ //// \\\\ ////
 +‑‑‑+ ‑‑‑‑‑‑ / ‑‑‑‑‑‑ \ ‑‑‑‑‑‑ \
 |DC2| / \ \+‑‑‑+
 +‑‑‑+ / \ |DC6|
 +‑‑‑+ \ +‑‑‑+ +‑‑‑+
 |DC3| \|DC4|
 +‑‑‑+ +‑‑‑+

 DR: Disaster Recovery
 LB: Load Balancing

 Figure 3: Service Policy-driven Data Center Selection

 Figure 3 shows how VN policies from the CNC (Global Data Center
 Operation) are incorporated by the MDSC to support multi-destination
 applications. Multi-destination applications refer to applications
 in which the selection of the destination of a network path for a
 given source needs to be decided dynamically to support such
 applications.

 Data Center selection problems arise for VM mobility, disaster
 recovery and load balancing cases. VN's policy plays an important
 role for virtual network operation. Policy can be static or dynamic.
 Dynamic policy for data center selection may be placed as a result
 of utilization of data center resources supporting VMs. The MDSC
 would then incorporate this information to meet the objective of
 this application.

 5.4.1. CMI (CNC-MDSC Interface)

 [ACTN-VN-YANG] is used to express the definition of a VN, its VN
 creation request, the service objectives (metrics, QoS parameters,
 etc.), dynamic service policy when VM needs to be moved from one
 Data Center to another Data Center, etc. This service model is used
 between the CNC and the MDSC (CMI). The CNC in this use-case is an
 external entity that wants to create a VN and operates on the VN.

 5.4.2. MPI (MDSC-PNC Interface)

 The Network Configuration Model is used between the MDSC and the
 PNCs. Based on the Customer Service Model's request, the MDSC will
 need to translate the service model into the network configuration
 model to instantiate a set of multi-domain connections between the
 prescribed sources and the destinations. The MDSC will also need to
 dynamically interact with the CNC for dynamic policy changes
 initiated by the CNC. Upon the determination of the multi-domain
 connections, the MDSC will need to use the network configuration
 model such as [TE-Tunnel] to interact with each PNC involved on the
 path. [TE-Topology] is used to for the purpose of underlying domain
 network abstraction from the PNC to the MDSC.

 5.4.3. SBI (Southbound interface between PNC and devices)

 The Device Model can be used between the PNC and its underlying
 devices that are controlled by the PNC. The PNC will need to trigger
 signaling using any mechanisms it employees (e.g. [RSVP-TE-YANG]) to
 provision its domain path segment. There can be a plethora of
 choices how to control/manage its domain network. The PNC is
 responsible to abstract its domain network resources and update it
 to the MDSC. Note that this interface is not in the scope of ACTN.
 This section is provided just for an illustration purpose.

6. Security

 This document is an informational draft. When the models mentioned
 in this draft are implemented, detailed security consideration will
 be given in such work.

 How security fits into the whole architecture has the following
 components:

 - the use of Restconf security between components

 - the use of authentication and policy to govern which services can
 be requested by different parties.

 - how security may be requested as an element of a service and
 mapped down to protocol security mechanisms as well as separation
 (slicing) of physical resources)

7. Acknowledgements

 We thank Adrian Farrel for providing useful comments and suggestions
 for this draft.

8. References

8.1. Informative References

 [RFC8309]
 Q. Wu, W. Liu and A. Farrel, "Service Models Explained",
 RFC 8309.

 [RFC8199]
 D. Bogdanovic, B. Claise, and C. Moberg, "YANG Module
 Classification", RFC 8199.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241.

 [RFC8040]
 A. Bierman, M. Bjorklund, and K. Watsen, "RESTCONF
 Protocol", RFC 8040.

 [ACTN-Frame]
 D. Ceccarelli and Y. Lee, "Framework for Abstraction
 and Control of Traffic Engineered Networks", draft-ietf-
 teas-actn-framework, work in progress.

 [TE-Topology]
 X. Liu, et. al., "YANG Data Model for TE Topologies",
 draft-ietf-teas-yang-te-topo, work in progress.

 [TE-Tunnel]
 T. Saad (Editor), "A YANG Data Model for Traffic
 Engineering Tunnels and Interfaces", draft-ietf-teas-yang-
 te, work in progress.

 [ACTN-VN-YANG]
 Y. Lee (Editor), "A Yang Data Model for ACTN VN
 Operation", draft-lee-teas-actn-vn-yang, work in progress.

 [L1CSM]
 G. Fioccola, K. Lee, Y. Lee, D. Dhody, O. Gonzalez de-Dios,
 D. Ceccarelli, "A Yang Data Model for L1 Connectivity
 Service Model (L1CSM)", draft-ietf-ccamp-l1csm-yang, work
 in progress.

 [L2SM]
 B. Wen, G. Fioccola, C. Xie, L. Jalil, "A YANG Data Model for
 L2VPN Service Delivery", draft-ietf-l2sm-l2vpn-service-
 model, work in progress.

 [RFC8299]
 Q. Wu, S. Litkowski, L. Tomotaki, K.Ogaki, "YANG Data
 Model for L3VPN Service Delivery", RFC8299.

 [ACTN-Info]
 Y. Lee & S. Belotti, "Information Model for Abstraction
 and Control of TE Networks (ACTN)", draft-ietf-teas-actn-
 info, work in progress.

 [PATH-COMPUTATION-API]
 I.Busi/S.Belotti et al. "Path Computation
 API", draft-ietf-teas-yang-path-computation, work in
 progress

 [RSVP-TE-YANG]
 T. Saad (Editor), "A YANG Data Model for Resource
 Reservation Protocol (RSVP)", draft-ietf-teas-yang-rsvp,
 work in progress.

 [Schedule]
 X. Liu, et. al., "A YANG Data Model for Configuration
 Scheduling", draft-liu-netmod-yang-schedule, work in
 progress.

 [OTN-topo]
 H. Zheng, et. al., "A YANG Data Model for Optical
 Transport Network Topology", draft-ietf-ccamp-otn-topo-
 yang, work in progress.

 [WSON-topo]
 Y. Lee, et. al., "A Yang Data Model for WSON Optical
 Networks", draft-ietf-ccamp-wson-yang, work in progress.

 [Flexi-topo]
 J.E. Lopez de Vergara, et. al., "YANG data model for
 Flexi-Grid Optical Networks", draft-vergara-ccamp-flexigrid-
 yang, work in progress.

 [MW-topo]
 M. Ye, et. al., "A YANG Data Model for Microwave
 Topology", draft-ye-ccamp-mw-topo-yang, work in progress.

 [OTN-Tunnel]
 H. Zheng, et. al., "OTN Tunnel YANG Model", draft-
 ietf-ccamp-otn-tunnel-model, work in progress.

 [ACTN-PM-Telemetry]
 Y. Lee, D. Dhody, S. Karunanithi, R. Vilalta, D.
 King, and D. Ceccarelli, "YANG models for ACTN TE
 Performance Monitoring Telemetry and Network Autonomics",
 draft-lee-teas-actn-pm-telemetry-autonomics, work in
 progress.

 [WSON-Tunnel]
 Y. Lee, D. Dhody, V. Lopez, D. King, B. Yoon, and R.
 Vilalta, "A Yang Data Model for WSON Tunnel", draft-ietf-
 ccamp-wson-tunnel-model, work in progress.

 [Flexigrid-Tunnel]
 J. Vergara, D. Perdices, V. Lopez, O. Gonzalez de
 Dios, D. King, Y. Lee, and G. Galimberti, "YANG data model
 for Flexi-Grid media-channels", draft-ietf-ccamp-
 flexigrid-media-channel-yang, work in progress.

 [TE-Service-Mapping]
 Y. Lee, et al, "Traffic Engineering and Service
 Mapping Yang Model", draft-lee-teas-te-service-mapping-
 yang, work in progress.

 [Client-signal]
 H. Zheng, et al, "A YANG Data Model for Optical
 Transport Network Client Signals", draft-zheng-ccamp-
 client-signal-yang, work in progress.

 [TE-topo-Tunnel]
 I.Bryskin, et. al., "TE Topology and Tunnel
 Modeling for Transport Networks", draft-ietf-teas-te-topo-
 and-tunnel-modeling, work in progress.

 [T-NBI Applicability] I. Busi, et al, "Transport Northbound

 Interface Applicability Statement and Use Cases", draft-
 ietf-ccamp-transport-nbi-app-statement, work in progress.

 [gmpls-controller-inter-work]
 H. Zheng, et al, "Interworking of
 GMPLS Control and Centralized Controller System", draft-
 zheng-ccamp-gmpls-controller-inter-work, work in progress.

9. Contributors

Contributor's Addresses

Dhruv Dhody
Huawei Technologies

 Email: dhruv.ietf@gmail.com

Xian Zhang
Huawei Technologies

 Email: zhang.xian@huawei.com

Authors' Addresses

Young Lee
Huawei Technologies
5340 Legacy Drive
Plano, TX 75023, USA
Phone: (469)277‑5838

 Email: leeyoung@huawei.com

Haomian Zheng
Huawei Technologies

 Email: zhenghaomian@huawei.com

Daniele Ceccarelli
Ericsson
Torshamnsgatan,48
Stockholm, Sweden

 Email: daniele.ceccarelli@ericsson.com

Bin Yeong Yoon
ETRI

 Email: byyun@etri.re.kr

Oscar Gonzalez de Dios
Telefonica

 Email: oscar.gonzalezdedios@telefonica.com

Jong Yoon Shin
SKT

 Email: jongyoon.shin@sk.com

Sergio Belotti
Nokia

 Email: sergio.belotti@nokia.com

draft-ietf-teas-assoc-corouted-bidir-frr-07 - Updates to the Fast Reroute Proced

Index
Prev
Next
Forward 5

TEAS Working Group

Internet-Draft

Updates: 4090, 7551

Intended Status: Standards Track

Expires: May 8, 2019

R. Gandhi, Ed.

Cisco Systems, Inc.

H. Shah

Ciena

J. Whittaker

Verizon

November 4, 2018

Updates to the Fast Reroute Procedures for Co-routed Associated Bidirectional Label Switched Paths (LSPs)

draft-ietf-teas-assoc-corouted-bidir-frr-07

Abstract

 Resource Reservation Protocol (RSVP) association signaling can be
 used to bind two unidirectional Label Switched Paths (LSPs) into an
 associated bidirectional LSP. When an associated bidirectional LSP
 is co-routed, the reverse LSP follows the same path as its forward
 LSP. This document updates the Fast Reroute (FRR) procedures defined
 in RFC 4090 to support both single-sided and double-sided provisioned
 associated bidirectional LSPs. This document also updates the
 procedure for associating two reverse LSPs defined in RFC 7551 to
 support co-routed bidirectional LSPs. The FRR procedures can ensure
 that for the co-routed LSPs, traffic flows on co-routed paths in the
 forward and reverse directions after a failure event.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Assumptions and Considerations

	2. Conventions Used in This Document
	 2.1. Key Word Definitions

	 2.2. Terminology
	 2.2.1. Forward Unidirectional LSPs

	 2.2.2. Reverse Co-routed Unidirectional LSPs

	3. Problem Statement
	 3.1. Fast Reroute Bypass Tunnel Assignment

	 3.2. Node Protection Bypass Tunnels

	 3.3. Bidirectional LSP Association At Mid-Points

	4. Signaling Procedure
	 4.1. Associated Bidirectional LSP Fast Reroute
	 4.1.1. Restoring Co-routing with Node Protection Bypass Tunnels

	 4.1.2. Unidirectional Link Failures

	 4.1.3. Revertive Behavior after Fast Reroute

	 4.1.4. Bypass Tunnel Provisioning

	 4.1.5. One-to-One Bypass Tunnel

	 4.2. Bidirectional LSP Association At Mid-points

	5. Compatibility

	6. Security Considerations

	7. IANA Considerations

	Appendix A. Extended ASSOCIATION ID

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Acknowledgments

	Authors' Addresses

1. Introduction

 The Resource Reservation Protocol (RSVP) (Extended) ASSOCIATION
 Object is specified in [RFC6780] which can be used generically to
 associate Multiprotocol Label Switching (MPLS) and Generalized MPLS
 (GMPLS) Traffic Engineering (TE) Label Switched Paths (LSPs).
 [RFC7551] defines mechanisms for binding two point-to-point
 unidirectional LSPs [RFC3209] into an associated bidirectional LSP.
 There are two models described in [RFC7551] for provisioning an
 associated bidirectional LSP, single-sided and double-sided. In both
 models, the reverse LSP of the bidirectional LSP may or may not be
 co-routed and follow the same path as its forward LSP.

 In some packet transport networks, there are requirements where the
 reverse LSP of a bidirectional LSP needs to follow the same path as
 its forward LSP [RFC6373]. The MPLS Transport Profile (TP) [RFC6370]
 architecture facilitates the co-routed bidirectional LSP by using the
 GMPLS extensions [RFC3473] to achieve congruent paths. However, the
 RSVP association signaling allows to enable co-routed bidirectional
 LSPs without having to deploy GMPLS extensions in the existing
 networks. The association signaling also allows to take advantage of
 the existing TE and Fast Reroute (FRR) mechanisms in the network.

 [RFC4090] defines FRR extensions for MPLS TE LSPs and those are also
 applicable to the associated bidirectional LSPs. [RFC8271] defines
 FRR procedure for GMPLS signaled bidirectional LSPs, such as,
 coordinate bypass tunnel assignments in the forward and reverse
 directions of the LSP. The mechanisms defined in [RFC8271] are also
 useful for the FRR of associated bidirectional LSPs.

 This document updates the FRR procedures defined in [RFC4090] to
 support both single-sided and double-sided provisioned associated
 bidirectional LSPs. This document also updates the procedure for
 associating two reverse LSPs defined in [RFC7551] to support
 co-routed bidirectional LSPs. The FRR procedures can ensure that for
 the co-routed LSPs, traffic flows on co-routed paths in the forward
 and reverse directions after fast reroute.

1.1. Assumptions and Considerations

 The following assumptions and considerations apply to this document:

 o The FRR procedure for the unidirectional LSPs is defined in
 [RFC4090] and is not modified by this document.

 o The FRR procedure when using the unidirectional bypass tunnels is
 defined in [RFC4090] and is not modified by this document.

 o This document assumes that the FRR bypass tunnels used for
 protected associated bidirectional LSPs are also associated
 bidirectional.

 o The FRR bypass tunnels used for protected co-routed associated
 bidirectional LSPs are assumed to be co-routed associated
 bidirectional.

 o The FRR procedure to coordinate the bypass tunnel assignment
 defined in this document may be used for protected non-corouted
 associated bidirectional LSPs but requires that the downstream
 Point of Local Repair (PLR) and Merge Point (MP) pair of the
 forward LSP matches the upstream MP and PLR pair of the reverse
 LSP.

 o Unless otherwise specified in this document, the fast reroute
 procedures defined in [RFC4090] are used for associated
 bidirectional LSPs.

2. Conventions Used in This Document

2.1. Key Word Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2.2. Terminology

 The reader is assumed to be familiar with the terminology defined in
 [RFC2205], [RFC3209], [RFC4090], [RFC7551], and [RFC8271].

2.2.1. Forward Unidirectional LSPs

 Two reverse unidirectional point-to-point (P2P) LSPs are setup in the
 opposite directions between a pair of source and destination nodes to
 form an associated bidirectional Label Switched Path (LSP). In the
 case of single-sided provisioned LSP, the originating LSP with
 REVERSE_LSP Object [RFC7551] is identified as a forward
 unidirectional LSP. In the case of double-sided provisioned LSP, the
 LSP originating from the higher node address (as source) and
 terminating on the lower node address (as destination) is identified
 as a forward unidirectional LSP.

2.2.2. Reverse Co-routed Unidirectional LSPs

 Two reverse unidirectional point-to-point (P2P) LSPs are setup in the
 opposite directions between a pair of source and destination nodes to
 form an associated bidirectional Label Switched Path (LSP). A
 reverse unidirectional LSP originates on the same node where the
 forward unidirectional LSP terminates, and it terminates on the same
 node where the forward unidirectional LSP originates. A reverse co-
 routed unidirectional LSP traverses along the same path as the
 forward direction unidirectional LSP in the opposite direction.

3. Problem Statement

 As specified in [RFC7551], in the single-sided provisioning case, the
 RSVP TE tunnel is configured only on one endpoint node of the
 bidirectional LSP. An LSP for this tunnel is initiated by the
 originating endpoint with (Extended) ASSOCIATION Object containing
 Association Type set to "single-sided associated bidirectional LSP"
 and REVERSE_LSP Object inserted in the RSVP Path message. The remote
 endpoint then creates the corresponding reverse TE tunnel and signals
 the reverse LSP in response using the information from the
 REVERSE_LSP Object and other objects present in the received RSVP
 Path message. As specified in [RFC7551], in the double-sided
 provisioning case, the RSVP TE tunnel is configured on both endpoint
 nodes of the bidirectional LSP. Both forward and reverse LSPs are
 initiated independently by the two endpoints with (Extended)
 ASSOCIATION Object containing Association Type set to "double-sided
 associated bidirectional LSP". With both single-sided and double-
 sided provisioned bidirectional LSPs, the reverse LSP may or may not
 be congruent (i.e. co-routed) and follow the same path as its forward
 LSP.

 Both single-sided and double-sided associated bidirectional LSPs
 require solutions to the following issues for fast reroute to ensure
 co-routing after a failure event.

3.1. Fast Reroute Bypass Tunnel Assignment

 In order to ensure that the traffic flows on a co-routed path after a
 link or node failure on the protected co-routed LSP path, the mid-
 point Point of Local Repair (PLR) nodes need to assign matching
 bidirectional bypass tunnels for fast reroute. Such bypass
 assignment requires coordination between the forward and reverse
 direction PLR nodes when more than one bypass tunnels are present on
 a PLR node.

 <‑‑ Bypass N ‑‑>
 +‑‑‑‑‑+ +‑‑‑‑‑+
 | H +‑‑‑‑‑‑‑‑‑+ I |
 +‑‑+‑‑+ +‑‑+‑‑+
 | |
 | |
 LSP1 ‑‑> | LSP1 ‑‑> | LSP1 ‑‑> LSP1 ‑‑>
+‑‑‑‑‑+ +‑‑+‑‑+ +‑‑+‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+
| A +‑‑‑‑‑‑‑‑+ B +‑‑‑‑X‑‑‑‑+ C +‑‑‑‑‑‑‑‑+ D +‑‑‑‑‑‑‑‑+ E |
+‑‑‑‑‑+ +‑‑+‑‑+ +‑‑+‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+
 <‑‑ LSP2 | <‑‑ LSP2 | <‑‑ LSP2 <‑‑ LSP2
 | |
 | |
 +‑‑+‑‑+ +‑‑+‑‑+
 | F +‑‑‑‑‑‑‑‑‑+ G |
 +‑‑‑‑‑+ +‑‑‑‑‑+
 <‑‑ Bypass S ‑‑>

 Figure 1: Multiple Bidirectional Bypass Tunnels

 As shown in Figure 1, there are two bypass tunnels available, Bypass
 tunnel N (on path B-H-I-C) and Bypass tunnel S (on path B-F-G-C).
 The mid-point PLR nodes B and C need to coordinate bypass tunnel
 assignment to ensure that traffic in both directions flow through
 either on the Bypass tunnel N or the Bypass tunnel S, after the link
 B-C failure.

3.2. Node Protection Bypass Tunnels

 When using a node protection bypass tunnel with a protected
 associated bidirectional LSP, after a link failure, the forward and
 reverse LSP traffic can flow on different node protection bypass
 tunnels in the upstream and downstream directions.

 <‑‑ Bypass N ‑‑>
+‑‑‑‑‑+ +‑‑‑‑‑+
| H +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ I |
+‑‑+‑‑+ +‑‑+‑‑+
 | <‑‑ Rerouted‑LSP2 |
 | |
 | |
 | LSP1 ‑‑> LSP1 ‑‑> | LSP1 ‑‑> LSP1 ‑‑>
+‑‑+‑‑+ +‑‑‑‑‑+ +‑‑+‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+
| A +‑‑‑‑‑‑‑‑+ B +‑‑‑‑X‑‑‑‑+ C +‑‑‑‑‑‑‑‑+ D +‑‑‑‑‑‑‑‑+ E |
+‑‑‑‑‑+ +‑‑+‑‑+ +‑‑‑‑‑+ +‑‑+‑‑+ +‑‑‑‑‑+
 <‑‑ LSP2 | <‑‑ LSP2 <‑‑ LSP2 | <‑‑ LSP2
 | |
 | |
 | Rerouted‑LSP1 ‑‑> |
 +‑‑+‑‑+ +‑‑+‑‑+
 | F +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ G |
 +‑‑‑‑‑+ +‑‑‑‑‑+
 <‑‑ Bypass S ‑‑>

 Figure 2: Node Protection Bypass Tunnels

 As shown in Figure 2, after the link B-C failure, the downstream PLR
 node B reroutes the protected forward LSP1 traffic over the bypass
 tunnel S (on path B-F-G-D) to reach downstream MP node D whereas the
 upstream PLR node C reroutes the protected reverse LSP2 traffic over
 the bypass tunnel N (on path C-I-H-A) to reach the upstream MP node
 A. As a result, the traffic in the forward and revere directions
 flows on different bypass tunnels and this can cause the co-routed
 associated bidirectional LSP to become non-corouted. However, unlike
 GMPLS LSPs, the asymmetry of paths in the forward and reverse
 directions does not result in RSVP soft-state timeout with the
 associated bidirectional LSPs.

3.3. Bidirectional LSP Association At Mid-Points

 In packet transport networks, a restoration LSP is signaled after a
 link failure on the protected LSP path and the protected LSP may or
 may not be torn down [RFC8131]. In this case, multiple forward and
 reverse LSPs of a co-routed associated bidirectional LSP may be
 present at mid-point nodes with identical (Extended) ASSOCIATION
 Objects. This creates an ambiguity at mid-point nodes to identify
 the correct associated LSP pair for fast reroute bypass assignment
 (e.g. during the recovery phase of RSVP graceful restart procedure).

 LSP3 ‑‑> LSP3 ‑‑> LSP3 ‑‑>
 LSP1 ‑‑> LSP1 ‑‑> LSP1 ‑‑> LSP1 ‑‑>
+‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+
| A +‑‑‑‑‑‑‑‑+ B +‑‑‑‑X‑‑‑‑+ C +‑‑‑‑‑‑‑‑+ D +‑‑‑‑‑‑‑‑+ E |
+‑‑‑‑‑+ +‑‑+‑‑+ +‑‑+‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+
 <‑‑ LSP2 | <‑‑ LSP2 | <‑‑ LSP2 <‑‑ LSP2
 <‑‑ LSP4 | | <‑‑ LSP4 <‑‑ LSP4
 | |
 | LSP3 ‑‑> |
 +‑‑+‑‑+ +‑‑+‑‑+
 | F +‑‑‑‑‑‑‑‑‑+ G |
 +‑‑‑‑‑+ +‑‑‑‑‑+
 <‑‑ Bypass S ‑‑>
 <‑‑ LSP4

 Figure 3: Restoration LSP Set-up after Link Failure

 As shown in Figure 3, the protected LSPs LSP1 and LSP2 are an
 associated LSP pair, similarly the restoration LSPs LSP3 and LSP4 are
 an associated LSP pair, both pairs belong to the same associated
 bidirectional LSP and carry identical (Extended) ASSOCIATION Objects.
 In this example, the mid-point node D may mistakenly associate LSP1
 with the reverse LSP4 instead of the reverse LSP2 due to the matching
 (Extended) ASSOCIATION Objects. This may cause the co-routed
 associated bidirectional LSP to become non-corouted after fast
 reroute. Since the bypass assignment needs to be coordinated between
 the forward and reverse LSPs, this can also lead to undesired bypass
 tunnel assignments.

4. Signaling Procedure

4.1. Associated Bidirectional LSP Fast Reroute

 For both single-sided and double-sided associated bidirectional LSPs,
 the fast reroute procedure specified in [RFC4090] is used. In
 addition, the mechanisms defined in [RFC8271] are used as following.

 o The BYPASS_ASSIGNMENT IPv4 subobject (value: 38) and IPv6
 subobject (value: 39) defined in [RFC8271] are used to coordinate
 bypass tunnel assignment between the forward and reverse direction
 PLR nodes (see Figure 1). The BYPASS_ASSIGNMENT and Node-ID
 address [RFC4561] subobjects MUST be added by the downstream PLR
 node in the RECORD_ROUTE Object (RRO) of the RSVP Path message of
 the forward LSP to indicate the local bypass tunnel assignment
 using the procedure defined in [RFC8271]. The upstream node uses
 the bypass assignment information (namely, bypass tunnel source
 address, destination address and Tunnel ID) in the received RSVP

 Path message of the protected forward LSP to find the associated
 bypass tunnel in the reverse direction. The upstream PLR node
 MUST NOT add the BYPASS_ASSIGNMENT subobject in the RRO of the
 RSVP Path message of the reverse LSP.

 o The downstream PLR node initiates the bypass tunnel assignment for
 the forward LSP. The upstream PLR (forward direction LSP MP) node
 reflects the associated bypass tunnel assignment for the reverse
 direction LSP. The upstream PLR node MUST NOT initiate the bypass
 tunnel assignment.

 o If the indicated forward bypass tunnel or the associated reverse
 bypass tunnel is not found, the upstream PLR SHOULD send a Notify
 message [RFC3473] with Error-code "FRR Bypass Assignment Error"
 (value: 44) and Sub-code "Bypass Tunnel Not Found" (value: 1)
 [RFC8271] to the downstream PLR.

 o If the bypass tunnel can not be used as described in Section 4.5.3
 in [RFC8271], the upstream PLR SHOULD send a Notify message
 [RFC3473] with Error-code "FRR Bypass Assignment Error" (value:
 44) and Sub-code "Bypass Assignment Cannot Be Used" (value: 0)
 [RFC8271] to the downstream PLR.

 o After a link or node failure, the PLR nodes in both forward and
 reverse directions trigger fast reroute independently using the
 procedures defined in [RFC4090] and send the forward and protected
 reverse LSP modified RSVP Path messages and traffic over the
 bypass tunnel. The RSVP Resv signaling of the protected forward
 and reverse LSPs follows the same procedure as defined in
 [RFC4090] and is not modified by this document.

4.1.1. Restoring Co-routing with Node Protection Bypass Tunnels

 After fast reroute, the downstream MP node assumes the role of
 upstream PLR and reroutes the reverse LSP RSVP Path messages and
 traffic over the bypass tunnel on which the forward LSP RSVP Path
 messages and traffic are received. This procedure is defined as
 restoring co-routing in [RFC8271]. This procedure is used to ensure
 that both forward and reverse LSP signaling and traffic flow on the
 same bidirectional bypass tunnel after fast reroute.

 As shown in Figure 2, when using a node protection bypass tunnel with
 protected co-routed LSPs, asymmetry of paths can occur in the forward
 and reverse directions after a link failure [RFC8271]. In order to
 restore co-routing, the downstream MP node D (acting as an upstream
 PLR) MUST trigger the procedure to restore co-routing and reroute the
 protected reverse LSP2 RSVP Path messages and traffic over the bypass
 tunnel S (on path D-G-F-B) to the upstream MP node B upon receiving
 the protected forward LSP modified RSVP Path messages and traffic
 over the bypass tunnel S (on path D-G-F-B) from node B. The upstream
 PLR node C stops receiving the RSVP Path messages and traffic for the
 reverse LSP2 from node D (resulting in RSVP soft-state timeout) and
 it stops sending the RSVP Path messages for the reverse LSP2 over the
 bypass tunnel N (on path C-I-H-A) to node A.

4.1.2. Unidirectional Link Failures

 The unidirectional link failures can cause co-routed associated
 bidirectional LSPs to become non-corouted after fast reroute with
 both link protection and node protection bypass tunnels. However,
 the unidirectional link failures in the upstream and/or downstream
 directions do not result in RSVP soft-state timeout with the
 associated bidirectional LSPs as upstream and downstream PLRs trigger
 fast reroute independently. The asymmetry of forward and reverse LSP
 paths due to the unidirectional link failure in the downstream
 direction can be corrected by using the procedure to restore co-
 routing specified in Section 4.1.1.

4.1.3. Revertive Behavior after Fast Reroute

 When the revertive behavior is desired for a protected LSP after the
 link is restored, the procedure defined in [RFC4090], Section 6.5.2,
 is followed.

 o The downstream PLR node starts sending the RSVP Path messages and
 traffic flow of the protected forward LSP over the restored link
 and stops sending them over the bypass tunnel [RFC4090].

 o The upstream PLR node (when the protected LSP is present) also
 starts sending the RSVP Path messages and traffic flow of the
 protected reverse LSPs over the restored link and stops sending
 them over the bypass tunnel [RFC4090].

 o In case of node protection bypass tunnels (see Figure 2), after
 restoring co-routing, the upstream PLR node D SHOULD start sending
 RSVP Path messages and traffic for the reverse LSP over the
 original link (C-D) when it receives the un-modified RSVP Path
 messages and traffic for the protected forward LSP over it and
 stops sending them over the bypass tunnel S (on path D-G-F-B).

4.1.4. Bypass Tunnel Provisioning

 Fast reroute bidirectional bypass tunnels can be single-sided or
 double-sided associated tunnels. For both single-sided and double-
 sided associated bypass tunnels, the fast reroute assignment policies
 need to be configured on the downstream PLR nodes of the protected
 LSPs that initiate the bypass tunnel assignments. For single-sided
 associated bypass tunnels, these nodes are the originating endpoints
 of their signaling.

4.1.5. One-to-One Bypass Tunnel

 The fast reroute signaling procedure defined in this document can be
 used for both facility backup described in Section 3.2 of [RFC4090]
 and one-to-one backup described in Section 3.1 of [RFC4090]. As
 described in Section 5.4.2 of [RFC8271], in one-to-one backup method,
 if the associated bidirectional bypass tunnel is already in-use at
 the upstream PLR, it SHOULD send a Notify message [RFC3473] with
 Error-code "FRR Bypass Assignment Error" (value: 44) and Sub-code
 "One-to-One Bypass Already in Use" (value: 2) to the downstream PLR.

4.2. Bidirectional LSP Association At Mid-points

 In order to associate the LSPs unambiguously at a mid-point node (see
 Figure 3), the endpoint node MUST signal Extended ASSOCIATION Object
 and add unique Extended Association ID for each associated forward
 and reverse LSP pair forming the bidirectional LSP. An endpoint node
 MAY set the Extended Association ID to the value formatted according
 to the structure shown in Appendix A.

 o For single-sided provisioned bidirectional LSPs [RFC7551], the
 originating endpoint signals the Extended ASSOCIATION Object with
 a unique Extended Association ID. The remote endpoint copies the
 contents of the received Extended ASSOCIATION Object including the
 Extended Association ID in the RSVP Path message of the reverse
 LSP's Extended ASSOCIATION Object.

 o For double-sided provisioned bidirectional LSPs [RFC7551], both
 endpoints need to ensure that the bidirectional LSP has a unique
 Extended ASSOCIATION Object for each forward and reverse LSP pair
 by selecting appropriate unique Extended Association IDs signaled
 by them. A controller can be used to provision unique Extended
 Association ID on both endpoints. The procedure for selecting
 unique Extended Association ID is outside the scope of this
 document.

5. Compatibility

 This document updates the procedures for fast reroute for associated
 bidirectional LSPs defined in [RFC4090] and for associating
 bidirectional LSPs defined in [RFC7551]. The procedures use the
 signaling messages defined in [RFC8271] and no new signaling messages
 are defined in this document. The procedures ensure that for the co-
 routed LSPs, traffic flows on co-routed paths in the forward and
 reverse directions after fast reroute. Operators wishing to use this
 function SHOULD ensure that it is supported on all the nodes on the
 LSP path. The nodes not supporting this function can cause the
 traffic to flow on asymmetric paths in the forward and reverse
 directions of the associated bidirectional LSPs after fast reroute.

6. Security Considerations

 This document updates the signaling mechanisms defined in [RFC4090]
 and [RFC7551]; and does not introduce any additional security
 considerations other than those already covered in [RFC4090],
 [RFC7551], [RFC8271], and the MPLS/GMPLS security framework
 [RFC5920].

7. IANA Considerations

 This document does not require any IANA actions.

Appendix A. Extended ASSOCIATION ID

 Extended Association ID in the Extended ASSOCIATION Object [RFC6780]
 can be set to the value formatted according to the structure shown in
 the following example to uniquely identify associated forward and
 reverse LSP pair of an associated bidirectional LSP.

 An example of IPv4 Extended Association ID format is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| IPv4 LSP Source Address |
+‑+
| Reserved | LSP‑ID |
+‑+
: :
: Variable Length ID :
: :
+‑+

 Figure 4: IPv4 Extended Association ID Format Example

 LSP Source Address

 IPv4 source address of the forward LSP [RFC3209].

 LSP-ID

 16-bits LSP-ID of the forward LSP [RFC3209].

 Variable Length ID

 Variable length ID inserted by the endpoint node of the associated
 bidirectional LSP [RFC6780].

 An example of IPv6 Extended Association ID format is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| |
+ +
| IPv6 LSP Source Address |
+ +
| (16 bytes) |
+ +
| |
+‑+
| Reserved | LSP‑ID |
+‑+
: :
: Variable Length ID :
: :
+‑+

 Figure 5: IPv6 Extended Association ID Format Example

 LSP Source Address

 IPv6 source address of the forward LSP [RFC3209].

 LSP-ID

 16-bits LSP-ID of the forward LSP [RFC3209].

 Variable Length ID

 Variable length ID inserted by the endpoint node of the associated
 bidirectional LSP [RFC6780].

 In both IPv4 and IPv6 examples, the Reserved flags MUST be set to 0
 on transmission.

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2205]
 Braden, B., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, September 1997.

 [RFC4090]
 Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast
 Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090,
 May 2005.

 [RFC4561]
 Vasseur, J.P., Ed., Ali, Z., and S. Sivabalan, "Definition
 of a Record Route Object (RRO) Node-Id Sub-Object", RFC
 4561, June 2006.

 [RFC6780]
 Berger, L., Le Faucheur, F., and A. Narayanan, "RSVP
 Association Object Extensions", RFC 6780, October 2012.

 [RFC7551]
 Zhang, F., Ed., Jing, R., and R. Gandhi, Ed., "RSVP-TE
 Extensions for Associated Bidirectional Label Switched
 Paths (LSPs)", RFC 7551, DOI 10.17487/RFC7551, May 2015,
 <https://www.rfc-editor.org/info/rfc7551>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8271]
 Taillon, M., Saad, T., Ed., Gandhi, R., Ed., Ali, Z., and
 M. Bhatia, "Updates to Resource Reservation Protocol for
 Fast Reroute of Traffic Engineering GMPLS Label Switched
 Paths (LSPs)", RFC 8271, October 2017.

8.2. Informative References

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, December 2001.

 [RFC3473]
 Berger, L., "Generalized Multi-Protocol Label Switching
 (GMPLS) Signaling Resource ReserVation Protocol-Traffic
 Engineering (RSVP-TE) Extensions", RFC 3473, January 2003.

 [RFC5920]
 Fang, L., "Security Framework for MPLS and GMPLS
 Networks", RFC 5920, July 2010.

 [RFC6370]
 Bocci, M., Swallow, G., and E. Gray, "MPLS Transport
 Profile (MPLS-TP) Identifiers", RFC 6370, September 2011.

 [RFC6373]
 Andersson, L., Berger, L., Fang, L., Bitar, N., and E.
 Gray, "MPLS Transport Profile (MPLS-TP) Control Plane
 Framework", RFC 6373, September 2011.

 [RFC8131]
 Zhang, X., Zheng, H., Ed., Gandhi, R., Ed., Ali, Z., and
 P. Brzozowski, "RSVP-TE Signaling Procedure for End-to-End
 GMPLS Restoration and Resource Sharing", RFC 8131, March
 2017.

Acknowledgments

 A special thanks to the authors of [RFC8271], this document uses the
 signaling mechanisms defined in that document. The authors would
 also like to thank Vishnu Pavan Beeram, Daniele Ceccarelli, Deborah
 Brungard, Adam Roach and Benjamin Kaduk for reviewing this document
 and providing valuable comments.

Authors' Addresses

Rakesh Gandhi (editor)
Cisco Systems, Inc.
Canada

 Email: rgandhi@cisco.com

Himanshu Shah
Ciena

 Email: hshah@ciena.com

Jeremy Whittaker
Verizon

 Email: jeremy.whittaker@verizon.com

draft-ietf-teas-native-ip-scenarios-02 - Scenario, Simulation and Suggestion of

Index
Prev
Next
Forward 5

TEAS Working Group

Internet-Draft

Intended status: Experimental

Expires: April 24, 2019

A. Wang

China Telecom

X. Huang

C. Kou

BUPT

Z. Li

China Mobile

P. Mi

Huawei Technologies

October 21, 2018

Scenario, Simulation and Suggestion of PCE in Native IP Network

draft-ietf-teas-native-ip-scenarios-02

Abstract

 This document describes the scenarios, simulation and suggestions for
 PCE in native IP network, which integrates the merit of distributed
 protocols (IGP/BGP), and the power of centrally control technologies
 (PCE/SDN) to provide one feasible traffic engineering solution in
 various complex scenarios for the service provider.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 24, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions used in this document

	3. CCDR Scenarios
	 3.1. Qos Assurance for Hybrid Cloud-based Application

	 3.2. Link Utilization Maximization

	 3.3. Traffic Engineering for Multi-Domain

	 3.4. Network temporal congestion elimination

	4. CCDR Simulation
	 4.1. Topology Simulation

	 4.2. Traffic Matrix Simulation

	 4.3. CCDR End-to-End Path Optimization

	 4.4. Network Temporal Congestion Elimination

	5. CCDR Deployment Consideration

	6. Security Considerations

	7. IANA Considerations

	8. Contributors

	9. Acknowledgement

	10. Normative References

	Authors' Addresses

1. Introduction

 Service provider network is composed mainly thousands of routers that
 run distributed protocol to exchange the reachability information
 between them. The path for the destination network is mainly
 calculated and controlled by the IGP/BGP protocols. These
 distributed protocols are robust enough to support the current
 evolution of Internet but have some difficulties when application
 requires the end-to-end QoS performance, or in the situation that the
 service provider wants to maximize the links utilization within their
 network.

 MPLS-TE technology is one solution for finely planned network but it
 will put heavy burden on the routers when we use it to meet the
 dynamic QoS assurance requirements within real time traffic network.

 SR(Segment Routing) is another solution that integrates some merits
 of distributed protocol and the advantages of centrally control mode,
 but it requires the underlying network, especially the provider edge
 router to do label push and pop action in-depth, and need complex
 mechanics for co-exist with the Non-SR network. Aditionally, it can
 only maneuver the end-to-end path for MPLS and IPv6 traffic via
 different mechanisms.

 This draft describes scenarios that the centrally control dynamic
 routing (CCDR) framework can easily solve, without adding more extra
 burdening on the router. It also gives the path optimization
 simulation results to illustrate the applicability of CCDR framework.
 Finally, it gives some suggestions for the implementation and
 deployment of CCDR.

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. CCDR Scenarios.

 The following sections describe some scenarios that the CCDR
 framework is suitable for deployment.

3.1. Qos Assurance for Hybrid Cloud-based Application.

 With the emerge of cloud computing technologies, enterprises are
 putting more and more services on the public oriented cloud
 environment, but keep core business within their private cloud. The
 communication between the private and public cloud will span the WAN
 network. The bandwidth requirements between them are variable and
 the background traffic between these two sites changes from time to
 time. Enterprise applications just want to exploit the network
 capabilities to assure the end-to-end QoS performance on demand.

 CCDR, which integrates the merits of distributed protocol and the
 power of centrally control, is suitable for this scenario. The
 possible solution framework is illustrated below:

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Cloud Based Application|
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 +‑‑‑‑‑‑‑‑‑‑‑+
 | PCE |
 +‑‑‑‑‑‑‑‑‑‑‑+
 |
 |
 //‑‑‑‑‑‑‑‑‑‑‑‑‑‑\\
 ///// \\\\\
Private Cloud Site || Distributed |Public Cloud Site
 | Control Network |
 \\\\\ /////
 \\‑‑‑‑‑‑‑‑‑‑‑‑‑‑//

 Fig.1 Hybrid Cloud Communication Scenario

 By default, the traffic path between the private and public cloud
 site will be determined by the distributed control network. When
 applications require the end-to-end QoS assurance, it can send these
 requirements to PCE, let PCE compute one e2e path which is based on
 the underlying network topology and the real traffic information, to
 accommodate the application's QoS requirements. The proposed
 solution can refer the draft [I-D.ietf-teas-pce-native-ip].
 Section 4 describes the detail simulation process and the result.

3.2. Link Utilization Maximization

 Network topology within MAN is generally in star mode as illustrated
 in Fig.2, with different devices connect different customer types.
 The traffic from these customers is often in tidal pattern that the
 links between the CR/BRAS and CR/SR will experience congestion in
 different periods, because the subscribers under BRAS often use the
 network at night and the dedicated line users under SR often use the
 network during the daytime. The uplink between BRAS/SR and CR must
 satisfy the maximum traffic volume between them respectively and this
 causes these links often in underutilization situation.

 +‑‑‑‑‑‑‑‑+
 | CR |
 +‑‑‑‑|‑‑‑+
 |
 ‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑|
 | | | |
+‑‑|‑+ +‑|‑ +‑‑|‑+ +‑|+
|BRAS| |SR| |BRAS| |SR|
+‑‑‑‑+ +‑‑+ +‑‑‑‑+ +‑‑+

 Fig.2 Star-mode Network Topology within MAN

 If we consider to connect the BRAS/SR with local link loop (which is
 more cheaper), and control the MAN with the CCDR framework, we can
 exploit the tidal phenomena between BRAS/CR and SR/CR links, maximize
 the links (which is more expensive) utilization of them .

 +‑‑‑‑‑‑‑+
 ‑‑‑‑‑ PCE |
 | +‑‑‑‑‑‑‑+
 +‑‑‑‑|‑‑‑+
 | CR |
 +‑‑‑‑|‑‑‑+
 |
 ‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑|
 | | | |
+‑‑|‑+ +‑|‑ +‑‑|‑+ +‑|+
|BRAS‑‑‑‑‑SR| |BRAS‑‑‑‑‑SR|
+‑‑‑‑+ +‑‑+ +‑‑‑‑+ +‑‑+

 Fig.3 Link Utilization Maximization via CCDR

3.3. Traffic Engineering for Multi-Domain

 Operator's networks are often comprised by different domains,
 interconnected with each other, form very complex topology that
 illustrated in Fig.4. Due to the traffic pattern to/from MAN and
 IDC, the utilization of links between them are often in asymmetric.
 It is almost impossible to balance the utilization of these links via
 the distributed protocol, but this unbalance phenomenon can be
 overcome via the CCDR framework.

+‑‑‑+ +‑‑‑+
|MAN|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑IDC|
+‑|‑| | +‑|‑+
 | ‑‑‑‑‑‑‑‑‑| |
 ‑‑‑‑‑‑|BackBone|‑‑‑‑‑‑
 | ‑‑‑‑|‑‑‑‑| |
 | | |
+‑|‑‑ | ‑‑‑‑+
|IDC|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|MAN|
+‑‑‑| |‑‑‑+

 Fig.4 Traffic Engineering for Complex Multi-Domain Topology

 Solution for this scenario requires the gather of NetFlow
 information, analysis the source/destination AS of them and determine
 which pair is the main cause of the congested link. After this, the
 operator can use the multi eBGP sessions described in
 [I-D.ietf-teas-pce-native-ip]to schedule the traffic among different
 domains.

3.4. Network temporal congestion elimination.

 In more general situation, there are often temporal congestions
 within the service provider's network. Such congestion phenomena
 often appear repeatedly and if the service provider has some methods
 to mitigate it, it will certainly increase the degree of satisfaction
 for their customers. CCDR is also suitable for such scenario in such
 manner that the distributed protocol process most of the traffic
 forwarding and the controller schedule some traffic out of the
 congestion links to lower the utilization of them. Section 4
 describes the simulation process and results about such scenario.

4. CCDR Simulation.

 The following sections describe the topology, traffic matrix, end-to-
 end path optimization and congestion elimination in CCDR applied
 scenarios.

4.1. Topology Simulation

 The network topology mainly contains nodes and links information.
 Nodes used in simulation have two types: core node and edge node.
 The core nodes are fully linked to each other. The edge nodes are
 connected only with some of the core nodes. Fig.5 is a topology
 example of 4 core nodes and 5 edge nodes. In CCDR simulation, 100
 core nodes and 400 edge nodes are generated.

 +‑‑‑‑+
 /|Edge|\
 | +‑‑‑‑+ |
 | |
 | |
+‑‑‑‑+ +‑‑‑‑+ +‑‑‑‑+
|Edge|‑‑‑‑|Core|‑‑‑‑‑|Core|‑‑‑‑‑‑‑‑‑+
+‑‑‑‑+ +‑‑‑‑+ +‑‑‑‑+ |
 / | \ / | |
 +‑‑‑‑+ | \ / | |
 |Edge| | X | |
 +‑‑‑‑+ | / \ | |
 \ | / \ | |
+‑‑‑‑+ +‑‑‑‑+ +‑‑‑‑+ |
|Edge|‑‑‑‑|Core|‑‑‑‑‑|Core| |
+‑‑‑‑+ +‑‑‑‑+ +‑‑‑‑+ |
 | | |
 | +‑‑‑‑‑‑\ +‑‑‑‑+
 | ‑‑‑|Edge|
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/ +‑‑‑‑+

 Fig.5 Topology of Simulation

 The number of links connecting one edge node to the set of core nodes
 is randomly between 2 to 30, and the total number of links is more
 than 20000. Each link has its congestion threshold.

4.2. Traffic Matrix Simulation.

 The traffic matrix is generated based on the link capacity of
 topology. It can result in many kinds of situations, such as
 congestion, mild congestion and non-congestion.

 In CCDR simulation, the dimension of the traffic matrix is 500*500.
 About 20% links are overloaded when the Open Shortest Path First
 (OSPF) protocol is used in the network.

4.3. CCDR End-to-End Path Optimization

 The CCDR end-to-end path optimization is to find the best path which
 is the lowest in metric value and each link of the path is far below
 link's threshold. Based on the current state of the network, PCE
 within CCDR framework combines the shortest path algorithm with
 penalty theory of classical optimization and graph theory.

 Given background traffic matrix which is unscheduled, when a set of
 new flows comes into the network, the end-to-end path optimization
 finds the optimal paths for them. The selected paths bring the least
 congestion degree to the network.

 The link utilization increment degree(UID) when the new flows are
 added into the network is shown in Fig.6. The first graph in Fig.6
 is the UID with OSPF and the second graph is the UID with CCDR end-
 to-end path optimization. The average UID of graph one is more than
 30%. After path optimization, the average UID is less than 5%. The
 results show that the CCDR end-to-end path optimization has an eye-
 catching decreasing in UID relative to the path chosen based on OSPF.

 +‑‑‑+
 | * * * *|
 60| * * * * * *|
 |* * ** * * * * * ** * * * * **|
 |* * ** * * ** *** ** * * ** * * * ** * * *** **|
 |* * * ** * ** ** *** *** ** **** ** *** **** ** *** **|
 40|* * * ***** ** *** *** *** ** **** ** *** ***** ****** **|
UID(%)|* * ******* ** *** *** ******* **** ** *** ***** *********|
 |*** ******* ** **** *********** *********** ***************|
 |******************* *********** *********** ***************|
 20|******************* ***************************************|
 |******************* ***************************************|
 |***|
 |***|
 0+‑‑‑+
 0 100 200 300 400 500 600 700 800 900 1000
 +‑‑‑+
 | |
 60| |
 | |
 | |
 | |
 40| |
UID(%)| |
 | |
 | |
 20| |
 | *|
 | * *|
 | * * * * * ** * *|
 0+‑‑‑+
 0 100 200 300 400 500 600 700 800 900 1000
 Flow Number
 Fig.6 Simulation Result with Congestion Elimination

4.4. Network Temporal Congestion Elimination

 Different degree of network congestions are simulated. The
 congestion degree (CD) is defined as the link utilization beyond its
 threshold.

 The CCDR congestion elimination performance is shown in Fig.7. The
 first graph is the congestion degree before the process of congestion
 elimination. The average CD of all congested links is more than 10%.
 The second graph shown in Fig.7 is the congestion degree after
 congestion elimination process. It shows only 12 links among totally
 20000 links exceed the threshold, and all the congestion degree is
 less than 3%. Thus, after scheduling of the traffic in congestion
 paths, the degree of network congestion is greatly eliminated and the
 network utilization is in balance.

 Before congestion elimination
 +‑‑‑+
 | * ** * ** ** *|
 20| * * **** * ** ** *|
 |* * ** * ** ** **** * ***** *********|
 |* * * * * **** ****** * ** *** **********************|
 15|* * * ** * ** **** ********* *****************************|
 |* * ****** ******* ********* *****************************|
 CD(%) |* ********* ******* ***************************************|
 10|* ********* ***|
 |*********** ***|
 |***|
 5|***|
 |***|
 |***|
 0+‑‑‑+
 0 0.5 1 1.5 2

 After congestion elimination
 +‑‑‑+
 | |
 20| |
 | |
 | |
 15| |
 | |
CD(%) | |
 10| |
 | |
 | |
 5 | |
 | |
 | * ** * * * ** * ** * |
 0 +‑‑‑+
 0 0.5 1 1.5 2
 Link Number(*10000)
 Fig.7 Simulation Result with Congestion Elimination

5. CCDR Deployment Consideration.

 With the above CCDR scenarios and simulation results, we can know it
 is necessary and feasible to find one general solution to cope with
 various complex situations for the complex optimal path computation
 in centrally manner based on the underlay network topology and the
 real time traffic.

 [I-D.ietf-teas-pce-native-ip] gives the solution for above scenarios,
 such thoughts can be extended to cover requirements in other
 situations in future.

6. Security Considerations

 This document considers mainly the integration of distributed
 protocol and the central control capability of PCE/SDN. It certainly
 can ease the management of network in various traffic-engineering
 scenarios described in this document, but the central control manner
 also bring the new point that may be easily attacked. Solutions for
 CCDR scenarios should keep these in mind and consider more for the
 protection of PCE/SDN controller and their communication with the
 underlay devices, as that described in document [RFC5440] and
 [RFC8253]

7. IANA Considerations

 This document does not require any IANA actions.

8. Contributors

 Lu Huang contributes to the content of this draft.

9. Acknowledgement

 The author would like to thank Deborah Brungard, Adrian Farrel,
 Huaimo Chen, Vishnu Beeram and Lou Berger for their supports and
 comments on this draft.

10. Normative References

 [I-D.ietf-teas-pce-native-ip]

 Wang, A., Zhao, Q., Khasanov, B., Chen, H., Mi, P.,
 Mallya, R., and S. Peng, "PCE in Native IP Network",
 draft-ietf-teas-pce-native-ip-01 (work in progress), June
 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5440]
 Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
 Element (PCE) Communication Protocol (PCEP)", RFC 5440,
 DOI 10.17487/RFC5440, March 2009,
 <https://www.rfc-editor.org/info/rfc5440>.

 [RFC8253]
 Lopez, D., Gonzalez de Dios, O., Wu, Q., and D. Dhody,
 "PCEPS: Usage of TLS to Provide a Secure Transport for the
 Path Computation Element Communication Protocol (PCEP)",
 RFC 8253, DOI 10.17487/RFC8253, October 2017,
 <https://www.rfc-editor.org/info/rfc8253>.

Authors' Addresses

Aijun Wang
China Telecom
Beiqijia Town, Changping District
Beijing, Beijing 102209
China

 Email: wangaj.bri@chinatelecom.cn

Xiaohong Huang
Beijing University of Posts and Telecommunications
No.10 Xitucheng Road, Haidian District
Beijing
China

 Email: huangxh@bupt.edu.cn

Caixia Kou
Beijing University of Posts and Telecommunications
No.10 Xitucheng Road, Haidian District
Beijing
China

 Email: koucx@lsec.cc.ac.cn

Zhenqiang Li
China Mobile
32 Xuanwumen West Ave, Xicheng District
Beijing 100053
China

 Email: li_zhenqiang@hotmail.com

Penghui Mi
Huawei Technologies
Tower C of Bldg.2, Cloud Park, No.2013 of Xuegang Road
Shenzhen, Bantian,Longgang District 518129
China

 Email: mipenghui@huawei.com

draft-ietf-teas-pce-native-ip-02 - PCE in Native IP Network

Index
Prev
Next
Forward 5

TEAS Working Group

Internet-Draft

Intended status: Experimental

Expires: April 24, 2019

A. Wang

China Telecom

Q. Zhao

B. Khasanov

H. Chen

Huawei Technologies

R. Mallya

Juniper Networks

October 21, 2018

PCE in Native IP Network

draft-ietf-teas-pce-native-ip-02

Abstract

 This document defines the CCDR framework for traffic engineering
 within native IP network, using Dual/Multi-BGP session strategy and
 PCE-based central control architecture. The proposed central mode
 control framework conforms to the concept that defined in [RFC8283].
 The scenario and simulation results of CCDR traffic engineering is
 described in draft [I-D.ietf-teas-native-ip-scenarios].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 24, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions used in this document

	3. Dual-BGP Framework for Simple Topology

	4. Dual-BGP Framework in Large Scale Topology

	5. Multi-BGP Strategy for Extended Traffic Differentiation

	6. CCDR Procedures for Multi-BGP Strategy

	7. PCEP Extension for Key Parameters Delivery

	8. Deployment Consideration
	 8.1. Scalability

	 8.2. High Availability

	 8.3. Incremental deployment

	9. Security Considerations

	10. IANA Considerations

	11. Contributors

	12. Acknowledgement

	13. Normative References

	Authors' Addresses

1. Introduction

 Draft [I-D.ietf-teas-native-ip-scenarios] describes the scenario and
 simulation results for traffic engineering in native IP network. In
 summary, the requirements for traffic engineering in native IP
 network are the followings:

 o No complex MPLS signaling procedure.

 o End to End traffic assurance, determined QoS behavior.

 o Identical deployment method for intra- and inter- domain.

 o No influence to existing router forward behavior.

 o Can utilize the power of centrally control(PCE) and flexibility/
 robustness of distributed control protocol.

 o Coping with the differentiation requirements for large amount
 traffic and prefixes.

 o Flexible deployment and automation control.

 This document defines the framework for traffic engineering within
 native IP network, using Dual/Multi-BGP session strategy, to meet the
 above requirements in dynamical and central control mode. The
 related PCEP protocol extensions to transfer the key parameters
 between PCE and the underlying network devices(PCC) are provided in
 draft [I-D.ietf-pce-pcep-extension-native-ip].

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119] .

3. Dual-BGP Framework for Simple Topology

 Dual-BGP framework for simple topology is illustrated in Fig.1, which
 is comprised by SW1, SW2, R1, R2. There are multiple physical links
 between R1 and R2. Traffic between IP11 and IP21 is normal traffic,
 traffic between IP12 and IP22 is priority traffic that should be
 treated differently.

 Only native IGP/BGP protocol is deployed between R1 and R2. The
 traffic between each address pair may change timely and the
 corresponding source/destination addresses of the traffic may also
 change dynamically.

 The key ideas of the Dual-BGP framework for this simple topology are
 the followings:

 o Build two BGP sessions between R1 and R2, via the different
 loopback address lo0, lo1 on these routers.

 o Send different prefixes via the two BGP sessions. (For example,
 IP11/IP21 via the BGP pair 1 and IP12/IP22 via the BGP pair 2).

 o Set the explicit peer route on R1 and R2 respectively for BGP next
 hop of lo0, lo1 to different physical link address between R1 and
 R2.

 The traffic between the IP11 and IP21, and the traffic between IP12
 and IP22 will go through different physical links between R1 and R2,
 each type of traffic occupy different dedicated physical links.

 If there is more traffic between IP12 and IP22 that needs to be
 assured , one can add more physical links between R1 and R2 to reach
 the loopback address lo1(also the next hop for BGP Peer pair2). In
 this cases the prefixes that advertised by two BGP peers need not be
 changed.

 If, for example, there is traffic from another address pair that
 needs to be assured (for example IP13/IP23), and the total volume of
 assured traffic does not exceed the capacity of the previous
 appointed physical links, one need only to advertise the newly added
 source/destination prefixes via the BGP peer pair2. The traffic
 between IP13/IP23 will go through the assigned dedicated physical
 links as the traffic between IP12/IP22.

 Such decouple philosophy gives network operator flexible control
 ability on the network traffic, achieve the determined QoS assurance
 effect to meet the application's requirement. No complex MPLS signal
 procedures is introduced, the router need only support native IP
 protocol.

 | BGP Peer Pair2 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |lo1 lo1 |
 | |
 | BGP Peer Pair1 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
IP12 |lo0 lo0 | IP22
IP11 | | IP21
SW1‑‑‑‑‑‑‑R1‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑R2‑‑‑‑‑‑‑SW2
 Links Group

 Fig.1 Design Philosophy for Dual-BGP Framework

4. Dual-BGP Framework in Large Scale Topology

 When the assured traffic spans across one large scale network, as
 that illustrated in Fig.2, the dual BGP sessions cannot be
 established hop by hop especially for the iBGP within one AS.

 For such scenario, we should consider to use the Route Reflector (RR)
 to achieve the similar Dual-BGP effect, select one router which
 performs the role of RR (for example R3 in Fig.2), every other edge
 router will establish two BGP peer sessions with the RR, using their
 different loopback addresses respectively. The other two steps for
 traffic differentiation are same as that described in the Dual-BGP
 simple topology usage case.

 For the example shown in Fig.2, if we select the R1-R2-R4-R7 as the
 dedicated path, then we should set the explicit peer routes on these
 routers respectively, pointing to the BGP next hop (loopback
 addresses of R1 and R7, which are used to send the prefix of the
 assured traffic) to the actual address of the physical link.

 +‑‑‑‑‑‑‑‑‑‑‑‑R3‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | |
SW1‑‑‑‑‑‑‑R1‑‑‑‑‑‑‑R5‑‑‑‑‑‑‑‑‑R6‑‑‑‑‑‑‑R7‑‑‑‑‑‑‑‑SW2
 | | | |
 +‑‑‑‑‑‑‑R2‑‑‑‑‑‑‑‑‑R4‑‑‑‑‑‑‑‑+

 Fig.2 Dual-BGP Framework for Large Scale Network

5. Multi-BGP Strategy for Extended Traffic Differentiation

 In general situation, several additional traffic differentiation
 criteria exist, including:

 o Traffic that requires low latency links and is not sensitive to
 packet loss.

 o Traffic that requires low packet loss but can endure higher
 latency.

 o Traffic that requires lowest jitter path.

 These different traffic requirements can be summarized in the
 following table:

+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Flow No. | Latency | Packet Loss | Jitter |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 1 | Low | Normal | Don't care |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 2 | Normal | Low | Dont't care |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 3 | Normal | Normal | Low |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 Table 1. Traffic Requirement Criteria

 For Flow No.1, we can select the shortest distance path to carry the
 traffic; for Flow No.2, we can select the idle links to form its end
 to end path; for Flow No.3, we can let all assured traffic pass one
 single path, no ECMP distribution on the parallel links is required.

 It is almost impossible to provide an end-to-end (E2E) path with
 latency, jitter, packet loss constraints to meet the above
 requirements in large scale IP-based network via the distributed
 routing protocol, but these requirements can be solved using the CCDR
 framework since the PCE has the overall network view, can collect
 real network topology and network performance information about the
 underlying network, select the appropriate path to meet various
 network performance requirements of different traffic.

6. CCDR Procedures for Multi-BGP Strategy

 The procedures to implement the Multi-BGP strategy are the
 followings:

 o PCE gets topology and link utilization information from the
 underlying network, calculates the appropriate link path upon
 application's requirements..

 o PCE sends the key parameters to edge/RR routers(R1, R7 and R3 in
 Fig.3) to build multi-BGP peer relations and advertises different
 prefixes via them.

 o PCE sends the route information to the routers (R1,R2,R4,R7 in
 Fig.3) on forwarding path via PCEP, to build the path to the BGP
 next-hop of the advertised prefixes.

 o If the assured traffic prefixes were changed but the total volume
 of assured traffic does not exceed the physical capacity of the
 previous end-to-end path, then PCE needs only change the related
 information on edge routers (R1,R7 in Fig.3).

 o If the volume of assured traffic exceeds the capacity of previous
 calculated path, PCE must recalculate the appropriate path to
 accommodate the exceeding traffic via some new end-to-end physical
 links. After that PCE needs to update on-path routers to build
 such path hop by hop.

 +‑‑‑‑+
 ***********+ PCE+*************
 * +‑‑*‑+ *
 * / * \ *
 * * *
 PCEP* BGP‑LS/SNMP *PCEP
 * * *
 * * \ * /
 \ * / * \ */
 /‑‑‑‑‑‑‑‑‑‑‑R3‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | |
 | |
SW1‑‑‑‑‑‑‑R1‑‑‑‑‑‑‑R5‑‑‑‑‑‑‑‑‑R6‑‑‑‑‑‑‑R7‑‑‑‑‑‑‑‑SW2
 | | | |
 | | | |
 +‑‑‑‑‑‑‑R2‑‑‑‑‑‑‑‑‑R4‑‑‑‑‑‑‑‑+

 Fig.3 PCE based framework for Multi-BGP deployment

7. PCEP Extension for Key Parameters Delivery

 The PCEP protocol needs to be extended to transfer the following key
 parameters:

 o BGP peer address and advertised prefixes.

 o Explicit route information to BGP next hop of advertised prefixes.

 Once the router receives such information, it should establish the
 BGP session with the peer appointed in the PCEP message, advertise
 the prefixes that contained in the corresponding PCEP message, and
 build the end to end dedicated path hop by hop. Details of
 communications between PCEP and BGP subsystems in router's control
 plane are out of scope of this draft and will be described in
 separate draft [I-D.ietf-pce-pcep-extension-native-ip] .

 The reason that we selected PCEP as the southbound protocol instead
 of OpenFlow, is that PCEP is suitable for the changes in control
 plane of the network devices, there OpenFlow dramatically changes the
 forwarding plane. We also think that the level of centralization
 that requires by OpenFlow is hardly achievable in many today's SP
 networks so hybrid BGP+PCEP approach looks much more interesting.

8. Deployment Consideration

8.1. Scalability

 In CCDR framework, PCE needs only to influence the edge routers for
 the prefixes differentiation via the multi-BGP deployment. The route
 information for these prefixes within the on-path routers were
 distributed via the BGP protocol. Unlike the solution from BGP
 Flowspec, the on-path router need only keep the specific policy
 routes to the BGP next-hop of the differentiate prefixes, not the
 specific routes to the prefixes themselves. This can lessen the
 burden from the table size of policy based routes for the on-path
 routers, and has more scalabilities when comparing with the solution
 from BGP flowspec or Openflow.

8.2. High Availability

 CCDR framework is based on the distributed IP protocol. If the PCE
 failed, the forwarding plane will not be impacted, as the BGP session
 between all devices will not flap, and the forwarding table will
 remain the same. If one node on the optimal path is failed, the
 assurance traffic will fall over to the best-effort forwarding path.
 One can even design several assurance paths to load balance/hot
 standby the assurance traffic to meet the path failure situation, as
 done in MPLS FRR.

 For high availability of PCE/SDN-controller, operator should rely on
 existing HA solutions for SDN controller, such as clustering
 technology and deployment.

8.3. Incremental deployment

 Not every router within the network support will support the PCEP
 extension that defined in [I-D.ietf-pce-pcep-extension-native-ip]
 simultaneously. For such situations, router on the edge of domain
 can be upgraded first, and then the traffic can be assured between
 different domains. Within each domain, the traffic will be forwarded
 along the best-effort path. Service provider can selectively upgrade
 the routers on each domain in sequence.

9. Security Considerations

 Solution described in this draft puts more requirements on the
 function of PCE and its communication with the underlay devices. The
 PCE should have the capability to calculate the loop-free e2e path
 upon the status of network condition and the service requirements in
 real time. The PCE need also to consider the router order during
 deployment to eliminate the possible transient traffic loop.

 This solution does not require the change of forward behavior on the
 underlay devices, then there will no additional security impact for
 the devices.

 When deploy the solution on network, service provider should also
 consider more on the protection of SDN controller and their
 communication with the underlay devices, which is described in
 document [RFC5440] and [RFC8253]

10. IANA Considerations

 This document does not require any IANA actions.

11. Contributors

 Penghui Mi and Shaofu Peng contribute the contents of this draft.

12. Acknowledgement

 The author would like to thank Deborah Brungard, Adrian Farrel,
 Huaimo Chen, Vishnu Beeram, Lou Berger, Dhruv Dhody and Jessica Chen
 for their supports and comments on this draft.

13. Normative References

 [I-D.ietf-pce-pcep-extension-native-ip]

 Wang, A., Khasanov, B., Cheruathur, S., and C. Zhu, "PCEP
 Extension for Native IP Network", draft-ietf-pce-pcep-
 extension-native-ip-01 (work in progress), June 2018.

 [I-D.ietf-teas-native-ip-scenarios]

 Wang, A., Huang, X., Qou, C., Li, Z., Huang, L., and P.
 Mi, "CCDR Scenario, Simulation and Suggestion", draft-
 ietf-teas-native-ip-scenarios-01 (work in progress), June
 2018.

 [I-D.ietf-teas-pcecc-use-cases]

 Zhao, Q., Li, Z., Khasanov, B., Dhody, D., Ke, Z., Fang,
 L., Zhou, C., Communications, T., Rachitskiy, A., and A.
 Gulida, "The Use Cases for Path Computation Element (PCE)
 as a Central Controller (PCECC).", draft-ietf-teas-pcecc-
 use-cases-02 (work in progress), October 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5440]
 Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
 Element (PCE) Communication Protocol (PCEP)", RFC 5440,
 DOI 10.17487/RFC5440, March 2009,
 <https://www.rfc-editor.org/info/rfc5440>.

 [RFC8253]
 Lopez, D., Gonzalez de Dios, O., Wu, Q., and D. Dhody,
 "PCEPS: Usage of TLS to Provide a Secure Transport for the
 Path Computation Element Communication Protocol (PCEP)",
 RFC 8253, DOI 10.17487/RFC8253, October 2017,
 <https://www.rfc-editor.org/info/rfc8253>.

 [RFC8283]
 Farrel, A., Ed., Zhao, Q., Ed., Li, Z., and C. Zhou, "An
 Architecture for Use of PCE and the PCE Communication
 Protocol (PCEP) in a Network with Central Control",
 RFC 8283, DOI 10.17487/RFC8283, December 2017,
 <https://www.rfc-editor.org/info/rfc8283>.

Authors' Addresses

Aijun Wang
China Telecom
Beiqijia Town, Changping District
Beijing 102209
China

 Email: wangaj.bri@chinatelecom.cn

Quintin Zhao
Huawei Technologies
125 Nagog Technology Park
Acton, MA 01719
USA

 Email: quintin.zhao@huawei.com

Boris Khasanov
Huawei Technologies
Moskovskiy Prospekt 97A
St.Petersburg 196084
Russia

 Email: khasanov.boris@huawei.com

Huaimo Chen
Huawei Technologies
Boston, MA
USA

 Email: huaimo.chen@huawei.com

Raghavendra Mallya
Juniper Networks
1133 Innovation Way
Sunnyvale, California 94089
USA

 Email: rmallya@juniper.net

draft-ietf-teas-pcecc-use-cases-02 - The Use Cases for Path Computation Element

Index
Back 5
Prev
Next
Forward 5

TEAS Working Group

Internet-Draft

Intended status: Informational

Expires: April 21, 2019

Q. Zhao

Z. Li

B. Khasanov

D. Dhody

Huawei Technologies

K. Ke

Tencent Holdings Ltd.

L. Fang

Expedia, Inc.

C. Zhou

Cisco Systems

B. Zhang

Telus Communications

A. Rachitskiy

Mobile TeleSystems JLLC

A. Gulida

LLC "Lifetech"

October 18, 2018

The Use Cases for Path Computation Element (PCE) as a Central Controller (PCECC).

draft-ietf-teas-pcecc-use-cases-02

Abstract

 The Path Computation Element (PCE) is a core component of Software-
 Defined Networking (SDN) systems. It can compute optimal paths for
 traffic across a network and can also update the paths to reflect
 changes in the network or traffic demands. PCE was developed to
 derive paths for MPLS Label Switched Paths (LSPs), which are supplied
 to the head end of the LSP using the Path Computation Element
 Communication Protocol (PCEP).

 SDN has a broader applicability than signaled MPLS traffic-engineered
 (TE) networks, and the PCE may be used to determine paths in a range
 of use cases including static LSPs, segment routing, Service Function
 Chaining (SFC), and most forms of a routed or switched network. It
 is, therefore, reasonable to consider PCEP as a control protocol for
 use in these environments to allow the PCE to be fully enabled as a
 central controller.

 This document describes general considerations for PCECC deployment
 and examines its applicability and benefits, as well as its
 challenges and limitations, through a number of use cases. PCEP
 extensions required for stateful PCE usage are covered in separate
 documents.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Application Scenarios
	 3.1. Use Cases of PCECC for Label Management

	 3.2. Using PCECC for SR
	 3.2.1. PCECC SID Allocation

	 3.2.2. Use Cases of PCECC for SR Best Effort (BE) Path

	 3.2.3. Use Cases of PCECC for SR Traffic Engineering (TE) Path

	 3.3. Use Cases of PCECC for TE LSP
	 3.3.1. PCECC Load Balancing (LB) Use Case

	 3.3.2. PCECC and Inter-AS TE

	 3.4. Use Cases of PCECC for Multicast LSPs
	 3.4.1. Using PCECC for P2MP/MP2MP LSPs' Setup

	 3.4.2. Use Cases of PCECC for the Resiliency of P2MP/MP2MP LSPs

	 3.5. Use Cases of PCECC for LSP in the Network Migration

	 3.6. Use Cases of PCECC for L3VPN and PWE3

	 3.7. Using PCECC for Traffic Classification Information

	 3.8. Use Cases of PCECC for SRv6

	 3.9. Use Cases of PCECC for SFC

	 3.10. Use Cases of PCECC for Native IP

	 3.11. Use Cases of PCECC for Local Protection (RSVP-TE)

	4. IANA Considerations

	5. Security Considerations

	6. Acknowledgments

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Appendix A. Using reliable P2MP TE based multicast delivery for distributed computations (MapReduce-Hadoop)

	Authors' Addresses

1. Introduction

 An Architecture for Use of PCE and PCEP [RFC5440] in a Network with
 Central Control [RFC8283] describes SDN architecture where the Path
 Computation Element (PCE) determines paths for variety of different
 usecases, with PCEP as a general southbound communication protocol
 with all the nodes along the path..

 [I-D.zhao-pce-pcep-extension-for-pce-controller] introduces the
 procedures and extensions for PCEP to support the PCECC architecture
 [RFC8283].

 This draft describes the various usecases for the PCECC architecture.

2. Terminology

 The following terminology is used in this document.

IGP: Interior Gateway Protocol. Either of the two routing
 protocols, Open Shortest Path First (OSPF) or Intermediate System
 to Intermediate System (IS‑IS).

PCC: Path Computation Client: any client application requesting a
 path computation to be performed by a Path Computation Element.

PCE: Path Computation Element. An entity (component, application,
 or network node) that is capable of computing a network path or
 route based on a network graph and applying computational
 constraints.

PCECC: PCE as a central controller. Extension of PCE to support SDN
 functions as per [RFC8283].

TE: Traffic Engineering.

3. Application Scenarios

 In the following sections, several use cases are described,
 showcasing scenarios that benefit from the deployment of PCECC.

3.1. Use Cases of PCECC for Label Management

 As per [RFC8283], in some cases, the PCE-based controller can take
 responsibility for managing some part of the MPLS label space for
 each of the routers that it controls, and it may taker wider
 responsibility for partitioning the label space for each router and
 allocating different parts for different uses, communicating the
 ranges to the router using PCEP.

 [I-D.zhao-pce-pcep-extension-for-pce-controller] describe a mode
 where LSPs are provisioned as explicit label instructions at each hop
 on the end-to-end path. Each router along the path must be told what
 label forwarding instructions to program and what resources to
 reserve. The controller uses PCEP to communicate with each router
 along the path of the end-to-end LSP. For this to work, the PCE-
 based controller will take responsibility for managing some part of
 the MPLS label space for each of the routers that it controls. An
 extension to PCEP could be done to allow a PCC to inform the PCE of
 such a label space to control.

 [I-D.ietf-pce-segment-routing] specifies extensions to PCEP that
 allow a stateful PCE to compute, update or initiate SR-TE paths.
 [I-D.zhao-pce-pcep-extension-pce-controller-sr] describes the
 mechanism for PCECC to allocate and provision the node/prefix/
 adjacency label (SID) via PCEP. To make such allocation PCE needs to
 be aware of the label space from Segment Routing Global Block (SRGB)
 or Segment Routing Local Block (SRLB) [RFC8402] of the node that it
 controls. A mechanism for a PCC to inform the PCE of such a label
 space to control is needed within PCEP. The full SRGB/SRLB of a node
 could be learned via existing IGP or BGP-LS mechanism too.
 [I-D.li-pce-controlled-id-space] defines a PCEP extension to support
 advertisement of the MPLS label space to the PCE to control.

 There have been various proposals for Global Labels, the PCECC
 architecture could be used as means to learn the label space of
 nodes, and could also be used to determine and provision the global
 label range.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
PCE DOMAIN 1		PCE DOMAIN 2								
+‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑+								
	PCECC1	‑‑‑‑‑‑‑‑‑PCEP‑‑‑‑‑‑‑‑‑‑	PCECC2							
+‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑+								
^ ^		^ ^								
/ \ PCEP		PCEP / \								
V V		V V								
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+								
	NODE 11		NODE 1n				NODE 21		NODE 2n	
			
	PCECC		PCECC				PCECC		PCECC	
	Enabled		Enabled			Enabled		Enabled		
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+								
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: PCECC for Label Management

 o PCC would advertise the PCECC capability to the PCE (central
 controller-PCECC)
 [I-D.zhao-pce-pcep-extension-for-pce-controller].

 o The PCECC could also learn the label range set aside by the PCC
 ([I-D.li-pce-controlled-id-space]).

 o Optionally, the PCECC could determine the shared MPLS global label
 range for the network.

 o In the case that the shared global label range need to be
 negotiated across multiple domains, the central controllers of
 these domains would also need to negotiate a common global
 label range across domains.

 o The PCECC would need to set the shared global label range to
 all PCC nodes in the network.

3.2. Using PCECC for SR

 Segment Routing (SR) leverages the source routing paradigm. Using
 SR, a source node steers a packet through a path without relying on
 hop-by-hop signaling protocols such as LDP or RSVP-TE. Each path is
 specified as an ordered list of instructions called "segments". Each
 segment is an instruction to route the packet to a specific place in
 the network, or to perform a specific service on the packet. A
 database of segments can be distributed through the network using a
 routing protocol (such as IS-IS or OSPF) or by any other means. PCEP
 (and PCECC) could be one such means.

 [I-D.ietf-pce-segment-routing] specify the SR specific PCEP
 extensions. PCECC may further use PCEP protocol for SR SID (Segment
 Identifier) distribution to the SR nodes (PCC) with some benefits.
 If the PCECC allocates and maintains the SID in the network for the
 nodes and adjacencies; and further distributes them to the SR nodes
 directly via the PCEP session has some advantage over the
 configurations on each SR node and flooding via IGP, especially in a
 SDN environment.

 When the PCECC is used for the distribution of the node segment ID
 and adjacency segment ID, the node segment ID is allocated from the
 SRGB of the node. For the allocation of adjacency segment ID, the
 allocation is from the SRLB of the node as described in
 [I-D.zhao-pce-pcep-extension-pce-controller-sr].

 [RFC8355] identifies various protection and resiliency usecases for
 SR. Path protection lets the ingress node be in charge of the
 failure recovery (used for SR-TE). Also protection can be performed
 by the node adjacent to the failed component, commonly referred to as
 local protection techniques or fast-reroute (FRR) techniques. In
 case of PCECC, the protection paths can be pre-computed and setup by
 the PCE.

 The following example illustrate the use case where the node SID and
 adjacency SID are allocated by the PCECC.

 192.0.2.1/32
 +‑‑‑‑‑‑‑‑‑‑+
 | R1(1001) |
 +‑‑‑‑‑‑‑‑‑‑+
 |
 +‑‑‑‑‑‑‑‑‑‑+
 | R2(1002) | 192.0.2.2/32
 +‑‑‑‑‑‑‑‑‑‑+
 * | * *
 * | * *
 *link1| * *
192.0.2.4/32 * | *link2 * 192.0.2.5/32
 +‑‑‑‑‑‑‑‑‑‑‑+ 9001| * +‑‑‑‑‑‑‑‑‑‑‑+
 | R4(1004) | | * | R5(1005) |
 +‑‑‑‑‑‑‑‑‑‑‑+ | * +‑‑‑‑‑‑‑‑‑‑‑+
 * | *9003 * +
 * | * * +
 * | * * +
 +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 192.0.2.3/32 | R3(1003) | |R6(1006) |192.0.2.6/32
 +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 |
 +‑‑‑‑‑‑‑‑‑‑‑+
 | R8(1008) | 192.0.2.8/32
 +‑‑‑‑‑‑‑‑‑‑‑+

3.2.1. PCECC SID Allocation

 Each node (PCC) is allocated a node-SID by the PCECC. The PCECC
 needs to update the label map of each node to all the nodes in the
 domain. On receiving the label map, each node (PCC) uses the local
 routing information to determine the next-hop and download the label
 forwarding instructions accordingly. The forwarding behavior and the
 end result is same as IGP based Node-SID in SR. Thus, from anywhere
 in the domain, it enforces the ECMP-aware shortest-path forwarding of
 the packet towards the related node.

 For each adjacency in the network, PCECC can allocate an Adj-SID.
 The PCECC sends PCInitiate message to update the label map of each
 Adj to the corresponding nodes in the domain. Each node (PCC)
 download the label forwarding instructions accordingly. The
 forwarding behavior and the end result is similar to IGP based "Adj-
 SID" in SR.

 The various mechanism are described in
 [I-D.zhao-pce-pcep-extension-pce-controller-sr].

3.2.2. Use Cases of PCECC for SR Best Effort (BE) Path

 In this mode of the solution, the PCECC just need to allocate the
 node segment ID and adjacency ID (without calculating the explicit
 path for the SR path). The ingress of the forwarding path just need
 to encapsulate the destination node segment ID on top of the packet.
 All the intermediate nodes will forward the packet based on the
 destination node SID. It is similar to the LDP LSP.

 R1 may send a packet to R8 simply by pushing an SR header with
 segment list {1008} (Node SID for R8). The path would be the based
 on the routing/nexthop calculation on the routers.

3.2.3. Use Cases of PCECC for SR Traffic Engineering (TE) Path

 SR-TE paths may not follow an IGP SPT. Such paths may be chosen by a
 PCECC and provisioned on the ingress node of the SR-TE path. The SR
 header consists of a list of SIDs (or MPLS labels). The header has
 all necessary information so that, the packets can be guided from the
 ingress node to the egress node of the path; hence, there is no need
 for any signaling protocol. For the case where strict traffic
 engineering path is needed, all the adjacency SID are stacked,
 otherwise a combination of node-SID or adj-SID can be used for the
 SR-TE paths.

 Note that the bandwidth reservations is only guaranteed through the
 enforce of the bandwidth admission control. As for the RSVP-TE LSP
 case, the control plane signaling also does the link bandwidth
 reservation in each hop of the path.

 The SR traffic engineering path examples are explained as bellow:

 Note that the node SID for each node is allocated from the SRGB and
 adjacency SID for each link are allocated from the SRLB for each
 node.

 Example 1:

 R1 may send a packet P1 to R8 simply by pushing an SR header with
 segment list {1008}. Based on the best path, it could be:
 R1-R2-R3-R8.

 Example 2:

 R1 may send a packet P2 to R8 by pushing an SR header with segment
 list {1002, 9001, 1008}. The path should be: R1-R2-(1)link-R3-R8.

 Example 3:

 R1 may send a packet P3 to R8 via R4 by pushing an SR header with
 segment list {1004, 1008}. The path could be : R1-R2-R4-R3-R8

 The local protection examples for SR TE path are explained as below:

 Example 4: local link protection:

 o R1 may send a packet P4 to R8 by pushing an SR header with segment
 list {1002, 9001, 1008}. The path should be: R1-R2-(1)link-R3-R8.

 o When node R2 receives the packet from R1 which has the header of
 R2-(1)link-R3-R8, and also find out there is a link failure of
 link1, then the R2 can enforce the traffic over the bypass to send
 out the packet with header of R3-R8 through link2.

 Example 5: local node protection:

 o R1 may send a packet P5 to R8 by pushing an SR header with segment
 list {1004, 1008}. The path should be : R1-R2-R4-R3-R8.

 o When node R2 receives the packet from R1 which has the header of
 {1004, 1008}, and also find out there is a node failure for node4,
 then it can enforce the traffic over the bypass and send out the
 packet with header of {1005, 1008} to node5 instead of node4.

3.3. Use Cases of PCECC for TE LSP

 In the previous sections, we have discussed the cases where the SR
 path is setup through the PCECC. Although those cases give the
 simplicity and scalability, but there are existing functionalities
 for the traffic engineering path such as the bandwidth guarantee,
 monitoring where SR based solution are complex. Also there are cases
 where the depth of the label stack is an issue for existing
 deployment and certain vendors.

 So to address these issues, PCECC architecture also support the TE
 LSP functionalities. To achieve this, the existing PCEP can be used
 to communicate between the PCECC and nodes along the path. This is
 similar to static LSPs, where LSPs can be provisioned as explicit
 label instructions at each hop on the end-to-end path. Each router
 along the path must be told what label- forwarding instructions to
 program and what resources to reserve. The PCE-based controller
 keeps a view of the network and determines the paths of the end-to-
 end LSPs, and the controller uses PCEP to communicate with each
 router along the path of the end-to-end LSP.

 192.0.2.1/32
 +‑‑‑‑‑‑‑‑‑‑+
 | R1 |
 +‑‑‑‑‑‑‑‑‑‑+
 | |
 |link1 |
 | |link2
 +‑‑‑‑‑‑‑‑‑‑+
 | R2 | 192.0.2.2/32
 +‑‑‑‑‑‑‑‑‑‑+
 link3 * | * * link4
 * | * *
 *link5| * *
192.0.2.4/32 * | *link6 * 192.0.2.5/32
 +‑‑‑‑‑‑‑‑‑‑‑+ | * +‑‑‑‑‑‑‑‑‑‑‑+
 | R4 | | * | R5 |
 +‑‑‑‑‑‑‑‑‑‑‑+ | * +‑‑‑‑‑‑‑‑‑‑‑+
 * | * * +
 link10 * | * *link7 +
 * | * * +
 +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 192.0.2.3/32 | R3 | |R6 |192.0.2.6/32
 +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 | |
 |link8 |
 | |link9
 +‑‑‑‑‑‑‑‑‑‑‑+
 | R8 | 192.0.2.8/32
 +‑‑‑‑‑‑‑‑‑‑‑+

 Figure 2: PCECC TE LSP Setup Example

 o Based on path computation request / delegation or PCE initiation,
 the PCECC receives the PCECC request with constraints and
 optimization criteria.

 o PCECC would calculate the optimal path according to given
 constrains (i.e.bandwidth).

 o PCECC would provision each node along the path and assign incoming
 and outgoing labels from R1 to R8 with the path: {R1, link1,
 1001}, {1001, R2, link3, 2003], {2003, R4, link10, 4010}, {4010,
 R3, link8, 3008}, {3008, R8}.

 o For the end to end protection, PCECC program each node along the
 path from R1 to R8 with the secondary path: {R1, link2, 1002},

 {1002, R2, link4, 2004], {2004, R5, link7, 5007}, {5007, R3,
 link9, 3009}, {3009, R8}.

 o It is also possible to have a bypass path for the local protection
 setup by the PCECC. For example, the primary path as above, then
 to protect the node R4 locally, PCECC can program the bypass path
 like this: {R2, link5, 2005], {2005, R3}. By doing this, the node
 R4 is locally protected at R2.

3.3.1. PCECC Load Balancing (LB) Use Case

 Very often many service providers use TE tunnels for solving issues
 with non-deterministic paths in their networks. One example of such
 applications is usage of TEs in the mobile backhaul (MBH). Let's
 consider the following typical topology.

 TE1 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑>
+‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑+
| Access |‑‑‑‑| Access |‑‑‑‑| AGG 1 |‑‑‑‑| AGG N‑1|‑‑‑‑|Core 1|‑‑|SR1|
| SubNode1| | Node 1 | +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑+
+‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ | | | ^ |
 | Access | Access | AGG Ring 1 | | |
 | SubRing 1 | Ring 1 | | | | |
+‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ | | |
| Access | | Access | | AGG 2 | | | |
| SubNode2| | Node 2 | +‑‑‑‑‑‑‑‑+ | | |
+‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ | | | | |
 | | | | | | |
 | | | +‑‑‑‑TE2‑‑‑‑|‑+ |
+‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑+
| Access | | Access |‑‑‑‑| AGG 3 |‑‑‑‑| AGG N |‑‑‑‑|Core N|‑‑|SRn|
| SubNodeN|‑‑‑‑| Node N | +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑+
+‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+

 This MBH architecture uses L2 access rings and subrings. L3 starts
 at aggregation. For the sake of simplicity here we have only one
 access subring, access ring and aggregation ring (AGG1...AGGN),
 connected by Nx10GE interfaces. Aggregation domain runs its own IGP.
 There are two Egress routers (AGG N-1,AGG N) that are connected to
 the Core domain via L2 interfaces. Core also have connections to
 service routers, RSVP TEs are used for MPLS transport inside the
 ring. There could be at least 2 tunnels (one way) from each AGG
 router to egress AGG routers. There are also many L2 access rings
 connected to AGG routers.

 Service deployment made by means of either L2VPNs (VPLS) or L3VPNs.
 Those services use MPLS TE as transport towards egress AGG routers.
 TE tunnels could be also used as transport towards service routers in
 case of seamless MPLS based architecture in the future.

 There is a need to solve the following tasks:

 o Perform automatic LB amongst TE tunnels according to current
 traffic load.

 o TE bandwidth (BW) management: Provide guaranteed BW for specific
 service: HSI, IPTV, etc., provide time-based BW reservation (BoD)
 for other services.

 o Simplify development of TE tunnels by automation without any
 manual intervention.

 o Provide flexibility for Service Router placement (anywhere in the
 network by creation of transport LSPs to them).

 Since other tasks are considered in other PCECC use cases above,
 hereafter we will focus only on load balancing (LB) task. LB task
 could be solved by means of PCECC in the following way:

 o After application or network service or operator can ask SDN
 controller (PCECC) for LSP based LB between AGG X and AGG N/AGG
 N-1 (egress AGG routers which have connections to core) via North
 Bound Interface (NBI). Each of these would have associated
 constrains (i.e. LSP type: traditional CR-LSP or SR-TE LSP,
 bandwidth, inclusion or exclusion specific links or nodes, number
 of paths, shortest path or minimum cost tree, need for disjoint
 LSP paths etc.).

 o PCECC could calculate multiple (Say N) LSPs according to given
 constrains, calculation is based on results of Objective Function
 (OF) [RFC5541], constraints, endpoints, same or different
 bandwidth (BW) , different links (in case of disjoint paths) and
 other constrains.

 o Depending on given LSP Path setup type (PST), PCECC would use
 download instructions to the PCC. At this stage it is assumed the
 PCECC is aware of the label space it controls and in case of SR
 the SID allocation and distribution is already done.

 o PCECC would send PCInitiate PCEP message [RFC8281] towards ingress
 AGG X router(PCC) for each of N LSPs and receives PCRpt PCEP
 message [RFC8231] back from PCCs. If the PST is PCECC-SR, the
 PCECC would include the SID stack as per
 [I-D.ietf-pce-segment-routing]. If the PST is PCECC (basic), then
 the PCECC would assigns labels along the calculated path; and set

 up the path by sending central controller instructions in PCEP
 message to each node along the path of the LSP as per
 [I-D.zhao-pce-pcep-extension-for-pce-controller] and then send
 PCUpd message to the ingress AGG X router with information about
 new LSP and AGG X(PCC) would respond with PCRpt with LSP status.

 o AGG X as ingress router now have N LSPs towards AGG N and AGG N-1
 which are available for installing to router's forwarding and LB
 of traffic between them. Traffic distribution between those LSPs
 depends on particular realization of hash-function on that router.

 o Since PCECC knows as LSDB as TEDB (TE state) he can manage and
 prevent possible oversubscriptions and limit number of available
 LB states. Via PCECC mechanism the control can take quick actions
 into the network by directly provisioning the central control
 instructions.

3.3.2. PCECC and Inter-AS TE

 There are various signaling options for establishing Inter-AS TE LSP:
 contiguous TE LSP [RFC5151], stitched TE LSP [RFC5150], nested TE LSP
 [RFC4206].

 Requirements for PCE-based Inter-AS setup [RFC5376] describe the
 approach and PCEP functionality that are needed for establishing
 Inter-AS TE LSPs.

 [RFC5376] also gives Inter- and Intra-AS PCE Reference Model that is
 provided below in shorten form for the sake of simplicity.

 Inter‑AS Inter‑AS
 PCC <‑‑>PCE1<‑‑‑‑‑‑‑‑‑>PCE2
 :: :: ::
 :: :: ::
 R1‑‑‑‑ASBR1====ASBR3‑‑‑R3‑‑‑ASBR5
 | AS1 | | PCC |
 | | | AS2 |
 R2‑‑‑‑ASBR2====ASBR4‑‑‑R4‑‑‑ASBR6
 :: ::
 :: ::
Intra‑AS Intra‑AS
 PCE3 PCE4

 Shorten form of Inter- and Intra-AS PCE Reference Model [RFC5376]

 The PCECC belonging to different domain can co-operate to setup
 inter-AS TE LSP. The stateful H-PCE [I-D.ietf-pce-stateful-hpce]
 mechanism could be used to first establish a per-domain PCECC LSP.
 These could be stitched together to form inter-AS TE LSP as described
 in [I-D.dugeon-pce-stateful-interdomain].

 Hereatfter we will focus on a simplified Inter-AS case when both AS1
 and AS2 belong to the same service provider administration. In that
 case Inter and Intra-AS PCEs could be combined in one single PCE if
 such combined PCE performance is enough for handling all Path
 Computation Requests. Even more in that particular case we
 potentially could use single PCE for both ASes if the scalability and
 performance are enough, we require interfaces (PCEP and BGP-LS) to
 both domains. PCECC redundancy mechanisms are described in
 [RFC8283]. Thus routers in AS1 and AS2 (PCCs) can send Path
 Computation messages towards same PCECC.

 +‑‑‑‑BGP‑LS‑‑‑‑‑‑+ +‑‑‑‑‑‑BGP‑LS‑‑‑‑‑+
 | | | |
 +‑PCEP‑|‑‑‑‑++‑+‑‑‑‑‑‑‑PCECC‑‑‑‑‑PCEP‑‑++‑+‑|‑‑‑‑‑‑‑+
+‑:‑‑‑‑‑‑|‑‑‑‑::‑:‑+ +‑‑::‑:‑|‑‑‑‑‑‑‑:‑‑‑+
:	:: :		:: :	:
: RR1 :: :		:: : RR2 :		
v v: :	LSP1	:: v v		
R1‑‑‑‑‑‑‑‑‑ASBR1=======================ASBR3‑‑‑‑‑‑‑‑R3				
	v :		:v	
+‑‑‑‑‑‑‑‑‑‑ASBR2=======================ASBR4‑‑‑‑‑‑‑‑‑+				
	Region 1 :		: Region 1	
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑:‑		‑‑:‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑	
	v	LSP2	v	
+‑‑‑‑‑‑‑‑‑‑ASBR5=======================ASBR6‑‑‑‑‑‑‑‑‑+				
Region 2		Region 2		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ <‑‑‑‑‑‑‑‑‑‑‑‑‑‑> +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 MPLS Domain 1 Inter‑AS MPLS Domain 2
<=======AS1=======> <========AS2=======>

 Particular case of Inter-AS PCE

 In a case of PCECC Inter-AS TE scenario where service provider
 controls both domains (AS1 and AS2), each of them have own IGP and
 MPLS transport. There is a need is to setup Inter-AS LSPs for
 transporting different services on top of them (Voice, L3VPN etc.).
 Inter-AS links with different capacity exist in several regions. The
 task is not only to provision those Inter-AS LSPs with given
 constrains but also calculate the path and pre-setup the backup
 Inter-AS LSPs that will be used if primary LSP fails.

 For the figure above it would be that LSP1 from R1 to R3 may go via
 ASBR1 and ASBR3, and it is the primary Inter-AS LSP. R1-R3 LSP2 that
 go via ASBR5 and ASBR6 is the backup one. In addition there could be
 bypass LSP setup to protect against ASBR or inter-AS link failure.
 After the addition of PCECC functionality to PCE (SDN controller),
 PCECC based Inter-AS TE model SHOULD follow as PCECC usecase for TE
 LSP as requirements of [RFC5376] with the following details:

 o Since PCECC needs to know the topology of both domains AS1 and
 AS2, PCECC could use BGP-LS peering with routers (or RRs) in both
 domains.

 o PCECC needs to PCEP connectivity towards all routers in both
 domains (see also section 4 in [RFC5376]) in a similar manner as a
 SDN controller.

 o After operator's application or service orchestrator will create
 request for tunnel creation of specific service, PCECC SHOULD
 receive that request via NBI (NBI type is implementation
 dependent, MAY be NETCONF/Yang, REST etc.). Then PCECC would
 calculate the optimal path based on Objective Function (OF) and
 given constrains (i.e. path setup type, bandwidth etc.), including
 those from [RFC5376]: priority, AS sequence, preferred ASBR,
 disjoint paths, protection. On this step we would have two paths:
 R1-ASBR1-ASBR3-R3, R1-ASBR5-ASBR6-R3

 o Depending on given LSP PST (PCECC or PCECC-SR), PCECC would use
 download instructions to the PCC. At this stage it is assumed the
 PCECC is aware of the label space it controls and in case of SR
 the SID allocation and distribution is already done.

 o PCECC would send PCInitiate PCEP message [RFC8281] towards ingress
 router R1 (PCC) in AS1 and receives PCRpt PCEP message [RFC8231]
 back from PCC. If the PST is PCECC-SR, the PCECC would include
 the SID stack as per [I-D.ietf-pce-segment-routing]. It may also
 include binding SID based on AS boundary. The backup SID stack
 could also be installed at ingress but more importantly each node
 along the SR path could also do local protection just based on the
 top segement. If the PST is PCECC (basic), then the PCECC would
 assigns labels along the calculated paths (R1-ASBR1-ASBR3-R3,
 R1-ASBR5-ASBR6-R3); and set up the path by sending central
 controller instructions in PCEP message to each node along the
 path of the LSPs as per
 [I-D.zhao-pce-pcep-extension-for-pce-controller] and then send
 PCUpd message to the ingress R1 router with information about new
 LSPs and R1 would respond with PCRpt with LSP(s) status.

 o AGG X as ingress router now have N LSPs towards AGG N and AGG N-1
 which are available for installing to router's forwarding and LB
 of traffic between them. Traffic distribution between those LSPs
 depends on particular realization of hash-function on that router.

 o After that step R1 now have primary and backup TEs (LSP1 and LSP2)
 towards R3. It is up to router implementation how to make
 switchover to backup LSP2 if LSP1 fails.

3.4. Use Cases of PCECC for Multicast LSPs

 The current multicast LSPs are setup either using the RSVP-TE P2MP or
 mLDP protocols. The setup of these LSPs may require manual
 configurations and complex signaling when the protection is
 considered. By using the PCECC solution, the multicast LSP can be
 computed and setup through centralized controller which has the full
 picture of the topology and bandwidth usage for each link. It not
 only reduces the complex configurations comparing the distributed
 RSVP-TE P2MP or mLDP signaling, but also it can compute the disjoint
 primary path and secondary P2MP path efficiently.

3.4.1. Using PCECC for P2MP/MP2MP LSPs' Setup

 It is assumed the PCECC is aware of the label space it controls for
 all nodes and make allocations accordingly.

 +‑‑‑‑‑‑‑‑‑‑+
 | R1 | Root node of the multicast LSP
 +‑‑‑‑‑‑‑‑‑‑+
 |6000
 +‑‑‑‑‑‑‑‑‑‑+
Transit Node | R2 |
branch +‑‑‑‑‑‑‑‑‑‑+
 * | * *
 9001* | * *9002
 * | * *
+‑‑‑‑‑‑‑‑‑‑‑+ | * +‑‑‑‑‑‑‑‑‑‑‑+
| R4 | | * | R5 | Transit Nodes
+‑‑‑‑‑‑‑‑‑‑‑+ | * +‑‑‑‑‑‑‑‑‑‑‑+
 * | * * +
 9003* | * * +9004
 * | * * +
 +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 | R3 | | R6 | Leaf Node
 +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 9005|
 +‑‑‑‑‑‑‑‑‑‑‑+
 | R8 | Leaf Node
 +‑‑‑‑‑‑‑‑‑‑‑+

 The P2MP examples are explained here, where R1 is root and R8 and R6
 are the leaves.

 o Based on the P2MP path computation request / delegation or PCE
 initiation, the PCECC receives the PCECC request with constraints
 and optimization criteria.

 o PCECC would calculate the optimal P2MP path according to given
 constrains (i.e.bandwidth).

 o PCECC would provision each node along the path and assign incoming
 and outgoing labels from R1 to {R6, R8} with the path: {R1, 6000},
 {6000, R2, {9001,9002}}, {9001, R4, 9003}, {9002, R5, 9004} {9003,
 R3, 9005}, {9004, R6}, {9005, R8}. The main difference is in the
 branch node instruction at R2 where two copies of packet are sent
 towards R4 and R5 with 9001 and 9002 labels respectively.

 The packet forwarding involves -

 Step1: R1 may send a packet P1 to R2 simply by pushing an label of
 6000 to the packet.

 Step2: After R2 receives the packet with label 6000, it will
 forwarding to R4 by swapping label to 9001 and by swapping label
 of 9002 towards R5.

 Step3: After R4 receives the packet with label 9001, it will
 forwarding to R3 by swapping to 9003. After R5 receives the
 packet with label 9002, it will forwarding to R6 by swapping to
 9004.

 Step4: After R3 receives the packet with label 9003, it will
 forwarding to R8 by swapping to 9005 and when R5 receives the
 packet with label 9004, it will swap to 9004 and send to R6.

 Step5: Packet received at R8 and 9005 is popped; packet receives
 at R6 and 9004 is popped.

3.4.2. Use Cases of PCECC for the Resiliency of P2MP/MP2MP LSPs

3.4.2.1. PCECC for the End-to-End Protection of the P2MP/MP2MP LSPs

 In this section we describe the end-to-end managed path protection
 service as well as the local protection with the operation management
 in the PCECC network for the P2MP/MP2MP LSP.

 An end-to-end protection principle can be applied for computing
 backup P2MP or MP2MP LSPs. During computation of the primary
 multicast trees, PCECC server may also take the computation of a
 secondary tree into consideration. A PCE may compute the primary and
 backup P2MP (or MP2MP) LSP together or sequentially.

 +‑‑‑‑+ +‑‑‑‑+
 Root node of LSP | R1 |‑‑| R11|
 +‑‑‑‑+ +‑‑‑‑+
 / +
 10/ +20
 / +
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
Transit Node | R2 | | R3 |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 | \ + +
 | \ + +
 10| 10\ +20 20+
 | \ + +
 | \ +
 | + \ +
 +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ Leaf Nodes
 | R4 | | R5 | (Downstream LSR)
 +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+

 In the example above, when the PCECC setup the primary multicast tree
 from the root node R1 to the leaves, which is R1->R2->{R4, R5}, at
 same time, it can setup the backup tree, which is R1->R11->R3->{R4,
 R5}. Both the these two primary forwarding tree and secondary
 forwarding tree will be downloaded to each routers along the primary
 path and the secondary path. The traffic will be forwarded through
 the R1->R2->{R4, R5} path normally, and when there is a node in the
 primary tree fails (say R2), then the root node R1 will switch the
 flow to the backup tree, which is R1->R11->R3->{R4, R5}. By using
 the PCECC, the path computation and forwarding path downloading can
 all be done without the complex signaling used in the P2MP RSVP-TE or
 mLDP.

3.4.2.2. PCECC for the Local Protection of the P2MP/MP2MP LSPs

 In this section we describe the local protection service in the PCECC
 network for the P2MP/MP2MP LSP.

 While the PCECC sets up the primary multicast tree, it can also build
 the back LSP among PLR, the protected node, and MPs (the downstream
 nodes of the protected node). In the cases where the amount of
 downstream nodes are huge, this mechanism can avoid unnecessary
 packet duplication on PLR and protect the network from traffic
 congestion risk.

 +‑‑‑‑‑‑‑‑‑‑‑‑+
 | R1 | Root Node
 +‑‑‑‑‑‑‑‑‑‑‑‑+
 .
 .
 .
 +‑‑‑‑‑‑‑‑‑‑‑‑+ Point of Local Repair/
 | R10 | Switchover Point
 +‑‑‑‑‑‑‑‑‑‑‑‑+ (Upstream LSR)
 / +
 10/ +20
 / +
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
Protected Node | R20 | | R30 |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 | \ + +
 | \ + +
 10| 10\ +20 20+
 | \ + +
 | \ +
 | + \ +
 +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ Merge Point
 | R40 | | R50 | (Downstream LSR)
 +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 . .
 . .

 In the example above, when the PCECC setup the primary multicast path
 around the PLR node R10 to protect node R20, which is R10->R20->{R40,
 R50}, at same time, it can setup the backup path R10->R30->{R40,
 R50}. Both the these two primary forwarding path and secondary
 bypass forwarding path will be downloaded to each routers along the
 primary path and the secondary bypass path. The traffic will be
 forwarded through the R10->R20->{R40, R50} path normally, and when
 there is a node failure for node R20, then the PLR node R10 will
 switch the flow to the backup path, which is R10->R30->{R40, R50}.
 By using the PCECC, the path computation and forwarding path
 downloading can all be done without the complex signaling used in the
 P2MP RSVP-TE or mLDP.

3.5. Use Cases of PCECC for LSP in the Network Migration

 One of the main advantages for PCECC solution is that it has backward
 compatibility naturally since the PCE server itself can function as a
 proxy node of MPLS network for all the new nodes which may no longer
 support the signaling protocols.

 As it is illustrated in the following example, the current network
 could migrate to a total PCECC controlled network gradually by
 replacing the legacy nodes. During the migration, the legacy nodes
 still need to signal using the existing MPLS protocol such as LDP and
 RSVP-TE, and the new nodes setup their portion of the forwarding path
 through PCECC directly. With the PCECC function as the proxy of
 these new nodes, MPLS signaling can populate through network as
 normal.

 Example described in this section is based on network configurations
 illustrated using the following figure:

+‑‑+
| PCE DOMAIN |
| +‑‑‑+ |
| | PCECC | |
| +‑‑‑+ |
| ^ ^ ^ ^ |
| | PCEP | | PCEP | |
| V V V V |
| +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ |
	NODE 1		NODE 2		NODE 3		NODE 4		NODE 5	
			
	Legacy	if1	Legacy	if2	Legacy	if3	PCECC	if4	PCECC	
	Node		Node		Enabled		Enabled		Enabled	
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+										
+‑‑+

 Example: PCECC Initiated LSP Setup In the Network Migration

 In this example, there are five nodes for the TE LSP from head end
 (Node1) to the tail end (Node5). Where the Node4 and Node5 are
 centrally controlled and other nodes are legacy nodes.

 o Node1 sends a path request message for the setup of LSP
 destinating to Node5.

 o PCECC sends to node1 a reply message for LSP setup with the path:
 (Node1, if1),(Node2, if2), (Node3, if3), (Node4, if4), Node5.

 o Node1, Node2, Node3 will setup the LSP to Node5 using the local
 labels as usual. Node 3 with help of PCECC could proxy the
 signaling.

 o Then the PCECC will program the out-segment of Node3, the in-
 segment/ out-segment of Node4, and the in-segment for Node5.

3.6. Use Cases of PCECC for L3VPN and PWE3

 As described in [RFC8283], various network services may be offered
 over a network. These include protection services (including Virtual
 Private Network (VPN) services (such as Layer 3 VPNs [RFC4364] or
 Ethernet VPNs [RFC7432]); or Pseudowires [RFC3985]. Delivering
 services over a network in an optimal way requires coordination in
 the way that network resources are allocated to support the services.
 A PCE-based central controller can consider the whole network and all
 components of a service at once when planning how to deliver the
 service. It can then use PCEP to manage the network resources and to
 install the necessary associations between those resources.

 In the case of L3VPN, VPN labels can be assigned and distributed
 through the PCECC PCEP among the PE router instead of using the BGP
 protocols.

 Example described in this section is based on network configurations
 illustrated using the following figure:

 +‑‑‑+
 | PCE DOMAIN |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | | PCECC | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | ^ ^ ^ |
 |PWE3/L3VPN | PCEP PCEP|LSP PWE3/L3VPN|PCEP |
 | V V V |
+‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑+
CE			PE1		NODE x		PE2			CE
			
Legacy		if1	PCECC	if2	PCCEC	if3	PCECC	if4	Legacy	
Node			Enabled		Enabled		Enabled			Node
+‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑+
 | |
 +‑‑‑+

 Example: Using PCECC for L3VPN and PWE3

 In the case PWE3, instead of using the LDP signaling protocols, the
 label and port pairs assigned to each pseudowire can be assigned
 through PCECC among the PE routers and the corresponding forwarding
 entries will be distributed into each PE routers through the extended
 PCEP protocols and PCECC mechanism.

3.7. Using PCECC for Traffic Classification Information

 As described in [RFC8283], traffic classification is an important
 part of traffic engineering. It is the process of looking at a
 packet to determine how it should be treated as it is forwarded
 through the network. It applies in many scenarios including MPLS
 traffic engineering (where it determines what traffic is forwarded
 onto which LSPs); segment routing (where it is used to select which
 set of forwarding instructions to add to a packet); and SFC (where it
 indicates along which service function path a packet should be
 forwarded). In conjunction with traffic engineering, traffic
 classification is an important enabler for load balancing. Traffic
 classification is closely linked to the computational elements of
 planning for the network functions just listed because it determines
 how traffic load is balanced and distributed through the network.
 Therefore, selecting what traffic classification should be performed
 by a router is an important part of the work done by a PCECC.

 Instructions can be passed from the controller to the routers using
 PCEP. These instructions tell the routers how to map traffic to
 paths or connections. Refer [I-D.ietf-pce-pcep-flowspec].

 Along with traffic classification, there are few more question -

 o how to use it

 o Whether it is a virtual link

 o Whether to advertise it in the IGP

 o What bits of this information to signal to the tail end

3.8. Use Cases of PCECC for SRv6

 As per [RFC8402], with Segment Routing (SR), a node steers a packet
 through an ordered list of instructions, called segments. Segment
 Routing can be applied to the IPv6 architecture with the Segment
 Routing Header (SRH) [I-D.ietf-6man-segment-routing-header]. A
 segment is encoded as an IPv6 address. An ordered list of segments
 is encoded as an ordered list of IPv6 addresses in the routing
 header. The active segment is indicated by the Destination Address
 of the packet. Upon completion of a segment, a pointer in the new
 routing header is incremented and indicates the next segment.

 As per [I-D.ietf-6man-segment-routing-header], an SRv6 Segment is a
 128-bit value. "SRv6 SID" or simply "SID" are often used as a
 shorter reference for "SRv6 Segment". Further details are in An
 illustration is provided in
 [I-D.filsfils-spring-srv6-network-programming] where SRv6 SID is
 represented as LOC:FUNCT.

 [I-D.negi-pce-segment-routing-ipv6] extends
 [I-D.ietf-pce-segment-routing] to support SR for IPv6 data plane.
 Further a PCECC could be extended to support SRv6 SID allocation and
 distribution.

 [Editor's Note - more details to be added]

3.9. Use Cases of PCECC for SFC

 Service Function Chaining (SFC) is described in [RFC7665]. It is the
 process of directing traffic in a network such that it passes through
 specific hardware devices or virtual machines (known as service
 function nodes) that can perform particular desired functions on the
 traffic. The set of functions to be performed and the order in which
 they are to be performed is known as a service function chain. The
 chain is enhanced with the locations at which the service functions
 are to be performed to derive a Service Function Path (SFP). Each
 packet is marked as belonging to a specific SFP, and that marking
 lets each successive service function node know which functions to
 perform and to which service function node to send the packet next.
 To operate an SFC network, the service function nodes must be
 configured to understand the packet markings, and the edge nodes must
 be told how to mark packets entering the network. Additionally, it
 may be necessary to establish tunnels between service function nodes
 to carry the traffic. Planning an SFC network requires load
 balancing between service function nodes and traffic engineering
 across the network that connects them. As per [RFC8283], these are
 operations that can be performed by a PCE-based controller, and that
 controller can use PCEP to program the network and install the
 service function chains and any required tunnels.

 PCECC can play the role for setting the traffic classification rules
 at the classifier as well as downloading the forwarding instructions
 to the SFFs so that they could process the NSH and forward
 accordingly.

 [Editor's Note - more details to be added]

3.10. Use Cases of PCECC for Native IP

 [I-D.ietf-teas-native-ip-scenarios]
 describes the scenarios, and
 suggestions for the "Centrally Control Dynamic Routing (CCDR)"
 architecture, which integrates the merit of traditional distributed
 protocols (IGP/BGP), and the power of centrally control technologies
 (PCE/SDN) to provide one feasible traffic engineering solution in
 various complex scenarios for the service provider.
 [I-D.ietf-teas-pce-native-ip] defines the framework for CCDR traffic
 engineering within Native IP network, using Dual/Multi-BGP session
 strategy and CCDR architecture. PCEP protocol can be used to
 transfer the key parameters between PCE and the underlying network
 devices (PCC) using PCECC technique. The central control
 instructions from PCECC to identify which prefix should be advertised
 on which BGP session.

3.11. Use Cases of PCECC for Local Protection (RSVP-TE)

 [I-D.cbrt-pce-stateful-local-protection] describes the need for the
 PCE to maintain and associate the local protection paths for the
 RSVP-TE LSP. Local protection requires the setup of a bypass at the
 PLR. This bypass can be PCC-initiated and delegated, or PCE-
 initiated. In either case, the PLR MUST maintain a PCEP session to
 the PCE. The Bypass LSPs need to mapped to the primary LSP. This
 could be done locally at the PLR based on a local policy but there is
 a need for a PCE to do the mapping as well to exert greater control.

 This mapping can be done via PCECC procedures where the PCE could
 instruct the PLR to the mapping and identify the primary LSP for
 which bypass should be used.

4. IANA Considerations

 This document does not require any action from IANA.

5. Security Considerations

 TBD.

6. Acknowledgments

 We would like to thank Adrain Farrel, Aijun Wang, Robert Tao,
 Changjiang Yan, Tieying Huang, Sergio Belotti, Dieter Beller, Andrey
 Elperin and Evgeniy Brodskiy for their useful comments and
 suggestions.

7. References

7.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5440]
 Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
 Element (PCE) Communication Protocol (PCEP)", RFC 5440,
 DOI 10.17487/RFC5440, March 2009,
 <https://www.rfc-editor.org/info/rfc5440>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8283]
 Farrel, A., Ed., Zhao, Q., Ed., Li, Z., and C. Zhou, "An
 Architecture for Use of PCE and the PCE Communication
 Protocol (PCEP) in a Network with Central Control",
 RFC 8283, DOI 10.17487/RFC8283, December 2017,
 <https://www.rfc-editor.org/info/rfc8283>.

7.2. Informative References

 [RFC3985]
 Bryant, S., Ed. and P. Pate, Ed., "Pseudo Wire Emulation
 Edge-to-Edge (PWE3) Architecture", RFC 3985,
 DOI 10.17487/RFC3985, March 2005,
 <https://www.rfc-editor.org/info/rfc3985>.

 [RFC4206]
 Kompella, K. and Y. Rekhter, "Label Switched Paths (LSP)
 Hierarchy with Generalized Multi-Protocol Label Switching
 (GMPLS) Traffic Engineering (TE)", RFC 4206,
 DOI 10.17487/RFC4206, October 2005,
 <https://www.rfc-editor.org/info/rfc4206>.

 [RFC4364]
 Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
 Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
 2006, <https://www.rfc-editor.org/info/rfc4364>.

 [RFC5150]
 Ayyangar, A., Kompella, K., Vasseur, JP., and A. Farrel,
 "Label Switched Path Stitching with Generalized
 Multiprotocol Label Switching Traffic Engineering (GMPLS
 TE)", RFC 5150, DOI 10.17487/RFC5150, February 2008,
 <https://www.rfc-editor.org/info/rfc5150>.

 [RFC5151]
 Farrel, A., Ed., Ayyangar, A., and JP. Vasseur, "Inter-
 Domain MPLS and GMPLS Traffic Engineering -- Resource
 Reservation Protocol-Traffic Engineering (RSVP-TE)
 Extensions", RFC 5151, DOI 10.17487/RFC5151, February
 2008, <https://www.rfc-editor.org/info/rfc5151>.

 [RFC5541]
 Le Roux, JL., Vasseur, JP., and Y. Lee, "Encoding of
 Objective Functions in the Path Computation Element
 Communication Protocol (PCEP)", RFC 5541,
 DOI 10.17487/RFC5541, June 2009,
 <https://www.rfc-editor.org/info/rfc5541>.

 [RFC5376]
 Bitar, N., Zhang, R., and K. Kumaki, "Inter-AS
 Requirements for the Path Computation Element
 Communication Protocol (PCECP)", RFC 5376,
 DOI 10.17487/RFC5376, November 2008,
 <https://www.rfc-editor.org/info/rfc5376>.

 [RFC7432]
 Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A.,
 Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based
 Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February
 2015, <https://www.rfc-editor.org/info/rfc7432>.

 [RFC7665]
 Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
 Chaining (SFC) Architecture", RFC 7665,
 DOI 10.17487/RFC7665, October 2015,
 <https://www.rfc-editor.org/info/rfc7665>.

 [RFC8231]
 Crabbe, E., Minei, I., Medved, J., and R. Varga, "Path
 Computation Element Communication Protocol (PCEP)
 Extensions for Stateful PCE", RFC 8231,
 DOI 10.17487/RFC8231, September 2017,
 <https://www.rfc-editor.org/info/rfc8231>.

 [RFC8281]
 Crabbe, E., Minei, I., Sivabalan, S., and R. Varga, "Path
 Computation Element Communication Protocol (PCEP)
 Extensions for PCE-Initiated LSP Setup in a Stateful PCE
 Model", RFC 8281, DOI 10.17487/RFC8281, December 2017,
 <https://www.rfc-editor.org/info/rfc8281>.

 [RFC8355]
 Filsfils, C., Ed., Previdi, S., Ed., Decraene, B., and R.
 Shakir, "Resiliency Use Cases in Source Packet Routing in
 Networking (SPRING) Networks", RFC 8355,
 DOI 10.17487/RFC8355, March 2018,
 <https://www.rfc-editor.org/info/rfc8355>.

 [RFC8402]
 Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
 Decraene, B., Litkowski, S., and R. Shakir, "Segment
 Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
 July 2018, <https://www.rfc-editor.org/info/rfc8402>.

 [I-D.ietf-pce-segment-routing]

 Sivabalan, S., Filsfils, C., Tantsura, J., Henderickx, W.,
 and J. Hardwick, "PCEP Extensions for Segment Routing",
 draft-ietf-pce-segment-routing-14 (work in progress),
 October 2018.

 [I-D.ietf-pce-stateful-hpce]

 Dhody, D., Lee, Y., Ceccarelli, D., Shin, J., King, D.,
 and O. Dios, "Hierarchical Stateful Path Computation
 Element (PCE).", draft-ietf-pce-stateful-hpce-05 (work in
 progress), June 2018.

 [I-D.ietf-pce-pcep-flowspec]

 Dhody, D., Farrel, A., and Z. Li, "PCEP Extension for Flow
 Specification", draft-ietf-pce-pcep-flowspec-02 (work in
 progress), October 2018.

 [I-D.zhao-pce-pcep-extension-for-pce-controller]

 Zhao, Q., Li, Z., Dhody, D., Karunanithi, S., Farrel, A.,
 and C. Zhou, "PCEP Procedures and Protocol Extensions for
 Using PCE as a Central Controller (PCECC) of LSPs", draft-
 zhao-pce-pcep-extension-for-pce-controller-08 (work in
 progress), June 2018.

 [I-D.zhao-pce-pcep-extension-pce-controller-sr]

 Zhao, Q., Li, Z., Dhody, D., Karunanithi, S., Farrel, A.,
 and C. Zhou, "PCEP Procedures and Protocol Extensions for
 Using PCE as a Central Controller (PCECC) of SR-LSPs",
 draft-zhao-pce-pcep-extension-pce-controller-sr-03 (work
 in progress), June 2018.

 [I-D.li-pce-controlled-id-space]

 Li, C., Chen, M., Dong, J., Li, Z., and D. Dhody, "PCE
 Controlled ID Space", draft-li-pce-controlled-id-space-00
 (work in progress), June 2018.

 [I-D.dugeon-pce-stateful-interdomain]

 Dugeon, O., Meuric, J., Lee, Y., Dhody, D., and D.
 Ceccarelli, "PCEP Extension for Stateful Inter-Domain
 Tunnels", draft-dugeon-pce-stateful-interdomain-01 (work
 in progress), July 2018.

 [I-D.cbrt-pce-stateful-local-protection]

 Barth, C. and R. Torvi, "PCEP Extensions for RSVP-TE
 Local-Protection with PCE-Stateful", draft-cbrt-pce-
 stateful-local-protection-01 (work in progress), June
 2018.

 [I-D.filsfils-spring-srv6-network-programming]

 Filsfils, C., Camarillo, P., Leddy, J.,
 daniel.voyer@bell.ca, d., Matsushima, S., and Z. Li, "SRv6
 Network Programming", draft-filsfils-spring-srv6-network-
 programming-05 (work in progress), July 2018.

 [I-D.negi-pce-segment-routing-ipv6]

 Negi, M., Kaladharan, P., Dhody, D., and S. Sivabalan,
 "PCEP Extensions for Segment Routing leveraging the IPv6
 data plane", draft-negi-pce-segment-routing-ipv6-02 (work
 in progress), June 2018.

 [I-D.ietf-6man-segment-routing-header]

 Filsfils, C., Previdi, S., Leddy, J., Matsushima, S., and
 d. daniel.voyer@bell.ca, "IPv6 Segment Routing Header
 (SRH)", draft-ietf-6man-segment-routing-header-14 (work in
 progress), June 2018.

 [I-D.ietf-teas-pce-native-ip]

 Wang, A., Zhao, Q., Khasanov, B., Chen, H., Mi, P.,
 Mallya, R., and S. Peng, "PCE in Native IP Network",
 draft-ietf-teas-pce-native-ip-01 (work in progress), June
 2018.

 [I-D.ietf-teas-native-ip-scenarios]

 Wang, A., Huang, X., Qou, C., Li, Z., Huang, L., and P.
 Mi, "CCDR Scenario, Simulation and Suggestion", draft-
 ietf-teas-native-ip-scenarios-01 (work in progress), June
 2018.

 [MAP-REDUCE]

 Lee, K., Choi, T., Ganguly, A., Wolinsky, D., Boykin, P.,
 and R. Figueiredo, "Parallel Processing Framework on a P2P
 System Using Map and Reduce Primitives", , may 2011,
 <http://leeky.me/publications/mapreduce_p2p.pdf>.

 [MPLS-DC]
 Afanasiev, D. and D. Ginsburg, "MPLS in DC and inter-DC
 networks: the unified forwarding mechanism for network
 programmability at scale", , march 2014,
 <https://www.slideshare.net/DmitryAfanasiev1/
 yandex-nag201320131031>.

7.3. URIs

 [1] https://hadoop.apache.org/

Appendix A. Using reliable P2MP TE based multicast delivery for
 distributed computations (MapReduce-Hadoop)

 MapReduce model of distributed computations in computing clusters is
 widely deployed. In Hadoop [1] 1.0 architecture MapReduce operations
 on big data performs by means of Master-Slave architecture in the
 Hadoop Distributed File System (HDFS), where NameNode has the
 knowledge about resources of the cluster and where actual data
 (chunks) for particular task are located (which DataNode). Each
 chunk of data (64MB or more) should have 3 saved copies in different
 DataNodes based on their proximity.

 Proximity level currently has semi-manual allocation and based on
 Rack IDs (Assumption is that closer data are better because of access
 speed/smaller latency).

 JobTracker node is responsible for computation tasks, scheduling
 across DataNodes and also have Rack-awareness. Currently transport
 protocols between NameNode/JobTracker and DataNodes are based on IP
 unicast. It has simplicity as pros but has numerous drawbacks
 related with its flat approach.

 It is clear that we should go beyond of one DC for Hadoop cluster
 creation and move towards distributed clusters. In that case we need
 to handle performance and latency issues. Latency depends on speed
 of light in fiber links and also latency introduced by intermediate
 devices in between. The last one is closely correlated with network
 device architecture and performance. Current performance of NPU
 based routers should be enough for creating distribute Hadoop
 clusters with predicted latency. Performance of SW based routers
 (mainly as VNF) together with additional HW features such as DPDK are
 promising but require additional research and testing.

 Main question is how can we create simple but effective architecture
 for distributed Hadoop cluster?

 There is research [MAP-REDUCE] which show how usage of multicast tree
 could improve speed of resource or cluster members discovery inside
 the cluster as well as increase redundancy in communications between
 cluster nodes.

 Is traditional IP based multicast enough for that? We doubt it
 because it requires additional control plane (IGMP, PIM) and a lot of
 signaling, that is not suitable for high performance computations,
 that are very sensitive to latency.

 P2MP TE tunnels looks much more suitable as potential solution for
 creation of multicast based communications between Master and Slave
 nodes inside cluster. Obviously these P2MP tunnels should be
 dynamically created and turned down (no manual intervention). Here,
 the PCECC comes to play with main objective to create optimal
 topology of each particular request for MapReduce computation and
 also create P2MP tunnels with needed parameters such as bandwidth and
 delay.

 This solution would require to use MPLS label based forwarding inside
 the cluster. Usage of label based forwarding inside DC was proposed
 by Yandex [MPLS-DC]. Technically it is already possible because MPLS
 on switches is already supported by some vendors, MPLS also exists on
 Linux and OVS.

 The following framework can make this task:

 +‑‑‑‑‑‑‑‑+
 | APP |
 +‑‑‑‑‑‑‑‑+
 | NBI (REST API,...)
 |
 PCEP +‑‑‑‑‑‑‑‑‑‑+ REST API
 +‑‑‑‑‑‑‑‑‑+ +‑‑‑| PCECC |‑‑‑‑‑‑‑‑‑‑+
 | Client |‑‑‑|‑‑‑| | |
 +‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑‑+ |
 | | | | | |
 +‑‑‑‑‑|‑‑‑+ |PCEP| |
 +‑‑‑‑‑‑‑‑+ | | | | |
 | | | | | |
 | REST API | | | | |
 | | | | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | | | +‑‑‑‑‑‑‑‑‑‑+
| Job Tracker | | | | | | NameNode |
| | | | | | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | | | +‑‑‑‑‑‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑‑‑+
 | | | |
 |‑‑‑+‑‑‑‑‑P2MP TE‑‑+‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑| |
+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
| DataNode1| | DataNode2| | DataNodeN|
|TaskTraker| |TaskTraker| |TaskTraker|
+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+

 Communication between Master nodes (JobTracker and NameNode) and
 PCECC via REST API MAY be either done directly or via cluster manager
 such as Mesos.

 Phase 1: Distributed cluster resources discovery During this phase
 Master Nodes SHOULD identify and find available Slave nodes according
 to computing request from application (APP). NameNode SHOULD query
 PCECC about available DataNodes, NameNode MAY provide additional
 constrains to PCECC such as topological proximity, redundancy level.

 PCECC SHOULD analyze the topology of distributed cluster and perform
 constrain based path calculation from client towards most suitable
 NameNodes. PCECC SHOULD reply to NameNode the list of most suitable
 DataNodes and their resource capabilities. Topology discovery
 mechanism for PCECC will be added later to that framework.

 Phase 2: PCECC SHOULD create P2MP LSP from client towards those
 DataNodes by means of PCEP messages following previously calculated
 path.

 Phase 3. NameNode SHOULD send this information to client, PCECC
 informs client about optimal P2MP path towards DataNodes via PCEP
 message.

 Phase 4. Client sends data blocks to those DataNodes for writing via
 created P2MP tunnel.

 When this task will be finished, P2MP tunnel could be turned down.

Authors' Addresses

Quintin Zhao
Huawei Technologies
125 Nagog Technology Park
Acton, MA 01719
US

 Email: quintin.zhao@huawei.com

Zhenbin (Robin) Li
Huawei Technologies
Huawei Bld., No.156 Beiqing Rd.
Beijing 100095
China

 Email: lizhenbin@huawei.com

Boris Khasanov
Huawei Technologies
Moskovskiy Prospekt 97A
St.Petersburg 196084
Russia

 Email: khasanov.boris@huawei.com

Dhruv Dhody
Huawei Technologies
Divyashree Techno Park, Whitefield
Bangalore, Karnataka 560066
India

 Email: dhruv.ietf@gmail.com

King Ke
Tencent Holdings Ltd.
Shenzhen
China

 Email: kinghe@tencent.com

Luyuan Fang
Expedia, Inc.
USA

 Email: luyuanf@gmail.com

Chao Zhou
Cisco Systems

 Email: chao.zhou@cisco.com

Boris Zhang
Telus Communications

 Email: Boris.zhang@telus.com

Artem Rachitskiy
Mobile TeleSystems JLLC
Nezavisimosti ave., 95
Minsk 220043
Belarus

 Email: arachitskiy@mts.by

Anton Gulida
LLC "Lifetech"
Krasnoarmeyskaya str., 24
Minsk 220030
Belarus

 Email: anton.gulida@life.com.by

draft-ietf-teas-rsvp-rmr-extension-01 - RSVP Extensions for RMR

Index
Back 5
Prev
Next
Forward 5

TEAS WG

Internet-Draft

Intended status: Standards Track

Expires: December 30, 2018

A. Deshmukh

K. Kompella

Juniper Networks, Inc.

June 28, 2018

RSVP Extensions for RMR

draft-ietf-teas-rsvp-rmr-extension-01

Abstract

 Ring topology is commonly found in access and aggregation networks.
 However, the use of MPLS as the transport protocol for rings is very
 limited today. draft-ietf-mpls-rmr-02 describes a mechanism to
 handle rings efficiently using MPLS. This document describes the
 extensions to the RSVP-TE protocol for signaling MPLS label switched
 paths in rings.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 30, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	2. Terminology

	3. RSVP Extensions
	 3.1. Session Object

	 3.2. SENDER_TEMPLATE,FILTER_SPEC Objects

	4. Ring Signaling Procedures
	 4.1. Differences from regular RSVP-TE LSPs

	 4.2. LSP signaling
	 4.2.1. Path Propagation for RMR

	 4.2.2. Resv Processing for RMR

	 4.3. Protection

	 4.4. Ring changes

	 4.5. Express Links

	 4.6. Bandwidth management

	5. Security Considerations

	6. Contributors

	7. IANA Considerations

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Authors' Addresses

1. Introduction

 This document extends RSVP-TE [RFC3209] to establish label-switched
 path (LSP) tunnels in the ring topology. Rings are auto-discovered
 using the mechanisms mentioned in the [draft-ietf-mpls-rmr-02].
 Either IS-IS [RFC5305] or OSPF[RFC3630] can be used as the IGP for
 auto-discovering the rings.

 After the rings are auto-discovered, each node in the ring knows its
 clockwise(CW) and anti-clockwise (AC) ring neighbors and its ring
 links. All of the express links in the ring also get identified as
 part of the auto-discovery process. At this point, every node in the
 ring informs the RSVP protocol to begin the signaling of the ring
 LSPs.

 Section 2 covers the terminology used in this document. Section 3
 presents the RSVP protocol extensions needed to support MPLS rings.
 Section 4 describes the procedures of RSVP LSP signaling in detail.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Terminology

 Assuming there are n nodes in the network, a ring gets formed by a
 subset of those n nodes {Ri, Ri+1, Ri+2,...Rn}. We define the
 direction from node Ri to Ri+1 as "clockwise" (CW) and the reverse
 direction as "anti-clockwise" (AC). As there might be several rings
 in a graph, each ring is identified by it's own distinct ring ID -
 RID.

 R0 . . . R1
 . .
 R7 R2
Anti‑ | . Ring . |
Clockwise | . . | Clockwise
 v . RID = 17 . v
 R6 R3
 . .
 R5 . . . R4

 Figure 1: Ring with 8 nodes

 The following terminology is used for ring LSPs:

Ring ID (RID): A non‑zero number that identifies a ring; this is
 unique in a Service Provider's network. A node may belong to
 multiple rings.

Ring node: A member of a ring. Note that a device may belong to
 several rings.

Node index: A logical numbering of nodes in a ring, from zero up to
 one less than the ring size. Used purely for exposition in this
 document.

Ring neighbors: Nodes whose indices differ by one (modulo ring
 size).

Ring links: Links that connect ring neighbors.

Express links: Links that connect non‑neighboring ring nodes.

MP2P LSP: Each LSP in the ring is a multipoint to point LSP such
 that LSP can have multiple ingress nodes and one egress node.

3. RSVP Extensions

 Due to the new ring LSP semantics, the signaling-message
 identification of ring LSPs will be different than the regular RSVP
 LSPs. So, a new C-Type is defined here for the SESSION object. This
 new C-Type will help to clearly differentiate ring LSPs from regular
 LSPs. In addition, new flags are introduced in the SESSION object to
 represent the ring direction of the corresponding Path message.

3.1. Session Object

 Class = SESSION, LSP_TUNNEL_IPv4 C-Type = TBD

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Ring anchor node address |
+‑+
| Ring Flags | Ring Instance ID |
+‑+
| Ring ID |
+‑+

 SESSION Object

Ring anchor node address: IPv4 address of the anchor node. Each
 anchor node creates a LSP addressed to itself.

Ring Instance ID: A 16‑bit identifier used in the SESSION. This
 Ring Instance ID is useful for graceful ring changes. If a new
 node is being added to the ring(resulting in signaling of a larger
 ring) or some existing node goes down(resulting in signaling of a
 smaller ring), in those cases, anchor node creates a new tunnel
 with a different Ring Instance ID.

Ring ID: A 32‑bit number that identifies a ring; this is unique in
 some scope of a Service Provider's network. This number remains
 constant throughout the existence of ring.

Ring Flags: For each ring, the anchor node starts signaling of a
 ring LSP. Ring LSP named RLi, anchored on node Ri, consists of
 two counter‑rotating unicast LSPs that start and end at Ri. One
 LSP will be in the clockwise direction and other LSP will be in

 the anti-clockwise direction. A ring LSP is "multipoint": any
 node along the ring can use LSP RLi to send traffic to Ri; this
 can be in either the CW or AC directions, or both (i.e., load
 balanced). Two new flags are defined in the SESSION object which
 define the ring direction of the corresponding Path message.

ClockWise(CW) Direction 0x01: This flag indicates that the
 corresponding Path message is traveling in the ClockWise(CW)
 direction along the ring.

Anti‑ClockWise(AC) Direction 0x02: This flag indicates that the
 corresponding Path message is traveling in the Anti‑ClockWise(AC)
 direction along the ring.

3.2. SENDER_TEMPLATE,FILTER_SPEC Objects

 There will be no changes to the SENDER_TEMPLATE and FILTER_SPEC
 objects. The format of the above 2 objects will be similar to the
 definitions in RFC 3209. [RFC3209] Only the semantics of these
 objects will slightly change. This will be explained in section
 Section 4.6 below.

4. Ring Signaling Procedures

 A ring node indicates in its IGP updates the ring LSP signaling
 protocols that it supports. This can be LDP and/or RSVP-TE.
 Ideally, each node should support both. If the ring is configured
 with RSVP as the signaling protocol, then once a ring node R_i knows
 the RID, its ring links and directions, it kicks off ring RSVP LSP
 signaling automatically.

4.1. Differences from regular RSVP-TE LSPs

 Ring LSPs differ from regular RSVP-TE LSPs in several ways:

 1. Ring LSPs (by construction) form a loop.

 2. Ring LSPs are multipoint-to-point. Any ring node can inject
 traffic into a ring LSP.

 3. The bandwidth of a ring LSP can change hop-by-hop.

 4. Ring LSPs are protected without the use of bypass or detour LSPs.
 Protection is handled by the ring LSP traversing in the opposite
 direction.

4.2. LSP signaling

 After the ring auto-discovery process, each anchor node creates a LSP
 addressed to itself. This ring LSP contains of a pair of counter-
 rotating unicast LSPs. So, for a ring containing N nodes, there will
 be 2N total LSPs signaled.

 There is no need for ERO object in the Path message. The Path
 message for ring LSPs has the following format:

<Path Message> ::= <Common Header> [<INTEGRITY>]
 <SESSION> <RSVP_HOP>
 <TIME_VALUES>
 <LABEL_REQUEST>
 [<SESSION_ATTRIBUTE>]
 <sender descriptor list>

 <sender descriptor list> ::= <sender descriptor>|

 <sender descriptor list> <sender descriptor>
 <sender descriptor> ::= <SENDER_TEMPLATE> <SENDER_TSPEC>

 The anchor node creates 2 Path messages traveling in opposite
 directions. The SESSION format MUST be as per the description in
 Section 3.1. The anchor node which creates the LSP will insert it's
 own address in the "Ring anchor node address" field of the SESSION
 object. So effectively, the Path messages are addressed to the
 originating node itself.

 The SESSION flags of these 2 Path messages are different. The Path
 message sent to the CW neighbor MUST have the CW flag set in the
 SESSION object to signal the LSP going in the clockwise direction.
 The Path message sent to the AC neighbor MUST have the AC flag set to
 signal the LSP in the anti-clockwise direction.

 When an incoming Path message is received at the ring node Ri, it
 consults the results of auto-discovery to find the appropriate ring
 neighbor. If the incoming Path message has CW direction flag set,
 then Ri includes its own SENDER_DESCRIPTOR in the path message and
 forwards the Path message to its CW ring neighbor(Ri+1). Similarly
 if the incoming Path message has AC direction flag set, then Ri
 includes its own SENDER_TEMPPLATE and forwards that Path message to
 it's AC ring neighbor(Ri-1). Thus, there is no need of ERO in the
 Path message. The Path message is routed locally at each ring based
 on the ring auto-discovery calculations.

 The RESV message for ring LSPs also uses the new RING_IPv4 SESSION
 object. When the Path message originated from the anchor node Ri
 reaches back to Ri, Ri generates a Resv message. Note that this
 means that anchor node is both Ingress and Egress for the Path
 message. The Resv message copies the same ring flags as received in
 the corresponding Path message. So, a Resv message for a CW LSP goes
 in the AC direction (unlike the Path message, which goes CW). This
 is done to correctly match Path and corresponding Resv messages at
 transit ring nodes. Upon receiving Resv message with CW flag set,
 the ring node will forward the Resv message to its AC neighbor.

 Each ring node Ri allocates CW and AC labels for each ring LSP RLx(x
 between i..n). As the signaling propagates around the ring, CW and
 AC labels are exchanged. When Ri receives CW and AC labels for LSP
 RLx from its ring neighbors, primary and fast reroute (FRR) paths for
 RLx are installed at Ri.

 Consider the following three nodes of the ring, and their signaling
 interactions for LSP RL5 originating from anchor node R5:

 P5_CW ‑> P5_CW ‑>
 Q5_CW <‑ Q5_CW <‑
... ‑‑‑‑‑‑ R7 ‑‑‑‑‑‑‑‑‑ R8 ‑‑‑‑‑‑‑‑‑ R9 ‑‑‑‑‑‑ ...
 P5_AC <‑ P5_AC <‑
 Q5_AC ‑> Q5_AC ‑>

 P corresponds to the Path message and Q corresponds to the Resv
 message.

 As explained above, an RMR LSP consists of two counter-rotating ring
 LSPs that start and end at the same node, say R1. As such, this
 appears to cause a loop, something that is normally avoided by RSVP-
 TE. There are some benefits to this:

 Having a ring LSP form a loop allows the anchor node R1 to ping
 itself and thus verify the end-to-end operation of the LSP. This, in
 conjunction with link-level OAM, offers a good indication of the
 operational state of the LSP. Also, having R1 to be the ingress
 means that R1 can initiate the Path messages for the two ring LSPs.
 This avoids R1 having to coordinate with its neighbors to signal the
 LSPs, and simplifies the case where a ring update changes R1's ring
 neighbors. The cost of this is a little more signaling and a couple
 more label entries in the LFIB. However, we will let experiences
 from implementation guide us when we evaluate this approach.

4.2.1. Path Propagation for RMR

 Ring LSPs are MP2P in nature. It means that every non-egress node is
 also an ingress and a merge-point for the LSP. Focussing on ring-
 LSP-0 (i.e ring-LSPs starting at R0):

R0‑‑‑‑>R1‑‑‑‑>R2‑‑‑‑>R3‑‑‑‑>R4‑‑‑‑>R5‑‑‑‑>R6‑‑‑>R7‑‑‑>R0(CW LSP)
R0‑‑‑‑>R7‑‑‑‑>R6‑‑‑‑>R5‑‑‑‑>R4‑‑‑‑>R3‑‑‑‑>R2‑‑‑>R1‑‑‑>R0(ACW LSP)

 Each ring node inserts a new SENDER_TEMPLATE object into an incoming
 Path message. The procedure for that is as follows:

 When a ring node R3 receives a Path message initiated by anchor node
 R0(for anchor lsp "lsp0"), R3 SHOULD make a copy of the received Path
 message for "lsp0". R3 then inserts a new sender-template object
 into the Path message for "lsp0". In the sender-template object, R3
 uses the sender address as the loopback address of node R3 and lsp-id
 = X. R3 then forwards this modified Path message to it's ring
 neighbor.

 So at this point, when Path messages heads out at R3, there will be 4
 different SENDER_TEMPLATE objects in the outgoing Path message for
 lsp0:

 ‑‑‑
|SENDER_TEMPLATE_0 : SENDER_ADDRESS = R0, LSP_ID = 1 |
 ‑‑‑
|SENDER_TEMPLATE_1 : SENDER_ADDRESS = R1, LSP_ID = 1 |
 ‑‑‑
|SENDER_TEMPLATE_2 : SENDER_ADDRESS = R2, LSP_ID = 1 |
 ‑‑‑
|SENDER_TEMPLATE_3 : SENDER_ADDRESS = R3, LSP_ID = 1 |
 ‑‑‑

4.2.2. Resv Processing for RMR

 When Egress node R0 receives the modified Path message, it replies
 with the a Resv message containing multiple FLOW_DESCRIPTOR objects.
 There should be 1 FLOW_DESCRIPTOR object corresponding to each of the
 SENDER_TEMPLATE object in the incoming Path message. The SESSION
 object of the Resv message will exactly match with the received Path
 message.

 [RFC 3209] already supports receiving a Resv message with multiple
 flow-descriptors in it, as described in section 3.2 in that document.
 In each flow-descriptor there is a separate:

 a. FLOW_SPEC object corresponding to the SENDER_TSPEC that was sent
 in the Path message which could be admitted after admission-control
 downstream, and

 b. FILTER_SPEC object corresponding to SENDER_TEMPLATE that was sent
 in the Path message that could be admitted after admission-control
 downstream.

 Each transit node removes the FLOW-DESCRIPTOR corresponding to itself
 from the Resv message before sending the Resv message upstream.

4.3. Protection

 In the rings, there are no protection LSPs -- no node or link bypass
 LSPs, no standby LSPs and no detours. Protection is via the "other"
 direction around the ring, which is why ring LSPs are in counter-
 rotating pairs. Protection works in the same way for link, node and
 ring LSP failures.

 Since each ring LSP is a MP2P LSP, any ring node can inject traffic
 onto a LSP whose anchor might be a different ring node. To achieve
 the above, an ingress route will be installed as follows at every
 ring node J, for a given ring-LSP with anchor Rk (say 1.2.3.4).

1.2.3.4 ‑> (Push CL_J+1,K, NH: R_J+1) # CW
 ‑> (Push AL_J‑1,K, NH: R_J‑1) # AC

 CL = Clockwise label
 AL = Anti‑Clockwise label

 Traffic will either be load balanced in the CW and AC directions or
 the traffic will be sent on just CW or AC lsp based on parameters
 such as hop-count, policy etc.

 Also, 2 transit routes will be installed for the anchor LSP
 transiting from node Rj as follows:

CL_J,K ‑> SWAP(CL_J+1,K, NH: R_J+1) #CW
 ‑> SWAP(AL_J‑1,K , NH: R_J‑1) #AC

 CL = Clockwise label
 AL = Anti‑Clockwise label
 CW NH has weight 1, AC NH has higher‑weight.

AL_J,K ‑> SWAP(AL_J‑1,K , NH: R_J‑1) #AC
 ‑> SWAP(CL_J+1,K, NH: R_J+1) #CW

 CL = Clockwise label
 AL = Anti‑Clockwise label
 AC NH has weight 1, CW NH has higher weight.

 Suppose a packet headed in anti-clockwise direction towards R5 and it
 arrives at node R7. Lets say that now R7 learns there is a link
 failure in the AC direction. R7 reroutes this packet back onto the
 clockwise direction. This reroute action is pre-programmed in the
 LFIB, to minimize the time between detection of a fault and the
 corresponding recovery action.

 At this time, R7 also sends a notification to R0 that the AC
 direction is not working. R0 modifies it's ingress route(for R5 LSP)
 by removing the AC direction LSP's route. Thus, R0 switches traffic
 to the CW direction.

 These notification propagate CW until each traffic source on the ring
 CW of the failure uses the CW direction.For RSVP-TE, this
 notification is sent in the form of PathErr message.

 To provide this notification, the ring node detecting failure SHOULD
 send a Path Error message with error code of "Notify" and an error
 value field of ("Tunnel locally repaired"). This Path Error code and
 value is same as defined in RFC 4090[RFC4090] for the notification of
 local repair.

 Note that the failure of a node or a link will not necessarily affect
 all ring LSPs. Thus, it is important to identify the affected LSPs
 and only switch the affected LSPs.

4.4. Ring changes

 A ring node can go down resulting in a smaller ring or a new node can
 be added to the ring which will increase the ring size. In both of
 the above cases, the ring auto-discovery process SHOULD kick in and
 it SHOULD calculate a new ring with the changed ring nodes.

 When the ring auto-discovery process is complete, IGP will signal
 RSVP to begin the MBB process for the existing ring LSPs. For this
 MBB process, the anchor node will create a new Path message with a
 different Ring Instance ID in the SESSION object. All other fields
 in the SESSION Object will remain same as the existing Path
 message(before the ring change).

 This new Path message will then propagate along the ring neighbors in
 the same way as the original Path message. Each ring neighbor SHOULD
 forward the Path message to it's appropriate neighbor based on the
 new auto-discovery calculations.

 For the ring links which are common between the old and new LSPs, the
 LSPs will share resources(SE style reservation) on those ring links.
 Note that here we are using Ring Instance ID in the SESSION object to
 share resources instead of the LSP_ID in the SENDER_TEMPLATE
 Object(which is used in RSVP-TE for sharing resources as described in
 RFC 3209 [RFC4090]). The LSP_ID use is reserved for a different
 functionality as described in section Section 4.6.

4.5. Express Links

 The details for signaling over express links will be given in a
 future version.

4.6. Bandwidth management

 For RSVP-TE LSPs, bandwidths may be signaled in both directions.
 However, these are not provisioned either; rather, one does "reverse
 call admission control". When a service needs to use an LSP, the
 ring node where the traffic enters the ring attempts to increase the
 bandwidth on the LSP to the egress. If successful, the service is
 admitted to the ring.

 . R0 . . . R1
 . __________|| .
 . / ________| .
 R7 / / R2
Anti‑ | . / / . |
Clockwise | . | / . | Clockwise
 v . | \ . v
 R6 \ R3
 . \ .
 R5 . . . R4

 Figure 2: BW Management in Ring with 8 nodes

 Let's say that Ring node R5 wants to increase the BW for the LSP
 whose egress is at node R1. To achieve this BW increase, Ring node
 R5 has to increase BW along the LSP anchored at node R1(say lsp1).

 R5 makes a copy of the existing ring Path message for lsp1. R5 then
 modifies the sender-template object from the copied Path message for
 "lsp1". In the sender-template object, R5 uses the sender address as
 the loopback address of node R5 and lsp-id = X+1. R5 also modifies
 the TSPEC object which represents the BW increase/decrease in this
 new Path message. R5 then forwards this new Path message to it's
 ring neighbor. The original anchor Path message has sender address
 as loopback address of R1.

 Now, let's say, node 5 wants to increase BW again for lsp1, then R5
 adds a new SENDER_TEMPLATE object in the existing Path message for
 "lsp1" with sender address as loopback of node 5 and lsp-id = X+2.
 So at this point, there will be 2 different SENDER_TEMPLATE objects
 corresponding to node 5 in the outgoing path message.

 ‑‑‑
|SENDER_TEMPLATE_0 : SENDER_ADDRESS = R0, LSP_ID = 1 |
 ‑‑‑
|SENDER_TEMPLATE_1 : SENDER_ADDRESS = R1, LSP_ID = 1 |
 ‑‑‑
| |
 ‑‑‑
|SENDER_TEMPLATE_5 : SENDER_ADDRESS = R5, LSP_ID = 1 |
 ‑‑‑
|SENDER_TEMPLATE_5 : SENDER_ADDRESS = R5, LSP_ID = 2 |
 ‑‑‑

 Similarly, if node R6 wants to increase the BW for "lsp1", it SHOULD
 create a new Path message containing SENDER_TEMPLATE object with
 sender address = loopback of node 6 and lsp-id = Y+1. Thus, it
 should be noted that each ring-node independently tracks its own lsp-
 ID that is currently in-use on a given RMR sub-LSP. This lsp-ID
 value will (could) be different for each ring-node for a given ring
 sub-LSP.

 If sufficient BW is available all the way towards ring node R1, then
 this new Path message reaches node R1. R1 generates a Resv message
 with the correct FILTER_SPEC object corresponding to the received
 SENDER_TEMPLATE object. This Resv message will also have the correct
 FLOWSPEC object as per the requested bandwidth.

 If sufficient BW is not available at some downstream (say node R9),
 then ring node R9 SHOULD generate a PathErr message with the
 corresponding Sender Template Object. When node R5 receives this
 PathErr message, R5 understands that the BW increase was not
 successful. Note that the existing established bandwidths for lsp1
 are not affected by this new PathErr message.

 When ring node R5 no longer needs the BW reservation, then ring node
 R5 SHOULD originate a new Path message with the appropriate Sender
 Template Object containing 0 BW as described above. Every downstream
 node SHOULD then remove bandwidth allocated on the corresponding link
 on receipt of this Path message.

 Also, note that as part of this BW increase or decrease process, any
 ring node does not actually change any label associated with the LSP.
 So, the label remains same as it was signaled initially when the
 anchor LSP came up.

5. Security Considerations

 It is not anticipated that either the notion of MPLS rings or the
 extensions to various protocols to support them will cause new
 security loopholes. As this document is updated, this section will
 also be updated.

6. Contributors

Ravi Singh
Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, CA 94089
USA

 Email: ravis@juniper.net

Santosh Esale
Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, CA 94089
USA

 Email: sesale@juniper.net

Raveendra Torvi
Juniper Networks, Inc.
10 Technology Park Dr
Westford, MA 01886
USA

 Email: rtorvi@juniper.net

7. IANA Considerations

 Requests to IANA will be made in a future version of this document.

8. References

8.1. Normative References

 [I-D.ietf-mpls-rmr]

 Kompella, K. and L. Contreras, "Resilient MPLS Rings",
 draft-ietf-mpls-rmr-07 (work in progress), March 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

 [I-D.dai-mpls-rsvp-te-mbb-label-reuse]

 Dai, M. and M. Chaudhry, "MPLS RSVP-TE MBB Label Reuse",
 draft-dai-mpls-rsvp-te-mbb-label-reuse-01 (work in
 progress), September 2015.

 [RFC2205]
 Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
 September 1997, <https://www.rfc-editor.org/info/rfc2205>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <https://www.rfc-editor.org/info/rfc3209>.

 [RFC3630]
 Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
 (TE) Extensions to OSPF Version 2", RFC 3630,
 DOI 10.17487/RFC3630, September 2003,
 <https://www.rfc-editor.org/info/rfc3630>.

 [RFC4090]
 Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast
 Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090,
 DOI 10.17487/RFC4090, May 2005,
 <https://www.rfc-editor.org/info/rfc4090>.

 [RFC5305]
 Li, T. and H. Smit, "IS-IS Extensions for Traffic
 Engineering", RFC 5305, DOI 10.17487/RFC5305, October
 2008, <https://www.rfc-editor.org/info/rfc5305>.

Authors' Addresses

Abhishek Deshmukh
Juniper Networks, Inc.
10 Technology Park Dr
Westford, MA 01886
USA

 Email: adeshmukh@juniper.net

Kireeti Kompella
Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, CA 94089
USA

 Email: kireeti@juniper.net

draft-ietf-teas-sf-aware-topo-model-02 - SF Aware TE Topology YANG Model

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Informational

Expires: March 25, 2019

I. Bryskin

Huawei Technologies

X. Liu

Volta Networks

Y. Lee

J. Guichard

Huawei Technologies

L. Contreras

Telefonica

D. Ceccarelli

Ericsson

J. Tantsura

Nuage Networks

September 21, 2018

SF Aware TE Topology YANG Model

draft-ietf-teas-sf-aware-topo-model-02

Abstract

 This document describes a YANG data model for TE network topologies
 that are network service and function aware.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Tree Diagrams

	 1.3. Prefixes in Data Node Names

	2. Modeling Considerations

	3. Model Structure

	4. YANG Modules

	5. Model Structure

	6. YANG Modules

	7. IANA Considerations

	8. Security Considerations

	9. References
	 9.1. Normative References

	 9.2. Informative References

	 9.3. Normative References

	Appendix A. Companion YANG Model for Non-NMDA Compliant Implementations
	 A.1. SF Aware TE Topology State Module

	Appendix B. Data Examples
	 B.1. A Topology with Multiple Connected Network Functions

	 B.2. A Topology with an Encapsulated Network Service

	Appendix C. Use Cases for SF Aware Topology Models
	 C.1. Exporting SF/NF Information to Network Clients and Other Network SDN Controllers

	 C.2. Flat End-to-end SFCs Managed on Multi-domain Networks

	 C.3. Managing SFCs with TE Constraints

	 C.4. SFC Protection and Load Balancing

	 C.5. Network Clock Synchronization

	 C.6. Client - Provider Network Slicing Interface

	 C.7. Dynamic Assignment of Regenerators for L0 Services

	 C.8. Dynamic Assignment of OAM Functions for L1 Services

	 C.9. SFC Abstraction and Scaling

	 C.10. Dynamic Compute/VM/Storage Resource Assignment

	 C.11. Application-aware Resource Operations and Management

	 C.12. IANA Considerations

	 C.13. Security Considerations

	 C.14. Acknowledgements

	Authors' Addresses

1. Introduction

 Normally network connectivity services are discussed as a means to
 inter-connect various abstract or physical network topological
 elements, such as ports, link termination points and nodes
 [I-D.ietf-teas-yang-te-topo] [I-D.ietf-teas-yang-te]. However, the
 connectivity services, strictly speaking, interconnect not the
 network topology elements per-se, rather, located on/associated with
 the various network and service functions [RFC7498] [RFC7665]. In
 many scenarios it is beneficial to decouple the service/network
 functions from the network topology elements hosting them, describe
 them in some unambiguous and identifiable way (so that it would be
 possible, for example, to auto-discover on the network topology
 service/network functions with identical or similar functionality and
 characteristics) and engineer the connectivity between the service/
 network functions, rather than between their current topological
 locations.

 Today a network offers to its clients far more services than just
 connectivity across the network. Large variety of physical, logical
 and/or virtual service functions, network functions and transport
 functions (collectively named in this document as SFs) could be
 allocated for and assigned to a client. As described in the appendix
 of this document, there are some important use cases, in which the
 network needs to represent to the client SFs at the client's disposal
 as topological elements in relation to other elements of a topology
 (i.e. nodes, links, link and tunnel termination points) used by the
 network to describe itself to the client. Not only would such
 information allow for the client to auto-discover the network's SFs
 available for the services provisioned for the client, it would also
 allow for the client selecting the SFs, duel-optimizing the selection
 on the SF location on the network and connectivity means (e.g. TE
 tunnels) to inter-connect the SFs. Consequently thus would give to
 both the network and the client powerful means for the service
 function chain (SFC [RFC7498] [RFC7665]) negotiation to achieve most
 efficient and cost effective (from the network point of view) and
 most optimal yet satisfying all necessary constraints of SFCs (from
 the client's point of view).

 This document defines a YANG data model that allows service functions
 to be represented along with TE topology elements.

1.1. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14, [RFC2119].

 o Network Function (NF): A functional block within a network
 infrastructure that has well-defined external interfaces and well-
 defined functional behaviour [ETSI-NFV-TERM]. Such functions
 include message router, CDN, session border controller, WAN
 cceleration, DPI, firewall, NAT, QoE monitor, PE router, BRAS, and
 radio/fixed access network nodes.

 o Network Service: Composition of Network Functions and defined by
 its functional and behavioural specification. The Network Service
 contributes to the behaviour of the higher layer service, which is
 characterized by at least performance, dependability, and security
 specifications. The end-to-end network service behaviour is the
 result of the combination of the individual network function
 behaviours as well as the behaviours of the network infrastructure
 composition mechanism [ETSI-NFV-TERM].

 o Service Function (SF): A function that is responsible for specific
 treatment of received packets. A service function can act at
 various layers of a protocol stack (e.g., at the network layer or
 other OSI layers). As a logical component, a service function can
 be realized as a virtual element or be embedded in a physical
 network element. One or more service functions can be embedded in
 the same network element. Multiple occurrences of the service
 function can exist in the same administrative domain. A non-
 exhaustive list of service functions includes: firewalls, WAN and
 application acceleration, Deep Packet Inspection (DPI), server
 load balancers, NAT44 [RFC3022], NAT64 [RFC6146], HTTP header
 enrichment functions, and TCP optimizers. The generic term "L4-L7
 services" is often used to describe many service functions
 [RFC7498].

 o Service Function Chain (SFC): A service function chain defines an
 ordered or partially ordered set of abstract service functions and
 ordering constraints that must be applied to packets, frames, and/
 or flows selected as a result of classification. An example of an
 abstract service function is a firewall. The implied order may
 not be a linear progression as the architecture allows for SFCs
 that copy to more than one branch, and also allows for cases where
 there is flexibility in the order in which service functions need
 to be applied. The term "service chain" is often used as
 shorthand for "service function chain" [RFC7498].

 o Connectivity Service: Any service between layer 0 and layer 3
 aiming at delivering traffic among two or more end customer edge
 nodes connected to provider edge nodes. Examples include L3VPN,
 L2VPN etc.

 o Link Termination Point (LTP): A conceptual point of connection of
 a TE node to one of the TE links, terminated by the TE node.
 Cardinality between an LTP and the associated TE link is 1:0..1
 [I-D.ietf-teas-yang-te-topo].

 o Tunnel Termination Point (TTP): An element of TE topology
 representing one or several of potential transport service
 termination points (i.e. service client adaptation points such as
 WDM/OCh transponder). TTP is associated with (hosted by) exactly
 one TE node. TTP is assigned with the TE node scope unique ID.
 Depending on the TE node's internal constraints, a given TTP
 hosted by the TE node could be accessed via one, several or all TE
 links terminated by the TE node [I-D.ietf-teas-yang-te-topo].

 The following terms are defined in [RFC7950] and are not redefined
 here:

 o augment

 o data model

 o data node

1.2. Tree Diagrams

 A simplified graphical representation of the data model is presented
 in this document, by using the tree format defined in
 [I-D.ietf-netmod-yang-tree-diagrams].

1.3. Prefixes in Data Node Names

 In this document, names of data nodes, actions, and other data model
 objects are often used without a prefix, as long as it is clear from
 the context in which YANG module each name is defined. Otherwise,
 names are prefixed using the standard prefix associated with the
 corresponding YANG module, as shown in Table 1.

+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Prefix | YANG module | Reference |
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
inet	ietf‑inet‑types	[RFC6991]
nw	ietf‑network	[I‑D.ietf‑i2rs‑yang‑network‑topo]
nt	ietf‑network‑	[I‑D.ietf‑i2rs‑yang‑network‑topo]
	topology	
tet	ietf‑te‑topology	[I‑D.ietf‑teas‑yang‑te‑topo]
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1: Prefixes and Corresponding YANG Modules

2. Modeling Considerations

 The model introduced in this document is an augmentation of the TE
 Topology model defined in [I-D.ietf-teas-yang-te-topo]. SFs are
 modeled as child elements of a TE node similarly to how Link
 Termination Points (LTPs) and Tunnel Termination Points (TTPs) are
 modeled in the TE Topology model. The SFs are defined as opaque
 objects identified via topology unique service-function-id's. Each
 SF has one or more Connection Points (CPs) identified via SF-unique
 sf-connection-point-id's, over which the SF could be connected to
 other SFs resided on the same TE node, as well as to other elements
 of the TE node, in particular, to the node's LTPs and/or TTPs. An
 interested client may use service-function-id's to look up the SFs in
 TOSCA or YANG data store(s) defined by [ETSI-NFV-MAN] to retrieve the
 details of the SFs, for example, to understand the SF's mutual
 substitutability.

 The TE Topology model introduces a concept of Connectivity Matrix
 (CM), and uses the CM to describe which and at what costs a TE node's
 LTPs could be inter-connected internally across the TE node. The
 model defined in this document heavily uses the same concept to
 describe the SF connectivity via introducing 3 additional CMs:

 1. SF2SF CM. This CM describes which pairs of SFs could be locally
 inter-connected, and, if yes, in which direction, via which CPs
 and at what costs. In other words, the SF2SF CM describes how
 SFs residing on the same TE node could be inter-connected into
 local from the TE node's perspective SFCs;

 2. SF2LTP CM. This CM describes how, in which direction and at what
 costs the TE node's SFs could be connected to the TE node's LTPs
 and hence to SFs residing on neighboring TE nodes that are
 connected to LTPs at the remote ends of corresponding TE links;

 3. SF2TTP CM. This CM describes how, in which direction and at what
 costs the TE node's SFs could be connected to the TE node's TTPs
 and hence to SFs residing on other TE nodes on the topology that
 could be inter-connected with the TE node in question via TE
 tunnels terminated by the corresponding TTPs.

 In addition to SF2SF CM, the local SF chaining could be described
 with the help of ETSI models Virtual Links (VLs) [ETSI-NFV-MAN].
 This option is especially useful when the costs of the local chaining
 are negligible as compared to ones of the end-to-end SFCs said local
 SFCs are part of.

 Section 3 and 4 provide the YANG model structure and the YANG module
 for SF-aware Topology. Section 5 and 6 provide the YANG model
 structure and the YANG module for Data Center Compute Node resource
 abstraction. This provides an example of SF2LTP CM where DC compute
 nodes are connected to LTPs at the remote ends of the corresponding
 TE links. This use-case is described in Section 10 of Appendix C.

3. Model Structure

module: ietf‑te‑topology‑sf
 augment /nw:networks/nw:network/nw:network‑types/tet:te‑topology:
 +‑‑rw sf!
 augment /nw:networks/nw:network/nw:node/tet:te
/tet:te‑node‑attributes:
 +‑‑rw service‑function
 +‑‑rw connectivity‑matrices
 | +‑‑rw connectivity‑matrix* [id]
 | +‑‑rw id uint32
 | +‑‑rw from
 | | +‑‑rw service‑function‑id? string
 | | +‑‑rw sf‑connection‑point‑id? string
 | +‑‑rw to
 | | +‑‑rw service‑function‑id? string
 | | +‑‑rw sf‑connection‑point‑id? string
 | +‑‑rw enabled? boolean
 | +‑‑rw direction? connectivity‑direction
 | +‑‑rw virtual‑link‑id? string
 +‑‑rw link‑terminations
 +‑‑rw link‑termination* [id]
 +‑‑rw id uint32
 +‑‑rw from
 | +‑‑rw tp‑ref? ‑> ../../../../../../..
/nt:termination‑point/tp‑id
 +‑‑rw to
 | +‑‑rw service‑function‑id? string
 | +‑‑rw sf‑connection‑point‑id? string
 +‑‑rw enabled? boolean
 +‑‑rw direction? connectivity‑direction
 augment /nw:networks/nw:network/nw:node/tet:te
/tet:information‑source‑entry:
 +‑‑ro service‑function
 +‑‑ro connectivity‑matrices
 | +‑‑ro connectivity‑matrix* [id]
 | +‑‑ro id uint32
 | +‑‑ro from
 | | +‑‑ro service‑function‑id? string
 | | +‑‑ro sf‑connection‑point‑id? string
 | +‑‑ro to
 | | +‑‑ro service‑function‑id? string
 | | +‑‑ro sf‑connection‑point‑id? string

 | +‑‑ro enabled? boolean
 | +‑‑ro direction? connectivity‑direction
 | +‑‑ro virtual‑link‑id? string
 +‑‑ro link‑terminations
 +‑‑ro link‑termination* [id]
 +‑‑ro id uint32
 +‑‑ro from
 +‑‑ro to
 | +‑‑ro service‑function‑id? string
 | +‑‑ro sf‑connection‑point‑id? string
 +‑‑ro enabled? boolean
 +‑‑ro direction? connectivity‑direction
 augment /nw:networks/nw:network/nw:node/tet:te
/tet:tunnel‑termination‑point:
 +‑‑rw service‑function
 +‑‑rw tunnel‑terminations
 +‑‑rw tunnel‑termination* [id]
 +‑‑rw id uint32
 +‑‑rw service‑function‑id? string
 +‑‑rw sf‑connection‑point‑id? string
 +‑‑rw enabled? boolean
 +‑‑rw direction? connectivity‑direction

4. YANG Modules

<CODE BEGINS> file "ietf‑te‑topology‑sf@2018‑02‑27.yang"
module ietf‑te‑topology‑sf {
 yang‑version 1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑te‑topology‑sf";

 prefix "tet-sf";

import ietf‑network {
 prefix "nw";
}

import ietf‑network‑topology {
 prefix "nt";
}

import ietf‑te‑topology {
 prefix "tet";
}

 organization

 "Traffic Engineering Architecture and Signaling (TEAS)

 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 Editors: Igor Bryskin
 <mailto:Igor.Bryskin@huawei.com>

 Xufeng Liu
 <mailto:Xufeng_Liu@jabil.com>";

 description

 "Network service and function aware aware TE topology model.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).";

revision 2018‑02‑27 {
 description "Initial revision";
 reference "TBD";
}

/*
 * Typedefs
 */
typedef connectivity‑direction {
 type enumeration {
 enum "to" {
 description
 "The direction is uni‑directional, towards the 'to'
 entity direction.";
 }
 enum "from" {
 description
 "The direction is uni‑directional, from the 'to'
 entity direction.";
 }
 enum "bidir" {
 description
 "The direction is bi‑directional.";

 }
 }
 description
 "A type used to indicates whether a connectivity is
 uni‑directional, or bi‑directional. If the relation is
 uni‑directional, the value of this type indicates the
 direction.";
} // connectivity‑direction

/*
 * Groupings
 */
grouping service‑function‑node‑augmentation {
 description
 "Augmenting a TE node to be network service and function
 aware.";
 container service‑function {
 description
 "Containing attributes related to network services and
 network functions";
 container connectivity‑matrices {
 description
 "Connectivity relations between network services/functions
 on a TE node, which can be either abstract or physical.";
 reference
 "ETSI GS NFV‑MAN 01: Network Functions Virtualisation
 (NFV); Management and Orchestration.
 RFC7665: Service Function Chaining (SFC) Architecture.";
 list connectivity‑matrix {
 key "id";
 description
 "Represents the connectivity relations between network
 services/functions on a TE node.";
 leaf id {
 type uint32;
 description "Identifies the connectivity‑matrix entry.";
 }

 container from {
 description
 "Reference to the source network service or
 network function.";
 leaf service‑function‑id {
 type string;
 description
 "Reference to a network service or a network
 function.";
 }

 leaf sf‑connection‑point‑id {
 type string;
 description
 "Reference to a connection point on a network
 service or a network function.";
 }
 } // from
 container to {
 description
 "Reference to the destination network service or
 network function.";
 leaf service‑function‑id {
 type string;
 description
 "Reference to a network service or a network
 function.";
 }
 leaf sf‑connection‑point‑id {
 type string;
 description
 "Reference to a connection point on a network
 service or a network function.";
 }
 } // to
 leaf enabled {
 type boolean;
 description
 "'true' if this connectivity entry is enabled.";
 }
 leaf direction {
 type connectivity‑direction;
 description
 "Indicates whether this connectivity is
 uni‑directional, or bi‑directional. If the
 relation is uni‑directional, the value of
 this leaf indicates the direction.";
 }
 leaf virtual‑link‑id {
 type string;
 description
 "Reference to a virtual link that models this
 conectivity relation in the network function
 model.";
 }
 } // connectivity‑matrix
 } // connectivity‑matrices

 container link-terminations {

 description
 "Connectivity relations between network services/functions
 and link termination points on a TE node, which can be
 either abstract or physical.";
 reference
 "ETSI GS NFV‑MAN 01: Network Functions Virtualisation
 (NFV); Management and Orchestration.
 RFC7665: Service Function Chaining (SFC) Architecture.";
 list link‑termination {
 key "id";
 description
 "Each entry of the list represents the connectivity
 relation between a network service/function and
 a link termination point on a TE node.";
 leaf id {
 type uint32;
 description "Identifies the termination entry.";
 }

 container from {
 description
 "Reference to the link termination point.";
 } // from
 container to {
 description
 "Reference to the network service or network
 function.";
 leaf service‑function‑id {
 type string;
 description
 "Reference to a network service or a network
 function.";
 }
 leaf sf‑connection‑point‑id {
 type string;
 description
 "Reference to a connection point on a network
 service or a network function.";
 }
 } // to
 leaf enabled {
 type boolean;
 description
 "'true' if this connectivity entry is enabled.";
 }
 leaf direction {
 type connectivity‑direction;
 description

 "Indicates whether this connectivity is
 uni‑directional, or bi‑directional. If the
 relation is uni‑directional, the value of
 this leaf indicates the direction.";
 }
 } // link‑termination
 }
 }
 } // service‑function‑node‑augmentation

 grouping service‑function‑ttp‑augmentation {
 description
 "Augmenting a tunnel termination point to be network service
 aware.";
 container service‑function {
 description
 "Containing attributes related to network services and
 network functions";
 container tunnel‑terminations {
 description
 "Connectivity relations between network services/functions
 and tunnel termination points on a TE node, which can be
 either abstract or physical.";
 reference
 "ETSI GS NFV‑MAN 01: Network Functions Virtualisation
 (NFV); Management and Orchestration.
 RFC7665: Service Function Chaining (SFC) Architecture.";
 list tunnel‑termination {
 key "id";
 description
 "Each entry of the list represents the connectivity
 relation between a network service/function and
 a tunnel termination point on a TE node.";
 leaf id {
 type uint32;
 description "Identifies the termination entry.";
 }

 leaf service‑function‑id {
 type string;
 description
 "Reference to a network service or a network
 function.";
 }
 leaf sf‑connection‑point‑id {
 type string;
 description
 "Reference to a connection point on a network

 service or a network function.";
 }
 leaf enabled {
 type boolean;
 description
 "'true' if this connectivity entry is enabled.";
 }
 leaf direction {
 type connectivity‑direction;
 description
 "Indicates whether this connectivity is
 uni‑directional, or bi‑directional. If the
 relation is uni‑directional, the value of
 this leaf indicates the direction.";
 }
 } // link‑termination
 }
 }
 } // service‑function‑ttp‑augmentation

 grouping sf‑topology‑type {
 description
 "Identifies the SF aware TE topology type.";
 container sf {
 presence "Indidates that the TE topology is SF aware.";
 description
 "Its presence identifies that the TE topology is SF aware.";
 }
 } // sf‑topology‑type

 /*
 * Augmentations
 */
 /* Augmentations to network‑types/te‑topology */
 augment "/nw:networks/nw:network/nw:network‑types/"
 + "tet:te‑topology" {
 description
 "Defines the SF aware TE topology type.";
 uses sf‑topology‑type;
 }

 /* Augmentations to te‑node‑attributes */
 augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes" {
 description
 "Parameters for SF aware TE topology.";
 uses service‑function‑node‑augmentation;
 }

 augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information‑source‑entry" {
 description
 "Parameters for SF aware TE topology.";
 uses service‑function‑node‑augmentation;
 }

 /* Augmentations to tunnel‑termination‑point */
 augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel‑termination‑point" {
 description
 "Parameters for SF aware TE topology.";
 uses service‑function‑ttp‑augmentation;
 }

 /* Augmentations to connectivity‑matrix */
 augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet‑sf:service‑function/"
 + "tet‑sf:link‑terminations/tet‑sf:link‑termination/"
 + "tet‑sf:from" {
 description
 "Add reference to the link termination point.
 This portion cannot be shared with the state module.";
 leaf tp‑ref {
 type leafref {
 path "../../../../../../../nt:termination‑point/"
 + "nt:tp‑id";
 }
 description
 "Reference to the link termination point.";
 }
 }
}
<CODE ENDS>

5. Model Structure

module: ietf‑cso‑dc
 +‑‑rw cso
 +‑‑rw dc* [id]
 | +‑‑rw hypervisor* [id]
 | | +‑‑rw ram
 | | | +‑‑rw total? uint32
 | | | +‑‑rw used? uint32
 | | | +‑‑rw free? uint32
 | | +‑‑rw disk

 | | | +‑‑rw total? uint32
 | | | +‑‑rw used? uint32
 | | | +‑‑rw free? uint32
 | | +‑‑rw vcpu
 | | | +‑‑rw total? uint16
 | | | +‑‑rw used? uint16
 | | | +‑‑rw free? uint16
 | | +‑‑rw instance* ‑> /cso/dc/instance/id
 | | +‑‑rw id string
 | | +‑‑rw name? string
 | +‑‑rw instance* [id]
 | | +‑‑rw flavor
 | | | +‑‑rw disk? uint32
 | | | +‑‑rw ram? uint32
 | | | +‑‑rw vcpus? uint16
 | | | +‑‑rw id? string
 | | | +‑‑rw name? string
 | | +‑‑rw image
 | | | +‑‑rw checksum string
 | | | +‑‑rw size uint32
 | | | +‑‑rw format
 | | | | +‑‑rw container? enumeration
 | | | | +‑‑rw disk? enumeration
 | | | +‑‑rw id? string
 | | | +‑‑rw name? string
 | | +‑‑rw hypervisor? ‑> /cso/dc/hypervisor/id
 | | +‑‑rw port* ‑> /cso/dc/network/subnetwork/port
/id
 | | +‑‑rw project? string
 | | +‑‑rw status? enumeration
 | | +‑‑rw id string
 | | +‑‑rw name? string
 | +‑‑rw image* [id]
 | | +‑‑rw checksum string
 | | +‑‑rw size uint32
 | | +‑‑rw format
 | | | +‑‑rw container? enumeration
 | | | +‑‑rw disk? enumeration
 | | +‑‑rw id string
 | | +‑‑rw name? string
 | +‑‑rw flavor* [id]
 | | +‑‑rw disk? uint32
 | | +‑‑rw ram? uint32
 | | +‑‑rw vcpus? uint16
 | | +‑‑rw id string
 | | +‑‑rw name? string
 | +‑‑rw dc‑monitoring‑param* [name]
 | | +‑‑rw name string

 | | +‑‑rw value‑string? string
 | +‑‑rw network* [id]
 | | +‑‑rw subnetwork* [id]
 | | | +‑‑rw port* [id]
 | | | | +‑‑rw ip‑address? inet:ip‑address
 | | | | +‑‑rw instance? ‑> /cso/dc/instance/id
 | | | | +‑‑rw project? string
 | | | | +‑‑rw status? enumeration
 | | | | +‑‑rw id string
 | | | | +‑‑rw name? string
 | | | +‑‑rw project? string
 | | | +‑‑rw status? enumeration
 | | | +‑‑rw id string
 | | | +‑‑rw name? string
 | | +‑‑rw dhcp‑agent* [id]
 | | | +‑‑rw enabled? boolean
 | | | +‑‑rw pools* [ip‑address]
 | | | | +‑‑rw ip‑address inet:ip‑address
 | | | +‑‑rw project? string
 | | | +‑‑rw status? enumeration
 | | | +‑‑rw id string
 | | | +‑‑rw name? string
 | | +‑‑rw project? string
 | | +‑‑rw status? enumeration
 | | +‑‑rw id string
 | | +‑‑rw name? string
 | | +‑‑rw cso‑ref? ‑> /cso/cso‑id
 | +‑‑rw ap* ‑> /actn‑vn:actn/ap
/access‑point‑list/access‑point‑id
 | +‑‑rw cso‑ref? ‑> /cso/cso‑id
 | +‑‑rw id string
 | +‑‑rw name? string
 +‑‑rw cso‑id? string

6. YANG Modules

<CODE BEGINS> file "ietf‑cso‑dc@2017‑01‑16.yang"
module ietf‑cso‑dc
{
 namespace "urn:ietf:params:xml:ns:yang:ietf‑cso‑dc";
 prefix "dc";

 import ietf‑inet‑types {
 prefix "inet";
 }

 import ietf‑actn‑vn {
 prefix "actn‑vn";
 }

 revision 2017‑01‑16 {
 description
 "Initial revision. This YANG file defines
 the reusable base types for CSO DC description.";
 reference
 "Derived from earlier versions of base YANG files";
 }

 // Abstract models
 grouping resource‑element {
 leaf id { type string; }
 leaf name { type string; }
 }

 grouping resource‑instance {
 leaf project{ type string; }
 leaf status {
 type enumeration {
 enum active;
 enum inactive;
 enum pending;
 }
 }
 uses resource‑element;
 }

 // Compute models
 grouping format {
 leaf container {
 type enumeration {
 enum ami;
 enum ari;
 enum aki;
 enum bare;
 enum ovf;
 }
 default bare;
 }
 leaf disk {
 type enumeration {
 enum ami;
 enum ari;
 enum aki;
 enum vhd;

 enum vmdk;
 enum raw;
 enum qcow2;
 enum vdi;
 enum iso;
 }
 default qcow2;
 }
 }

 grouping image {
 leaf checksum { type string; mandatory true; }
 leaf size { type uint32; units 'Bytes'; mandatory true; }

 container format {
 uses format;
 }

 uses resource‑element;
 }

 grouping flavor {
 leaf disk { type uint32; units 'GB'; default 0; }
 leaf ram { type uint32; units 'MB'; default 0; }
 leaf vcpus { type uint16; default 0; }
 uses resource‑element;
 }

 grouping ram {
 leaf total { type uint32; units 'MB'; }
 leaf used { type uint32; units 'MB'; }
 leaf free { type uint32; units 'MB'; }
 }

 grouping disk {
 leaf total { type uint32; units 'GB'; }
 leaf used { type uint32; units 'GB'; }
 leaf free { type uint32; units 'GB'; }
 }

 grouping vcpu {
 leaf total { type uint16; }
 leaf used { type uint16; }
 leaf free { type uint16; }
 }

 grouping hypervisor {

 container ram {
 uses ram;
 }

 container disk {
 uses disk;
 }

 container vcpu {
 uses vcpu;
 }

 leaf‑list instance {
 type leafref { path '/cso/dc/instance/id'; } }
 uses resource‑element;
}

grouping instance {
 container flavor { uses flavor; }
 container image { uses image; }
 leaf hypervisor {
 type leafref { path '/cso/dc/hypervisor/id'; } }
 leaf‑list port { type leafref {
 path '/cso/dc/network/subnetwork/port/id'; } }
 uses resource‑instance;
}

grouping dc‑monitoring‑param {
 leaf name {
 description "dc‑monitoring‑param identifier"; type string; }
 leaf value‑string {
 description
 "Current value for a string parameter";
 type string;
 }
}

 grouping dc {

 list hypervisor {
 key id;
 uses hypervisor;
 }

 list instance {
 key id;
 uses instance;
 }

 list image {
 key id;
 uses image;
 }

 list flavor {
 key id;
 uses flavor;
 }

 list dc‑monitoring‑param {
 key "name";
 uses dc‑monitoring‑param;
 }

 list network {
 key id;
 uses network;
 }

 leaf‑list ap { type leafref {
 path
 '/actn‑vn:actn/actn‑vn:ap/actn‑vn:access‑point‑list/'
 + 'actn‑vn:access‑point‑id';
 }
 }
 leaf cso‑ref { type leafref { path "/cso/cso‑id"; } }
 uses resource‑element;
}

container cso {
 list dc {
 key id;
 uses dc;
 }

 leaf cso‑id { type string; }
}

// Network models
grouping ip‑address {
 leaf ip‑address { type inet:ip‑address; }
}

 grouping dhcp-agent {

 leaf enabled { type boolean; }

 list pools {
 key ip‑address;
 uses ip‑address;
 }
 uses resource‑instance;
 }

 grouping network {
 list subnetwork {
 key id;
 uses subnetwork;
 }
 list dhcp‑agent {
 key id;
 uses dhcp‑agent;
 }
 uses resource‑instance;
 leaf cso‑ref { type leafref { path "/cso/cso‑id"; } }
 }

 grouping subnetwork {
 list port {
 key id;
 uses port;
 }
 uses resource‑instance;
 }

 grouping port {
 leaf ip‑address { type inet:ip‑address; }
 leaf instance { type leafref { path '/cso/dc/instance/id'; } }
 uses resource‑instance;
 }

}
<CODE ENDS>

7. IANA Considerations

 RFC Ed.: In this section, replace all occurrences of 'XXXX' with the
 actual RFC number (and remove this note).

 This document registers the following namespace URIs in the IETF XML
 registry [RFC3688]:

‑‑
URI: urn:ietf:params:xml:ns:yang:ietf‑te‑topology‑sf
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
‑‑

‑‑
URI: urn:ietf:params:xml:ns:yang:ietf‑te‑topology‑sf‑state
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
‑‑

 This document registers the following YANG modules in the YANG Module
 Names registry [RFC7950]:

‑‑
name: ietf‑te‑topology‑sf
namespace: urn:ietf:params:xml:ns:yang:ietf‑te‑topology‑packet
prefix: tet‑sf
reference: RFC XXXX
‑‑

‑‑
name: ietf‑te‑topology‑sf‑state
namespace: urn:ietf:params:xml:ns:yang:ietf‑te‑topology‑packet‑state
prefix: tet‑sf‑s
reference: RFC XXXX
‑‑

8. Security Considerations

 The configuration, state, action and notification data defined in
 this document are designed to be accessed via the NETCONF protocol
 [RFC6241]. The data-model by itself does not create any security
 implications. The security considerations for the NETCONF protocol
 are applicable. The NETCONF protocol used for sending the data
 supports authentication and encryption.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [ETSI-NFV-MAN]

 ETSI, "Network Functions Virtualisation (NFV); Management
 and Orchestration", ETSI GS NFV-MAN 001 V1.1.1, December
 2014.

 [I-D.ietf-i2rs-yang-network-topo]

 Clemm, A., Medved, J., Varga, R., Bahadur, N.,
 Ananthakrishnan, H., and X. Liu, "A Data Model for Network
 Topologies", draft-ietf-i2rs-yang-network-topo-20 (work in
 progress), December 2017.

 [I-D.ietf-teas-yang-te-topo]

 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
 O. Dios, "YANG Data Model for Traffic Engineering (TE)
 Topologies", draft-ietf-teas-yang-te-topo-18 (work in
 progress), June 2018.

 [I-D.ietf-netmod-revised-datastores]

 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore
 Architecture", draft-ietf-netmod-revised-datastores-10
 (work in progress), January 2018.

9.2. Informative References

 [RFC7498]
 Quinn, P., Ed. and T. Nadeau, Ed., "Problem Statement for
 Service Function Chaining", RFC 7498,
 DOI 10.17487/RFC7498, April 2015,
 <https://www.rfc-editor.org/info/rfc7498>.

 [RFC7665]
 Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
 Chaining (SFC) Architecture", RFC 7665,
 DOI 10.17487/RFC7665, October 2015,
 <https://www.rfc-editor.org/info/rfc7665>.

 [I-D.ietf-netmod-yang-tree-diagrams]

 Bjorklund, M. and L. Berger, "YANG Tree Diagrams", draft-
 ietf-netmod-yang-tree-diagrams-06 (work in progress),
 February 2018.

9.3. Normative References

 [ETSI-NFV-TERM]

 ETSI, "Network Functions Virtualisation (NFV); Terminology
 for Main Concepts in NFV", ETSI GS NFV 003 V1.2.1,
 December 2014.

 [I-D.ietf-teas-yang-te]

 Saad, T., Gandhi, R., Liu, X., Beeram, V., Shah, H., and
 I. Bryskin, "A YANG Data Model for Traffic Engineering
 Tunnels and Interfaces", draft-ietf-teas-yang-te-16 (work
 in progress), July 2018.

 [RFC3022]
 Srisuresh, P. and K. Egevang, "Traditional IP Network
 Address Translator (Traditional NAT)", RFC 3022,
 DOI 10.17487/RFC3022, January 2001,
 <https://www.rfc-editor.org/info/rfc3022>.

 [RFC6146]
 Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
 April 2011, <https://www.rfc-editor.org/info/rfc6146>.

 [I-D.ietf-sfc-hierarchical]

 Dolson, D., Homma, S., Lopez, D., and M. Boucadair,
 "Hierarchical Service Function Chaining (hSFC)", draft-
 ietf-sfc-hierarchical-11 (work in progress), June 2018.

 [I-D.defoy-netslices-3gpp-network-slicing]

 Foy, X. and A. Rahman, "Network Slicing - 3GPP Use Case",
 draft-defoy-netslices-3gpp-network-slicing-02 (work in
 progress), October 2017.

 [_3GPP.28.801]

 3GPP, "Study on management and orchestration of network
 slicing for next generation network", 3GPP TR 28.801
 V2.0.0, September 2017,
 <http://www.3gpp.org/ftp/Specs/html-info/28801.htm>.

 [RFC8453]
 Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for
 Abstraction and Control of TE Networks (ACTN)", RFC 8453,
 DOI 10.17487/RFC8453, August 2018,
 <https://www.rfc-editor.org/info/rfc8453>.

Appendix A. Companion YANG Model for Non-NMDA Compliant Implementations

 The YANG module ietf-te-topology-sf defined in this document is
 designed to be used in conjunction with implementations that support
 the Network Management Datastore Architecture (NMDA) defined in
 [I-D.ietf-netmod-revised-datastores]. In order to allow
 implementations to use the model even in cases when NMDA is not
 supported, the following companion module, ietf-te-topology-sf-state,
 is defined as state model, which mirrors the module ietf-te-topology-
 sf defined earlier in this document. However, all data nodes in the
 companion module are non-configurable, to represent the applied
 configuration or the derived operational states.

 The companion module, ietf-te-topology-sf-state, is redundant and
 SHOULD NOT be supported by implementations that support NMDA.

 As the structure of the companion module mirrors that of the
 coorespinding NMDA model, the YANG tree of the companion module is
 not depicted separately.

A.1. SF Aware TE Topology State Module

<CODE BEGINS> file "ietf‑te‑topology‑sf‑state@2018‑02‑27.yang"
module ietf‑te‑topology‑sf‑state {
 yang‑version 1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑te‑topology‑sf‑state";

 prefix "tet-sf-s";

import ietf‑te‑topology‑sf {
 prefix "tet‑sf";
}

import ietf‑network‑state {
 prefix "nw‑s";
}

import ietf‑network‑topology‑state {
 prefix "nt‑s";
}

import ietf‑te‑topology‑state {
 prefix "tet‑s";
}

 organization

 "Traffic Engineering Architecture and Signaling (TEAS)

 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 Editors: Igor Bryskin
 <mailto:Igor.Bryskin@huawei.com>

 Xufeng Liu
 <mailto:Xufeng_Liu@jabil.com>";

 description

 "Network service and function aware aware TE topology operational
 state model for non-NMDA compliant implementations.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).";

revision 2018‑02‑27 {
 description "Initial revision";
 reference "TBD";
}

/*
 * Augmentations
 */
/* Augmentations to network‑types/te‑topology */
augment "/nw‑s:networks/nw‑s:network/nw‑s:network‑types/"
 + "tet‑s:te‑topology" {
 description
 "Defines the SF aware TE topology type.";
 uses tet‑sf:sf‑topology‑type;
}

/* Augmentations to connectivity‑matrix */
augment "/nw‑s:networks/nw‑s:network/nw‑s:node/tet‑s:te/"
 + "tet‑s:te‑node‑attributes" {
 description
 "Parameters for SF aware TE topology.";
 uses tet‑sf:service‑function‑node‑augmentation;

 }

 augment "/nw‑s:networks/nw‑s:network/nw‑s:node/tet‑s:te/"
 + "tet‑s:information‑source‑entry" {
 description
 "Parameters for SF aware TE topology.";
 uses tet‑sf:service‑function‑node‑augmentation;
 }

 /* Augmentations to tunnel‑termination‑point */
 augment "/nw‑s:networks/nw‑s:network/nw‑s:node/tet‑s:te/"
 + "tet‑s:tunnel‑termination‑point" {
 description
 "Parameters for SF aware TE topology.";
 uses tet‑sf:service‑function‑ttp‑augmentation;
 }

 /* Augmentations to connectivity‑matrix */
 augment "/nw‑s:networks/nw‑s:network/nw‑s:node/tet‑s:te/"
 + "tet‑s:te‑node‑attributes/tet‑sf‑s:service‑function/"
 + "tet‑sf‑s:link‑terminations/tet‑sf‑s:link‑termination/"
 + "tet‑sf‑s:from" {
 description
 "Add reference to the link termination point.
 This portion cannot be shared with the state module.";
 leaf tp‑ref {
 type leafref {
 path "../../../../../../../nt‑s:termination‑point/"
 + "nt‑s:tp‑id";
 }
 description
 "Reference to the link termination point.";
 }
 }
}
<CODE ENDS>

Appendix B. Data Examples

B.1. A Topology with Multiple Connected Network Functions

 Node‑1
 +‑‑‑‑o‑‑o‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑o‑‑‑‑‑‑‑+
 | | | | |
 | __/ __ |
 | *\/ TTP‑1 * * * * * * * * * *\/* |
LTP‑4 |* * * * TTP‑2 * | LTP‑1
 o‑‑‑‑‑‑‑‑‑‑‑‑*‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑o
 | * * |
LTP‑3 |* * * * * *| LTP‑2
 o‑‑‑ ‑‑‑‑‑o
 | \ / |
 | \ / |
 | \ CP01 CP02/ |
 | +‑‑‑‑o‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑o‑‑‑‑‑‑+ |
 | | VL1| VL4| | | | | | |
 | | |CP11 |CP33 | |
 | | +‑o‑‑+ +‑‑‑‑+ +‑o‑‑+ | |
 | | |VNF1| |VNF2| |VNF3| | |
 | | +‑o‑o+ VL2 +‑‑o‑+ VL2 +‑o‑o+ | |
 | |CP12| |\‑‑‑‑‑‑‑‑‑‑/ \‑‑‑‑‑‑‑‑‑/| |CP32| |
 | | | |CP13 CP21 CP31| | | |
 | | | | VL2 | | | |
 | | | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | |
 | | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | |
 | | VL3 | |
 | | Network Service 1 | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 +‑‑+

 The configuration instance data for Node-1 in the above figure could
 be as follows:

{
 "networks": {
 "network": [
 {
 "network‑types": {
 "te‑topology": {
 "sf": {}
 }
 },
 "network‑id": "network‑sf‑aware",
 "provider‑id": 201,
 "client‑id": 300,
 "te‑topology‑id": "te‑topology:network‑sf‑aware",
 "node": [
 {
 "node‑id": "Node‑1",

 "te‑node‑id": "2.0.1.1",
 "te": {
 "te‑node‑attributes": {
 "domain‑id": 1,
 "is‑abstract": [null],
 "connectivity‑matrices": {
 },
 "service‑function": {
 "connectivity‑matrices": {
 "connectivity‑matrix": [
 {
 "id": 10,
 "from": {
 "service‑function‑id": "Network Service 1",
 "sf‑connection‑point‑id": "CP01"
 },
 "to": {
 "service‑function‑id": "VNF1",
 "sf‑connection‑point‑id": "CP11"
 }
 "direction": "bidir",
 "virtual‑link‑id": "VL1"
 },
 {
 "id": 13,
 "from": {
 "service‑function‑id": "VNF1",
 "sf‑connection‑point‑id": "CP12"
 },
 "to": {
 "service‑function‑id": "VNF3",
 "sf‑connection‑point‑id": "CP32"
 }
 "direction": "bidir",
 "virtual‑link‑id": "VL3"
 },
 {
 "id": 12,
 "from": {
 "service‑function‑id": "VNF1",
 "sf‑connection‑point‑id": "CP13"
 },
 "to": {
 "service‑function‑id": "VNF2",
 "sf‑connection‑point‑id": "CP21"
 }
 "direction": "bidir",
 "virtual‑link‑id": "VL2"

 },
 {
 "id": 23,
 "from": {
 "service‑function‑id": "VNF2",
 "sf‑connection‑point‑id": "CP21"
 },
 "to": {
 "service‑function‑id": "VNF3"
 "sf‑connection‑point‑id": "CP31"
 }
 "direction": "bidir",
 "virtual‑link‑id": "VL2"
 },
 {
 "id": 30,
 "from": {
 "service‑function‑id": "Network Service 1",
 "sf‑connection‑point‑id": "CP02"
 },
 "to": {
 "service‑function‑id": "VNF3",
 "sf‑connection‑point‑id": "CP33"
 }
 "direction": "bidir",
 "virtual‑link‑id": "VL4"
 }
]
 },
 "link‑terminations": {
 "link‑termination": [
 {
 "id": 2,
 "from": {
 "tp‑ref": "LTP‑2"
 },
 "to": {
 "service‑function‑id": "Network Service 1",
 "sf‑connection‑point‑id": "CP02"
 }
 "direction": "bidir"
 },
 {
 "id": 3,
 "from": {
 "tp‑ref": "LTP‑3"
 },
 "to": {

 "service‑function‑id": "Network Service 1",
 "sf‑connection‑point‑id": "CP01"
 }
 "direction": "bidir"
 }
]
 }
 }
 }
 "tunnel‑termination‑point": [
 {
 "tunnel‑tp‑id": 10001,
 "name": "TTP‑1",
 "service‑function‑terminations": {
 }
 },
 {
 "tunnel‑tp‑id": 10002,
 "name": "TTP‑2",
 "service‑function‑terminations": {
 }
 }
]
 },
 "termination‑point": [
 {
 "tp‑id": "LTP‑1",
 "te‑tp‑id": 10001
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑l2sc",
 "encoding": "lsp‑encoding‑ethernet"
 }
]
 }
 },
 {
 "tp‑id": "LTP‑2",
 "te‑tp‑id": 10002
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑l2sc",
 "encoding": "lsp‑encoding‑ethernet"
 }
]
 }

 },
 {
 "tp‑id": "LTP‑3",
 "te‑tp‑id": 10003
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑l2sc",
 "encoding": "lsp‑encoding‑ethernet"
 }
]
 }
 },
 {
 "tp‑id": "LTP‑4",
 "te‑tp‑id": 10004
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑l2sc",
 "encoding": "lsp‑encoding‑ethernet"
 }
]
 }
 }
]
 }
]
 }
]
 }
}

B.2. A Topology with an Encapsulated Network Service

 In this example, a network service consists of several inter-
 connected network functions (NFs), and is represented by this model
 as an encapsulated opaque object without the details between its
 internals.

 Node‑1
 +‑‑‑‑o‑‑o‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑o‑‑‑‑‑‑‑+
 | | | | |
 | __/ __ |
 | *\/ TTP‑1 * * * * * * * * * *\/* |
LTP‑4 |* * * * TTP‑2 * | LTP‑1
 o‑‑‑‑‑‑‑‑‑‑‑‑*‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑o
 | * * |
LTP‑3 |* * * * * *| LTP‑2
 o‑‑‑ ‑‑‑‑‑o
 | \ / |
 | \ / |
 | \ CP01 CP02/ |
 | +‑‑‑‑o‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑o‑‑‑‑‑‑+ |
 | | | |
 | | Network Service 1 | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 +‑‑+

 The configuration instance data for Node-1 in the above figure could
 be as follows:

{
 "networks": {
 "network": [
 {
 "network‑types": {
 "te‑topology": {
 "sf": {}
 }
 },
 "network‑id": "network‑sf‑aware",
 "provider‑id": 201,
 "client‑id": 300,
 "te‑topology‑id": "te‑topology:network‑sf‑aware",
 "node": [
 {
 "node‑id": "Node‑1",
 "te‑node‑id": "2.0.1.1",
 "te": {
 "te‑node‑attributes": {
 "domain‑id": 1,
 "is‑abstract": [null],
 "connectivity‑matrices": {
 },
 "service‑function": {
 "connectivity‑matrices": {
 },

 "link‑terminations": {
 "link‑termination": [
 {
 "id": 2,
 "from": {
 "tp‑ref": "LTP‑2"
 },
 "to": {
 "service‑function‑id": "Network Service 1",
 "sf‑connection‑point‑id": "CP02"
 }
 "direction": "bidir"
 },
 {
 "id": 3,
 "from": {
 "tp‑ref": "LTP‑3"
 },
 "to": {
 "service‑function‑id": "Network Service 1",
 "sf‑connection‑point‑id": "CP01"
 }
 "direction": "bidir"
 }
]
 }
 }
 }
 "tunnel‑termination‑point": [
 {
 "tunnel‑tp‑id": 10001,
 "name": "TTP‑1",
 "service‑function‑terminations": {
 }
 },
 {
 "tunnel‑tp‑id": 10002,
 "name": "TTP‑2",
 "service‑function‑terminations": {
 }
 }
]
 },
 "termination‑point": [
 {
 "tp‑id": "LTP‑1",
 "te‑tp‑id": 10001
 "te": {

 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑l2sc",
 "encoding": "lsp‑encoding‑ethernet"
 }
]
 }
 },
 {
 "tp‑id": "LTP‑2",
 "te‑tp‑id": 10002
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑l2sc",
 "encoding": "lsp‑encoding‑ethernet"
 }
]
 }
 },
 {
 "tp‑id": "LTP‑3",
 "te‑tp‑id": 10003
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑l2sc",
 "encoding": "lsp‑encoding‑ethernet"
 }
]
 }
 },
 {
 "tp‑id": "LTP‑4",
 "te‑tp‑id": 10004
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑l2sc",
 "encoding": "lsp‑encoding‑ethernet"
 }
]
 }
 }
]
 }
]
 }

]
 }
}

Appendix C. Use Cases for SF Aware Topology Models

C.1. Exporting SF/NF Information to Network Clients and Other Network
 SDN Controllers

 In the context of Service Function Chain (SFC) orchestration one
 existing problem is that there is no way to formally describe a
 Service or Network Function in a standard way (recognizable/
 understood by a third party) as a resource of a network topology
 node.

 One implication of this is that there is no way for the orchestrator
 to give a network client even a ball-park idea as to which network's
 SFs/NFs are available for the client's use/control and where they are
 located in the network even in terms of abstract topologies/virtual
 networks configured and managed specifically for the client.
 Consequently, the client has no say on how the SFCs provided for the
 client by the network should be set up and managed (which SFs are to
 be used and how they should be chained together, optimized,
 manipulated, protected, etc.).

 Likewise, there is no way for the orchestrator to export SF/NF
 information to other network controllers. The SFC orchestrator may
 serve, for example, a higher level controller (such as Network
 Slicing Orchestrator), with the latter wanting at least some level of
 control as to which SFs/NFs it wants on its SFCs and how the Service
 Function Paths (SFPs) are to be routed and provisioned, especially,
 if it uses services of more than one SFC orchestrator.

 The issue of exporting of SF/NF information could be addressed by
 defining a model, in which formally described/recognizable SF/NF
 instances are presented as topological elements, for example, hosted
 by TE, L3 or L2 topology nodes (see Figure 1). The model could
 describe whether, how and at what costs the SFs/NFs hosted by a given
 node could be chained together, how these intra-node SFCs could be
 connected to the node's Service Function Forwarders (SFFs, entities
 dealing with SFC NSHs and metadata), and how the SFFs could be
 connected to the node's Tunnel and Link Termination Points (TTPs and
 LTPs) to chain the intra-node SFCs across the network topology.

 Figure 1: SF/NF aware TE topology

C.2. Flat End-to-end SFCs Managed on Multi-domain Networks

 SFCs may span multiple administrative domains, each of which
 controlled by a separate SFC controller. The usual solution for such
 a scenario is the Hierarchical SFCs (H-SFCs), in which the higher
 level orchestrator controls only SFs located on domain border nodes.
 Said higher level SFs are chained together into higher level SFCs via
 lower level (intra-domain) SFCs provisioned and controlled
 independently by respective domain controllers. The decision as to
 which higher level SFCs are connected to which lower level SFCs is
 driven by packet re-classification every time the packet enters a
 given domain. Said packet re-classification is a very time-consuming
 operation. Furthermore, the independent nature of higher and lower
 level SFC control is prone to configuration errors, which may lead to
 long lasting loops and congestions. It is highly desirable to be
 able to set up and manage SFCs spanning multiple domains in a flat
 way as far as the data plane is concerned (i.e. with a single packet
 classification at the ingress into the multi-domain network but
 without re-classifications on domain ingress nodes).

 One way to achieve this is to have the domain controllers expose SF/
 NF- aware topologies, and have the higher level orchestrator operate
 on the network-wide topology, the product of merging of the
 topologies catered by the domain controllers. This is similar in
 spirit to setting up, coordinating and managing the transport
 connectivity (TE tunnels) on a multi-domain multi-vendor transport
 network.

C.3. Managing SFCs with TE Constraints

 Some SFCs require per SFC link/element and end-to-end TE constrains
 (bandwidth, delay/jitter, fate sharing/diversity. etc.). Said
 constraints could be ensured via carrying SFPs inside overlays that
 are traffic engineered with the constrains in mind. A good analogy
 would be orchestrating delay constrained L3 VPNs. One way to support
 such L3 VPNs is to carry MPLS LSPs interconnecting per-VPN VRFs
 inside delay constrained TE tunnels interconnecting the PEs hosting
 the VRFs.

 Figure 2: L3 VPN with delay constraints

 Planning, computing and provisioning of TE overlays to constrain
 arbitrary SFCs, especially those that span multiple administrative
 domains with each domain controlled by a separate controller, is a
 very difficult challenge. Currently it is addressed by pre-
 provisioning on the network of multiple TE tunnels with various TE
 characteristics, and "nailing down" SFs/NFs to "strategic" locations
 (e.g. nodes terminating many of such tunnels) in a hope that an
 adequate set of tunnels could be found to carry the SFP of a given
 TE-constrained SFC. Such an approach is especially awkward in the
 case when some or all of the SFs/NFs are VNFs (i.e. could be
 instantiated at multiple network locations).

 SF/NF-aware TE topology model in combination with TE tunnel model
 will allow for the network orchestrator (or a client controller) to
 compute, set up and manipulate the TE overlays in the form of TE
 tunnel chains (see Figure 3).

 Said chains could be duel-optimized compromising on optimal SF/NF
 locations with optimal TE tunnels interconnecting them. The TE
 tunnel chains (carrying multiple similarly constrained SFPs) could be
 adequately constrained both at individual TE tunnel level and at the
 chain end-to-end level.

 Figure 3: SFC with TE constraints

C.4. SFC Protection and Load Balancing

 Currently the combination of TE topology & tunnel models offers to a
 network controller various capabilities to recover an individual TE
 tunnel from network failures occurred on one or more network links or
 transit nodes on the TE paths taken by the TE tunnel's connection(s).
 However, there is no simple way to recover a TE tunnel from a failure
 affecting its source or destination node. SF/NF-aware TE topology
 model can decouple the association of a given SF/NF with its location
 on the network topology by presenting multiple, identifiable as
 mutually substitutable SFs/NFs hosted by different TE topology nodes.
 So, for example, if it is detected that a given TE tunnel destination
 node is malfunctioning or has gone out of service, the TE tunnel
 could be re-routed to terminate on a different node hosting
 functionally the same SFs/NFs as ones hosted by the failed node (see
 Figures 6).

 This is in line with the ACTN edge migration and function mobility
 concepts [RFC8453]. It is important to note that the described
 strategy works much better for the stateless SFs/NFs. This is
 because getting the alternative stateful SFs/NFs into the same
 respective states as the current (i.e. active, affected by failure)
 are is a very difficult challenge.

 Figure 4: SFC recovery: SF2 on node NE1 fails

 At the SFC level the SF/NF-aware TE topology model can offer SFC
 dynamic restoration capabilities against failed/malfunctioning SFs/
 NFs by identifying and provisioning detours to a TE tunnel chain, so
 that it starts carrying the SFC's SFPs towards healthy SFs/NFs that
 are functionally the same as the failed ones. Furthermore, multiple
 parallel TE tunnel chains could be pre-provisioned for the purpose of
 SFC load balancing and end-to-end protection. In the latter case
 said parallel TE tunnel chains could be placed to be sufficiently
 disjoint from each other.

 Figure 5: SFC recovery: SFC SF1-SF2-SF6 is recovered after SF2 on

 node N1 has failed

 Figure 6: SFC recovery: SFC SF1-SF2-SF6 is recovered after node N1

 has failed

C.5. Network Clock Synchronization

 Many current and future network applications (including 5g and IoT
 applications) require very accurate time services (PTP level, ns
 resolution). One way to implement the adequate network clock
 synchronization for such services is via describing network clocks as
 NFs on an NF-aware TE topology optimized to have best possible delay
 variation characteristics. Because such a topology will contain
 delay/delay variation metrics of topology links and node cross-
 connects, as well as costs in terms of delay/delay variation of
 connecting clocks to hosting them node link and tunnel termination
 points, it will be possible to dynamically select and provision bi-
 directional time-constrained deterministic paths or trees connecting
 clocks (e.g. grand master and boundary clocks) for the purpose of
 exchange of clock synchronization information. Note that network
 clock aware TE topologies separately provided by domain controllers
 will enable multi-domain network orchestrator to set up and
 manipulate the clock synchronization paths/trees spanning multiple
 network domains.

C.6. Client - Provider Network Slicing Interface

 3GPP defines network slice as "a set of network functions and the
 resources for these network functions which are arranged and
 configured, forming a complete logical network to meet certain
 network characteristics" [I-D.defoy-netslices-3gpp-network-slicing]
 [_3GPP.28.801]. Network slice could be also defined as a logical
 partition of a provider's network that is owned and managed by a
 tenant. SF/NF-aware TE topology model has a potential to support a
 very important interface between network slicing clients and
 providers because, on the one hand, the model can describe
 holistically and hierarchically the client's requirements and
 preferences with respect to a network slice functional, topological
 and traffic engineering aspects, as well as of the degree of resource
 separation/ sharing between the slices, thus allowing for the client
 (up to agreed upon extent) to dynamically (re-)configure the slice or
 (re-)schedule said (re-)configurations in time, while, on the other
 hand, allowing for the provider to convey to the client the slice's
 operational state information and telemetry the client has expressed
 interest in.

C.7. Dynamic Assignment of Regenerators for L0 Services

 On large optical networks, some of provided to their clients L0
 services could not be provisioned as single OCh trails, rather, as
 chains of such trails interconnected via regenerators, such as 3R
 regenerators. Current practice of the provisioning of such services
 requires configuration of explicit paths (EROs) describing identity
 and location of regenerators to be used. A solution is highly
 desirable that could:

 o Identify such services based, for example, on optical impairment
 computations;

 o Assign adequate for the services regenerators dynamically out of
 the regenerators that are grouped together in pools and
 strategically scattered over the network topology nodes;

 o Compute and provision supporting the services chains of optical
 trails interconnected via so selected regenerators, optimizing the
 chains to use minimal number of regenerators, their optimal
 locations, as well as optimality of optical paths interconnecting
 them;

 o Ensure recovery of such chains from any failures that could happen
 on links, nodes or regenerators along the chain path.

 NF-aware TE topology model (in this case L1 NF-aware L0 topology
 model) is just the model that could provide a network controller (or
 even a client controller operating on abstract NF-aware topologies
 provided by the network) to realize described above computations and
 orchestrate the service provisioning and network failure recovery
 operations (see Figure 7).

 Figure 7: Optical tunnel as TE-constrained SFC of 3R regenerators.

 Red trail (not regenerated) is not optically reachable, but blue
 trail (twice regenerated) is

C.8. Dynamic Assignment of OAM Functions for L1 Services

 OAM functionality is normally managed by configuring and manipulating
 TCM/MEP functions on network ports terminating connections or their
 segments over which OAM operations, such as performance monitoring,
 are required to be performed. In some layer networks (e.g.
 Ethernet) said TCMs/MEPs could be configured on any network ports.
 In others (e.g. OTN/ODUk) the TCMs/MEPs could be configured on some
 (but not all network ports) due to the fact that the OAM
 functionality (i.e. recognizing and processing of OAM messages,
 supporting OAM protocols and FSMs) requires in these layer networks
 certain support in the data plane, which is not available on all
 network nodes. This makes TCMs/MEPs good candidates to be modeled as
 NFs. This also makes TCM/MEP aware topology model a good basis for
 placing dynamically an ODUk connection to pass through optimal OAM
 locations without mandating the client to specify said locations
 explicitly.

 Figure 8: Compute/storage resource aware topology

C.9. SFC Abstraction and Scaling

 SF/NF-aware topology may contain information on native SFs/NFs (i.e.
 SFs/NFs as known to the provider itself) and/or abstract SFs/NFs
 (i.e. logical/macro SFs/NFs representing one or more SFCs each made
 of native and/or lower level abstract SFs/NFs). As in the case of
 abstracting topology nodes, abstracting SFs/NFs is hierarchical in
 nature - the higher level of SF/NF-aware topology, the "larger"
 abstract SFs/NFs are, i.e. the larger data plane SFCs they represent.
 This allows for managing large scale networks with great number of
 SFs/NFs (such as Data Center interconnects) in a hierarchical, highly
 scalable manner resulting in control of very large number of flat in
 the data plane SFCs that span multiple domains.

C.10. Dynamic Compute/VM/Storage Resource Assignment

 In a distributed data center network, virtual machines for compute
 resources may need to be dynamically re-allocated due to various
 reasons such as DCI network failure, compute resource load balancing,
 etc. In many cases, the DCI connectivity for the source and the
 destination is not predetermined. There may be a pool of sources and
 a pool of destination data centers associated with re-allocation of
 compute/VM/storage resources. There is no good mechanism to date to
 capture this dynamicity nature of compute/VM/storage resource
 reallocation. Generic Compute/VM/Storage resources can be described
 and announced as a SF, where a DC hosting these resources can be
 modeled as an abstract node. Topology interconnecting these abstract
 nodes (DCs) in general is of multi-domain nature. Thus, SF-aware
 topology model can facilitate a joint optimization of TE network
 resources and Compute/VM/Storage resources and solve Compute/VM/
 Storage mobility problem within and between DCs (see Figure 8).

C.11. Application-aware Resource Operations and Management

 Application stratum is the functional grouping which encompasses
 application resources and the control and management of these
 resources. These application resources are used along with network
 services to provide an application service to clients/end-users.
 Application resources are non-network resources critical to achieving
 the application service functionality. Examples of application
 resources include: caches, mirrors, application specific servers,
 content, large data sets, and computing power. Application service
 is a networked application offered to a variety of clients (e.g.,
 server backup, VM migration, video cache, virtual network on-demand,
 5G network slicing, etc.). The application servers that host these
 application resources can be modeled as an abstract node. There may
 be a variety of server types depending on the resources they host.
 Figure 9 shows one example application aware topology for video cache
 server distribution.

 Figure 9: Application aware topology

C.12. IANA Considerations

 This document has no actions for IANA.

C.13. Security Considerations

 This document does not define networking protocols and data, hence is
 not directly responsible for security risks.

C.14. Acknowledgements

 The authors would like to thank Maarten Vissers, Joel Halpern, and
 Greg Mirsky for their helpful comments and valuable contributions.

Authors' Addresses

Igor Bryskin
Huawei Technologies

 EMail: Igor.Bryskin@huawei.com

Xufeng Liu
Volta Networks

 EMail: xufeng.liu.ietf@gmail.com

Young Lee
Huawei Technologies

 EMail: leeyoung@huawei.com

Jim Guichard
Huawei Technologies

 EMail: james.n.guichard@huawei.com

Luis Miguel Contreras Murillo
Telefonica

 EMail: luismiguel.contrerasmurillo@telefonica.com

Daniele Ceccarelli
Ericsson

 EMail: daniele.ceccarelli@ericsson.com

Jeff Tantsura
Nuage Networks

 EMail: jefftant.ietf@gmail.com

draft-ietf-teas-te-metric-recording-07 - Resource ReserVation Protocol-Traffic E

Index
Back 5
Prev
Next
Forward 5

TEAS Working Group Zafar Ali

Internet Draft George Swallow

Intended status: Standard Track Clarence Filsfils

Expires: December 20, 2018 Matt Hartley

Cisco Systems

Kenji Kumaki

KDDI Corporation

Ruediger Kunze

Deutsche Telekom AG

June 21, 2018

Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) extension for recording TE Metric of a Label Switched Path

draft-ietf-teas-te-metric-recording-07

Status of this Memo
This Internet‑Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet‑Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet‑Drafts. The list of current Internet‑
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet‑Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet‑Drafts as reference
material or to cite them other than as "work in progress."
This Internet‑Draft will expire on December 20, 2018.

Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license‑info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

 Ali, Swallow, Filsfils, et al Expires December 2018 [Page 1]

Internet‑Draft draft‑ietf‑teas‑te‑metric‑recording‑07.txt

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s)
 controlling the copyright in such materials, this document may not
 be modified outside the IETF Standards Process, and derivative
 works of it may not be created outside the IETF Standards Process,
 except to format it for publication as an RFC or to translate it
 into languages other than English.

Abstract

There are many scenarios in which Traffic Engineering (TE) metrics
such as cost, delay and delay variation associated with the TE link
formed by Label Switched Path (LSP) are not available to the
ingress and egress nodes. This draft provides extensions for the
Resource ReserVation Protocol‑ Traffic Engineering (RSVP‑TE) to
support automatic collection of cost, delay and delay variation
information for the TE link formed by a LSP.
Conventions used in this document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in RFC 2119
[RFC2119].
Table of Contents
 1. Introduction ... 3
 1.1. Use Cases ... 4
 1.1.1. GMPLS 4
 1.1.2. Inter‑area tunnels with loose‑hops 4
 2. RSVP‑TE Requirement 4
 2.1. Cost, Delay and Delay Variation Collection
 Indication ... 4
 2.2. Cost, Delay and Delay Variation Collection 5
 2.3. Cost, Delay and Delay Variation Update 5
 2.4. Cost Definition 5
 3. Encoding ... 5
 3.1. Cost, Delay and Delay Variation Collection Flags ... 5
 3.2. RRO Cost Subobject 6
 3.3. RRO Delay Subobject 7
 3.4. RRO Delay Variation Subobject 7
 4. Signaling Procedures 8
 4.1. Cost, Delay and Delay Variation Collection 9
 4.2. Metric Update12
 4.3. Domain Boundaries12
 4.4. Endpoint processing12
 4.5. Compatibility13

Ali, Swallow, Filsfils Expires December 2018 [Page 2]

Internet‑Draft draft‑ietf‑teas‑te‑metric‑recording‑07.txt

 5. Manageability Considerations13
 5.1. Policy Configuration13
 6. Security Considerations14
 7. IANA Considerations14
 7.1. RSVP Attribute Bit Flags14
 7.2. ROUTE_RECORD subobject15
 7.3. Policy Control Failure Error subcodes15
 8. References ...16
 8.1. Normative References16
 8.2. Informative References16
 Acknowledgements ...16
 Contributors ...17
 Authors' Addresses17
1. Introduction
 In certain networks, such as financial information networks,
 network performance information (e.g. delay, delay variation) is
 becoming as critical to data path selection as other metrics
 [RFC7471], [DRAFT‑ISIS‑TE‑METRIC]. If cost, delay or delay
 variation associated with a Forwarding Adjacency (FA) or a
 Routing Adjacency (RA) LSP is not available to the ingress or
 egress node, it cannot be advertised as an attribute of the TE
 link (FA or RA). There are scenarios in packet and optical
 networks where the route information of an LSP may not be
 provided to the ingress node for confidentiality reasons and/or
 the ingress node may not run the same routing instance as the
 intermediate nodes traversed by the path. Similarly, there are
 scenarios in which measuring delay and/ or delay variation on a
 TE link formed by a LSP is not supported. In such scenarios, the
 ingress node cannot determine the cost, delay and delay
 variation properties of the LSP's route.
 One possible way to address this issue is to configure cost,
 delay and delay variation values manually. However, in the event
 of an LSP being rerouted (e.g. due to re‑optimization), such
 configuration information may become invalid. Consequently, in
 cases where that an LSP is advertised as a TE‑Link, the ingress
 and/or egress nodes cannot provide the correct delay, delay
 variation and cost information associated with the TE‑Link
 automatically.
 In summary, there is a requirement for the ingress and egress
 nodes to learn the cost, delay and delay variation information
 of the TE link formed by a LSP. This document provides a
 mechanism to collect the cost, delay and delay variation
 information of a LSP, which can then be advertised as properties
 of the TE‑link formed by that LSP. Note that specification of
 the use of the collected cost, delay and delay variation
 information is outside the scope of this document.
Ali, Swallow, Filsfils Expires December 2018 [Page 3]

Internet‑Draft draft‑ietf‑teas‑te‑metric‑recording‑07.txt

1.1. Use Cases
 This section describes some of the use cases for the TE metric
 recording.
1.1.1. GMPLS
 In Generalized Multi‑Protocol Label Switching (GMPLS) networks
 signaling bidirectional LSPs, the egress node cannot determine
 the cost, delay and delay variation properties of the LSP path.
 A multi‑domain or multi‑layer network is an example of such
 networks. A GMPLS User‑Network Interface (UNI) [RFC4208] is also
 an example of such networks.
1.1.2. Inter‑area tunnels with loose‑hops
 When a LSP is established over multiple IGP‑areas using loose
 hops in the ERO, the ingress node may only has knowledge of the
 first IGP‑area traversed by the LSP. In this case, it cannot
 determine the cost, delay and delay variation properties of the
 LSP path.
2. RSVP‑TE Requirement
 This section outlines RSVP‑TE requirements for the support of
 the automatic collection of cost, delay and delay variation
 information of an LSP.
 As RSVP‑TE requirements for cost, delay and delay variation
 collection are similar, many parts of this section are written
 such that they apply equally to cost, delay and delay variation
 collection. There is also very strong similarity of these RSVP‑
 requirements with SRLG recording [RFC8001].
 The Cost, Delay, Delay variation collection process takes place
 in three stages:
 o The LSP's ingress node requests that Cost, Delay, Delay
 Variation collection should take place;
 o Cost, Delay, Delay Variation data is added to the Path and
 Resv ROUTE_RECORD Objects(RROs) by all nodes during signaling;
 o Changes to previously signaled Cost, Delay, Delay variation
 data are made by sending updated Path and Resv messages as
 required.

2.1. Cost, Delay and Delay Variation Collection Indication
 The ingress node of the LSP needs be capable of indicating
 whether the cost and/or delay and/ or delay variation
 information of the LSP is to be collected during the signaling
 procedure of setting up an LSP. A separate collection indication
 flag for each of these attributes is required. There is no need
 for cost and/or delay and/ or delay variation to be collected
 without an explicit request for it being made by the ingress
 node.
Ali, Swallow, Filsfils Expires December 2018 [Page 4]

Internet‑Draft draft‑ietf‑teas‑te‑metric‑recording‑07.txt

 It may be preferable for the cost and/ or delay and/ or delay
 variation collection request to be understood by all nodes along
 the LSP's path, or it may be more important for the LSP to be
 established successfully even if it traverses nodes that cannot
 supply the requested information or have not implemented the
 procedures specified in this document. It is desirable for the
 ingress node to make the cost, delay and delay variation
 collection request in a manner that best suits its own policy.
2.2. Cost, Delay and Delay Variation Collection
 If requested, the cost and/or delay and/ or delay variation
 information is collected during the setup of an LSP. Each of the
 cost, delay or delay variation can be collected independently.
 Cost and/ or delay and/ or delay variation information is for
 each hop is added to the Path RRO during Path message
 processing. The corresponding information is also added to the
 Resv RRO during Resv processing at each hop. The endpoints of
 the LSP can use the collected information, for example, for
 routing, sharing and TE link configuration purposes.
2.3. Cost, Delay and Delay Variation Update
 When the cost and/or delay and/ or delay variation information
 of an existing LSP for which corresponding information was
 collected during signaling changes, the relevant nodes of the
 LSP need to be capable of updating the associated information of
 the LSP. This means that the signaling procedure needs to be
 capable of updating the new cost and/or delay and/ or delay
 variation information.
2.4. Cost Definition
 Although the terms delay and delay variation are well
 understood, "cost" may be ambiguous; in particular, in the
 context of a LSP that traverse nodes and links operated by
 different entities, there may be no common definition of cost.
 However, there are situations in which the entire LSP may be
 within a single AS (e.g. inter‑area LSPs) in which cost
 discovery is useful.
 The precise meaning and interpretation of numerical costs is a
 matter for the network operator. For the purposes of this
 document, two constraints are assumed:
 . A higher cost represents an inferior path.
 . Simple addition of costs for different sections of a path
 must make sense.
3. Encoding
3.1. Cost, Delay and Delay Variation Collection Flags
 In order to indicate nodes that cost and/or Delay and/or Delay
 variation collection is desired, this document defines the
 following new flags in the Attribute Flags TLV (see RFC 5420
Ali, Swallow, Filsfils Expires December 2018 [Page 5]

Internet‑Draft draft‑ietf‑teas‑te‑metric‑recording‑07.txt

 [RFC5420]). A node that wishes to indicate Cost and/or Delay
 and/or Delay Variation collection is desired MUST set
 corresponding flag in Attribute Flags TLV in an
 LSP_REQUIRED_ATTRIBUTES object (if collection is mandatory)
 or LSP_ATTRIBUTES Object(if collection is desired but not mandatory):
 ‑ Cost Collection flag (Bit number to be assigned by IANA)
 ‑ Delay Collection flag (Bit number to be assigned by IANA)
 ‑ Delay Variation Collection flag (Bit number to be assigned by
 IANA)
 The Cost, Delay and Delay Variation Collection flags are
 meaningful on a Path message. If the Cost Collection flag is
 set to 1, it means that the cost information SHOULD be reported
 to the ingress and egress node along the setup of the LSP.
 Similarly, if the Delay Collection flag is set to 1, it means
 that the Delay information SHOULD be reported to the ingress and
 egress node along the setup of the LSP. Likewise, if the Delay
 Variation Collection flag is set to 1, it means that the Delay
 Variation information SHOULD be reported to the ingress and
 egress node along the setup of the LSP.
 The rules of the processing of the Attribute Flags TLV are not
 changed.
3.2. RRO Cost Subobject
 This document defines a new RRO sub‑object (ROUTE_RECORD sub‑
 object) to record the cost information of the LSP. Its format
 is modeled on the RRO sub‑objects defined in RFC 3209 [RFC3209].

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +‑+
 | Type | Length |D| Reserved (must be zero) |
 +‑+
 | Cost |
 +‑+

 Type: The type of the sub‑object (value to be assigned by
 IANA).
 Length: The Length field contains the total length of the
 sub‑object in bytes, including the Type and Length fields.
 The Length value is set to 8.
 Direction bit (D‑bit)
 If not set, the cost contained in this sub‑object applies to
 the downstream direction. If set, it applies to the upstream
 direction.
Ali, Swallow, Filsfils Expires December 2018 [Page 6]

Internet‑Draft draft‑ietf‑teas‑te‑metric‑recording‑07.txt

 Reserved: This field is reserved for future use. It MUST be
 set to 0 on transmission and MUST be ignored when received.
 Cost: Cost of the local TE link along the route of the LSP.
3.3. RRO Delay Subobject
 This document defines a new RRO sub‑object (ROUTE_RECORD sub‑
 object) to record the delay information of the LSP. Its format
 is modeled on the RRO sub‑objects defined in RFC 3209 [RFC3209].
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +‑+
 | Type | Length |D| Reserved (must be zero) |
 +‑+
 |A| Reserved | Delay |
 +‑+

 Type: The type of the sub‑object (value to be assigned by
 IANA).
 Length: The Length field contains the total length of the
 sub‑object in bytes, including the Type and Length fields.
 The Length value is set to 8.
 Direction bit (D‑bit)
 If not set, the Delay contained in this sub‑object applies to
 the downstream direction. If set, it applies to the upstream
 direction.
 A‑bit: These fields represent the Anomalous (A) bit
 associated with the Downstream and Upstream Delay
 respectively, as defined in RFC 7471 [RFC7471].
 Reserved: These fields are reserved for future use. They MUST
 be set to 0 when sent and MUST be ignored when received.
 Delay: Delay of the local TE link along the route of the LSP,
 encoded as 24‑bit integer, as defined in RFC 7471 [RFC7471].
 When set to the maximum value 16,777,215 (16.777215 sec), the
 delay is at least that value and may be larger.
3.4. RRO Delay Variation Subobject
 This document defines a new RRO sub‑object (ROUTE_RECORD sub‑
 object) to record the delay variation information of the LSP.
Ali, Swallow, Filsfils Expires December 2018 [Page 7]

Internet‑Draft draft‑ietf‑teas‑te‑metric‑recording‑07.txt

 Its format is modeled on the RRO sub-objects defined in RFC 3209
 [RFC3209].

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +‑+
 | Type | Length |D| Reserved (must be zero) |
 +‑+
 |A| Reserved | Delay Variation |
 +‑+

 Type: The type of the sub‑object (value to be assigned by
 IANA).
 Length: The Length field contains the total length of the
 sub‑object in bytes, including the Type and Length fields.
 The Length value is set to 8.
 Direction bit (D‑bit)
 If not set, the Delay Variation contained in this sub‑object
 applies to the downstream direction. If set, it applies to
 the upstream direction.
 A‑bit: These fields represent the Anomalous (A) bit
 associated with the Downstream and Upstream Delay Variation
 respectively, as defined in RFC 7471 [RFC7471].
 Reserved: These fields are reserved for future use. It SHOULD
 be set to 0 when sent and MUST be ignored when received.
 Delay Variation: Delay Variation of the local TE link along
 the route of the LSP, encoded as 24‑bit integer, as defined
 in RFC 7471 [RFC7471]. When set to the maximum value
 16,777,215 (16.777215 sec), the delay variation is at least
 that value and may be larger.
 4. Signaling Procedures
 As signaling procedure for cost, delay and delay variation
 collection is similar, many parts of this section are written
 such that they apply equally to cost, delay and delay variation
 collection. There is also very strong similarity of these
 procedures with SRLG recording [RFC8001].
 The ingress node of the LSP MUST be capable of indicating
 whether the Cost and/ or Delay and/ or Delay Variation
 information of the LSP is to be collected during the signaling
 procedure of setting up an LSP.
 Ali, Swallow, Filsfils Expires December 2018 [Page 8]

Internet‑Draft draft‑ietf‑teas‑te‑metric‑recording‑07.txt

 A node MUST NOT push Cost and/ or Delay and/ or Delay Variation
 sub‑object(s) in the RECORD_ROUTE without also pushing either an
 IPv4 sub‑object, an IPv6 sub‑object, an Unnumbered Interface ID
 sub‑object or a Path Key sub‑object or an SRLG sub‑object.
 As described in RFC 3209 [RFC3209], the RECORD_ROUTE object is
 managed as a stack. The Cost and/ or Delay and/ or Delay
 Variation sub‑object(s) SHOULD be pushed by the node before the
 node IP address or link identifier. These sub‑object(s) SHOULD
 be pushed after the Attribute sub‑object, if present, and after
 the LABEL sub‑object, if requested, and after the SRLG sub‑
 object, if requested. These sub‑object(s) MUST be pushed within
 the hop to which it applies.
 RFC 5553 [RFC5553] describes mechanisms to carry a PKS (Path Key
 Sub‑object) in the RRO so as to facilitate confidentiality in
 the signaling of inter‑domain TE LSPs, and allows the path
 segment that needs to be hidden (that is, a Confidential Path
 Segment (CPS)) to be replaced in the RRO with a PKS. If the CPS
 contains Cost and/ or Delay and/ or Delay Variation Sub‑objects,
 these MAY be retained in the RRO by adding them again after the
 PKS Sub‑object in the RRO. The CPS is defined in RFC 5520
 [RFC5520].
 The rules of the processing of the LSP_REQUIRED_ATTRIBUTES,
 LSP_ATTRIBUTE and ROUTE_RECORD Objects are not changed.
 4.1. Cost, Delay and Delay Variation Collection
 Per RFC 3209 [RFC3209], an ingress node initiates the recording
 of the route information of an LSP by adding a RRO to a Path
 message. If an ingress node also desires Cost and/or Delay
 and/or Delay Variation recording, it MUST set the appropriate
 flag(s) in the Attribute Flags TLV which MAY be carried either
 in an LSP_REQUIRED_ATTRIBUTES Object when the collection is
 mandatory, or in an LSP_ATTRIBUTES Object when the collection is
 desired, but not mandatory.
 When a node receives a Path message which carries an
 LSP_REQUIRED_ATTRIBUTES Object with the Cost Collection Flag
 set, if local policy determines that the Cost information is not
 to be provided to the endpoints, it MUST return a PathErr
 message with:
 o Error Code 2 (policy) and
 o Error subcode "Cost Recording Rejected" (value to be
 assigned by IANA)
 to reject the Path message. Similarly, when a node receives a
 Path message which carries an LSP_REQUIRED_ATTRIBUTES Object
 with the Delay Collection Flag set, if local policy determines
 Ali, Swallow, Filsfils Expires December 2018 [Page 9]

 Internet‑Draft draft‑ietf‑teas‑te‑metric‑recording‑07.txt

 that the Delay information is not to be provided to the
 endpoints, it MUST return a PathErr message with:
 o Error Code 2 (policy) and
 o Error subcode "Delay Recording Rejected" (value to be
 assigned by IANA)
 to reject the Path message. Likewise, when a node receives a
 Path message which carries an LSP_REQUIRED_ATTRIBUTES Object
 with the Delay Variation Collection Flag set, if local policy
 determines that the Delay Variation information is not to be
 provided to the endpoints, it MUST return a PathErr message
 with:
 o Error Code 2 (policy) and
 o Error subcode "Delay Variation Recording Rejected" (value
 to be assigned by IANA)
 to reject the Path message.
 When a node receives a Path message which carries an
 LSP_ATTRIBUTES Object and the Cost and/or Delay and/or Delay
 Variation Collection Flag set, if local policy determines that
 the corresponding information is not to be provided to the
 endpoints, or the information is not known, the Path message
 SHOULD NOT be rejected due to the recording restriction and the
 Path message SHOULD be forwarded without any Cost and/or Delay
 and/or Delay Variation sub‑object(s) in the RRO of the
 corresponding outgoing Path message.
 If local policy permits the recording of the Cost and/or Delay
 and/or Delay Variation information, the processing node SHOULD
 add corresponding information for the local TE link, as defined
 below, to the RRO of the corresponding outgoing Path message.
 The A‑bit for the Delay MUST be set as described in RFC 7471
 [RFC7471]. Similarly, the A‑bit for the Delay Variation MUST be
 set as described in RFC 7471 [RFC7471]. It then forwards the
 Path message to the next node in the downstream direction. The
 processing node MUST retain a record of the Cost and/ or Delay
 and/ or Delay Variation Collection request for reference during
 Resv processing described below.
 If the addition of Cost and/or Delay and/or Delay Variation
 information to the RRO would result in the RRO exceeding its
 maximum possible size or becoming too large for the Path message
 to contain it, the requested information MUST NOT be added. If
 the Cost and/or Delay and/or Delay Variation collection request
 was contained in an LSP_REQUIRED_ATTRIBUTES Object, the
 processing node MUST behave as specified by RFC 3209 [RFC3209]
 and drop the RRO from the Path message entirely. If the Cost
 Ali, Swallow, Filsfils Expires December 2018 [Page 10]
 Internet‑Draft draft‑ietf‑teas‑te‑metric‑recording‑07.txt

 and/or Delay and/or Delay Variation collection request was
 contained in an LSP_ATTRIBUTES Object, the processing node MAY
 omit some or all of the corresponding information from the RRO;
 otherwise it MUST behave as specified by RFC 3209 [RFC3209] and
 drop the RRO from the Path message entirely.
 Following the steps described above, the intermediate nodes of
 the LSP can collect the Cost and/or Delay and/or Delay Variation
 information in the RRO during the processing of the Path message
 hop by hop. When the Path message arrives at the egress node,
 the egress node receives the corresponding information in the
 RRO.
 Per RFC 3209 [RFC3209], when issuing a Resv message for a Path
 message, which contains an RRO, an egress node initiates the RRO
 process by adding an RRO to the outgoing Resv message. The
 processing for RROs contained in Resv messages then mirrors that
 of the Path messages.
 When a node receives a Resv message for an LSP for which Cost
 and/or Delay and/or Delay Variation Collection was specified,
 then when local policy allows recording of the requested
 information, the node SHOULD add corresponding information, to
 the RRO of the outgoing Resv message, as specified below. The
 A‑bit for the Delay MUST be set as described in RFC 7471
 [RFC7471]. Similarly, the A‑bit for the Delay Variation MUST be
 set as described in RFC 7471 [RFC7471]. When the Resv message
 arrives at the ingress node, the ingress node can extract the
 requested information from the RRO in the same way as the egress
 node.
 Note that a link's Cost and/ or Delay and/ or Delay Variation
 information for the upstream direction cannot be assumed to be
 the same as that in the downstream.
 o For Path and Resv messages for a unidirectional LSP, a node
 SHOULD include Cost and/ or Delay and/ or Delay Variation
 sub‑objects in the RRO for the downstream data link only.
 o For Path and Resv messages for a bidirectional LSP, a node
 SHOULD include Cost and/ or Delay and/ or Delay Variation
 sub‑objects in the RRO for both the upstream data link and
 the downstream data link from the local node. In this
 case, the node MUST include the metric information in the
 same order for both Path messages and Resv messages. That
 is, the Cost and/ or Delay and/ or Delay Variation sub‑
 object(s) for the upstream link is added to the RRO before
 the corresponding sub‑object for the downstream link.
 If Cost and/ or Delay and/ or Delay Variation data is added
 for both the upstream and downstream links, the two sets of
 the data MUST be added in separate corresponding sub‑
 Ali, Swallow, Filsfils Expires December 2018 [Page 11]

 Internet‑Draft draft‑ietf‑teas‑te‑metric‑recording‑07.txt

 object(s). A single Cost or Delay or Delay Variation sub‑
 object MUST NOT contain a mixture of the applicable data
 for upstream and downstream directions. When adding a Cost
 or Delay or Delay Variation sub‑object to an RRO, the D‑bit
 MUST be set appropriately to indicate the direction of the
 TE Link. If the same value applies in both directions, it
 SHOULD be added to both the corresponding upstream and
 downstream sub‑objects.
 Based on the local policy, a transit node may edit a Path or
 Resv RRO to remove route information (e.g. node or interface
 identifier information) before forwarding it. A node that does
 this SHOULD summarize the cost, Delay and Delay Variation data.
 How a node that performs the RRO edit operation calculates the
 Cost and/ or Delay and/or Delay variation metric is beyond the
 scope of this document.
 A node SHOULD NOT add Cost or Delay or Delay Variation
 information without an explicit request for the corresponding
 information being made by the ingress node in the Path message.
 4.2. Metric Update
 When the Cost and/or Delay and/or Delay Variation information of
 a link is changed, the endpoints of LSPs using that link need to
 be aware of the changes. When a change to Cost or Delay or
 Delay Variation information associated with a link occurs, the
 procedures defined in Section 4.4.3 of RFC 3209 [RFC3209] MUST
 be used to refresh the corresponding metric information if the
 change is to be communicated to other nodes according to the
 local node's policy. If local policy is that the Cost and/or
 Delay and/or Delay Variation change SHOULD be suppressed or
 would result in no change to the previously signaled
 information, the node SHOULD NOT send an update.
 4.3. Domain Boundaries
 If mandated by local policy, a node MAY remove Cost and/or Delay
 and/or Delay Variation information from any RRO in a Path or
 Resv message being processed. A node that does this SHOULD
 summarize the Cost, Delay and Delay Variation data. How a node
 that performs the RRO edit operation calculates the Cost, Delay
 and/or Delay variation metric is beyond the scope of this
 document.
 4.4. Endpoint processing
 Based on the procedures described above, the endpoints can get
 the Cost and/or Delay and/or Delay Variation information
 automatically. Then the endpoints can for instance advertise it
 as a TE link to the routing instance based on the procedure
 described in [RFC6107] and configure the corresponding TE metric
 Ali, Swallow, Filsfils Expires December 2018 [Page 12]

 Internet‑Draft draft‑ietf‑teas‑te‑metric‑recording‑07.txt

 information of the Forwarding Adjacency (FA) or Routing
 Adjacency (RA) automatically. How the end point uses the
 collected information is outside the scope of this document.
 The ingress and egress nodes of a LSP may calculate the end‑to‑
 end Cost, Delay and/or Delay variation properties of the LSP
 from the supplied values in the Resv or Path RRO, respectively.
 Typically, Cost and Delay are additive metrics, but Delay
 variation is not an additive metric. The means by which the
 ingress and egress nodes compute the end‑to‑end Cost, Delay and
 Delay variation metric from information recorded in the RRO is a
 local decision and is beyond the scope of this document.
 Based on the local policy, the ingress and egress nodes can
 advertise the calculated end‑to‑end Cost, Delay and/or Delay
 variation properties of the FA or RA LSP in TE link
 advertisement to the routing instance based on the procedure
 described in RFC 7471 [RFC7471], [DRAFT‑ISIS‑TE‑METRIC].
 4.5. Compatibility
 A node that does not recognize the Cost and/or Delay and/or
 Delay Variation Collection Flag in the Attribute Flags TLV is
 expected to proceed as specified in RFC 5420 [RFC5420].
 Specifically, the node is expected to pass the TLV on unaltered
 if it appears in a LSP_ATTRIBUTES object. On the other hand, if
 the TLV appears in a LSP_REQUIRED_ATTRIBUTES object, the node is
 expected to reject the Path message with the Error Code and
 Value defined in RFC 5420 [RFC5420].
 A node that does not recognize the Cost and/or Delay and/or
 Delay Variation RRO sub‑object is expected to behave as
 specified in RFC 3209 [RFC3209]: unrecognized sub‑objects are to
 be ignored and passed on unchanged.
 5. Manageability Considerations
 5.1. Policy Configuration
 In a border node of inter‑domain or inter‑layer network, the
 following Cost and/or Delay and/or Delay Variation processing
 policy SHOULD be capable of being configured:
 o Whether the node is allowed to participate in Cost or Delay
 or Delay Variation collection.
 o Whether the node should notify changes to collected Cost
 and/ or Delay and/ or Delay Variation information to
 endpoint nodes as described in section 4.2.
 Ali, Swallow, Filsfils Expires December 2018 [Page 13]

 Internet‑Draft draft‑ietf‑teas‑te‑metric‑recording‑07.txt

 o Whether the Cost and/or Delay and/or Delay Variation of the
 domain or specific layer network can be exposed to the
 nodes outside the domain or layer network, or whether they
 SHOULD be summarized, mapped to values that are
 comprehensible to nodes outside the domain or layer
 network, or removed entirely.
 A node using RFC 5553 [RFC5553] and PKS MAY apply the same
 policy.
 6. Security Considerations
 This document builds on the mechanisms defined in [RFC3473],
 which also discusses related security measures. In addition,
 [RFC5920] provides an overview of security vulnerabilities and
 protection mechanisms for the GMPLS control plane. The
 procedures defined in this document permit the transfer of Cost
 and/or Delay and/or Delay Variation data between layers or
 domains during the signaling of LSPs, subject to policy at the
 layer or domain boundary. It is recommended that domain/layer
 boundary policies take the implications of releasing Cost and/or
 Delay and/or Delay Variation information into consideration and
 behave accordingly during LSP signaling.
 7. IANA Considerations
 7.1. RSVP Attribute Bit Flags
 IANA has created a registry and manages the space of the
 Attribute bit flags of the Attribute Flags TLV, as described in
 section 11.3 of RFC 5420 [RFC5420], in the "Attribute Flags"
 section of the "Resource Reservation Protocol‑Traffic
 Engineering (RSVP‑TE) Parameters" registry located in
 http://www.iana.org/assignments/rsvp‑te‑ parameters".
 This document introduces the following three new Attribute Bit
 Flags:
 Bit No Name Attribute Attribute RRO Reference
 Flags Path Flags Resv
 ‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑ ‑‑‑‑‑‑‑
 TBA by Cost Yes No Yes This I‑D
 IANA Collection
 Flag

 TBA by Delay Yes No Yes This I‑D
 IANA Collection
 Flag
 Ali, Swallow, Filsfils Expires December 2018 [Page 14]

 Internet‑Draft draft‑ietf‑teas‑te‑metric‑recording‑07.txt

 TBA by Delay Yes No Yes This I‑D
 IANA Variation
 Collection
 Flag

 7.2. ROUTE_RECORD sub‑object
 IANA manages the "RSVP PARAMETERS" registry located at
 http://www.iana.org/assignments/rsvp‑parameters. This document
 introduces the following three new RRO sub‑object:
 Type Name Reference
 ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
 TBA by IANA Cost sub‑object This I‑D
 TBA by IANA Delay sub‑object This I‑D
 TBA by IANA Delay Variation sub‑object This I‑D
 7.3. Policy Control Failure Error subcodes
 IANA manages the assignments in the "Error Codes and Globally‑
 Defined Error Value Sub‑Codes" section of the "RSVP PARAMETERS"
 registry located at http://www.iana.org/assignments/rsvp‑
 parameters. This document introduces the following three new
 Policy Control Failure Error sub‑code:

 Value Description Reference
 ‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑

 TBA by IANA Cost Recoding Rejected This I‑D

 TBA by IANA Delay Recoding Rejected This I‑D

 TBA by IANA Delay Variation Recoding Rejected This I‑D

 Ali, Swallow, Filsfils Expires December 2018 [Page 15]

 Internet‑Draft draft‑ietf‑teas‑te‑metric‑recording‑07.txt

 8. References
 8.1. Normative References
 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.
 [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan,
 V., and G. Swallow, "RSVP‑TE: Extensions to RSVP for
 LSP Tunnels", RFC 3209, December 2001.
 [RFC3473] Berger, L., "Generalized Multi‑Protocol Lab Switching
 (GMPLS) Signaling Resource ReserVation Protocol‑
 Traffic Engineering (RSVP‑TE) Extensions", RFC 3473,
 January 2003.
 [RFC5420] Farrel, A., Ed., Papadimitriou, D., Vasseur, JP., and
 A. Ayyangarps, "Encoding of Attributes for MPLS LSP
 Establishment Using Resource Reservation Protocol
 Traffic Engineering (RSVP‑TE)", RFC 5420, February
 2009.
 [RFC7471] S. Giacalone, D. Ward, J. Drake, A. Atlas, S.
 Previdi., "OSPF Traffic Engineering (TE) Metric
 Extensions", RFC 7471, March 2015.
 [DRAFT‑ISIS‑TE‑METRIC] S. Previdi, S. Giacalone, D. Ward, J.
 Drake, A. Atlas, C. Filsfils, "IS‑IS Traffic
 Engineering (TE) Metric Extensions", draft‑ietf‑isis‑
 te‑metric‑extensions, work in progress.
 8.2. Informative References
 [RFC4208] Swallow, G., Drake, J., Ishimatsu, H., and Y. Rekhter,
 "Generalized Multiprotocol Label Switching (GMPLS)
 User‑Network Interface (UNI): Resource ReserVation
 Protocol‑Traffic Engineering (RSVP‑TE) Support for the
 Overlay Model", RFC 4208, October 2005.
 [RFC2209] Braden, R. and L. Zhang, "Resource ReSerVation
 Protocol (RSVP) ‑‑ Version 1 Message Processing
 Rules", RFC 2209, September 1997.
 [RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS
 Networks", RFC 5920, July 2010.
 [RFC8001] F. Zhang, O. Gonzalez de Dios, M.
 Hartley, Z. Ali, C. Margaria,, "RSVP‑TE Extensions for
 Collecting SRLG Information", draft‑ietf‑teas‑rsvp‑te‑
 srlg‑collect.txt, work in progress.

 Acknowledgements

 Authors would like to thank Ori Gerstel, Gabriele Maria
 Galimberti, Luyuan Fang and Walid Wakim for their review
 comments.

Ali, Swallow, Filsfils Expires December 2018 [Page 16]

Internet‑Draft draft‑ietf‑teas‑te‑metric‑recording‑07.txt
Contributors
 Sajal Agarwal
 Cisco Systems
 Email: sajaagar@cisco.com
 Authors' Addresses
 Zafar Ali
 Cisco Systems, Inc.
 Email: zali@cisco.com

 George Swallow
 Cisco Systems, Inc.
 swallow@cisco.com

 Clarence Filsfils
 Cisco Systems, Inc.
 cfilsfil@cisco.com

 Matt Hartley
 Cisco Systems
 Email: mhartley@cisco.com

 Kenji Kumaki
 KDDI Corporation
 Email: ke‑kumaki@kddi.com

 Rudiger Kunze
 Deutsche Telekom AG
 Ruediger.Kunze@telekom.de

draft-ietf-teas-te-topo-and-tunnel-modeling-03 - Expires: April 22, 2019 October

Index
Back 5
Prev
Next
Forward 5

TEAS Working Group

Internet Draft

Intended status: Informational

Igor Bryskin

Huawei Technologies

Vishnu Pavan Beeram

Juniper Networks

Tarek Saad

Cisco Systems Inc

Xufeng Liu

Volta Networks

Expires: April 22, 2019 October 22, 2018

 TE Topology and Tunnel Modeling for Transport Networks

 draft-ietf-teas-te-topo-and-tunnel-modeling-03

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

 This Internet-Draft will expire on April 22, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Abstract

 This document describes how to model TE topologies and tunnels for
 transport networks, by using the TE topology YANG model [I-D.ietf-
 teas-yang-te-topo] and the TE tunnel YANG model [I-D.ietf-teas-yang-
 te].

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [RFC2119].

Table of Contents

	1. Modeling Considerations
	 1.1. TE Topology Model

	 1.2. TE Topology Modeling Constructs

	 1.3. Abstract TE Topology Calculation, Configuration and Maintenance
	 1.3.1. Single-Node Abstract TE Topology

	 1.3.2. Full Mesh Link Abstract TE Topology

	 1.3.3. Star-n-Spokes Abstract TE Topology

	 1.3.4. Arbitrary Abstract TE Topology

	 1.3.5. Customized Abstract TE Topologies

	 1.3.6. Hierarchical Abstract TE Topologies

	 1.4. Merging TE Topologies Provided By Multiple Providers
	 1.4.1. Dealing With Multiple Abstract TE Topologies Provided By The Same Provider

	 1.5. Configuring Abstract TE Topologies

	 1.6. TE Tunnel Model

	 1.7. TE Tunnel/Transport Service Modeling Constructs
	 1.7.1. Bidirectional Tunnels

	 1.8. Transport Service Mapping

	 1.9. Multi-Domain Transport Service Coordination

	2. Use Cases
	 2.1. Use Case 1. Transport service control on a single layer multi-domain transport network

	 2.2. Use Case 2. End-to-end TE tunnel control on a single layer multi-domain transport network

	 2.3. Use Case 3. Transport service control on a ODUk/Och multi- domain transport network with Ethernet access links

	 2.4. Use Case 4. Transport service control on a ODUk/Och multi- domain transport network with multi-function access links

	 2.5. Use Case 5. Real time updates of IP/MPLS layer TE link attributes that depend on supporting transport connectivity (e.g. transport SRLGs, propagation delay, etc.)

	 2.6. Use Case 6. Virtual Network Service

	3. Security Considerations

	4. IANA Considerations

	5. References
	 5.1. Normative References

	 5.2. Informative References

	6. Acknowledgments

	Appendix A. Data Examples
	 A.1. Use Case 1
	 A.1.1. Domain 1

	 A.1.2. Domain 2

	 A.1.3. Domain 3

	Authors' Addresses

1. Modeling Considerations

1.1. TE Topology Model

 The TE Topology Model is written in YANG modeling language. It is
 defined and developed by the IETF TEAS WG and is documented as "YANG
 Data Model for TE Topologies" [I-D.ietf-teas-yang-te-topo]. The model
 describes a TE network provider's Traffic Engineering data store as
 it is seen by a client. It allows for the provider to convey to each
 of its clients:

 o information on network resources available to the client in the
 form of one or several native TE topologies (for example, one for
 each layer network supported by the provider);

 o one or several abstract TE topologies, customized on per-client
 basis and sorted according to the provider's preference as to how
 the abstract TE topologies are to be used by the client;

 o updates with incremental changes happened to the previously
 provided abstract/native TE topology elements;

 o updates on telemetry/state information the client has expressed
 interest in;

 o overlay/underlay relationships between the TE topologies provided
 to the client (e.g. TE path computed in an underlay TE topology
 supporting a TE link in an overlay TE topology);

 o client/server inter-layer adaptation relationships between the TE
 topologies provided to the client in the form of TE inter-layer
 locks or transitional links;

 The TE Topology Model allows a network client to:

 o (Re-)configure/negotiate abstract TE topologies provided to the
 client by a TE network provider, so that said abstract TE
 topologies optimally satisfy the client's needs, constraints and
 optimization criteria, based on the client's network planning,
 service forecasts, telemetry information extracted from the
 network, previous history of service provisioning and performance
 monitoring, etc.;

 o Obtain abstract/native TE topologies from multiple providers and
 lock them horizontally (inter-domain) and vertically (inter-layer)
 into the client's own native TE topologies;

 o Configure, with each provider the trigger, frequency and contents
 of the TE topology update notifications;

 o Configure, with each provider the trigger, frequency and contents
 of the TE topology telemetry (e.g. statistics counters) update
 notifications.

1.2. TE Topology Modeling Constructs

 Figure 1. TE Topology

 o TE domain - a multi-layer traffic engineered network under direct
 and complete control of a single authority, network provider. TE
 domain can be described by one or more TE topologies. For example,
 separate TE topologies can describe each of the domain's layer
 networks. TE domain can hierarchically encompass/parent other
 (child) TE domains, and can be encompassed by its own parent.

 o TE topology - a graphical representation of a TE domain. TE
 topology is comprised of TE nodes (TE graph vertices)
 interconnected via TE links (TE graph edges).

 /* TE topology */
 augment /nw:networks/nw:network:
 /* TE topology global ID */
 +‑‑rw provider‑id? te‑types:te‑global‑id
 +‑‑rw client‑id? te‑types:te‑global‑id
 +‑‑rw te‑topology‑id? te‑types:te‑topology‑id
 ..
 /* TE topology general parameters */
 | +‑‑rw preference? uint8
 | +‑‑rw optimization‑criterion? identityref
 ..

 /* TE topology list of TE nodes */
 augment /nw:networks/nw:network/nw:node:
 +‑‑rw te‑node‑id? te‑types:te‑node‑id
 ..
 /* TE topology list of TE links */
 augment /nw:networks/nw:network/nt:link:
 ..
 /* TE topology list of TE link termination points */
 augment /nw:networks/nw:network/nw:node/nt:termination‑point:
 +‑‑rw te‑tp‑id? te‑types:te‑tp‑id
 ..

 Figure 2. TE Node

 o TE node - an element of a TE topology (appears as a vertex on TE
 graph). A TE node represents one or several nodes (physical
 switches), or a fraction of a node. A TE node belongs to and is
 fully defined in exactly one TE topology. A TE node is assigned a
 TE topology scope-unique ID. TE node attributes include
 information related to the data plane aspects of the associated
 node(s) (e.g. TE node's connectivity matrix), as well as
 configuration data (such as TE node name). A given TE node can be
 reached on the TE graph, representing the TE topology, over one of
 TE links terminated by the TE node.

 /* TE node */
 augment /nw:networks/nw:network/nw:node:
 /* TE node ID */
 +‑‑rw te‑node‑id? te‑types:te‑node‑id
 ..
 /* TE node general attributes */
 | +‑‑rw te‑node‑attributes */
 ..
 /* TE node connectivity matrices */
 | +‑‑rw connectivity‑matrices
 ..
 /* TE node underlay TE topology */
 | +‑‑rw underlay‑topology {te‑topology‑hierarchy}?
 | +‑‑rw network‑ref? leafref
 ..
 /* TE node information sources*/
 | +‑‑ro information‑source‑entry* [information‑source]
 ..
 /* TE node statistics */
 +‑‑ro statistics
 ..
 /* TE node TTP list */
 +‑‑rw tunnel‑termination‑point* [tunnel‑tp‑id]
 ..

 o TE link - an element of a TE topology (appears as an edge on TE
 graph), TE link is unidirectional and its arrow indicates the TE
 link's direction. Edges with two arrows on the TE topology graph
 (see Figure 1) represent bi-directional combinations of two
 parallel oppositely directed TE links. A TE link represents one or
 several physical links or a fraction of a physical link. A TE
 link belongs to and is fully defined in exactly one TE topology. A
 TE link is assigned a TE topology scope-unique ID. TE link
 attributes include parameters related to the data plane aspects of
 the associated link(s) (e.g. unreserved bandwidth, resource
 maps/pools, etc.), as well as the configuration data (such as
 remote node/link IDs, SRLGs, administrative colors, etc.) A TE
 link is connected to a TE node, terminating the TE link via
 exactly one TE link termination point (LTP).

 /* TE link */
 augment /nw:networks/nw:network/nt:link:
 /* TE link bundle information */
 | +‑‑rw (bundle‑stack‑level)?
 | | | +‑‑rw bundled‑links
 | | +‑‑rw component‑links
 ..
 /* TE link general attributes */
 | +‑‑rw te‑link‑attributes

 ..
 /* TE link underlay TE topology */
 | +‑‑rw underlay! {te‑topology‑hierarchy}?
 | | +‑‑rw primary‑path
 | | +‑‑rw backup‑path* [index]

 ..
 /* TE link layer network */
 | +‑‑rw interface‑switching‑capability* [switching‑
 capability encoding]

 ..
 /* TE link protection type */
 | | +‑‑rw protection‑type? uint16

 ..

 /* TE link supporting TE tunnels */
 | | +‑‑rw tunnels

 ..
 /* TE link transitional link flag */
 | +‑‑ro is‑transitional? empty

 ..
 /* TE link information sources */
 | +‑‑ro information‑source? te‑info‑source

 ..
 /* TE link statistics */
 +‑‑ro statistics

 ..

 o Intra-domain TE link - TE link connecting two TE nodes within the
 same TE topology representing a TE network domain (e.g. L14 in
 Figure 1). From the point of view of the TE topology where the
 intra-domain TE link is defined, the TE link is close-ended, that
 is, both local and remote TE nodes of the link are defined in the
 same TE topology.

o Inter‑domain TE link ‑ TE link connecting two border TE nodes
 that belong to separate TE topologies describing neighboring TE
 network domains (e.g. L3x in Figure 1). From the point of view of
 the TE topology where the inter‑domain TE link is defined, the TE
 link is open‑ended, that is, the remote TE node of the link is not
 defined in the TE topology where the local TE node and the TE link
 itself are defined.

 [Note: from the point of view of a TE node terminating an inter-
 domain TE link there is no difference between inter-domain and
 access TE links]

 o Access TE link - TE link connecting a border TE node of a TE
 topology describing a TE network domain to a TE node of a TE
 topology describing a customer network site (e.g. L1x in Figure 1)
 From the point of view of the TE topology where the access TE link
 is defined, the TE link is open-ended, that is, the remote TE node
 of the link (t.e. TE node representing customer network
 element(s)) is not defined in the TE topology where the local TE
 node and the TE link itself are defined.

 [Note: from the point of view of a TE node terminating an access
 TE link there is no difference between access and inter-domain TE
 links]

o Dynamic TE link ‑ a TE link that shows up in (and disappears
 from) a TE topology as a result of multi‑layer traffic
 engineering. Dynamic TE link (supported by a hierarchy TE tunnel
 dynamically set up in a server layer network) is automatically
 (i.e. without explicit configuration request) added to a client
 layer network TE topology to augment the topology with additional
 flexibility to ensure successful completion of the path
 computation for and provisioning of a client layer network
 connection/LSP. For example, an ODUk hierarchy TE tunnel can
 support a dynamic Ethernet layer TE link to enable provisioning of
 an Ethernet layer connection on a network that does not have
 sufficient static Ethernet layer connectivity. Likewise, dynamic
 TE link is automatically removed from the TE topology (and its
 supporting hierarchy TE tunnel released) as soon as the TE link
 stops carrying client layer connections/LSPs.

 o TE link termination point (LTP) - a conceptual point of connection
 of a TE node to one of the TE links terminated by the TE node (see
 Figure 2a). Unlike TE link, LTP is bi-directional - an inbound TE
 link and an oppositely directed outbound TE link have to be
 connected to the TE node via the same LTP to constitute a bi-
 directional TE link combination.

 Figure 2a. Bi-directional TE link combination (left), independent

 uni-directional TE links (right)

 /* LTP */
 augment /nw:networks/nw:network/nw:node/nt:termination‑point:
 /* LTP ID */
 +‑‑rw te‑tp‑id? te‑types:te‑tp‑id
 /* LTP network layer ID */
 | +‑‑rw interface‑switching‑capability* [switching‑
 capability encoding]
 | | +‑‑rw switching‑capability identityref

 | | +‑‑rw encoding identityref
 /* LTP bandwidth information */
 | | +‑‑rw max‑lsp‑bandwidth* [priority]
 | | +‑‑rw priority uint8
 | | +‑‑rw bandwidth? te‑bandwidth
 /* LTP inter‑layer locks */
 | +‑‑rw inter‑layer‑lock‑id? uint32

 ..

 o TE tunnel termination point (TTP) - an element of TE topology
 representing one or several potential TE tunnel
 termination/adaptation points (e.g. OCh layer transponder). A TTP
 is hosted by exactly one TE node (see Figure 2). A TTP is assigned
 a TE node scope-unique ID. Depending on the TE node's internal
 constraints, a given TTP hosted by the TE node could be accessed
 via one, several or all TE links originated/terminated from/by the
 TE node. TTP's important attributes include Local Link
 Connectivity List, Adaptation Client Layer List, TE inter-layer
 locks (see below), Unreserved Adaptation Bandwidth (announcing the
 TTP's remaining adaptation resources sharable between all
 potential client LTPs), and Property Flags (indicating
 miscellaneous properties of the TTP, such as capability to support
 1+1 protection for a TE tunnel terminated on the TTP).

 /* TTP */
 +‑‑rw tunnel‑termination‑point* [tunnel‑tp‑id]
 /* TTP ID */
 +‑‑rw tunnel‑tp‑id binary
 /* TTP layer network ID */
 | +‑‑rw switching‑capability? identityref
 | +‑‑rw encoding? identityref
 //* Inter‑layer‑locks supported by TTP */
 | +‑‑rw inter‑layer‑lock‑id? uint32
 /* TTP's protection capabilities */
 | +‑‑rw protection‑type? identityref
 /* TTP's list of client layer users */
 | +‑‑rw client‑layer‑adaptation

 ..
 /* TTP's Local Link Connectivity List (LLCL) */

 | +‑‑rw local‑link‑connectivities

 ..

 o Label - in the context of circuit switched layer networks
 identifies a particular resource on a TE link (e.g. Och
 wavelength, ODUk container)

 +--:(label)

 +--rw value? rt-types:generalized-label

 Figure 3. TTP Local Link Connectivity List

 o TTP basic local link connectivity list (basic LLCL) - a list of TE
 link/label combinations terminated by the TTP-hosting TE node
 (effectively the same as LTP/label pairs), which the TTP could be
 connected to (see Figure 3, upper left). From the point of view of
 a potential TE path, basic LLCL provides a list of permissible
 LTP/label pairs the TE path needs to start/stop on for a
 connection, taking the TE path, to be successfully terminated on
 the TTP in question.

 o TTP detailed local link connectivity list (detailed LLCL) - basic
 LLCL extended to provide a set of costs (such as intra-node
 summary TE metric, delay, SRLGs, etc.) associated with each LLCL
 entry (see Figure 3, upper right)

 /* TTP LLCL */
 | +‑‑rw local‑link‑connectivities
 | +‑‑rw number‑of‑entries? uint16
 /* LLCL entry */

 /* LLCL entry LTP */
 | +‑‑rw link‑tp‑ref leafref

 ..

 /* LLC entry label range */
 | +‑‑rw label‑restriction* [inclusive‑exclusive label‑start]
 | | +‑‑rw inclusive‑exclusive enumeration
 | | +‑‑rw label‑start rt‑types:generalized‑label
 | | +‑‑rw label‑end? rt‑types:generalized‑
 label
 | | +‑‑rw range‑bitmap? binary

 /* LLCL entry underlay TE path(s) */
 | +‑‑rw underlay! {te‑topology‑hierarchy}?
 | | +‑‑rw primary‑path
 | | +‑‑rw backup‑path* [index]
 /* LLCL entry protection type */
 | | +‑‑rw protection‑type? uint16
 /* LLCL entry supporting TE tunnels */
 | | +‑‑rw tunnels
 /* LLCL entry bandwidth parameters */
 | +‑‑rw max‑lsp‑bandwidth* [priority]

 ..

 /* LLCL entry metrics (vector of costs) */
 | +‑‑rw te‑default‑metric? uint32
 | +‑‑rw te‑delay‑metric? uint32
 | +‑‑rw te‑srlgs
 | | +‑‑rw value* te‑types:srlg
 | +‑‑rw te‑nsrlgs {nsrlg}?

 ..
 /* LLCL entry ID */
 | | +‑‑rw id* uint32

 o TTP adaptation client layer list - a list of client layers that
 could be directly adopted by the TTP. This list is necessary to
 describe complex multi-layer (more than two layer) client-server
 layer hierarchies and, in particular, to identify the position of
 the TTP in said hierarchies.

 /* TTP adaptation client layer list */
 | +‑‑rw client‑layer‑adaptation
 | | +‑‑rw switching‑capability* [switching‑capability
 encoding]
 /* Client layer ID */
 | | +‑‑rw switching‑capability identityref
 | | +‑‑rw encoding identityref
 /* Adaptation bandwidth available for the client layer */
 | | +‑‑rw bandwidth? te‑bandwidth

 Figure 4. TE Node Connectivity Matrix

 o TE node basic connectivity matrix - a TE node attribute describing
 the TE node's switching capabilities/limitations in the form of
 permissible switching combinations of the TE node's LTP/label
 pairs (see Figure 4, upper left). From the point of view of a
 potential TE path arriving at the TE node at a given inbound
 LTP/label, the node's basic connectivity matrix describes
 permissible outbound LTP/label pairs for the TE path to leave the
 TE node.

 o TE node detailed connectivity matrix - TE node basic connectivity
 matrix extended to provide a set of costs (such as intra-node
 summary TE metric, delay, SRLGs, etc.) associated with each
 connectivity matrix entry (see Figure 4, upper right).

 /* TE node connectivity matrix */
 | +‑‑rw connectivity‑matrix* [id]
 | +‑‑rw id uint32

 | +‑‑rw from /* left LTP */
 | | +‑‑rw tp‑ref? leafref
 | +‑‑rw to /* right LTP */
 | | +‑‑rw tp‑ref? leafref
 | +‑‑rw is‑allowed? boolean

 /* Connectivity matrix entry label range */
 | +‑‑rw label‑restriction* [inclusive‑exclusive
 label‑start]
 | | +‑‑rw inclusive‑exclusive enumeration
 | | +‑‑rw label‑start rt‑
 types:generalized‑label
 | | +‑‑rw label‑end? rt‑
 types:generalized‑label
 | | +‑‑rw range‑bitmap? binary

 /* Connectivity matrix entry underlay TE path(s) */
 | +‑‑rw underlay! {te‑topology‑hierarchy}?
 | | +‑‑rw primary‑path
 | | +‑‑rw backup‑path* [index]
 /* Connectivity matrix entry protection type */
 | | +‑‑rw protection‑type? uint16
 /* Connectivity matrix entry supporting TE tunnels */
 | | +‑‑rw tunnels
 /* Connectivity matrix entry bandwidth parameters */
 | +‑‑rw max‑lsp‑bandwidth* [priority]

 ..
 /* Connectivity matrix entry metrics (vector of costs) */
 | +‑‑rw te‑default‑metric? uint32
 | +‑‑rw te‑delay‑metric? uint32
 | +‑‑rw te‑srlgs
 | | +‑‑rw value* te‑types:srlg
 | +‑‑rw te‑nsrlgs {nsrlg}?

 ..
 /* Connectivity matrix entry ID */
 | | +‑‑rw id* uint32

 Figure 5. TE Path

 o TE path - an ordered list of TE node/link IDs (each possibly
 augmented with labels) that interconnects over a TE topology a
 pair of TTPs and could be used by a connection (see Figure 5). A
 TE path could, for example, be a product of a successful path
 computation performed for a given TE tunnel

 /* TE path */

 /* TE topology the path is defined in */
 | | | +‑‑rw network‑ref? leafref
 /* Path type (IRO, XRO, ERO, RRO) */
 | | | +‑‑rw path‑type? identityref

 /* TE path elements */
 | | | +‑‑rw path‑element* [path‑element‑id]
 | | | +‑‑rw path‑element‑id uint32
 | | | +‑‑rw index? uint32
 | | | +‑‑rw (type)?
 /* Numbered TE link path element */
 | | | +‑‑:(ip‑address)
 | | | | +‑‑rw ip‑address‑hop
 | | | | +‑‑rw address? inet:ip‑address

 | | | | +‑‑rw hop‑type? te‑hop‑type
 /* AS number path element */
 | | | +‑‑:(as‑number)
 | | | | +‑‑rw as‑number‑hop
 | | | | +‑‑rw as‑number? binary
 | | | | +‑‑rw hop‑type? te‑hop‑type
 /* Unnumbered TE link path element */
 | | | +‑‑:(unnumbered‑link)
 | | | | +‑‑rw unnumbered‑hop
 | | | | +‑‑rw te‑node‑id? inet:ip‑address
 | | | | +‑‑rw tp‑id? uint32
 | | | | +‑‑rw hop‑type? te‑hop‑type
 /* Label path element */
 | | | +‑‑:(label)
 | | | | +‑‑rw label‑hop
 | | | | +‑‑rw value? rt‑types:generalized‑label
 | | | | +‑‑rw direction? boolean
 | | | +‑‑:(sid)
 | | | +‑‑rw sid‑hop
 | | | +‑‑rw sid? rt‑types:generalized‑label

 o TE path segment - a contiguous fragment of a TE path

 Figure 6. TE Inter-Layer Lock

 o TE inter-layer lock - a modeling concept describing client-server
 layer adaptation relationships important for multi-layer traffic
 engineering. It is an association of M client layer LTPs and N
 server layer TTPs, within which data arriving at any of the client
 layer LTPs could be adopted onto any of the server layer TTPs. A
 TE inter-layer lock is identified by inter-layer lock ID, which is
 unique across all TE topologies provided by the same provider. The
 client layer LTPs and the server layer TTPs associated by a given
 TE inter-layer lock share the same inter-layer lock ID value.

In Figure 6 a TE inter‑layer lock IL_1 associates six client layer
LTPs (C_LTP_1 ‑ C_LTP_6) with two server layer TTPs (S_TTP_1 and
S_TTP_2). As mentioned, they all have the same attribute ‑inter‑
layer lock ID: IL_1, which is the only parameter/value indicating
the association. A given LTP may have zero, one or more inter‑
layer lock IDs. In the case of multiple inter‑layer lock IDs,
this implies that the data arriving at the LTP can be adopted onto
any of TTPs associated with all specified inter‑layer locks. For
example, C_LTP_1 may be attributed with two inter‑layer locks‑
IL_1 and IL_2. This would mean that C_LTP_1 for adaptation
purposes can use not just TTPs associated with inter‑layer lock
IL_1 (i.e. S_TTP_1 and S_TTP_2 in the Figure), but any of TTPs
associated with inter‑layer lock IL_2. Likewise, a given TTP may
have one or more inter‑layer locks, meaning that it can offer the
adaptation service to any client layer LTP having an inter‑layer
lock matching one of its own.

 LTPs and TTPs associated within the same TE inter-layer lock may
 be hosted by the same (hybrid, multi-layer) TE node or by multiple
 TE nodes defined in the same or separate TE topologies. The latter
 case is especially important because TE topologies of different
 layer networks could be modeled by separate augmentations of the
 basic (common to all layers) TE topology model.

| +‑‑rw inter‑layer‑lock‑id? uint32

 o Transitional link - an alternative method of modeling of client-
 server adaptation relationship. Transitional link is a bi-
 directional link connecting an LTP in a client layer to an LTP in
 a server layer, which is associated (via TTP's LLCL) with a server
 layer TTP capable of adopting of the client layer data onto a TE
 tunnel terminated by the TTP. Important attributes pf a
 transitional link are loca;/remote LTP IDs, TE metric and
 available adaptation bandwidth.

 Figure 7. Native and Abstract TE Topologies

 o Native TE topology - a TE topology as it is known (to full extent
 and unmodified) to the TE topology provider (see lower part of
 Figure 7.). A native TE topology might be discovered via various
 routing protocols and/or subscribe/publish techniques. For
 example, a first-level TE topology provider (such as a T-SDN
 Domain Controller, DC) may auto-discover its native TE
 topology(ies) by participating in the domain's OSPF-TE protocol
 instance; while a second-level TE topology provider (such as a
 Hierarchical T-SDN Controller. HC) normally builds its native TE
 topology(ies) based on TE topologies exposed by each of the
 subordinate, first- level TE topology providers.

 o Underlay TE topology - a TE topology that serves as a base for
 constructing overlay TE topologies.

 o Overlay TE topology - a TE topology constructed based on one or
 more underlay TE topologies. Each TE node of the overlay TE
 topology represents a separate underlay TE topology (that could be
 mapped onto an arbitrary segment of a native TE topology). Each TE
 link of the overlay TE topology represents, generally speaking, an
 arbitrary TE path in one of the underlay TE topologies. The
 overlay TE topology and the supporting underlay TE topologies may
 represent separate layer networks (e.g. OTN/ODUk and WDM/OCh
 respectively) or the same layer network.

 o Abstract TE topology - an overlay TE topology created by a
 provider to describe its network in some abstract way. An abstract
 TE topology contains at least one abstract TE topology element,
 such as TE node or TE link. An abstract TE topology is built based
 on contents of one or more of the provider's native TE topologies
 (serving as underlay(s)), the provider's policies and the client's
 preferences (see upper part of Figure 7).

 o Customized TE topology - a TE topology tailored for a given
 provider's client. A customized TE topology is usually but not
 always an abstract TE topology. For example, a given abstract TE
 topology could be exposed to a group or all provider's clients (in
 which case the abstract TE topology is not a customized TE
 topology). Likewise, a given naive TE topology could be customized
 for a given client (for example, by removing high delay TE links
 the client does not care about). So customized TE topology is not
 an abstract TE topology, because it does not contain abstract TE
 topology elements

 o TE inter-domain plug - a TE link attribute meaningful for open-
 ended inter-domain/access TE links. It contains a network-wide
 unique value (inter-domain plug ID) that identifies in the network
 a connectivity supporting the inter-domain/access TE link in
 question. It is expected that a given pair of neighboring domain
 TE topologies (provided by separate providers) will have each at
 least one open-ended inter-domain/access TE link with a TE inter-
 domain plug matching to one provided by its neighbor, thus
 allowing for a client of both domains to identify adjacent nodes
 in the separate neighboring TE topologies and resolve the open-
 ended inter-domain/access TE links by connecting them regardless
 of the links respective local/remote node ID/link ID attributes.
 Inter-domain plug IDs may be assigned and managed by a central
 network authority. Alternatively, inter-domain plug IDs could be
 dynamically auto-discovered (e.g. via LMP protocol).

 +‑‑rw external‑domain
 | +‑‑rw network‑ref? leafref
 | +‑‑rw remote‑te‑node‑id? te‑types:te‑node‑id
 | +‑‑rw remote‑te‑link‑tp‑id? te‑types:te‑tp‑id
 | +‑‑rw plug‑id? uint32

1.3. Abstract TE Topology Calculation, Configuration and Maintenance

 The TE Topology Model does not prescribe what and how abstract TE
 topologies are computed, configured, manipulated and supported by a
 TE network (e.g. transport network) provider. However, it is assumed
 that:

 o All TE topologies, native or abstract, conveyed to the same or
 different clients, are largely independent one from another. This
 implies that each TE topology, generally speaking, has an
 independent name space for TE node and link IDs, SRLGs, etc.
 (possibly overlapping with the name spaces of other TE
 topologies);

 o All abstract TE topologies are bound to the respective underlay
 native or abstract TE topologies only by the overlay/underlay
 relationships defined by the TE Topology Model, but, otherwise,
 the abstract TE topologies are decoupled from their respective
 underlay TE topologies.

 It is envisioned that an original set of abstract TE topologies is
 produced by a TE network provider for each of its clients based on
 the provider's local configurations and/or policies, as well as the
 client-specific profiles. The original set of abstract TE topologies
 offered to a client may be accepted by the client as-is.
 Alternatively, the client may choose to negotiate/re-configure the
 abstract TE topologies, so that the latter optimally satisfy the
 client's needs. In particular, for each of the abstract TE topologies
 the client may request adding/removing TE nodes, TE links, TTPs
 and/or modifying re-configurable parameters of the existing
 components. The client may also request different optimization
 criteria as compared to those used for the original abstract TE
 topology optimization, or/and specify various topology-level
 constraints. The provider may accept or reject all or some abstract
 TE topology re-configuration requests. Hence, the abstract TE
 topology negotiation process may take multiple iterations before the
 provider and each of its clients agree upon a set of abstract TE
 topologies and their contents. Furthermore, the negotiation process
 could be repeated over time to produce new abstract TE topologies
 optimal to best suit evolving circumstances.

 Figure 8. Native Transport Network Domain TE Topology as an Underlay

 for Abstract TE Topologies

 Let's assume that a native transport network domain TE topology to be
 as depicted in Figure 8. The popular types of abstract TE topologies
 based on this native TE topology as an underlay are described in the
 following sections.

1.3.1. Single-Node Abstract TE Topology

 Figure 9. Blocking/Asymmetrical TE Node with Basic Connectivity

 Matrix Attribute

 In Figure 9, the transport network domain is presented to a client as
 a one-node abstract TE topology, where the single TE node (AN1)
 represents the entire domain and terminates all of the inter-
 domain/access TE links connecting the domain to its adjacent domains
 (i.e. TE links L1...L8). Because AN1 represents the entire domain the
 node's Underlay TE Topology attribute matches the ID of one of the
 domain's native TE topologies (e.g. one presented in Figure 8).
 [Note: all or some of the underlay TE topologies a given abstract TE
 topology depends on could be catered to the client by the provider
 along with the abstract TE topology in question or upon separate
 request(s) issued by the client.]

 One important caveat about abstract TE node AN1 is that it should be
 considered as an asymmetrical/blocking switch, because, generally
 speaking, it is not guaranteed that a suitable TE path exists between
 any given pair of inter-domain TE links into/out of the domain. This
 means from the TE Topology model point of view that there are certain
 limitations as to how AN1's LTPs could be interconnected
 inside/across the TE node. The model allows for asymmetrical/blocking
 switches by specifying for the associated TE nodes a non-empty basic
 connectivity matrix attribute describing permissible inbound-outbound
 TE link/label switching combinations. It is assumed that the
 provider's path computer can compute a set of optimal TE paths,
 connecting inbound TE link/label_x <=> outbound TE link/label_y
 combinations inside the abstract TE node over the TE node's underlay
 TE topology. Based on the results of such computations, AN1's
 connectivity matrix can be (re-)generated and (re-)conveyed to the
 abstract TE topology client.

A richer version of the basic connectivity matrix is the detailed
connectivity matrix. The latter not only describes permissible
inbound TE link/label_x <=> TE link/label TE link/label_y switching
combinations, but also provides connectivity matrix entry specific
vectors of various costs/metrics (in terms of delay, bandwidth,
intra‑node SRLGs and summary TE metrics) that a potential TE path
will accrue, should a given connectivity matrix entry be selected by
the path for crossing the TE node (see Figure 10).

 Figure 10. Blocking/Asymmetrical TE Node with Detailed Connectivity

 Matrix Attribute

1.3.2. Full Mesh Link Abstract TE Topology

 Figure 11. Full Mesh Link Abstract TE Topology

 In Figure 11, the transport network domain is abstracted in the
 following way.

 o Each of the underlay native TE topology border TE nodes (i.e., the
 TE nodes terminating at least one inter-domain/access TE link,
 such as TE nodes S3 or S11 in Figure 8) is represented in the
 abstract TE topology as a separate abstract TE node, matching one-
 for-one to the respective border TE node of the underlay TE
 topology. For example, S3' of the abstract TE topology represents
 S3 of the underlay TE topology in Figure 8. [Note that such a
 relationship is modeled via Supporting Node attribute of TE node
 S3' specifying the ID of S3, as well as the ID of the TE topology
 where S3 is defined (i.e. TE topology in Figure 8)]. Likewise, S9'
 represents S9, S11' represents S11 and so forth;

 o TE nodes S3', S5', S8', S9' and S11' are interconnected via a full
 mesh of abstract TE links. It is assumed that the provider's path
 computer can compute a set of optimal TE paths over one or more of
 underlay TE topologies (such as presented in Figure 8)- one for
 each of said abstract TE links; and the provider can set up the TE
 tunnels in the network supporting each of the abstract TE links,
 either during the abstract TE topology configuration (in the case
 of committed/pre-established abstract TE links), or at the time
 the first client's connection is placed on the abstract TE link in
 question (the case of uncommitted abstract TE links). [Note that
 so (re-)computed TE paths, as well as the IDs of respective
 underlay TE topologies used for their computation are normally
 catered to the client in the Underlay TE path attribute of the
 associated abstract TE links]

 The configuration parameters of each of the abstract TE links (such
 as layer ID, bandwidth and protection requirements, preferred TE
 paths across the underlay TE topology for the primary and backup
 connections, etc.) are expected to be found in the abstract TE
 topology profiles/templates locally configured with the provider or
 pushed to the provider by the client via the policy NBI. Each of the
 abstract TE links may be later re-configured or removed by direct
 configuration requests issued by the client via TE Topology NBI.
 Likewise, additional abstract TE links may be requested by the client
 at any time.

 Some possible variants/flavors of the Full Mesh Link Abstract TE
 Topology described above are:

 o Partial Mesh Link Abstract TE Topology (where some of the abstract
 TE links from the full mesh are missing);

 o Double Mesh Link Abstract TE Topology (where each pair of abstract
 TE nodes is connected via two diverse abstract TE links).

1.3.3. Star-n-Spokes Abstract TE Topology

 Figure 12. Star-n-Spoke Abstract TE Topology

 The Full Mesh Link Abstract TE Topology suffers from the n-squared
 problem; that is, the number of required abstract TE links is
 proportional to square of the number of native TE topology border TE
 nodes. This problem can be mitigated (i.e., the number of required
 abstract TE links may be significantly reduced) by adding, to the
 abstract TE topology, an additional abstract TE node (the star)
 representing one or several interconnected non-border TE nodes from
 the native TE topology. Abstract TE links in the Star-n-Spokes
 Topology connect the star with all other TE nodes of the topology
 (the spokes). For example, abstract TE node AN1 in Figure 12 could
 represent collectively TE nodes S7, S10 and S4 of the native TE
 topology (see Figure 8) with abstract TE links connecting AN1 with
 all other TE nodes in the Star-n-Spokes Abstract TE Topology in
 Figure 12.

 In order to introduce a composite abstract TE node, (e.g. AN1 in
 Figure 12) representing in a given abstract TE topology an arbitrary
 segment of another TE topology (e.g. TE nodes S7, S12 and S4 of the
 TE topology in Figure 8) the TE topology provider is expected to
 perform the following operations:

o Copy the TE topology segment to be represented by the abstract TE
 node (i.e. TE nodes S7, S10 and S4 in Figure 8, as well as the TE
 links interconnecting them) into a separate auxiliary TE topology
 (with a separate TE topology ID);

o Set for each TE node and TE link of the auxiliary TE topology the
 Supporting Node/Link attribute matching the original TE topology
 ID, as well as the ID of the respective original TE node/link of
 the original TE topology. For example, if S7" of the auxiliary TE
 topology is a copy of S7 of the original TE topology, the
 Supporting Node attribute of S7" will specify the ID of the
 original TE topology (presented in figure 8) and the ID of S7;

 o Set for the abstract TE node AN1 the Underlay TE Topology
 attribute matching the auxiliary TE Topology ID

 Furthermore, the Star-n-Spokes Abstract TE topology provider is
 expected to:

 o Compute/provision TE paths/tunnels supporting each of the abstract
 TE links in Figure 12 (i.e. abstract TE links connecting the
 spokes to the star, AN1) as described in 1.3.2;

 o Generate the AN1's Basic/Detailed Connectivity Matrix attribute
 based on intra-node path computations performed on the AN1's
 underlay (i.e. auxiliary) TE topology and describing permissible
 inbound TE link/label_x. outbound TE link/label_y switching
 combinations as described in 1.3.1

1.3.4. Arbitrary Abstract TE Topology

 Figure 13. Arbitrary Abstract TE Topology

 To achieve an optimal tradeoff between the number of components, the
 amount of information exposed by a transport network provider and the
 amount of path computations required to keep said information up-to-
 date, the provider may present the TE network domain as an arbitrary
 abstract TE topology comprised of any number of abstract TE nodes
 interconnected by abstract TE links (see Figure 13). Each of the
 abstract TE nodes can represent a single or several interconnected TE
 nodes from the domain's underlay (native or lower level abstract) TE
 topology, or a fraction of an underlay TE node. [Note that each of
 the abstract TE nodes of the TE topology in Figure 13 is expected to
 be introduced and maintained by the provider following the
 instructions as described in 1.3.3; likewise, each of the abstract TE
 links of the topology is expected to be computed, provisioned and
 maintained as described in 1.3.2]

1.3.5. Customized Abstract TE Topologies

 Figure 14. Customized Abstract TE Topology(ies)

 A transport network/domain provider may serve more than one client.
 In such a case, the provider "slices" the network/domain resources
 and exposes a slice for each of the clients in the form of a
 customized abstract TE topology. In Figure 14, the provider serves
 two clients (Blue and Red). Client Blue is provided with the Blue
 abstract TE topology supported by the blue TE tunnels or paths in the
 underlay (native) TE topology (depicted in the Figure with blue
 broken lines). Likewise, client Red is provided with the Red abstract
 TE topology supported by the red TE tunnels or paths in the underlay
 TE topology.

1.3.6. Hierarchical Abstract TE Topologies

 Figure 15. Hierarchy of Abstract TE Topologies

 As previously mentioned, an underlay TE topology for a given abstract
 TE topology component does not have to be one of the domain's native
 TE topologies - another (lower level) domain's abstract TTE topology
 can be used instead. This means that abstract TE topologies are
 hierarchical in nature.

 Figure 15 provides an example of abstract TE topology hierarchy. In
 this Figure the blue topology is a top level abstract TE topology
 catered to by the provider to one of the domain's clients. One of the
 TE links of the blue topology - link EF - is supported by a TE path
 E'-M-P-Q-N-F' computed in the underlay TE topology (red topology),
 which happens to be domain's (lower level) abstract TE topology..
 Furthermore, as shown, the TE link PQ - one of the TE links
 comprising the E'-M-P-Q-N-F' path - is supported by its own underlay
 TE path, P'-X-Q' - computed on one of the domain's native TE
 topologies.

 Importantly, each TE link and TE node of a given abstract TE topology
 has, generally speaking, its individual stack/hierarchy of underlay
 TE topologies.

1.4. Merging TE Topologies Provided By Multiple Providers

 A client may receive TE topologies provided by multiple providers,
 each of which managing a separate domain of an interconnected multi-
 domain transport network. In order to make use of said topologies,
 the client is expected to merge (inter-connect) the provided TE
 topologies into one or more client's native TE topologies, each of
 which homogeneously representing the multi-domain transport network.
 This makes it possible for the client to select end-to-end TE paths
 for its TE tunnel connections traversing multiple domains.

 In particular, the process of merging TE topologies includes:

 o Identifying neighboring TE domains and locking their TE topologies
 horizontally by connecting their inter-domain open-ended TE links;

 o Renaming TE node, link, and SRLG IDs into ones allocated from a
 separate name space; this is necessary because all TE topologies
 are considered to be, generally speaking, independent with a
 possibility of clashes among TE node, link or SRLG IDs. Original
 TE node/link IDs along with the original TE topology ID are stored
 in the Source attribute of the respective TE nodes/links of the
 merged TE topology;

 o Locking, TE topologies associated with different layer networks
 vertically according to provided TE inter-layer locks; this is to
 facilitate inter-layer path computations across multiple TE
 topologies provided by the same topology provider.

 Figure 16. Merging Domain TE Topologies

 Figure 16 illustrates the process of merging, by the client, of TE
 topologies provided by the client's providers.

 In the Figure, each of the two providers caters to the client a TE
 topology (abstract or native), describing the network domain under
 the respective provider's control. The client, by consulting the
 attributes of the open-ended inter-domain/access TE links - such as
 TE inter-domain plugs or remote TE node/link IDs - is able to
 determine that:

 1. the two domains are adjacent and are interconnected via three
 inter-domain TE links, and;

 2. each domain is connected to a separate customer site, connecting
 the left domain in the Figure to customer devices C-11 and C-12,
 and the right domain to customer devices C-21, C-22 and C-23.

 Therefore, the client interconnects the open-ended TE links, as shown
 on the upper part of the Figure.

 As mentioned, one way to interconnect the open-ended inter-
 domain/access TE links of neighboring domains is to mandate the
 providers to specify remote nodeID/linkID attributes in the provided
 inter-domain/access TE links. This, however, may prove to be not
 flexible. For example, the providers may not be aware of the
 respective remote nodeID/linked values. More importantly, this option
 does not allow for the client to mix-n-match multiple (more than one)
 TE topologies catered by the same providers (see the next section).
 Another, more flexible, option to resolve the open-ended inter-
 domain/access TE links is by decorating them with the TE inter-domain
 plug attribute. The attribute specifies inter-domain plug ID - a
 network-wide unique value that identifies on the network connectivity
 supporting a given inter-domain/access TE link. Instead of specifying
 remote node ID/link ID, an inter-domain/access TE link may provide a
 non-zero inert-domain plug ID. It is expected that two neighboring
 domain TE topologies (provided by separate providers) will have each
 at least one open-ended inter-domain/access TE link with a TE inter-
 domain plug matching to one provided by its neighbor. For example,
 the inter-domain TE link originating from node S5 of the Domain 1 TE
 topology (Figure 8) and the inter-domain TE link coming from node S3
 of Domain2 TE topology may specify matching TE inter-domain plugs
 (i.e. carrying the same inter-domain plug ID). This would allow for
 the client to identify adjacent nodes in the separate neighboring TE
 topologies and resolve the inter-domain/access TE links connecting
 them regardless of their respective nodeIDs/linkIDs (which, as
 mentioned, could be allocated from independent name spaces).

 Inter-domain plug IDs may be assigned and managed by a central
 network authority. Alternatively, inter-domain plug IDs could be
 dynamically auto-discovered (e.g. via LMP protocol).

 Furthermore, the client renames the TE nodes, links and SRLGs offered
 in the abstract TE topologies by assigning to them IDs allocated from
 a separate name space managed by the client. Such renaming is
 necessary, because the two abstract TE topologies may have their own
 name spaces, generally speaking, independent one from another; hence,
 ID overlaps/clashes are possible. For example, both TE topologies
 have TE nodes named S7, which, after renaming, appear in the merged
 TE topology as S17 and S27 respectively. IDs of the original (i.e.
 abstract TE topology) TE nodes/links along with the ID of the
 abstract TE topology they belong to are stored in the Source
 attribute of the respective TE nodes/links of the merged TE topology.
 For example, the Source attribute of S27 will contain S7 and the TE
 topology ID of the abstract TE topology describing domain 2.

 Once the merging process is complete, the client can use the merged
 TE topology for path computations across both domains, for example,
 to compute a TE path connecting C-11 to C-23.

1.4.1. Dealing With Multiple Abstract TE Topologies Provided By The Same
 Provider

 Figure 17. Multiple Abstract TE Topologies Provided By TE Topology

 Providers

 A given provider may expose more than one abstract TE topology to the
 client. For example, one abstract TE topology could be optimized
 based on a lowest-cost criterion, while another one could be based on
 best possible delay metrics, while yet another one could be based on
 maximum bandwidth availability for the client connections.
 Furthermore, the client may request all or some providers to expose
 additional abstract TE topologies, possibly of a different type
 and/or optimized differently, as compared to already-provided TE
 topologies. In any case, the client should be prepared for a provider
 to offer to the client more than one abstract TE topology.

 It should be up to the client to decide how to mix-and-match multiple
 abstract TE topologies provided by each of the providers, as well as
 how to merge them into the client's native TE topologies. The client
 also decides how many such merged TE topologies it needs to produce
 and maintain. For example, in addition to the merged TE topology
 depicted on the upper part of Figure 16, the client may merge the
 abstract TE topologies received from the two providers, as shown in
 Figure 17, into the client's additional native TE topologies, as
 shown in Figure 18.

 [Note: allowing for the client mix-n-matching of multiple TE
 topologies assumes that TE inter-domain plugs (rather than remote
 nodeID/linked) option is used for identifying neighboring domains and
 inter-domain/access TE link resolution.]

 Figure 18. Multiple Native (Merged) Client's TE Topologies

 It is important to keep in mind that each of the three native
 (merged) TE topologies could be used by the client for computing TE
 paths for any of the multi-domain connections. The choice as to which
 topology to use for a given connection depends on the
 connection/tunnel parameters/requirements and the topology's style
 and optimization criteria.

1.5. Configuring Abstract TE Topologies

 When a client receives one or more abstract TE topologies from one of
 its providers, it may accept the topologies as-is and merge then into
 one or more of its own native TE topologies. Alternatively, the
 client may choose to request a re-configuration of one, some or all
 abstract TE topologies provided by the providers. Specifically, with
 respect to a given abstract TE topology, some of its TE nodes/links
 may be requested to be removed, while additional ones may be
 requested to be added. It is also possible that existing TE
 nodes/links may be asked to be re-configured. For example, a set of
 TE links may be requested to be disjoint from each other by
 configuring the same Non Sharing Risk Link Group (NSRLG) attribute
 for all links from the set. Such a configuration would force the
 provider to place TE tunnels supporting the TE links from the set
 onto sufficiently disjoint TE paths computed in the tunnels underlay
 TE topology. Furthermore, the topology-wide optimization criteria may
 be requested to be changed. For example, underlay TE paths supporting
 the abstract TE links, currently optimized to be shortest (least-
 cost) paths, may be requested to be re-optimized based on the minimal
 delay criteria. Additionally, the client may request the providers to
 configure entirely new abstract TE topologies and/or to remove
 existing ones. Furthermore, future periodic or one time additions,
 removals and/or re-configurations of abstract TE topology elements
 and/or their attributes could be (re-)scheduled by the client ahead
 of time.

 It is the responsibility of the client to implement the logic behind
 the above-described abstract TE topology negotiation. It is expected
 that the logic is influenced by the client's local
 configuration/templates, policies conveyed by client's clients, input
 from the network planning process, telemetry processor, analytics
 systems and/or direct human operator commands. Figure 19 exemplifies
 the abstract TE topology negotiation process. As shown in the Figure,
 the original abstract TE topology exposed by a provider was requested
 to be re-configured. Specifically, one of the abstract TE links was
 asked to be removed, while three new ones were asked to be added to
 the abstract TE topology.

 Figure 19. Provider. Client Abstract TE Topology Negotiation

1.6. TE Tunnel Model

 The TE Tunnel Model is written in YANG modeling language. It is
 defined and developed by the IETF TEAS WG and is documented as "YANG
 Data Model for Traffic Engineering Tunnels and Interfaces" [I-D.ietf-
 teas-yang-te]. Among other things the model describes a TE network
 provider's TE Tunnel data store as it is seen and influenced by a
 client.

 The TE Tunnel Model allows for the provider to convey to each of its
 clients:

 o information on TE tunnels provided to the client that are fully
 contained within the controlled network domain,

 o information on multi-domain TE tunnel segments across the network
 domain controlled by the provider;

 o information on connections/LSPs, supporting TE tunnels and TE
 tunnel segments;

 o updates in response to changes to the client's active TE
 tunnels/segments and the connections supporting them,

 o updates in response to the TE tunnel/segment telemetry/state
 information the client has expressed an interest in.

 The TE Tunnel Model allows for a TE network client to:

 o Issue configuration requests to set up, tear down, replace, modify
 and manipulate end-to-end TE tunnels, as well as segments of
 multi-domain TE tunnels across the network controlled by the
 provider;

 o Request and obtain information on active TE tunnels/segments and
 connections supporting them;

 o Subscribe to and configure with the provider triggers, pace and
 contents of the TE tunnel/segment change update notifications;

 o Subscribe to and configure with the provider triggers, pace and
 contents of the TE tunnel/segment event notifications, such as
 detected alarms, faults, protection/restoration actions, etc..

 o Subscribe to and configure with the provider triggers, pace and
 contents of TE tunnel/segment telemetry (e.g. statistics counters)
 update notifications.

1.7. TE Tunnel/Transport Service Modeling Constructs

 Figure 20. TE tunnel

 o TE tunnel - a connection-oriented service provided by a layer
 network of delivery of a client's data between source and
 destination tunnel termination points. A TE tunnel in a server
 layer network may support a link in a client layer network (e.g.
 OCh layer TE tunnel supporting ODU4 link). In Figure 20, a TE
 tunnel interconnects tunnel termination points resident on
 switches C-R2 and C-R3. A TE tunnel is realized via (supported by,
 mapped onto) one or more layer network connections/LSPs

 /* TE tunnel */
 | +‑‑rw tunnel* [name]
 | | +‑‑rw name leafref

 | | +‑‑rw identifier? leafref
 /* TE tunnel configuration parameters */
 | | +‑‑rw config
 | | | +‑‑rw name? string
 | | | +‑‑rw type? identityref
 | | | +‑‑rw identifier? uint16
 | | | +‑‑rw description? string
 | | | +‑‑rw switchcap? identityref
 | | | +‑‑rw encoding? identityref
 | | | +‑‑rw protection‑type? identityref
 | | | +‑‑rw admin‑status? identityref
 | | | +‑‑rw preference? uint8
 | | | +‑‑rw reoptimize‑timer? uint16
 | | | +‑‑rw source? inet:ip‑address
 | | | +‑‑rw destination? inet:ip‑address
 | | | +‑‑rw src‑tp‑id? binary
 | | | +‑‑rw dst‑tp‑id? binary
 | | | +‑‑rw topology‑id? te‑types:te‑topology‑
 id
 | | | +‑‑rw ignore‑overload? boolean
 | | | +‑‑rw bandwidth‑generic? te‑types:te‑bandwidth
 | | | +‑‑rw disjointness? te‑types:te‑path‑
 disjointness
 | | | +‑‑rw setup‑priority? uint8
 | | | +‑‑rw hold‑priority? uint8
 | | | +‑‑rw signaling‑type? identityref
 /* Hierarchy TE tunnel parameters */
 | | | +‑‑rw hierarchical‑link‑id
 | | | | +‑‑rw local‑te‑node‑id? te‑types:te‑node‑id
 | | | | +‑‑rw local‑te‑link‑tp‑id? te‑types:te‑tp‑id
 | | | | +‑‑rw remote‑te‑node‑id? te‑types:te‑node‑id
 | | | | +‑‑rw te‑topology‑id? te‑types:te‑
 topology‑id
 /* Bidirectional TE tunnel parameters */
 | | | +‑‑rw bidirectional
 | | | +‑‑rw association
 | | | +‑‑rw id? uint16
 | | | +‑‑rw source? inet:ip‑address
 | | | +‑‑rw global‑source? inet:ip‑address
 | | | +‑‑rw type? identityref
 | | | +‑‑rw provisioing? identityref
 /* TE tunnel state */
 | | +‑‑ro state
 | | | +‑‑ro name? string
 | | | +‑‑ro type? identityref
 | | | +‑‑ro identifier? uint16
 ..

 | | | +‑‑ro oper‑status? identityref
 /* TE tunnel primary path and LSP container */
 | | +‑‑rw p2p‑primary‑paths
 | | | +‑‑rw p2p‑primary‑path* [name]
 | | | +‑‑rw name
 /* Configuration */
 leafref
 | | | +‑‑rw config
 | | | | +‑‑rw name? string
 | | | | +‑‑rw preference? uint8
 | | | | +‑‑rw path‑setup‑protocol? identityref
 | | | | +‑‑rw path‑computation‑method? identityref
 | | | | +‑‑rw path‑computation‑server? inet:ip‑
 address
 | | | | +‑‑rw compute‑only? empty
 | | | | +‑‑rw use‑cspf? boolean
 | | | | +‑‑rw verbatim? empty
 | | | | +‑‑rw lockdown? empty
 | | | | +‑‑rw named‑explicit‑path? leafref
 | | | | +‑‑rw named‑path‑constraint? leafref {te‑
 types:named‑path‑constraints}?
 /* state */
 | | | +‑‑ro state
 | | | | +‑‑ro name? string
 | | | | +‑‑ro preference? uint8
 | | | | +‑‑ro path‑setup‑protocol? identityref
 | | | | +‑‑ro path‑computation‑method? identityref
 | | | | +‑‑ro path‑computation‑server? inet:ip‑
 address
 | | | | +‑‑ro compute‑only? empty
 | | | | +‑‑ro use‑cspf? boolean
 | | | | +‑‑ro verbatim? empty
 | | | | +‑‑ro lockdown? empty
 | | | | +‑‑ro named‑explicit‑path? leafref
 | | | | +‑‑ro named‑path‑constraint? leafref
 {te‑types:named‑path‑constraints}?
 /* Computed path */
 /* Computed path properties/metrics /
 | | | | +‑‑ro computed‑path‑properties
 | | | | | +‑‑ro path‑metric* [metric‑type]
 | | | | | | +‑‑ro metric‑type identityref
 | | | | | | +‑‑ro accumulative‑value? uint64
 /* Computed path affinities */
 | | | | | +‑‑ro path‑affinities
 | | | | | | +‑‑ro constraints* [usage]
 | | | | | | | +‑‑ro usage?
 identityref

 | | | | | | | +‑‑ro (style)?
 | | | | | | | +‑‑:(value)
 | | | | | | | | +‑‑ro value? te‑
 types:admin‑groups
 | | | | | | | +‑‑:(named)
 | | | | | | | +‑‑ro affinity‑names*
 [name]
 | | | | | | | +‑‑ro name string
 /* Computed path SRLGs */
 | | | | | +‑‑ro path‑srlgs
 | | | | | | +‑‑ro (style)?
 | | | | | | +‑‑:(values)
 | | | | | | | +‑‑ro usage? identityref
 | | | | | | | +‑‑ro values* te‑
 types:srlg
 | | | | | | +‑‑:(named)
 | | | | | | +‑‑ro constraints* [usage]
 | | | | | | +‑‑ro usage
 identityref
 | | | | | | +‑‑ro constraint
 | | | | | | +‑‑ro srlg‑names* [name]
 | | | | | | +‑‑ro name string
 /* Computed path sub‑objects */
 | | | | | +‑‑ro path‑computed‑route‑objects
 ..
 /* LSP (provisioned path) */
 | | | | +‑‑ro lsp* [source destination tunnel‑id
 lsp‑id extended‑tunnel‑id type]
 /* LSP parameters */
 | | | | +‑‑ro source leafref
 | | | | +‑‑ro destination leafref
 | | | | +‑‑ro tunnel‑id leafref
 | | | | +‑‑ro lsp‑id leafref
 | | | | +‑‑ro extended‑tunnel‑id leafref
 | | | | +‑‑ro type leafref
 | | | | +‑‑ro signaling‑type? identityref
 | | | +‑‑rw candidate‑p2p‑secondary‑paths
 | | | +‑‑rw candidate‑p2p‑secondary‑path*
 [secondary‑path]
 | | | +‑‑rw secondary‑path leafref
 | | | +‑‑rw config
 | | | | +‑‑rw secondary‑path? leafref
 | | | | +‑‑rw priority? uint16
 | | | | +‑‑rw path‑setup‑protocol?
 identityref
 | | | +‑‑ro state
 | | | +‑‑ro secondary‑path? leafref

 | | | +‑‑ro priority? uint16
 | | | +‑‑ro path‑setup‑protocol?
 identityref
 | | | +‑‑ro active? boolean

 /* TE tunnel secondary path and LSP container */

 | | +‑‑rw p2p‑secondary‑paths
 | | | +‑‑rw p2p‑secondary‑path* [name]
 ..
 | | | +‑‑rw name leafref
 | | | +‑‑rw config (same as for primary path)
 ...
 | | | +‑‑ro state (same as for primary, except for
 disjointedness_state)
 | | +‑‑ro disjointness_state? te‑types:te‑path‑
 disjointness...
 | | | +‑‑ro computed‑path‑properties (same as for
 primary path)
 ..
 | | | | +‑‑ro path‑affinities (same as for primary
 path)
 ..
 | | | | +‑‑ro path‑srlgs (same as for primary
 path)
 ..
 | | | | +‑‑ro path‑computed‑route‑objects
 ...
 /* LSP (provisioned path) */
 | | | +‑‑ro lsp (same as for the primary LSP)
 ..

o Tunnel termination point (TTP) ‑ a physical device inside a given
 node/switch realizing a TE tunnel termination function in a given
 layer network, as well as the TE tunnel's adaptation function
 provided for client layer network(s). One example of tunnel
 termination point is an OCh layer transponder. [Note: Tunnel
 termination points are not to be confused with TE tunnel
 termination points, which are TE representations of physical
 tunnel termination points. Similar to physical switches and links
 of the network, such as depicted in Figure 20, being represented
 on a TE topology describing the network as TE nodes and TE links,
 (physical) tunnel termination points (TTPs) are represented as TE
 tunnel termination points (TE TTPs, see 1.2) hosted by the TE
 nodes. For example, a provisioned connection/LSP starts on a
 source TTP, goes through a chain of physical links and stops on a
 destination TTP. In contrast, TE path (e.g. result of a path
 computation) starts on a source TE TTP, goes through a chain of TE
 links and stops on a destination TE TTP.]

 | | | +‑‑rw source? inet:ip‑address
 | | | +‑‑rw destination? inet:ip‑address
 | | | +‑‑rw src‑tp‑id? binary
 | | | +‑‑rw dst‑tp‑id? binary

 o TE tunnel hand-off point - an access link or inter-domain link by
 which a multi-domain TE tunnel enters or exits a given network
 domain, in conjunction with a layer network resource (such as a
 wavelength channel or ODUk container) allocated on the
 access/inter-domain link for the TE tunnel.

 o TE tunnel segment - a part of a multi-domain TE tunnel that spans
 a given network domain and is directly and fully controlled by the
 domain's controller, DC. TE tunnel segment is a fragment of a
 multi-domain TE tunnel between

 1. the source tunnel termination point and the TE tunnel hand-off
 point outbound from the TE tunnel's first domain (head TE tunnel
 segment);

 2. inbound and outbound TE tunnel hand-off points into/from a given
 domain (transit TE tunnel segment);

 3. inbound TE tunnel hand-off point into the TE tunnel's last
 domain and the destination tunnel termination point (tail TE
 tunnel segment);

 o Transport service - the same as TE tunnel segment

 o Hierarchy TE tunnel - a server layer TE tunnel that supports a
 dynamically created TE link in the client layer network topology
 (e.g. see 1.2)

 /* Hierarchy TE tunnel parameters */
 | | | +‑‑rw hierarchical‑link‑id
 | | | | +‑‑rw local‑te‑node‑id? te‑types:te‑node‑id
 | | | | +‑‑rw local‑te‑link‑tp‑id? te‑types:te‑tp‑id
 | | | | +‑‑rw remote‑te‑node‑id? te‑types:te‑node‑id
 | | | | +‑‑rw te‑topology‑id? te‑types:te‑
 topology‑id

o Hierarchy transport service ‑ the first or the last segment of a
 multi‑domain hierarchy TE tunnel

 o Dependency TE tunnel - a hierarchical TE tunnel provisioned or to
 be provisioned in an immediayely adjacent server layer a given
 client layer TE tunnel depends on (i.e. carried or to be carried
 within)

 o Potential TE tunnel/segment - a TE tunnel/segment configured in
 COMPUTE_ONLY mode. For such a TE tunnel/segment TE paths to be
 taken by supporting connection(s) is/are computed and monitored,
 but the connection(s) are not provisioned

 | | | | +‑‑rw path‑computation‑method? identityref
 | | | | +‑‑rw path‑computation‑server? inet:ip‑
 address
 | | | | +‑‑rw compute‑only? empty
 | | | | +‑‑rw use‑cspf? Boolean

 Figure 20a. TE Tunnel Connections/LSPs

 o Layer network connection/connection/LSP - a layer network path
 supporting a TE tunnel by realizing its implied forwarding
 function. Said path is provisioned in a given layer network's data
 plane over a chain of links and cross-connected over switches
 terminating the links. It interconnects the supported TE tunnel's
 source and destination termination points (in the case of end-to-
 end connection) or TE tunnel's hand-off points (in the case of
 transport service connection) or the TE tunnel's two split-merge
 points (in the case of segment protection connection.

 Example: ODU2 connection supporting an ODU2 TE tunnel.

 /* LSP (provisioned path) */
 | | | | +‑‑ro lsp* [source destination tunnel‑id
 lsp‑id extended‑tunnel‑id type]
 /* LSP parameters */
 | | | | +‑‑ro source leafref
 | | | | +‑‑ro destination leafref
 | | | | +‑‑ro tunnel‑id leafref
 | | | | +‑‑ro lsp‑id leafref
 | | | | +‑‑ro extended‑tunnel‑id leafref
 | | | | +‑‑ro type leafref
 | | | | +‑‑ro signaling‑type? identityref
 ..
 | | | +‑‑ro priority? uint16
 | | | +‑‑ro path‑setup‑protocol?
 identityref
 | | | +‑‑ro active? Boolean

 o Working connection - the primary connection of the supported TE
 tunnel or transport service (see Figure 20a).

 o End-to-end protection connection - a secondary end-to-end
 connection of the supported TE tunnel (e.g. end-to-end 1+1
 protection connection, see Figure 20a).

 o Segment protection connection - a secondary connection of the
 supported transport service protecting the service over a given
 network domain (e.g. 1+1 segment protection connection, see Figure
 20a)

o Restored connection ‑ a connection after successful network
 failure restorationrestoration procedures

 o Current connection - the same as restored connection

 o Nominal connection - a connection as (re-)provisioned upon a
 client configuration request (i.e. a connection before any
 automatic network failure restoration re-configurations are
 carroed out, also a connection after restoration reversion
 procedures are successfully completed)

 o Unprotected TE tunnel/transport service - TE tunnel/transport
 service supported by a single (working/primary) connection/LSP

 o Protected TE tunnel/transport service - TE tunnel/transport
 service supported by one working connection/LSP and at least one
 protection/secondary connection/LSP

 o Restorable TE tunnel/transport service - TE tunnel/transport
 service with pre-configured automatic network failure restoration
 capabilities

 o TE tunnel/transport service automatic protection switchover - a
 process of switching of carrying user payload from the
 tunnel's/service's affected by a network failure working
 connection onto one of the tunnel's/service's healthy protection
 connection

o TE tunnel/transport service automatic protection reversion ‑ a
 process of switching of carrying user payload from the
 tunnel's/service's protection connection back onto the
 tunnel's/service's working connection after the latter was
 repaired from network failure

 o TE tunnel/transport service protection external command - a
 command, typically issued by an operator, which influences the
 automatic protection switchover and reversion.

 External commands are defined in [ITU-T G.800] and [RFC 4427]:

 . Freeze: A temporary configuration action that prevents any

 switch action to be taken and as such freezes the current
 state.

 . Clear Freeze: An action that clears the active Freeze state.

 . Lockout of Normal: A temporary configuration action that

 ensures that the normal traffic is not allowed to use the
 protection transport entity.

 As described in [ITU-T G.808], this command should be issued
 at both ends.

 . Clear Lockout of Normal: An action that clears the active

 Lockout of Normal state.

 . Lockout of Protection: A temporary configuration action that

 ensures that the protection transport entity is temporarily
 not available to transport a traffic signal (either normal or
 extra traffic).

 . Forced Switch: A switch action that swithes the extra traffic

 signal, the normal traffic signal, or the null signal to the
 protection transport entity, unless an equal or higher
 priority switch command is in effect.

 . Manual Switch: A switch action that switches the extra

 traffic signal, the normal traffic signal #i, or the null
 signal to the protection transport entity, unless a fault
 condition exists on other transport entities or an equal or
 higher priority switch command is in effect.

 . Exercise: An action to start testing if the APS communication

 is operating correctly. It is lower priority than any other
 state or command.

 . Clear: An action that clears the active near-end lockout of

 protection, forced switch, manual switch, WTR state, or
 exercise command

 o TE tunnel/transport service protection Hold-off time - a
 configured period of time to expire between the moment of
 detecting of the first network failure affecting the
 tunnel's/service's working connection and the begining of the
 tunnel's/service's automatic protection switchover procedures

 o TE tunnel/transport service protection WTR time - a configured
 period of time to expire between the moment of repairing the last
 network failure affecting the tunnel's/service's working
 connection and the begining of the tunnel's/service's automatic
 protection reversion procedures

 o TE tunnel/transport service automatic network failure restoration
 - a process of replacing of the tunnel's/service's connection(s)
 affected by one or more network failures away from the point(s) of
 failue

 o TE tunnel/transport service restoration reversion- a process of
 replacing of the tunnel's/service's connection(s) back onto the
 nominal connection paths after all network failures affecting the
 tunnel's/service's nominal connection(s) are repaired

 o TE tunnel/transport service restoration Hold-off time - a
 configured period of time to expire between the moment of
 detecting of the first network failure affecting the
 tunnel's/service's nominal or current connection and the beginning
 of the automatic connection restoration procedures

 o TE tunnel/transport service restoration WTR time - a configured
 period of time to expire between the moment of repairing the last
 network failure affecting the tunnel's/service's nominal
 connection and the begining of the connection automatic
 restoration reversion procedures

 o Configured restoration path - a TE path specified by the client to
 be used during the automatic network failure restoration operation
 on one of the TE tunnel's/transport service's nominal or current
 connections

 o Pre-computed restoration path - a configured restoration path to
 be validated by a path computer during the TE tunnel/transport
 service setup or client triggered modification

 o Pre-provisioned restoration path - a pre-computed restoration path
 to be pre-provisioned/pre-signaled in the network (with all
 associated network resources allocated but not necessarily bound
 into cross-connects) during the TE tunnel/transport service setup
 or client triggered modification

 o Connection configured path - a TE path (see 1.2) over a TE
 topology describing a layer network/domain that specifies (loosely
 or strictly) the client's requirements with respect to an ordered
 list of network nodes, links and resources on the links a given
 connection should go through

 | | +‑‑rw explicit‑route‑object* [index]
 | | +‑‑rw index leafref
 | | +‑‑rw explicit‑route‑usage? identityref
 (INCLUDE/EXCLUDE)
 | | | +‑‑rw index? uint32
 | | | +‑‑rw (type)?
 | | | +‑‑:(numbered)
 | | | | +‑‑rw numbered‑hop
 | | | | +‑‑rw address? te‑types:te‑tp‑
 id
 | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | +‑‑:(as‑number)
 | | | | +‑‑rw as‑number‑hop
 | | | | +‑‑rw as‑number? binary
 | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | +‑‑:(unnumbered)
 | | | | +‑‑rw unnumbered‑hop

 | | | | +‑‑rw node‑id? te‑types:te‑
 node‑id
 | | | | +‑‑rw link‑tp‑id? te‑types:te‑
 tp‑id
 | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | +‑‑:(label)
 | | | | +‑‑rw label‑hop
 | | | | +‑‑rw value? rt‑
 types:generalized‑label
 | | | +‑‑:(sid)
 | | | +‑‑rw sid‑hop
 | | | +‑‑rw sid? rt‑
 types:generalized‑label

o Connection exclusion path ‑ a TE path over a TE topology
 describing a layer network/domain that specifies the client's
 requirements with respect to an unordered list of network nodes,
 links and resources on the links to be avoided by a given
 connection

 | | +‑‑rw route‑object‑exclude‑always* [index]
 | | | +‑‑rw index leafref
 | | | | +‑‑rw index? uint32
 | | | | +‑‑rw (type)?
 | | | | +‑‑:(numbered)
 | | | | | +‑‑rw numbered‑hop
 | | | | | +‑‑rw address? te‑types:te‑tp‑
 id
 | | | | +‑‑:(as‑number)
 | | | | | +‑‑rw as‑number‑hop
 | | | | | +‑‑rw as‑number? binary
 | | | | +‑‑:(unnumbered)
 | | | | | +‑‑rw unnumbered‑hop
 | | | | | +‑‑rw node‑id? te‑types:te‑
 node‑id
 | | | | | +‑‑rw link‑tp‑id? te‑types:te‑
 tp‑id
 | | | | +‑‑:(label)
 | | | | | +‑‑rw label‑hop
 | | | | | +‑‑rw value? rt‑
 types:generalized‑label

 | | | | +‑‑:(sid)
 | | | | +‑‑rw sid‑hop
 | | | | +‑‑rw sid? rt‑
 types:generalized‑label

 o Connection computed path - a TE path over a TE topology describing
 a layer network/domain as computed (subject to all configured
 constraints and optimization criteria) for a given connection to
 take. Computed connection path could be thought as the TE path
 intended to be taken by the connection

 /* Computed path */
 /* Computed path properties/metrics /
 | | | | +‑‑ro computed‑path‑properties
 | | | | | +‑‑ro path‑metric* [metric‑type]
 | | | | | | +‑‑ro metric‑type identityref
 | | | | | | +‑‑ro accumulative‑value? uint64
 /* Computed path affinities */
 | | | | | +‑‑ro path‑affinities
 | | | | | | +‑‑ro constraints* [usage]
 | | | | | | | +‑‑ro usage?
 identityref
 | | | | | | | +‑‑ro (style)?
 | | | | | | | +‑‑:(value)
 | | | | | | | | +‑‑ro value? te‑
 types:admin‑groups
 | | | | | | | +‑‑:(named)
 | | | | | | | +‑‑ro affinity‑names*
 [name]
 | | | | | | | +‑‑ro name string
 /* Computed path SRLGs */
 | | | | | +‑‑ro path‑srlgs
 | | | | | | +‑‑ro (style)?
 | | | | | | +‑‑:(values)
 | | | | | | | +‑‑ro usage? identityref
 | | | | | | | +‑‑ro values* te‑
 types:srlg
 | | | | | | +‑‑:(named)
 | | | | | | +‑‑ro constraints* [usage]
 | | | | | | +‑‑ro usage
 identityref

 | | | | | | +‑‑ro constraint
 | | | | | | +‑‑ro srlg‑names* [name]
 | | | | | | +‑‑ro name string
 /* Computed path sub‑objects */
 | | | | | +‑‑ro path‑computed‑route‑objects
 ..

 o Connection actual path - an active connection's path as
 provisioned in the layer network's data plane in the form of a TE
 path over a TE topology describing the layer network/domain

1.7.1. Bidirectional Tunnels

 The TE Tunnel model supports the setup of unidirectional connections
 as well as multiple types of bidirectional connections.

 The bidirectional flag is used to indicate whether the TE Tunnel is
 unidirectional or bidirectional. In case of bidirectional TE Tunnels,
 the p2p-reverse-primary-path presense container is used to indicate
 whether the bidirectional TE Tunnel is native or not. This presense
 container cannot be instantiated for unidirectional TE Tunnels.

 Unidirectional TE Tunnel: the bidirectional flag is set to "False".

 The unidirectional path constraints are configured in the p2p-
 primary-path container (the p2p-reverse-primary-path presense
 container is not created).

 The server computes one unidirectional path and report it and its
 properties within the p2p-primary-path container.

 The server setup unidirectional LSPs and reports them under the p2p-
 primary-path container.

 Native bidirectional TE Tunnel: the bidirectional flag is set to
 "True" and the p2p-reverse-primary-path container is not created.

 The path constraints, applicable to both directions, are configured
 in the p2p-primary-path container.

 The server computes one bidirectional path and report it and its
 properties within the p2p-primary-path container.

 The server setup bidirectional LSPs and reports them under the p2p-
 primary-path container.

 Note that asymmetric bandwdith configuration is not supported with
 native bidirectional tunnels.

 Bidirectional (non-courouted) TE Tunnel: the bidirectional flag is
 set to "True" and the p2p-reverse-primary-path container is created.

 The path constraints, applicable to the forward direction, are
 configured in the p2p-primary-path container, while the path
 constraints applicable to the reverse direction are configured in the
 p2p-reverse-primary-path container. It is therefore possible to
 configure different set of path constraints, including different
 bandwdith, in the two directions. If there are no path constraints
 applicable to the backward direction, the p2p-reverse-primary-path
 container can be empty (but it shall be present).

 The server computes two indepedent paths in the forward and reverse
 direction: the computed path in the forward direction and its
 properties are reported within the p2p-primary-path container, while
 the computed path in the reverse direction and its properties
 reported within the p2p-reverse-primary-path container.

 The server setup associated unidirectional LSPs in both directions:
 unidirectional LSPs setup in the forward direction are reported
 within the p2p-primary-path container, while unidirectional LSPs
 setup in the backward direction are reported within the p2p-reverse-
 primary-path container.

 Bidirectional courouted TE Tunnel with asymmetric constraints: the
 bidirectional flag is set to "True" and the p2p-reverse-primary-path
 container is created.

 The path constraints, applicable to the forward direction, are
 configured in the p2p-primary-path container. The p2p-reverse-
 primary-path container is configured with use-path-computation flag
 set to False and an empty route-object-exclude-always container (to
 indicate that the directions should be corouted). It is possible to
 configure different bandwdiths in the two directions but no different
 path constraints.

 Note that in case of a bidirectional (non-courouted) TE Tunnel it is
 also possible to configure the p2p-reverse-primary-path container
 with the use-path-computation flag set to False, when the reverse
 path is configured by the client and not computed by the server: in
 this case route-object-exclude-always container is not empty but
 specifies the complete explicit-path within the.

 The server computes one bidirectional path and report it and its
 properties within the p2p-primary-path container. No path properties
 are reported within the p2p-reverse-primary-path container.

 The server setup associated unidirectional LSPs in both directions:
 unidirectional LSPs setup in the forward direction are reported
 within the p2p-primary-path container, while unidirectional LSPs
 setup in the backward direction are reported within the p2p-reverse-
 primary-path container.

 The label hops used in bidirectional routers (either for path
 constraints or for path routes or for LSP routes) should report the
 labels used in the two directions (forward and backward):

 o in case the same label is used in both direction, there will be
 only one label hop with an empty direction leaf;

 o in case different labels are used in the two directions, there
 will be two label hops, one specifying the label in the forward
 direction and another for the label in the reverse direction.

 Associated unidirectional TE Tunnels: two unidirectional TE Tunnels
 (with the bidirectional flag is set to "False") are configured in the
 forward and reverse direction and associated for bidirectionality
 using the association container.

1.8. Transport Service Mapping

 Figure 21. Transport Service Mapping

 Let's assume that a provider has exposed to a client its network
 domain in the form of an abstract TE topology, as shown on the left
 side of Figure 21. From then on, the provider should be prepared to
 receive from the client, a request to set up or manipulate a
 transport service with TE path(s) computed for the service
 connection(s) based on and expressed in terms of the provided
 abstract TE topology (as, for example, displayed in red broken line
 on the right side of Figure 21). When this happens, the provider is
 expected to set up the TE tunnels supporting all yet uncommitted
 abstract TE links (e. g, TE link S3'-S8' in the Figure).

 Furthermore, it is the responsibility of the provider to:

 o Perform all the necessary abstract-to-native translations for the
 specified TE paths (i.e. the transport service connection
 configured paths);

 o Provision working and protection connections supporting the
 transport service; as well as replace/modify/delete them in
 accordance with subsequent client's configuration requests;

 o Perform all the requested recovery operations upon detecting
 network failures affecting the transport service;

 o Notify the client about all parameter changes, events and other
 telemetry information the client has expressed an interest in,
 with respect to the transport service in question.

1.9. Multi-Domain Transport Service Coordination

 A client of multiple TE network domains may need to
 orchestrate/coordinate its transport service setup/manipulation
 across some or all the domains. One example of such a client is a
 Hierarchical T-SDN Controller, HC, managing a connected multi-domain
 transport network where each of the domains is controlled by a
 separate Domain T-SDN Controller, DC. Said DCs are expected to expose
 TE Topology and TE Tunnel North Bound Interfaces, NBIs,, supported
 respectively by IETF TE Topology and TE Tunnel models (and their
 network layer specific augmentations). HC is assumed to establish
 client-provider relationship with each of the DCs and make use of
 said NBIs to extract from the domains various information (such as TE
 topologies and telemetry), as well as to convey instructions to
 coordinate across multiple domains its transport services set up and
 manipulation.

 Figure 22. Two-Domain Transport Network

 Let's consider, for example, a two-domain transport network as
 represented in Figure 22. Suppose that HC is requested to set up an
 unprotected transport service to provide connectivity between
 customer network elements C-R1 and C-R6. It is assumed that by the
 time the request has arrived, the two DCs have already provided
 abstract TE topologies describing their respective domains, and that
 HC has merged the provided TE topologies into one that homogeneously
 describes the entire transport network (as shown in Figure 23).

 Figure 23. Two-Domain Transport Network (Abstracted View)

 Consider that HC, using the merged TE topology, selected a TE path to
 be taken by the requested transport service connection as shown on
 the upper part of Figure 24.

 The multi-domain transport service set up coordination includes:

 o Splitting selected for the transport service TE path(s) into
 segments - one set of segments per each domain involved in the
 service setup;

 o Issuing a configuration request to each of the involved DCs to set
 up the transport service across the respective domain. Note that
 the connection configured paths are required to be expressed in
 terms of respective abstract TE topologies as exposed to HC by DCs
 (see lower part of Figure 24).

 o Waiting for the set up complete confirmation from each of the
 involved DCs. In case one of the DCs reports a failure, HC is
 responsible to carry out the cleanup/rollback procedures by
 requesting all involved DCs to tear down the successfully created
 segments

 Figure 24. Transport Service Placement Based on Abstract TE Topology

 While processing the received from HC configuration request to set up
 the transport service, each DC is expected to carry out the transport
 service mapping procedures (as described in 1.8) resulting in the set
 up of all the necessary underlay TE tunnels, as well as one or more
 connections supporting the transport service. As a result, the
 requested transport service will be provisioned as shown in Figure
 25.

 o In the example above the TE tunnel segments that each DC has to
 set up are the head TE tunnel segment (for domain 1) and the tail
 TE tunnel segment (for domain 2). For head TE tunnel segment HC
 can specify in the configuration request only the source TTP
 (located in node s3 in the example), but not the tunnel's
 destination TTP, because it is outside of the domain controlled by
 the DC.

 Therefore, the outbound hand-off point (in the form of outbound
 inter-domain TE link ID/label pair) of each connection segment
 supporting a TE tunnel non-tail segment (such as head or transit
 tunnel segment) is expected to be found at the end of the route-
 object-include-exclude list of the explicit-route-objects
 configured for that connection segment.

 o Likewise, the inbound hand-off point (in the form of inbound
 inter-domain TE link ID/label pair) of each connection segment
 supporting a TE tunnel non-head segment (such as tail or transit
 tunnel segment) is expected to be found at the beginning of the
 route-object-include-exclude list of the explicit-route-objects
 configured for that connection segments.

 o For example, in the figure above the HC can specify the outbound
 hand-off point of the primary path supporting the head TE tunnel
 segment. The configuration is to be the in the form of the pair of
 the TE link ID, identifying the inter domain link terminating on
 node s7, and of the TE label used on that link.

 o In case (not present in this example) we need to setup a Transit
 Tunnel Segment since the endpoints of the E2E Tunnel are both
 outside the domain controlled by that DC, the HC would not specify
 any source or destination TTP (i.e., it would leave the source,
 destination, src-tp-id and dst-tp-id attributes empty)and it would
 use the the route-object-include-exclude list of the explicit-
 route-objects to specify the inbound and outbound hand-off points
 of each connection segment supporting the Transit Tunnel Segment.

 The multi-domain transport service tear down coordination entails
 issuing to each of the involved DCs a configuration request to delete
 the transport service in the controlled by the DC domain. DCs are
 expected in this case to release all network resources allocated for
 the transport service.

 The multi-domain transport service modify coordination implies
 issuing to each of the involved DCs a configuration request to
 replace the transport service connections according to the newly
 provided paths and/or modify the connection parameters according to
 the newly provided configuration.

 Figure 25. Multi-domain transport service is provisioned

2. Use Cases

2.1. Use Case 1. Transport service control on a single layer multi-
 domain transport network

 Configuration (Figure 26):

 o Three-domain multi-vendor ODUk/Och transport network;

 o The domains are interconnected via ODUk inter-domain links;

 o Each of the domains is comprised of ODUk/Och network elements
 (switches) from a separate vendor and is controlled by a single
 (vendor specific) T-SDN Domain Controller (DC);

 o All DCs expose IETF TE Topology and TE Tunnel model based NBIs;

 o The transport network as a whole is controlled by a single
 hierarchical T-SDN controller (HC);

o HC makes use of the NBIs to set up client‑provider relationship
 with each of the DCs and controls via the DCs their respective
 network domains;

 o Three customer IP/MPLS sites are connected to the transport
 network via ODUk access links;

 o The customer IP/MPLS routers and the router transport ports
 connecting the routers to the transport network are managed
 autonomously and independently from the transport network.

 Figure 26 Three-domain ODUk/Och transport network with ODUk access

 and inter-domain links

 Objective: Set up/manipulate/delete a shortest delay unprotected or
 protected transport service to provide connectivity between customer
 network elements C-R2 and C-R5

 1) TE Topology discovery

 All DCs provide to HC respective domain ODUk layer abstract TE
 topologies. Let's assume that each such topology is a single-node TE
 topology (as described in 1.3.1, abstract TE topology of this type
 represents the entire domain as a single asymmetrical/blocking TE
 node). Let's further assume that the abstract TE nodes representing
 the domains are attributed with detailed connectivity matrices
 optimized according to the shortest delay criterion. [Note: single-
 node abstract TE topologies are assumed for simplicity sake.
 Alternatively, any DC could have provided an abstract TE topology of
 any type described in 1.3].

 HC merges the provided TE topologies into its own native TE topology
 (the TE topology merging procedures are discussed in 1.4). The merged
 TE topology, as well as the TE topologies provided by DCs, are
 depicted in Figure 27. The merged TE topology homogeneously describes
 the entire transport network and hence is suitable for path
 computations across the network. Note that the dotted lines in the
 Figure connecting the topology access TE links with customer devices
 illustrate that HC in this use case has neither control nor
 information on the customer devices/ports and, therefore, can only
 provide a connectivity between the requested transport service
 ingress and egress access links (on assumption that the customer
 transport ports are provisioned independently)

 Figure 27. Three-domain single layer transport network abstract TE

 topology

 2) Transport service path computation

 Using the merged TE topology (Figure 27, upper part) HC selects one
 or more optimal and sufficiently disjoint from each other TE path(s)
 for the requested transport service connection(s). Resulting TE paths
 for the requested end-to-end protected transport service, for
 example, could be as marked on the upper part of Figure 28.

 It is important to keep in mind that HC's path computer is capable of
 performing the necessary path selection only as long as the merged TE
 topology provides the necessary TE visibility for the path selection,
 both intra-domain (e.g. by virtue of provided by the abstract TE
 nodes detailed connectivity matrices) and inter-domain (because of
 provided inter-domain TE link attributes). In case one or more DCs
 is/are not capable of or willing to provide the detailed connectivity
 matrices (that is, DCs expose the respective domains as black boxes -
 unconstrained TE nodes terminating the inter-domain TE links), HC
 will not be able to select the end-to-end TE path(s) for the
 requested transport service on its own. In such a case HC may opt for
 making use of the Path Computation NBI, exposed by the DCs to
 explore/evaluate intra-domain TE path availability in real time. IETF
 TE Tunnel model supports the Path Computation NBI by allowing for the
 configuration of transport services in COMPUTE_ONLY mode. In this
 mode the provider is expected to compute TE paths for a requested
 transport service connections and return the paths in the request's
 response without triggering the connection provisioning in the
 network.

 Consider, for example, the case when none of the DCs has provided the
 detailed connectivity matrix attribute for the abstract TE nodes
 representing the respective domain. In such a case HC may:

 1. Request the ingress domain DC (i.e. DC1) to compute intra-domain
 TE paths connecting the ingress access TE link (i.e. the link
 facing C-R2) with each of the inter-domain TE links (i.e. links
 connecting Domain 1 to Domain 2 and Domain 3 respectively);

 2. Grow the TE paths returned by DC1 in (1) over the respective
 outbound inter-domain TE links;

 3. Request the neighboring DC(s) (e.g. DC3) to compute all intra-
 domain TE paths connecting across the domain all inbound into
 the domain inter-domain TE links reached by the path growing
 process in (2) with all other (outbound) domain's inter-domain
 TE links;

 4. Augment the TE paths produced in step (2) with the TE paths
 determined in step (3);

5. Repeat steps (2), (3) and (4) until the resulting TE paths reach
 the egress domain (i.e. Domain 2);

 6. Request the egress domain DC (i.e. DC2) to grow each of the TE
 paths across the domain to connect them to the egress access TE
 link (i.e. the link facing C-R5);

 7. Select one (or more) most optimal and sufficiently disjoint from
 each other TE path(s) from the list produced in step (6).

 [Note: The transport service path selection method based on Path
 Computation NBIs exposed by DCs does not scale well and the more
 domains comprise the network and the more inter-domain links
 interconnect them, the worse the method works. Realistically, this
 approach will not work sufficiently well for the networks with more
 than 3 domains]

 Figure 28. TE paths computed for the protected transport service

 3) Transport service setup coordination

 HC carries out the multi-domain transport service setup coordination
 as described in 1.9. In particular, HC splits the computed TE path(s)
 into 3 sets of TE path segments - one set per domain (as shown on the
 lower part of Figure 28), and issues a TE tunnel configuration
 request to each of the DCs to set up the requested transport service
 across the domain under the DC's control. The primary (and
 secondary) connection explicit path(s) is/are specified in the
 requests in terms of respective domain abstract TE topologies.

 While processing the configuration request, each DC performs the
 transport service mapping (as described in 1.8). In particular, the
 DC translates the specified explicit path(s) from abstract into
 native TE topology terms, sets up supporting underlay TE tunnels
 (e.g. Och TE tunnels), and, then, allocates required ODUk containers
 on the selected links and provisions the ODUk cross-connects on the
 switches terminating the links.

 If the setup is successfully completed in all three domains, the
 transport service connection(s) will be provisioned as depicted in
 Figure 29. If one of the DCs fails to set up its part, all
 successfully provisioned segments will be asked by HC to be released.

 4) Transport service teardown coordination

 HC issues to each of DCs a configuration request to release the
 transport service over the controlled domain, as well as the server
 layer TE tunnels supporting dynamically created links.

 Figure 29. Transport service is provisioned

2.2. Use Case 2. End-to-end TE tunnel control on a single layer multi-
 domain transport network

 Configuration (Figure 26): the same as in use case 1, except that HC
 in this use case controls customer devices/ports by extracting
 information from and pushing configuration to the customer site SDN
 controller(s) managing the customer devices directly.

 Objective: Set up//delete an unprotected shortest delay TE tunnel
 interconnecting end-to-end C-R2 and C-R5

 1) TE Topology discovery

 As in use case 1 all DCs provide to HC domain ODUk layer abstract TE
 topologies. Additionally in this use the three customer site
 controllers expose the TE Topology and Tunnel model based NBIs to HC.
 Using the TE Topology NBI each customer controller provides to HC the
 respective customer site domain abstract TE topology. Customer site
 abstract TE topologies contain abstract TE nodes representing the
 devices which are directly connected to the transport network. Said
 abstract TE nodes host TE tunnel termination points, TTPs,
 representing the ports over which the customer devices are connected
 to the transport network, and terminate access TE links the TTPs are
 accessible from (see Figure 30).

 Figure 30. Abstract TE topologies provided by all network domains and

 customer sites

 HC merges the provided topologies into its own native TE Topology
 (the TE topology merging procedures are discussed in 1.4). The merged
 TE topology is depicted in Figure 31. It homogeneously describes end-
 to-end not only the entire transport network, but also the customer
 sites connected to the network and hence is suitable for TE tunnel
 end to end path computations.

 Figure 31. Abstract TE topology describing transport network and

 connected to it customer sites

 2) TE tunnel path computation

 Using the merged TE topology (Figure 31) HC selects an optimal TE
 path for the requested TE tunnel connecting end-to-end the specified
 TE tunnel termination points, TTPs. The resulting TE path, for
 example, could be as marked on the upper part of Figure 32.

 Figure 32. TE path computed for the TE tunnel

 3) TE tunnel setup coordination

 HC carries out the multi-domain TE tunnel setup coordination as
 described for use case 1, except that in this use case HC
 additionally initiates and controls the setup of the TE tunnel's head
 and tail segments on the respective customer sites. Note that the
 customer site controllers behave exactly as transport network domain
 DCs. In particular, they receive issued by HC configuration requests
 to set up the TE tunnel's head and tail segments respectively. While
 processing the requests the customer site controllers perform the
 necessary provisioning of the TE tunnel's source and destination
 termination points, as well as of the local sides of the selected
 access links. If all segments are successfully provisioned on
 customer sites and network domains, the TE tunnel connection will be
 provisioned as marked in Figure 33.

 4) TE tunnel teardown coordination

 HC issues to each of DCs and customer site controllers a
 configuration request to release respective segments of the TE
 tunnel, as well as the server layer TE tunnels supporting dynamically
 created links.

 Figure 33. TE tunnel is provisioned

2.3. Use Case 3. Transport service control on a ODUk/Och multi-domain
 transport network with Ethernet access links

 Configuration (Figure 34): the same as in use case 1, except that all
 access links in this use case are Ethernet layer links (depicted as
 blue lines in the Figure), while all inter-domain links remain to be
 ODUk layer links.

 Figure 34. Three-domain ODUk/Och transport network with Ethernet

 layer access links

 Objective: Set up//delete an unprotected shortest delay transport
 service supporting connectivity between C-R2 and C-R5

 1) TE Topology discovery

In order to make possible for the necessary in this use case multi‑
layer path computation, each DC exposes to HC two (ODUk layer and
Ethernet layer) abstract TE topologies, Additionally, the lower
layer (ODUk) TE nodes announce hosted by them TE tunnel termination
points, TTPs, capable of adopting the payload carried over the
Ethernet layer access links, From the TE Topology model point of view
this means that said TTPs are attributed with TE inter‑layer locks

 matching ones attributed to Ethernet TE links (i.e. TE links provided
 within Ethernet layer abstract TE topologies).

 Ethernet and ODUk layer single node abstract TE topologies catered to
 HC by each of the DCs are presented in Figure 35.

 HC merges the provided TE topologies into its own native TE Topology
 (the merging procedures are described in 1.4). Importantly in this
 case HC locks the provided TE topologies not only horizontally, but
 vertically as well, thus producing a two-layer TE topology
 homogenously describing both layers of the entire transport network,
 as well as the client-server layer adaptation relationships between
 the two layers. This makes the merged TE topology suitable for multi-
 layer/inter-layer multi-domain transport service path computations.
 The merged TE topology is presented in Figure 36.

 Figure 35. ODUk and Ethernet layer abstract TE topologies exposed by

 DCs

 Figure 36. Two-layer three-domain transport network abstract TE

 topology

 2) Transport service path computation

 Using the merged TE topology (Figure 36) HC selects an optimal TE
 path for the requested transport service.

 Note that if HC's path computer considered only Ethernet layer TE
 nodes and links, the path computation would .fail. This is because
 the Ethernet layer TE nodes (i.e. D1-e, D2-e and D3-e in the Figure)
 are disconnected from each other. However, the inter-layer
 associations (in the form of the TE inter-layer locks) make possible
 for the path computer to select TE path(s) in the lower (ODUk) layer
 that can be used to set up hierarchy TE tunnel(s) supporting
 additional dynamic TE link(s) in the upper (Ethernet) layer in order
 for the requested transport service path computation to succeed.
 Let's sssume that the resulting TE path is as marked in Figure 37.
 The red line in the Figure marks the TE path selected for the ODUk
 layer hierarchy TE tunnel supporting the required Ethernet layer
 dynamic TE link.

 Figure 37. Multi-layer TE path computed for the transport service

 3) Transport service setup coordination

 HC sets up the requested Ethernet layer transport service in two
 stages. First, it coordinates the end-to-end setup of the ODUk layer
 hierarchy TE tunnel between the selected TTPs. If this operation
 succeeds, a new Ethernet layer dynamic TE link (blue line connecting
 TE nodes D1-e and D2-e in Figure 38) is automatically added to the
 merged abstract TE topology. Importantly, as a part of the hierarchy
 transport service setup both DC1 and DC 2 add a new open-ended
 Ethernet layer inter-domain dynamic TE link to their respective
 abstract TE topologies. Second, HC coordinates the setup of the
 requested (Ethernet layer) transport service. The required TE path
 for the second stage is marked as fat blue line in the Figure. Note
 that DC3 controlling domain 3 is only involved in the first stage,
 but is oblivious to the second stage.

 Figure 38. A new Ethernet layer TE link supported by ODUk layer TE

 tunnel is added to the provided and merged abstract TE topologies

 IF all involved DCs confirm successful setup completion, the
 requested transport service, as well as the supporting server layer
 hierarchy TE tunnel, will be provisioned as depicted in Figure 39. If
 one of the DCs fails to set up its segment in either of the layers,
 all successfully provisioned segments will be requested by HC to be
 released.

 Figure 39. Ethernet transport service and supporting ODUk TE tunnel

 are provisioned

 4) Transport service teardown coordination

 First, HC issues to DC1 and DC2 a configuration request to release
 the Ethernet layer transport service in the respective domains. After
 that, all three DCs are requested to release the segments of the
 supporting ODUk layer hierarchy TE tunnel. While processing the
 request DC1 and DC2 also remove the dynamic Ethernet layer TE links
 supported by the respective hierarchy TE tunnel's segments, thus the
 network's abstract TE topologies are reverted back to the state as
 shown in Figures 35 and 36.

2.4. Use Case 4. Transport service control on a ODUk/Och multi-domain
 transport network with multi-function access links

 Configuration (Figure 40): the same as in use case 3, except that all
 access links in this use case are multi-function links (depicted in
 the Figure as blue compound lines). Let's assume that, depending on
 configuration, the multi-function access links in this use case can
 carry either Ethernet or SDH/STM16 layer payload.

 Objective: Set up//delete an unprotected shortest delay SDH/STM16
 layer transport service interconnecting C-R2 and C-R5

 Figure 40. Three-domain ODUk/Och transport network with multi-

 function access links

 1) TE Topology discovery

 The TE Topology model considers multi-function links as parallel
 mutually exclusive TE links each belonging to a separate layer
 network. For this use case each DC exposes to HC three (ODUk-,
 Ethernet- and SDH/STM16-layer) abstract TE topologies (generally
 speaking, one abstract TE topology per each layer network supported
 by at least one access or inter-domain link). Like in use case 3,
 the lower layer (ODUk) TE nodes announce hosted by them TE tunnel
 termination points, TTPs, capable in this case of adopting Ethernet,
 SDH/STM16 or both layer payloads, The TTPs are attributed with TE
 inter-layer locks matching ones specified for Ethernet and/or
 SDH/STM16 TE links.

 Ethernet, SDH/STM16 and ODUk layer single-node abstract TE topologies
 catered to HC by each of the DCs are presented in Figure 41.

 HC merges the provided topologies into its own native TE Topology
 (the merging procedures are described in 1.4). As in use case 3 HC
 locks the provided TE topologies not only horizontally (i.e. between
 domains), but vertically (between layers) as well, thus producing a
 three-layer TE topology homogenously describing the three layers of
 the entire transport network, as well as the client-server layer
 adaptation relationships between the layers. This makes the merged TE
 topology suitable for multi-layer/inter-layer multi-domain transport
 service path computations. The merged TE topology is presented in
 Figure 42.

 Figure 41. ODUk, Ethernet and SDH/STM16 layer abstract TE topologies

 exposed by DCs

 Figure 42. Three-layer three-domain transport network abstract TE

 topology

 2) Transport service path computation

 Using the merged TE topology (Figure 42) HC's path computer selects a
 TE path for the requested transport service. For example, for the
 SDH/STM16 layer unprotected transport service the resulting TE path
 could be determined as marked in Figure 43.

 Figure 43. Multi-layer TE path computed for SDH/STM16 layer transport

 service

 3) Transport service setup coordination

 Same as in use case 3.

 4) Transport service teardown coordination

 Same as in use case 3.

2.5. Use Case 5. Real time updates of IP/MPLS layer TE link attributes
 that depend on supporting transport connectivity (e.g. transport
 SRLGs, propagation delay, etc.)

 Configuration (Figure 26): the same as in use case 1,

 Objective: A transport service interconnecting transport ports of two
 IP routers across a transport network is likely to serve a link in
 IP/MPLS layer network, which is usually controlled by a client of the
 transport network, such as IP/MPLS Controller. Performance of TE
 applications (e.g. path computer) running on the IP/MPLS Controller
 depends on the accuracy of IP/MPLS layer TE link attributes. Some of
 these attributes can change over time and are known real-time only to
 a transport network controller, such as HC. Examples of said
 attributes are transport SRLGs, propagation delay metric, protection
 capacities and status, etc. The objective of this use case is to
 ensure up-to-date state of said attributes in the IP/MPLS
 Controller's internal TED via necessary updates provided in a timely
 manner by the controller (e.g. HC) managing transport connectivity
 supporting IP/MPLS layer links.

 Realization:

 o HC exposes and supports IETF TE Topology and TE Tunnel model based
 NBIs (the same NBIs that are exposed by DCs serving HC);

 o IP/MPLS Controller makes use of the exposed NBIs to set up the
 respective client-provider relationships with HC;

 o IP/MPLS Controller uses the TE Tunnel NBI to configure with HC a
 transport service interconnecting transport ports of a pair of IP
 routers desired to be adjacent in the IP/MPLS layer network. The
 TE Tunnel model allows for specifying in the transport service
 configuration request the TE topology and link IDs of the IP/MPLS
 TE link the requested transport service will be serving;

 o IP/MPLS Controller uses the TE Topology NBI to subscribe with HC
 on the IP/MPLS TE link notifications with respect to changes in
 the TE link's attributes, such as SRLGs, propagation delay,
 protection capabilities/status, etc.;

 o HC uses the TE Topology NBI to convey the requested notifications
 when HC learns the attributes IP/MPLS has expressed interest in or
 detects any changes since previous notifications (for example, due
 to network failure restoration/reversion procedures happened to
 the transport connectivity that supports the failure affected
 IP/MPLS links)

2.6. Use Case 6. Virtual Network Service

 Configuration (Figure 26): the same as in use case 1,

 Objective: Set up two Virtual Networks for the client, with Virtual
 Network 1 interconnecting customer IP routers C-R1, C-R7 and C-R4
 over a single-node abstract TE topology, and Virtual Network 2
 interconnecting customer IP routers C-R2, C-R3, C-R8, C-R5 and C-R6
 over a full mesh link abstract TE topology as depicted in Figure 44.

 [Note: A client of a transport network may want to limit the
 transport network connectivity of a particular type and quality
 within distinct subsets of its network elements interconnected across
 the transport network. Furthermore, a given transport network may
 serve more than one client. In this case some or all clients may want
 to ensure the availability of transport network resources in case
 dynamic (re-)connecting of their network elements across the
 transport network is envisioned. In all such cases a client may want
 to set up one or more Virtual Networks over provided transport
 network]

 1) Virtual Network setup

 From the client's point of view a Virtual Network setup includes the
 following procedures:

 o Identifying the Virtual Network membership - a subset of the
 client's network elements/ports to be interconnected over the
 abstract TE topology configured for the Virtual Network. Note that
 from the transport network provider's point of view this
 effectively determines the list of abstract TE topology's open-
 ended access TE links;

 o Deciding on the Virtual Network's abstract TE topology type (e.g.
 single-node vs. link mesh), optimization criterion (e.g. shortest
 delay vs. smallest cost), bandwidth, link disjointedness,
 adaptation capabilities and other requirements/constraints, as
 well as, whether the TE tunnels supporting the abstract TE
 topology need to be pre-established or established on demand (i.e.
 when respective abstract TE topology elements are selected for a
 client transport service);

 o Using the IETF TE Topology model based NBI exposed by the
 transport network controller (i.e. HC), configure the Virtual
 Network's abstract TE topology. Let's assume that in this use case
 the abstract TE topology for Virtual Network 1 is configured as a
 single-node abstract TE topology (see section 1.3.1) with the
 abstract TE node's detailed connectivity matrix optimized
 according to the shortest delay criteria. Likewise, the abstract
 TE topology for Virtual Network 2 is configured as a full-mesh
 link abstract TE topology (see section 1.3.2) optimized according
 to the smallest cost criteria with each of the abstract TE links
 to be supported by pre-established end-to-end protected TE
 tunnels.

 [Note: Virtual Network's abstract TE topology (re-
)configuration/negotiation process is no different from one that
 happens, for example, between HC and its providers, DCs, and is
 described in section 1.5]

 Figure 44. Virtual Networks provided for a transport network client

 2) Using Virtual Network

 Recall that use case 1 was about setting up a transport service
 interconnecting customer network elements C-R2 and C-R5 across the
 transport network. With the Virtual Network 2 in place, the client
 could have used the Virtual Network's TE topology to select a TE path
 for the service. The TE Tunnel model based NBI allows for the client
 to specify the Virtual Network's TE topology ID, as well, as the
 selected TE path (for example, as marked in Figure 45) as a
 configured path attribute in the transport service configuration
 request to ensure that the intended transport network resources are
 used for the service.

 Figure 45. Transport service TE path is selected on Virtual Network's

 TE topology

3. Security Considerations

 This document does not define networking protocols and data, hence
 are not directly responsible for security risks.

4. IANA Considerations

 This document has no actions for IANA.

5. References

5.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [I-D.ietf-teas-yang-te-topo]

 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
 O. Dios, "YANG Data Model for TE Topologies", draft-ietf-
 teas-yang-te-topo-15 (work in progress), February 2018.

 [I-D.ietf-teas-yang-te]

 Saad, T., Gandhi, R., Liu, X., Beeram, V., Shah, H., and I.
 Bryskin, "A YANG Data Model for Traffic Engineering Tunnels
 and Interfaces", draft-ietf-teas-yang-te-13 (work in
 progress), March 2018.

5.2. Informative References

 [RFC2702]
 Awduche, D., "Requirements for Traffic Engineering Over
 MPLS", RFC 2702, September 1999.

6. Acknowledgments

 TBD.

Appendix A. Data Examples

 This section contains examples of an instance data in the JSON
 encoding [RFC7951].

A.1. Use Case 1

 In the use case described in Section 2.1. , there are three provider
 network domains, each of them is represented as an abstract TE
 topology. The JSON encoded example data configurations for the three
 domains are:

A.1.1. Domain 1

{
 "networks": {
 "network": [
 {
 "network‑types": {
 "te‑topology": {}
 },
 "network‑id": "otn‑domain1‑abs",
 "provider‑id": 201,
 "client‑id": 300,
 "te‑topology‑id": "te‑topology:otn‑domain1‑abs",
 "node": [
 {
 "node‑id": "D1",
 "te‑node‑id": "2.0.1.1",
 "te": {
 "te‑node‑attributes": {
 "domain‑id" : 1,
 "is‑abstract": [null],
 "underlay‑topology": "domain1‑och",
 "connectivity‑matrices": {
 "is‑allowed": true,
 "path‑constraints": {
 "bandwidth‑generic": {
 "te‑bandwidth": {
 "otn": [
 {
 "rate‑type": "odu1",
 "counter": 2

 }
]
 }
 }
 }
 "connectivity‑matrix": [
 {
 "id": 10302,
 "from": "1‑0‑3",
 "to": "1‑2‑0"
 },
 {
 "id": 10203,
 "from": "1‑0‑2",
 "to": "1‑3‑0"
 },
 {
 "id": 10311,
 "from": "1‑0‑3",
 "to": "1‑11‑0"
 },
 {
 "id": 11103,
 "from": "1‑0‑11",
 "to": "1‑3‑0"
 },
 {
 "id": 10903,
 "from": "1‑0‑9",
 "to": "1‑3‑0"
 },
 {
 "id": 10309,
 "from": "1‑0‑3",
 "to": "1‑9‑0"
 },
 {
 "id": 10910,
 "from": "1‑0‑9",
 "to": "1‑10‑0"
 },

 {
 "id": 11009,
 "from": "1‑0‑10",
 "to": "1‑9‑0"
 },
 {
 "id": 20910,
 "from": "1‑1‑9",
 "to": "1‑10‑0"
 },
 {
 "id": 21009,
 "from": "1‑0‑10",
 "to": "1‑9‑1"
 },
 {
 "id": 20911,
 "from": "1‑1‑9",
 "to": "1‑11‑0"
 },
 {
 "id": 21109,
 "from": "1‑0‑11",
 "to": "1‑9‑1"
 }
]
 }
 }
 },
 "termination‑point": [
 {
 "tp‑id": "1‑0‑3",
 "te‑tp‑id": 10003
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }

 },
 {
 "tp‑id": "1‑3‑0",
 "te‑tp‑id": 10300
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑0‑9",
 "te‑tp‑id": 10009
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑9‑0",
 "te‑tp‑id": 10900
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑1‑9",
 "te‑tp‑id": 10109
 "te": {

 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑9‑1",
 "te‑tp‑id": 10901
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑0‑2",
 "te‑tp‑id": 10002
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑2‑0",
 "te‑tp‑id": 10200
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }

]
 }
 },
 {
 "tp‑id": "1‑0‑10",
 "te‑tp‑id": 10010
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑10‑0",
 "te‑tp‑id": 11000
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑0‑11",
 "te‑tp‑id": 10011
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑11‑0",

 "te‑tp‑id": 11100
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑1‑11",
 "te‑tp‑id": 10111
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑11‑1",
 "te‑tp‑id": 11101
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 }
]
 }
]
 }
]
 }
}

A.1.2. Domain 2

{
 "networks": {
 "network": [
 {
 "network‑types": {
 "te‑topology": {}
 },
 "network‑id": "otn‑domain2‑abs",
 "provider‑id": 202,
 "client‑id": 300,
 "te‑topology‑id": "te‑topology:otn‑domain2‑abs",
 "node": [
 {
 "node‑id": "D2",
 "te‑node‑id": "2.0.2.2",
 "te": {
 "te‑node‑attributes": {
 "is‑abstract": [null],
 "underlay‑topology": "domain2‑och",
 "connectivity‑matrices": {
 "is‑allowed": true,
 "path‑constraints": {
 "bandwidth‑generic": {
 "te‑bandwidth": {
 "otn": [
 {
 "rate‑type": "odu1",
 "counter": 2
 }
]
 }
 }
 }
 "connectivity‑matrix": [
 {
 "id": 12125,
 "from": "1‑0‑21",
 "to": "1‑25‑0"
 },

 {
 "id": 12521,
 "from": "1‑0‑25",
 "to": "1‑21‑0"
 },
 {
 "id": 12128,
 "from": "1‑0‑21",
 "to": "1‑28‑0"
 },
 {
 "id": 12821,
 "from": "1‑0‑28",
 "to": "1‑21‑0"
 },
 {
 "id": 12231,
 "from": "1‑0‑22",
 "to": "1‑31‑0"
 },
 {
 "id": 13122,
 "from": "1‑0‑31",
 "to": "1‑22‑0"
 },
 {
 "id": 22228,
 "from": "1‑1‑22",
 "to": "1‑28‑0"
 },
 {
 "id": 22822,
 "from": "1‑0‑28",
 "to": "1‑22‑1"
 },
 {
 "id": 12528,
 "from": "1‑0‑25",
 "to": "1‑28‑0"
 },
 {

 "id": 12825,
 "from": "1‑0‑28",
 "to": "1‑25‑0"
 }
]
 }
 }
 },
 "termination‑point": [
 {
 "tp‑id": "1‑0‑21",
 "te‑tp‑id": 10021
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑21‑0",
 "te‑tp‑id": 12100
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑0‑22",
 "te‑tp‑id": 10022
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"

 }
]
 }
 },
 {
 "tp‑id": "1‑22‑0",
 "te‑tp‑id": 12200
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑1‑22",
 "te‑tp‑id": 10122
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑22‑1",
 "te‑tp‑id": 12201
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {

 "tp‑id": "1‑0‑25",
 "te‑tp‑id": 10025
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑25‑0",
 "te‑tp‑id": 12500
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑1‑25",
 "te‑tp‑id": 10125
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑25‑1",
 "te‑tp‑id": 12501
 "te": {
 "interface‑switching‑capability": [
 {

 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑0‑28",
 "te‑tp‑id": 10028
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑28‑0",
 "te‑tp‑id": 12800
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑0‑31",
 "te‑tp‑id": 10031
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }

 },
 {
 "tp‑id": "1‑31‑0",
 "te‑tp‑id": 13100
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 }
]
 }
]
 }
]
 }
}

A.1.3. Domain 3

{
 "networks": {
 "network": [
 {
 "network‑types": {
 "te‑topology": {}
 },
 "network‑id": "otn‑domain3‑abs",
 "provider‑id": 203,
 "client‑id": 300,
 "te‑topology‑id": "te‑topology:otn‑domain3‑abs",
 "node": [
 {
 "node‑id": "D3",
 "te‑node‑id": "2.0.3.3",
 "te": {
 "te‑node‑attributes": {
 "is‑abstract": [null],

 "underlay‑topology": "domain3‑och",
 "connectivity‑matrices": {
 "is‑allowed": true,
 "path‑constraints": {
 "bandwidth‑generic": {
 "te‑bandwidth": {
 "otn": [
 {
 "rate‑type": "odu1",
 "counter": 2
 }
]
 }
 }
 }
 "connectivity‑matrix": [
 {
 "id": 13638,
 "from": "1‑0‑38",
 "to": "1‑38‑0"
 },
 {
 "id": 13836,
 "from": "1‑0‑38",
 "to": "1‑36‑0"
 },
 {
 "id": 13639,
 "from": "1‑0‑36",
 "to": "1‑39‑0"
 },
 {
 "id": 13936,
 "from": "1‑0‑39",
 "to": "1‑36‑0"
 },
 {
 "id": 23636,
 "from": "1‑0‑36",
 "to": "1‑36‑1"
 },

 {
 "id": 33636,
 "from": "1‑1‑36",
 "to": "1‑36‑0"
 },
 {
 "id": 13739,
 "from": "1‑0‑37",
 "to": "1‑39‑0"
 },
 {
 "id": 13937,
 "from": "1‑0‑39",
 "to": "1‑37‑0"
 },
 {
 "id": 23737,
 "from": "1‑0‑37",
 "to": "1‑37‑1"
 },
 {
 "id": 33737,
 "from": "1‑1‑37",
 "to": "1‑37‑0"
 }
]
 }
 }
 },
 "termination‑point": [
 {
 "tp‑id": "1‑0‑36",
 "te‑tp‑id": 10036
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }

 },
 {
 "tp‑id": "1‑36‑0",
 "te‑tp‑id": 13600
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑0‑37",
 "te‑tp‑id": 10037
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑37‑0",
 "te‑tp‑id": 13700
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑1‑37",
 "te‑tp‑id": 10137
 "te": {

 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑37‑1",
 "te‑tp‑id": 13701
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑0‑39",
 "te‑tp‑id": 10039
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑39‑0",
 "te‑tp‑id": 13900
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }

]
 }
 },
 {
 "tp‑id": "1‑0‑36",
 "te‑tp‑id": 10036
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑36‑0",
 "te‑tp‑id": 13600
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑0‑38",
 "te‑tp‑id": 10038
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 },
 {
 "tp‑id": "1‑38‑0",

 "te‑tp‑id": 13800
 "te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑otn",
 "encoding": "lsp‑encoding‑oduk"
 }
]
 }
 }
]
 }
]
 }
]
 }
}

Contributors

Italo Busi
Huawei
Email: italo.busi@huawei.com

Sergio Belotti
Nokia
Email: sergio.belotti@nokia.com

Authors' Addresses

Igor Bryskin
Huawei Technologies
Email: Igor.Bryskin@huawei.com

Vishnu Pavan Beeram
Juniper Networks
Email: vbeeram@juniper.net

Tarek Saad
Cisco Systems Inc
Email: tsaad@cisco.com

Xufeng Liu
Volta Networks
Email: xufeng.liu.ietf@gmail.com

draft-ietf-teas-yang-l3-te-topo-03 - YANG Data Model for Layer 3 TE Topologies

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 25, 2019

X. Liu

Volta Networks

I. Bryskin

Huawei Technologies

V. Beeram

Juniper Networks

T. Saad

Cisco Systems Inc

H. Shah

Ciena

O. Gonzalez de Dios

Telefonica

October 22, 2018

YANG Data Model for Layer 3 TE Topologies

draft-ietf-teas-yang-l3-te-topo-03

Abstract

 This document defines a YANG data model for layer 3 traffic
 engineering topologies.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Tree Diagrams

	2. Modeling Considerations for L3 TE Topologies
	 2.1. Relationship Between Layer 3 Topology and TE topology

	 2.2. Relationship Modeling
	 2.2.1. Topology Referencing

	 2.2.2. Node Referencing

	 2.2.3. Link Termination Point Referencing

	 2.2.4. Link Referencing

	 2.3. Topology Type Modeling

	3. Packet Switching Technology Extensions
	 3.1. Technology Specific Link Attributes

	 3.2. Performance Metric

	4. Model Structure
	 4.1. Layer 3 TE Topology Module

	 4.2. Packet Switching TE Topology Module

	5. YANG Modules
	 5.1. Layer 3 TE Topology Module

	 5.2. Packet Switching TE Topology Module

	6. IANA Considerations

	7. Security Considerations

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Appendix A. Companion YANG Model for Non-NMDA Compliant Implementations
	 A.1. Layer 3 TE Topology State Module

	 A.2. Packet Switching TE Topology State Module

	Appendix B. Data Tree Example

	Authors' Addresses

1. Introduction

 This document defines a YANG [RFC7950] data model for describing the
 relationship between a layer 3 network topology [RFC8346] and a TE
 topology [I-D.ietf-teas-yang-te-topo].

 When traffic engineering is enabled on a layer 3 network topology,
 there will be a corresponding TE topology. The TE topology may or
 may not be congruent to the layer 3 network topology. When such a
 congruent TE topology exists, there will be a one-to-one association
 between the one modeling element in the layer 3 topology to another
 element in the TE topology. When such a congruent TE topology does
 not exist, the association will not be one-to-one. This YANG data
 model allows both cases.

1.1. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14, [RFC2119].

 The following terms are defined in [RFC7950] and are not redefined
 here:

 o augment

 o data model

 o data node

1.2. Tree Diagrams

 Tree diagrams used in this document follow the notation defined in
 [RFC8340].

2. Modeling Considerations for L3 TE Topologies

2.1. Relationship Between Layer 3 Topology and TE topology

 In general, layer 3 network topology model and TE topology model can
 be used independently. When traffic engineering is enabled on a
 layer 3 network topology, there will be associations between objects
 in layer 3 network topologies and objects in TE topologies. The
 properties of these relations are:

 o The associations are between objects of the same class, i.e. node
 to node or link to link.

 o The multiplicity of such an association is: 0..1 to 0..1. An
 object in a layer 3 network may have zero or one associated object
 in the corresponding TE network.

2.2. Relationship Modeling

 YANG data type leafref is used to model the association relationship
 between a layer 3 network topology and a TE topology. YANG must
 statements are used to enforce the referenced objects are in the
 topologies of proper type.

2.2.1. Topology Referencing

 When TE is enabled on a layer 3 network topology, if the TE topology
 is not congruent to the layer 3 network topology, the layer 3 network
 topology will have a reference to the corresponding TE topology.
 Such a reference is modeled as follows:

augment /nw:networks/nw:network/l3t:l3‑topology‑attributes:
 +‑‑rw l3‑te‑topology‑attributes
 +‑‑rw network‑ref? ‑> /nw:networks/network/network‑id

 If the TE topology is congruent to the layer 3 network topology, the
 above reference can still be used to specified TE paramenters defined
 in the TE topology model.

2.2.2. Node Referencing

 When TE is enabled on a layer 3 network topology, if the TE topology
 is not congruent to the layer 3 network topology, a layer 3 network
 node may have a reference to the corresponding TE node. Such a
 reference is modeled as follows:

augment /nw:networks/nw:network/nw:node/l3t:l3‑node‑attributes:
 +‑‑rw l3‑te‑node‑attributes
 +‑‑rw node‑ref? leafref
 +‑‑rw network‑ref? ‑> /nw:networks/network/network‑id

2.2.3. Link Termination Point Referencing

 When TE is enabled on a layer 3 network topology, if the TE topology
 is not congruent to the layer 3 network topology, a layer 3 link
 termination point may have a reference to the corresponding TE link
 termination point. Such a reference is modeled as follows:

augment /nw:networks/nw:network/nw:node/nt:termination‑point
 /l3t:l3‑termination‑point‑attributes:
 +‑‑rw l3‑te‑tp‑attributes
 +‑‑rw tp‑ref? leafref
 +‑‑rw node‑ref? leafref
 +‑‑rw network‑ref? ‑> /nw:networks/network/network‑id

2.2.4. Link Referencing

 When TE is enabled on a layer 3 network topology, if the TE topology
 is not congruent to the layer 3 network topology, a layer 3 link may
 have a reference to the corresponding TE link. Such a reference is
 modeled as follows:

augment /nw:networks/nw:network/nt:link/l3t:l3‑link‑attributes:
 +‑‑rw l3‑te‑link‑attributes
 +‑‑rw link‑ref? leafref
 +‑‑rw network‑ref? ‑> /nw:networks/network/network‑id

2.3. Topology Type Modeling

 A new topology type is defined in this document, to indicate a
 topology that is a layer 3 topology with TE enabled.

augment /nw:networks/nw:network/nw:network‑types
 /l3t:l3‑unicast‑topology:
 +‑‑rw l3‑te!

3. Packet Switching Technology Extensions

3.1. Technology Specific Link Attributes

 The technology agnostic TE Topology model is augmented with packet
 switching specific link attributes:

augment /nw:networks/tet:te/tet:templates/tet:link‑template
 /tet:te‑link‑attributes
 /tet:interface‑switching‑capability:
 +‑‑rw packet‑switch‑capable
 +‑‑rw minimum‑lsp‑bandwidth? rt‑types:bandwidth‑ieee‑float32
 +‑‑rw interface‑mtu? uint16
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:te‑link‑attributes
 /tet:interface‑switching‑capability:
 +‑‑rw packet‑switch‑capable
 +‑‑rw minimum‑lsp‑bandwidth? rt‑types:bandwidth‑ieee‑float32
 +‑‑rw interface‑mtu? uint16
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:information‑source‑entry
 /tet:interface‑switching‑capability:
 +‑‑ro packet‑switch‑capable
 +‑‑ro minimum‑lsp‑bandwidth? rt‑types:bandwidth‑ieee‑float32
 +‑‑ro interface‑mtu? uint16

3.2. Performance Metric

 [RFC7471]
, [RFC7810] and [RFC7823] specify TE performance metric
 parameters and their usage. The packet switching augmentations
 specified in this moducment support such a capability, which can be
 conditional enabled by a YANG feature "te-performance-metric".

augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices:
 +‑‑rw performance‑metric
 +‑‑rw measurement
 |
 +‑‑rw normality
 |
 +‑‑rw throttle

 Such an augmentation has been applied to:

 o Connectivity matrices container

 o Connectivity matrix entry

 o Local ink connectivities container

 o Local ink connectivity entry

 o TE link attributes container in a TE link template

 o TE link attributes container in a TE link

 o Information source entry in a TE link

4. Model Structure

4.1. Layer 3 TE Topology Module

 The model tree structure of the layer 3 TE topology module is as
 shown below:

module: ietf‑l3‑te‑topology
 augment /nw:networks/nw:network/nw:network‑types
 /l3t:l3‑unicast‑topology:
 +‑‑rw l3‑te!
 augment /nw:networks/nw:network/l3t:l3‑topology‑attributes:
 +‑‑rw l3‑te‑topology‑attributes
 +‑‑rw network‑ref? ‑> /nw:networks/network/network‑id
 augment /nw:networks/nw:network/nw:node/l3t:l3‑node‑attributes:
 +‑‑rw l3‑te‑node‑attributes
 +‑‑rw node‑ref? leafref
 +‑‑rw network‑ref? ‑> /nw:networks/network/network‑id
 augment /nw:networks/nw:network/nw:node/nt:termination‑point
 /l3t:l3‑termination‑point‑attributes:
 +‑‑rw l3‑te‑tp‑attributes
 +‑‑rw tp‑ref? leafref
 +‑‑rw node‑ref? leafref
 +‑‑rw network‑ref? ‑> /nw:networks/network/network‑id
 augment /nw:networks/nw:network/nt:link/l3t:l3‑link‑attributes:
 +‑‑rw l3‑te‑link‑attributes
 +‑‑rw link‑ref? leafref
 +‑‑rw network‑ref? ‑> /nw:networks/network/network‑id

4.2. Packet Switching TE Topology Module

 This is an augmentation to base TE topology model.

module: ietf‑te‑topology‑packet
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices:
 +‑‑rw performance‑metric
 +‑‑rw measurement
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32
 | +‑‑rw unidirectional‑delay‑variation? uint32
 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw normality
 | +‑‑rw unidirectional‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑min‑delay?

 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑max‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑delay‑variation?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑packet‑loss?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | te‑types:performance‑metric‑normality
 +‑‑rw throttle
 +‑‑rw unidirectional‑delay‑offset? uint32
 +‑‑rw measure‑interval? uint32
 +‑‑rw advertisement‑interval? uint32
 +‑‑rw suppression‑interval? uint32
 +‑‑rw threshold‑out
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32
 | +‑‑rw unidirectional‑delay‑variation? uint32
 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw threshold‑in
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32
 | +‑‑rw unidirectional‑delay‑variation? uint32
 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw threshold‑accelerated‑advertisement
 +‑‑rw unidirectional‑delay? uint32
 +‑‑rw unidirectional‑min‑delay? uint32
 +‑‑rw unidirectional‑max‑delay? uint32
 +‑‑rw unidirectional‑delay‑variation? uint32
 +‑‑rw unidirectional‑packet‑loss? decimal64

 +‑‑rw unidirectional‑residual‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw unidirectional‑available‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw unidirectional‑utilized‑bandwidth?
 rt‑types:bandwidth‑ieee‑float32
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices
 /tet:connectivity‑matrix:
 +‑‑rw performance‑metric
 +‑‑rw measurement
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32
 | +‑‑rw unidirectional‑delay‑variation? uint32
 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw normality
 | +‑‑rw unidirectional‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑min‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑max‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑delay‑variation?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑packet‑loss?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | te‑types:performance‑metric‑normality
 +‑‑rw throttle
 +‑‑rw unidirectional‑delay‑offset? uint32
 +‑‑rw measure‑interval? uint32
 +‑‑rw advertisement‑interval? uint32
 +‑‑rw suppression‑interval? uint32
 +‑‑rw threshold‑out
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32

 | +‑‑rw unidirectional‑delay‑variation? uint32
 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw threshold‑in
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32
 | +‑‑rw unidirectional‑delay‑variation? uint32
 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw threshold‑accelerated‑advertisement
 +‑‑rw unidirectional‑delay? uint32
 +‑‑rw unidirectional‑min‑delay? uint32
 +‑‑rw unidirectional‑max‑delay? uint32
 +‑‑rw unidirectional‑delay‑variation? uint32
 +‑‑rw unidirectional‑packet‑loss? decimal64
 +‑‑rw unidirectional‑residual‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw unidirectional‑available‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw unidirectional‑utilized‑bandwidth?
 rt‑types:bandwidth‑ieee‑float32
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information‑source‑entry/tet:connectivity‑matrices:
 +‑‑ro performance‑metric
 +‑‑ro measurement
 | +‑‑ro unidirectional‑delay? uint32
 | +‑‑ro unidirectional‑min‑delay? uint32
 | +‑‑ro unidirectional‑max‑delay? uint32
 | +‑‑ro unidirectional‑delay‑variation? uint32
 | +‑‑ro unidirectional‑packet‑loss? decimal64
 | +‑‑ro unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑ro normality

 | +‑‑ro unidirectional‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑min‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑max‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑delay‑variation?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑packet‑loss?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑residual‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑available‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑utilized‑bandwidth?
 | te‑types:performance‑metric‑normality
 +‑‑ro throttle
 +‑‑ro unidirectional‑delay‑offset? uint32
 +‑‑ro measure‑interval? uint32
 +‑‑ro advertisement‑interval? uint32
 +‑‑ro suppression‑interval? uint32
 +‑‑ro threshold‑out
 | +‑‑ro unidirectional‑delay? uint32
 | +‑‑ro unidirectional‑min‑delay? uint32
 | +‑‑ro unidirectional‑max‑delay? uint32
 | +‑‑ro unidirectional‑delay‑variation? uint32
 | +‑‑ro unidirectional‑packet‑loss? decimal64
 | +‑‑ro unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑ro threshold‑in
 | +‑‑ro unidirectional‑delay? uint32
 | +‑‑ro unidirectional‑min‑delay? uint32
 | +‑‑ro unidirectional‑max‑delay? uint32
 | +‑‑ro unidirectional‑delay‑variation? uint32
 | +‑‑ro unidirectional‑packet‑loss? decimal64
 | +‑‑ro unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑ro threshold‑accelerated‑advertisement
 +‑‑ro unidirectional‑delay? uint32
 +‑‑ro unidirectional‑min‑delay? uint32

 +‑‑ro unidirectional‑max‑delay? uint32
 +‑‑ro unidirectional‑delay‑variation? uint32
 +‑‑ro unidirectional‑packet‑loss? decimal64
 +‑‑ro unidirectional‑residual‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑ro unidirectional‑available‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑ro unidirectional‑utilized‑bandwidth?
 rt‑types:bandwidth‑ieee‑float32
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information‑source‑entry/tet:connectivity‑matrices
 /tet:connectivity‑matrix:
 +‑‑ro performance‑metric
 +‑‑ro measurement
 | +‑‑ro unidirectional‑delay? uint32
 | +‑‑ro unidirectional‑min‑delay? uint32
 | +‑‑ro unidirectional‑max‑delay? uint32
 | +‑‑ro unidirectional‑delay‑variation? uint32
 | +‑‑ro unidirectional‑packet‑loss? decimal64
 | +‑‑ro unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑ro normality
 | +‑‑ro unidirectional‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑min‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑max‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑delay‑variation?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑packet‑loss?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑residual‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑available‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑utilized‑bandwidth?
 | te‑types:performance‑metric‑normality
 +‑‑ro throttle
 +‑‑ro unidirectional‑delay‑offset? uint32
 +‑‑ro measure‑interval? uint32
 +‑‑ro advertisement‑interval? uint32
 +‑‑ro suppression‑interval? uint32
 +‑‑ro threshold‑out

 | +‑‑ro unidirectional‑delay? uint32
 | +‑‑ro unidirectional‑min‑delay? uint32
 | +‑‑ro unidirectional‑max‑delay? uint32
 | +‑‑ro unidirectional‑delay‑variation? uint32
 | +‑‑ro unidirectional‑packet‑loss? decimal64
 | +‑‑ro unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑ro threshold‑in
 | +‑‑ro unidirectional‑delay? uint32
 | +‑‑ro unidirectional‑min‑delay? uint32
 | +‑‑ro unidirectional‑max‑delay? uint32
 | +‑‑ro unidirectional‑delay‑variation? uint32
 | +‑‑ro unidirectional‑packet‑loss? decimal64
 | +‑‑ro unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑ro threshold‑accelerated‑advertisement
 +‑‑ro unidirectional‑delay? uint32
 +‑‑ro unidirectional‑min‑delay? uint32
 +‑‑ro unidirectional‑max‑delay? uint32
 +‑‑ro unidirectional‑delay‑variation? uint32
 +‑‑ro unidirectional‑packet‑loss? decimal64
 +‑‑ro unidirectional‑residual‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑ro unidirectional‑available‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑ro unidirectional‑utilized‑bandwidth?
 rt‑types:bandwidth‑ieee‑float32
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel‑termination‑point
 /tet:local‑link‑connectivities:
 +‑‑rw performance‑metric
 +‑‑rw measurement
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32
 | +‑‑rw unidirectional‑delay‑variation? uint32
 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?

 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw normality
 | +‑‑rw unidirectional‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑min‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑max‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑delay‑variation?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑packet‑loss?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | te‑types:performance‑metric‑normality
 +‑‑rw throttle
 +‑‑rw unidirectional‑delay‑offset? uint32
 +‑‑rw measure‑interval? uint32
 +‑‑rw advertisement‑interval? uint32
 +‑‑rw suppression‑interval? uint32
 +‑‑rw threshold‑out
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32
 | +‑‑rw unidirectional‑delay‑variation? uint32
 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw threshold‑in
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32
 | +‑‑rw unidirectional‑delay‑variation? uint32
 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?

 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw threshold‑accelerated‑advertisement
 +‑‑rw unidirectional‑delay? uint32
 +‑‑rw unidirectional‑min‑delay? uint32
 +‑‑rw unidirectional‑max‑delay? uint32
 +‑‑rw unidirectional‑delay‑variation? uint32
 +‑‑rw unidirectional‑packet‑loss? decimal64
 +‑‑rw unidirectional‑residual‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw unidirectional‑available‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw unidirectional‑utilized‑bandwidth?
 rt‑types:bandwidth‑ieee‑float32
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel‑termination‑point
 /tet:local‑link‑connectivities
 /tet:local‑link‑connectivity:
 +‑‑rw performance‑metric
 +‑‑rw measurement
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32
 | +‑‑rw unidirectional‑delay‑variation? uint32
 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw normality
 | +‑‑rw unidirectional‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑min‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑max‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑delay‑variation?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑packet‑loss?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | te‑types:performance‑metric‑normality
 +‑‑rw throttle

 +‑‑rw unidirectional‑delay‑offset? uint32
 +‑‑rw measure‑interval? uint32
 +‑‑rw advertisement‑interval? uint32
 +‑‑rw suppression‑interval? uint32
 +‑‑rw threshold‑out
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32
 | +‑‑rw unidirectional‑delay‑variation? uint32
 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw threshold‑in
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32
 | +‑‑rw unidirectional‑delay‑variation? uint32
 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw threshold‑accelerated‑advertisement
 +‑‑rw unidirectional‑delay? uint32
 +‑‑rw unidirectional‑min‑delay? uint32
 +‑‑rw unidirectional‑max‑delay? uint32
 +‑‑rw unidirectional‑delay‑variation? uint32
 +‑‑rw unidirectional‑packet‑loss? decimal64
 +‑‑rw unidirectional‑residual‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw unidirectional‑available‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw unidirectional‑utilized‑bandwidth?
 rt‑types:bandwidth‑ieee‑float32
 augment /nw:networks/tet:te/tet:templates/tet:link‑template
 /tet:te‑link‑attributes:
 +‑‑rw performance‑metric
 +‑‑rw measurement
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32
 | +‑‑rw unidirectional‑delay‑variation? uint32

 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw normality
 | +‑‑rw unidirectional‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑min‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑max‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑delay‑variation?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑packet‑loss?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | te‑types:performance‑metric‑normality
 +‑‑rw throttle
 +‑‑rw unidirectional‑delay‑offset? uint32
 +‑‑rw measure‑interval? uint32
 +‑‑rw advertisement‑interval? uint32
 +‑‑rw suppression‑interval? uint32
 +‑‑rw threshold‑out
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32
 | +‑‑rw unidirectional‑delay‑variation? uint32
 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw threshold‑in
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32
 | +‑‑rw unidirectional‑delay‑variation? uint32
 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?

 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw threshold‑accelerated‑advertisement
 +‑‑rw unidirectional‑delay? uint32
 +‑‑rw unidirectional‑min‑delay? uint32
 +‑‑rw unidirectional‑max‑delay? uint32
 +‑‑rw unidirectional‑delay‑variation? uint32
 +‑‑rw unidirectional‑packet‑loss? decimal64
 +‑‑rw unidirectional‑residual‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw unidirectional‑available‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw unidirectional‑utilized‑bandwidth?
 rt‑types:bandwidth‑ieee‑float32
 augment /nw:networks/nw:network/nt:link/tet:te
 /tet:te‑link‑attributes:
 +‑‑rw performance‑metric
 +‑‑rw measurement
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32
 | +‑‑rw unidirectional‑delay‑variation? uint32
 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw normality
 | +‑‑rw unidirectional‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑min‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑max‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑delay‑variation?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑packet‑loss?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑rw unidirectional‑utilized‑bandwidth?

 | te‑types:performance‑metric‑normality
 +‑‑rw throttle
 +‑‑rw unidirectional‑delay‑offset? uint32
 +‑‑rw measure‑interval? uint32
 +‑‑rw advertisement‑interval? uint32
 +‑‑rw suppression‑interval? uint32
 +‑‑rw threshold‑out
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32
 | +‑‑rw unidirectional‑delay‑variation? uint32
 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw threshold‑in
 | +‑‑rw unidirectional‑delay? uint32
 | +‑‑rw unidirectional‑min‑delay? uint32
 | +‑‑rw unidirectional‑max‑delay? uint32
 | +‑‑rw unidirectional‑delay‑variation? uint32
 | +‑‑rw unidirectional‑packet‑loss? decimal64
 | +‑‑rw unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑rw unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw threshold‑accelerated‑advertisement
 +‑‑rw unidirectional‑delay? uint32
 +‑‑rw unidirectional‑min‑delay? uint32
 +‑‑rw unidirectional‑max‑delay? uint32
 +‑‑rw unidirectional‑delay‑variation? uint32
 +‑‑rw unidirectional‑packet‑loss? decimal64
 +‑‑rw unidirectional‑residual‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw unidirectional‑available‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑rw unidirectional‑utilized‑bandwidth?
 rt‑types:bandwidth‑ieee‑float32
 augment /nw:networks/nw:network/nt:link/tet:te
 /tet:information‑source‑entry:
 +‑‑ro performance‑metric
 +‑‑ro measurement
 | +‑‑ro unidirectional‑delay? uint32
 | +‑‑ro unidirectional‑min‑delay? uint32

 | +‑‑ro unidirectional‑max‑delay? uint32
 | +‑‑ro unidirectional‑delay‑variation? uint32
 | +‑‑ro unidirectional‑packet‑loss? decimal64
 | +‑‑ro unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑ro normality
 | +‑‑ro unidirectional‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑min‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑max‑delay?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑delay‑variation?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑packet‑loss?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑residual‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑available‑bandwidth?
 | | te‑types:performance‑metric‑normality
 | +‑‑ro unidirectional‑utilized‑bandwidth?
 | te‑types:performance‑metric‑normality
 +‑‑ro throttle
 +‑‑ro unidirectional‑delay‑offset? uint32
 +‑‑ro measure‑interval? uint32
 +‑‑ro advertisement‑interval? uint32
 +‑‑ro suppression‑interval? uint32
 +‑‑ro threshold‑out
 | +‑‑ro unidirectional‑delay? uint32
 | +‑‑ro unidirectional‑min‑delay? uint32
 | +‑‑ro unidirectional‑max‑delay? uint32
 | +‑‑ro unidirectional‑delay‑variation? uint32
 | +‑‑ro unidirectional‑packet‑loss? decimal64
 | +‑‑ro unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑ro threshold‑in
 | +‑‑ro unidirectional‑delay? uint32
 | +‑‑ro unidirectional‑min‑delay? uint32
 | +‑‑ro unidirectional‑max‑delay? uint32
 | +‑‑ro unidirectional‑delay‑variation? uint32

 | +‑‑ro unidirectional‑packet‑loss? decimal64
 | +‑‑ro unidirectional‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro unidirectional‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑ro threshold‑accelerated‑advertisement
 +‑‑ro unidirectional‑delay? uint32
 +‑‑ro unidirectional‑min‑delay? uint32
 +‑‑ro unidirectional‑max‑delay? uint32
 +‑‑ro unidirectional‑delay‑variation? uint32
 +‑‑ro unidirectional‑packet‑loss? decimal64
 +‑‑ro unidirectional‑residual‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑ro unidirectional‑available‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑ro unidirectional‑utilized‑bandwidth?
 rt‑types:bandwidth‑ieee‑float32
 augment /nw:networks/tet:te/tet:templates/tet:link‑template
 /tet:te‑link‑attributes
 /tet:interface‑switching‑capability:
 +‑‑rw packet‑switch‑capable
 +‑‑rw minimum‑lsp‑bandwidth? rt‑types:bandwidth‑ieee‑float32
 +‑‑rw interface‑mtu? uint16
 augment /nw:networks/nw:network/nt:link/tet:te
 /tet:te‑link‑attributes
 /tet:interface‑switching‑capability:
 +‑‑rw packet‑switch‑capable
 +‑‑rw minimum‑lsp‑bandwidth? rt‑types:bandwidth‑ieee‑float32
 +‑‑rw interface‑mtu? uint16
 augment /nw:networks/nw:network/nt:link/tet:te
 /tet:information‑source‑entry
 /tet:interface‑switching‑capability:
 +‑‑ro packet‑switch‑capable
 +‑‑ro minimum‑lsp‑bandwidth? rt‑types:bandwidth‑ieee‑float32
 +‑‑ro interface‑mtu? uint16

5. YANG Modules

5.1. Layer 3 TE Topology Module

 This module references [RFC8345], [RFC8346], and
 [I-D.ietf-teas-yang-te-topo].

 <CODE BEGINS> file "ietf-l3-te-topology@2018-06-22.yang"

module ietf‑l3‑te‑topology {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑l3‑te‑topology";
 prefix "l3tet";

 import ietf‑network {
 prefix "nw";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
 }
 import ietf‑network‑topology {
 prefix "nt";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
 }
 import ietf‑l3‑unicast‑topology {
 prefix "l3t";
 reference "RFC 8346: A YANG Data Model for Layer 3 Topologies";
 }
 import ietf‑te‑topology {
 prefix "tet";
 reference
 "I‑D.ietf‑teas‑yang‑te‑topo: YANG Data Model for Traffic
 Engineering (TE) Topologies";
 }

 organization

 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>

 Editor: Igor Bryskin
 <mailto:Igor.Bryskin@huawei.com>

 Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

 Editor: Tarek Saad
 <mailto:tsaad@cisco.com>

 Editor: Himanshu Shah
 <mailto:hshah@ciena.com>

 Editor: Oscar Gonzalez De Dios

 <mailto:oscar.gonzalezdedios@telefonica.com>";

 description

 "YANG data model for representing and manipulating Layer 3 TE
 Topologies.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the
 RFC itself for full legal notices.";

 revision 2018-06-22 {

 description "Initial revision";
 reference "RFC XXXX: YANG Data Model for Layer 3 TE Topologies";
}

grouping l3‑te‑topology‑type {
 description
 "Identifies the L3 TE topology type.";
 container l3‑te {
 presence "indiates L3 TE Topology";
 description
 "Its presence identifies the L3 TE topology type.";
 }
}

augment "/nw:networks/nw:network/nw:network‑types/"
 + "l3t:l3‑unicast‑topology" {
 description
 "Defines the L3 TE topology type.";
 uses l3‑te‑topology‑type;
}

augment "/nw:networks/nw:network/l3t:l3‑topology‑attributes" {
 when "../nw:network‑types/l3t:l3‑unicast‑topology/l3tet:l3‑te" {
 description "Augment only for L3 TE topology";
 }
 description "Augment topology configuration";
 uses l3‑te‑topology‑attributes;

 }

augment "/nw:networks/nw:network/nw:node/l3t:l3‑node‑attributes" {
 when "../../nw:network‑types/l3t:l3‑unicast‑topology/"
 + "l3tet:l3‑te" {
 description "Augment only for L3 TE topology";
 }
 description "Augment node configuration";
 uses l3‑te‑node‑attributes;
}

augment "/nw:networks/nw:network/nw:node/nt:termination‑point/"
 + "l3t:l3‑termination‑point‑attributes" {
 when "../../../nw:network‑types/l3t:l3‑unicast‑topology/"
 + "l3tet:l3‑te" {
 description "Augment only for L3 TE topology";
 }
 description "Augment termination point configuration";
 uses l3‑te‑tp‑attributes;
}

augment "/nw:networks/nw:network/nt:link/l3t:l3‑link‑attributes" {
 when "../../nw:network‑types/l3t:l3‑unicast‑topology/"
 + "l3tet:l3‑te" {
 description "Augment only for L3 TE topology";
 }
 description "Augment link configuration";
 uses l3‑te‑link‑attributes;
}

grouping l3‑te‑topology‑attributes {
 description "L3 TE topology scope attributes";
 container l3‑te‑topology‑attributes {
 must "/nw:networks/nw:network"
 + "[nw:network‑id = current()/network‑ref]/nw:network‑types/"
 + "tet:te‑topology" {
 error‑message
 "The referenced network must be a TE topology.";
 description
 "The referenced network must be a TE topology.";
 }
 description "Containing TE topology references";
 uses nw:network‑ref;
 } // l3‑te‑topology‑attributes
} // l3‑te‑topology‑attributes

 grouping l3-te-node-attributes {

 description "L3 TE node scope attributes";

 container l3‑te‑node‑attributes {
 must "/nw:networks/nw:network"
 + "[nw:network‑id = current()/network‑ref]/nw:network‑types/"
 + "tet:te‑topology" {
 error‑message
 "The referenced network must be a TE topology.";
 description
 "The referenced network must be a TE topology.";
 }
 description "Containing TE node references";
 uses nw:node‑ref;
 } // l3‑te
 } // l3‑te‑node‑attributes

 grouping l3‑te‑tp‑attributes {
 description "L3 TE termination point scope attributes";
 container l3‑te‑tp‑attributes {
 must "/nw:networks/nw:network"
 + "[nw:network‑id = current()/network‑ref]/nw:network‑types/"
 + "tet:te‑topology" {
 error‑message
 "The referenced network must be a TE topology.";
 description
 "The referenced network must be a TE topology.";
 }
 description "Containing TE termination point references";
 uses nt:tp‑ref;
 } // l3‑te
 } // l3‑te‑tp‑attributes

 grouping l3‑te‑link‑attributes {
 description "L3 TE link scope attributes";
 container l3‑te‑link‑attributes {
 must "/nw:networks/nw:network"
 + "[nw:network‑id = current()/network‑ref]/nw:network‑types/"
 + "tet:te‑topology" {
 error‑message
 "The referenced network must be a TE topology.";
 description
 "The referenced network must be a TE topology.";
 }
 description "Containing TE link references";
 uses nt:link‑ref;
 }
 } // l3‑te‑link‑attributes
}
<CODE ENDS>

5.2. Packet Switching TE Topology Module

 This module references [RFC7471], [RFC7810], [RFC7823], [RFC8294],
 [RFC8345], [RFC8346]. [I-D.ietf-teas-yang-te], and
 [I-D.ietf-teas-yang-te-topo].

<CODE BEGINS> file "ietf‑te‑topology‑packet@2018‑06‑22.yang"
module ietf‑te‑topology‑packet {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑te‑topology‑packet";

 prefix "tet-pkt";

import ietf‑network {
 prefix "nw";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
}

import ietf‑network‑topology {
 prefix "nt";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
}

import ietf‑routing‑types {
 prefix "rt‑types";
 reference
 "RFC 8294: Common YANG Data Types for the Routing Area";
}

import ietf‑te‑topology {
 prefix "tet";
 reference
 "I‑D.ietf‑teas‑yang‑te‑topo: YANG Data Model for Traffic
 Engineering (TE) Topologies";
}

import ietf‑te‑types {
 prefix "te‑types";
 reference
 "I‑D.ietf‑teas‑yang‑te: A YANG Data Model for Traffic
 Engineering Tunnels and Interfaces";
}

organization
 "Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>

 Editor: Igor Bryskin
 <mailto:Igor.Bryskin@huawei.com>

 Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

 Editor: Tarek Saad
 <mailto:tsaad@cisco.com>

 Editor: Himanshu Shah
 <mailto:hshah@ciena.com>

 Editor: Oscar Gonzalez De Dios
 <mailto:oscar.gonzalezdedios@telefonica.com>";

 description

 "YANG data model for representing and manipulating PSC (Packet
 Switching) TE Topologies.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the
 RFC itself for full legal notices.";

revision 2018‑06‑22 {
 description "Initial revision";
 reference "RFC XXXX: YANG Data Model for Layer 3 TE Topologies";
}

/*
 * Features
 */

feature te‑performance‑metric {
 description
 "This feature indicates that the system supports
 TE performance metric.";
 reference
 "RFC7471: OSPF Traffic Engineering (TE) Metric Extensions.
 RFC7810: IS‑IS Traffic Engineering (TE) Metric Extensions.
 RFC7823: Performance‑Based Path Selection for Explicitly
 Routed Label Switched Paths (LSPs) Using TE Metric
 Extensions";
}

/*
 * Groupings
 */
grouping packet‑switch‑capable‑container {
 description
 "The container of packet switch capable attributes.";
 container packet‑switch‑capable {
 description
 "Interface has packet‑switching capabilities.";
 leaf minimum‑lsp‑bandwidth {
 type rt‑types:bandwidth‑ieee‑float32;
 description
 "Minimum LSP Bandwidth. Units in bytes per second";
 }
 leaf interface‑mtu {
 type uint16;
 description
 "Interface MTU.";
 }
 }
}

/*
 * Augmentations
 */
/* Augmentations to connectivity‑matrix */
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet:connectivity‑matrices" {
 description
 "Parameters for PSC TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature te‑performance‑metric;
 }
}

 augment "/nw:networks/nw:network/nw:node/tet:te/"

 + "tet:te‑node‑attributes/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix" {
 description
 "Parameters for PSC TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature te‑performance‑metric;
 }
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information‑source‑entry/tet:connectivity‑matrices" {
 description
 "Parameters for PSC TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature te‑performance‑metric;
 }
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information‑source‑entry/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix" {
 description
 "Parameters for PSC TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature te‑performance‑metric;
 }
}

/* Augmentations to tunnel‑termination‑point */
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel‑termination‑point/"
 + "tet:local‑link‑connectivities" {
 description
 "Parameters for PSC TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature te‑performance‑metric;
 }
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel‑termination‑point/"
 + "tet:local‑link‑connectivities/"
 + "tet:local‑link‑connectivity" {
 description
 "Parameters for PSC TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature te‑performance‑metric;
 }

 }

 /* Augmentations to te‑link‑attributes */
 augment "/nw:networks/tet:te/tet:templates/"
 + "tet:link‑template/tet:te‑link‑attributes" {
 when "tet:interface‑switching‑capability "
 + "[tet:switching‑capability = 'te‑types:switching‑psc1']" {
 description "Valid only for PSC";
 }
 description
 "Parameters for PSC TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature te‑performance‑metric;
 }
 }

 augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te‑link‑attributes" {
 when "tet:interface‑switching‑capability "
 + "[tet:switching‑capability = 'te‑types:switching‑psc1']" {
 description "Valid only for PSC";
 }
 description
 "Parameters for PSC TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature te‑performance‑metric;
 }
 }

 augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:information‑source‑entry" {
 when "tet:interface‑switching‑capability "
 + "[tet:switching‑capability = 'te‑types:switching‑psc1']" {
 description "Valid only for PSC";
 }
 description
 "Parameters for PSC TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature te‑performance‑metric;
 }
 }

 /* Augmentations to interface‑switching‑capability */
 augment "/nw:networks/tet:te/tet:templates/"
 + "tet:link‑template/tet:te‑link‑attributes/"
 + "tet:interface‑switching‑capability" {
 when "tet:switching‑capability = 'te‑types:switching‑psc1' " {
 description "Valid only for PSC";

 }
 description
 "Parameters for PSC TE topology.";
 uses packet‑switch‑capable‑container;
 }

 augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te‑link‑attributes/"
 + "tet:interface‑switching‑capability" {
 when "tet:switching‑capability = 'te‑types:switching‑psc1' " {
 description "Valid only for PSC";
 }
 description
 "Parameters for PSC TE topology.";
 uses packet‑switch‑capable‑container;
 }

 augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:information‑source‑entry/"
 + "tet:interface‑switching‑capability" {
 when "tet:switching‑capability = 'te‑types:switching‑psc1' " {
 description "Valid only for PSC";
 }
 description
 "Parameters for PSC TE topology.";
 uses packet‑switch‑capable‑container;
 }
}
<CODE ENDS>

6. IANA Considerations

 RFC Ed.: In this section, replace all occurrences of 'XXXX' with the
 actual RFC number (and remove this note).

 This document registers the following namespace URIs in the IETF XML
 registry [RFC3688]:

‑‑
URI: urn:ietf:params:xml:ns:yang:ietf‑l3‑te‑topology
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
‑‑

‑‑
URI: urn:ietf:params:xml:ns:yang:ietf‑l3‑te‑topology‑state
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
‑‑

‑‑
URI: urn:ietf:params:xml:ns:yang:ietf‑te‑topology‑packet
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
‑‑

‑‑
URI: urn:ietf:params:xml:ns:yang:ietf‑te‑topology‑packet‑state
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
‑‑

 This document registers the following YANG modules in the YANG Module
 Names registry [RFC6020]:

‑‑
name: ietf‑l3‑te‑topology
namespace: urn:ietf:params:xml:ns:yang:ietf‑l3‑te‑topology
prefix: l3te
reference: RFC XXXX
‑‑

‑‑
name: ietf‑l3‑te‑topology‑state
namespace: urn:ietf:params:xml:ns:yang:ietf‑l3‑te‑topology‑state
prefix: l3te‑s
reference: RFC XXXX
‑‑

‑‑
name: ietf‑te‑topology‑packet
namespace: urn:ietf:params:xml:ns:yang:ietf‑te‑topology‑packet
prefix: tet‑pkt
reference: RFC XXXX
‑‑

‑‑
name: ietf‑te‑topology‑packet‑state
namespace: urn:ietf:params:xml:ns:yang:ietf‑te‑topology‑packet‑state
prefix: tet‑pkt‑s
reference: RFC XXXX
‑‑

7. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC5246].

 The NETCONF access control model [RFC6536] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

/nw:networks/nw:network/nw:network‑types/l3t:l3‑unicast‑topology/
l3‑te
 This subtree specifies the layer 3 TE topology type. Modifying
 the configurations can make layer 3 TE topology type invalid and
 cause interruption to all layer 3 TE networks.

/nw:networks/nw:network/l3t:l3‑topology‑attributes/l3‑te‑topology‑
attributes
 This subtree specifies the topology‑wide configurations, including
 the reference to a TE topology from a layer 3 network topolopy.
 Modifying the configurations here can cause traffic disabled or
 rerouted in this topology and the connected topologies.

/nw:networks/nw:network/nw:node/l3t:l3‑node‑attributes/l3‑te‑node‑
attributes
 This subtree specifies the configurations of layer 3 TE nodes.
 Modifying the configurations in this subtree can change the
 relationship between a TE node and a layer 3 node, causing traffic
 disabled or rerouted in the specified nodes and the related layer
 3 topologies.

/nw:networks/nw:network/nw:node/nt:termination‑point//l3t:l3‑
termination‑point‑attributes/l3‑te‑tp‑attributes
 This subtree specifies the configurations of layer 3 TE link
 termination points. Modifying the configurations in this subtree

 can change the relationship between a TE link termination point
 and a layer 3 link termination point, causing traffic disabled or
 rerouted on the related layer 3 links and the related layer 3
 topologies.

/nw:networks/nw:network/nt:link/l3t:l3‑link‑attributes/l3‑te‑link‑
attributes
 This subtree specifies the configurations of layer 3 TE links.
 Modifying the configurations in this subtree can change the
 relationship between a TE link and a layer 3 link, causing traffic
 disabled or rerouted on the specified layer 3 link and the related
 layer 3 topologies.

 performance-metric containers

 The container "performance-metric" is augmented to multiple
 locations of the base TE topology model, as specified in
 Section 3.2. Modifying the configuration in such a container can
 change the behavours of performance metric monitoring, causing
 traffic disabled or rerouted on the related layer 3 links, nodes,
 or topologies.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

/nw:networks/nw:network/nw:network‑types/l3t:l3‑unicast‑topology/
l3‑te
 Unauthorized access to this subtree can disclose the layer 3 TE
 topology type.

/nw:networks/nw:network/l3t:l3‑topology‑attributes/l3‑te‑topology‑
attributes
 Unauthorized access to this subtree can disclose the topology‑wide
 configurations, including the reference to a TE topology from a
 layer 3 network topolopy.

/nw:networks/nw:network/nw:node/l3t:l3‑node‑attributes/l3‑te‑node‑
attributes
 Unauthorized access to this subtree can disclose the operational
 state information of layer 3 TE nodes.

/nw:networks/nw:network/nw:node/nt:termination‑point//l3t:l3‑
termination‑point‑attributes/l3‑te‑tp‑attributes
 Unauthorized access to this subtree can disclose the operational
 state information of layer 3 TE link termination points.

/nw:networks/nw:network/nt:link/l3t:l3‑link‑attributes/l3‑te‑link‑
attributes
 Unauthorized access to this subtree can disclose the operational
 state information of layer 3 TE links.

 performance-metric containers

 The container "performance-metric" is augmented to multiple
 locations of the base TE topology model, as specified in
 Section 3.2. Unauthorized access to this subtree can disclose the
 operational state information of performance metric monitoring.

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6536]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <https://www.rfc-editor.org/info/rfc6536>.

 [RFC7471]
 Giacalone, S., Ward, D., Drake, J., Atlas, A., and S.
 Previdi, "OSPF Traffic Engineering (TE) Metric
 Extensions", RFC 7471, DOI 10.17487/RFC7471, March 2015,
 <https://www.rfc-editor.org/info/rfc7471>.

 [RFC7810]
 Previdi, S., Ed., Giacalone, S., Ward, D., Drake, J., and
 Q. Wu, "IS-IS Traffic Engineering (TE) Metric Extensions",
 RFC 7810, DOI 10.17487/RFC7810, May 2016,
 <https://www.rfc-editor.org/info/rfc7810>.

 [RFC7823]
 Atlas, A., Drake, J., Giacalone, S., and S. Previdi,
 "Performance-Based Path Selection for Explicitly Routed
 Label Switched Paths (LSPs) Using TE Metric Extensions",
 RFC 7823, DOI 10.17487/RFC7823, May 2016,
 <https://www.rfc-editor.org/info/rfc7823>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8294]
 Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
 "Common YANG Data Types for the Routing Area", RFC 8294,
 DOI 10.17487/RFC8294, December 2017,
 <https://www.rfc-editor.org/info/rfc8294>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8345]
 Clemm, A., Medved, J., Varga, R., Bahadur, N.,
 Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
 Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
 2018, <https://www.rfc-editor.org/info/rfc8345>.

 [RFC8346]
 Clemm, A., Medved, J., Varga, R., Liu, X.,
 Ananthakrishnan, H., and N. Bahadur, "A YANG Data Model
 for Layer 3 Topologies", RFC 8346, DOI 10.17487/RFC8346,
 March 2018, <https://www.rfc-editor.org/info/rfc8346>.

 [I-D.ietf-teas-yang-te]

 Saad, T., Gandhi, R., Liu, X., Beeram, V., Shah, H., and
 I. Bryskin, "A YANG Data Model for Traffic Engineering
 Tunnels and Interfaces", draft-ietf-teas-yang-te-16 (work
 in progress), July 2018.

 [I-D.ietf-teas-yang-te-topo]

 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
 O. Dios, "YANG Data Model for Traffic Engineering (TE)
 Topologies", draft-ietf-teas-yang-te-topo-18 (work in
 progress), June 2018.

8.2. Informative References

 [RFC7951]
 Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

Appendix A. Companion YANG Model for Non-NMDA Compliant Implementations

 The YANG modules ietf-l3-te-topology and ietf-te-topology-packet
 defined in this document are designed to be used in conjunction with
 implementations that support the Network Management Datastore
 Architecture (NMDA) defined in [RFC8342]. In order to allow
 implementations to use the model even in cases when NMDA is not
 supported, the following companion modules, ietf-l3-te-topology-state
 and ietf-te-topology-packet-state, are defined as state models, which
 mirror the modules ietf-l3-te-topology and ietf-te-topology-packet
 defined earlier in this document. However, all data nodes in the
 companion module are non-configurable, to represent the applied
 configuration or the derived operational states.

 The companion modules, ietf-l3-te-topology-state and ietf-te-
 topology-packet-state, are redundant and SHOULD NOT be supported by
 implementations that support NMDA.

 As the structure of the companion modules mirrors that of the
 coorespinding NMDA models, the YANG trees of the companion modules
 are not depicted separately.

A.1. Layer 3 TE Topology State Module

 This module references [RFC8345], and [RFC8346].

<CODE BEGINS> file "ietf‑l3‑te‑topology‑state@2018‑06‑22.yang"
module ietf‑l3‑te‑topology‑state {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑l3‑te‑topology‑state";
 prefix "l3tet‑s";

 import ietf‑l3‑te‑topology {
 prefix "l3tet";
 }
 import ietf‑network‑state {
 prefix "nw‑s";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
 }
 import ietf‑network‑topology‑state {
 prefix "nt‑s";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
 }
 import ietf‑l3‑unicast‑topology‑state {
 prefix "l3t‑s";
 reference "RFC 8346: A YANG Data Model for Layer 3 Topologies";
 }

 organization

 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>

 Editor: Igor Bryskin
 <mailto:Igor.Bryskin@huawei.com>

 Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

 Editor: Tarek Saad
 <mailto:tsaad@cisco.com>

 Editor: Himanshu Shah
 <mailto:hshah@ciena.com>

 Editor: Oscar Gonzalez De Dios
 <mailto:oscar.gonzalezdedios@telefonica.com>";

 description

 "YANG data model for representing operational state information
 of Layer 3 TE Topologies, when NMDA is not supported.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the
 RFC itself for full legal notices.";

 revision 2018-06-22 {

 description "Initial revision";
 reference "RFC XXXX: YANG Data Model for Layer 3 TE Topologies";
 }

 augment "/nw‑s:networks/nw‑s:network/nw‑s:network‑types/"
 + "l3t‑s:l3‑unicast‑topology" {
 description
 "Defines the L3 TE topology type.";
 uses l3tet:l3‑te‑topology‑type;
 }

 augment "/nw‑s:networks/nw‑s:network/"
 + "l3t‑s:l3‑topology‑attributes" {
 when "../nw‑s:network‑types/l3t‑s:l3‑unicast‑topology/"
 + "l3tet‑s:l3‑te" {
 description "Augment only for L3 TE topology";
 }
 description "Augment topology configuration";
 uses l3tet:l3‑te‑topology‑attributes;
 }

 augment "/nw‑s:networks/nw‑s:network/nw‑s:node/"
 + "l3t‑s:l3‑node‑attributes" {
 when "../../nw‑s:network‑types/l3t‑s:l3‑unicast‑topology/"
 + "l3tet‑s:l3‑te" {
 description "Augment only for L3 TE topology";
 }
 description "Augment node configuration";
 uses l3tet:l3‑te‑node‑attributes;
 }

 augment "/nw‑s:networks/nw‑s:network/nw‑s:node/"
 + "nt‑s:termination‑point/"
 + "l3t‑s:l3‑termination‑point‑attributes" {
 when "../../../nw‑s:network‑types/l3t‑s:l3‑unicast‑topology/"
 + "l3tet‑s:l3‑te" {
 description "Augment only for L3 TE topology";
 }
 description "Augment termination point configuration";
 uses l3tet:l3‑te‑tp‑attributes;
 }

 augment "/nw‑s:networks/nw‑s:network/nt‑s:link/"
 + "l3t‑s:l3‑link‑attributes" {
 when "../../nw‑s:network‑types/l3t‑s:l3‑unicast‑topology/"
 + "l3tet‑s:l3‑te" {
 description "Augment only for L3 TE topology";
 }
 description "Augment link configuration";
 uses l3tet:l3‑te‑link‑attributes;
 }
}

 <CODE ENDS>

A.2. Packet Switching TE Topology State Module

<CODE BEGINS> file "ietf‑te‑topology‑packet‑state@2018‑06‑22.yang"
module ietf‑te‑topology‑packet‑state {
 yang‑version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf‑te‑topology‑packet‑state";

 prefix "tet-pkt-s";

import ietf‑te‑topology‑packet {
 prefix "tet‑pkt";
}

import ietf‑network‑state {
 prefix "nw‑s";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
}

import ietf‑network‑topology‑state {
 prefix "nt‑s";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
}

import ietf‑te‑topology‑state {
 prefix "tet‑s";
 reference
 "I‑D.ietf‑teas‑yang‑te‑topo: YANG Data Model for Traffic
 Engineering (TE) Topologies";
}

import ietf‑te‑types {
 prefix "te‑types";
 reference
 "I‑D.ietf‑teas‑yang‑te: A YANG Data Model for Traffic
 Engineering Tunnels and Interfaces";
}

organization
 "Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

 contact

"WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>

 Editor: Igor Bryskin
 <mailto:Igor.Bryskin@huawei.com>

 Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

 Editor: Tarek Saad
 <mailto:tsaad@cisco.com>

 Editor: Himanshu Shah
 <mailto:hshah@ciena.com>

 Editor: Oscar Gonzalez De Dios
 <mailto:oscar.gonzalezdedios@telefonica.com>";

 description

 "YANG data model for representing operational state information
 of PSC (Packet Switching) TE Topologies, when NMDA is not
 supported.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the
 RFC itself for full legal notices.";

 revision 2018‑06‑22 {
 description "Initial revision";
 reference "RFC XXXX: YANG Data Model for Layer 3 TE Topologies";
 }

 /*
 * Augmentations
 */
 /* Augmentations to connectivity‑matrix */

 augment "/nw‑s:networks/nw‑s:network/nw‑s:node/tet‑s:te/"
 + "tet‑s:te‑node‑attributes/tet‑s:connectivity‑matrices" {
 description
 "Parameters for PSC (Packet Switching) TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature tet‑pkt:te‑performance‑metric;
 }
 }

 augment "/nw‑s:networks/nw‑s:network/nw‑s:node/tet‑s:te/"
 + "tet‑s:te‑node‑attributes/tet‑s:connectivity‑matrices/"
 + "tet‑s:connectivity‑matrix" {
 description
 "Parameters for PSC TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature tet‑pkt:te‑performance‑metric;
 }
 }

 augment "/nw‑s:networks/nw‑s:network/nw‑s:node/tet‑s:te/"
 + "tet‑s:information‑source‑entry/"
 + "tet‑s:connectivity‑matrices" {
 description
 "Parameters for PSC TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature tet‑pkt:te‑performance‑metric;
 }
 }

 augment "/nw‑s:networks/nw‑s:network/nw‑s:node/tet‑s:te/"
 + "tet‑s:information‑source‑entry/"
 + "tet‑s:connectivity‑matrices/"
 + "tet‑s:connectivity‑matrix" {
 description
 "Parameters for PSC TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature tet‑pkt:te‑performance‑metric;
 }
 }

 /* Augmentations to tunnel‑termination‑point */
 augment "/nw‑s:networks/nw‑s:network/nw‑s:node/tet‑s:te/"
 + "tet‑s:tunnel‑termination‑point/"
 + "tet‑s:local‑link‑connectivities" {
 description
 "Parameters for PSC TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature tet‑pkt:te‑performance‑metric;

 }
 }

 augment "/nw‑s:networks/nw‑s:network/nw‑s:node/tet‑s:te/"
 + "tet‑s:tunnel‑termination‑point/"
 + "tet‑s:local‑link‑connectivities/"
 + "tet‑s:local‑link‑connectivity" {
 description
 "Parameters for PSC TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature tet‑pkt:te‑performance‑metric;
 }
 }

 /* Augmentations to te‑link‑attributes */
 augment "/nw‑s:networks/tet‑s:te/tet‑s:templates/"
 + "tet‑s:link‑template/tet‑s:te‑link‑attributes" {
 when "tet‑s:interface‑switching‑capability "
 + "[tet‑s:switching‑capability = 'te‑types:switching‑psc1']" {
 description "Valid only for PSC";
 }
 description
 "Parameters for PSC TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature tet‑pkt:te‑performance‑metric;
 }
 }

 augment "/nw‑s:networks/nw‑s:network/nt‑s:link/tet‑s:te/"
 + "tet‑s:te‑link‑attributes" {
 when "tet‑s:interface‑switching‑capability "
 + "[tet‑s:switching‑capability = 'te‑types:switching‑psc1']" {
 description "Valid only for PSC";
 }
 description
 "Parameters for PSC TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature tet‑pkt:te‑performance‑metric;
 }
 }

 augment "/nw‑s:networks/nw‑s:network/nt‑s:link/tet‑s:te/"
 + "tet‑s:information‑source‑entry" {
 when "tet‑s:interface‑switching‑capability "
 + "[tet‑s:switching‑capability = 'te‑types:switching‑psc1']" {
 description "Valid only for PSC";
 }
 description

 "Parameters for PSC TE topology.";
 uses te‑types:performance‑metric‑container {
 if‑feature tet‑pkt:te‑performance‑metric;
 }
 }

 /* Augmentations to interface‑switching‑capability */
 augment "/nw‑s:networks/tet‑s:te/tet‑s:templates/"
 + "tet‑s:link‑template/tet‑s:te‑link‑attributes/"
 + "tet‑s:interface‑switching‑capability" {
 when "tet‑s:switching‑capability = 'te‑types:switching‑psc1' " {
 description "Valid only for PSC";
 }
 description
 "Parameters for PSC TE topology.";
 uses tet‑pkt:packet‑switch‑capable‑container;
 }

 augment "/nw‑s:networks/nw‑s:network/nt‑s:link/tet‑s:te/"
 + "tet‑s:te‑link‑attributes/"
 + "tet‑s:interface‑switching‑capability" {
 when "tet‑s:switching‑capability = 'te‑types:switching‑psc1' " {
 description "Valid only for PSC";
 }
 description
 "Parameters for PSC TE topology.";
 uses tet‑pkt:packet‑switch‑capable‑container;
 }

 augment "/nw‑s:networks/nw‑s:network/nt‑s:link/tet‑s:te/"
 + "tet‑s:information‑source‑entry/"
 + "tet‑s:interface‑switching‑capability" {
 when "tet‑s:switching‑capability = 'te‑types:switching‑psc1' " {
 description "Valid only for PSC";
 }
 description
 "Parameters for PSC TE topology.";
 uses tet‑pkt:packet‑switch‑capable‑container;
 }
}
<CODE ENDS>

Appendix B. Data Tree Example

 This section contains an example of an instance data tree in the JSON
 encoding [RFC7951]. The example instantiates "ietf-l3-te-topology"
 for the topology that is depicted in the following diagram.

 +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
 | D1 | | D2 |
/‑\ /‑\ (TE) /‑\ /‑\
| | 1‑0‑1 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | 2‑1‑1 | |
| | 1‑2‑1 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | 2‑0‑1 | |
\‑/ 1‑3‑1 \‑/ (TE) \‑/ 2‑3‑1 \‑/
 | /‑‑‑‑\ | | /‑‑‑‑\ |
 +‑‑‑| |‑‑‑+ +‑‑‑| |‑‑‑+
 \‑‑‑‑/ \‑‑‑‑/
 A | A |
 (TE)| |(TE) (Non‑TE)| |(Non‑TE)
 | | | | | |
 | | +‑‑‑‑‑‑‑‑‑‑‑‑+ | |
 | | | D3 | | |
 | | /‑\ /‑\ | |
 | +‑‑‑‑‑>| | 3‑1‑1 | |‑‑‑‑‑‑‑+ |
 +‑‑‑‑‑‑‑‑‑| | 3‑2‑1 | |<‑‑‑‑‑‑‑‑‑+
 \‑/ \‑/
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑+

 The corresponding instance data tree is depicted below. Note that
 some lines have been wrapped to adhere to the 72-character line
 limitation of RFCs.

{
 "ietf‑network:networks": {
 "network": [
 {
 "network‑types": {
 "ietf‑te‑topology:te‑topology": {}
 },
 "network‑id": "example‑topo‑te",
 "ietf‑te‑topology:provider‑id": 200,
 "ietf‑te‑topology:client‑id": 300,
 "ietf‑te‑topology:te‑topology‑id": "example‑topo‑te",
 "ietf‑te‑topology:te": {
 },
 "node": [
 {

 "node‑id": "D1",
 "ietf‑te‑topology:te‑node‑id": "2.0.1.1",
 "ietf‑te‑topology:te": {
 "te‑node‑attributes": {
 }
 },
 "ietf‑network‑topology:termination‑point": [
 {
 "tp‑id": "1‑2‑1",
 "ietf‑te‑topology:te‑tp‑id": 10201,
 "ietf‑te‑topology:te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑psc1",
 "encoding": "lsp‑encoding‑ethernet"
 }
]
 }
 },
 {
 "tp‑id": "1‑3‑1",
 "ietf‑te‑topology:te‑tp‑id": 10301,
 "ietf‑te‑topology:te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑psc1",
 "encoding": "lsp‑encoding‑ethernet"
 }
]
 }
 }
]
 },
 {
 "node‑id": "D2",
 "ietf‑te‑topology:te‑node‑id": "2.0.2.1",
 "ietf‑te‑topology:te": {
 "te‑node‑attributes": {
 }
 },
 "ietf‑network‑topology:termination‑point": [
 {
 "tp‑id": "2‑1‑1",
 "ietf‑te‑topology:te‑tp‑id": 20101,
 "ietf‑te‑topology:te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑psc1",

 "encoding": "lsp‑encoding‑ethernet"
 }
]
 }
 }
]
 },
 {
 "node‑id": "D3",
 "ietf‑te‑topology:te‑node‑id": "2.0.3.1",
 "ietf‑te‑topology:te": {
 "te‑node‑attributes": {
 }
 },
 "ietf‑network‑topology:termination‑point": [
 {
 "tp‑id": "3‑1‑1",
 "ietf‑te‑topology:te‑tp‑id": 30101,
 "ietf‑te‑topology:te": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑psc1",
 "encoding": "lsp‑encoding‑ethernet"
 }
]
 }
 }
]
 }
],
 "ietf‑network‑topology:link": [
 {
 "link‑id": "D1,1‑2‑1,D2,2‑1‑1",
 "source": {
 "source‑node": "D1",
 "source‑tp": "1‑2‑1"
 },
 "destination": {
 "dest‑node": "D2",
 "dest‑tp": "2‑1‑1"
 },
 "ietf‑te‑topology:te": {
 "te‑link‑attributes": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑psc1",
 "encoding": "lsp‑encoding‑ethernet"
 }

],
 "max‑link‑bandwidth": {
 "te‑bandwidth": {
 "generic": "0x1p+18"
 }
 },
 "te‑default‑metric": 100
 }
 }
 },
 {
 "link‑id": "D2,2‑1‑1,D1,1‑2‑1",
 "source": {
 "source‑node": "D2",
 "source‑tp": "2‑1‑1"
 },
 "destination": {
 "dest‑node": "D1",
 "dest‑tp": "1‑2‑1"
 },
 "ietf‑te‑topology:te": {
 "te‑link‑attributes": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑psc1",
 "encoding": "lsp‑encoding‑ethernet"
 }
],
 "max‑link‑bandwidth": {
 "te‑bandwidth": {
 "generic": "0x1p+18"
 }
 },
 "te‑default‑metric": 100
 }
 }
 },
 {
 "link‑id": "D1,1‑3‑1,D3,3‑1‑1",
 "source": {
 "source‑node": "D1",
 "source‑tp": "1‑3‑1"
 },
 "destination": {
 "dest‑node": "D3",
 "dest‑tp": "3‑1‑1"
 },
 "ietf‑te‑topology:te": {

 "te‑link‑attributes": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑psc1",
 "encoding": "lsp‑encoding‑ethernet"
 }
],
 "max‑link‑bandwidth": {
 "te‑bandwidth": {
 "generic": "0x1p+18"
 }
 },
 "te‑default‑metric": 100
 }
 }
 },
 {
 "link‑id": "D3,3‑1‑1,D1,1‑3‑1",
 "source": {
 "source‑node": "D3",
 "source‑tp": "3‑1‑1"
 },
 "destination": {
 "dest‑node": "D1",
 "dest‑tp": "1‑3‑1"
 },
 "ietf‑te‑topology:te": {
 "te‑link‑attributes": {
 "interface‑switching‑capability": [
 {
 "switching‑capability": "switching‑psc1",
 "encoding": "lsp‑encoding‑ethernet"
 }
],
 "max‑link‑bandwidth": {
 "te‑bandwidth": {
 "generic": "0x1p+18"
 }
 },
 "te‑default‑metric": 100
 }
 }
 }
]
 },
 {
 "network‑types": {
 "ietf‑l3‑unicast‑topology:l3‑unicast‑topology": {

 "ietf‑l3‑te‑topology:l3‑te": {}
 }
 },
 "network‑id": "example‑topo‑l3‑te",
 "ietf‑l3‑unicast‑topology:l3‑topology‑attributes": {
 "ietf‑l3‑te‑topology:l3‑te‑topology‑attributes": {
 "network‑ref": "example‑topo‑te"
 }
 },
 "node": [
 {
 "node‑id": "D1",
 "ietf‑network‑topology:termination‑point": [
 {
 "tp‑id": "1‑0‑1",
"ietf‑l3‑unicast‑topology:l3‑termination‑point‑attributes": {
 "unnumbered‑id": 101
 }
 },
 {
 "tp‑id": "1‑2‑1",
"ietf‑l3‑unicast‑topology:l3‑termination‑point‑attributes": {
 "unnumbered‑id": 121,
 "ietf‑l3‑te‑topology:l3‑te‑tp‑attributes": {
 "tp‑ref": "1‑2‑1"
 }
 }
 },
 {
 "tp‑id": "1‑3‑1",
"ietf‑l3‑unicast‑topology:l3‑termination‑point‑attributes": {
 "unnumbered‑id": 131,
 "ietf‑l3‑te‑topology:l3‑te‑tp‑attributes": {
 "tp‑ref": "1‑3‑1"
 }
 }
 }
],
 "ietf‑l3‑unicast‑topology:l3‑node‑attributes": {
 "router‑id": ["203.0.113.1"],
 "prefix": [
 {
 "prefix": "203.0.113.1/32"
 }
],
 "ietf‑l3‑te‑topology:l3‑te‑node‑attributes": {
 "node‑ref": "D1"
 }

 }
 },
 {
 "node‑id": "D2",
 "ietf‑network‑topology:termination‑point": [
 {
 "tp‑id": "2‑0‑1",
"ietf‑l3‑unicast‑topology:l3‑termination‑point‑attributes": {
 "unnumbered‑id": 201
 }
 },
 {
 "tp‑id": "2‑1‑1",
"ietf‑l3‑unicast‑topology:l3‑termination‑point‑attributes": {
 "unnumbered‑id": 211,
 "ietf‑l3‑te‑topology:l3‑te‑tp‑attributes": {
 "tp‑ref": "2‑1‑1"
 }
 }
 },
 {
 "tp‑id": "2‑3‑1",
"ietf‑l3‑unicast‑topology:l3‑termination‑point‑attributes": {
 "unnumbered‑id": 231
 }
 }
],
 "ietf‑l3‑unicast‑topology:l3‑node‑attributes": {
 "router‑id": ["203.0.113.2"],
 "prefix": [
 {
 "prefix": "203.0.113.2/32"
 }
],
 "ietf‑l3‑te‑topology:l3‑te‑node‑attributes": {
 "node‑ref": "D2"
 }
 }
 },
 {
 "node‑id": "D3",
 "ietf‑network‑topology:termination‑point": [
 {
 "tp‑id": "3‑1‑1",
"ietf‑l3‑unicast‑topology:l3‑termination‑point‑attributes": {
 "unnumbered‑id": 311,
 "ietf‑l3‑te‑topology:l3‑te‑tp‑attributes": {
 "tp‑ref": "3‑1‑1"

 }
 }
 },
 {
 "tp‑id": "3‑2‑1",
"ietf‑l3‑unicast‑topology:l3‑termination‑point‑attributes": {
 "unnumbered‑id": 321
 }
 }
],
 "ietf‑l3‑unicast‑topology:l3‑node‑attributes": {
 "router‑id": ["203.0.113.3"],
 "prefix": [
 {
 "prefix": "203.0.113.3/32"
 }
],
 "ietf‑l3‑te‑topology:l3‑te‑node‑attributes": {
 "node‑ref": "D3"
 }
 }
 }
],
 "ietf‑network‑topology:link": [
 {
 "link‑id": "D1,1‑2‑1,D2,2‑1‑1",
 "source": {
 "source‑node": "D1",
 "source‑tp": "1‑2‑1"
 },
 "destination": {
 "dest‑node": "D2",
 "dest‑tp": "2‑1‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100",
 "ietf‑l3‑te‑topology:l3‑te‑link‑attributes": {
 "link‑ref": "D1,1‑2‑1,D2,2‑1‑1"
 }
 }
 },
 {
 "link‑id": "D2,2‑1‑1,D1,1‑2‑1",
 "source": {
 "source‑node": "D2",
 "source‑tp": "2‑1‑1"
 },
 "destination": {

 "dest‑node": "D1",
 "dest‑tp": "1‑2‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100",
 "ietf‑l3‑te‑topology:l3‑te‑link‑attributes": {
 "link‑ref": "D2,2‑1‑1,D1,1‑2‑1"
 }
 }
 },
 {
 "link‑id": "D1,1‑3‑1,D3,3‑1‑1",
 "source": {
 "source‑node": "D1",
 "source‑tp": "1‑3‑1"
 },
 "destination": {
 "dest‑node": "D3",
 "dest‑tp": "3‑1‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100",
 "ietf‑l3‑te‑topology:l3‑te‑link‑attributes": {
 "link‑ref": "D1,1‑3‑1,D3,3‑1‑1"
 }
 }
 },
 {
 "link‑id": "D3,3‑1‑1,D1,1‑3‑1",
 "source": {
 "source‑node": "D3",
 "source‑tp": "3‑1‑1"
 },
 "destination": {
 "dest‑node": "D1",
 "dest‑tp": "1‑3‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100",
 "ietf‑l3‑te‑topology:l3‑te‑link‑attributes": {
 "link‑ref": "D3,3‑1‑1,D1,1‑3‑1"
 }
 }
 },
 {
 "link‑id": "D2,2‑3‑1,D3,3‑2‑1",
 "source": {
 "source‑node": "D2",

 "source‑tp": "2‑3‑1"
 },
 "destination": {
 "dest‑node": "D3",
 "dest‑tp": "3‑2‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100"
 }
 },
 {
 "link‑id": "D3,3‑2‑1,D2,2‑3‑1",
 "source": {
 "source‑node": "D3",
 "source‑tp": "3‑2‑1"
 },
 "destination": {
 "dest‑node": "D2",
 "dest‑tp": "2‑3‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100"
 }
 }
]
 }
]
 }
}

Authors' Addresses

Xufeng Liu
Volta Networks

 EMail: xufeng.liu.ietf@gmail.com

Igor Bryskin
Huawei Technologies

 EMail: Igor.Bryskin@huawei.com

Vishnu Pavan Beeram
Juniper Networks

 EMail: vbeeram@juniper.net

Tarek Saad
Cisco Systems Inc

 EMail: tsaad@cisco.com

Himanshu Shah
Ciena

 EMail: hshah@ciena.com

Oscar Gonzalez de Dios
Telefonica

 EMail: oscar.gonzalezdedios@telefonica.com

draft-ietf-teas-yang-path-computation-04 - November 4, 2018

Index
Back 5
Prev
Next
Forward 5

TEAS Working Group

Internet Draft

Intended status: Standard Track

Expires: May 2019

Italo Busi (Ed.)

Huawei

Sergio Belotti (Ed.)

Nokia

Victor Lopez

Oscar Gonzalez de Dios

Telefonica

Anurag Sharma

Google

Yan Shi

China Unicom

Ricard Vilalta

CTTC

Karthik Sethuraman

NEC

November 4, 2018

 Yang model for requesting Path Computation
 draft-ietf-teas-yang-path-computation-04.txt

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

 This Internet-Draft will expire on May 4, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

Abstract

 There are scenarios, typically in a hierarchical SDN context, where
 the topology information provided by a TE network provider may not
 be sufficient for its client to perform end-to-end path computation.
 In these cases the client would need to request the provider to
 calculate some (partial) feasible paths.

 This document defines a YANG data model for a stateless RPC to
 request path computation. This model complements the stateful
 solution defined in [TE-TUNNEL].

 Moreover this document describes some use cases where a path
 computation request, via YANG-based protocols (e.g., NETCONF or
 RESTCONF), can be needed.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. Use Cases
	 2.1. Packet/Optical Integration

	 2.2. Multi-domain TE Networks

	 2.3. Data center interconnections

	3. Motivations
	 3.1. Motivation for a YANG Model
	 3.1.1. Benefits of common data models

	 3.1.2. Benefits of a single interface

	 3.1.3. Extensibility

	 3.2. Interactions with TE Topology
	 3.2.1. TE Topology Aggregation

	 3.2.2. TE Topology Abstraction

	 3.2.3. Complementary use of TE topology and path computation

	 3.3. Stateless and Stateful Path Computation

	4. Path Computation and Optimization for multiple paths

	5. YANG Model for requesting Path Computation
	 5.1. Synchronization of multiple path computation requests

	 5.2. Returned metric values

	6. YANG model for stateless TE path computation
	 6.1. YANG Tree

	 6.2. YANG Module

	7. Security Considerations

	8. IANA Considerations

	9. References
	 9.1. Normative References

	 9.1. Informative References

	10. Acknowledgments

	Appendix A. Examples of dimensioning the "detailed connectivity matrix"

1. Introduction

 There are scenarios, typically in a hierarchical SDN context, where
 the topology information provided by a TE network provider may not
 be sufficient for its client to perform end-to-end path computation.
 In these cases the client would need to request the provider to
 calculate some (partial) feasible paths, complementing his topology
 knowledge, to make his end-to-end path computation feasible.

 This type of scenarios can be applied to different interfaces in
 different reference architectures:

 o ABNO control interface [RFC7491], in which an Application Service
 Coordinator can request ABNO controller to take in charge path
 calculation (see Figure 1 in [RFC7491]).

 o ACTN [RFC8453], where a controller hierarchy is defined, the need
 for path computation arises on both interfaces CMI (interface
 between Customer Network Controller (CNC) and Multi Domain
 Service Coordinator (MDSC)) and/or MPI (interface between MSDC-
 PNC). [RFC8454] describes an information model for the Path
 Computation request.

 Multiple protocol solutions can be used for communication between
 different controller hierarchical levels. This document assumes that
 the controllers are communicating using YANG-based protocols (e.g.,
 NETCONF or RESTCONF).

 Path Computation Elements, Controllers and Orchestrators perform
 their operations based on Traffic Engineering Databases (TED). Such
 TEDs can be described, in a technology agnostic way, with the YANG
 Data Model for TE Topologies [TE-TOPO]. Furthermore, the technology
 specific details of the TED are modeled in the augmented TE topology
 models (e.g. [OTN-TOPO] for OTN ODU technologies).

 The availability of such topology models allows providing the TED
 using YANG-based protocols (e.g., NETCONF or RESTCONF). Furthermore,
 it enables a PCE/Controller performing the necessary abstractions or
 modifications and offering this customized topology to another
 PCE/Controller or high level orchestrator.

 Note: This document assumes that the client of the YANG data model
 defined in this document may not implement a "PCE" functionality, as
 defined in [RFC4655].

 The tunnels that can be provided over the networks described with
 the topology models can be also set-up, deleted and modified via
 YANG-based protocols (e.g., NETCONF or RESTCONF) using the TE-Tunnel
 Yang model [TE-TUNNEL].

 This document proposes a YANG model for a path computation request
 defined as a stateless RPC, which complements the stateful solution
 defined in [TE-TUNNEL].

 Moreover, this document describes some use cases where a path
 computation request, via YANG-based protocols (e.g., NETCONF or
 RESTCONF), can be needed.

1.1. Terminology

 TED: The traffic engineering database is a collection of all TE
 information about all TE nodes and TE links in a given network.

 PCE: A Path Computation Element (PCE) is an entity that is capable
 of computing a network path or route based on a network graph, and
 of applying computational constraints during the computation. The
 PCE entity is an application that can be located within a network
 node or component, on an out-of-network server, etc. For example, a
 PCE would be able to compute the path of a TE LSP by operating on
 the TED and considering bandwidth and other constraints applicable
 to the TE LSP service request. [RFC4655]

2. Use Cases

 This section presents different use cases, where a client needs to
 request underlying SDN controllers for path computation.

 The presented uses cases have been grouped, depending on the
 different underlying topologies: a) Packet-Optical integration; b)
 Multi-domain Traffic Engineered (TE) Networks; and c) Data center
 interconnections.

2.1. Packet/Optical Integration

 In this use case, an Optical network is used to provide connectivity
 to some nodes of a Packet network (see Figure 1).

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | |
 | Packet/Optical |
 | Coordinator |
 | |
 +‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑+
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | +‑‑‑‑‑‑‑‑‑‑‑+
 +‑‑‑‑‑‑V‑‑‑‑‑+ |
 | | +‑‑‑‑‑‑V‑‑‑‑‑+
 | Packet | | |
 | Network | | Optical |
 | Controller | | Network |
 | | | Controller |
 +‑‑‑‑‑‑+‑‑‑‑‑+ +‑‑‑‑‑‑‑+‑‑‑‑+
 | |
 V......................... |
 : Packet Network : |
+‑‑‑‑+ +‑‑‑‑+ |
| R1 |= = = = = = = = = = = = = = = =| R2 | |
+‑+‑‑+ +‑‑+‑+ |
: :						
:................................ :						
+‑‑‑‑‑+						
...........	Opt				
:	C	:				
: /+‑‑+‑‑+\ :						
: /	\ :					
: /	\ :					
+‑‑‑‑‑+ / +‑‑+‑‑+ \ +‑‑‑‑‑+						
	Opt	/	Opt	\| Opt		
 +‑‑‑| A | | D | | B |‑‑‑+ |
 +‑‑‑‑‑+\ +‑‑+‑‑+ /+‑‑‑‑‑+ |
 : \ | / : |
 : \ | / : |
 : \ +‑‑+‑‑+ / Optical<‑‑‑‑‑‑‑‑‑+
 : \| Opt |/ Network:
 :..........| E |..........:
 +‑‑‑‑‑+

 Figure 1 ‑ Packet/Optical Integration Use Case

 Figure 1 as well as Figure 2 below only show a partial view of the
 packet network connectivity, before additional packet connectivity
 is provided by the Optical network.

 It is assumed that the Optical network controller provides to the
 packet/optical coordinator an abstracted view of the Optical
 network. A possible abstraction could be to represent the whole
 optical network as one "virtual node" with "virtual ports" connected
 to the access links, as shown in Figure 2.

 It is also assumed that Packet network controller can provide the
 packet/optical coordinator the information it needs to setup
 connectivity between packet nodes through the Optical network (e.g.,
 the access links).

 The path computation request helps the coordinator to know the real
 connections that can be provided by the optical network.

 ,,.
 , Packet/Optical Coordinator view ,
 , +‑‑‑‑+ , .
 , | | ,
 , | R2 | , .
 , +‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑ + /+‑‑‑‑+ ,
 , | | | |/‑‑‑‑‑/ / / , .
 , | R1 |‑‑O VP1 VP4 O / / ,
 , | |\ | | /‑‑‑‑/ / , .
 , +‑‑‑‑+ \| |/ / ,
 , / O VP2 VP5 O / , .
 , / | | +‑‑‑‑+ ,
 , / | | | | , .
 , / O VP3 VP6 O‑‑| R4 | ,
 , +‑‑‑‑+ /‑‑‑‑‑/|_____________| +‑‑‑‑+ , .
 , | |/ +‑‑‑‑‑‑‑‑‑‑‑‑ + ,
 , | R3 | , .
 , +‑‑‑‑+ ,,,,,,,,,,,,,,,,,
,,, ,.
. Packet Network Controller view +‑‑‑‑+ ,
 only packet nodes and packet links | | , .
. with access links to the optical network | R2 | ,
 , +‑‑‑‑+ /+‑‑‑‑+ , .
. , | | /‑‑‑‑‑/ / / ,
 , | R1 |‑‑‑ / / , .
. , +‑‑‑‑+\ /‑‑‑‑/ / ,
 , / \ / / , .
. , / / ,
 , / +‑‑‑‑+ , .
. , / | | ,
 , / ‑‑‑| R4 | , .
. , +‑‑‑‑+ /‑‑‑‑‑/ +‑‑‑‑+ ,
 , | |/ , .
. , | R3 | ,
 , +‑‑‑‑+ ,,,,,,,,,,,,,,,,,.
.,, ,
 Optical Network Controller view , .
. only optical nodes, +‑‑+ ,
 optical links and /|OF| , .
. access links from the +‑‑++‑‑+ / ,
 packet network |OA| \ /‑‑‑‑‑/ / , .
. , ‑‑‑+‑‑+‑‑\ +‑‑+/ / ,
 , \ | \ \‑|OE|‑‑‑‑‑‑‑/ , .
. , \ | \ /‑+‑‑+ ,
 , \+‑‑+ X | , .

. , |OB|‑/ \ | ,
 , +‑‑+‑\ \+‑‑+ , .
. , / \ \‑‑|OD|‑‑‑ ,
 , /‑‑‑‑‑/ +‑‑+ +‑‑+ , .
. , / |OC|/ ,
 , +‑‑+ , .
., ,,,,,,,,,,,,,,,,,,
 ,, ,
. Actual Physical View +‑‑‑‑+ ,
 , +‑‑+ | | ,
. , /|OF| | R2 | ,
 , +‑‑‑‑+ +‑‑++‑‑+ /+‑‑‑‑+ ,
. , | | |OA| \ /‑‑‑‑‑/ / / ,
 , | R1 |‑‑‑+‑‑+‑‑\ +‑‑+/ / / ,
. , +‑‑‑‑+\ | \ \‑|OE|‑‑‑‑‑‑‑/ / ,
 , / \ | \ /‑+‑‑+ / ,
. , / \+‑‑+ X | / ,
 , / |OB|‑/ \ | +‑‑‑‑+ ,
. , / +‑‑+‑\ \+‑‑+ | | ,
 , / / \ \‑‑|OD|‑‑‑| R4 | ,
. , +‑‑‑‑+ /‑‑‑‑‑/ +‑‑+ +‑‑+ +‑‑‑‑+ ,
 , | |/ |OC|/ ,
. , | R3 | +‑‑+ ,
 , +‑‑‑‑+ ,
.,,

 Figure 2 - Packet and Optical Topology Abstractions

 In this use case, the coordinator needs to setup an optimal
 underlying path for an IP link between R1 and R2.

 As depicted in Figure 2, the coordinator has only an "abstracted
 view" of the physical network, and it does not know the feasibility
 or the cost of the possible optical paths (e.g., VP1-VP4 and VP2-
 VP5), which depend from the current status of the physical resources
 within the optical network and on vendor-specific optical
 attributes.

 The coordinator can request the underlying Optical domain controller
 to compute a set of potential optimal paths, taking into account
 optical constraints. Then, based on its own constraints, policy and
 knowledge (e.g. cost of the access links), it can choose which one
 of these potential paths to use to setup the optimal end-to-end path
 crossing optical network.

 : :
 O VP1 VP4 O
 cost=10 /:\ /:\ cost=10
 / : \‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/ : \
+‑‑‑‑+ / : cost=50 : \ +‑‑‑‑+
	/ : : \|	
R1	: :	R2
	\ : : /	
+‑‑‑‑+ \ : /‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑\ : / +‑‑‑‑+
 \ : / cost=55 \ : /
 cost=5 \:/ \:/ cost=5
 O VP2 VP5 O
 : :
 :..........................:

 Figure 3 ‑ Packet/Optical Path Computation Example

 For example, in Figure 3, the Coordinator can request the Optical
 network controller to compute the paths between VP1-VP4 and VP2-VP5
 and then decide to setup the optimal end-to-end path using the VP2-
 VP5 Optical path even this is not the optimal path from the Optical
 domain perspective.

 Considering the dynamicity of the connectivity constraints of an
 Optical domain, it is possible that a path computed by the Optical
 network controller when requested by the Coordinator is no longer
 valid/available when the Coordinator requests it to be setup up.
 This is further discussed in section 3.3.

2.2. Multi-domain TE Networks

 In this use case there are two TE domains which are interconnected
 together by multiple inter-domains links.

 A possible example could be a multi-domain optical network.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Multi‑domain |
 | Controller |
 +‑‑‑+‑‑‑‑‑‑+‑‑‑+
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | +‑‑‑‑‑‑‑‑‑‑‑+
 +‑‑‑‑‑‑V‑‑‑‑‑+ |
 | | |
 | TE Domain | +‑‑‑‑‑‑V‑‑‑‑‑+
 | Controller | | |
 | 1 | | TE Domain |
 +‑‑‑‑‑‑+‑‑‑‑‑+ | Controller |
 | | 2 |
 | +‑‑‑‑‑‑+‑‑‑‑‑+
 V.......... |
 : : |
 +‑‑‑‑‑+ : |
 | | : V..........
 | X | : : :
 | | +‑‑‑‑‑+ +‑‑‑‑‑+ :
 +‑‑‑‑‑+ | | | | :
 : | C |‑‑‑‑‑‑| E | :
+‑‑‑‑‑+ +‑‑‑‑‑+ /| | | |\ +‑‑‑‑‑+ +‑‑‑‑‑+
			/ +‑‑‑‑‑+ +‑‑‑‑‑+ \|			
A	‑‑‑‑	B	: :	G	‑‑‑‑	H
			\ : : /			
+‑‑‑‑‑+ +‑‑‑‑‑+ \+‑‑‑‑‑+ +‑‑‑‑‑+/ +‑‑‑‑‑+ +‑‑‑‑‑+
 : | | | | :
 : | D |‑‑‑‑‑‑| F | :
 : | | | | +‑‑‑‑‑+
 : +‑‑‑‑‑+ +‑‑‑‑‑+ | |
 : : : | Y |
 : : : | |
 : Domain 1 : : Domain 2 +‑‑‑‑‑+
 :..................: :.................:

 Figure 4 ‑ Multi‑domain multi‑link interconnection

 In order to setup an end-to-end multi-domain TE path (e.g., between
 nodes A and H), the multi-domain controller needs to know the
 feasibility or the cost of the possible TE paths within the two TE
 domains, which depend from the current status of the physical
 resources within each TE network. This is more challenging in case
 of optical networks because the optimal paths depend also on vendor-
 specific optical attributes (which may be different in the two
 domains if they are provided by different vendors).

 In order to setup a multi-domain TE path (e.g., between nodes A and
 H), the multi-domain controller can request the TE domain
 controllers to compute a set of intra-domain optimal paths and take
 decisions based on the information received. For example:

 o The multi-domain controller asks TE domain controllers to provide
 set of paths between A-C, A-D, E-H and F-H

 o TE domain controllers return a set of feasible paths with the
 associated costs: the path A-C is not part of this set(in optical
 networks, it is typical to have some paths not being feasible due
 to optical constraints that are known only by the optical domain
 controller)

 o The multi-domain controller will select the path A-D-F-H since it
 is the only feasible multi-domain path and then request the TE
 domain controllers to setup the A-D and F-H intra-domain paths

 o If there are multiple feasible paths, the multi-domain controller
 can select the optimal path knowing the cost of the intra-domain
 paths (provided by the TE domain controllers) and the cost of the
 inter-domain links (known by the multi-domain controller)

 This approach may have some scalability issues when the number of TE
 domains is quite big (e.g. 20).

 In this case, it would be worthwhile using the abstract TE topology
 information provided by the TE domain controllers to limit the
 number of potential optimal end-to-end paths and then request path
 computation to fewer TE domain controllers in order to decide what
 the optimal path within this limited set is.

 For more details, see section 3.2.3.

2.3. Data center interconnections

 In these use case, there is a TE domain which is used to provide
 connectivity between data centers which are connected with the TE
 domain using access links.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Cloud Network|
 | Orchestrator |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | |
 | +‑‑‑‑‑‑‑‑V‑‑‑+ | |
 | | | | |
 | | TE Network | | |
+‑‑‑‑‑‑V‑‑‑‑‑+ | Controller | +‑‑‑‑‑‑V‑‑‑‑‑+ |
| DC | +‑‑‑‑‑‑‑‑‑‑‑‑+ | DC | |
| Controller | | | Controller | |
+‑‑‑‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | V...| |........ | |
 | : | P | : | |
.....V..... : /+‑‑‑‑‑+\ : V..... |
: : +‑‑‑‑‑+ / | \ +‑‑‑‑‑+ : : |
: DC1 || : | |/ | \| | : DC2 || : |
: ||||‑‑‑‑| PE1 | | | PE2 |‑‑‑‑ |||| : |
: _|||||| : | |\ | /| | : _|||||| : |
: : +‑‑‑‑‑+ \ +‑‑‑‑‑+ / +‑‑‑‑‑+ : : |
:.........: : \| |/ : :.........: |
 :.......| PE3 |.......: |
 | | |
 +‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑V‑‑+
 |..... | DC |
 : : | Controller |
 : DC3 || : +‑‑‑‑‑‑‑‑‑‑‑‑+
 : |||| : |
 : _|||||| <‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 : :
 :.........:

 Figure 5 ‑ Data Center Interconnection Use Case

 In this use case, there is need to transfer data from Data Center 1
 (DC1) to either DC2 or DC3 (e.g. workload migration).

 The optimal decision depends both on the cost of the TE path (DC1-
 DC2 or DC1-DC3) and of the data center resources within DC2 or DC3.

 The cloud network orchestrator needs to make a decision for optimal
 connection based on TE Network constraints and data centers
 resources. It may not be able to make this decision because it has
 only an abstract view of the TE network (as in use case in 2.1).

 The cloud network orchestrator can request to the TE network
 controller to compute the cost of the possible TE paths (e.g., DC1-
 DC2 and DC1-DC3) and to the DC controller to provide the information
 it needs about the required data center resources within DC2 and DC3
 and then it can take the decision about the optimal solution based
 on this information and its policy.

3. Motivations

 This section provides the motivation for the YANG model defined in
 this document.

 Section 3.1 describes the motivation for a YANG model to request
 path computation.

 Section 3.2 describes the motivation for a YANG model which
 complements the TE Topology YANG model defined in [TE-TOPO].

 Section 3.3 describes the motivation for a stateless YANG RPC which
 complements the TE Tunnel YANG model defined in [TE-TUNNEL].

3.1. Motivation for a YANG Model

3.1.1. Benefits of common data models

 The YANG data model for requesting path computation is closely
 aligned with the YANG data models that provide (abstract) TE
 topology information, i.e., [TE-TOPO] as well as that are used to
 configure and manage TE Tunnels, i.e., [TE-TUNNEL].

 There are many benefits in aligning the data model used for path
 computation requests with the YANG data models used for TE topology
 information and for TE Tunnels configuration and management:

 o There is no need for an error-prone mapping or correlation of
 information.

 o It is possible to use the same endpoint identifiers in path
 computation requests and in the topology modeling.

 o The attributes used for path computation constraints are the same
 as those used when setting up a TE Tunnel.

3.1.2. Benefits of a single interface

 The system integration effort is typically lower if a single,
 consistent interface is used by controllers, i.e., one data modeling
 language (i.e., YANG) and a common protocol (e.g., NETCONF or
 RESTCONF).

 Practical benefits of using a single, consistent interface include:

 1. Simple authentication and authorization: The interface between
 different components has to be secured. If different protocols
 have different security mechanisms, ensuring a common access
 control model may result in overhead. For instance, there may be
 a need to deal with different security mechanisms, e.g.,
 different credentials or keys. This can result in increased
 integration effort.

 2. Consistency: Keeping data consistent over multiple different
 interfaces or protocols is not trivial. For instance, the
 sequence of actions can matter in certain use cases, or
 transaction semantics could be desired. While ensuring
 consistency within one protocol can already be challenging, it is
 typically cumbersome to achieve that across different protocols.

 3. Testing: System integration requires comprehensive testing,
 including corner cases. The more different technologies are
 involved, the more difficult it is to run comprehensive test
 cases and ensure proper integration.

 4. Middle-box friendliness: Provider and consumer of path
 computation requests may be located in different networks, and
 middle-boxes such as firewalls, NATs, or load balancers may be
 deployed. In such environments it is simpler to deploy a single
 protocol. Also, it may be easier to debug connectivity problems.

 5. Tooling reuse: Implementers may want to implement path
 computation requests with tools and libraries that already exist
 in controllers and/or orchestrators, e.g., leveraging the rapidly
 growing eco-system for YANG tooling.

3.1.3. Extensibility

 Path computation is only a subset of the typical functionality of a
 controller. In many use cases, issuing path computation requests
 comes along with the need to access other functionality on the same
 system. In addition to obtaining TE topology, for instance also
 configuration of services (setup/modification/deletion) may be
 required, as well as:

 1. Receiving notifications for topology changes as well as
 integration with fault management

 2. Performance management such as retrieving monitoring and
 telemetry data

 3. Service assurance, e.g., by triggering OAM functionality

 4. Other fulfilment and provisioning actions beyond tunnels and
 services, such as changing QoS configurations

 YANG is a very extensible and flexible data modeling language that
 can be used for all these use cases.

3.2. Interactions with TE Topology

 The use cases described in section 2 have been described assuming
 that the topology view exported by each underlying SDN controller to
 the orchestrator is aggregated using the "virtual node model",
 defined in [RFC7926].

 TE Topology information, e.g., as provided by [TE-TOPO], could in
 theory be used by an underlying SDN controllers to provide TE
 information to its client thus allowing a PCE available within its
 client to perform multi-domain path computation by its own, without
 requesting path computations to the underlying SDN controllers.

 In case the client does not implement a PCE function, as discussed
 in section 1, it could not perform path computation based on TE
 Topology information and would instead need to request path
 computation to the underlying controllers to get the information it
 needs to compute the optimal end-to-end path.

 This section analyzes the need for a client to request underlying
 SDN controllers for path computation even in case it implements a
 PCE functionality, as well as how the TE Topology information and
 the path computation can be complementary.

 In nutshell, there is a scalability trade-off between providing all
 the TE information needed by PCE, when implemented by the client, to
 take optimal path computation decisions by its own versus sending
 too many requests to underlying SDN Domain Controllers to compute a
 set of feasible optimal intra-domain TE paths.

3.2.1. TE Topology Aggregation

 Using the TE Topology model, as defined in [TE-TOPO], the underlying
 SDN controller can export the whole TE domain as a single abstract
 TE node with a "detailed connectivity matrix".

 The concept of a "detailed connectivity matrix" is defined in [TE-
 TOPO] to provide specific TE attributes (e.g., delay, SRLGs and
 summary TE metrics) as an extension of the "basic connectivity
 matrix", which is based on the "connectivity matrix" defined in
 [RFC7446].

 The information provided by the "detailed connectivity matrix" would
 be equivalent to the information that should be provided by "virtual
 link model" as defined in [RFC7926].

 For example, in the Packet/Optical integration use case, described
 in section 2.1, the Optical network controller can make the
 information shown in Figure 3 available to the Coordinator as part
 of the TE Topology information and the Coordinator could use this
 information to calculate by its own the optimal path between R1 and
 R2, without requesting any additional information to the Optical
 network Controller.

 However, when designing the amount of information to provide within
 the "detailed connectivity matrix", there is a tradeoff to be
 considered between accuracy (i.e., providing "all" the information
 that might be needed by the PCE available to Orchestrator) and
 scalability.

 Figure 6 below shows another example, similar to Figure 3, where
 there are two possible Optical paths between VP1 and VP4 with
 different properties (e.g., available bandwidth and cost).

 : /‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑\ :
 : / cost=65 \ :
 :/ available‑bw=10G \:
 O VP1 VP4 O
 cost=10 /:\ /:\ cost=10
 / : \‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/ : \
 +‑‑‑‑+ / : cost=50 : \ +‑‑‑‑+
 | |/ : available‑bw=2G : \| | |
 | R1 | : : | R2 |
 | |\ : : /| |
 +‑‑‑‑+ \ : /‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑\ : / +‑‑‑‑+
 \ : / cost=55 \ : /
 cost=5 \:/ available‑bw=3G \:/ cost=5
 O VP2 VP5 O
 : :
 :..........................:

Figure 6 ‑ Packet/Optical Path Computation Example with multiple
 choices

 Reporting all the information, as in Figure 6, using the "detailed
 connectivity matrix", is quite challenging from a scalability
 perspective. The amount of this information is not just based on
 number of end points (which would scale as N-square), but also on
 many other parameters, including client rate, user
 constraints/policies for the service, e.g. max latency < N ms, max
 cost, etc., exclusion policies to route around busy links, min OSNR
 margin, max preFEC BER etc. All these constraints could be different
 based on connectivity requirements.

 Examples of how the "detailed connectivity matrix" can be
 dimensioned are described in Appendix A.

 It is also worth noting that the "connectivity matrix" has been
 originally defined in WSON, [RFC7446], to report the connectivity
 constrains of a physical node within the WDM network: the
 information it contains is pretty "static" and therefore, once taken
 and stored in the TE data base, it can be always being considered
 valid and up-to-date in path computation request.

 Using the "basic connectivity matrix" with an abstract node to
 abstract the information regarding the connectivity constraints of
 an Optical domain, would make this information more "dynamic" since
 the connectivity constraints of an Optical domain can change over
 time because some optical paths that are feasible at a given time
 may become unfeasible at a later time when e.g., another optical
 path is established. The information in the "detailed connectivity
 matrix" is even more dynamic since the establishment of another
 optical path may change some of the parameters (e.g., delay or
 available bandwidth) in the "detailed connectivity matrix" while not
 changing the feasibility of the path.

 The "connectivity matrix" is sometimes confused with optical reach
 table that contain multiple (e.g. k-shortest) regen-free reachable
 paths for every A-Z node combination in the network. Optical reach
 tables can be calculated offline, utilizing vendor optical design
 and planning tools, and periodically uploaded to the Controller:
 these optical path reach tables are fairly static. However, to get
 the connectivity matrix, between any two sites, either a regen free
 path can be used, if one is available, or multiple regen free paths
 are concatenated to get from src to dest, which can be a very large
 combination. Additionally, when the optical path within optical
 domain needs to be computed, it can result in different paths based
 on input objective, constraints, and network conditions. In summary,
 even though "optical reachability table" is fairly static, which
 regen free paths to build the connectivity matrix between any source
 and destination is very dynamic, and is done using very
 sophisticated routing algorithms.

 There is therefore the need to keep the information in the "detailed
 connectivity matrix" updated which means that there another tradeoff
 between the accuracy (i.e., providing "all" the information that
 might be needed by the client's PCE) and having up-to-date
 information. The more the information is provided and the longer it
 takes to keep it up-to-date which increases the likelihood that the
 client's PCE computes paths using not updated information.

 It seems therefore quite challenging to have a "detailed
 connectivity matrix" that provides accurate, scalable and updated
 information to allow the client's PCE to take optimal decisions by
 its own.

 Instead, if the information in the "detailed connectivity matrix" is
 not complete/accurate, we can have the following drawbacks
 considering for example the case in Figure 6:

 o If only the VP1-VP4 path with available bandwidth of 2 Gb/s and
 cost 50 is reported, the client's PCE will fail to compute a 5
 Gb/s path between routers R1 and R2, although this would be
 feasible;

 o If only the VP1-VP4 path with available bandwidth of 10 Gb/s and
 cost 60 is reported, the client's PCE will compute, as optimal,
 the 1 Gb/s path between R1 and R2 going through the VP2-VP5 path
 within the Optical domain while the optimal path would actually
 be the one going thought the VP1-VP4 sub-path (with cost 50)
 within the Optical domain.

 Using the approach proposed in this document, the client, when it
 needs to setup an end-to-end path, it can request the Optical domain
 controller to compute a set of optimal paths (e.g., for VP1-VP4 and
 VP2-VP5) and take decisions based on the information received:

 o When setting up a 5 Gb/s path between routers R1 and R2, the
 Optical domain controller may report only the VP1-VP4 path as the
 only feasible path: the Orchestrator can successfully setup the
 end-to-end path passing though this Optical path;

 o When setting up a 1 Gb/s path between routers R1 and R2, the
 Optical domain controller (knowing that the path requires only 1
 Gb/s) can report both the VP1-VP4 path, with cost 50, and the
 VP2-VP5 path, with cost 65. The Orchestrator can then compute the
 optimal path which is passing thought the VP1-VP4 sub-path (with
 cost 50) within the Optical domain.

3.2.2. TE Topology Abstraction

 Using the TE Topology model, as defined in [TE-TOPO], the underlying
 SDN controller can export an abstract TE Topology, composed by a set
 of TE nodes and TE links, representing the abstract view of the
 topology controlled by each domain controller.

 Considering the example in Figure 4, the TE domain controller 1 can
 export a TE Topology encompassing the TE nodes A, B, C and D and the
 TE Link interconnecting them. In a similar way, TE domain controller
 2 can export a TE Topology encompassing the TE nodes E, F, G and H
 and the TE Link interconnecting them.

 In this example, for simplicity reasons, each abstract TE node maps
 with each physical node, but this is not necessary.

 In order to setup a multi-domain TE path (e.g., between nodes A and
 H), the multi-domain controller can compute by its own an optimal
 end-to-end path based on the abstract TE topology information
 provided by the domain controllers. For example:

 o Multi-domain controller's PCE, based on its own information, can
 compute the optimal multi-domain path being A-B-C-E-G-H, and then
 request the TE domain controllers to setup the A-B-C and E-G-H
 intra-domain paths

 o But, during path setup, the domain controller may find out that
 A-B-C intra-domain path is not feasible (as discussed in section
 2.2, in optical networks it is typical to have some paths not
 being feasible due to optical constraints that are known only by
 the optical domain controller), while only the path A-B-D is
 feasible

 o So what the multi-domain controller computed is not good and need
 to re-start the path computation from scratch

 As discussed in section 3.2.1, providing more extensive abstract
 information from the TE domain controllers to the multi-domain
 controller may lead to scalability problems.

 In a sense this is similar to the problem of routing and wavelength
 assignment within an Optical domain. It is possible to do first
 routing (step 1) and then wavelength assignment (step 2), but the
 chances of ending up with a good path is low. Alternatively, it is
 possible to do combined routing and wavelength assignment, which is
 known to be a more optimal and effective way for Optical path setup.
 Similarly, it is possible to first compute an abstract end-to-end
 path within the multi-domain Orchestrator (step 1) and then compute
 an intra-domain path within each Optical domain (step 2), but there
 are more chances not to find a path or to get a suboptimal path that
 performing per-domain path computation and then stitch them.

3.2.3. Complementary use of TE topology and path computation

 As discussed in section 2.2, there are some scalability issues with
 path computation requests in a multi-domain TE network with many TE
 domains, in terms of the number of requests to send to the TE domain
 controllers. It would therefore be worthwhile using the TE topology
 information provided by the domain controllers to limit the number
 of requests.

 An example can be described considering the multi-domain abstract
 topology shown in Figure 7. In this example, an end-to-end TE path
 between domains A and F needs to be setup. The transit domain should
 be selected between domains B, C, D and E.

 B.........
 : _ _ _ _ _ _ _ _ :
 :/ \:
 +‑‑‑O NOT FEASIBLE O‑‑‑+
 cost=5| : : |
......A...... | :.................: | F......
: : | | : :
: O‑‑‑‑‑+ C......... +‑‑‑‑‑O :
: : : /‑‑‑‑‑‑‑‑‑‑‑‑‑\ : : :
: : :/ \: : :
: cost<=20 O‑‑‑‑‑‑‑‑‑O cost <= 30 O‑‑‑‑‑‑‑‑‑O cost<=20 :
: /: cost=5 : : cost=5 :\ :
: /‑‑‑‑‑‑/ : :.................: : \‑‑‑‑‑‑\ :
: / : : \ :
:/ cost<=25 : D......... : cost<=25 \:
O‑‑‑‑‑‑‑‑‑‑‑O‑‑‑‑‑‑‑+ : /‑‑‑‑‑‑‑‑‑‑‑‑‑\ : +‑‑‑‑‑‑‑O‑‑‑‑‑‑‑‑‑‑‑O
:\ : cost=5| :/ \: |cost=5 : /:
: \ : +‑O cost <= 30 O‑+ : / :
: \‑‑‑‑‑‑\ : : : : /‑‑‑‑‑‑/ :
: cost>=30 \: :.................: :/ cost>=30 :
: O‑‑‑‑‑+ +‑‑‑‑‑O :
:...........: | E......... | :...........:
 | : /‑‑‑‑‑‑‑‑‑‑‑‑‑\ : |
 cost=5| :/ \: |cost=5
 +‑‑‑O cost >= 30 O‑‑‑+
 : :
 :.................:

 Figure 7 - Multi-domain with many domains (Topology information)

 The actual cost of each intra-domain path is not known a priori from
 the abstract topology information. The Multi-domain controller only
 knows, from the TE topology provided by the underlying domain
 controllers, the feasibility of some intra-domain paths and some
 upper-bound and/or lower-bound cost information. With this
 information, together with the cost of inter-domain links, the
 Multi-domain controller can understand by its own that:

 o Domain B cannot be selected as the path connecting domains A and
 E is not feasible;

 o Domain E cannot be selected as a transit domain since it is know
 from the abstract topology information provided by domain
 controllers that the cost of the multi-domain path A-E-F (which
 is 100, in the best case) will be always be higher than the cost
 of the multi-domain paths A-D-F (which is 90, in the worst case)
 and A-E-F (which is 80, in the worst case)

 Therefore, the Multi-domain controller can understand by its own
 that the optimal multi-domain path could be either A-D-F or A-E-F
 but it cannot known which one of the two possible option actually
 provides the optimal end-to-end path.

 The Multi-domain controller can therefore request path computation
 only to the TE domain controllers A, D, E and F (and not to all the
 possible TE domain controllers).

 B.........
 : :
 +‑‑‑O O‑‑‑+
......A...... | :.................: | F......
: : | | : :
: O‑‑‑‑‑+ C......... +‑‑‑‑‑O :
: : : /‑‑‑‑‑‑‑‑‑‑‑‑‑\ : : :
: : :/ \: : :
: cost=15 O‑‑‑‑‑‑‑‑‑O cost = 25 O‑‑‑‑‑‑‑‑‑O cost=10 :
: /: cost=5 : : cost=5 :\ :
: /‑‑‑‑‑‑/ : :.................: : \‑‑‑‑‑‑\ :
: / : : \ :
:/ cost=10 : D......... : cost=15 \:
O‑‑‑‑‑‑‑‑‑‑‑O‑‑‑‑‑‑‑+ : /‑‑‑‑‑‑‑‑‑‑‑‑‑\ : +‑‑‑‑‑‑‑O‑‑‑‑‑‑‑‑‑‑‑O
: : cost=5| :/ \: |cost=5 : :
: : +‑O cost = 15 O‑+ : :
: : : : : :
: : :.................: : :
: O‑‑‑‑‑+ +‑‑‑‑‑O :
:...........: | E......... | :...........:
 | : : |
 +‑‑‑O O‑‑‑+
 :.................:

 Figure 8 ‑ Multi‑domain with many domains (Path Computation
 information)

 Based on these requests, the Multi-domain controller can know the
 actual cost of each intra-domain paths which belongs to potential
 optimal end-to-end paths, as shown in Figure 8, and then compute the
 optimal end-to-end path (e.g., A-D-F, having total cost of 50,
 instead of A-C-F having a total cost of 70).

3.3. Stateless and Stateful Path Computation

 The TE Tunnel YANG model, defined in [TE-TUNNEL], can support the
 need to request path computation.

 It is possible to request path computation by configuring a
 "compute-only" TE tunnel and retrieving the computed path(s) in the
 LSP(s) Record-Route Object (RRO) list as described in section 3.3.1
 of [TE-TUNNEL].

 This is a stateful solution since the state of each created
 "compute-only" TE tunnel needs to be maintained and updated, when
 underlying network conditions change.

 It is very useful to provide options for both stateless and stateful
 path computation mechanisms. It is suggested to use stateless
 mechanisms as much as possible and to rely on stateful path
 computation when really needed.

 Stateless RPC allows requesting path computation using a simple
 atomic operation and it is the natural option/choice, especially
 with stateless PCE.

 Since the operation is stateless, there is no guarantee that the
 returned path would still be available when path setup is requested:
 this does not cause major issues in case the time between path
 computation and path setup is short (especially if compared with the
 time that would be needed to update the information of a very
 detailed connectivity matrix).

 In most of the cases, there is even no need to guarantee that the
 path that has been setup is the exactly same as the path that has
 been returned by path computation, especially if has the same or
 even better metrics. Depending on the abstraction level applied by
 the server, the client may also not know the actual computed path.

 The most important requirement is that the required global
 objectives (e.g., multi-domain path metrics and constraints) are
 met. For this reason a path verification phase is necessary to
 verify that the actual path that has been setup meets the global
 objectives (for example in a multi-domain network, the resulting
 end-to-end path meets the required end-to-end metrics and
 constraints).

 In most of the cases, even if the setup path is not exactly the same
 as the path returned by path computation, its metrics and
 constraints are "good enough" (the path verification passes
 successfully). In the few corner cases where the path verification
 fails, it is possible repeat the whole process (path computation,
 path setup and path verification).

 In case the stateless solution is not sufficient, a stateful
 solution, based on "compute-only" TE tunnel, could be used to get
 notifications in case the computed path has been changed.

 It is worth noting that also the stateful solution, although
 increasing the likelihood that the computed path is available at
 path setup, does not guaranteed that because notifications may not
 be reliable or delivered on time. Path verification is needed also
 when stateful path computation is used.

 The stateful path computation has also the following drawbacks:

 o Several messages required for any path computation

 o Requires persistent storage in the provider controller

 o Need for garbage collection for stranded paths

 o Process burden to detect changes on the computed paths in order
 to provide notifications update

4. Path Computation and Optimization for multiple paths

 There are use cases, where it is advantageous to request path
 computation for a set of paths, through a network or through a
 network domain, using a single request [RFC5440].

 In this case, sending a single request for multiple path
 computations, instead of sending multiple requests for each path
 computation, would reduce the protocol overhead and it would consume
 less resources (e.g., threads in the client and server).

 In the context of a typical multi-domain TE network, there could
 multiple choices for the ingress/egress points of a domain and the
 Multi-domain controller needs to request path computation between
 all the ingress/egress pairs to select the best pair. For example,
 in the example of section 2.2, the Multi-domain controller needs to
 request the TE network controller 1 to compute the A-C and the A-D
 paths and to the TE network controller 2 to compute the E-H and the
 F-H paths.

 It is also possible that the Multi-domain controller receives a
 request to setup a group of multiple end to end connections. The
 multi-domain controller needs to request each TE domain controller
 to compute multiple paths, one (or more) for each end to end
 connection.

 There are also scenarios where it can be needed to request path
 computation for a set of paths in a synchronized fashion.

 One example could be computing multiple diverse paths. Computing a
 set of diverse paths in a not-synchronized fashion, leads to the
 possibility of not being able to satisfy the diversity requirement.
 In this case, it is preferable to compute a sub-optimal primary path
 for which a diversely routed secondary path exists.

 There are also scenarios where it is needed to request optimizing a
 set of paths using objective functions that apply to the whole set
 of paths, see [RFC5541], e.g. to minimize the sum of the costs of
 all the computed paths in the set.

5. YANG Model for requesting Path Computation

 This document define a YANG stateless RPC to request path
 computation as an "augmentation" of tunnel-rpc, defined in [TE-
 TUNNEL]. This model provides the RPC input attributes that are
 needed to request path computation and the RPC output attributes
 that are needed to report the computed paths.

augment /te:tunnels‑rpc/te:input/te:tunnel‑info:
 +‑‑‑‑ path‑request* [request‑id]

augment /te:tunnels‑rpc/te:output/te:result:
 +‑‑ro response* [response‑id]
 +‑‑ro response‑id uint32
 +‑‑ro (response‑type)?
 +‑‑:(no‑path‑case)

 | +‑‑ro no‑path!
 +‑‑:(path‑case)
 +‑‑ro computed‑path

 This model extensively re-uses the grouping defined in [TE-TUNNEL]
 to ensure maximal syntax and semantics commonality.

5.1. Synchronization of multiple path computation requests

 The YANG model permits to synchronize a set of multiple path
 requests (identified by specific request-id) all related to a "svec"
 container emulating the syntax of "SVEC" PCEP object [RFC5440].

+‑‑‑‑ synchronization* [synchronization‑id]
 +‑‑‑‑ synchronization‑id uint32
 +‑‑‑‑ svec
 | +‑‑‑‑ relaxable? boolean
 | +‑‑‑‑ disjointness? te‑types:te‑path‑disjointness
 | +‑‑‑‑ request‑id‑number* uint32
 +‑‑‑‑ svec‑constraints
 | +‑‑‑‑ path‑metric‑bound* [metric‑type]
 | +‑‑‑‑ metric‑type identityref
 | +‑‑‑‑ upper‑bound? uint64
 +‑‑‑‑ path‑srlgs‑values
 | +‑‑‑‑ usage? identityref
 | +‑‑‑‑ values* srlg
 +‑‑‑‑ path‑srlgs‑names
 | +‑‑‑‑ path‑srlgs‑name* [usage]
 | +‑‑‑‑ usage identityref
 | +‑‑‑‑ srlg‑name* [name]
 | +‑‑‑‑ name string
 +‑‑‑‑ exclude‑objects

 +‑‑‑‑ optimizations
 +‑‑‑‑ (algorithm)?
 +‑‑:(metric)
 | +‑‑‑‑ optimization‑metric* [metric‑type]
 | +‑‑‑‑ metric‑type identityref
 | +‑‑‑‑ weight? uint8

 +‑‑:(objective‑function)
 +‑‑‑‑ objective‑function
 +‑‑‑‑ objective‑function‑type? identityref

 The model, in addition to the metric types, defined in [TE-TUNNEL],
 which can be applied to each individual path request, defines
 additional specific metrics types that apply to a set of
 synchronized requests, as referenced in [RFC5541].

identity svec‑metric‑type {
 description
 "Base identity for svec metric type";
}

identity svec‑metric‑cumul‑te {
 base svec‑metric‑type;
 description
 "TE cumulative path metric";
}

identity svec‑metric‑cumul‑igp {
 base svec‑metric‑type;
 description
 "IGP cumulative path metric";
}

identity svec‑metric‑cumul‑hop {
 base svec‑metric‑type;
 description
 "Hop cumulative path metric";
}

identity svec‑metric‑aggregate‑bandwidth‑consumption {
 base svec‑metric‑type;
 description
 "Cumulative bandwith consumption of the set of
 synchronized paths";
}

 identity svec-metric-load-of-the-most-loaded-link {

 base svec‑metric‑type;
 description
 "Load of the most loaded link";
}

5.2. Returned metric values

 This YANG model provides a way to return the values of the metrics
 computed by the path computation in the output of RPC, together with
 other important information (e.g. srlg, affinities, explicit route),
 emulating the syntax of the "C" flag of the "METRIC" PCEP object
 [RFC5440]:

augment /te:tunnels‑rpc/te:output/te:result:
 +‑‑ro response* [response‑id]
 +‑‑ro response‑id uint32
 +‑‑ro (response‑type)?
 +‑‑:(no‑path‑case)
 | +‑‑ro no‑path!
 +‑‑:(path‑case)
 +‑‑ro computed‑path
 +‑‑ro path‑id? yang‑types:uuid
 +‑‑ro path‑properties
 +‑‑ro path‑metric* [metric‑type]
 | +‑‑ro metric‑type identityref
 | +‑‑ro accumulative‑value? uint64
 +‑‑ro path‑affinities‑values
 | +‑‑ro path‑affinities‑value* [usage]
 | +‑‑ro usage identityref
 | +‑‑ro value? admin‑groups
 +‑‑ro path‑affinity‑names
 | +‑‑ro path‑affinity‑name* [usage]
 | +‑‑ro usage identityref
 | +‑‑ro affinity‑name* [name]
 | +‑‑ro name string
 +‑‑ro path‑srlgs‑values
 | +‑‑ro usage? identityref
 | +‑‑ro values* srlg
 +‑‑ro path‑srlgs‑names
 | +‑‑ro path‑srlgs‑name* [usage]

 | +‑‑ro usage identityref
 | +‑‑ro srlg‑name* [name]
 | +‑‑ro name string
 +‑‑ro path‑route‑objects

 It also allows to request in the input of RPC which information
 (metrics, srlg and/or affinities) should be returned:

module: ietf‑te‑path‑computation
 augment /te:tunnels‑rpc/te:input/te:tunnel‑info:
 +‑‑‑‑ path‑request* [request‑id]
 | +‑‑‑‑ request‑id uint32

 | +‑‑‑‑ requested‑metrics* [metric‑type]
 | | +‑‑‑‑ metric‑type identityref
 | +‑‑‑‑ return‑srlgs? boolean
 | +‑‑‑‑ return‑affinities? boolean

 This feature is essential for using a stateless path computation in
 a multi-domain TE network as described in section 2.2. In this case,
 the metrics returned by a path computation requested to a given TE
 network controller must be used by the client to compute the best
 end-to-end path. If they are missing the client cannot compare
 different paths calculated by the TE network controllers and choose
 the best one for the optimal e2e path.

6. YANG model for stateless TE path computation

6.1. YANG Tree

 Figure 9 below shows the tree diagram of the YANG model defined in
 module ietf-te-path-computation.yang.

module: ietf‑te‑path‑computation
 augment /te:tunnels‑rpc/te:input/te:tunnel‑info:
 +‑‑‑‑ path‑request* [request‑id]
 | +‑‑‑‑ request‑id uint32
 | +‑‑‑‑ te‑topology‑identifier
 | | +‑‑‑‑ provider‑id? te‑types:te‑global‑id

 | | +‑‑‑‑ client‑id? te‑types:te‑global‑id
 | | +‑‑‑‑ topology‑id? te‑types:te‑topology‑id
 | +‑‑‑‑ source? inet:ip‑address
 | +‑‑‑‑ destination? inet:ip‑address
 | +‑‑‑‑ src‑tp‑id? binary
 | +‑‑‑‑ dst‑tp‑id? binary
 | +‑‑‑‑ bidirectional? boolean
 | +‑‑‑‑ encoding? identityref
 | +‑‑‑‑ switching‑type? identityref
 | +‑‑‑‑ explicit‑route‑objects
 | | +‑‑‑‑ route‑object‑exclude‑always* [index]
 | | | +‑‑‑‑ index uint32
 | | | +‑‑‑‑ (type)?
 | | | +‑‑:(num‑unnum‑hop)
 | | | | +‑‑‑‑ num‑unnum‑hop
 | | | | +‑‑‑‑ node‑id? te‑types:te‑node‑id
 | | | | +‑‑‑‑ link‑tp‑id? te‑types:te‑tp‑id
 | | | | +‑‑‑‑ hop‑type? te‑hop‑type
 | | | | +‑‑‑‑ direction? te‑link‑direction
 | | | +‑‑:(as‑number)
 | | | | +‑‑‑‑ as‑number‑hop
 | | | | +‑‑‑‑ as‑number? binary
 | | | | +‑‑‑‑ hop‑type? te‑hop‑type
 | | | +‑‑:(label)
 | | | +‑‑‑‑ label‑hop
 | | | +‑‑‑‑ te‑label
 | | | +‑‑‑‑ (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑‑‑ generic?
 | | | | rt‑types:generalized‑label
 | | | +‑‑‑‑ direction? te‑label‑direction
 | | +‑‑‑‑ route‑object‑include‑exclude* [index]
 | | +‑‑‑‑ explicit‑route‑usage? identityref
 | | +‑‑‑‑ index uint32
 | | +‑‑‑‑ (type)?
 | | +‑‑:(num‑unnum‑hop)
 | | | +‑‑‑‑ num‑unnum‑hop
 | | | +‑‑‑‑ node‑id? te‑types:te‑node‑id
 | | | +‑‑‑‑ link‑tp‑id? te‑types:te‑tp‑id

 | | | +‑‑‑‑ hop‑type? te‑hop‑type
 | | | +‑‑‑‑ direction? te‑link‑direction
 | | +‑‑:(as‑number)
 | | | +‑‑‑‑ as‑number‑hop
 | | | +‑‑‑‑ as‑number? binary
 | | | +‑‑‑‑ hop‑type? te‑hop‑type
 | | +‑‑:(label)
 | | | +‑‑‑‑ label‑hop
 | | | +‑‑‑‑ te‑label
 | | | +‑‑‑‑ (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑‑‑ generic?
 | | | | rt‑types:generalized‑label
 | | | +‑‑‑‑ direction? te‑label‑direction
 | | +‑‑:(srlg)
 | | +‑‑‑‑ srlg
 | | +‑‑‑‑ srlg? uint32
 | +‑‑‑‑ path‑constraints
 | | +‑‑‑‑ te‑bandwidth
 | | | +‑‑‑‑ (technology)?
 | | | +‑‑:(generic)
 | | | +‑‑‑‑ generic? te‑bandwidth
 | | +‑‑‑‑ setup‑priority? uint8
 | | +‑‑‑‑ hold‑priority? uint8
 | | +‑‑‑‑ signaling‑type? identityref
 | | +‑‑‑‑ path‑metric‑bounds
 | | | +‑‑‑‑ path‑metric‑bound* [metric‑type]
 | | | +‑‑‑‑ metric‑type identityref
 | | | +‑‑‑‑ upper‑bound? uint64
 | | +‑‑‑‑ path‑affinities‑values
 | | | +‑‑‑‑ path‑affinities‑value* [usage]
 | | | +‑‑‑‑ usage identityref
 | | | +‑‑‑‑ value? admin‑groups
 | | +‑‑‑‑ path‑affinity‑names
 | | | +‑‑‑‑ path‑affinity‑name* [usage]
 | | | +‑‑‑‑ usage identityref
 | | | +‑‑‑‑ affinity‑name* [name]
 | | | +‑‑‑‑ name string
 | | +‑‑‑‑ path‑srlgs‑values

 | | | +‑‑‑‑ usage? identityref
 | | | +‑‑‑‑ values* srlg
 | | +‑‑‑‑ path‑srlgs‑names
 | | | +‑‑‑‑ path‑srlgs‑name* [usage]
 | | | +‑‑‑‑ usage identityref
 | | | +‑‑‑‑ srlg‑name* [name]
 | | | +‑‑‑‑ name string
 | | +‑‑‑‑ disjointness? te‑types:te‑path‑
disjointness
 | +‑‑‑‑ optimizations
 | | +‑‑‑‑ (algorithm)?
 | | +‑‑:(metric) {path‑optimization‑metric}?
 | | | +‑‑‑‑ optimization‑metric* [metric‑type]
 | | | | +‑‑‑‑ metric‑type
identityref
 | | | | +‑‑‑‑ weight? uint8
 | | | | +‑‑‑‑ explicit‑route‑exclude‑objects
 | | | | | +‑‑‑‑ route‑object‑exclude‑object* [index]
 | | | | | +‑‑‑‑ index uint32
 | | | | | +‑‑‑‑ (type)?
 | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | +‑‑‑‑ num‑unnum‑hop
 | | | | | | +‑‑‑‑ node‑id? te‑types:te‑
node‑id
 | | | | | | +‑‑‑‑ link‑tp‑id? te‑types:te‑
tp‑id
 | | | | | | +‑‑‑‑ hop‑type? te‑hop‑type
 | | | | | | +‑‑‑‑ direction? te‑link‑
direction
 | | | | | +‑‑:(as‑number)
 | | | | | | +‑‑‑‑ as‑number‑hop
 | | | | | | +‑‑‑‑ as‑number? binary
 | | | | | | +‑‑‑‑ hop‑type? te‑hop‑type
 | | | | | +‑‑:(label)
 | | | | | | +‑‑‑‑ label‑hop
 | | | | | | +‑‑‑‑ te‑label
 | | | | | | +‑‑‑‑ (technology)?
 | | | | | | | +‑‑:(generic)
 | | | | | | | +‑‑‑‑ generic?

 | | | | | | | rt‑
types:generalized‑label
 | | | | | | +‑‑‑‑ direction?
 | | | | | | te‑label‑direction
 | | | | | +‑‑:(srlg)
 | | | | | +‑‑‑‑ srlg
 | | | | | +‑‑‑‑ srlg? uint32
 | | | | +‑‑‑‑ explicit‑route‑include‑objects
 | | | | +‑‑‑‑ route‑object‑include‑object* [index]
 | | | | +‑‑‑‑ index uint32
 | | | | +‑‑‑‑ (type)?
 | | | | +‑‑:(num‑unnum‑hop)
 | | | | | +‑‑‑‑ num‑unnum‑hop
 | | | | | +‑‑‑‑ node‑id? te‑types:te‑
node‑id
 | | | | | +‑‑‑‑ link‑tp‑id? te‑types:te‑
tp‑id
 | | | | | +‑‑‑‑ hop‑type? te‑hop‑type
 | | | | | +‑‑‑‑ direction? te‑link‑
direction
 | | | | +‑‑:(as‑number)
 | | | | | +‑‑‑‑ as‑number‑hop
 | | | | | +‑‑‑‑ as‑number? binary
 | | | | | +‑‑‑‑ hop‑type? te‑hop‑type
 | | | | +‑‑:(label)
 | | | | +‑‑‑‑ label‑hop
 | | | | +‑‑‑‑ te‑label
 | | | | +‑‑‑‑ (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑‑‑ generic?
 | | | | | rt‑
types:generalized‑label
 | | | | +‑‑‑‑ direction?
 | | | | te‑label‑direction
 | | | +‑‑‑‑ tiebreakers
 | | | +‑‑‑‑ tiebreaker* [tiebreaker‑type]
 | | | +‑‑‑‑ tiebreaker‑type identityref
 | | +‑‑:(objective‑function)
 | | {path‑optimization‑objective‑function}?

 | | +‑‑‑‑ objective‑function
 | | +‑‑‑‑ objective‑function‑type? identityref
 | +‑‑‑‑ requested‑metrics* [metric‑type]
 | | +‑‑‑‑ metric‑type identityref
 | +‑‑‑‑ return‑srlgs? boolean
 | +‑‑‑‑ return‑affinities? boolean
 | +‑‑‑‑ path‑in‑segment!
 | | +‑‑‑‑ label‑restrictions
 | | +‑‑‑‑ label‑restriction* [index]
 | | +‑‑‑‑ restriction? enumeration
 | | +‑‑‑‑ index uint32
 | | +‑‑‑‑ label‑start
 | | | +‑‑‑‑ te‑label
 | | | +‑‑‑‑ (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑‑‑ generic? rt‑types:generalized‑
label
 | | | +‑‑‑‑ direction? te‑label‑direction
 | | +‑‑‑‑ label‑end
 | | | +‑‑‑‑ te‑label
 | | | +‑‑‑‑ (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑‑‑ generic? rt‑types:generalized‑
label
 | | | +‑‑‑‑ direction? te‑label‑direction
 | | +‑‑‑‑ label‑step
 | | | +‑‑‑‑ (technology)?
 | | | +‑‑:(generic)
 | | | +‑‑‑‑ generic? int32
 | | +‑‑‑‑ range‑bitmap? binary
 | +‑‑‑‑ path‑out‑segment!
 | +‑‑‑‑ label‑restrictions
 | +‑‑‑‑ label‑restriction* [index]
 | +‑‑‑‑ restriction? enumeration
 | +‑‑‑‑ index uint32
 | +‑‑‑‑ label‑start
 | | +‑‑‑‑ te‑label
 | | +‑‑‑‑ (technology)?
 | | | +‑‑:(generic)

 | | | +‑‑‑‑ generic? rt‑types:generalized‑
label
 | | +‑‑‑‑ direction? te‑label‑direction
 | +‑‑‑‑ label‑end
 | | +‑‑‑‑ te‑label
 | | +‑‑‑‑ (technology)?
 | | | +‑‑:(generic)
 | | | +‑‑‑‑ generic? rt‑types:generalized‑
label
 | | +‑‑‑‑ direction? te‑label‑direction
 | +‑‑‑‑ label‑step
 | | +‑‑‑‑ (technology)?
 | | +‑‑:(generic)
 | | +‑‑‑‑ generic? int32
 | +‑‑‑‑ range‑bitmap? binary
 +‑‑‑‑ synchronization* [synchronization‑id]
 +‑‑‑‑ synchronization‑id uint32
 +‑‑‑‑ svec
 | +‑‑‑‑ relaxable? boolean
 | +‑‑‑‑ disjointness? te‑types:te‑path‑disjointness
 | +‑‑‑‑ request‑id‑number* uint32
 +‑‑‑‑ svec‑constraints
 | +‑‑‑‑ path‑metric‑bound* [metric‑type]
 | +‑‑‑‑ metric‑type identityref
 | +‑‑‑‑ upper‑bound? uint64
 +‑‑‑‑ path‑srlgs‑values
 | +‑‑‑‑ usage? identityref
 | +‑‑‑‑ values* srlg
 +‑‑‑‑ path‑srlgs‑names
 | +‑‑‑‑ path‑srlgs‑name* [usage]
 | +‑‑‑‑ usage identityref
 | +‑‑‑‑ srlg‑name* [name]
 | +‑‑‑‑ name string
 +‑‑‑‑ exclude‑objects
 | +‑‑‑‑ excludes* [index]
 | +‑‑‑‑ index uint32
 | +‑‑‑‑ (type)?
 | +‑‑:(num‑unnum‑hop)
 | | +‑‑‑‑ num‑unnum‑hop

 | | +‑‑‑‑ node‑id? te‑types:te‑node‑id
 | | +‑‑‑‑ link‑tp‑id? te‑types:te‑tp‑id
 | | +‑‑‑‑ hop‑type? te‑hop‑type
 | | +‑‑‑‑ direction? te‑link‑direction
 | +‑‑:(as‑number)
 | | +‑‑‑‑ as‑number‑hop
 | | +‑‑‑‑ as‑number? binary
 | | +‑‑‑‑ hop‑type? te‑hop‑type
 | +‑‑:(label)
 | +‑‑‑‑ label‑hop
 | +‑‑‑‑ te‑label
 | +‑‑‑‑ (technology)?
 | | +‑‑:(generic)
 | | +‑‑‑‑ generic?
 | | rt‑types:generalized‑label
 | +‑‑‑‑ direction? te‑label‑direction
 +‑‑‑‑ optimizations
 +‑‑‑‑ (algorithm)?
 +‑‑:(metric)
 | +‑‑‑‑ optimization‑metric* [metric‑type]
 | +‑‑‑‑ metric‑type identityref
 | +‑‑‑‑ weight? uint8
 +‑‑:(objective‑function)
 +‑‑‑‑ objective‑function
 +‑‑‑‑ objective‑function‑type? identityref
 augment /te:tunnels‑rpc/te:output/te:result:
 +‑‑ro response* [response‑id]
 +‑‑ro response‑id uint32
 +‑‑ro (response‑type)?
 +‑‑:(no‑path‑case)
 | +‑‑ro no‑path!
 +‑‑:(path‑case)
 +‑‑ro computed‑path
 +‑‑ro path‑id? yang‑types:uuid
 +‑‑ro path‑properties
 +‑‑ro path‑metric* [metric‑type]
 | +‑‑ro metric‑type identityref
 | +‑‑ro accumulative‑value? uint64
 +‑‑ro path‑affinities‑values

 | +‑‑ro path‑affinities‑value* [usage]
 | +‑‑ro usage identityref
 | +‑‑ro value? admin‑groups
 +‑‑ro path‑affinity‑names
 | +‑‑ro path‑affinity‑name* [usage]
 | +‑‑ro usage identityref
 | +‑‑ro affinity‑name* [name]
 | +‑‑ro name string
 +‑‑ro path‑srlgs‑values
 | +‑‑ro usage? identityref
 | +‑‑ro values* srlg
 +‑‑ro path‑srlgs‑names
 | +‑‑ro path‑srlgs‑name* [usage]
 | +‑‑ro usage identityref
 | +‑‑ro srlg‑name* [name]
 | +‑‑ro name string
 +‑‑ro path‑route‑objects
 +‑‑ro path‑route‑object* [index]
 +‑‑ro index uint32
 +‑‑ro (type)?
 +‑‑:(num‑unnum‑hop)
 | +‑‑ro num‑unnum‑hop
 | +‑‑ro node‑id? te‑types:te‑
node‑id
 | +‑‑ro link‑tp‑id? te‑types:te‑
tp‑id
 | +‑‑ro hop‑type? te‑hop‑type
 | +‑‑ro direction? te‑link‑
direction
 +‑‑:(as‑number)
 | +‑‑ro as‑number‑hop
 | +‑‑ro as‑number? binary
 | +‑‑ro hop‑type? te‑hop‑type
 +‑‑:(label)
 +‑‑ro label‑hop
 +‑‑ro te‑label
 +‑‑ro (technology)?
 | +‑‑:(generic)
 | +‑‑ro generic?

 | rt‑
types:generalized‑label
 +‑‑ro direction?
 te‑label‑direction

 Figure 9 ‑ TE path computation YANG tree

6.2. YANG Module

<CODE BEGINS>file "ietf‑te‑path‑computation@2018‑10‑23.yang"
module ietf‑te‑path‑computation {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑te‑path‑computation";
 // replace with IANA namespace when assigned

 prefix "tepc";

import ietf‑inet‑types {
 prefix "inet";
}

import ietf‑yang‑types {
 prefix "yang‑types";
}

import ietf‑te {
 prefix "te";
}

import ietf‑te‑types {
 prefix "te‑types";
}

organization
 "Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 WG Chair: Lou Berger

 <mailto:lberger@labn.net>

 WG Chair: Vishnu Pavan Beeram

 <mailto:vbeeram@juniper.net>

 ";

 description "YANG model for stateless TE path computation";

 revision "2018‑10‑23" {
 description
 "Initial revision";
 reference
 "draft‑ietf‑teas‑yang‑path‑computation";
 }

 /*
 * Features
 */

 feature stateless‑path‑computation {
 description
 "This feature indicates that the system supports
 stateless path computation.";
 }

 /*
 * Groupings
 */

 grouping path‑info {
 leaf path‑id {
 type yang‑types:uuid;
 config false;
 description "path‑id ref.";
 }

 uses te‑types:generic‑path‑properties;
 description "Path computation output information";
 }

 grouping requested‑info {
 description
 "This grouping defines the information (e.g., metrics)
 which must be returned in the response";
 list requested‑metrics {
 key 'metric‑type';
 description
 "The list of the requested metrics
 The metrics listed here must be returned in the response.
 Returning other metrics in the response is optional.";
 leaf metric‑type {
 type identityref {
 base te‑types:path‑metric‑type;
 }
 description
 "The metric that must be returned in the response";
 }
 }
 leaf return‑srlgs {
 type boolean;
 default false;
 description
 "If true, path srlgs must be returned in the response.
 If false, returning path srlgs in the response optional.";
 }
 leaf return‑affinities {
 type boolean;
 default false;
 description
 "If true, path affinities must be returned in the response.
 If false, returning path affinities in the response is
 optional.";
 }
 }

 identity svec‑metric‑type {
 description
 "Base identity for svec metric type";
 }

 identity svec‑metric‑cumul‑te {
 base svec‑metric‑type;
 description
 "TE cumulative path metric";
 }

 identity svec‑metric‑cumul‑igp {
 base svec‑metric‑type;
 description
 "IGP cumulative path metric";
 }

 identity svec‑metric‑cumul‑hop {
 base svec‑metric‑type;
 description
 "Hop cumulative path metric";
 }

 identity svec‑metric‑aggregate‑bandwidth‑consumption {
 base svec‑metric‑type;
 description
 "Cumulative bandwith consumption of the set of
 synchronized paths";
 }

 identity svec‑metric‑load‑of‑the‑most‑loaded‑link {
 base svec‑metric‑type;
 description
 "Load of the most loaded link";
 }

 grouping svec‑metrics‑bounds_config {
 description
 "TE path metric bounds grouping for computing a set of

 synchronized requests";
 leaf metric‑type {
 type identityref {
 base svec‑metric‑type;
 }
 description "TE path metric type usable for computing a set of
 synchronized requests";
 }
 leaf upper‑bound {
 type uint64;
 description "Upper bound on end‑to‑end svec path metric";
 }
 }

 grouping svec‑metrics‑optimization_config {
 description
 "TE path metric bounds grouping for computing a set of
 synchronized requests";

 leaf metric‑type {
 type identityref {
 base svec‑metric‑type;
 }
 description "TE path metric type usable for computing a set of
 synchronized requests";
 }
 leaf weight {
 type uint8;
 description "Metric normalization weight";
 }
 }

 grouping svec‑exclude {
 description "List of resources to be excluded by all the paths
 in the SVEC";
 container exclude‑objects {
 description "resources to be excluded";
 list excludes {
 key index;

 description
 "List of explicit route objects to always exclude
 from synchronized path computation";
 leaf index {
 type uint32;
 description "XRO subobject index";
 }
 uses te‑types:explicit‑route‑hop;
 }
 }
 }

 grouping synchronization‑constraints {
 description "Global constraints applicable to synchronized
 path computation";
 container svec‑constraints {
 description "global svec constraints";
 list path‑metric‑bound {
 key metric‑type;
 description "list of bound metrics";
 uses svec‑metrics‑bounds_config;
 }
 }
 uses te‑types:generic‑path‑srlgs;
 uses svec‑exclude;
 }

 grouping synchronization‑optimization {
 description "Synchronized request optimization";
 container optimizations {
 description
 "The objective function container that includes attributes
 to impose when computing a synchronized set of paths";

 choice algorithm {
 description "Optimizations algorithm.";
 case metric {
 list optimization‑metric {
 key "metric‑type";

 description "svec path metric type";
 uses svec‑metrics‑optimization_config;
 }
 }
 case objective‑function {
 container objective‑function {
 description
 "The objective function container that includes
 attributes to impose when computing a TE path";
 uses te‑types:path‑objective‑function_config;
 }
 }
 }
 }
 }

 grouping synchronization‑info {
 description "Information for sync";
 list synchronization {
 key "synchronization‑id";
 description "sync list";
 leaf synchronization‑id {
 type uint32;
 description "index";
 }
 container svec {
 description
 "Synchronization VECtor";
 leaf relaxable {
 type boolean;
 default true;
 description
 "If this leaf is true, path computation process is
 free to ignore svec content.
 Otherwise, it must take into account this svec.";
 }
 uses te‑types:generic‑path‑disjointness;
 leaf‑list request‑id‑number {
 type uint32;

 description
 "This list reports the set of path computation
 requests that must be synchronized.";
 }
 }
 uses synchronization‑constraints;
 uses synchronization‑optimization;
 }
 }

 grouping no‑path‑info {
 description "no‑path‑info";
 container no‑path {
 presence "Response without path information, due to failure
 performing the path computation";
 description "if path computation cannot identify a path,
 rpc returns no path.";
 }
 }

 /*
 * These groupings should be removed when defined in te‑types
 */

 grouping encoding‑and‑switching‑type {
 description
 "Common grouping to define the LSP encoding and
 switching types";

 leaf encoding {
 type identityref {
 base te‑types:lsp‑encoding‑types;
 }
 description "LSP encoding type";
 reference "RFC3945";
 }
 leaf switching‑type {
 type identityref {
 base te‑types:switching‑capabilities;

 }
 description "LSP switching type";
 reference "RFC3945";
 }
 }

 grouping end‑points {
 description
 "Common grouping to define the TE tunnel end‑points";

 leaf source {
 type inet:ip‑address;
 description "TE tunnel source address.";
 }
 leaf destination {
 type inet:ip‑address;
 description "P2P tunnel destination address";
 }
 leaf src‑tp‑id {
 type binary;
 description
 "TE tunnel source termination point identifier.";
 }
 leaf dst‑tp‑id {
 type binary;
 description
 "TE tunnel destination termination point identifier.";
 }
 leaf bidirectional {
 type boolean;
 default 'false';
 description "TE tunnel bidirectional";
 }
 }

 /**
 * AUGMENTS TO TE RPC
 */

 augment "/te:tunnels‑rpc/te:input/te:tunnel‑info" {
 description "statelessComputeP2PPath input";
 list path‑request {
 key "request‑id";
 description "request‑list";
 leaf request‑id {
 type uint32;
 mandatory true;
 description
 "Each path computation request is uniquely identified
 by the request‑id‑number.";
 }
 uses te‑types:te‑topology‑identifier;
 uses end‑points;
 uses encoding‑and‑switching‑type;
 uses te‑types:path‑route‑objects;
 uses te‑types:generic‑path‑constraints;
 uses te‑types:generic‑path‑optimization;
 uses requested‑info;
 uses te:path‑access‑segment‑info;
 }
 uses synchronization‑info;
 }

 augment "/te:tunnels‑rpc/te:output/te:result" {
 description "statelessComputeP2PPath output";
 list response {
 key response‑id;
 config false;
 description "response";
 leaf response‑id {
 type uint32;
 description
 "The list key that has to reuse request‑id‑number.";
 }
 choice response‑type {
 config false;
 description "response‑type";
 case no‑path‑case {

 uses no‑path‑info;
 }
 case path‑case {
 container computed‑path {
 uses path‑info;
 description "Path computation service.";
 }
 }
 }
 }
 }
}
<CODE ENDS>

 Figure 10 ‑ TE path computation YANG module

7. Security Considerations

 This document describes use cases of requesting Path Computation
 using YANG models, which could be used at the ABNO Control Interface
 [RFC7491] and/or between controllers in ACTN [RFC8453]. As such, it
 does not introduce any new security considerations compared to the
 ones related to YANG specification, ABNO specification and ACTN
 Framework defined in [RFC7950], [RFC7491] and [RFC8453].

 The YANG module defined in this draft is designed to be accessed via
 the NETCONF protocol [RFC6241] or RESTCONF protocol [RFC8040]. The
 lowest NETCONF layer is the secure transport layer, and the
 mandatory-to-implement secure transport is Secure Shell (SSH)
 [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-
 implement secure transport is TLS [RFC8446].

 This document also defines common data types using the YANG data
 modeling language. The definitions themselves have no security
 impact on the Internet, but the usage of these definitions in
 concrete YANG modules might have. The security considerations
 spelled out in the YANG specification [RFC7950] apply for this
 document as well.

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 Note - The security analysis of each leaf is for further study.

8. IANA Considerations

 This document registers the following URIs in the IETF XML registry
 [RFC3688]. Following the format in [RFC3688], the following
 registration is requested to be made.

URI: urn:ietf:params:xml:ns:yang:ietf‑te‑path‑computation
XML: N/A, the requested URI is an XML namespace.

 This document registers a YANG module in the YANG Module Names
 registry [RFC7950].

name: ietf‑te‑path‑computation
namespace: urn:ietf:params:xml:ns:yang:ietf‑te‑path‑computation
prefix: tepc

9. References

9.1. Normative References

 [RFC3688]
 Mealling, M., "The IETF XML Registry", RFC 3688, January
 2004.

 [RFC5440]
 Vasseur, JP., Le Roux, JL. et al., "Path Computation
 Element (PCE) Communication Protocol (PCEP)", RFC 5440,
 March 2009.

 [RFC5541]
 Le Roux, JL. et al., " Encoding of Objective Functions in
 the Path Computation Element Communication Protocol
 (PCEP)", RFC 5541, June 2009.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, June 2011.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, June 2011.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, January 2017.

 [RFC8341]
 Bierman, A., and M. Bjorklund, "Network Configuration
 Access Control Model", RFC 8341, March 2018.

 [RFC7491]
 Farrel, A., King, D., "A PCE-Based Architecture for
 Application-Based Network Operations", RFC 7491, March
 2015.

 [RFC7926]
 Farrel, A. et al., "Problem Statement and Architecture for
 Information Exchange Between Interconnected Traffic
 Engineered Networks", RFC 7926, July 2016.

 [RFC7950]
 Bjorklund, M., "The YANG 1.1 Data Modeling Language", RFC
 7950, August 2016.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, January 2017.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, August 2018.

 [RFC8453]
 Ceccarelli, D., Lee, Y. et al., "Framework for Abstraction
 and Control of TE Networks (ACTN)", RFC8453, August 2018.

 [RFC8454]
 Lee, Y. et al., "Information Model for Abstraction and
 Control of TE Networks (ACTN)", RFC8454, September 2018.

 [TE-TOPO]
 Liu, X. et al., "YANG Data Model for TE Topologies",
 draft-ietf-teas-yang-te-topo, work in progress.

 [TE-TUNNEL]
 Saad, T. et al., "A YANG Data Model for Traffic
 Engineering Tunnels and Interfaces", draft-ietf-teas-yang-
 te, work in progress.

9.1. Informative References

 [RFC4655]
 Farrel, A. et al., "A Path Computation Element (PCE)-Based
 Architecture", RFC 4655, August 2006.

 [RFC7139]
 Zhang, F. et al., "GMPLS Signaling Extensions for Control
 of Evolving G.709 Optical Transport Networks", RFC 7139,
 March 2014.

 [RFC7446]
 Lee, Y. et al., "Routing and Wavelength Assignment
 Information Model for Wavelength Switched Optical
 Networks", RFC 7446, February 2015.

 [RFC8233]
 Dhody, D. et al., "Extensions to the Path Computation
 Element Communication Protocol (PCEP) to Compute Service-
 Aware Label Switched Paths (LSPs)", RFC 8233, September
 2017

 [OTN-TOPO]
 Zheng, H. et al., "A YANG Data Model for Optical
 Transport Network Topology", draft-ietf-ccamp-otn-topo-
 yang, work in progress.

[ITU‑T G.709‑2016] ITU‑T Recommendation G.709 (06/16), "Interface
 for the optical transport network", June 2016.

10. Acknowledgments

 The authors would like to thank Igor Bryskin and Xian Zhang for
 participating in the initial discussions that have triggered this
 work and providing valuable insights.

 The authors would like to thank the authors of the TE Tunnel YANG
 model [TE-TUNNEL], in particular Igor Bryskin, Vishnu Pavan Beeram,
 Tarek Saad and Xufeng Liu, for their inputs to the discussions and
 support in having consistency between the Path Computation and TE
 Tunnel YANG models.

 The authors would like to thank Adrian Farrel, Dhruv Dhody, Igor
 Bryskin, Julien Meuric and Lou Berger for their valuable input to
 the discussions that has clarified that the path being setup is not
 necessarily the same as the path that have been previously computed
 and, in particular to Dhruv Dhody, for his suggestion to describe
 the need for a path verification phase to check that the actual path
 being setup meets the required end-to-end metrics and constraints.

 This document was prepared using 2-Word-v2.0.template.dot.

Appendix A. Examples of dimensioning the "detailed connectivity matrix"

 In the following table, a list of the possible constraints,
 associated with their potential cardinality, is reported.

 The maximum number of potential connections to be computed and
 reported is, in first approximation, the multiplication of all of
 them.

Constraint Cardinality
‑‑‑‑‑‑‑‑‑‑ ‑‑‑

 End points N(N-1)/2 if connections are bidirectional (OTN and WDM),

 N(N-1) for unidirectional connections.

Bandwidth In WDM networks, bandwidth values are expressed in GHz.

 On fixed-grid WDM networks, the central frequencies are
 on a 50GHz grid and the channel width of the transmitters
 are typically 50GHz such that each central frequency can
 be used, i.e., adjacent channels can be placed next to
 each other in terms of central frequencies.

 On flex-grid WDM networks, the central frequencies are on
 a 6.25GHz grid and the channel width of the transmitters
 can be multiples of 12.5GHz.

 For fixed-grid WDM networks typically there is only one
 possible bandwidth value (i.e., 50GHz) while for flex-
 grid WDM networks typically there are 4 possible
 bandwidth values (e.g., 37.5GHz, 50GHz, 62.5GHz, 75GHz).

 In OTN (ODU) networks, bandwidth values are expressed as
 pairs of ODU type and, in case of ODUflex, ODU rate in
 bytes/sec as described in section 5 of [RFC7139].

 For "fixed" ODUk types, 6 possible bandwidth values are
 possible (i.e., ODU0, ODU1, ODU2, ODU2e, ODU3, ODU4).

 For ODUflex(GFP), up to 80 different bandwidth values can
 be specified, as defined in Table 7-8 of [ITU-T G.709-
 2016].

 For other ODUflex types, like ODUflex(CBR), the number of
 possible bandwidth values depends on the rates of the
 clients that could be mapped over these ODUflex types, as
 shown in Table 7.2 of [ITU-T G.709-2016], which in theory
 could be a countinuum of values. However, since different
 ODUflex bandwidths that use the same number of TSs on
 each link along the path are equivalent for path
 computation purposes, up to 120 different bandwidth
 ranges can be specified.

 Ideas to reduce the number of ODUflex bandwidth values in
 the detailed connectivity matrix, to less than 100, are
 for further study.

 Bandwidth specification for ODUCn is currently for
 further study but it is expected that other bandwidth
 values can be specified as integer multiples of 100Gb/s.

 In IP we have bandwidth values in bytes/sec. In
 principle, this is a countinuum of values, but in
 practice we can identify a set of bandwidth ranges, where
 any bandwidth value inside the same range produces the
 same path.
 The number of such ranges is the cardinality, which
 depends on the topology, available bandwidth and status
 of the network. Simulations (Note: reference paper
 submitted for publication) show that values for medium
 size topologies (around 50‑150 nodes) are in the range 4‑
 7 (5 on average) for each end points couple.

Metrics IGP, TE and hop number are the basic objective metrics
 defined so far. There are also the 2 objective functions
 defined in [RFC5541]: Minimum Load Path (MLP) and Maximum
 Residual Bandwidth Path (MBP). Assuming that one only
 metric or objective function can be optimized at once,
 the total cardinality here is 5.

 With [RFC8233], a number of additional metrics are
 defined, including Path Delay metric, Path Delay
 Variation metric and Path Loss metric, both for point-to-
 point and point-to-multipoint paths. This increases the
 cardinality to 8.

Bounds Each metric can be associated with a bound in order to
 find a path having a total value of that metric lower
 than the given bound. This has a potentially very high
 cardinality (as any value for the bound is allowed). In

 practice there is a maximum value of the bound (the one
 with the maximum value of the associated metric) which
 results always in the same path, and a range approach
 like for bandwidth in IP should produce also in this case
 the cardinality. Assuming to have a cardinality similar
 to the one of the bandwidth (let say 5 on average) we
 should have 6 (IGP, TE, hop, path delay, path delay
 variation and path loss; we don't consider here the two
 objective functions of [RFC5541] as they are conceived
 only for optimization)*5 = 30 cardinality.

Technology
constraints For further study

Priority We have 8 values for setup priority, which is used in
 path computation to route a path using free resources
 and, where no free resources are available, resources
 used by LSPs having a lower holding priority.

 Local prot It's possible to ask for a local protected service, where

 all the links used by the path are protected with fast
 reroute (this is only for IP networks, but line
 protection schemas are available on the other
 technologies as well). This adds an alternative path
 computation, so the cardinality of this constraint is 2.

Administrative
Colors Administrative colors (aka affinities) are typically
 assigned to links but when topology abstraction is used
 affinity information can also appear in the detailed
 connectivity matrix.

 There are 32 bits available for the affinities. Links can
 be tagged with any combination of these bits, and path
 computation can be constrained to include or exclude any
 or all of them. The relevant cardinality is 3 (include-
 any, exclude-any, include-all) times 2^32 possible
 values. However, the number of possible values used in
 real networks is quite small.

 Included Resources

 A path computation request can be associated to an
 ordered set of network resources (links, nodes) to be
 included along the computed path. This constraint would
 have a huge cardinality as in principle any combination
 of network resources is possible. However, as far as the
 Orchestrator doesn't know details about the internal
 topology of the domain, it shouldn't include this type of
 constraint at all (see more details below).

 Excluded Resources

 A path computation request can be associated to a set of
 network resources (links, nodes, SRLGs) to be excluded
 from the computed path. Like for included resources,
 this constraint has a potentially very high cardinality,
 but, once again, it can't be actually used by the
 Orchestrator, if it's not aware of the domain topology
 (see more details below).
As discussed above, the Orchestrator can specify include or exclude
resources depending on the abstract topology information that the
domain controller exposes:

 o In case the domain controller exposes the entire domain as a
 single abstract TE node with his own external terminations and
 detailed connectivity matrix (whose size we are estimating), no
 other topological details are available, therefore the size of
 the detailed connectivity matrix only depends on the combination
 of the constraints that the Orchestrator can use in a path
 computation request to the domain controller. These constraints
 cannot refer to any details of the internal topology of the
 domain, as those details are not known to the Orchestrator and so
 they do not impact size of the detailed connectivity matrix
 exported.

 o Instead in case the domain controller exposes a topology
 including more than one abstract TE nodes and TE links, and their
 attributes (e.g. SRLGs, affinities for the links), the
 Orchestrator knows these details and therefore could compute a
 path across the domain referring to them in the constraints. The
 detailed connectivity matrixes, whose size need to be estimated
 here, are the ones relevant to the abstract TE nodes exported to
 the Orchestrator. These detailed connectivity matrixes and
 therefore theirs sizes, while cannot depend on the other abstract
 TE nodes and TE links, which are external to the given abstract
 node, could depend to SRLGs (and other attributes, like
 affinities) which could be present also in the portion of the
 topology represented by the abstract nodes, and therefore
 contribute to the size of the related detailed connectivity
 matrix.

 We also don't consider here the possibility to ask for more than one
 path in diversity or for point-to-multi-point paths, which are for
 further study.

 Considering for example an IP domain without considering SRLG and
 affinities, we have an estimated number of paths depending on these
 estimated cardinalities:

 Endpoints = N*(N-1), Bandwidth = 5, Metrics = 6, Bounds = 20,
 Priority = 8, Local prot = 2

 The number of paths to be pre-computed by each IP domain is
 therefore 24960 * N(N-1) where N is the number of domain access
 points.

 This means that with just 4 access points we have nearly 300000
 paths to compute, advertise and maintain (if a change happens in the
 domain, due to a fault, or just the deployment of new traffic, a
 substantial number of paths need to be recomputed and the relevant
 changes advertised to the upper controller).

 This seems quite challenging. In fact, if we assume a mean length of
 1K for the json describing a path (a quite conservative estimate),
 reporting 300000 paths means transferring and then parsing more than
 300 Mbytes for each domain. If we assume that 20% (to be checked) of
 this paths change when a new deployment of traffic occurs, we have
 60 Mbytes of transfer for each domain traversed by a new end-to-end
 path. If a network has, let say, 20 domains (we want to estimate the
 load for a non-trivial domain setup) in the beginning a total
 initial transfer of 6Gigs is needed, and eventually, assuming 4-5
 domains are involved in mean during a path deployment we could have
 240-300 Mbytes of changes advertised to the higher order controller.

 Further bare-bone solutions can be investigated, removing some more
 options, if this is considered not acceptable; in conclusion, it
 seems that an approach based only on the information provided by the
 detailed connectivity matrix is hardly feasible, and could be
 applicable only to small networks with a limited meshing degree
 between domains and renouncing to a number of path computation
 features.

Contributors

Dieter Beller
Nokia
Email: dieter.beller@nokia.com

Gianmarco Bruno
Ericsson
Email: gianmarco.bruno@ericsson.com

Francesco Lazzeri
Ericsson
Email: francesco.lazzeri@ericsson.com

Young Lee
Huawei
Email: leeyoung@huawei.com

Carlo Perocchio
Ericsson
Email: carlo.perocchio@ericsson.com

Authors' Addresses

Italo Busi (Editor)
Huawei
Email: italo.busi@huawei.com

Sergio Belotti (Editor)
Nokia
Email: sergio.belotti@nokia.com

Victor Lopez
Telefonica
Email: victor.lopezalvarez@telefonica.com

Oscar Gonzalez de Dios
Telefonica
Email: oscar.gonzalezdedios@telefonica.com

Anurag Sharma
Google
Email: ansha@google.com

Yan Shi
China Unicom
Email: shiyan49@chinaunicom.cn

Ricard Vilalta
CTTC
Email: ricard.vilalta@cttc.es

Karthik Sethuraman
NEC
Email: karthik.sethuraman@necam.com

Michael Scharf
Nokia
Email: michael.scharf@gmail.com

Daniele Ceccarelli
Ericsson
Email: daniele.ceccarelli@ericsson.com

draft-ietf-teas-yang-rsvp-te-04 - A YANG Data Model for RSVP-TE

Index
Back 5
Prev
Next
Forward 5

TEAS Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 23, 2019

V. Beeram

Juniper Networks

T. Saad

R. Gandhi

Cisco Systems, Inc.

X. Liu

Volta Networks

I. Bryskin

Huawei Technologies

H. Shah

Ciena

October 20, 2018

A YANG Data Model for RSVP-TE

draft-ietf-teas-yang-rsvp-te-04

Abstract

 This document defines a YANG data model for the configuration and
 management of RSVP (Resource Reservation Protocol) to establish
 Traffic-Engineered (TE) Label-Switched Paths (LSPs) for MPLS (Multi-
 Protocol Label Switching) and other technologies.

 The model defines a generic RSVP-TE module for signaling LSPs that is
 technology agnostic. The generic RSVP-TE module is to be augmented
 by technology specific RSVP-TE modules that define technology
 specific data. This document also defines the augmentation for RSVP-
 TE MPLS LSPs model.

 This model covers data for the configuration, operational state,
 remote procedural calls, and event notifications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 23, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Prefixes in Data Node Names

	2. Model Overview
	 2.1. Module Relationship

	 2.2. Model Tree Diagrams
	 2.2.1. RSVP-TE Model Tree Diagram

	 2.2.2. RSVP-TE MPLS Model Tree Diagram

	 2.3. YANG Modules
	 2.3.1. RSVP-TE YANG Module

	 2.3.2. RSVP-TE MPLS YANG Module

	3. IANA Considerations

	4. Security Considerations

	5. Acknowledgement

	6. Contributors

	7. Normative References

	Authors' Addresses

1. Introduction

 YANG [RFC7950] is a data modeling language that was introduced to
 define the contents of a conceptual data store that allows networked
 devices to be managed using NETCONF [RFC6241]. YANG has proved
 relevant beyond its initial confines, as bindings to other interfaces
 (e.g. RESTCONF [RFC8040]) and encoding other than XML (e.g. JSON)
 are being defined. Furthermore, YANG data models can be used as the
 basis of implementation for other interfaces, such as CLI and
 programmatic APIs.

 This document defines a generic YANG data model for configuring and
 managing RSVP-TE LSP(s) [RFC3209]. The RSVP-TE generic model
 augments the RSVP base and extended models defined in
 [I-D.ietf-teas-yang-rsvp], and adds TE extensions to the RSVP
 protocol [RFC2205] model configuration and state data. The
 technology specific RSVP-TE models augment the generic RSVP-TE model
 with additional technology specific parameters. For example, this
 document also defines the MPLS RSVP-TE model for configuring and
 managing MPLS RSVP TE LSP(s).

 In addition to augmenting the RSVP YANG module, the modules defined
 in this document augment the TE Interfaces, Tunnels and LSP(s) YANG
 module defined in [I-D.ietf-teas-yang-te] to define additional
 parameters to enable signaling for RSVP-TE.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The terminology for describing YANG data models is found in
 [RFC7950].

1.2. Prefixes in Data Node Names

 In this document, names of data nodes and other data model objects
 are prefixed using the standard prefix associated with the
 corresponding YANG imported modules, as shown in Table 1.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Prefix | YANG module | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
yang	ietf‑yang‑types	[RFC6991]
inet	ietf‑inet‑types	[RFC6991]
te	ietf‑te	[I‑D.ietf‑teas‑yang‑te]
rsvp	ietf‑rsvp	[I‑D.ietf‑teas‑yang‑rsvp]
te‑dev	ietf‑te‑device	[I‑D.ietf‑teas‑yang‑te]
te‑types	ietf‑te‑types	[I‑D.ietf‑teas‑yang‑te‑types]
te‑mpls‑types	ietf‑te‑mpls‑types	[I‑D.ietf‑teas‑yang‑te‑types]
rsvp‑te	ietf‑rsvp‑te	this document
rsvp‑te‑mpls	ietf‑rsvp‑te‑mpls	this document
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1: Prefixes and corresponding YANG modules

2. Model Overview

 The RSVP-TE generic model augments the RSVP base and extended YANG
 models defined in [I-D.ietf-teas-yang-rsvp]. It also augments the TE
 tunnels and interfaces module defined in [I-D.ietf-teas-yang-te] to
 cover parameters specific to the configuration and management of
 RSVP-TE interfaces, tunnels and LSP(s).

 The RSVP-TE MPLS YANG model augments the RSVP-TE generic model with
 parameters to configure and manage signaling of MPLS RSVP-TE LSPs.
 RSVP-TE model augmentation for other dataplane technologies (e.g.
 OTN or WDM) are outside the scope of this document.

 There are three types of configuration and state data nodes in
 module(s) defined in this document:

 o those augmenting or extending the base RSVP module that is defined
 in [I-D.ietf-teas-yang-rsvp]

 o those augmenting or extending the base TE module defined in
 [I-D.ietf-teas-yang-te]

 o those that are specific to the RSVP-TE and RSVP-TE MPLS modules
 defined in this document.

2.1. Module Relationship

 The data pertaining to RSVP-TE in this document is divided into two
 modules: a technology agnostic RSVP-TE module that holds generic
 parameters for RSVP-TE applicable to all technologies, and a MPLS
 technology specific RSVP-TE module that holds parameters specific to
 MPLS technology.

 The RSVP-TE generic YANG module "ietf-rsvp-te" imports the following
 modules:

 o ietf-rsvp defined in [I-D.ietf-teas-yang-rsvp]

 o ietf-routing-types defined in [RFC8294]

 o ietf-te-types defined in [I-D.ietf-teas-yang-te-types]

 o ietf-te and ietf-te-dev defined in [I-D.ietf-teas-yang-te]

 The RSVP-TE MPLS YANG module "ietf-te-device" imports the following
 module(s):

 o ietf-rsvp defined in [I-D.ietf-teas-yang-rsvp]

 o ietf-routing-types defined in [RFC8294]

 o ietf-te-mpls-types defined in [I-D.ietf-teas-yang-te-types]

 o ietf-te and ietf-te-dev defined in [I-D.ietf-teas-yang-te]

 The relationship between the different modules is shown in Figure 1.

TE basic +‑‑‑‑‑‑‑‑‑+
module | ietf‑te | o: augment
 +‑‑‑‑‑‑‑‑‑+
 o
 |
 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
RSVP‑TE module | ietf‑rsvp‑te |o . . .
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ \
 | \
 o +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑+ | ietf‑rsvp‑te‑mpls |
RSVP module | ietf‑rsvp | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑+ RSVP‑TE with MPLS
 o
 |
RSVP extended |
 module +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | ietf‑rsvp‑extended |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: Relationship of RSVP and RSVP-TE modules with other

 protocol modules

2.2. Model Tree Diagrams

 A full tree diagram of the module(s) defined in this document as per
 the syntax defined in [RFC8340] are given in subsequent sections.

2.2.1. RSVP-TE Model Tree Diagram

 Figure 2 shows the YANG tree diagram of the RSVP-TE generic YANG
 model defined in module ietf-rsvp-te.yang.

module: ietf‑rsvp‑te
 augment
 /rt:routing/rt:control‑plane‑protocols/rt:control‑plane‑protocol/
 rsvp:rsvp/rsvp:globals:
 +‑‑rw global‑soft‑preemption!
 +‑‑rw soft‑preemption‑timeout? uint16

 augment
 /rt:routing/rt:control‑plane‑protocols/rt:control‑plane‑protocol/
 rsvp:rsvp/rsvp:interfaces:
 +‑‑rw rsvp‑te‑interface‑attributes
 +‑‑ro state
 augment
 /rt:routing/rt:control‑plane‑protocols/rt:control‑plane‑protocol/
 rsvp:rsvp/rsvp:interfaces/rsvp:interface:
 +‑‑rw rsvp‑te‑interface‑attributes
 +‑‑ro state
 augment
 /rt:routing/rt:control‑plane‑protocols/rt:control‑plane‑protocol/
 rsvp:rsvp/rsvp:globals/rsvp:sessions/rsvp:session/rsvp:state/
 rsvp:psbs/rsvp:psb:
 +‑‑ro tspec‑average‑rate? rt‑types:bandwidth‑ieee‑float32
 +‑‑ro tspec‑size? rt‑types:bandwidth‑ieee‑float32
 +‑‑ro tspec‑peak‑rate? rt‑types:bandwidth‑ieee‑float32
 +‑‑ro min‑policed‑unit? uint32
 +‑‑ro max‑packet‑size? uint32
 augment
 /rt:routing/rt:control‑plane‑protocols/rt:control‑plane‑protocol/
 rsvp:rsvp/rsvp:globals/rsvp:sessions/rsvp:session/rsvp:state/
 rsvp:rsbs/rsvp:rsb:
 +‑‑ro fspec‑average‑rate? rt‑types:bandwidth‑ieee‑float32
 +‑‑ro fspec‑size? rt‑types:bandwidth‑ieee‑float32
 +‑‑ro fspec‑peak‑rate? rt‑types:bandwidth‑ieee‑float32
 +‑‑ro min‑policed‑unit? uint32
 +‑‑ro max‑packet‑size? uint32
 augment
 /rt:routing/rt:control‑plane‑protocols/rt:control‑plane‑protocol/
 rsvp:rsvp/rsvp:neighbors:
 augment /te:te/te:tunnels/te:tunnel:
 +‑‑rw lsp‑signaled‑name? string
 +‑‑rw local‑recording‑desired? boolean
 +‑‑rw se‑style‑desired? boolean
 +‑‑rw path‑reevaluation‑request? boolean
 +‑‑rw soft‑preemption‑desired? boolean
 +‑‑rw lsp‑rerouting? enumeration
 +‑‑rw lsp‑integrity‑required? boolean
 +‑‑rw lsp‑contiguous? boolean
 +‑‑rw lsp‑stitching‑desired? boolean
 +‑‑rw lsp‑preplanned? boolean
 +‑‑rw lsp‑oob‑mapping? boolean
 +‑‑rw retry‑timer? uint16
 augment /te:te/te:tunnels/te:tunnel/te:state:
 +‑‑ro lsp‑signaled‑name? string
 +‑‑ro local‑recording‑desired? boolean
 +‑‑ro se‑style‑desired? boolean

 +‑‑ro path‑reevaluation‑request? boolean
 +‑‑ro soft‑preemption‑desired? boolean
 +‑‑ro lsp‑rerouting? enumeration
 +‑‑ro lsp‑integrity‑required? boolean
 +‑‑ro lsp‑contiguous? boolean
 +‑‑ro lsp‑stitching‑desired? boolean
 +‑‑ro lsp‑preplanned? boolean
 +‑‑ro lsp‑oob‑mapping? boolean
 +‑‑ro retry‑timer? uint16
 augment /te:te/te:lsps‑state/te:lsp:
 +‑‑ro associated‑rsvp‑session? ‑>
 /rt:routing/control‑plane‑protocols/control‑plane‑protocol/
 rsvp:rsvp/globals/sessions/session/local‑index
 +‑‑ro lsp‑signaled‑name? string
 +‑‑ro local‑recording‑desired? boolean
 +‑‑ro se‑style‑desired? boolean
 +‑‑ro path‑reevaluation‑request? boolean
 +‑‑ro soft‑preemption‑desired? boolean
 +‑‑ro lsp‑rerouting? enumeration
 +‑‑ro lsp‑integrity‑required? boolean
 +‑‑ro lsp‑contiguous? boolean
 +‑‑ro lsp‑stitching‑desired? boolean
 +‑‑ro lsp‑preplanned? boolean
 +‑‑ro lsp‑oob‑mapping? boolean
 +‑‑ro explicit‑route‑objects
 | +‑‑ro incoming‑explicit‑route‑hop* [index]
 | | +‑‑ro index ‑> ../state/index
 | | +‑‑ro state
 | | +‑‑ro index? uint32
 | | +‑‑ro (type)?
 | | +‑‑:(numbered)
 | | | +‑‑ro numbered‑hop
 | | | +‑‑ro address? te‑types:te‑tp‑id
 | | | +‑‑ro hop‑type? te‑hop‑type
 | | | +‑‑ro direction? te‑link‑direction
 | | +‑‑:(as‑number)
 | | | +‑‑ro as‑number‑hop
 | | | +‑‑ro as‑number? binary
 | | | +‑‑ro hop‑type? te‑hop‑type
 | | +‑‑:(unnumbered)
 | | | +‑‑ro unnumbered‑hop
 | | | +‑‑ro node‑id? te‑types:te‑node‑id
 | | | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 | | | +‑‑ro hop‑type? te‑hop‑type
 | | | +‑‑ro direction? te‑link‑direction
 | | +‑‑:(label)
 | | +‑‑ro label‑hop
 | | +‑‑ro te‑label

 | | +‑‑ro (technology)?
 | | | +‑‑:(generic)
 | | | +‑‑ro generic?
 rt‑types:generalized‑label
 | | +‑‑ro direction? te‑label‑direction
 | +‑‑ro outgoing‑explicit‑route‑hop* [index]
 | +‑‑ro index ‑> ../state/index
 | +‑‑ro state
 | +‑‑ro index? uint32
 | +‑‑ro (type)?
 | +‑‑:(numbered)
 | | +‑‑ro numbered‑hop
 | | +‑‑ro address? te‑types:te‑tp‑id
 | | +‑‑ro hop‑type? te‑hop‑type
 | | +‑‑ro direction? te‑link‑direction
 | +‑‑:(as‑number)
 | | +‑‑ro as‑number‑hop
 | | +‑‑ro as‑number? binary
 | | +‑‑ro hop‑type? te‑hop‑type
 | +‑‑:(unnumbered)
 | | +‑‑ro unnumbered‑hop
 | | +‑‑ro node‑id? te‑types:te‑node‑id
 | | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 | | +‑‑ro hop‑type? te‑hop‑type
 | | +‑‑ro direction? te‑link‑direction
 | +‑‑:(label)
 | +‑‑ro label‑hop
 | +‑‑ro te‑label
 | +‑‑ro (technology)?
 | | +‑‑:(generic)
 | | +‑‑ro generic?
 rt‑types:generalized‑label
 | +‑‑ro direction? te‑label‑direction
 +‑‑ro incoming‑record‑route‑subobjects
 | +‑‑ro incoming‑record‑route‑subobject* [index]
 | +‑‑ro index ‑> ../state/index
 | +‑‑ro state
 | +‑‑ro index? uint32
 | +‑‑ro (type)?
 | +‑‑:(numbered)
 | | +‑‑ro address? te‑types:te‑tp‑id
 | | +‑‑ro ip‑flags? binary
 | +‑‑:(unnumbered)
 | | +‑‑ro node‑id? te‑types:te‑node‑id
 | | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 | +‑‑:(label)
 | +‑‑ro value? rt‑types:generalized‑label
 | +‑‑ro label‑flags? binary

 +‑‑ro outgoing‑record‑route‑subobjects
 +‑‑ro outgoing‑record‑route‑subobject* [index]
 +‑‑ro index ‑> ../state/index
 +‑‑ro state
 +‑‑ro index? uint32
 +‑‑ro (type)?
 +‑‑:(numbered)
 | +‑‑ro address? te‑types:te‑tp‑id
 | +‑‑ro ip‑flags? binary
 +‑‑:(unnumbered)
 | +‑‑ro node‑id? te‑types:te‑node‑id
 | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 +‑‑:(label)
 +‑‑ro value? rt‑types:generalized‑label
 +‑‑ro label‑flags? binary
 augment
 /te:te/te:tunnels/te:tunnel/te:p2p‑primary‑paths/te:p2p‑primary‑path/
 te:state/te:lsps/te:lsp:
 +‑‑ro associated‑rsvp‑session? ‑>
 /rt:routing/control‑plane‑protocols/control‑plane‑protocol/
 rsvp:rsvp/globals/sessions/session/local‑index
 +‑‑ro lsp‑signaled‑name? string
 +‑‑ro local‑recording‑desired? boolean
 +‑‑ro se‑style‑desired? boolean
 +‑‑ro path‑reevaluation‑request? boolean
 +‑‑ro soft‑preemption‑desired? boolean
 +‑‑ro lsp‑rerouting? enumeration
 +‑‑ro lsp‑integrity‑required? boolean
 +‑‑ro lsp‑contiguous? boolean
 +‑‑ro lsp‑stitching‑desired? boolean
 +‑‑ro lsp‑preplanned? boolean
 +‑‑ro lsp‑oob‑mapping? boolean
 +‑‑ro explicit‑route‑objects
 | +‑‑ro incoming‑explicit‑route‑hop* [index]
 | | +‑‑ro index ‑> ../state/index
 | | +‑‑ro state
 | | +‑‑ro index? uint32
 | | +‑‑ro (type)?
 | | +‑‑:(numbered)
 | | | +‑‑ro numbered‑hop
 | | | +‑‑ro address? te‑types:te‑tp‑id
 | | | +‑‑ro hop‑type? te‑hop‑type
 | | | +‑‑ro direction? te‑link‑direction
 | | +‑‑:(as‑number)
 | | | +‑‑ro as‑number‑hop
 | | | +‑‑ro as‑number? binary
 | | | +‑‑ro hop‑type? te‑hop‑type
 | | +‑‑:(unnumbered)

 | | | +‑‑ro unnumbered‑hop
 | | | +‑‑ro node‑id? te‑types:te‑node‑id
 | | | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 | | | +‑‑ro hop‑type? te‑hop‑type
 | | | +‑‑ro direction? te‑link‑direction
 | | +‑‑:(label)
 | | +‑‑ro label‑hop
 | | +‑‑ro te‑label
 | | +‑‑ro (technology)?
 | | | +‑‑:(generic)
 | | | +‑‑ro generic?
 rt‑types:generalized‑label
 | | +‑‑ro direction? te‑label‑direction
 | +‑‑ro outgoing‑explicit‑route‑hop* [index]
 | +‑‑ro index ‑> ../state/index
 | +‑‑ro state
 | +‑‑ro index? uint32
 | +‑‑ro (type)?
 | +‑‑:(numbered)
 | | +‑‑ro numbered‑hop
 | | +‑‑ro address? te‑types:te‑tp‑id
 | | +‑‑ro hop‑type? te‑hop‑type
 | | +‑‑ro direction? te‑link‑direction
 | +‑‑:(as‑number)
 | | +‑‑ro as‑number‑hop
 | | +‑‑ro as‑number? binary
 | | +‑‑ro hop‑type? te‑hop‑type
 | +‑‑:(unnumbered)
 | | +‑‑ro unnumbered‑hop
 | | +‑‑ro node‑id? te‑types:te‑node‑id
 | | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 | | +‑‑ro hop‑type? te‑hop‑type
 | | +‑‑ro direction? te‑link‑direction
 | +‑‑:(label)
 | +‑‑ro label‑hop
 | +‑‑ro te‑label
 | +‑‑ro (technology)?
 | | +‑‑:(generic)
 | | +‑‑ro generic?
 rt‑types:generalized‑label
 | +‑‑ro direction? te‑label‑direction
 +‑‑ro incoming‑record‑route‑subobjects
 | +‑‑ro incoming‑record‑route‑subobject* [index]
 | +‑‑ro index ‑> ../state/index
 | +‑‑ro state
 | +‑‑ro index? uint32
 | +‑‑ro (type)?
 | +‑‑:(numbered)

 | | +‑‑ro address? te‑types:te‑tp‑id
 | | +‑‑ro ip‑flags? binary
 | +‑‑:(unnumbered)
 | | +‑‑ro node‑id? te‑types:te‑node‑id
 | | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 | +‑‑:(label)
 | +‑‑ro value? rt‑types:generalized‑label
 | +‑‑ro label‑flags? binary
 +‑‑ro outgoing‑record‑route‑subobjects
 +‑‑ro outgoing‑record‑route‑subobject* [index]
 +‑‑ro index ‑> ../state/index
 +‑‑ro state
 +‑‑ro index? uint32
 +‑‑ro (type)?
 +‑‑:(numbered)
 | +‑‑ro address? te‑types:te‑tp‑id
 | +‑‑ro ip‑flags? binary
 +‑‑:(unnumbered)
 | +‑‑ro node‑id? te‑types:te‑node‑id
 | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 +‑‑:(label)
 +‑‑ro value? rt‑types:generalized‑label
 +‑‑ro label‑flags? binary
 augment
 /te:te/te:tunnels/te:tunnel/te:p2p‑secondary‑paths/
 te:p2p‑secondary‑path/te:state/te:lsps/te:lsp:
 +‑‑ro associated‑rsvp‑session? ‑>
 /rt:routing/control‑plane‑protocols/control‑plane‑protocol/
 rsvp:rsvp/globals/sessions/session/local‑index
 +‑‑ro lsp‑signaled‑name? string
 +‑‑ro local‑recording‑desired? boolean
 +‑‑ro se‑style‑desired? boolean
 +‑‑ro path‑reevaluation‑request? boolean
 +‑‑ro soft‑preemption‑desired? boolean
 +‑‑ro lsp‑rerouting? enumeration
 +‑‑ro lsp‑integrity‑required? boolean
 +‑‑ro lsp‑contiguous? boolean
 +‑‑ro lsp‑stitching‑desired? boolean
 +‑‑ro lsp‑preplanned? boolean
 +‑‑ro lsp‑oob‑mapping? boolean
 +‑‑ro explicit‑route‑objects
 | +‑‑ro incoming‑explicit‑route‑hop* [index]
 | | +‑‑ro index ‑> ../state/index
 | | +‑‑ro state
 | | +‑‑ro index? uint32
 | | +‑‑ro (type)?
 | | +‑‑:(numbered)
 | | | +‑‑ro numbered‑hop

 | | | +‑‑ro address? te‑types:te‑tp‑id
 | | | +‑‑ro hop‑type? te‑hop‑type
 | | | +‑‑ro direction? te‑link‑direction
 | | +‑‑:(as‑number)
 | | | +‑‑ro as‑number‑hop
 | | | +‑‑ro as‑number? binary
 | | | +‑‑ro hop‑type? te‑hop‑type
 | | +‑‑:(unnumbered)
 | | | +‑‑ro unnumbered‑hop
 | | | +‑‑ro node‑id? te‑types:te‑node‑id
 | | | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 | | | +‑‑ro hop‑type? te‑hop‑type
 | | | +‑‑ro direction? te‑link‑direction
 | | +‑‑:(label)
 | | +‑‑ro label‑hop
 | | +‑‑ro te‑label
 | | +‑‑ro (technology)?
 | | | +‑‑:(generic)
 | | | +‑‑ro generic?
 rt‑types:generalized‑label
 | | +‑‑ro direction? te‑label‑direction
 | +‑‑ro outgoing‑explicit‑route‑hop* [index]
 | +‑‑ro index ‑> ../state/index
 | +‑‑ro state
 | +‑‑ro index? uint32
 | +‑‑ro (type)?
 | +‑‑:(numbered)
 | | +‑‑ro numbered‑hop
 | | +‑‑ro address? te‑types:te‑tp‑id
 | | +‑‑ro hop‑type? te‑hop‑type
 | | +‑‑ro direction? te‑link‑direction
 | +‑‑:(as‑number)
 | | +‑‑ro as‑number‑hop
 | | +‑‑ro as‑number? binary
 | | +‑‑ro hop‑type? te‑hop‑type
 | +‑‑:(unnumbered)
 | | +‑‑ro unnumbered‑hop
 | | +‑‑ro node‑id? te‑types:te‑node‑id
 | | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 | | +‑‑ro hop‑type? te‑hop‑type
 | | +‑‑ro direction? te‑link‑direction
 | +‑‑:(label)
 | +‑‑ro label‑hop
 | +‑‑ro te‑label
 | +‑‑ro (technology)?
 | | +‑‑:(generic)
 | | +‑‑ro generic?
 rt‑types:generalized‑label

 | +‑‑ro direction? te‑label‑direction
 +‑‑ro incoming‑record‑route‑subobjects
 | +‑‑ro incoming‑record‑route‑subobject* [index]
 | +‑‑ro index ‑> ../state/index
 | +‑‑ro state
 | +‑‑ro index? uint32
 | +‑‑ro (type)?
 | +‑‑:(numbered)
 | | +‑‑ro address? te‑types:te‑tp‑id
 | | +‑‑ro ip‑flags? binary
 | +‑‑:(unnumbered)
 | | +‑‑ro node‑id? te‑types:te‑node‑id
 | | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 | +‑‑:(label)
 | +‑‑ro value? rt‑types:generalized‑label
 | +‑‑ro label‑flags? binary
 +‑‑ro outgoing‑record‑route‑subobjects
 +‑‑ro outgoing‑record‑route‑subobject* [index]
 +‑‑ro index ‑> ../state/index
 +‑‑ro state
 +‑‑ro index? uint32
 +‑‑ro (type)?
 +‑‑:(numbered)
 | +‑‑ro address? te‑types:te‑tp‑id
 | +‑‑ro ip‑flags? binary
 +‑‑:(unnumbered)
 | +‑‑ro node‑id? te‑types:te‑node‑id
 | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 +‑‑:(label)
 +‑‑ro value? rt‑types:generalized‑label
 +‑‑ro label‑flags? binary
 augment /te:te/te‑dev:interfaces/te‑dev:interface:

 Figure 2: RSVP-TE model Tree diagram

2.2.2. RSVP-TE MPLS Model Tree Diagram

 Figure 5 shows the YANG tree diagram of the RSVP-TE MPLS YANG model
 defined in module ietf-rsvp-te-mpls.yang and that augments RSVP-TE
 module as well as RSVP and TE YANG modules.

module: ietf‑rsvp‑te‑mpls
 augment /rt:routing/rt:control‑plane‑protocols/
 rt:control‑plane‑protocol/rsvp:rsvp:
 +‑‑rw fast‑reroute‑local‑revertive
 +‑‑rw rsvp‑frr‑local‑revert‑delay? uint32
 augment /rt:routing/rt:control‑plane‑protocols/
 rt:control‑plane‑protocol/rsvp:rsvp/rsvp:interfaces:

 augment /rt:routing/rt:control‑plane‑protocols/
 rt:control‑plane‑protocol/rsvp:rsvp/rsvp:interfaces/rsvp:interface:
 augment /rt:routing/rt:control‑plane‑protocols/
 rt:control‑plane‑protocol/rsvp:rsvp/rsvp:globals/
 rsvp:sessions/rsvp:session/rsvp:state:
 augment /rt:routing/rt:control‑plane‑protocols/
 rt:control‑plane‑protocol/rsvp:rsvp/rsvp:neighbors:
 augment /te:te/te:tunnels/te:tunnel:
 +‑‑rw local‑protection‑desired? empty
 +‑‑rw bandwidth‑protection‑desired? empty
 +‑‑rw node‑protection‑desired? empty
 +‑‑rw non‑php‑desired? empty
 +‑‑rw entropy‑label‑cap? empty
 +‑‑rw oam‑mep‑entities‑desired? empty
 +‑‑rw oam‑mip‑entities‑desired? empty
 augment /te:te/te:lsps‑state/te:lsp:
 +‑‑ro state
 | +‑‑ro local‑protection‑desired? empty
 | +‑‑ro bandwidth‑protection‑desired? empty
 | +‑‑ro node‑protection‑desired? empty
 | +‑‑ro non‑php‑desired? empty
 | +‑‑ro entropy‑label‑cap? empty
 | +‑‑ro oam‑mep‑entities‑desired? empty
 | +‑‑ro oam‑mip‑entities‑desired? empty
 +‑‑ro backup‑info
 +‑‑ro state
 +‑‑ro backup‑tunnel‑name? string
 +‑‑ro backup‑frr‑on? uint8
 +‑‑ro backup‑protected‑lsp‑num? uint32
 augment /te:te/te:tunnels/te:tunnel/te:p2p‑primary‑paths/
 te:p2p‑primary‑path/te:state/te:lsps/te:lsp:
 +‑‑ro state
 | +‑‑ro local‑protection‑desired? empty
 | +‑‑ro bandwidth‑protection‑desired? empty
 | +‑‑ro node‑protection‑desired? empty
 | +‑‑ro non‑php‑desired? empty
 | +‑‑ro entropy‑label‑cap? empty
 | +‑‑ro oam‑mep‑entities‑desired? empty
 | +‑‑ro oam‑mip‑entities‑desired? empty
 +‑‑ro backup‑info
 +‑‑ro state
 +‑‑ro backup‑tunnel‑name? string
 +‑‑ro backup‑frr‑on? uint8
 +‑‑ro backup‑protected‑lsp‑num? uint32
 augment /te:te/te:tunnels/te:tunnel/te:p2p‑secondary‑paths/
 te:p2p‑secondary‑path/te:state/te:lsps/te:lsp:
 +‑‑ro state
 | +‑‑ro local‑protection‑desired? empty

 | +‑‑ro bandwidth‑protection‑desired? empty
 | +‑‑ro node‑protection‑desired? empty
 | +‑‑ro non‑php‑desired? empty
 | +‑‑ro entropy‑label‑cap? empty
 | +‑‑ro oam‑mep‑entities‑desired? empty
 | +‑‑ro oam‑mip‑entities‑desired? empty
 +‑‑ro backup‑info
 +‑‑ro state
 +‑‑ro backup‑tunnel‑name? string
 +‑‑ro backup‑frr‑on? uint8
 +‑‑ro backup‑protected‑lsp‑num? uint32
 augment /te:te/te‑dev:interfaces/te‑dev:interface:
 +‑‑rw bandwidth‑mpls‑reservable
 +‑‑rw (bandwidth‑value)?
 | +‑‑:(absolute)
 | | +‑‑rw absolute‑value? uint32
 | +‑‑:(percentage)
 | +‑‑rw percent‑value? uint32
 +‑‑rw (bc‑model‑type)?
 +‑‑:(bc‑model‑rdm)
 | +‑‑rw bc‑model‑rdm
 | +‑‑rw bandwidth‑mpls‑constraints
 | +‑‑rw maximum‑reservable? uint32
 | +‑‑rw bc‑value* uint32
 +‑‑:(bc‑model‑mam)
 | +‑‑rw bc‑model‑mam
 | +‑‑rw bandwidth‑mpls‑constraints
 | +‑‑rw maximum‑reservable? uint32
 | +‑‑rw bc‑value* uint32
 +‑‑:(bc‑model‑mar)
 +‑‑rw bc‑model‑mar
 +‑‑rw bandwidth‑mpls‑constraints
 +‑‑rw maximum‑reservable? uint32
 +‑‑rw bc‑value* uint32
 augment /te:te/te‑dev:interfaces/te‑dev:interface:
 +‑‑rw rsvp‑te‑frr‑backups
 +‑‑rw (type)?
 +‑‑:(static‑tunnel)
 | +‑‑rw static‑backups
 | +‑‑rw static‑backup* [backup‑tunnel‑name]
 | +‑‑rw backup‑tunnel‑name ‑>
 /te:te/tunnels/tunnel/name
 +‑‑:(auto‑tunnel)
 +‑‑rw auto‑tunnel‑backups
 +‑‑rw auto‑backup‑protection? identityref
 +‑‑rw auto‑backup‑path‑computation? identityref

 Figure 3: RSVP-TE MPLS Tree diagram

2.3. YANG Modules

2.3.1. RSVP-TE YANG Module

<CODE BEGINS> file "ietf‑rsvp‑te@2018‑10‑20.yang"
module ietf‑rsvp‑te {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-rsvp-te";

 prefix "rsvp-te";

import ietf‑rsvp {
 prefix rsvp;
 reference "draft‑ietf‑teas‑yang‑rsvp: A YANG Data Model for
 Resource Reservation Protocol (RSVP)";
}

import ietf‑routing {
 prefix "rt";
 reference "RFC8349: A YANG Data Model for Routing Management";
}

import ietf‑routing‑types {
 prefix rt‑types;
 reference "RFC8294: Common YANG Data Types for the Routing Area";
}

import ietf‑te {
 prefix te;
 reference "draft‑ietf‑teas‑yang‑te: A YANG Data Model for Traffic
 Engineering Tunnels and Interfaces";
}

import ietf‑te‑device {
 prefix te‑dev;
 reference "draft‑ietf‑teas‑yang‑te: A YANG Data Model for Traffic
 Engineering Tunnels and Interfaces";
}

/* Import TE generic types */
import ietf‑te‑types {
 prefix te‑types;
 reference "draft‑ietf‑teas‑yang‑te‑types: A YANG Data Model for
 Common Traffic Engineering Types";
}

 organization

 "IETF Traffic Engineering Architecture and Signaling (TEAS)

 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 WG Chair: Lou Berger

 <mailto:lberger@labn.net>

 WG Chair: Vishnu Pavan Beeram

 <mailto:vbeeram@juniper.net>

Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

Editor: Tarek Saad
 <mailto:tsaad@cisco.com>

Editor: Rakesh Gandhi
 <mailto:rgandhi@cisco.com>

Editor: Himanshu Shah
 <mailto:hshah@ciena.com>

Editor: Xufeng Liu
 <mailto: xufeng.liu.ietf@gmail.com>

Editor: Xia Chen
 <mailto:jescia.chenxia@huawei.com>

Editor: Raqib Jones
 <mailto:raqib@Brocade.com>

Editor: Bin Wen
 <mailto:Bin_Wen@cable.comcast.com>";

 description

 "This module contains the RSVP-TE YANG generic data model.";

revision "2018‑10‑20" {
 description "Latest revision to RSVP‑TE generic YANG module";
 reference "RFC2205, RFC3209, etc.";
}

 /**

 * RSVP-TE LSPs groupings.

 */

grouping lsp‑record‑route‑information_state {
 description "recorded route information grouping";
 container incoming‑record‑route‑subobjects {
 description "RSVP recorded route object incoming information";
 list incoming‑record‑route‑subobject {
 when "../../te:origin‑type != 'ingress'" {
 description "Applicable on non‑ingress LSPs only";
 }
 key "index";
 description
 "List of RSVP Path record‑route objects";
 leaf index {
 type leafref {
 path "../state/index";
 }
 description "RRO subobject index";
 }
 container state {
 config false;
 description
 "State parameters for the record route hop";
 uses te‑types:record‑route‑subobject_state;
 }
 }
 }
 container outgoing‑record‑route‑subobjects {
 description "RSVP recorded route object outgoing information";
 list outgoing‑record‑route‑subobject {
 when "../../te:origin‑type != 'egress'" {
 description "Applicable on non‑egress LSPs only";
 }
 key "index";
 description
 "List of RSVP Resv record‑route objects";
 leaf index {
 type leafref {
 path "../state/index";
 }
 description "RRO subobject index";
 }
 container state {
 config false;
 description
 "State parameters for the record route hop";
 uses te‑types:record‑route‑subobject_state;
 }

 }
 }
}

grouping lsp‑explicit‑route‑information_state {
 description "RSVP‑TE LSP explicit‑route information";
 container explicit‑route‑objects {
 description "Explicit route object information";
 list incoming‑explicit‑route‑hop {
 when "../../te:origin‑type != 'ingress'" {
 description "Applicable on non‑ingress LSPs only";
 }
 key "index";
 description
 "List of incoming RSVP Path explicit‑route objects";
 leaf index {
 type leafref {
 path "../state/index";
 }
 description "ERO subobject index";
 }
 container state {
 config false;
 description
 "State parameters for the explicit route hop";
 leaf index {
 type uint32;
 description "ERO subobject index";
 }
 uses te‑types:explicit‑route‑hop;
 }
 }
 list outgoing‑explicit‑route‑hop {
 when "../../te:origin‑type != 'egress'" {
 description "Applicable on non‑egress LSPs only";
 }
 key "index";
 description
 "List of outgoing RSVP Path explicit‑route objects";
 leaf index {
 type leafref {
 path "../state/index";
 }
 description "ERO subobject index";
 }
 container state {
 config false;
 description

 "State parameters for the explicit route hop";
 leaf index {
 type uint32;
 description "ERO subobject index";
 }
 uses te‑types:explicit‑route‑hop;
 }
 }
 }
}

grouping lsp‑attributes‑flags_config {
 description
 "Configuration parameters relating to RSVP‑TE LSP
 attribute flags";
 leaf lsp‑rerouting {
 type enumeration {
 enum end‑to‑end‑routing {
 description
 "End‑to‑end routing desired";
 reference "RFC4920, RFC5420";
 }
 enum boundary‑rerouting {
 description
 "Boundary rerouting desired";
 reference "RFC4920, RFC5420";
 }
 enum segment‑based‑rerouting {
 description
 "Segment‑based rerouting desired";
 reference "RFC4920, RFC5420";
 }
 }
 description "LSP rerouting types";
 }
 leaf lsp‑integrity‑required {
 type boolean;
 description "LSP integrity desired";
 reference "RFC4875";
 }
 leaf lsp‑contiguous {
 type boolean;
 description "Contiguous LSP";
 reference "RFC5151";
 }
 leaf lsp‑stitching‑desired {
 type boolean;
 description "Stitched LSP";

 reference "RFC5150";
 }
 leaf lsp‑preplanned {
 type boolean;
 description "Preplanned LSP";
 reference "RFC6001";
 }
 leaf lsp‑oob‑mapping {
 type boolean;
 description
 "Mapping is done out‑of‑band";
 reference "RFC6511";
 }
}

grouping lsp‑session‑attributes‑obj‑flags_config {
 description
 "Configuration parameters relating to RSVP‑TE LSP
 session attribute flags";
 reference
 "RFC4859: Registry for RSVP‑TE Session Flags";
 leaf local‑recording‑desired {
 type boolean;
 description "Path recording is desired.";
 reference "RFC3209";
 }
 leaf se‑style‑desired {
 type boolean;
 description "SE Style desired";
 reference "RFC3209";
 }
 leaf path‑reevaluation‑request {
 type boolean;
 description "Path re‑evaluation request";
 reference "RFC4736";
 }
 leaf soft‑preemption‑desired {
 type boolean;
 description "Soft‑preemption is desired";
 reference "RFC5712";
 }
}

grouping lsp‑properties_config {
 description
 "Configuration parameters relating to RSVP‑TE LSP
 session attribute flags";
 leaf lsp‑signaled‑name {

 type string;
 description
 "Sets the session name to use in the session
 attribute object.";
 }
 uses lsp‑session‑attributes‑obj‑flags_config;
 uses lsp‑attributes‑flags_config;
}

grouping tunnel‑properties_config {
 description "RSVP‑TE Tunnel properties grouping";
 leaf retry‑timer {
 type uint16 {
 range 1..600;
 }
 units seconds;
 description
 "sets the time between attempts to establish the
 LSP";
 }
}

 /*** End of RSVP-TE LSP groupings ***/

 /**
 * RSVP‑TE generic global properties.
 */

 grouping global‑soft‑preemption_config {
 description
 "Configuration for global RSVP‑TE soft preemption";
 leaf soft‑preemption‑timeout {
 type uint16 {
 range 0..300;
 }
 default 0;
 description
 "Timeout value for soft preemption to revert
 to hard preemption";
 }
 }

 grouping global‑soft‑preemption {
 description
 "Top level group for RSVP‑TE soft‑preemption";
 container global‑soft‑preemption {
 presence "Enables soft preemption on a node.";
 description

 "Top level container for RSVP‑TE soft‑preemption";
 uses global‑soft‑preemption_config;
 }
 }
 /*** End of RSVP‑TE generic global properties. ***/

 /**
 * RSVP‑TE interface generic groupings.
 */

 grouping rsvp‑te‑interface‑attributes {
 description
 "Top level grouping for RSVP‑TE interface properties.";
 container rsvp‑te‑interface‑attributes {
 description
 "Top level container for RSVP‑TE interface
 properties";
 container state {
 config false;
 description
 "State information associated with RSVP‑TE
 bandwidth";
 }
 }
 }
 /*** End of RSVP‑TE generic groupings ***/

 /* RSVP‑TE global properties */
 augment "/rt:routing/rt:control‑plane‑protocols/"
 + "rt:control‑plane‑protocol/rsvp:rsvp/rsvp:globals" {
 description
 "RSVP‑TE augmentation to RSVP globals";
 uses global‑soft‑preemption;
 }

 /* Linkage to the base RSVP all links */
 augment "/rt:routing/rt:control‑plane‑protocols/"
 + "rt:control‑plane‑protocol/rsvp:rsvp/rsvp:interfaces" {
 description
 "RSVP‑TE generic data augmentation pertaining to interfaces";
 uses rsvp‑te‑interface‑attributes;
 }

 /* Linkage to per RSVP interface */
 augment "/rt:routing/rt:control‑plane‑protocols/"
 + "rt:control‑plane‑protocol/rsvp:rsvp/rsvp:interfaces/" +
 "rsvp:interface" {

 description
 "RSVP‑TE generic data augmentation pertaining to specific
 interface";
 uses rsvp‑te‑interface‑attributes;
 }

 /* add augmentation for sessions and neighbors */
 augment "/rt:routing/rt:control‑plane‑protocols/"
 + "rt:control‑plane‑protocol/rsvp:rsvp/rsvp:globals/"
 + "rsvp:sessions/rsvp:session/rsvp:state/rsvp:psbs/rsvp:psb" {
 description
 "RSVP‑TE generic data augmentation pertaining to session";
 /* To be added */
 leaf tspec‑average‑rate {
 type rt‑types:bandwidth‑ieee‑float32;
 units "Bytes per second";
 description "Tspec Token Bucket Average Rate";
 reference "RFC2210: RSVP with INTSERV";
 }
 leaf tspec‑size {
 type rt‑types:bandwidth‑ieee‑float32;
 units "Bytes per second";
 description "Tspec Token Bucket Burst Rate";
 reference "RFC2210";
 }
 leaf tspec‑peak‑rate {
 type rt‑types:bandwidth‑ieee‑float32;
 units "Bytes per second";
 description "Tspec Token Bucket Peak Data Rate";
 reference "RFC2210";
 }
 leaf min‑policed‑unit {
 type uint32;
 description "Tspec Minimum Policed Unit";
 reference "RFC2210";
 }
 leaf max‑packet‑size {
 type uint32;
 description "Tspec Maximum Packet Size";
 reference "RFC2210";
 }
 }
 augment "/rt:routing/rt:control‑plane‑protocols/"
 + "rt:control‑plane‑protocol/rsvp:rsvp/rsvp:globals/"
 + "rsvp:sessions/rsvp:session/rsvp:state/rsvp:rsbs/rsvp:rsb" {
 description
 "RSVP‑TE generic data augmentation pertaining to session";
 leaf fspec‑average‑rate {

 type rt‑types:bandwidth‑ieee‑float32;
 units "Bytes per second";
 description "Fspec Token Bucket Average Rate";
 reference "RFC2210";
 }
 leaf fspec‑size {
 type rt‑types:bandwidth‑ieee‑float32;
 units "Bytes per second";
 description "Fspec Token Bucket Burst Rate";
 reference "RFC2210";
 }
 leaf fspec‑peak‑rate {
 type rt‑types:bandwidth‑ieee‑float32;
 units "Bytes per second";
 description "Fspec Token Bucket Peak Data Rate";
 reference "RFC2210";
 }
 leaf min‑policed‑unit {
 type uint32;
 description "Fspec Minimum Policed Unit";
 reference "RFC2210";
 }
 leaf max‑packet‑size {
 type uint32;
 description "Fspec Maximum Packet Size";
 reference "RFC2210";
 }
 }

 augment "/rt:routing/rt:control‑plane‑protocols/"
 + "rt:control‑plane‑protocol/rsvp:rsvp/rsvp:neighbors" {
 description
 "RSVP‑TE generic data augmentation pertaining to neighbors";
 /* To be added */
 }

 /**
 * RSVP‑TE generic augmentations of generic TE model.
 */

 /* TE tunnel augmentation */
 augment "/te:te/te:tunnels/te:tunnel" {
 when "/te:te/te:tunnels/te:tunnel" +
 "/te:p2p‑primary‑paths/te:p2p‑primary‑path" +
 "/te:path‑setup‑protocol = 'te‑types:path‑setup‑rsvp'" {
 description
 "When the path signaling protocol is RSVP‑TE ";
 }

 description
 "RSVP‑TE generic data augmentation pertaining to TE tunnels";
 uses lsp‑properties_config;
 uses tunnel‑properties_config;
 }

 augment "/te:te/te:tunnels/te:tunnel/te:state" {
 when "/te:te/te:tunnels/te:tunnel" +
 "/te:p2p‑primary‑paths/te:p2p‑primary‑path" +
 "/te:path‑setup‑protocol = 'te‑types:path‑setup‑rsvp'" {
 description
 "When the path signaling protocol is RSVP‑TE ";
 }
 description
 "RSVP‑TE generic data augmentation pertaining to TE tunnels";
 uses lsp‑properties_config;
 uses tunnel‑properties_config;
 }

 /* TE LSP augmentation */
 grouping rsvp‑te‑lsp‑properties {
 description "RSVP‑TE LSP properties grouping";
 leaf associated‑rsvp‑session {
 type leafref {
 path "/rt:routing/rt:control‑plane‑protocols/"
 + "rt:control‑plane‑protocol/rsvp:rsvp/rsvp:globals/"
 + "rsvp:sessions/rsvp:session/rsvp:local‑index";
 }
 description
 "If the signalling protocol specified for this path is
 RSVP‑TE, this leaf provides a reference to the associated
 session within the RSVP‑TE protocol sessions list, such
 that details of the signaling can be retrieved.";
 }

 uses lsp‑properties_config;
 uses lsp‑explicit‑route‑information_state;
 uses lsp‑record‑route‑information_state;
 }

 augment "/te:te/te:lsps‑state/te:lsp" {
 when "/te:te/te:lsps‑state/te:lsp" +
 "/te:path‑setup‑protocol = 'te‑types:path‑setup‑rsvp'" {
 description
 "When the signaling protocol is RSVP‑TE ";
 }
 description
 "RSVP‑TE generic data augmentation pertaining to specific TE

 LSP";
 uses rsvp‑te‑lsp‑properties;
 }

 augment "/te:te/te:tunnels/te:tunnel/te:p2p‑primary‑paths" +
 "/te:p2p‑primary‑path/te:state/te:lsps/te:lsp" {
 when "/te:te/te:tunnels/te:tunnel/te:p2p‑primary‑paths" +
 "/te:p2p‑primary‑path/te:state/te:lsps/te:lsp" +
 "/te:path‑setup‑protocol = 'te‑types:path‑setup‑rsvp'" {
 description
 "When the signaling protocol is RSVP‑TE ";
 }
 description
 "RSVP‑TE generic data augmentation pertaining to specific TE
 LSP";
 uses rsvp‑te‑lsp‑properties;
 }

 augment "/te:te/te:tunnels/te:tunnel/te:p2p‑secondary‑paths" +
 "/te:p2p‑secondary‑path/te:state/te:lsps/te:lsp" {
 when "/te:te/te:tunnels/te:tunnel/te:p2p‑primary‑paths" +
 "/te:p2p‑primary‑path/te:state/te:lsps/te:lsp" +
 "/te:path‑setup‑protocol = 'te‑types:path‑setup‑rsvp'" {
 description
 "When the signaling protocol is RSVP‑TE ";
 }
 description
 "RSVP‑TE generic data augmentation pertaining to specific TE
 LSP";
 uses rsvp‑te‑lsp‑properties;
 }

 /* TE interface augmentation */
 augment "/te:te/te‑dev:interfaces/te‑dev:interface" {
 description
 "RSVP‑TE generic data augmentation pertaining to specific TE
 interface";
 }
}
<CODE ENDS>

 Figure 4: RSVP TE generic YANG module

2.3.2. RSVP-TE MPLS YANG Module

<CODE BEGINS> file "ietf‑rsvp‑te‑mpls@2018‑10‑20.yang"
module ietf‑rsvp‑te‑mpls {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-rsvp-te-mpls";

 prefix "rsvp-te-mpls";

import ietf‑rsvp {
 prefix "rsvp";
 reference "draft‑ietf‑teas‑yang‑rsvp: A YANG Data Model for
 Resource Reservation Protocol (RSVP)";
}

import ietf‑routing {
 prefix "rt";
 reference "RFC8349: A YANG Data Model for Routing Management";
}

import ietf‑te‑mpls‑types {
 prefix "te‑mpls‑types";
 reference "draft‑ietf‑teas‑yang‑te‑types: A YANG Data Model for
 Common Traffic Engineering Types";
}

import ietf‑te‑types {
 prefix "te‑types";
 reference "draft‑ietf‑teas‑yang‑te‑types: A YANG Data Model for
 Common Traffic Engineering Types";
}

import ietf‑te {
 prefix "te";
 reference "draft‑ietf‑teas‑yang‑te: A YANG Data Model for Traffic
 Engineering Tunnels and Interfaces";
}

import ietf‑te‑device {
 prefix "te‑dev";
 reference "draft‑ietf‑teas‑yang‑te: A YANG Data Model for Traffic
 Engineering Tunnels and Interfaces";
}

 organization

 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 WG Chair: Lou Berger

 <mailto:lberger@labn.net>

 WG Chair: Vishnu Pavan Beeram

 <mailto:vbeeram@juniper.net>

Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

Editor: Tarek Saad
 <mailto:tsaad@cisco.com>

Editor: Rakesh Gandhi
 <mailto:rgandhi@cisco.com>

Editor: Himanshu Shah
 <mailto:hshah@ciena.com>

Editor: Xufeng Liu
 <mailto: xufeng.liu.ietf@gmail.com>

Editor: Xia Chen
 <mailto:jescia.chenxia@huawei.com>

Editor: Raqib Jones
 <mailto:raqib@Brocade.com>

Editor: Bin Wen
 <mailto:Bin_Wen@cable.comcast.com>";

 description

 "Latest update to MPLS RSVP-TE YANG data model.";

 revision "2018-10-20" {

 description "Update to MPLS RSVP-TE YANG initial revision.";
 reference "RFC3209, RFC6511, RFC6790, RFC7260, RFC4859, RFC4090";
 }

/* RSVP‑TE MPLS LSPs groupings */
grouping lsp‑attributes‑flags‑mpls_config {
 description
 "Configuration parameters relating to RSVP‑TE MPLS LSP
 attribute flags";
 leaf non‑php‑desired {
 type empty;
 description
 "Non‑PHP is desired";
 reference "RFC6511";
 }

 leaf entropy‑label‑cap {
 type empty;
 description "Entropy label capability";
 reference "RFC6790";
 }
 leaf oam‑mep‑entities‑desired {
 type empty;
 description "OAM MEP entities desired";
 reference "RFC7260";
 }
 leaf oam‑mip‑entities‑desired {
 type empty;
 description "OAM MIP entities desired";
 reference "RFC7260";
 }
}

grouping lsp‑session‑attributes‑obj‑flags‑mpls_config {
 description
 "Configuration parameters relating to RSVP‑TE MPLS LSP
 session attribute flags";
 reference
 "RFC4859: Registry for RSVP‑TE Session Flags";
 leaf local‑protection‑desired {
 type empty;
 description "Fastreroute local protection is desired.";
 reference
 "RFC4859: Registry for RSVP‑TE Session Flags";
 }
 leaf bandwidth‑protection‑desired {
 type empty;
 description
 "Request FRR bandwidth protection on LSRs if
 present.";
 reference "RFC4090";
 }
 leaf node‑protection‑desired {
 type empty;
 description
 "Request FRR node protection on LSRs if
 present.";
 reference "RFC4090";
 }
}

grouping tunnel‑properties‑mpls_config {
 description
 "Top level grouping for LSP properties.";

 uses lsp‑session‑attributes‑obj‑flags‑mpls_config;
 uses lsp‑attributes‑flags‑mpls_config;
}

grouping lsp‑properties‑mpls {
 description
 "Top level grouping for LSP properties.";
 container state {
 config false;
 description
 "Configuration applied parameters and state";
 uses lsp‑session‑attributes‑obj‑flags‑mpls_config;
 uses lsp‑attributes‑flags‑mpls_config;
 }
}
/* End of RSVP‑TE MPLS LSPs groupings */

/* MPLS RSVP‑TE interface groupings */
grouping rsvp‑te‑interface_state {
 description
 "The RSVP‑TE interface state grouping";
 leaf over‑subscribed‑bandwidth {
 type uint32;
 description
 "The amount of over‑subscribed bandwidth on
 the interface";
 }
}

grouping rsvp‑te‑interface‑softpreemption_state {
 description
 "The RSVP‑TE interface preeemptions state grouping";
 container interface‑softpreemption‑state {
 description
 "The RSVP‑TE interface preeemptions state grouping";
 leaf soft‑preempted‑bandwidth {
 type uint32;
 description
 "The amount of soft‑preempted bandwidth on
 this interface";
 }
 list lsps {
 key
 "source destination tunnel‑id lsp‑id "+
 "extended‑tunnel‑id";
 description
 "List of LSPs that are soft‑preempted";
 leaf source {

 type leafref {
 path "/te:te/te:lsps‑state/te:lsp/"+
 "te:source";
 }
 description
 "Tunnel sender address extracted from
 SENDER_TEMPLATE object";
 reference "RFC3209";
 }
 leaf destination {
 type leafref {
 path "/te:te/te:lsps‑state/te:lsp/"+
 "te:destination";
 }
 description
 "Tunnel endpoint address extracted from
 SESSION object";
 reference "RFC3209";
 }
 leaf tunnel‑id {
 type leafref {
 path "/te:te/te:lsps‑state/te:lsp/"+
 "te:tunnel‑id";
 }
 description
 "Tunnel identifier used in the SESSION
 that remains constant over the life
 of the tunnel.";
 reference "RFC3209";
 }
 leaf lsp‑id {
 type leafref {
 path "/te:te/te:lsps‑state/te:lsp/"+
 "te:lsp‑id";
 }
 description
 "Identifier used in the SENDER_TEMPLATE
 and the FILTER_SPEC that can be changed
 to allow a sender to share resources with
 itself.";
 reference "RFC3209";
 }
 leaf extended‑tunnel‑id {
 type leafref {
 path "/te:te/te:lsps‑state/te:lsp/"+
 "te:extended‑tunnel‑id";
 }
 description

 "Extended Tunnel ID of the LSP.";
 reference "RFC3209";
 }
 leaf type {
 type leafref {
 path "/te:te/te:lsps‑state/te:lsp/"+
 "te:type";
 }
 description "LSP type P2P or P2MP";
 }
 }
 }
}

grouping bandwidth‑mpls‑constraints {
 description "Bandwidth constraints.";
 container bandwidth‑mpls‑constraints {
 description
 "Holds the bandwidth constraints properties";
 leaf maximum‑reservable {
 type uint32 {
 range "0..4294967295";
 }
 description
 "The maximum reservable bandwidth on the
 interface";
 }
 leaf‑list bc‑value {
 type uint32 {
 range "0..4294967295";
 }
 max‑elements 8;
 description
 "The bandwidth constraint type";
 }
 }
}

grouping bandwidth‑constraint‑values {
 description
 "Packet bandwidth contraints values";
 choice value‑type {
 description
 "Value representation";
 case percentages {
 container perc‑values {
 uses bandwidth‑mpls‑constraints;
 description

 "Percentage values";
 }
 }
 case absolutes {
 container abs‑values {
 uses bandwidth‑mpls‑constraints;
 description
 "Absolute values";
 }
 }
 }
}

grouping bandwidth‑mpls‑reservable_config {
 description
 "Interface bandwidth reservable configuration grouping";
 choice bandwidth‑value {
 description "Reservable bandwidth configuration choice";
 case absolute {
 leaf absolute‑value {
 type uint32;
 description "Absolute value of the bandwidth";
 }
 }
 case percentage {
 leaf percent‑value {
 type uint32 {
 range "0..4294967295";
 }
 description "Percentage reservable bandwidth";
 }
 description
 "The maximum reservable bandwidth on the
 interface";
 }
 }
 choice bc‑model‑type {
 description
 "Reservable bandwidth percentage capacity
 values.";
 case bc‑model‑rdm {
 container bc‑model‑rdm {
 description
 "Russian Doll Model Bandwidth Constraints.";
 uses bandwidth‑mpls‑constraints;
 }
 }
 case bc‑model‑mam {

 container bc‑model‑mam {
 uses bandwidth‑mpls‑constraints;
 description
 "Maximum Allocation Model Bandwidth
 Constraints.";
 }
 }
 case bc‑model‑mar {
 container bc‑model‑mar {
 uses bandwidth‑mpls‑constraints;
 description
 "Maximum Allocation with Reservation Model
 Bandwidth Constraints.";
 }
 }
 }
}

grouping bandwidth‑mpls‑reservable {
 description
 "Packet reservable bandwidth";
 container bandwidth‑mpls‑reservable {
 description
 "Interface bandwidth reservable container";
 uses bandwidth‑mpls‑reservable_config;
 }
}
/* End of RSVP‑TE interface groupings */

/* RSVP‑TE FRR groupings */
grouping rsvp‑te‑frr‑auto‑tunnel‑backup_config {
 description
 "Auto‑tunnel backup configuration grouping";
 leaf auto‑backup‑protection {
 type identityref {
 base te‑mpls‑types:backup‑protection‑type;
 }
 default
 te‑mpls‑types:backup‑protection‑node‑link;
 description
 "Describes whether the backup should offer
 protection against link, node, or either";
 }
 leaf auto‑backup‑path‑computation {
 type identityref {
 base
 te‑types:path‑computation‑srlg‑type;
 }

 description
 "FRR backup computation type";
 }
}

grouping rsvp‑te‑frr‑backups_config {
 description
 "Top level container for RSVP‑TE FRR backup parameters";
 choice type {
 description
 "FRR backup tunnel type";
 case static‑tunnel {
 container static‑backups {
 description "List of static backups";
 list static‑backup {
 key "backup‑tunnel‑name";
 description
 "List of static backup tunnels that
 protect the RSVP‑TE interface.";
 leaf backup‑tunnel‑name {
 type leafref {
 path "/te:te/te:tunnels/te:tunnel/te:name";
 }
 description "FRR Backup tunnel name";
 }
 }
 }
 }
 case auto‑tunnel {
 container auto‑tunnel‑backups {
 description "Auto‑tunnel choice";
 uses rsvp‑te‑frr‑auto‑tunnel‑backup_config;
 }
 }
 }
}

grouping rsvp‑te‑frr‑backups {
 description
 "RSVP‑TE facility backup grouping";
 container rsvp‑te‑frr‑backups {
 description
 "RSVP‑TE facility backup properties";
 uses rsvp‑te‑frr‑backups_config;
 }
}

 grouping lsp-backup-info_state {

 description "LSP backup information grouping";
 leaf backup‑tunnel‑name {
 type string;
 description
 "If an LSP has an FRR backup LSP that can protect it,
 this field identifies the tunnel name of the backup LSP.
 Otherwise, this field is empty.";
 }
 leaf backup‑frr‑on {
 type uint8;
 description
 "Whether currently this backup is carrying traffic";
 }
 leaf backup‑protected‑lsp‑num {
 type uint32;
 description
 "Number of LSPs protected by this backup";
 }
}

grouping lsp‑backup‑info {
 description "Backup/bypass LSP related information";
 container backup‑info {
 description
 "backup information";
 container state {
 config false;
 description
 "Configuration applied parameters and state";
 uses lsp‑backup‑info_state;
 }
 }
}

grouping fast‑reroute‑local‑revertive_config {
 description "RSVP‑TE FRR local revertive grouping";
 leaf rsvp‑frr‑local‑revert‑delay {
 type uint32;
 description
 "Time to wait after primary link is restored
 before node attempts local revertive
 procedures.";
 }
}

 /*** End of RSVP-TE FRR backup information ***/

 grouping fast-reroute-local-revertive {

 description
 "Top level grouping for globals properties";
 container fast‑reroute‑local‑revertive {
 description "RSVP‑TE FRR local revertive container";
 uses fast‑reroute‑local‑revertive_config;
 }
 }

 /* RSVP‑TE global properties */
 augment "/rt:routing/rt:control‑plane‑protocols/"
 + "rt:control‑plane‑protocol/rsvp:rsvp" {
 description
 "RSVP‑TE augmentation to RSVP globals";
 uses fast‑reroute‑local‑revertive;
 }

 /* Linkage to the base RSVP all interfaces */
 augment "/rt:routing/rt:control‑plane‑protocols/"
 + "rt:control‑plane‑protocol/rsvp:rsvp/rsvp:interfaces" {
 description
 "Augmentations for RSVP‑TE MPLS all interfaces properties";
 /* To be added */
 }

 /* Linkage to per RSVP interface */
 augment "/rt:routing/rt:control‑plane‑protocols/"
 + "rt:control‑plane‑protocol/rsvp:rsvp/rsvp:interfaces/" +
 "rsvp:interface" {
 description
 "Augmentations for RSVP‑TE MPLS per interface properties";
 /* To be added */
 }

 /* add augmentation for sessions neighbors */
 augment "/rt:routing/rt:control‑plane‑protocols/"
 + "rt:control‑plane‑protocol/rsvp:rsvp/rsvp:globals/"
 + "rsvp:sessions/rsvp:session/rsvp:state" {
 description
 "Augmentations for RSVP‑TE MPLS sessions";
 /* To be added */
 }

 augment "/rt:routing/rt:control‑plane‑protocols/"
 + "rt:control‑plane‑protocol/rsvp:rsvp/rsvp:neighbors" {
 description
 "Augmentations for RSVP‑TE MPLS neighbors properties";
 /* To be added */
 }

 /**
 * Augmentation to TE generic module
 */
 augment "/te:te/te:tunnels/te:tunnel" {
 description
 "Augmentations for RSVP‑TE MPLS TE tunnel properties";
 uses tunnel‑properties‑mpls_config;
 }

 augment "/te:te/te:lsps‑state/te:lsp" {
 when "/te:te/te:lsps‑state/te:lsp" +
 "/te:path‑setup‑protocol = 'te‑types:path‑setup‑rsvp'" {
 description
 "When the signaling protocol is RSVP‑TE ";
 }
 description
 "RSVP‑TE MPLS LSP state properties";
 uses lsp‑properties‑mpls;
 uses lsp‑backup‑info;
 }

 augment "/te:te/te:tunnels/te:tunnel/te:p2p‑primary‑paths" +
 "/te:p2p‑primary‑path/te:state/te:lsps/te:lsp" {
 when "/te:te/te:tunnels/te:tunnel" +
 "/te:p2p‑secondary‑paths/te:p2p‑secondary‑path/" +
 "te:path‑setup‑protocol = 'te‑types:path‑setup‑rsvp'" {
 description
 "When the signaling protocol is RSVP‑TE ";
 }
 description
 "RSVP‑TE MPLS LSP state properties";
 uses lsp‑properties‑mpls;
 uses lsp‑backup‑info;
 }

 augment "/te:te/te:tunnels/te:tunnel/te:p2p‑secondary‑paths" +
 "/te:p2p‑secondary‑path/te:state/te:lsps/te:lsp" {
 when "/te:te/te:tunnels/te:tunnel" +
 "/te:p2p‑secondary‑paths/te:p2p‑secondary‑path/" +
 "te:path‑setup‑protocol = 'te‑types:path‑setup‑rsvp'" {
 description
 "When the signaling protocol is RSVP‑TE ";
 }
 description
 "RSVP‑TE MPLS LSP state properties";
 uses lsp‑properties‑mpls;
 uses lsp‑backup‑info;
 }

 augment "/te:te/te‑dev:interfaces/te‑dev:interface" {
 description
 "RSVP reservable bandwidth configuration properties";
 uses bandwidth‑mpls‑reservable;
 }

 augment "/te:te/te‑dev:interfaces/te‑dev:interface" {
 description
 "RSVP reservable bandwidth configuration properties";
 uses rsvp‑te‑frr‑backups;
 }
}
<CODE ENDS>

 Figure 5: RSVP TE MPLS YANG module

3. IANA Considerations

 This document registers the following URIs in the IETF XML registry
 [RFC3688]. Following the format in [RFC3688], the following
 registration is requested to be made.

 URI: urn:ietf:params:xml:ns:yang:ietf-rsvp-te XML: N/A, the requested
 URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-rsvp-te-mpls XML: N/A, the
 requested URI is an XML namespace.

 This document registers a YANG module in the YANG Module Names
 registry [RFC6020].

 name: ietf-rsvp namespace: urn:ietf:params:xml:ns:yang:ietf-rsvp-te
 prefix: ietf-rsvp reference: RFC3209

 name: ietf-rsvp-te namespace: urn:ietf:params:xml:ns:yang:ietf-rsvp-
 te-mpls prefix: ietf-rsvp-te reference: RFC3209

4. Security Considerations

 The YANG module defined in this memo is designed to be accessed via
 the NETCONF protocol [RFC6241]. The lowest NETCONF layer is the
 secure transport layer and the mandatory-to-implement secure
 transport is SSH [RFC6242]. The NETCONF access control model
 [RFC8341] provides means to restrict access for particular NETCONF
 users to a pre-configured subset of all available NETCONF protocol
 operations and content.

 There are a number of data nodes defined in the YANG module(s)
 defined in this document which are writable/creatable/deletable
 (i.e., config true, which is the default). These data nodes may be
 considered sensitive or vulnerable in some network environments.
 Write operations (e.g., <edit-config>) to these data nodes without
 proper protection can have a negative effect on network operations.

 /rt:routing/rt:control-plane-protocols/rt:control-plane-
 protocol/rsvp:rsvp/globals: The data nodes defined defined in this
 document and under this branch are applicable device-wide and can
 affect all RSVP established sessions. Unauthorized access to this
 container can potentially cause disruptive event(s) on all
 established sessions.

 /rt:routing/rt:control-plane-protocols/rt:control-plane-protocol/
 rsvp:rsvp/rsvp:globals/rsvp:sessions: The data nodes defined in this
 document and under this branch are applicable to one or all RSVP-TE
 session(s). Unauthorized access to this container can potentially
 affect the impacted RSVP session(s).

 /rt:routing/rt:control-plane-protocols/rt:control-plane-
 protocol/rsvp:rsvp/rsvp:interfaces: The data nodes defined defined in
 this document and under this branch are applicable to one or all RSVP
 interfaces. Unauthorized access to this container can potentially
 affect established session(s) over impacted interface(s).

5. Acknowledgement

 The authors would like to thank Lou Berger for reviewing and
 providing valuable feedback on this document.

6. Contributors

Xia Chen
Huawei Technologies

 Email: jescia.chenxia@huawei.com

Raqib Jones
Brocade

 Email: raqib@Brocade.com

Bin Wen
Comcast

 Email: Bin_Wen@cable.comcast.com

7. Normative References

 [I-D.ietf-teas-yang-rsvp]

 Beeram, V., Saad, T., Gandhi, R., Liu, X., Bryskin, I.,
 and H. Shah, "A YANG Data Model for Resource Reservation
 Protocol (RSVP)", draft-ietf-teas-yang-rsvp-09 (work in
 progress), May 2018.

 [I-D.ietf-teas-yang-te]

 Saad, T., Gandhi, R., Liu, X., Beeram, V., Shah, H., and
 I. Bryskin, "A YANG Data Model for Traffic Engineering
 Tunnels and Interfaces", draft-ietf-teas-yang-te-17 (work
 in progress), October 2018.

 [I-D.ietf-teas-yang-te-types]

 Saad, T., Gandhi, R., Liu, X., Beeram, V., and I. Bryskin,
 "Traffic Engineering Common YANG Types", draft-ietf-teas-
 yang-te-types-01 (work in progress), October 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2205]
 Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
 September 1997, <https://www.rfc-editor.org/info/rfc2205>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <https://www.rfc-editor.org/info/rfc3209>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8294]
 Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
 "Common YANG Data Types for the Routing Area", RFC 8294,
 DOI 10.17487/RFC8294, December 2017,
 <https://www.rfc-editor.org/info/rfc8294>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

Authors' Addresses

Vishnu Pavan Beeram
Juniper Networks

 Email: vbeeram@juniper.net

Tarek Saad
Cisco Systems, Inc.

 Email: tsaad@cisco.com

Rakesh Gandhi
Cisco Systems, Inc.

 Email: rgandhi@cisco.com

Xufeng Liu
Volta Networks

 Email: xufeng.liu.ietf@gmail.com

Igor Bryskin
Huawei Technologies

 Email: Igor.Bryskin@huawei.com

Himanshu Shah
Ciena

 Email: hshah@ciena.com

draft-ietf-teas-yang-sr-te-topo-03 - YANG Data Model for SR and SR TE Topologies

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 25, 2019

X. Liu

Volta Networks

I. Bryskin

Huawei Technologies

V. Beeram

Juniper Networks

T. Saad

Cisco Systems Inc

H. Shah

Ciena

S. Litkowski

Orange Business Service

October 22, 2018

YANG Data Model for SR and SR TE Topologies

draft-ietf-teas-yang-sr-te-topo-03

Abstract

 This document defines a YANG data model for Segment Routing (SR)
 topology and Segment Routing (SR) traffic engineering (TE) topology.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Tree Diagrams

	2. Modeling Considerations
	 2.1. Segment Routing (SR) Topology

	 2.2. Segment Routing (SR) TE Topology

	 2.3. Relations to ietf-segment-routing

	 2.4. Topology Type Modeling

	 2.5. Topology Attributes

	 2.6. Node Attributes

	 2.7. Link Attributes

	3. Model Structure

	4. YANG Module

	5. IANA Considerations

	6. Security Considerations

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Appendix A. Companion YANG Model for Non-NMDA Compliant Implementations
	 A.1. SR Topology State Module

	Appendix B. Data Tree Example

	Appendix C. Contributors

	Authors' Addresses

1. Introduction

This document defines a YANG [RFC7950] data model for describing the
presentations of Segment Routing (SR) topology and Segment Routing
(SR) traffic engineering (TE) topology. The version of the model
limits the transport type to an MPLS dataplane.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are defined in [RFC7950] and are not redefined
 here:

 o augment

 o data model

 o data node

1.2. Tree Diagrams

 Tree diagrams used in this document follow the notation defined in
 [RFC8340].

2. Modeling Considerations

2.1. Segment Routing (SR) Topology

 The Layer 3 network topology model is discussed in [RFC8346]. The
 Segment Routing (SR) topology model proposed in this document
 augments and uses the ietf-l3-unicast-igp-topology module defined in
 [RFC8346]. SR related attributes are covered in the ietf-sr-topology
 model.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Layer 3 Network Topology |
| ietf‑l3‑unicast‑topology |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 |
 |
 V
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | SR Topology |
 | ietf‑sr‑topology |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

2.2. Segment Routing (SR) TE Topology

 When traffic engineering is enabled on an SR topology, there will be
 associations between objects in SR topologies and objects in TE
 topologies. An SR TE topology is both an SR topology and a layer 3
 TE topology. Multiple inheritance is used to achieve such relations.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| SR Topology | | L3 TE Topology |
| ietf‑sr‑topology | | ietf‑l3‑te‑topology |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 \ /
 \ /
 \ /
 v v
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | SR TE Topology |
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Each type of topologies is indicated by "network-types" defined in
 [RFC8345]. For the three types of topologies above, the data
 representations are:

 L3 Topology:

 /nd:networks/nd:network/nd:network-types/l3-unicast-topology

 L3 TE Topology:

 /nd:networks/nd:network/nd:network-types/l3-unicast-topology/l3-te

 SR Topology:

 /nd:networks/nd:network/nd:network-types/l3-unicast-topology/sr-mpls

 SR TE Topology: (multiple inheritance)

 /nd:networks/nd:network/nd:network-types/l3-unicast-topology/l3-te
 /nd:networks/nd:network/nd:network-types/l3-unicast-topology/sr-mpls

2.3. Relations to ietf-segment-routing

 [I-D.ietf-spring-sr-yang] defines ietf-segment-routing that is a
 model intended to be used on network elements to configure or operate
 segment routing; ietf-sr-topology defined in this document is
 intended to be used on a controller for the network-wide operations
 such as path computation.

 SR topology model shares many modeling constructs defined in ietf-
 segment-routing. The module ietf-sr-topology uses the types and
 groupings defined in ietf-segment-routing.

2.4. Topology Type Modeling

 A new topology type is defined in this document, to indicate a
 topology that is a Segment Routing (SR) topology on an MPLS
 dataplane.

augment /nw:networks/nw:network/nw:network‑types
 /l3t:l3‑unicast‑topology:
 +‑‑rw sr‑mpls!

2.5. Topology Attributes

 The Segment Routing attributes with topology-wide impacts are modeled
 by augmenting the container "l3-topology-attributes" in the L3
 topology model. SRGB (Segment Routing Global Block) is covered in
 this augmentation. A SR domain is mapped to a topology in this
 model.

augment /nw:networks/nw:network/l3t:l3‑topology‑attributes:
 +‑‑rw sr
 +‑‑rw srgb* [lower‑bound upper‑bound]
 +‑‑rw lower‑bound uint32
 +‑‑rw upper‑bound uint32

2.6. Node Attributes

 The Segment Routing attributes within the node scope are modeled by
 augmenting the sub tree /nw:networks/nw:network/nw:node/ in the L3
 topology model.

 The SR attributes that have node-scope impact are modeled by
 augmenting the container "l3-node-attributes" in the L3 topology
 model, including the SR capabilities, SRGB (Segment Routing Global
 Block), and SRLB (Segment Routing Local Block) specified on this
 mode. This model also provides the information about how these SR
 attributes are learned:

augment /nw:networks/nw:network/nw:node/l3t:l3‑node‑attributes:
 +‑‑rw sr
 +‑‑rw srgb* [lower‑bound upper‑bound]
 | +‑‑rw lower‑bound uint32
 | +‑‑rw upper‑bound uint32
 +‑‑rw srlb* [lower‑bound upper‑bound]
 | +‑‑rw lower‑bound uint32
 | +‑‑rw upper‑bound uint32
 +‑‑ro node‑capabilities
 | +‑‑ro transport‑planes* [transport‑plane]
 | | +‑‑ro transport‑plane identityref
 | +‑‑ro entropy‑readable‑label‑depth? uint8
 +‑‑rw msd? uint8 {msd}?
 +‑‑ro information‑source? enumeration
 +‑‑ro information‑source‑state
 +‑‑ro credibility‑preference? uint16

 The SR attributes that are related to a IGP-Prefix segment are
 modeled by augmenting the list entry "prefix" in the L3 topology
 model:

augment /nw:networks/nw:network/nw:node/l3t:l3‑node‑attributes
 /l3t:prefix:
 +‑‑rw sr!
 +‑‑rw value‑type? enumeration
 +‑‑rw start‑sid uint32
 +‑‑rw range? uint32
 +‑‑rw algorithm? identityref
 +‑‑rw last‑hop‑behavior? enumeration
 | {sid‑last‑hop‑behavior}?
 +‑‑rw is‑local? boolean
 +‑‑rw is‑node? boolean
 +‑‑ro is‑readvertisment? boolean

2.7. Link Attributes

 A link in the topology model connects the termination point on the
 source node to the termination point on the destination node. When
 such a link is instantiated, the bindings between the nodes and the
 corresponding Adj-SIDs are formed, and the resulting FIB entries are
 installed.

 A link in the topology model is mapped to an SR Adjacency Segment,
 formed by a pair of interfaces on two respective adjacent nodes. The
 SR Adjacency Segment attributes are modeled by augmenting the link
 attributes of the L3 topology model. The modeling structure is as
 follows:

augment /nw:networks/nw:network/nt:link/l3t:l3‑link‑attributes:
 +‑‑rw sr!
 +‑‑rw value‑type? enumeration
 +‑‑rw sid uint32
 +‑‑rw advertise‑protection? enumeration
 +‑‑rw is‑local? boolean
 +‑‑rw msd? uint8 {msd}?
 +‑‑rw address‑family? enumeration
 +‑‑rw is‑backup? boolean
 +‑‑rw is‑part‑of‑set? boolean
 +‑‑rw is‑persistent? boolean
 +‑‑rw is‑on‑lan? boolean
 +‑‑ro information‑source? enumeration
 +‑‑ro information‑source‑state
 +‑‑ro credibility‑preference? uint16

 The usage of the leaf "advertise-protection" is described in
 [I-D.ietf-spring-sr-yang].

 Both IGP and BGP can be supported by the model, the leaf
 "information-source" is used to indicate where the information is
 from.

 The bundling capability of the Adjacency Segemnt is achieved by re-
 using the existing modeling construct (i.e. "bundle-stack-level")
 under /nw:networks/nw:network/nt:link/tet:te
 [I-D.ietf-teas-yang-te-topo]

3. Model Structure

 The model tree structure of the Segment Routing (SR) topology module
 is as shown below:

module: ietf‑sr‑topology
 augment /nw:networks/nw:network/nw:network‑types
 /l3t:l3‑unicast‑topology:
 +‑‑rw sr‑mpls!
 augment /nw:networks/nw:network/l3t:l3‑topology‑attributes:
 +‑‑rw sr
 +‑‑rw srgb* [lower‑bound upper‑bound]
 +‑‑rw lower‑bound uint32
 +‑‑rw upper‑bound uint32
 augment /nw:networks/nw:network/nw:node/l3t:l3‑node‑attributes:
 +‑‑rw sr
 +‑‑rw srgb* [lower‑bound upper‑bound]
 | +‑‑rw lower‑bound uint32

 | +‑‑rw upper‑bound uint32
 +‑‑rw srlb* [lower‑bound upper‑bound]
 | +‑‑rw lower‑bound uint32
 | +‑‑rw upper‑bound uint32
 +‑‑ro node‑capabilities
 | +‑‑ro transport‑planes* [transport‑plane]
 | | +‑‑ro transport‑plane identityref
 | +‑‑ro entropy‑readable‑label‑depth? uint8
 +‑‑rw msd? uint8 {msd}?
 +‑‑ro information‑source? enumeration
 +‑‑ro information‑source‑state
 +‑‑ro credibility‑preference? uint16
 augment /nw:networks/nw:network/nw:node/l3t:l3‑node‑attributes
 /l3t:prefix:
 +‑‑rw sr!
 +‑‑rw value‑type? enumeration
 +‑‑rw start‑sid uint32
 +‑‑rw range? uint32
 +‑‑rw algorithm? identityref
 +‑‑rw last‑hop‑behavior? enumeration
 | {sid‑last‑hop‑behavior}?
 +‑‑rw is‑local? boolean
 +‑‑rw is‑node? boolean
 +‑‑ro is‑readvertisment? boolean
 augment /nw:networks/nw:network/nt:link/l3t:l3‑link‑attributes:
 +‑‑rw sr!
 +‑‑rw value‑type? enumeration
 +‑‑rw sid uint32
 +‑‑rw advertise‑protection? enumeration
 +‑‑rw is‑local? boolean
 +‑‑rw msd? uint8 {msd}?
 +‑‑rw address‑family? enumeration
 +‑‑rw is‑backup? boolean
 +‑‑rw is‑part‑of‑set? boolean
 +‑‑rw is‑persistent? boolean
 +‑‑rw is‑on‑lan? boolean
 +‑‑ro information‑source? enumeration
 +‑‑ro information‑source‑state
 +‑‑ro credibility‑preference? uint16

4. YANG Module

<CODE BEGINS> file "ietf‑sr‑topology@2018‑10‑03.yang"
module ietf‑sr‑topology {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf‑sr‑topology";
 prefix "srt";

 import ietf‑network {
 prefix "nw";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
 }
 import ietf‑network‑topology {
 prefix "nt";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
 }
 import ietf‑l3‑unicast‑topology {
 prefix "l3t";
 reference "RFC 8346: A YANG Data Model for Layer 3 Topologies";
 }
 import ietf‑segment‑routing‑common {
 prefix "sr‑cmn";
 reference
 "I‑D.ietf‑spring‑sr‑yang: YANG Data Model for Segment Routing";
 }

 organization

 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>

 Editor: Igor Bryskin
 <mailto:Igor.Bryskin@huawei.com>

 Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

 Editor: Tarek Saad
 <mailto:tsaad@cisco.com>

 Editor: Himanshu Shah
 <mailto:hshah@ciena.com>

 Editor: Stephane Litkowski
 <mailto:stephane.litkowski@orange.com>";

 description

 "YANG data model for representing and manipulating Segment

 Routing Topologies.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the
 RFC itself for full legal notices.";

revision 2018‑10‑03 {
 description "Initial revision";
 reference
 "RFC XXXX: YANG Data Model for SR and SR TE Topologies";
}

feature msd {
 description
 "Support of signaling MSD (Maximum SID Depth) in IGP.";
}

grouping sr‑topology‑type {
 description
 "Identifies the SR‑MPLS topology type. This type of network
 toplogies use Segment Routing (SR) technology over the MPLS
 data plane";
 container sr‑mpls {
 presence "Indiates SR‑MPLS topology";
 description
 "Its presence identifies the SR topology type.";
 }
}

augment "/nw:networks/nw:network/nw:network‑types/"
 + "l3t:l3‑unicast‑topology" {
 description
 "Defines the SR topology type.";
 uses sr‑topology‑type;
}

 augment "/nw:networks/nw:network/l3t:l3-topology-attributes" {

 when "../nw:network-types/l3t:l3-unicast-topology/srt:sr-mpls" {

 description "Augment only for SR topology.";
 }
 description "Augment topology configuration";
 uses sr‑topology‑attributes;
 }

 augment "/nw:networks/nw:network/nw:node/l3t:l3‑node‑attributes" {
 when "../../nw:network‑types/l3t:l3‑unicast‑topology/"
 + "srt:sr‑mpls" {
 description "Augment only for SR topology.";
 }
 description "Augment node configuration.";
 uses sr‑node‑attributes;
 }

 augment "/nw:networks/nw:network/nw:node/l3t:l3‑node‑attributes"
 + "/l3t:prefix" {
 when "../../../nw:network‑types/l3t:l3‑unicast‑topology/"
 + "srt:sr‑mpls" {
 description "Augment only for SR topology.";
 }
 description "Augment node prefix.";
 uses sr‑node‑prefix‑attributes;
 }

 augment "/nw:networks/nw:network/nt:link/l3t:l3‑link‑attributes" {
 when "../../nw:network‑types/l3t:l3‑unicast‑topology/"
 + "srt:sr‑mpls" {
 description "Augment only for SR topology.";
 }
 description "Augment link configuration";
 uses sr‑link‑attributes;
 }

 grouping sr‑topology‑attributes {
 description "SR topology scope attributes.";
 container sr {
 description
 "Containing SR attributes.";
 uses sr‑cmn:srgb‑cfg;
 } // sr
 } // sr‑topology‑attributes

 grouping information‑source‑attributes {
 description
 "The attributes identifying source that has provided the
 related information, and the source credibility.";
 leaf information‑source {

 type enumeration {
 enum "unknown" {
 description "The source is unknown.";
 }
 enum "locally‑configured" {
 description "Configured entity.";
 }
 enum "ospfv2" {
 description "OSPFv2.";
 }
 enum "ospfv3" {
 description "OSPFv3.";
 }
 enum "isis" {
 description "ISIS.";
 }
 enum "system‑processed" {
 description "System processed entity.";
 }
 enum "other" {
 description "Other source.";
 }
 }
 config false;
 description
 "Indicates the source of the information.";
 }
 container information‑source‑state {
 config false;
 description
 "The container contains state attributes related to
 the information source.";
 leaf credibility‑preference {
 type uint16;
 description
 "The preference value to calculate the traffic
 engineering database credibility value used for
 tie‑break selection between different
 information‑source values.
 Higher value is more preferable.";
 }
 }
 } // information‑source‑attributes

 grouping sr‑node‑attributes {
 description "SR node scope attributes.";
 container sr {
 description

 "Containing SR attributes.";
 uses sr‑cmn:srgb‑cfg;
 uses sr‑cmn:srlb‑cfg;
 uses sr‑cmn:node‑capabilities;
 leaf msd {
 if‑feature "msd";
 type uint8;
 description
 "Node MSD is the lowest MSD supported by the node.";
 }
 // Operational state data
 uses information‑source‑attributes;
 } // sr
 } // sr‑node‑attributes

 grouping sr‑node‑prefix‑attributes {
 description "Containing SR attributes for a prefix.";
 container sr {
 presence "Presence indicates SR is enabled.";
 description
 "Containing SR attributes for a prefix.";
 uses sr‑cmn:prefix‑sid‑attributes;
 uses sr‑cmn:last‑hop‑behavior;
 leaf is‑local {
 type boolean;
 default false;
 description
 "'true' if the SID is local.";
 }
 leaf is‑node {
 type boolean;
 default false;
 description
 "'true' if the Prefix‑SID refers to the router identified
 by the prefix. Typically, the leaf 'is‑node' (N‑Flag)
 is set on Prefix‑SIDs attached to a router loopback
 address.";
 }
 leaf is‑readvertisment {
 type boolean;
 config false;
 description
 "'true' if the prefix to which this Prefix‑SID is attached,
 has been propagated by the router from another
 topology by redistribution.";
 }
 } // sr
 } // sr‑node‑prefix‑attributes

 grouping sr‑link‑attributes {
 description "SR link scope attributes";
 container sr {
 presence "Presence indicates SR is enabled.";
 description
 "Containing SR attributes.";
 uses sr‑cmn:sid‑value‑type;
 leaf sid {
 type uint32;
 mandatory true;
 description
 "Adjacency SID, which can be either IGP‑Adjacency SID
 or BGP PeerAdj SID, depending on the context.";
 }
 leaf advertise‑protection {
 type enumeration {
 enum "single" {
 description
 "A single Adj‑SID is associated
 with the adjacency and reflects
 the protection configuration.";
 }
 enum "dual" {
 description
 "Two Adj‑SIDs will be associated
 with the adjacency if interface
 is protected. In this case
 one will be enforced with
 backup flag set, the other
 will be enforced to backup flag unset.
 In case, protection is not configured,
 a single Adj‑SID will be advertised
 with backup flag unset.";
 }
 }
 default "single";
 description
 "If set, the Adj‑SID refers to an
 adjacency being protected.";
 }
 leaf is‑local {
 type boolean;
 default false;
 description
 "'true' if the SID is local.";
 }
 leaf msd {
 if‑feature "msd";

 type uint8;
 description
 "SID depth of the interface associated with the link.";
 }
 leaf address‑family {
 type enumeration {
 enum "ipv4" {
 description
 "The Adj‑SID refers to an adjacency with outgoing IPv4
 encapsulation.";
 }
 enum "ipv6" {
 description
 "The Adj‑SID refers to an adjacency with outgoing IPv6
 encapsulation.";
 }
 }
 default "ipv4";
 description
 "This leaf defines the F‑Flag (Address‑Family flag) of the
 SID.";
 }
 leaf is‑backup {
 type boolean;
 default false;
 description
 "'true' if the SID is a backup.";
 }
 leaf is‑part‑of‑set {
 type boolean;
 default false;
 description
 "'true' if the SID is part of a set.";
 }
 leaf is‑persistent {
 type boolean;
 default true;
 description
 "'true' if the SID is persistently allocated.";
 }
 leaf is‑on‑lan {
 type boolean;
 default false;
 description
 "'true' if on a lan.";
 }
 uses information‑source‑attributes;
 } // sr

 } // sr‑tp‑attributes
}
<CODE ENDS>

5. IANA Considerations

 RFC Ed.: In this section, replace all occurrences of 'XXXX' with the
 actual RFC number (and remove this note).

 This document registers the following namespace URIs in the IETF XML
 registry [RFC3688]:

‑‑
URI: urn:ietf:params:xml:ns:yang:ietf‑sr‑topology
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
‑‑

‑‑
URI: urn:ietf:params:xml:ns:yang:ietf‑sr‑topology‑state
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
‑‑

 This document registers the following YANG modules in the YANG Module
 Names registry [RFC6020]:

‑‑
name: ietf‑sr‑topology
namespace: urn:ietf:params:xml:ns:yang:ietf‑sr‑topology
prefix: srt
reference: RFC XXXX
‑‑

‑‑
name: ietf‑sr‑topology‑state
namespace: urn:ietf:params:xml:ns:yang:ietf‑sr‑topology‑state
prefix: srt‑s
reference: RFC XXXX
‑‑

6. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC5246].

 The NETCONF access control model [RFC6536] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 nw:network-types/l3t:l3-unicast-topology/sr-mpls

 This subtree specifies the SR topology type. Modifying the
 configurations can make SR topology type invalid and cause
 interruption to all SR networks.

 /nw:networks/nw:network/l3t:l3-topology-attributes/sr

 This subtree specifies the topology-wide configurations, including
 the SRGB (Segment Routing Global Block). Modifying the
 configurations here can cause traffic disabled or rerouted in this
 topology and the connected topologies.

 /nw:networks/nw:network/nw:node/l3t:l3-node-attributes

 This subtree specifies the SR configurations for nodes. Modifying
 the configurations in this subtree can add, remove, or modify SR
 nodes, causing traffic disabled or rerouted in the specified nodes
 and the related TE topologies.

 /nw:networks/nw:network/nt:link/l3t:l3-link-attributes/sr

 This subtree specifies the configurations for SR Adjacency
 Segments. Modifying the configurations in this subtree can add,
 remove, or modify SR Adjacency Segments causing traffic disabled
 or rerouted on the specified SR adjacencies, the related nodes,
 and the related SR topologies.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 nw:network-types/l3t:l3-unicast-topology/sr-mpls

 Unauthorized access to this subtree can disclose the SR topology
 type.

 /nw:networks/nw:network/l3t:l3-topology-attributes/sr

 Unauthorized access to this subtree can disclose the topology-wide
 configurations, including the SRGB (Segment Routing Global Block).

 /nw:networks/nw:network/nw:node/l3t:l3-node-attributes

 Unauthorized access to this subtree can disclose the operational
 state information of the SR nodes.

 /nw:networks/nw:network/nt:link/l3t:l3-link-attributes/sr

 Unauthorized access to this subtree can disclose the operational
 state information of SR Adjacency Segments.

7. References

7.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6536]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <https://www.rfc-editor.org/info/rfc6536>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

7.2. Informative References

 [RFC7951]
 Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8345]
 Clemm, A., Medved, J., Varga, R., Bahadur, N.,
 Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
 Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
 2018, <https://www.rfc-editor.org/info/rfc8345>.

 [RFC8346]
 Clemm, A., Medved, J., Varga, R., Liu, X.,
 Ananthakrishnan, H., and N. Bahadur, "A YANG Data Model
 for Layer 3 Topologies", RFC 8346, DOI 10.17487/RFC8346,
 March 2018, <https://www.rfc-editor.org/info/rfc8346>.

 [I-D.ietf-teas-yang-te-topo]

 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
 O. Dios, "YANG Data Model for Traffic Engineering (TE)
 Topologies", draft-ietf-teas-yang-te-topo-18 (work in
 progress), June 2018.

 [I-D.ietf-spring-sr-yang]

 Litkowski, S., Qu, Y., Sarkar, P., and J. Tantsura, "YANG
 Data Model for Segment Routing", draft-ietf-spring-sr-
 yang-09 (work in progress), June 2018.

Appendix A. Companion YANG Model for Non-NMDA Compliant Implementations

 The YANG module ietf-sr-topology defined in this document is designed
 to be used in conjunction with implementations that support the
 Network Management Datastore Architecture (NMDA) defined in
 [RFC8342]. In order to allow implementations to use the model even
 in cases when NMDA is not supported, the following companion module,
 ietf-sr-topology-state, is defined as state model, which mirrors the
 module ietf-sr-topology defined earlier in this document. However,
 all data nodes in the companion module are non-configurable, to
 represent the applied configuration or the derived operational
 states.

 The companion module, ietf-sr-topology-state, is redundant and SHOULD
 NOT be supported by implementations that support NMDA.

 As the structure of the companion module mirrors that of the
 coorespinding NMDA model, the YANG tree of the companion module is
 not depicted separately.

A.1. SR Topology State Module

<CODE BEGINS> file "ietf‑sr‑topology‑state@2018‑10‑03.yang"
module ietf‑sr‑topology‑state {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑sr‑topology‑state";
 prefix "srt‑s";

 import ietf‑sr‑topology {
 prefix "srt";
 }
 import ietf‑network‑state {
 prefix "nw‑s";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
 }
 import ietf‑network‑topology‑state {
 prefix "nt‑s";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
 }
 import ietf‑l3‑unicast‑topology‑state {
 prefix "l3t‑s";
 reference "RFC 8346: A YANG Data Model for Layer 3 Topologies";
 }
 import ietf‑segment‑routing‑common {
 prefix "sr‑cmn";
 reference
 "I‑D.ietf‑spring‑sr‑yang: YANG Data Model for Segment Routing";

 }

 organization

 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>

 Editor: Igor Bryskin
 <mailto:Igor.Bryskin@huawei.com>

 Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

 Editor: Tarek Saad
 <mailto:tsaad@cisco.com>

 Editor: Himanshu Shah
 <mailto:hshah@ciena.com>

 Editor: Stephane Litkowski
 <mailto:stephane.litkowski@orange.com>";

 description

 "YANG data model for representing operational state information
 of Segment Routing Topologies, when NMDA is not supported.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the
 RFC itself for full legal notices.";

revision 2018‑10‑03 {
 description "Initial revision";
 reference

 "RFC XXXX: YANG Data Model for SR and SR TE Topologies";
}

augment "/nw‑s:networks/nw‑s:network/nw‑s:network‑types/"
 + "l3t‑s:l3‑unicast‑topology" {
 description
 "Defines the SR topology type.";
 uses srt:sr‑topology‑type;
}

augment "/nw‑s:networks/nw‑s:network/"
 + "l3t‑s:l3‑topology‑attributes" {
 when "../nw‑s:network‑types/l3t‑s:l3‑unicast‑topology/"
 + "srt‑s:sr‑mpls" {
 description "Augment only for SR topology.";
 }
 description "Augment topology configuration";
 uses srt:sr‑topology‑attributes;
}

augment "/nw‑s:networks/nw‑s:network/nw‑s:node/"
 + "l3t‑s:l3‑node‑attributes" {
 when "../../nw‑s:network‑types/l3t‑s:l3‑unicast‑topology/"
 + "srt‑s:sr‑mpls" {
 description "Augment only for SR topology.";
 }
 description "Augment node configuration.";
 uses srt:sr‑node‑attributes;
}

augment "/nw‑s:networks/nw‑s:network/nw‑s:node/"
 + "l3t‑s:l3‑node‑attributes/l3t‑s:prefix" {
 when "../../../nw‑s:network‑types/l3t‑s:l3‑unicast‑topology/"
 + "srt‑s:sr‑mpls" {
 description "Augment only for SR topology.";
 }
 description "Augment node prefix.";
 uses srt:sr‑node‑prefix‑attributes;
}

augment "/nw‑s:networks/nw‑s:network/nt‑s:link/"
 + "l3t‑s:l3‑link‑attributes" {
 when "../../nw‑s:network‑types/l3t‑s:l3‑unicast‑topology/"
 + "srt‑s:sr‑mpls" {
 description "Augment only for SR topology.";
 }
 description "Augment link configuration";
 uses srt:sr‑link‑attributes;

 }

 grouping sr‑topology‑attributes {
 description "SR topology scope attributes.";
 container sr {
 description
 "Containing SR attributes.";
 uses sr‑cmn:srgb‑cfg;
 } // sr
 } // sr‑topology‑attributes
}
<CODE ENDS>

Appendix B. Data Tree Example

 This section contains an example of an instance data tree in the JSON
 encoding [RFC7951]. The example instantiates "ietf-sr-topology" for
 the topology that is depicted in the following diagram.

 +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
 | D1 | | D2 |
/‑\ /‑\ /‑\ /‑\
| | 1‑0‑1 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | 2‑1‑1 | |
| | 1‑2‑1 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | 2‑0‑1 | |
\‑/ 1‑3‑1 \‑/ \‑/ 2‑3‑1 \‑/
 | /‑‑‑‑\ | | /‑‑‑‑\ |
 +‑‑‑| |‑‑‑+ +‑‑‑| |‑‑‑+
 \‑‑‑‑/ \‑‑‑‑/
 A | A |
 | | | | | |
 | | | |
 | | +‑‑‑‑‑‑‑‑‑‑‑‑+ | |
 | | | D3 | | |
 | | /‑\ /‑\ | |
 | +‑‑‑‑‑>| | 3‑1‑1 | |‑‑‑‑‑‑‑+ |
 +‑‑‑‑‑‑‑‑‑| | 3‑2‑1 | |<‑‑‑‑‑‑‑‑‑+
 \‑/ \‑/
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑+

 The corresponding instance data tree is depicted below. Note that
 some lines have been wrapped to adhere to the 72-character line
 limitation of RFCs.

{
 "ietf‑network:networks": {
 "network": [
 {
 "network‑types": {
 "ietf‑l3‑unicast‑topology:l3‑unicast‑topology": {
 "ietf‑sr‑topology:sr‑mpls": {}
 }
 },
 "network‑id": "sr‑topo‑example",
 "ietf‑l3‑unicast‑topology:l3‑topology‑attributes": {
 "ietf‑sr‑topology:sr": {
 "srgb": [
 {
 "lower‑bound": 16000,
 "upper‑bound": 23999
 }
]
 }
 },
 "node": [
 {
 "node‑id": "D1",
 "ietf‑network‑topology:termination‑point": [
 {
 "tp‑id": "1‑0‑1",
"ietf‑l3‑unicast‑topology:l3‑termination‑point‑attributes": {
 "unnumbered‑id": 101
 }
 },
 {
 "tp‑id": "1‑2‑1",
"ietf‑l3‑unicast‑topology:l3‑termination‑point‑attributes": {
 "unnumbered‑id": 121
 }
 },
 {
 "tp‑id": "1‑3‑1",
"ietf‑l3‑unicast‑topology:l3‑termination‑point‑attributes": {
 "unnumbered‑id": 131
 }
 }
],
 "ietf‑l3‑unicast‑topology:l3‑node‑attributes": {
 "router‑id": ["203.0.113.1"],
 "prefix": [
 {
 "prefix": "203.0.113.1/32",

 "ietf‑sr‑topology:sr": {
 "start‑sid": 101,
 "range": 1,
 "is‑local": false,
 "is‑node": true
 }
 }
],
 "ietf‑sr‑topology:sr": {
 "srgb": [
 {
 "lower‑bound": 16000,
 "upper‑bound": 23999
 }
],
 "srlb": [
 {
 "lower‑bound": 15000,
 "upper‑bound": 15999
 }
]
 }
 }
 },
 {
 "node‑id": "D2",
 "ietf‑network‑topology:termination‑point": [
 {
 "tp‑id": "2‑0‑1",
"ietf‑l3‑unicast‑topology:l3‑termination‑point‑attributes": {
 "unnumbered‑id": 201
 }
 },
 {
 "tp‑id": "2‑1‑1",
"ietf‑l3‑unicast‑topology:l3‑termination‑point‑attributes": {
 "unnumbered‑id": 211
 }
 },
 {
 "tp‑id": "2‑3‑1",
"ietf‑l3‑unicast‑topology:l3‑termination‑point‑attributes": {
 "unnumbered‑id": 231
 }
 }
],
 "ietf‑l3‑unicast‑topology:l3‑node‑attributes": {
 "router‑id": ["203.0.113.2"],

 "prefix": [
 {
 "prefix": "203.0.113.2/32",
 "ietf‑sr‑topology:sr": {
 "start‑sid": 102,
 "range": 1,
 "is‑local": false,
 "is‑node": true
 }
 }
],
 "ietf‑sr‑topology:sr": {
 "srgb": [
 {
 "lower‑bound": 16000,
 "upper‑bound": 23999
 }
],
 "srlb": [
 {
 "lower‑bound": 15000,
 "upper‑bound": 15999
 }
]
 }
 }
 },
 {
 "node‑id": "D3",
 "ietf‑network‑topology:termination‑point": [
 {
 "tp‑id": "3‑1‑1",
"ietf‑l3‑unicast‑topology:l3‑termination‑point‑attributes": {
 "unnumbered‑id": 311
 }
 },
 {
 "tp‑id": "3‑2‑1",
"ietf‑l3‑unicast‑topology:l3‑termination‑point‑attributes": {
 "unnumbered‑id": 321
 }
 }
],
 "ietf‑l3‑unicast‑topology:l3‑node‑attributes": {
 "router‑id": ["203.0.113.3"],
 "prefix": [
 {
 "prefix": "203.0.113.3/32",

 "ietf‑sr‑topology:sr": {
 "start‑sid": 101,
 "range": 1,
 "is‑local": false,
 "is‑node": true
 }
 }
],
 "ietf‑sr‑topology:sr": {
 "srgb": [
 {
 "lower‑bound": 16000,
 "upper‑bound": 23999
 }
],
 "srlb": [
 {
 "lower‑bound": 15000,
 "upper‑bound": 15999
 }
]
 }
 }
 }
],
 "ietf‑network‑topology:link": [
 {
 "link‑id": "D1,1‑2‑1,D2,2‑1‑1",
 "source": {
 "source‑node": "D1",
 "source‑tp": "1‑2‑1"
 },
 "destination": {
 "dest‑node": "D2",
 "dest‑tp": "2‑1‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100",
 "ietf‑sr‑topology:sr": {
 "sid": 121,
 "is‑local": true
 }
 }
 },
 {
 "link‑id": "D2,2‑1‑1,D1,1‑2‑1",
 "source": {
 "source‑node": "D2",

 "source‑tp": "2‑1‑1"
 },
 "destination": {
 "dest‑node": "D1",
 "dest‑tp": "1‑2‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100",
 "ietf‑sr‑topology:sr": {
 "sid": 211,
 "is‑local": true
 }
 }
 },
 {
 "link‑id": "D1,1‑3‑1,D3,3‑1‑1",
 "source": {
 "source‑node": "D1",
 "source‑tp": "1‑3‑1"
 },
 "destination": {
 "dest‑node": "D3",
 "dest‑tp": "3‑1‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100",
 "ietf‑sr‑topology:sr": {
 "sid": 131,
 "is‑local": true
 }
 }
 },
 {
 "link‑id": "D3,3‑1‑1,D1,1‑3‑1",
 "source": {
 "source‑node": "D3",
 "source‑tp": "3‑1‑1"
 },
 "destination": {
 "dest‑node": "D1",
 "dest‑tp": "1‑3‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100",
 "ietf‑sr‑topology:sr": {
 "sid": 311,
 "is‑local": true
 }

 }
 },
 {
 "link‑id": "D2,2‑3‑1,D3,3‑2‑1",
 "source": {
 "source‑node": "D2",
 "source‑tp": "2‑3‑1"
 },
 "destination": {
 "dest‑node": "D3",
 "dest‑tp": "3‑2‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100",
 "ietf‑sr‑topology:sr": {
 "sid": 231,
 "is‑local": true
 }
 }
 },
 {
 "link‑id": "D3,3‑2‑1,D2,2‑3‑1",
 "source": {
 "source‑node": "D3",
 "source‑tp": "3‑2‑1"
 },
 "destination": {
 "dest‑node": "D2",
 "dest‑tp": "2‑3‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100",
 "ietf‑sr‑topology:sr": {
 "sid": 321,
 "is‑local": true
 }
 }
 }
]
 }
]
 }
}

Appendix C. Contributors

Jeff Tantsura
Email: jefftant.ietf@gmail.com

Yingzhen Qu
Email: yingzhen.qu@huawei.com

Authors' Addresses

Xufeng Liu
Volta Networks

 EMail: xufeng.liu.ietf@gmail.com

Igor Bryskin
Huawei Technologies

 EMail: Igor.Bryskin@huawei.com

Vishnu Pavan Beeram
Juniper Networks

 EMail: vbeeram@juniper.net

Tarek Saad
Cisco Systems Inc

 EMail: tsaad@cisco.com

Himanshu Shah
Ciena

 EMail: hshah@ciena.com

Stephane Litkowski
Orange Business Service

 EMail: stephane.litkowski@orange.com

draft-ietf-teas-yang-te-17 - A YANG Data Model for Traffic Engineering Tunnels a

Index
Back 5
Prev
Next
Forward 5

TEAS Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 23, 2019

T. Saad

R. Gandhi

Cisco Systems Inc

X. Liu

Volta Networks

V. Beeram

Juniper Networks

H. Shah

Ciena

I. Bryskin

Huawei Technologies

October 20, 2018

A YANG Data Model for Traffic Engineering Tunnels and Interfaces

draft-ietf-teas-yang-te-17

Abstract

 This document defines a YANG data model for the configuration and
 management of Traffic Engineering (TE) interfaces, tunnels and Label
 Switched Paths (LSPs). The model is divided into YANG modules that
 classify data into generic, device-specific, technology agnostic, and
 technology-specific elements.

 This model covers data for configuration, operational state, remote
 procedural calls, and event notifications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 23, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Prefixes in Data Node Names

	 1.3. TE Technology Models

	 1.4. State Data Organization

	2. Model Overview
	 2.1. Module(s) Relationship

	 2.2. Design Considerations

	 2.3. Model Tree Diagram

	3. Model Organization
	 3.1. Global Configuration and State Data

	 3.2. Interfaces Configuration and State Data

	 3.3. Tunnels Configuration and State Data
	 3.3.1. Tunnel Compute-Only Mode

	 3.3.2. Tunnel Hierarchical Link Endpoint

	 3.4. TE LSPs State Data

	 3.5. Global RPC Data

	 3.6. Interface RPC Data

	 3.7. Tunnel RPC Data

	4. TE Generic and Helper YANG Modules

	5. IANA Considerations

	6. Security Considerations

	7. Acknowledgement

	8. Contributors

	9. Normative References

	Authors' Addresses

1. Introduction

 YANG [RFC6020] and [RFC7950] is a data modeling language that was
 introduced to define the contents of a conceptual data store that
 allows networked devices to be managed using NETCONF [RFC6241]. YANG
 has proved relevant beyond its initial confines, as bindings to other
 interfaces (e.g. RESTCONF [RFC8040]) and encoding other than XML
 (e.g. JSON) are being defined. Furthermore, YANG data models can be
 used as the basis of implementation for other interfaces, such as CLI
 and programmatic APIs.

 This document describes YANG data model for TE Tunnels, Label
 Switched Paths (LSPs) and TE interfaces and covers data applicable to
 generic or device-independent, device-specific, and Multiprotocol
 Label Switching (MPLS) technology specific.

 The document describes a high-level relationship between the modules
 defined in this document, as well as other external protocol YANG
 modules. The TE generic YANG data model does not include any data
 specific to a signaling protocol. It is expected other data plane
 technology model(s) will augment the TE generic YANG data model.

 Also, it is expected other YANG module(s) that model TE signaling
 protocols, such as RSVP-TE ([RFC3209], [RFC3473]), or Segment-Routing
 TE (SR-TE) will augment the TE generic YANG module.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The terminology for describing YANG data models is found in
 [RFC7950].

1.2. Prefixes in Data Node Names

 In this document, names of data nodes and other data model objects
 are prefixed using the standard prefix associated with the
 corresponding YANG imported modules, as shown in Table 1.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Prefix | YANG module | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
yang	ietf‑yang‑types	[RFC6991]
inet	ietf‑inet‑types	[RFC6991]
rt‑types	ietf‑routing‑types	[RFC8294]
te	ietf‑te	this document
te‑dev	ietf‑te‑device	this document
te‑types	ietf‑te‑types	[I‑D.ietf‑teas‑yang‑te‑types]
te‑mpls‑types	ietf‑te‑mpls‑types	[I‑D.ietf‑teas‑yang‑te‑types]
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1: Prefixes and corresponding YANG modules

1.3. TE Technology Models

 This document describes the TE generic YANG data model that is
 independent of any dataplane technology. One of the design
 objectives is to allow specific data plane technologies models to
 reuse the TE generic data model and possibly augment it with
 technology specific data. There are multiple options that were
 considered:

 o Elements of the TE generic YANG data model, including TE tunnels,
 LSPs, and interfaces can be augmented with leaf(s) to identify the
 specific technology layer. This approach implies a single list of
 elements (e.g. TE tunnel(s)) in the model can carry elements of
 different technology layers.

 o An instance of the TE generic YANG model can be mounted in the
 YANG tree once for each TE technology layer(s). This approach
 provides separation of elements belonging to different technology
 layers into separate lists per layer in the data model.

 The model defined in this document leverages the first apprach by
 relying on the LSP encoding type to identify the specific technology
 associated with a specific TE interface, tunnel or LSP. For example,
 for an MPLS TE LSP, the LSP encoding type is assumed to be of "te-
 types:lsp-encoding-packet".

 Finally, the TE generic YANG data model does not include any
 signaling protocol data. It is expected TE signaling protocol
 module(s) will be defined in other document(s) to cover protocols
 such as RSVP-TE ([RFC3209], [RFC3473]), and Segment-Routing TE (SR-
 TE) model and that augment the TE generic YANG data model.

1.4. State Data Organization

 The Network Management Datastore Architecture (NMDA) [RFC8342]
 addresses modeling state data for ephemeral objects. This draft
 adopts the NMDA proposal for configuration and state data
 representation as per IETF guidelines for new IETF YANG models.

2. Model Overview

 The data model(s) defined in this document cover core TE features
 that are commonly supported across different vendor implementations.
 The support of extended or vendor specific TE feature(s) is expected
 to be in augmentations to the base models defined in this document.

2.1. Module(s) Relationship

 The TE generic YANG data model defined in "ietf-te.yang" covers the
 building blocks that are device independent and agnostic of any
 specific technology or control plane instances. The TE device model
 defined in "ietf-te-device.yang" augments the TE generic YANG data
 model and covers data that is specific to a device - for example,
 attributes of TE interfaces, or TE timers that are local to a TE
 node.

 The TE data model for specific instances of data plane technology
 exist in a separate YANG module(s) that augment the TE generic YANG
 data model. For example, the MPLS-TE module "ietf-te-mpls.yang"
 defined in another document can augment the TE generic model as shown
 in Figure 1.

 The TE data model for specific instances of signaling protocol are
 outside the scope of this document and defined in separate documents.
 For example, the RSVP-TE [RFC3209] YANG model augmentation of the TE
 model is covered in [I-D.ietf-teas-yang-rsvp], and other signaling
 protocol model(s) (e.g. for Segment-Routing TE) are expected to also
 augment the TE generic YANG data model.

 The TE generic YANG module "ietf-te" imports the following modules:

 o ietf-yang-types and ietf-inet-types defined in [RFC6991]

 o ietf-te-types defined in [I-D.ietf-teas-yang-te-types]

 The TE device YANG module "ietf-te-device" imports the following
 module(s): - ietf-yang-types and ietf-inet-types defined in [RFC6991]
 - ietf-routing-types defined in [RFC8294] - ietf-te-types defined in
 [I-D.ietf-teas-yang-te-types] - ietf-te defined in this document

TE generic +‑‑‑‑‑‑‑‑‑+ o: augment
module | ietf‑te |o‑‑‑‑‑‑‑‑‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑‑+ \
 o \
 |\ \
 | \ \
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ \
 | | ietf‑te‑device | TE device module
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ \
 | o o \
 | / \ \
 | / \ \
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
RSVP‑TE module | ietf‑rsvp‑te |o . | ietf‑te‑mpls^ |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ \ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | \
 | \
 | \
 | \
 | \
 o +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑+ | ietf‑rsvp‑otn‑te^ |
RSVP module | ietf‑rsvp | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑+ RSVP‑TE with OTN
 extensions

 ^ shown for illustration

 (not in this document)

 Figure 1: Relationship of TE module(s) with other signaling protocol

 modules

+‑‑‑‑‑‑‑‑‑+
| ietf‑te | ^: import
+‑‑‑‑‑‑‑‑‑+
 ^ ^ ^
 | | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ietf‑te‑types* | | ietf‑te‑mpls‑types* | | ietf‑te‑otn‑types* |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 *: not in this document, shown for illustration only

 Figure 2: Relationship between generic and technology specific TE

 types modules

2.2. Design Considerations

 The following considerations are taken into account with respect data
 organization:

 o reusable TE data types that are data plane independent are grouped
 in the TE generic types module "ietf-te-types.yang" defined in
 [I-D.ietf-teas-yang-te-types]

 o reusable TE data types that are data plane specific (e.g. MPLS
 [RFC3473]) are defined in a data plane type module, e.g. "ietf-te-
 mpls-types.yang" as defined in [I-D.ietf-teas-yang-te-types].
 Other data plane technology types are expected to be defined in
 separate module(s) as shown in Figure 2

 o The TE generic YANG data model "ietf-te" contains device
 independent data and can be used to model data off a device (e.g.
 on a controller). The device-specific TE data is defined in a
 separate module "ietf-te-device" as shown in Figure 1.

 o In general, minimal elements in the model are designated as
 "mandatory" to allow freedom to vendors to adapt the data model to
 their specific product implementation.

 o This model declares a number of TE functions as features that can
 be optionally supported.

2.3. Model Tree Diagram

 Figure 3 shows the tree diagram of the TE YANG model defined in
 modules: ietf-te.yang, and ietf-te-device.yang.

module: ietf‑te
 +‑‑rw te!
 +‑‑rw globals
 | +‑‑rw named‑admin‑groups
 | | +‑‑rw named‑admin‑group* [name]
 te‑types:extended‑admin‑groups,te‑types:named‑extended‑admin‑groups}?
 | | +‑‑rw name string
 | | +‑‑rw bit‑position? uint32
 | +‑‑rw named‑srlgs
 | | +‑‑rw named‑srlg* [name] {te‑types:named‑srlg‑groups}?
 | | +‑‑rw name string
 | | +‑‑rw group? te‑types:srlg
 | | +‑‑rw cost? uint32
 | +‑‑rw named‑path‑constraints
 | | +‑‑rw named‑path‑constraint* [name]
 {te‑types:named‑path‑constraints}?

 | | +‑‑rw name string
 | | +‑‑rw te‑bandwidth
 | | | +‑‑rw (technology)?
 | | | +‑‑:(generic)
 | | | +‑‑rw generic? te‑bandwidth
 | | +‑‑rw link‑protection? identityref
 | | +‑‑rw setup‑priority? uint8
 | | +‑‑rw hold‑priority? uint8
 | | +‑‑rw signaling‑type? identityref
 | | +‑‑rw path‑metric‑bounds
 | | | +‑‑rw path‑metric‑bound* [metric‑type]
 | | | +‑‑rw metric‑type identityref
 | | | +‑‑rw upper‑bound? uint64
 | | +‑‑rw path‑affinities‑values
 | | | +‑‑rw path‑affinities‑value* [usage]
 | | | +‑‑rw usage identityref
 | | | +‑‑rw value? admin‑groups
 | | +‑‑rw path‑affinity‑names
 | | | +‑‑rw path‑affinity‑name* [usage]
 | | | +‑‑rw usage identityref
 | | | +‑‑rw affinity‑name* [name]
 | | | +‑‑rw name string
 | | +‑‑rw path‑srlgs‑values
 | | | +‑‑rw usage? identityref
 | | | +‑‑rw values* srlg
 | | +‑‑rw path‑srlgs‑names
 | | | +‑‑rw path‑srlgs‑name* [usage]
 | | | +‑‑rw usage identityref
 | | | +‑‑rw srlg‑name* [name]
 | | | +‑‑rw name string
 | | +‑‑rw disjointness?
 te‑types:te‑path‑disjointness
 | | +‑‑rw explicit‑route‑objects
 | | | +‑‑rw route‑object‑exclude‑always* [index]
 | | | | +‑‑rw index uint32
 | | | | +‑‑rw (type)?
 | | | | +‑‑:(num‑unnum‑hop)
 | | | | | +‑‑rw num‑unnum‑hop
 | | | | | +‑‑rw node‑id? te‑types:te‑node‑id
 | | | | | +‑‑rw link‑tp‑id? te‑types:te‑tp‑id
 | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | | +‑‑rw direction? te‑link‑direction
 | | | | +‑‑:(as‑number)
 | | | | | +‑‑rw as‑number‑hop
 | | | | | +‑‑rw as‑number? binary
 | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | +‑‑:(label)
 | | | | +‑‑rw label‑hop

 | | | | +‑‑rw te‑label
 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | +‑‑rw direction?
 te‑label‑direction
 | | | +‑‑rw route‑object‑include‑exclude* [index]
 | | | +‑‑rw explicit‑route‑usage? identityref
 | | | +‑‑rw index uint32
 | | | +‑‑rw (type)?
 | | | +‑‑:(num‑unnum‑hop)
 | | | | +‑‑rw num‑unnum‑hop
 | | | | +‑‑rw node‑id? te‑types:te‑node‑id
 | | | | +‑‑rw link‑tp‑id? te‑types:te‑tp‑id
 | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | +‑‑rw direction? te‑link‑direction
 | | | +‑‑:(as‑number)
 | | | | +‑‑rw as‑number‑hop
 | | | | +‑‑rw as‑number? binary
 | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | +‑‑:(label)
 | | | | +‑‑rw label‑hop
 | | | | +‑‑rw te‑label
 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | +‑‑rw direction?
 te‑label‑direction
 | | | +‑‑:(srlg)
 | | | +‑‑rw srlg
 | | | +‑‑rw srlg? uint32
 | | +‑‑rw shared‑resources‑tunnels
 | | | +‑‑rw lsp‑shared‑resources‑tunnel* tunnel‑ref
 | | +‑‑rw path‑in‑segment!
 | | | +‑‑rw label‑restrictions
 | | | +‑‑rw label‑restriction* [index]
 | | | +‑‑rw restriction? enumeration
 | | | +‑‑rw index uint32
 | | | +‑‑rw label‑start
 | | | | +‑‑rw te‑label
 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | +‑‑rw direction? te‑label‑direction
 | | | +‑‑rw label‑end

 | | | | +‑‑rw te‑label
 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | +‑‑rw direction? te‑label‑direction
 | | | +‑‑rw label‑step
 | | | | +‑‑rw (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic? int32
 | | | +‑‑rw range‑bitmap? binary
 | | +‑‑rw path‑out‑segment!
 | | | +‑‑rw label‑restrictions
 | | | +‑‑rw label‑restriction* [index]
 | | | +‑‑rw restriction? enumeration
 | | | +‑‑rw index uint32
 | | | +‑‑rw label‑start
 | | | | +‑‑rw te‑label
 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | +‑‑rw direction? te‑label‑direction
 | | | +‑‑rw label‑end
 | | | | +‑‑rw te‑label
 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | +‑‑rw direction? te‑label‑direction
 | | | +‑‑rw label‑step
 | | | | +‑‑rw (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic? int32
 | | | +‑‑rw range‑bitmap? binary
 | | +‑‑ro state
 | | | +‑‑ro bandwidth‑generic_state? te‑types:te‑bandwidth
 | | | +‑‑ro disjointness_state?
 te‑types:te‑path‑disjointness
 | | +‑‑rw te‑mpls:bandwidth
 | | +‑‑rw te‑mpls:specification‑type?
 te‑mpls‑types:te‑bandwidth‑requested‑type
 | | +‑‑rw te‑mpls:set‑bandwidth?
 te‑mpls‑types:bandwidth‑kbps
 | | +‑‑rw te‑mpls:class‑type?
 te‑types:te‑ds‑class
 | | +‑‑ro te‑mpls:state
 | | +‑‑ro te‑mpls:signaled‑bandwidth?

 te‑mpls‑types:bandwidth‑kbps
 | +‑‑rw te‑dev:lsp‑install‑interval? uint32
 | +‑‑rw te‑dev:lsp‑cleanup‑interval? uint32
 | +‑‑rw te‑dev:lsp‑invalidation‑interval? uint32
 +‑‑rw tunnels
 | +‑‑rw tunnel* [name]
 | | +‑‑rw name string
 | | +‑‑rw identifier? uint16
 | | +‑‑rw description? string
 | | +‑‑rw encoding? identityref
 | | +‑‑rw switching‑type? identityref
 | | +‑‑rw provisioning‑state? identityref
 | | +‑‑rw preference? uint8
 | | +‑‑rw reoptimize‑timer? uint16
 | | +‑‑rw source? te‑types:te‑node‑id
 | | +‑‑rw destination? te‑types:te‑node‑id
 | | +‑‑rw src‑tp‑id? binary
 | | +‑‑rw dst‑tp‑id? binary
 | | +‑‑rw bidirectional? boolean
 | | +‑‑rw association‑objects
 | | | +‑‑rw association‑object* [type ID source global‑source]
 | | | | +‑‑rw type identityref
 | | | | +‑‑rw ID uint16
 | | | | +‑‑rw source inet:ip‑address
 | | | | +‑‑rw global‑source inet:ip‑address
 | | | +‑‑rw association‑object‑extended* [type ID source
 global‑source extended‑ID]
 | | | +‑‑rw type identityref
 | | | +‑‑rw ID uint16
 | | | +‑‑rw source inet:ip‑address
 | | | +‑‑rw global‑source inet:ip‑address
 | | | +‑‑rw extended‑ID binary
 | | +‑‑rw protection
 | | | +‑‑rw enable? boolean
 | | | +‑‑rw protection‑type? identityref
 | | | +‑‑rw protection‑reversion‑disable? boolean
 | | | +‑‑rw hold‑off‑time? uint32
 | | | +‑‑rw wait‑to‑revert? uint16
 | | | +‑‑rw aps‑signal‑id? uint8
 | | +‑‑rw restoration
 | | | +‑‑rw enable? boolean
 | | | +‑‑rw restoration‑type? identityref
 | | | +‑‑rw restoration‑scheme? identityref
 | | | +‑‑rw restoration‑reversion‑disable? boolean
 | | | +‑‑rw hold‑off‑time? uint32
 | | | +‑‑rw wait‑to‑restore? uint16
 | | | +‑‑rw wait‑to‑revert? uint16
 | | +‑‑rw te‑topology‑identifier

 | | | +‑‑rw provider‑id? te‑types:te‑global‑id
 | | | +‑‑rw client‑id? te‑types:te‑global‑id
 | | | +‑‑rw topology‑id? te‑types:te‑topology‑id
 | | +‑‑rw te‑bandwidth
 | | | +‑‑rw (technology)?
 | | | +‑‑:(generic)
 | | | +‑‑rw generic? te‑bandwidth
 | | +‑‑rw link‑protection? identityref
 | | +‑‑rw setup‑priority? uint8
 | | +‑‑rw hold‑priority? uint8
 | | +‑‑rw signaling‑type? identityref
 | | +‑‑rw dependency‑tunnels
 | | | +‑‑rw dependency‑tunnel* [name]
 | | | +‑‑rw name ‑>
 ../../../../../tunnels/tunnel/name
 | | | +‑‑rw encoding? identityref
 | | | +‑‑rw switching‑type? identityref
 | | +‑‑rw hierarchical‑link
 | | | +‑‑rw local‑te‑node‑id? te‑types:te‑node‑id
 | | | +‑‑rw local‑te‑link‑tp‑id? te‑types:te‑tp‑id
 | | | +‑‑rw remote‑te‑node‑id? te‑types:te‑node‑id
 | | | +‑‑rw te‑topology‑identifier
 | | | +‑‑rw provider‑id? te‑types:te‑global‑id
 | | | +‑‑rw client‑id? te‑types:te‑global‑id
 | | | +‑‑rw topology‑id? te‑types:te‑topology‑id
 | | +‑‑ro state
 | | | +‑‑ro operational‑state? identityref
 | | | +‑‑ro te‑dev:lsp‑install‑interval? uint32
 | | | +‑‑ro te‑dev:lsp‑cleanup‑interval? uint32
 | | | +‑‑ro te‑dev:lsp‑invalidation‑interval? uint32
 | | +‑‑rw p2p‑primary‑paths
 | | | +‑‑rw p2p‑primary‑path* [name]
 | | | +‑‑rw name string
 | | | +‑‑rw path‑setup‑protocol? identityref
 | | | +‑‑rw path‑computation‑method? identityref
 | | | +‑‑rw path‑computation‑server? inet:ip‑address
 | | | +‑‑rw compute‑only? empty
 | | | +‑‑rw use‑path‑computation? boolean
 | | | +‑‑rw lockdown? empty
 | | | +‑‑rw path‑scope? identityref
 | | | +‑‑rw optimizations
 | | | | +‑‑rw (algorithm)?
 | | | | +‑‑:(metric) {path‑optimization‑metric}?
 | | | | | +‑‑rw optimization‑metric* [metric‑type]
 | | | | | | +‑‑rw metric‑type
 identityref
 | | | | | | +‑‑rw weight?
 uint8

 | | | | | | +‑‑rw explicit‑route‑exclude‑objects
 | | | | | | | +‑‑rw route‑object‑exclude‑object*
 [index]
 | | | | | | | +‑‑rw index uint32
 | | | | | | | +‑‑rw (type)?
 | | | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | | | +‑‑rw num‑unnum‑hop
 | | | | | | | | +‑‑rw node‑id?
 te‑types:te‑node‑id
 | | | | | | | | +‑‑rw link‑tp‑id?
 te‑types:te‑tp‑id
 | | | | | | | | +‑‑rw hop‑type?
 te‑hop‑type
 | | | | | | | | +‑‑rw direction?
 te‑link‑direction
 | | | | | | | +‑‑:(as‑number)
 | | | | | | | | +‑‑rw as‑number‑hop
 | | | | | | | | +‑‑rw as‑number? binary
 | | | | | | | | +‑‑rw hop‑type?
 te‑hop‑type
 | | | | | | | +‑‑:(label)
 | | | | | | | | +‑‑rw label‑hop
 | | | | | | | | +‑‑rw te‑label
 | | | | | | | | +‑‑rw (technology)?
 | | | | | | | | | +‑‑:(generic)
 | | | | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | | | | +‑‑:(srlg)
 | | | | | | | +‑‑rw srlg
 | | | | | | | +‑‑rw srlg? uint32
 | | | | | | +‑‑rw explicit‑route‑include‑objects
 | | | | | | +‑‑rw route‑object‑include‑object*
 [index]
 | | | | | | +‑‑rw index uint32
 | | | | | | +‑‑rw (type)?
 | | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | | +‑‑rw num‑unnum‑hop
 | | | | | | | +‑‑rw node‑id?
 te‑types:te‑node‑id
 | | | | | | | +‑‑rw link‑tp‑id?
 te‑types:te‑tp‑id
 | | | | | | | +‑‑rw hop‑type?
 te‑hop‑type
 | | | | | | | +‑‑rw direction?
 te‑link‑direction
 | | | | | | +‑‑:(as‑number)

 | | | | | | | +‑‑rw as‑number‑hop
 | | | | | | | +‑‑rw as‑number? binary
 | | | | | | | +‑‑rw hop‑type?
 te‑hop‑type
 | | | | | | +‑‑:(label)
 | | | | | | +‑‑rw label‑hop
 | | | | | | +‑‑rw te‑label
 | | | | | | +‑‑rw (technology)?
 | | | | | | | +‑‑:(generic)
 | | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | | +‑‑rw tiebreakers
 | | | | | +‑‑rw tiebreaker* [tiebreaker‑type]
 | | | | | +‑‑rw tiebreaker‑type identityref
 | | | | +‑‑:(objective‑function)
 {path‑optimization‑objective‑function}?
 | | | | +‑‑rw objective‑function
 | | | | +‑‑rw objective‑function‑type?
 identityref
 | | | +‑‑rw preference? uint8
 | | | +‑‑rw k‑requested‑paths? uint8
 | | | +‑‑rw named‑path‑constraint? ‑>
../../../../../globals/named‑path‑constraints/named‑path‑constraint/name
 {te‑types:named‑path‑constraints}?
 | | | +‑‑rw te‑bandwidth
 | | | | +‑‑rw (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic? te‑bandwidth
 | | | +‑‑rw link‑protection? identityref
 | | | +‑‑rw setup‑priority? uint8
 | | | +‑‑rw hold‑priority? uint8
 | | | +‑‑rw signaling‑type? identityref
 | | | +‑‑rw path‑metric‑bounds
 | | | | +‑‑rw path‑metric‑bound* [metric‑type]
 | | | | +‑‑rw metric‑type identityref
 | | | | +‑‑rw upper‑bound? uint64
 | | | +‑‑rw path‑affinities‑values
 | | | | +‑‑rw path‑affinities‑value* [usage]
 | | | | +‑‑rw usage identityref
 | | | | +‑‑rw value? admin‑groups
 | | | +‑‑rw path‑affinity‑names
 | | | | +‑‑rw path‑affinity‑name* [usage]
 | | | | +‑‑rw usage identityref
 | | | | +‑‑rw affinity‑name* [name]
 | | | | +‑‑rw name string
 | | | +‑‑rw path‑srlgs‑values

 | | | | +‑‑rw usage? identityref
 | | | | +‑‑rw values* srlg
 | | | +‑‑rw path‑srlgs‑names
 | | | | +‑‑rw path‑srlgs‑name* [usage]
 | | | | +‑‑rw usage identityref
 | | | | +‑‑rw srlg‑name* [name]
 | | | | +‑‑rw name string
 | | | +‑‑rw disjointness?
 te‑types:te‑path‑disjointness
 | | | +‑‑rw explicit‑route‑objects
 | | | | +‑‑rw route‑object‑exclude‑always* [index]
 | | | | | +‑‑rw index uint32
 | | | | | +‑‑rw (type)?
 | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | +‑‑rw num‑unnum‑hop
 | | | | | | +‑‑rw node‑id? te‑types:te‑node‑id
 | | | | | | +‑‑rw link‑tp‑id? te‑types:te‑tp‑id
 | | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | | | +‑‑rw direction? te‑link‑direction
 | | | | | +‑‑:(as‑number)
 | | | | | | +‑‑rw as‑number‑hop
 | | | | | | +‑‑rw as‑number? binary
 | | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | | +‑‑:(label)
 | | | | | +‑‑rw label‑hop
 | | | | | +‑‑rw te‑label
 | | | | | +‑‑rw (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | +‑‑rw route‑object‑include‑exclude* [index]
 | | | | +‑‑rw explicit‑route‑usage? identityref
 | | | | +‑‑rw index uint32
 | | | | +‑‑rw (type)?
 | | | | +‑‑:(num‑unnum‑hop)
 | | | | | +‑‑rw num‑unnum‑hop
 | | | | | +‑‑rw node‑id? te‑types:te‑node‑id
 | | | | | +‑‑rw link‑tp‑id? te‑types:te‑tp‑id
 | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | | +‑‑rw direction? te‑link‑direction
 | | | | +‑‑:(as‑number)
 | | | | | +‑‑rw as‑number‑hop
 | | | | | +‑‑rw as‑number? binary
 | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | +‑‑:(label)
 | | | | | +‑‑rw label‑hop

 | | | | | +‑‑rw te‑label
 | | | | | +‑‑rw (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | +‑‑:(srlg)
 | | | | +‑‑rw srlg
 | | | | +‑‑rw srlg? uint32
 | | | +‑‑rw shared‑resources‑tunnels
 | | | | +‑‑rw lsp‑shared‑resources‑tunnel* tunnel‑ref
 | | | +‑‑rw path‑in‑segment!
 | | | | +‑‑rw label‑restrictions
 | | | | +‑‑rw label‑restriction* [index]
 | | | | +‑‑rw restriction? enumeration
 | | | | +‑‑rw index uint32
 | | | | +‑‑rw label‑start
 | | | | | +‑‑rw te‑label
 | | | | | +‑‑rw (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | +‑‑rw label‑end
 | | | | | +‑‑rw te‑label
 | | | | | +‑‑rw (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | +‑‑rw label‑step
 | | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic? int32
 | | | | +‑‑rw range‑bitmap? binary
 | | | +‑‑rw path‑out‑segment!
 | | | | +‑‑rw label‑restrictions
 | | | | +‑‑rw label‑restriction* [index]
 | | | | +‑‑rw restriction? enumeration
 | | | | +‑‑rw index uint32
 | | | | +‑‑rw label‑start
 | | | | | +‑‑rw te‑label
 | | | | | +‑‑rw (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑rw generic?

 rt‑types:generalized‑label
 | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | +‑‑rw label‑end
 | | | | | +‑‑rw te‑label
 | | | | | +‑‑rw (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | +‑‑rw label‑step
 | | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic? int32
 | | | | +‑‑rw range‑bitmap? binary
 | | | +‑‑ro state
 | | | | +‑‑ro computed‑paths‑properties
 | | | | | +‑‑ro computed‑path‑properties* [k‑index]
 | | | | | +‑‑ro k‑index uint8
 | | | | | +‑‑ro path‑properties
 | | | | | +‑‑ro path‑metric* [metric‑type]
 | | | | | | +‑‑ro metric‑type ‑>
 ../state/metric‑type
 | | | | | | +‑‑ro state
 | | | | | | +‑‑ro metric‑type?
 identityref
 | | | | | | +‑‑ro accumulative‑value? uint64
 | | | | | +‑‑ro path‑affinities‑values
 | | | | | | +‑‑ro path‑affinities‑value* [usage]
 | | | | | | +‑‑ro usage identityref
 | | | | | | +‑‑ro value? admin‑groups
 | | | | | +‑‑ro path‑affinity‑names
 | | | | | | +‑‑ro path‑affinity‑name* [usage]
 | | | | | | +‑‑ro usage identityref
 | | | | | | +‑‑ro affinity‑name* [name]
 | | | | | | +‑‑ro name string
 | | | | | +‑‑ro path‑srlgs‑values
 | | | | | | +‑‑ro usage? identityref
 | | | | | | +‑‑ro values* srlg
 | | | | | +‑‑ro path‑srlgs‑names
 | | | | | | +‑‑ro path‑srlgs‑name* [usage]
 | | | | | | +‑‑ro usage identityref
 | | | | | | +‑‑ro srlg‑name* [name]
 | | | | | | +‑‑ro name string
 | | | | | +‑‑ro path‑route‑objects
 | | | | | | +‑‑ro path‑computed‑route‑object*
 [index]

 | | | | | | +‑‑ro index ‑> ../state/index
 | | | | | | +‑‑ro state
 | | | | | | +‑‑ro index?
 uint32
 | | | | | | +‑‑ro (type)?
 | | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | | +‑‑ro num‑unnum‑hop
 | | | | | | | +‑‑ro node‑id?
 te‑types:te‑node‑id
 | | | | | | | +‑‑ro link‑tp‑id?
 te‑types:te‑tp‑id
 | | | | | | | +‑‑ro hop‑type?
 te‑hop‑type
 | | | | | | | +‑‑ro direction?
 te‑link‑direction
 | | | | | | +‑‑:(as‑number)
 | | | | | | | +‑‑ro as‑number‑hop
 | | | | | | | +‑‑ro as‑number? binary
 | | | | | | | +‑‑ro hop‑type?
 te‑hop‑type
 | | | | | | +‑‑:(label)
 | | | | | | +‑‑ro label‑hop
 | | | | | | +‑‑ro te‑label
 | | | | | | +‑‑ro (technology)?
 | | | | | | | +‑‑:(generic)
 | | | | | | | +‑‑ro generic?
 rt‑types:generalized‑label
 | | | | | | +‑‑ro direction?
 te‑label‑direction
 | | | | | +‑‑ro shared‑resources‑tunnels
 | | | | | +‑‑ro lsp‑shared‑resources‑tunnel*
 tunnel‑ref
 | | | | +‑‑ro lsps
 | | | | | +‑‑ro lsp* [source destination tunnel‑id lsp‑id
 extended‑tunnel‑id]
 | | | | | +‑‑ro source
 inet:ip‑address
 | | | | | +‑‑ro destination
 inet:ip‑address
 | | | | | +‑‑ro tunnel‑id
 uint16
 | | | | | +‑‑ro lsp‑id
 uint16
 | | | | | +‑‑ro extended‑tunnel‑id
 inet:ip‑address
 | | | | | +‑‑ro operational‑state?
 identityref
 | | | | | +‑‑ro path‑setup‑protocol?

 identityref
 | | | | | +‑‑ro origin‑type?
 enumeration
 | | | | | +‑‑ro lsp‑resource‑status?
 enumeration
 | | | | | +‑‑ro lockout‑of‑normal?
 boolean
 | | | | | +‑‑ro freeze?
 boolean
 | | | | | +‑‑ro lsp‑protection‑role?
 enumeration
 | | | | | +‑‑ro lsp‑protection‑state?
 identityref
 | | | | | +‑‑ro protection‑group‑ingress‑node‑id?
 te‑types:te‑node‑id
 | | | | | +‑‑ro protection‑group‑egress‑node‑id?
 te‑types:te‑node‑id
 | | | | | +‑‑ro lsp‑shared‑resources‑tunnel?
 tunnel‑ref
 | | | | | +‑‑ro lsp‑record‑route‑subobjects
 | | | | | | +‑‑ro record‑route‑subobject* [index]
 | | | | | | +‑‑ro index uint32
 | | | | | | +‑‑ro (type)?
 | | | | | | +‑‑:(numbered)
 | | | | | | | +‑‑ro address?
 te‑types:te‑tp‑id
 | | | | | | | +‑‑ro ip‑flags? binary
 | | | | | | +‑‑:(unnumbered)
 | | | | | | | +‑‑ro node‑id?
 te‑types:te‑node‑id
 | | | | | | | +‑‑ro link‑tp‑id?
 te‑types:te‑tp‑id
 | | | | | | +‑‑:(label)
 | | | | | | +‑‑ro label‑hop
 | | | | | | +‑‑ro te‑label
 | | | | | | | +‑‑ro (technology)?
 | | | | | | | | +‑‑:(generic)
 | | | | | | | | +‑‑ro generic?
 rt‑types:generalized‑label
 | | | | | | | +‑‑ro direction?
 te‑label‑direction
 | | | | | | +‑‑ro label‑flags? binary
 | | | | | +‑‑ro path‑properties
 | | | | | | +‑‑ro path‑metric* [metric‑type]
 | | | | | | | +‑‑ro metric‑type ‑>
 ../state/metric‑type
 | | | | | | | +‑‑ro state
 | | | | | | | +‑‑ro metric‑type?

 identityref
 | | | | | | | +‑‑ro accumulative‑value? uint64
 | | | | | | +‑‑ro path‑affinities‑values
 | | | | | | | +‑‑ro path‑affinities‑value* [usage]
 | | | | | | | +‑‑ro usage identityref
 | | | | | | | +‑‑ro value? admin‑groups
 | | | | | | +‑‑ro path‑affinity‑names
 | | | | | | | +‑‑ro path‑affinity‑name* [usage]
 | | | | | | | +‑‑ro usage identityref
 | | | | | | | +‑‑ro affinity‑name* [name]
 | | | | | | | +‑‑ro name string
 | | | | | | +‑‑ro path‑srlgs‑values
 | | | | | | | +‑‑ro usage? identityref
 | | | | | | | +‑‑ro values* srlg
 | | | | | | +‑‑ro path‑srlgs‑names
 | | | | | | | +‑‑ro path‑srlgs‑name* [usage]
 | | | | | | | +‑‑ro usage identityref
 | | | | | | | +‑‑ro srlg‑name* [name]
 | | | | | | | +‑‑ro name string
 | | | | | | +‑‑ro path‑route‑objects
 | | | | | | | +‑‑ro path‑computed‑route‑object*
 [index]
 | | | | | | | +‑‑ro index ‑> ../state/index
 | | | | | | | +‑‑ro state
 | | | | | | | +‑‑ro index?
 uint32
 | | | | | | | +‑‑ro (type)?
 | | | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | | | +‑‑ro num‑unnum‑hop
 | | | | | | | | +‑‑ro node‑id?
 te‑types:te‑node‑id
 | | | | | | | | +‑‑ro link‑tp‑id?
 te‑types:te‑tp‑id
 | | | | | | | | +‑‑ro hop‑type?
 te‑hop‑type
 | | | | | | | | +‑‑ro direction?
 te‑link‑direction
 | | | | | | | +‑‑:(as‑number)
 | | | | | | | | +‑‑ro as‑number‑hop
 | | | | | | | | +‑‑ro as‑number? binary
 | | | | | | | | +‑‑ro hop‑type?
 te‑hop‑type
 | | | | | | | +‑‑:(label)
 | | | | | | | +‑‑ro label‑hop
 | | | | | | | +‑‑ro te‑label
 | | | | | | | +‑‑ro (technology)?
 | | | | | | | | +‑‑:(generic)
 | | | | | | | | +‑‑ro generic?

 rt‑types:generalized‑label
 | | | | | | | +‑‑ro direction?
 te‑label‑direction
 | | | | | | +‑‑ro shared‑resources‑tunnels
 | | | | | | +‑‑ro lsp‑shared‑resources‑tunnel*
 tunnel‑ref
 | | | | | +‑‑ro te‑dev:lsp‑timers
 | | | | | | +‑‑ro te‑dev:life‑time? uint32
 | | | | | | +‑‑ro te‑dev:time‑to‑install? uint32
 | | | | | | +‑‑ro te‑dev:time‑to‑destroy? uint32
 | | | | | +‑‑ro te‑dev:downstream‑info
 | | | | | | +‑‑ro te‑dev:nhop?
 inet:ip‑address
 | | | | | | +‑‑ro te‑dev:outgoing‑interface?
 if:interface‑ref
 | | | | | | +‑‑ro te‑dev:neighbor?
 inet:ip‑address
 | | | | | | +‑‑ro te‑dev:label?
 rt‑types:generalized‑label
 | | | | | +‑‑ro te‑dev:upstream‑info
 | | | | | | +‑‑ro te‑dev:phop? inet:ip‑address
 | | | | | | +‑‑ro te‑dev:neighbor? inet:ip‑address
 | | | | | | +‑‑ro te‑dev:label?
 rt‑types:generalized‑label
 | | | | | +‑‑ro te‑mpls:performance‑metric‑one‑way
 | | | | | | +‑‑ro te‑mpls:one‑way‑delay?
 uint32
 | | | | | | +‑‑ro te‑mpls:one‑way‑min‑delay?
 uint32
 | | | | | | +‑‑ro te‑mpls:one‑way‑max‑delay?
 uint32
 | | | | | | +‑‑ro te‑mpls:one‑way‑delay‑variation?
 uint32
 | | | | | | +‑‑ro te‑mpls:one‑way‑packet‑loss?
 decimal64
 | | | | | | +‑‑ro te‑mpls:one‑way‑residual‑bandwidth?
 rt‑types:bandwidth‑ieee‑float32
 | | | | | | +‑‑ro te‑mpls:one‑way‑available‑bandwidth?
 rt‑types:bandwidth‑ieee‑float32
 | | | | | | +‑‑ro te‑mpls:one‑way‑utilized‑bandwidth?
 rt‑types:bandwidth‑ieee‑float32
 | | | | | +‑‑ro te‑mpls:performance‑metric‑two‑way
 | | | | | +‑‑ro te‑mpls:two‑way‑delay?
 uint32
 | | | | | +‑‑ro te‑mpls:two‑way‑min‑delay?
 uint32
 | | | | | +‑‑ro te‑mpls:two‑way‑max‑delay?
 uint32

 | | | | | +‑‑ro te‑mpls:two‑way‑delay‑variation?
 uint32
 | | | | | +‑‑ro te‑mpls:two‑way‑packet‑loss?
 decimal64
 | | | | +‑‑ro te‑mpls:static‑lsp‑name?
 mpls‑static:static‑lsp‑ref
 | | | +‑‑rw p2p‑reverse‑primary‑path
 | | | | +‑‑rw name? string
 | | | | +‑‑rw path‑setup‑protocol? identityref
 | | | | +‑‑rw path‑computation‑method? identityref
 | | | | +‑‑rw path‑computation‑server? inet:ip‑address
 | | | | +‑‑rw compute‑only? empty
 | | | | +‑‑rw use‑path‑computation? boolean
 | | | | +‑‑rw lockdown? empty
 | | | | +‑‑rw path‑scope? identityref
 | | | | +‑‑rw optimizations
 | | | | | +‑‑rw (algorithm)?
 | | | | | +‑‑:(metric) {path‑optimization‑metric}?
 | | | | | | +‑‑rw optimization‑metric* [metric‑type]
 | | | | | | | +‑‑rw metric‑type
 identityref
 | | | | | | | +‑‑rw weight?
 uint8
 | | | | | | | +‑‑rw explicit‑route‑exclude‑objects
 | | | | | | | | +‑‑rw route‑object‑exclude‑object*
 [index]
 | | | | | | | | +‑‑rw index
 uint32
 | | | | | | | | +‑‑rw (type)?
 | | | | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | | | | +‑‑rw num‑unnum‑hop
 | | | | | | | | | +‑‑rw node‑id?
 te‑types:te‑node‑id
 | | | | | | | | | +‑‑rw link‑tp‑id?
 te‑types:te‑tp‑id
 | | | | | | | | | +‑‑rw hop‑type?
 te‑hop‑type
 | | | | | | | | | +‑‑rw direction?
 te‑link‑direction
 | | | | | | | | +‑‑:(as‑number)
 | | | | | | | | | +‑‑rw as‑number‑hop
 | | | | | | | | | +‑‑rw as‑number? binary
 | | | | | | | | | +‑‑rw hop‑type?
 te‑hop‑type
 | | | | | | | | +‑‑:(label)
 | | | | | | | | | +‑‑rw label‑hop
 | | | | | | | | | +‑‑rw te‑label
 | | | | | | | | | +‑‑rw (technology)?

 | | | | | | | | | | +‑‑:(generic)
 | | | | | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | | | | | +‑‑:(srlg)
 | | | | | | | | +‑‑rw srlg
 | | | | | | | | +‑‑rw srlg? uint32
 | | | | | | | +‑‑rw explicit‑route‑include‑objects
 | | | | | | | +‑‑rw route‑object‑include‑object*
 [index]
 | | | | | | | +‑‑rw index
 uint32
 | | | | | | | +‑‑rw (type)?
 | | | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | | | +‑‑rw num‑unnum‑hop
 | | | | | | | | +‑‑rw node‑id?
 te‑types:te‑node‑id
 | | | | | | | | +‑‑rw link‑tp‑id?
 te‑types:te‑tp‑id
 | | | | | | | | +‑‑rw hop‑type?
 te‑hop‑type
 | | | | | | | | +‑‑rw direction?
 te‑link‑direction
 | | | | | | | +‑‑:(as‑number)
 | | | | | | | | +‑‑rw as‑number‑hop
 | | | | | | | | +‑‑rw as‑number? binary
 | | | | | | | | +‑‑rw hop‑type?
 te‑hop‑type
 | | | | | | | +‑‑:(label)
 | | | | | | | +‑‑rw label‑hop
 | | | | | | | +‑‑rw te‑label
 | | | | | | | +‑‑rw (technology)?
 | | | | | | | | +‑‑:(generic)
 | | | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | | | +‑‑rw tiebreakers
 | | | | | | +‑‑rw tiebreaker* [tiebreaker‑type]
 | | | | | | +‑‑rw tiebreaker‑type identityref
 | | | | | +‑‑:(objective‑function)
 {path‑optimization‑objective‑function}?
 | | | | | +‑‑rw objective‑function
 | | | | | +‑‑rw objective‑function‑type?
 identityref
 | | | | +‑‑rw named‑path‑constraint? ‑>
./../../../../globals/named‑path‑constraints/named‑path‑constraint/name

 {te‑types:named‑path‑constraints}?
 | | | | +‑‑rw te‑bandwidth
 | | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic? te‑bandwidth
 | | | | +‑‑rw link‑protection? identityref
 | | | | +‑‑rw setup‑priority? uint8
 | | | | +‑‑rw hold‑priority? uint8
 | | | | +‑‑rw signaling‑type? identityref
 | | | | +‑‑rw path‑metric‑bounds
 | | | | | +‑‑rw path‑metric‑bound* [metric‑type]
 | | | | | +‑‑rw metric‑type identityref
 | | | | | +‑‑rw upper‑bound? uint64
 | | | | +‑‑rw path‑affinities‑values
 | | | | | +‑‑rw path‑affinities‑value* [usage]
 | | | | | +‑‑rw usage identityref
 | | | | | +‑‑rw value? admin‑groups
 | | | | +‑‑rw path‑affinity‑names
 | | | | | +‑‑rw path‑affinity‑name* [usage]
 | | | | | +‑‑rw usage identityref
 | | | | | +‑‑rw affinity‑name* [name]
 | | | | | +‑‑rw name string
 | | | | +‑‑rw path‑srlgs‑values
 | | | | | +‑‑rw usage? identityref
 | | | | | +‑‑rw values* srlg
 | | | | +‑‑rw path‑srlgs‑names
 | | | | | +‑‑rw path‑srlgs‑name* [usage]
 | | | | | +‑‑rw usage identityref
 | | | | | +‑‑rw srlg‑name* [name]
 | | | | | +‑‑rw name string
 | | | | +‑‑rw disjointness?
 te‑types:te‑path‑disjointness
 | | | | +‑‑rw explicit‑route‑objects
 | | | | | +‑‑rw route‑object‑exclude‑always* [index]
 | | | | | | +‑‑rw index uint32
 | | | | | | +‑‑rw (type)?
 | | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | | +‑‑rw num‑unnum‑hop
 | | | | | | | +‑‑rw node‑id?
 te‑types:te‑node‑id
 | | | | | | | +‑‑rw link‑tp‑id? te‑types:te‑tp‑id
 | | | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | | | | +‑‑rw direction? te‑link‑direction
 | | | | | | +‑‑:(as‑number)
 | | | | | | | +‑‑rw as‑number‑hop
 | | | | | | | +‑‑rw as‑number? binary
 | | | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | | | +‑‑:(label)

 | | | | | | +‑‑rw label‑hop
 | | | | | | +‑‑rw te‑label
 | | | | | | +‑‑rw (technology)?
 | | | | | | | +‑‑:(generic)
 | | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | | +‑‑rw route‑object‑include‑exclude* [index]
 | | | | | +‑‑rw explicit‑route‑usage? identityref
 | | | | | +‑‑rw index uint32
 | | | | | +‑‑rw (type)?
 | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | +‑‑rw num‑unnum‑hop
 | | | | | | +‑‑rw node‑id?
 te‑types:te‑node‑id
 | | | | | | +‑‑rw link‑tp‑id? te‑types:te‑tp‑id
 | | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | | | +‑‑rw direction? te‑link‑direction
 | | | | | +‑‑:(as‑number)
 | | | | | | +‑‑rw as‑number‑hop
 | | | | | | +‑‑rw as‑number? binary
 | | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | | +‑‑:(label)
 | | | | | | +‑‑rw label‑hop
 | | | | | | +‑‑rw te‑label
 | | | | | | +‑‑rw (technology)?
 | | | | | | | +‑‑:(generic)
 | | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | | +‑‑:(srlg)
 | | | | | +‑‑rw srlg
 | | | | | +‑‑rw srlg? uint32
 | | | | +‑‑rw shared‑resources‑tunnels
 | | | | | +‑‑rw lsp‑shared‑resources‑tunnel* tunnel‑ref
 | | | | +‑‑rw path‑in‑segment!
 | | | | | +‑‑rw label‑restrictions
 | | | | | +‑‑rw label‑restriction* [index]
 | | | | | +‑‑rw restriction? enumeration
 | | | | | +‑‑rw index uint32
 | | | | | +‑‑rw label‑start
 | | | | | | +‑‑rw te‑label
 | | | | | | +‑‑rw (technology)?
 | | | | | | | +‑‑:(generic)
 | | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label

 | | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | | +‑‑rw label‑end
 | | | | | | +‑‑rw te‑label
 | | | | | | +‑‑rw (technology)?
 | | | | | | | +‑‑:(generic)
 | | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | | +‑‑rw label‑step
 | | | | | | +‑‑rw (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑rw generic? int32
 | | | | | +‑‑rw range‑bitmap? binary
 | | | | +‑‑rw path‑out‑segment!
 | | | | | +‑‑rw label‑restrictions
 | | | | | +‑‑rw label‑restriction* [index]
 | | | | | +‑‑rw restriction? enumeration
 | | | | | +‑‑rw index uint32
 | | | | | +‑‑rw label‑start
 | | | | | | +‑‑rw te‑label
 | | | | | | +‑‑rw (technology)?
 | | | | | | | +‑‑:(generic)
 | | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | | +‑‑rw label‑end
 | | | | | | +‑‑rw te‑label
 | | | | | | +‑‑rw (technology)?
 | | | | | | | +‑‑:(generic)
 | | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | | +‑‑rw label‑step
 | | | | | | +‑‑rw (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑rw generic? int32
 | | | | | +‑‑rw range‑bitmap? binary
 | | | | +‑‑ro state
 | | | | | +‑‑ro computed‑paths‑properties
 | | | | | | +‑‑ro computed‑path‑properties* [k‑index]
 | | | | | | +‑‑ro k‑index uint8
 | | | | | | +‑‑ro path‑properties
 | | | | | | +‑‑ro path‑metric* [metric‑type]
 | | | | | | | +‑‑ro metric‑type ‑>

 ../state/metric‑type
 | | | | | | | +‑‑ro state
 | | | | | | | +‑‑ro metric‑type?
 identityref
 | | | | | | | +‑‑ro accumulative‑value? uint64
 | | | | | | +‑‑ro path‑affinities‑values
 | | | | | | | +‑‑ro path‑affinities‑value* [usage]
 | | | | | | | +‑‑ro usage identityref
 | | | | | | | +‑‑ro value? admin‑groups
 | | | | | | +‑‑ro path‑affinity‑names
 | | | | | | | +‑‑ro path‑affinity‑name* [usage]
 | | | | | | | +‑‑ro usage identityref
 | | | | | | | +‑‑ro affinity‑name* [name]
 | | | | | | | +‑‑ro name string
 | | | | | | +‑‑ro path‑srlgs‑values
 | | | | | | | +‑‑ro usage? identityref
 | | | | | | | +‑‑ro values* srlg
 | | | | | | +‑‑ro path‑srlgs‑names
 | | | | | | | +‑‑ro path‑srlgs‑name* [usage]
 | | | | | | | +‑‑ro usage identityref
 | | | | | | | +‑‑ro srlg‑name* [name]
 | | | | | | | +‑‑ro name string
 | | | | | | +‑‑ro path‑route‑objects
 | | | | | | | +‑‑ro path‑computed‑route‑object*
 [index]
 | | | | | | | +‑‑ro index ‑> ../state/index
 | | | | | | | +‑‑ro state
 | | | | | | | +‑‑ro index?
 uint32
 | | | | | | | +‑‑ro (type)?
 | | | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | | | +‑‑ro num‑unnum‑hop
 | | | | | | | | +‑‑ro node‑id?
 te‑types:te‑node‑id
 | | | | | | | | +‑‑ro link‑tp‑id?
 te‑types:te‑tp‑id
 | | | | | | | | +‑‑ro hop‑type?
 te‑hop‑type
 | | | | | | | | +‑‑ro direction?
 te‑link‑direction
 | | | | | | | +‑‑:(as‑number)
 | | | | | | | | +‑‑ro as‑number‑hop
 | | | | | | | | +‑‑ro as‑number?
 binary
 | | | | | | | | +‑‑ro hop‑type?
 te‑hop‑type
 | | | | | | | +‑‑:(label)
 | | | | | | | +‑‑ro label‑hop

 | | | | | | | +‑‑ro te‑label
 | | | | | | | +‑‑ro (technology)?
 | | | | | | | | +‑‑:(generic)
 | | | | | | | | +‑‑ro
 generic? rt‑types:generalized‑label
 | | | | | | | +‑‑ro direction?
 te‑label‑direction
 | | | | | | +‑‑ro shared‑resources‑tunnels
 | | | | | | +‑‑ro lsp‑shared‑resources‑tunnel*
 tunnel‑ref
 | | | | | +‑‑ro lsps
 | | | | | +‑‑ro lsp* [source destination tunnel‑id
 lsp‑id extended‑tunnel‑id]
 | | | | | +‑‑ro source
 inet:ip‑address
 | | | | | +‑‑ro destination
 inet:ip‑address
 | | | | | +‑‑ro tunnel‑id
 uint16
 | | | | | +‑‑ro lsp‑id
 uint16
 | | | | | +‑‑ro extended‑tunnel‑id
 inet:ip‑address
 | | | | | +‑‑ro operational‑state?
 identityref
 | | | | | +‑‑ro path‑setup‑protocol?
 identityref
 | | | | | +‑‑ro origin‑type?
 enumeration
 | | | | | +‑‑ro lsp‑resource‑status?
 enumeration
 | | | | | +‑‑ro lockout‑of‑normal?
 boolean
 | | | | | +‑‑ro freeze?
 boolean
 | | | | | +‑‑ro lsp‑protection‑role?
 enumeration
 | | | | | +‑‑ro lsp‑protection‑state?
 identityref
 | | | | | +‑‑ro protection‑group‑ingress‑node‑id?
 te‑types:te‑node‑id
 | | | | | +‑‑ro protection‑group‑egress‑node‑id?
 te‑types:te‑node‑id
 | | | | | +‑‑ro lsp‑shared‑resources‑tunnel?
 tunnel‑ref
 | | | | | +‑‑ro lsp‑record‑route‑subobjects
 | | | | | | +‑‑ro record‑route‑subobject* [index]
 | | | | | | +‑‑ro index uint32

 | | | | | | +‑‑ro (type)?
 | | | | | | +‑‑:(numbered)
 | | | | | | | +‑‑ro address?
 te‑types:te‑tp‑id
 | | | | | | | +‑‑ro ip‑flags? binary
 | | | | | | +‑‑:(unnumbered)
 | | | | | | | +‑‑ro node‑id?
 te‑types:te‑node‑id
 | | | | | | | +‑‑ro link‑tp‑id?
 te‑types:te‑tp‑id
 | | | | | | +‑‑:(label)
 | | | | | | +‑‑ro label‑hop
 | | | | | | +‑‑ro te‑label
 | | | | | | | +‑‑ro (technology)?
 | | | | | | | | +‑‑:(generic)
 | | | | | | | | +‑‑ro generic?
 rt‑types:generalized‑label
 | | | | | | | +‑‑ro direction?
 te‑label‑direction
 | | | | | | +‑‑ro label‑flags? binary
 | | | | | +‑‑ro path‑properties
 | | | | | +‑‑ro path‑metric* [metric‑type]
 | | | | | | +‑‑ro metric‑type ‑>
 ../state/metric‑type
 | | | | | | +‑‑ro state
 | | | | | | +‑‑ro metric‑type?
 identityref
 | | | | | | +‑‑ro accumulative‑value? uint64
 | | | | | +‑‑ro path‑affinities‑values
 | | | | | | +‑‑ro path‑affinities‑value* [usage]
 | | | | | | +‑‑ro usage identityref
 | | | | | | +‑‑ro value? admin‑groups
 | | | | | +‑‑ro path‑affinity‑names
 | | | | | | +‑‑ro path‑affinity‑name* [usage]
 | | | | | | +‑‑ro usage identityref
 | | | | | | +‑‑ro affinity‑name* [name]
 | | | | | | +‑‑ro name string
 | | | | | +‑‑ro path‑srlgs‑values
 | | | | | | +‑‑ro usage? identityref
 | | | | | | +‑‑ro values* srlg
 | | | | | +‑‑ro path‑srlgs‑names
 | | | | | | +‑‑ro path‑srlgs‑name* [usage]
 | | | | | | +‑‑ro usage identityref
 | | | | | | +‑‑ro srlg‑name* [name]
 | | | | | | +‑‑ro name string
 | | | | | +‑‑ro path‑route‑objects
 | | | | | | +‑‑ro path‑computed‑route‑object*
 [index]

 | | | | | | +‑‑ro index ‑> ../state/index
 | | | | | | +‑‑ro state
 | | | | | | +‑‑ro index?
 uint32
 | | | | | | +‑‑ro (type)?
 | | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | | +‑‑ro num‑unnum‑hop
 | | | | | | | +‑‑ro node‑id?
 te‑types:te‑node‑id
 | | | | | | | +‑‑ro link‑tp‑id?
 te‑types:te‑tp‑id
 | | | | | | | +‑‑ro hop‑type?
 te‑hop‑type
 | | | | | | | +‑‑ro direction?
 te‑link‑direction
 | | | | | | +‑‑:(as‑number)
 | | | | | | | +‑‑ro as‑number‑hop
 | | | | | | | +‑‑ro as‑number?
 binary
 | | | | | | | +‑‑ro hop‑type?
 te‑hop‑type
 | | | | | | +‑‑:(label)
 | | | | | | +‑‑ro label‑hop
 | | | | | | +‑‑ro te‑label
 | | | | | | +‑‑ro (technology)?
 | | | | | | | +‑‑:(generic)
 | | | | | | | +‑‑ro
 generic? rt‑types:generalized‑label
 | | | | | | +‑‑ro direction?
 te‑label‑direction
 | | | | | +‑‑ro shared‑resources‑tunnels
 | | | | | +‑‑ro lsp‑shared‑resources‑tunnel*
 tunnel‑ref
 | | | | +‑‑rw p2p‑reverse‑secondary‑path
 | | | | +‑‑rw secondary‑path? ‑>
 ../../../../../p2p‑secondary‑paths/p2p‑secondary‑path/name
 | | | | +‑‑rw path‑setup‑protocol? identityref
 | | | +‑‑rw candidate‑p2p‑secondary‑paths
 | | | | +‑‑rw candidate‑p2p‑secondary‑path* [secondary‑path]
 | | | | +‑‑rw secondary‑path ‑>
 ../../../../../p2p‑secondary‑paths/p2p‑secondary‑path/name
 | | | | +‑‑rw path‑setup‑protocol? identityref
 | | | | +‑‑ro state
 | | | | +‑‑ro active? boolean
 | | | +‑‑rw te‑mpls:static‑lsp‑name?
 mpls‑static:static‑lsp‑ref
 | | +‑‑rw p2p‑secondary‑paths
 | | | +‑‑rw p2p‑secondary‑path* [name]

 | | | +‑‑rw name string
 | | | +‑‑rw path‑setup‑protocol? identityref
 | | | +‑‑rw path‑computation‑method? identityref
 | | | +‑‑rw path‑computation‑server? inet:ip‑address
 | | | +‑‑rw compute‑only? empty
 | | | +‑‑rw use‑path‑computation? boolean
 | | | +‑‑rw lockdown? empty
 | | | +‑‑rw path‑scope? identityref
 | | | +‑‑rw optimizations
 | | | | +‑‑rw (algorithm)?
 | | | | +‑‑:(metric) {path‑optimization‑metric}?
 | | | | | +‑‑rw optimization‑metric* [metric‑type]
 | | | | | | +‑‑rw metric‑type
 identityref
 | | | | | | +‑‑rw weight?
 uint8
 | | | | | | +‑‑rw explicit‑route‑exclude‑objects
 | | | | | | | +‑‑rw route‑object‑exclude‑object*
 [index]
 | | | | | | | +‑‑rw index uint32
 | | | | | | | +‑‑rw (type)?
 | | | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | | | +‑‑rw num‑unnum‑hop
 | | | | | | | | +‑‑rw node‑id?
 te‑types:te‑node‑id
 | | | | | | | | +‑‑rw link‑tp‑id?
 te‑types:te‑tp‑id
 | | | | | | | | +‑‑rw hop‑type?
 te‑hop‑type
 | | | | | | | | +‑‑rw direction?
 te‑link‑direction
 | | | | | | | +‑‑:(as‑number)
 | | | | | | | | +‑‑rw as‑number‑hop
 | | | | | | | | +‑‑rw as‑number? binary
 | | | | | | | | +‑‑rw hop‑type?
 te‑hop‑type
 | | | | | | | +‑‑:(label)
 | | | | | | | | +‑‑rw label‑hop
 | | | | | | | | +‑‑rw te‑label
 | | | | | | | | +‑‑rw (technology)?
 | | | | | | | | | +‑‑:(generic)
 | | | | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | | | | +‑‑:(srlg)
 | | | | | | | +‑‑rw srlg
 | | | | | | | +‑‑rw srlg? uint32

 | | | | | | +‑‑rw explicit‑route‑include‑objects
 | | | | | | +‑‑rw route‑object‑include‑object*
 [index]
 | | | | | | +‑‑rw index uint32
 | | | | | | +‑‑rw (type)?
 | | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | | +‑‑rw num‑unnum‑hop
 | | | | | | | +‑‑rw node‑id?
 te‑types:te‑node‑id
 | | | | | | | +‑‑rw link‑tp‑id?
 te‑types:te‑tp‑id
 | | | | | | | +‑‑rw hop‑type?
 te‑hop‑type
 | | | | | | | +‑‑rw direction?
 te‑link‑direction
 | | | | | | +‑‑:(as‑number)
 | | | | | | | +‑‑rw as‑number‑hop
 | | | | | | | +‑‑rw as‑number? binary
 | | | | | | | +‑‑rw hop‑type?
 te‑hop‑type
 | | | | | | +‑‑:(label)
 | | | | | | +‑‑rw label‑hop
 | | | | | | +‑‑rw te‑label
 | | | | | | +‑‑rw (technology)?
 | | | | | | | +‑‑:(generic)
 | | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | | +‑‑rw tiebreakers
 | | | | | +‑‑rw tiebreaker* [tiebreaker‑type]
 | | | | | +‑‑rw tiebreaker‑type identityref
 | | | | +‑‑:(objective‑function)
 {path‑optimization‑objective‑function}?
 | | | | +‑‑rw objective‑function
 | | | | +‑‑rw objective‑function‑type?
 identityref
 | | | +‑‑rw preference? uint8
 | | | +‑‑rw k‑requested‑paths? uint8
 | | | +‑‑rw named‑path‑constraint? ‑>
../../../../../globals/named‑path‑constraints/named‑path‑constraint/name
 {te‑types:named‑path‑constraints}?
 | | | +‑‑rw te‑bandwidth
 | | | | +‑‑rw (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic? te‑bandwidth
 | | | +‑‑rw link‑protection? identityref
 | | | +‑‑rw setup‑priority? uint8

 | | | +‑‑rw hold‑priority? uint8
 | | | +‑‑rw signaling‑type? identityref
 | | | +‑‑rw path‑metric‑bounds
 | | | | +‑‑rw path‑metric‑bound* [metric‑type]
 | | | | +‑‑rw metric‑type identityref
 | | | | +‑‑rw upper‑bound? uint64
 | | | +‑‑rw path‑affinities‑values
 | | | | +‑‑rw path‑affinities‑value* [usage]
 | | | | +‑‑rw usage identityref
 | | | | +‑‑rw value? admin‑groups
 | | | +‑‑rw path‑affinity‑names
 | | | | +‑‑rw path‑affinity‑name* [usage]
 | | | | +‑‑rw usage identityref
 | | | | +‑‑rw affinity‑name* [name]
 | | | | +‑‑rw name string
 | | | +‑‑rw path‑srlgs‑values
 | | | | +‑‑rw usage? identityref
 | | | | +‑‑rw values* srlg
 | | | +‑‑rw path‑srlgs‑names
 | | | | +‑‑rw path‑srlgs‑name* [usage]
 | | | | +‑‑rw usage identityref
 | | | | +‑‑rw srlg‑name* [name]
 | | | | +‑‑rw name string
 | | | +‑‑rw disjointness?
 te‑types:te‑path‑disjointness
 | | | +‑‑rw explicit‑route‑objects
 | | | | +‑‑rw route‑object‑exclude‑always* [index]
 | | | | | +‑‑rw index uint32
 | | | | | +‑‑rw (type)?
 | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | +‑‑rw num‑unnum‑hop
 | | | | | | +‑‑rw node‑id? te‑types:te‑node‑id
 | | | | | | +‑‑rw link‑tp‑id? te‑types:te‑tp‑id
 | | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | | | +‑‑rw direction? te‑link‑direction
 | | | | | +‑‑:(as‑number)
 | | | | | | +‑‑rw as‑number‑hop
 | | | | | | +‑‑rw as‑number? binary
 | | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | | +‑‑:(label)
 | | | | | +‑‑rw label‑hop
 | | | | | +‑‑rw te‑label
 | | | | | +‑‑rw (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | +‑‑rw direction?
 te‑label‑direction

 | | | | +‑‑rw route‑object‑include‑exclude* [index]
 | | | | +‑‑rw explicit‑route‑usage? identityref
 | | | | +‑‑rw index uint32
 | | | | +‑‑rw (type)?
 | | | | +‑‑:(num‑unnum‑hop)
 | | | | | +‑‑rw num‑unnum‑hop
 | | | | | +‑‑rw node‑id? te‑types:te‑node‑id
 | | | | | +‑‑rw link‑tp‑id? te‑types:te‑tp‑id
 | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | | +‑‑rw direction? te‑link‑direction
 | | | | +‑‑:(as‑number)
 | | | | | +‑‑rw as‑number‑hop
 | | | | | +‑‑rw as‑number? binary
 | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | +‑‑:(label)
 | | | | | +‑‑rw label‑hop
 | | | | | +‑‑rw te‑label
 | | | | | +‑‑rw (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | +‑‑:(srlg)
 | | | | +‑‑rw srlg
 | | | | +‑‑rw srlg? uint32
 | | | +‑‑rw shared‑resources‑tunnels
 | | | | +‑‑rw lsp‑shared‑resources‑tunnel* tunnel‑ref
 | | | +‑‑rw path‑in‑segment!
 | | | | +‑‑rw label‑restrictions
 | | | | +‑‑rw label‑restriction* [index]
 | | | | +‑‑rw restriction? enumeration
 | | | | +‑‑rw index uint32
 | | | | +‑‑rw label‑start
 | | | | | +‑‑rw te‑label
 | | | | | +‑‑rw (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | +‑‑rw label‑end
 | | | | | +‑‑rw te‑label
 | | | | | +‑‑rw (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | +‑‑rw direction?

 te‑label‑direction
 | | | | +‑‑rw label‑step
 | | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic? int32
 | | | | +‑‑rw range‑bitmap? binary
 | | | +‑‑rw path‑out‑segment!
 | | | | +‑‑rw label‑restrictions
 | | | | +‑‑rw label‑restriction* [index]
 | | | | +‑‑rw restriction? enumeration
 | | | | +‑‑rw index uint32
 | | | | +‑‑rw label‑start
 | | | | | +‑‑rw te‑label
 | | | | | +‑‑rw (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | +‑‑rw label‑end
 | | | | | +‑‑rw te‑label
 | | | | | +‑‑rw (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑rw generic?
 rt‑types:generalized‑label
 | | | | | +‑‑rw direction?
 te‑label‑direction
 | | | | +‑‑rw label‑step
 | | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic? int32
 | | | | +‑‑rw range‑bitmap? binary
 | | | +‑‑rw protection
 | | | | +‑‑rw enable? boolean
 | | | | +‑‑rw protection‑type? identityref
 | | | | +‑‑rw protection‑reversion‑disable? boolean
 | | | | +‑‑rw hold‑off‑time? uint32
 | | | | +‑‑rw wait‑to‑revert? uint16
 | | | | +‑‑rw aps‑signal‑id? uint8
 | | | +‑‑rw restoration
 | | | | +‑‑rw enable? boolean
 | | | | +‑‑rw restoration‑type? identityref
 | | | | +‑‑rw restoration‑scheme? identityref
 | | | | +‑‑rw restoration‑reversion‑disable? boolean
 | | | | +‑‑rw hold‑off‑time? uint32
 | | | | +‑‑rw wait‑to‑restore? uint16
 | | | | +‑‑rw wait‑to‑revert? uint16
 | | | +‑‑ro state

 | | | | +‑‑ro computed‑paths‑properties
 | | | | | +‑‑ro computed‑path‑properties* [k‑index]
 | | | | | +‑‑ro k‑index uint8
 | | | | | +‑‑ro path‑properties
 | | | | | +‑‑ro path‑metric* [metric‑type]
 | | | | | | +‑‑ro metric‑type ‑>
 ../state/metric‑type
 | | | | | | +‑‑ro state
 | | | | | | +‑‑ro metric‑type?
 identityref
 | | | | | | +‑‑ro accumulative‑value? uint64
 | | | | | +‑‑ro path‑affinities‑values
 | | | | | | +‑‑ro path‑affinities‑value* [usage]
 | | | | | | +‑‑ro usage identityref
 | | | | | | +‑‑ro value? admin‑groups
 | | | | | +‑‑ro path‑affinity‑names
 | | | | | | +‑‑ro path‑affinity‑name* [usage]
 | | | | | | +‑‑ro usage identityref
 | | | | | | +‑‑ro affinity‑name* [name]
 | | | | | | +‑‑ro name string
 | | | | | +‑‑ro path‑srlgs‑values
 | | | | | | +‑‑ro usage? identityref
 | | | | | | +‑‑ro values* srlg
 | | | | | +‑‑ro path‑srlgs‑names
 | | | | | | +‑‑ro path‑srlgs‑name* [usage]
 | | | | | | +‑‑ro usage identityref
 | | | | | | +‑‑ro srlg‑name* [name]
 | | | | | | +‑‑ro name string
 | | | | | +‑‑ro path‑route‑objects
 | | | | | | +‑‑ro path‑computed‑route‑object*
 [index]
 | | | | | | +‑‑ro index ‑> ../state/index
 | | | | | | +‑‑ro state
 | | | | | | +‑‑ro index?
 uint32
 | | | | | | +‑‑ro (type)?
 | | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | | +‑‑ro num‑unnum‑hop
 | | | | | | | +‑‑ro node‑id?
 te‑types:te‑node‑id
 | | | | | | | +‑‑ro link‑tp‑id?
 te‑types:te‑tp‑id
 | | | | | | | +‑‑ro hop‑type?
 te‑hop‑type
 | | | | | | | +‑‑ro direction?
 te‑link‑direction
 | | | | | | +‑‑:(as‑number)
 | | | | | | | +‑‑ro as‑number‑hop

 | | | | | | | +‑‑ro as‑number? binary
 | | | | | | | +‑‑ro hop‑type?
 te‑hop‑type
 | | | | | | +‑‑:(label)
 | | | | | | +‑‑ro label‑hop
 | | | | | | +‑‑ro te‑label
 | | | | | | +‑‑ro (technology)?
 | | | | | | | +‑‑:(generic)
 | | | | | | | +‑‑ro generic?
 rt‑types:generalized‑label
 | | | | | | +‑‑ro direction?
 te‑label‑direction
 | | | | | +‑‑ro shared‑resources‑tunnels
 | | | | | +‑‑ro lsp‑shared‑resources‑tunnel*
 tunnel‑ref
 | | | | +‑‑ro lsps
 | | | | | +‑‑ro lsp* [source destination tunnel‑id lsp‑id
 extended‑tunnel‑id]
 | | | | | +‑‑ro source
 inet:ip‑address
 | | | | | +‑‑ro destination
 inet:ip‑address
 | | | | | +‑‑ro tunnel‑id
 uint16
 | | | | | +‑‑ro lsp‑id
 uint16
 | | | | | +‑‑ro extended‑tunnel‑id
 inet:ip‑address
 | | | | | +‑‑ro operational‑state?
 identityref
 | | | | | +‑‑ro path‑setup‑protocol?
 identityref
 | | | | | +‑‑ro origin‑type?
 enumeration
 | | | | | +‑‑ro lsp‑resource‑status?
 enumeration
 | | | | | +‑‑ro lockout‑of‑normal?
 boolean
 | | | | | +‑‑ro freeze?
 boolean
 | | | | | +‑‑ro lsp‑protection‑role?
 enumeration
 | | | | | +‑‑ro lsp‑protection‑state?
 identityref
 | | | | | +‑‑ro protection‑group‑ingress‑node‑id?
 te‑types:te‑node‑id
 | | | | | +‑‑ro protection‑group‑egress‑node‑id?
 te‑types:te‑node‑id

 | | | | | +‑‑ro lsp‑shared‑resources‑tunnel?
 tunnel‑ref
 | | | | | +‑‑ro lsp‑record‑route‑subobjects
 | | | | | | +‑‑ro record‑route‑subobject* [index]
 | | | | | | +‑‑ro index uint32
 | | | | | | +‑‑ro (type)?
 | | | | | | +‑‑:(numbered)
 | | | | | | | +‑‑ro address?
 te‑types:te‑tp‑id
 | | | | | | | +‑‑ro ip‑flags? binary
 | | | | | | +‑‑:(unnumbered)
 | | | | | | | +‑‑ro node‑id?
 te‑types:te‑node‑id
 | | | | | | | +‑‑ro link‑tp‑id?
 te‑types:te‑tp‑id
 | | | | | | +‑‑:(label)
 | | | | | | +‑‑ro label‑hop
 | | | | | | +‑‑ro te‑label
 | | | | | | | +‑‑ro (technology)?
 | | | | | | | | +‑‑:(generic)
 | | | | | | | | +‑‑ro generic?
 rt‑types:generalized‑label
 | | | | | | | +‑‑ro direction?
 te‑label‑direction
 | | | | | | +‑‑ro label‑flags? binary
 | | | | | +‑‑ro path‑properties
 | | | | | | +‑‑ro path‑metric* [metric‑type]
 | | | | | | | +‑‑ro metric‑type ‑>
 ../state/metric‑type
 | | | | | | | +‑‑ro state
 | | | | | | | +‑‑ro metric‑type?
 identityref
 | | | | | | | +‑‑ro accumulative‑value? uint64
 | | | | | | +‑‑ro path‑affinities‑values
 | | | | | | | +‑‑ro path‑affinities‑value* [usage]
 | | | | | | | +‑‑ro usage identityref
 | | | | | | | +‑‑ro value? admin‑groups
 | | | | | | +‑‑ro path‑affinity‑names
 | | | | | | | +‑‑ro path‑affinity‑name* [usage]
 | | | | | | | +‑‑ro usage identityref
 | | | | | | | +‑‑ro affinity‑name* [name]
 | | | | | | | +‑‑ro name string
 | | | | | | +‑‑ro path‑srlgs‑values
 | | | | | | | +‑‑ro usage? identityref
 | | | | | | | +‑‑ro values* srlg
 | | | | | | +‑‑ro path‑srlgs‑names
 | | | | | | | +‑‑ro path‑srlgs‑name* [usage]
 | | | | | | | +‑‑ro usage identityref

 | | | | | | | +‑‑ro srlg‑name* [name]
 | | | | | | | +‑‑ro name string
 | | | | | | +‑‑ro path‑route‑objects
 | | | | | | | +‑‑ro path‑computed‑route‑object*
 [index]
 | | | | | | | +‑‑ro index ‑> ../state/index
 | | | | | | | +‑‑ro state
 | | | | | | | +‑‑ro index?
 uint32
 | | | | | | | +‑‑ro (type)?
 | | | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | | | +‑‑ro num‑unnum‑hop
 | | | | | | | | +‑‑ro node‑id?
 te‑types:te‑node‑id
 | | | | | | | | +‑‑ro link‑tp‑id?
 te‑types:te‑tp‑id
 | | | | | | | | +‑‑ro hop‑type?
 te‑hop‑type
 | | | | | | | | +‑‑ro direction?
 te‑link‑direction
 | | | | | | | +‑‑:(as‑number)
 | | | | | | | | +‑‑ro as‑number‑hop
 | | | | | | | | +‑‑ro as‑number? binary
 | | | | | | | | +‑‑ro hop‑type?
 te‑hop‑type
 | | | | | | | +‑‑:(label)
 | | | | | | | +‑‑ro label‑hop
 | | | | | | | +‑‑ro te‑label
 | | | | | | | +‑‑ro (technology)?
 | | | | | | | | +‑‑:(generic)
 | | | | | | | | +‑‑ro generic?
 rt‑types:generalized‑label
 | | | | | | | +‑‑ro direction?
 te‑label‑direction
 | | | | | | +‑‑ro shared‑resources‑tunnels
 | | | | | | +‑‑ro lsp‑shared‑resources‑tunnel*
 tunnel‑ref
 | | | | | +‑‑ro te‑dev:lsp‑timers
 | | | | | | +‑‑ro te‑dev:life‑time? uint32
 | | | | | | +‑‑ro te‑dev:time‑to‑install? uint32
 | | | | | | +‑‑ro te‑dev:time‑to‑destroy? uint32
 | | | | | +‑‑ro te‑dev:downstream‑info
 | | | | | | +‑‑ro te‑dev:nhop?
 inet:ip‑address
 | | | | | | +‑‑ro te‑dev:outgoing‑interface?
 if:interface‑ref
 | | | | | | +‑‑ro te‑dev:neighbor?
 inet:ip‑address

 | | | | | | +‑‑ro te‑dev:label?
 rt‑types:generalized‑label
 | | | | | +‑‑ro te‑dev:upstream‑info
 | | | | | +‑‑ro te‑dev:phop? inet:ip‑address
 | | | | | +‑‑ro te‑dev:neighbor? inet:ip‑address
 | | | | | +‑‑ro te‑dev:label?
 rt‑types:generalized‑label
 | | | | +‑‑ro te‑mpls:static‑lsp‑name?
 mpls‑static:static‑lsp‑ref
 | | | +‑‑rw te‑mpls:static‑lsp‑name?
 mpls‑static:static‑lsp‑ref
 | | +‑‑‑x tunnel‑action
 | | | +‑‑‑w input
 | | | | +‑‑‑w action‑type? identityref
 | | | +‑‑ro output
 | | | +‑‑ro action‑result? identityref
 | | +‑‑‑x protection‑external‑commands
 | | | +‑‑‑w input
 | | | +‑‑‑w protection‑external‑command? identityref
 | | | +‑‑‑w protection‑group‑ingress‑node‑id?
 te‑types:te‑node‑id
 | | | +‑‑‑w protection‑group‑egress‑node‑id?
 te‑types:te‑node‑id
 | | | +‑‑‑w path‑ref? path‑ref
 | | | +‑‑‑w traffic‑type? enumeration
 | | | +‑‑‑w extra‑traffic‑tunnel‑ref? tunnel‑ref
 | | +‑‑rw te‑dev:lsp‑install‑interval? uint32
 | | +‑‑rw te‑dev:lsp‑cleanup‑interval? uint32
 | | +‑‑rw te‑dev:lsp‑invalidation‑interval? uint32
 | | +‑‑rw te‑mpls:tunnel‑igp‑shortcut
 | | | +‑‑rw te‑mpls:shortcut‑eligible? boolean
 | | | +‑‑rw te‑mpls:metric‑type? identityref
 | | | +‑‑rw te‑mpls:metric? int32
 | | | +‑‑rw te‑mpls:routing‑afs* inet:ip‑version
 | | +‑‑rw te‑mpls:forwarding
 | | | +‑‑rw te‑mpls:binding‑label? rt‑types:mpls‑label
 | | | +‑‑rw te‑mpls:load‑share? uint32
 | | | +‑‑rw te‑mpls:policy‑class? uint8
 | | +‑‑rw te‑mpls:bandwidth‑mpls
 | | +‑‑rw te‑mpls:specification‑type?
 te‑mpls‑types:te‑bandwidth‑requested‑type
 | | +‑‑rw te‑mpls:set‑bandwidth?
 te‑mpls‑types:bandwidth‑kbps
 | | +‑‑rw te‑mpls:class‑type? te‑types:te‑ds‑class
 | | +‑‑ro te‑mpls:state
 | | | +‑‑ro te‑mpls:signaled‑bandwidth?
 te‑mpls‑types:bandwidth‑kbps
 | | +‑‑rw te‑mpls:auto‑bandwidth

 | | +‑‑rw te‑mpls:enabled? boolean
 | | +‑‑rw te‑mpls:min‑bw?
 te‑mpls‑types:bandwidth‑kbps
 | | +‑‑rw te‑mpls:max‑bw?
 te‑mpls‑types:bandwidth‑kbps
 | | +‑‑rw te‑mpls:adjust‑interval? uint32
 | | +‑‑rw te‑mpls:adjust‑threshold? rt‑types:percentage
 | | +‑‑rw te‑mpls:overflow
 | | | +‑‑rw te‑mpls:enabled? boolean
 | | | +‑‑rw te‑mpls:overflow‑threshold?
 rt‑types:percentage
 | | | +‑‑rw te‑mpls:trigger‑event‑count? uint16
 | | +‑‑rw te‑mpls:underflow
 | | +‑‑rw te‑mpls:enabled? boolean
 | | +‑‑rw te‑mpls:underflow‑threshold?
 rt‑types:percentage
 | | +‑‑rw te‑mpls:trigger‑event‑count? uint16
 | +‑‑rw tunnel‑p2mp* [name]
 | +‑‑rw name string
 | +‑‑rw identifier? uint16
 | +‑‑rw description? string
 | +‑‑ro state
 | +‑‑ro operational‑state? identityref
 +‑‑ro lsps‑state
 | +‑‑ro lsp* [source destination tunnel‑id lsp‑id
 extended‑tunnel‑id]
 | +‑‑ro source inet:ip‑address
 | +‑‑ro destination inet:ip‑address
 | +‑‑ro tunnel‑id uint16
 | +‑‑ro lsp‑id uint16
 | +‑‑ro extended‑tunnel‑id inet:ip‑address
 | +‑‑ro operational‑state? identityref
 | +‑‑ro path‑setup‑protocol? identityref
 | +‑‑ro origin‑type? enumeration
 | +‑‑ro lsp‑resource‑status? enumeration
 | +‑‑ro lockout‑of‑normal? boolean
 | +‑‑ro freeze? boolean
 | +‑‑ro lsp‑protection‑role? enumeration
 | +‑‑ro lsp‑protection‑state? identityref
 | +‑‑ro protection‑group‑ingress‑node‑id? te‑types:te‑node‑id
 | +‑‑ro protection‑group‑egress‑node‑id? te‑types:te‑node‑id
 | +‑‑ro lsp‑record‑route‑subobjects
 | | +‑‑ro record‑route‑subobject* [index]
 | | +‑‑ro index uint32
 | | +‑‑ro (type)?
 | | +‑‑:(numbered)
 | | | +‑‑ro address? te‑types:te‑tp‑id
 | | | +‑‑ro ip‑flags? binary

 | | +‑‑:(unnumbered)
 | | | +‑‑ro node‑id? te‑types:te‑node‑id
 | | | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 | | +‑‑:(label)
 | | +‑‑ro label‑hop
 | | +‑‑ro te‑label
 | | | +‑‑ro (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑ro generic?
 rt‑types:generalized‑label
 | | | +‑‑ro direction? te‑label‑direction
 | | +‑‑ro label‑flags? binary
 | +‑‑ro te‑dev:lsp‑timers
 | | +‑‑ro te‑dev:life‑time? uint32
 | | +‑‑ro te‑dev:time‑to‑install? uint32
 | | +‑‑ro te‑dev:time‑to‑destroy? uint32
 | +‑‑ro te‑dev:downstream‑info
 | | +‑‑ro te‑dev:nhop? inet:ip‑address
 | | +‑‑ro te‑dev:outgoing‑interface? if:interface‑ref
 | | +‑‑ro te‑dev:neighbor? inet:ip‑address
 | | +‑‑ro te‑dev:label?
 rt‑types:generalized‑label
 | +‑‑ro te‑dev:upstream‑info
 | +‑‑ro te‑dev:phop? inet:ip‑address
 | +‑‑ro te‑dev:neighbor? inet:ip‑address
 | +‑‑ro te‑dev:label? rt‑types:generalized‑label
 +‑‑rw te‑dev:interfaces
 +‑‑rw te‑dev:threshold‑type? enumeration
 +‑‑rw te‑dev:delta‑percentage? rt‑types:percentage
 +‑‑rw te‑dev:threshold‑specification? enumeration
 +‑‑rw te‑dev:up‑thresholds* rt‑types:percentage
 +‑‑rw te‑dev:down‑thresholds* rt‑types:percentage
 +‑‑rw te‑dev:up‑down‑thresholds* rt‑types:percentage
 +‑‑rw te‑dev:interface* [interface]
 +‑‑rw te‑dev:interface
 if:interface‑ref
 +‑‑rw te‑dev:te‑metric?
 te‑types:te‑metric
 +‑‑rw (te‑dev:admin‑group‑type)?
 | +‑‑:(te‑dev:value‑admin‑groups)
 | | +‑‑rw (te‑dev:value‑admin‑group‑type)?
 | | +‑‑:(te‑dev:admin‑groups)
 | | | +‑‑rw te‑dev:admin‑group?
 te‑types:admin‑group
 | | +‑‑:(te‑dev:extended‑admin‑groups)
 {te‑types:extended‑admin‑groups}?
 | | +‑‑rw te‑dev:extended‑admin‑group?
 te‑types:extended‑admin‑group

 | +‑‑:(te‑dev:named‑admin‑groups)
 | +‑‑rw te‑dev:named‑admin‑groups* [named‑admin‑group]
{te‑types:extended‑admin‑groups,te‑types:named‑extended‑admin‑groups}?
 | +‑‑rw te‑dev:named‑admin‑group ‑>
 ../../../../te:globals/named‑admin‑groups/named‑admin‑group/name
 +‑‑rw (te‑dev:srlg‑type)?
 | +‑‑:(te‑dev:value‑srlgs)
 | | +‑‑rw te‑dev:values* [value]
 | | +‑‑rw te‑dev:value uint32
 | +‑‑:(te‑dev:named‑srlgs)
 | +‑‑rw te‑dev:named‑srlgs* [named‑srlg]
 {te‑types:named‑srlg‑groups}?
 | +‑‑rw te‑dev:named‑srlg ‑>
 ../../../../te:globals/named‑srlgs/named‑srlg/name
 +‑‑rw te‑dev:threshold‑type? enumeration
 +‑‑rw te‑dev:delta‑percentage?
 rt‑types:percentage
 +‑‑rw te‑dev:threshold‑specification? enumeration
 +‑‑rw te‑dev:up‑thresholds*
 rt‑types:percentage
 +‑‑rw te‑dev:down‑thresholds*
 rt‑types:percentage
 +‑‑rw te‑dev:up‑down‑thresholds*
 rt‑types:percentage
 +‑‑rw te‑dev:switching‑capabilities* [switching‑capability]
 | +‑‑rw te‑dev:switching‑capability identityref
 | +‑‑rw te‑dev:encoding? identityref
 +‑‑ro te‑dev:state
 +‑‑ro te‑dev:te‑advertisements_state
 +‑‑ro te‑dev:flood‑interval? uint32
 +‑‑ro te‑dev:last‑flooded‑time? uint32
 +‑‑ro te‑dev:next‑flooded‑time? uint32
 +‑‑ro te‑dev:last‑flooded‑trigger? enumeration
 +‑‑ro te‑dev:advertized‑level‑areas* [level‑area]
 +‑‑ro te‑dev:level‑area uint32

 rpcs:
 +‑‑‑x globals‑rpc
 +‑‑‑x interfaces‑rpc
 +‑‑‑x tunnels‑rpc
 +‑‑‑w input
 | +‑‑‑w tunnel‑info
 | +‑‑‑w (type)?
 | +‑‑:(tunnel‑p2p)
 | | +‑‑‑w p2p‑id? tunnel‑ref
 | +‑‑:(tunnel‑p2mp)
 | +‑‑‑w p2mp‑id? tunnel‑p2mp‑ref
 +‑‑ro output

 +--ro result

 +--ro result? enumeration

 notifications:
 +‑‑‑n globals‑notif
 +‑‑‑n tunnels‑notif
module: ietf‑te‑device

 rpcs:

 +---x interfaces-rpc

 notifications:

 +---n interfaces-notif

 Figure 3: TE generic model configuration and state tree

3. Model Organization

 The TE generic YANG data module "ietf-te" covers configuration,
 state, RPC and notifications data pertaining to TE global parameters,
 interfaces, tunnels and LSPs parameters that are device independent.

 The container "te" is the top level container in the data model. The
 presence of this container enables TE function system wide.

 The model top level organization is shown below in Figure 4:

module: ietf‑te
 +‑‑rw te!
 +‑‑rw globals
 .
 .

 +‑‑rw tunnels
 .
 .

 +-- lsps-state

rpcs:
 +‑‑‑x globals‑rpc
 +‑‑‑x tunnels‑rpc
notifications:
 +‑‑‑n globals‑notif
 +‑‑‑n tunnels‑notif

 Figure 4: TE generic highlevel model view

3.1. Global Configuration and State Data

 The global TE branch of the data model covers configurations that
 control TE features behavior system-wide, and its respective state.
 Examples of such configuration data are:

 o Table of named SRLG mappings

 o Table of named (extended) administrative groups mappings

 o Table of named explicit paths to be referenced by TE tunnels

 o Table of named path-constraints sets

 o Auto-bandwidth global parameters

 o TE diff-serve TE-class maps

 o System-wide capabilities for LSP reoptimization (included in the
 TE device model)

 * Reoptimization timers (periodic interval, LSP installation and
 cleanup)

 o System-wide capabilities for TE state flooding (included in the TE
 device model)

 * Periodic flooding interval

 o Global capabilities that affect the originating, traversing and
 terminating LSPs. For example:

 * Path selection parameters (e.g. metric to optimize, etc.)

 * Path or segment protection parameters

3.2. Interfaces Configuration and State Data

 This branch of the model covers configuration and state data
 corresponding to TE interfaces present on a device. The module
 "ietf-te-device" is introduced to hold TE device specific properties.

 Examples of TE interface properties are: * Maximum reservable
 bandwidth, bandwidth constraints (BC) * Flooding parameters *
 Flooding intervals and threshold values * interface attributes *
 (Extended) administrative groups * SRLG values * TE metric value *
 Fast reroute backup tunnel properties (such as static, auto-tunnel)
 The state corresponding to the TE interfaces applied configuration,
 protocol derived state, and stats and counters all fall under the
 interface "state" sub-container as shown in Figure 5 below:

module: ietf‑te‑device
 augment /te:te:
 +‑‑rw interfaces
 .
 +‑‑ rw te‑dev:te‑attributes
 <<intended configuration>>
 .
 +‑‑ ro state
 <<derived state associated with the TE interface>>

 Figure 5: TE interface state

 This covers state data for TE interfaces such as:

 o Bandwidth information: maximum bandwidth, available bandwidth at
 different priorities and for each class-type (CT)

 o List of admitted LSPs

 * Name, bandwidth value and pool, time, priority

 o Statistics: state counters, flooding counters, admission counters
 (accepted/rejected), preemption counters

 o Adjacency information

 * Neighbor address

 * Metric value

3.3. Tunnels Configuration and State Data

 This branch covers data related to TE tunnels configuration and
 state. Data that is device independent is defined in the TE generic
 YANG module "ietf-te", where as the device dependent data is defined
 in the device module "ietf-te-device". The derived state associated
 with tunnels is grouped under a state container as shown in Figure 6.

module: ietf‑te
 +‑‑rw te!
 +‑‑rw tunnels
 <<intended configuration>>
 .
 +‑‑ ro state
 <<derived state associated with the tunnel>>

 Figure 6: TE interface state tree

 Examples of tunnel configuration data for TE tunnels:

 o Name and type (e.g. P2P, P2MP) of the TE tunnel

 o Administrative and operational state of the TE tunnel

 o Set of primary and corresponding secondary paths and corresponding
 path attributes

 o Bidirectional path attribute(s) including forwarding and reverse
 path properties

 o Protection and restoration path parameters

3.3.1. Tunnel Compute-Only Mode

 A configured TE tunnel, by default, is provisioned so it can carry
 traffic as soon as a valid path is computed and an LSP instantiated.
 In some cases, however, a TE tunnel may be provisioned for the only
 purpose of computing a path and reporting it without the need to
 instantiate the LSP or commit any resources. In such a case, the
 tunnel is configured in "compute-only" mode to distinguish it from
 default tunnel behavior.

 A "compute-only" TE tunnel is configured as a usual TE tunnel with
 associated per path constraint(s) and properties on a device or
 controller. The device or controller computes the feasible path(s)
 subject to configured constraints and reflects the computed path(s)
 in the LSP(s) Record-Route Object (RRO) list. At any time, a client
 may query "on-demand" the "compute-only" TE tunnel computed path(s)
 properties by querying the state of the tunnel. Alternatively, the
 client can subscribe on the "compute-only" TE tunnel to be notified
 of computed path(s) and whenever it changes.

3.3.2. Tunnel Hierarchical Link Endpoint

 TE LSPs can be set up in MPLS or Generalized MPLS (GMPLS) networks to
 be used to form links to carry traffic in in other (client) networks
 [RFC6107]. In this case, the model introduces the TE tunnel
 hierarchical link endpoint parameters to identify the specific link
 in the client layer that the TE tunnel is associated with.

3.4. TE LSPs State Data

 TE LSPs are derived state data that is usually instantiated via
 signaling protocols. TE LSPs exists on routers as ingress (starting
 point of LSP), transit (mid-point of LSP), or egress (termination
 point of the LSP). TE LSPs are distinguished by the 5 tuple, and LSP
 type (P2P or P2MP). In the model, the nodes holding LSPs data exist
 in the read-only lsps-state list as show in Figure 3.

3.5. Global RPC Data

 This branch of the model covers system-wide RPC execution data to
 trigger actions and optionally expect responses. Examples of such TE
 commands are to:

 o Clear global TE statistics of various features

3.6. Interface RPC Data

 This collection of data in the model defines TE interface RPC
 execution commands. Examples of these are to:

 o Clear TE statistics for all or for individual TE interfaces

 o Trigger immediate flooding for one or all TE interfaces

3.7. Tunnel RPC Data

 This branch of the model covers TE tunnel RPC execution data to
 trigger actions and expect responses. The TE generic YANG data model
 defines target containers that an external module in
 [I-D.ietf-teas-yang-path-computation] augments with RPCs that allow
 the invocation of certain TE functions (e.g. path computations).

4. TE Generic and Helper YANG Modules

<CODE BEGINS> file "ietf‑te@2018‑10‑10.yang"
module ietf‑te {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-te";

/* Replace with IANA when assigned */
prefix "te";

/* Import TE generic types */
import ietf‑te‑types {
 prefix te‑types;
 reference "draft‑ietf‑teas‑yang‑te‑types: A YANG Data Model for
 Common Traffic Engineering Types";
}

import ietf‑inet‑types {
 prefix inet;
 reference "RFC6991: Common YANG Data Types";
}

organization
 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 WG Chair: Lou Berger

 <mailto:lberger@labn.net>

 WG Chair: Vishnu Pavan Beeram

 <mailto:vbeeram@juniper.net>

 Editor: Tarek Saad
 <mailto:tsaad@cisco.com>

 Editor: Rakesh Gandhi
 <mailto:rgandhi@cisco.com>

 Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

 Editor: Himanshu Shah
 <mailto:hshah@ciena.com>

 Editor: Xufeng Liu
 <mailto:Xufeng_Liu@jabil.com>

 Editor: Igor Bryskin
 <mailto:Igor.Bryskin@huawei.com>";

description
 "YANG data module for TE configuration,
 state, RPC and notifications.";

revision "2018‑10‑10" {
 description "Latest update to TE generic YANG module.";
 reference "TBA";
}

typedef tunnel‑ref {
 type leafref {
 path "/te:te/te:tunnels/te:tunnel/te:name";
 }
 description
 "This type is used by data models that need to reference
 configured TE tunnel.";
}

typedef tunnel‑p2mp‑ref {
 type leafref {
 path "/te:te/te:tunnels/te:tunnel‑p2mp/te:name";
 }
 description
 "This type is used by data models that need to reference
 configured P2MP TE tunnel.";
 reference "RFC4875";
}

typedef path‑ref {
 type union {
 type leafref {
 path "/te:te/te:tunnels/te:tunnel/" +
 "te:p2p‑primary‑paths/te:p2p‑primary‑path/te:name";
 }
 type leafref {
 path "/te:te/te:tunnels/te:tunnel/" +
 "te:p2p‑secondary‑paths/te:p2p‑secondary‑path/te:name";
 }
 }
 description
 "This type is used by data models that need to reference
 configured primary or secondary path of a TE tunnel.";
}

/**
 * TE tunnel generic groupings
 */
grouping p2p‑reverse‑primary‑path‑properties {

 description "tunnel path properties.";
 reference "RFC7551";
 container p2p‑reverse‑primary‑path {
 description "Tunnel reverse primary path properties";
 uses p2p‑path‑reverse‑properties_config;
 uses path‑constraints‑common_config;
 container state {
 config false;
 description
 "Configuration applied parameters and state";
 uses p2p‑path‑properties_state;
 }
 container p2p‑reverse‑secondary‑path {
 description "Tunnel reverse secondary path properties";
 uses p2p‑reverse‑path‑candidate‑secondary‑path‑config;
 }
 }
}

grouping p2p‑secondary‑path‑properties {
 description "tunnel path properties.";
 uses p2p‑path‑properties_config;
 uses path‑constraints‑common_config;
 uses protection‑restoration‑params_config;
 container state {
 config false;
 description
 "Configuration applied parameters and state";
 uses p2p‑path‑properties_state;
 }
}

grouping p2p‑primary‑path‑properties {
 description
 "TE tunnel primary path properties grouping";
 uses p2p‑path‑properties_config;
 uses path‑constraints‑common_config;
 container state {
 config false;
 description
 "Configuration applied parameters and state";
 uses p2p‑path‑properties_state;
 }
}

grouping path‑properties_state {
 description "Computed path properties grouping";
 leaf metric‑type {

 type identityref {
 base te‑types:path‑metric‑type;
 }
 description "TE path metric type";
 }
 leaf accumulative‑value {
 type uint64;
 description "TE path metric accumulative value";
 }
}

grouping path‑properties {
 description "TE computed path properties grouping";
 container path‑properties {
 description "The TE path computed properties";
 list path‑metric {
 key metric‑type;
 description "TE path metric type";
 leaf metric‑type {
 type leafref {
 path "../state/metric‑type";
 }
 description "TE path metric type";
 }
 container state {
 config false;
 description
 "Configuration applied parameters and state";
 uses path‑properties_state;
 }
 }
 uses te‑types:generic‑path‑affinities;
 uses te‑types:generic‑path‑srlgs;
 container path‑route‑objects {
 description
 "Container for the list of computed route objects
 as returned by the computation engine";
 list path‑computed‑route‑object {
 key index;
 description
 "List of computed route objects returned by the
 computation engine";
 leaf index {
 type leafref {
 path "../state/index";
 }
 description "Index of computed route object";
 }

 container state {
 config false;
 description
 "Configuration applied parameters and state";
 leaf index {
 type uint32;
 description "ERO subobject index";
 }
 uses te‑types:explicit‑route‑hop;
 }
 }
 }
 uses shared‑resources‑tunnels;
 }
}

grouping p2p‑path‑properties_state {
 description "TE per path state parameters";
 container computed‑paths‑properties {
 description "Computed path properties container";
 list computed‑path‑properties {
 key k‑index;
 description "List of computed paths";
 leaf k‑index {
 type uint8;
 description
 "The k‑th path returned from the computation server.";
 }
 uses path‑properties {
 description "The TE path computed properties";
 }
 }
 }
 container lsps {
 description "TE LSPs container";
 list lsp {
 key
 "source destination tunnel‑id lsp‑id "+
 "extended‑tunnel‑id";
 description "List of LSPs associated with the tunnel.";
 uses lsp‑properties_state;
 uses shared‑resources‑tunnels_state;
 uses lsp‑record‑route‑information_state;
 uses path‑properties {
 description "The TE path actual properties";
 }
 }
 }

 }

grouping p2p‑path‑properties‑common_config {
 description
 "TE tunnel common path properties configuration grouping";
 leaf name {
 type string;
 description "TE path name";
 }
 leaf path‑setup‑protocol {
 type identityref {
 base te‑types:path‑signaling‑type;
 }
 description
 "Signaling protocol used to set up this tunnel";
 }
 leaf path‑computation‑method {
 type identityref {
 base te‑types:path‑computation‑method;
 }
 default te‑types:path‑locally‑computed;
 description
 "The method used for computing the path, either
 locally computed, queried from a server or not
 computed at all (explicitly configured).";
 }
 leaf path‑computation‑server {
 when "../path‑computation‑method = "+
 "'te‑types:path‑externally‑queried'" {
 description
 "The path‑computation server when the path is
 externally queried";
 }
 type inet:ip‑address;
 description
 "Address of the external path computation
 server";
 }
 leaf compute‑only {
 type empty;
 description
 "When set, the path is computed and updated whenever
 the topology is updated. No resources are committed
 or reserved in the network.";
 }
 leaf use‑path‑computation {
 when "../path‑computation‑method =" +
 " 'te‑types:path‑locally‑computed'";

 type boolean;
 description "A CSPF dynamically computed path";
 }
 leaf lockdown {
 type empty;
 description
 "Indicates no reoptimization to be attempted for
 this path.";
 }
 leaf path‑scope {
 type identityref {
 base te‑types:path‑scope‑type;
 }
 default te‑types:path‑scope‑end‑to‑end;
 description "Path scope if segment or an end‑to‑end path";
 }
}

grouping p2p‑path‑reverse‑properties_config {
 description
 "TE tunnel reverse path properties configuration
 grouping";
 uses p2p‑path‑properties‑common_config;
 uses te‑types:generic‑path‑optimization;
 leaf named‑path‑constraint {
 if‑feature te‑types:named‑path‑constraints;
 type leafref {
 path "../../../../../../globals/"
 + "named‑path‑constraints/named‑path‑constraint/"
 + "name";
 }
 description
 "Reference to a globally defined named path
 constraint set";
 }
}

grouping p2p‑path‑properties_config {
 description
 "TE tunnel path properties configuration grouping";
 uses p2p‑path‑properties‑common_config;
 uses te‑types:generic‑path‑optimization;
 leaf preference {
 type uint8 {
 range "1..255";
 }
 description
 "Specifies a preference for this path. The lower the

 number higher the preference";
 }
 leaf k‑requested‑paths {
 type uint8;
 description
 "The number of k‑shortest‑paths requested from the path
 computation server and returned sorted by its optimization
 objective";
 }
 leaf named‑path‑constraint {
 if‑feature te‑types:named‑path‑constraints;
 type leafref {
 path "../../../../../globals/"
 + "named‑path‑constraints/named‑path‑constraint/"
 + "name";
 }
 description
 "Reference to a globally defined named path
 constraint set";
 }
}

/* TE tunnel configuration data */
grouping tunnel‑p2mp‑params_config {
 description
 "Configuration parameters relating to TE tunnel";
 leaf name {
 type string;
 description "TE tunnel name.";
 }
 leaf identifier {
 type uint16;
 description
 "TE tunnel Identifier.";
 reference "RFC 3209";
 }
 leaf description {
 type string;
 description
 "Textual description for this TE tunnel";
 }
}

grouping hierarchical‑link_config {
 description
 "Hierarchical link configuration grouping";
 reference "RFC4206";
 leaf local‑te‑node‑id {

 type te‑types:te‑node‑id;
 description
 "Local TE node identifier";
 }
 leaf local‑te‑link‑tp‑id {
 type te‑types:te‑tp‑id;
 description
 "Local TE link termination point identifier";
 }
 leaf remote‑te‑node‑id {
 type te‑types:te‑node‑id;
 description
 "Remote TE node identifier";
 }
 uses te‑types:te‑topology‑identifier;
}

grouping hierarchical‑link {
 description
 "Hierarchical link grouping";
 reference "RFC4206";
 container hierarchical‑link {
 description
 "Identifies a hierarchical link (in client layer)
 that this tunnel is associated with.";
 uses hierarchical‑link_config;
 }
}

grouping protection‑restoration‑params_state {
 description
 "Protection parameters grouping";
 leaf lockout‑of‑normal {
 type boolean;
 description
 "
 When set to 'True', it represents a lockout of normal
 traffic external command. When set to 'False', it
 represents a clear lockout of normal traffic external
 command. The lockout of normal traffic command applies
 to this Tunnel.
 ";
 reference
 "ITU‑T G.808, RFC 4427";
 }
 leaf freeze {
 type boolean;
 description

 "
 When set to 'True', it represents a freeze external
 command. When set to 'False', it represents a clear
 freeze external command. The freeze command command
 applies to all the Tunnels which are sharing the
 protection resources with this Tunnel.
 ";
 reference
 "ITU‑T G.808, RFC 4427";
 }
 leaf lsp‑protection‑role {
 type enumeration {
 enum working {
 description
 "A working LSP must be a primary LSP whilst a protecting
 LSP can be either a primary or a secondary LSP. Also,
 known as protected LSPs when working LSPs are associated
 with protecting LSPs.";
 }
 enum protecting {
 description
 "A secondary LSP is an LSP that has been provisioned
 in the control plane only; e.g. resource allocation
 has not been committed at the data plane";
 }
 }
 description "LSP role type";
 reference "rfc4872, section 4.2.1";
 }

 leaf lsp‑protection‑state {
 type identityref {
 base te‑types:lsp‑protection‑state;
 }
 description
 "The state of the APS state machine controlling which
 tunnels is using the resources of the protecting LSP.";
 }
 leaf protection‑group‑ingress‑node‑id {
 type te‑types:te‑node‑id;
 description
 "Indicates the te‑node‑id of the protection group
 ingress node when the APS state represents an extenal
 command (LoP, SF, MS) applied to it or a WTR timer
 running on it. If the external command is not applied to
 the ingress node or the WTR timer is not running on it,
 this attribute is not specified. If value 0.0.0.0 is used
 when the te‑node‑id of the protection group ingress node is

 unknown (e.g., because the ingress node is outside the scope
 of control of the server)";
 }
 leaf protection‑group‑egress‑node‑id {
 type te‑types:te‑node‑id;
 description
 "Indicates the te‑node‑id of the protection group egress node
 when the APS state represents an extenal command (LoP, SF,
 MS) applied to it or a WTR timer running on it. If the
 external command is not applied to the ingress node or
 the WTR timer is not running on it, this attribute is not
 specified. If value 0.0.0.0 is used when the te‑node‑id of
 the protection group ingress node is unknown (e.g., because
 the ingress node is outside the scope of control of the
 server)";
 }
}

grouping protection‑restoration‑params_config {
 description "Protection and restoration parameters";
 container protection {
 description "Protection parameters";
 leaf enable {
 type boolean;
 default 'false';
 description
 "A flag to specify if LSP protection is enabled";
 reference "rfc4427";
 }
 leaf protection‑type {
 type identityref {
 base te‑types:lsp‑protection‑type;
 }
 description "LSP protection type.";
 }
 leaf protection‑reversion‑disable {
 type boolean;
 description "Disable protection reversion to working path";
 }
 leaf hold‑off‑time {
 type uint32;
 units "milli‑seconds";
 default 0;
 description
 "The time between the declaration of an SF or SD condition
 and the initialization of the protection switching
 algorithm.";
 reference "rfc4427";

 }
 leaf wait‑to‑revert {
 type uint16;
 units seconds;
 description
 "Time to wait before attempting LSP reversion";
 reference "rfc4427";
 }
 leaf aps‑signal‑id {
 type uint8 {
 range "1..255";
 }
 description
 "The APS signal number used to reference the traffic of this
 tunnel. The default value for normal traffic is 1.
 The default value for extra‑traffic is 255. If not specified,
 non‑default values can be assigned by the server,
 if and only if, the server controls both endpoints.";
 reference
 "ITU‑T G.808.1";
 }
 }
 container restoration {
 description "Restoration parameters";
 leaf enable {
 type boolean;
 default 'false';
 description
 "A flag to specify if LSP restoration is enabled";
 reference "rfc4427";
 }
 leaf restoration‑type {
 type identityref {
 base te‑types:lsp‑restoration‑type;
 }
 description "LSP restoration type.";
 }
 leaf restoration‑scheme {
 type identityref {
 base te‑types:restoration‑scheme‑type;
 }
 description "LSP restoration scheme.";
 }
 leaf restoration‑reversion‑disable {
 type boolean;
 description "Disable restoration reversion to working path";
 }
 leaf hold‑off‑time {

 type uint32;
 units "milli‑seconds";
 description
 "The time between the declaration of an SF or SD condition
 and the initialization of the protection switching
 algorithm.";
 reference "rfc4427";
 }
 leaf wait‑to‑restore {
 type uint16;
 units seconds;
 description
 "Time to wait before attempting LSP restoration";
 reference "rfc4427";
 }
 leaf wait‑to‑revert {
 type uint16;
 units seconds;
 description
 "Time to wait before attempting LSP reversion";
 reference "rfc4427";
 }
 }
}

grouping p2p‑dependency‑tunnels_config {
 description
 "Groupong for tunnel dependency list of tunnels";
 container dependency‑tunnels {
 description "Dependency tunnels list";
 list dependency‑tunnel {
 key "name";
 description "Dependency tunnel entry";
 leaf name {
 type leafref {
 path "../../../../../tunnels/tunnel/name";
 require‑instance false;
 }
 description "Dependency tunnel name";
 }
 leaf encoding {
 type identityref {
 base te‑types:lsp‑encoding‑types;
 }
 description "LSP encoding type";
 reference "RFC3945";
 }
 leaf switching‑type {

 type identityref {
 base te‑types:switching‑capabilities;
 }
 description "LSP switching type";
 reference "RFC3945";
 }
 }
 }
}

grouping tunnel‑p2p‑params_config {
 description
 "Configuration parameters relating to TE tunnel";
 leaf name {
 type string;
 description "TE tunnel name.";
 }
 leaf identifier {
 type uint16;
 description
 "TE tunnel Identifier.";
 reference "RFC3209";
 }
 leaf description {
 type string;
 description
 "Textual description for this TE tunnel";
 }
 leaf encoding {
 type identityref {
 base te‑types:lsp‑encoding‑types;
 }
 description "LSP encoding type";
 reference "RFC3945";
 }
 leaf switching‑type {
 type identityref {
 base te‑types:switching‑capabilities;
 }
 description "LSP switching type";
 reference "RFC3945";
 }
 leaf provisioning‑state {
 type identityref {
 base te‑types:tunnel‑state‑type;
 }
 default te‑types:tunnel‑state‑up;
 description "TE tunnel administrative state.";

 }
 leaf preference {
 type uint8 {
 range "1..255";
 }
 description
 "Specifies a preference for this tunnel.
 A lower number signifies a better preference";
 }
 leaf reoptimize‑timer {
 type uint16;
 units seconds;
 description
 "frequency of reoptimization of
 a traffic engineered LSP";
 }
 leaf source {
 type te‑types:te‑node‑id;
 description
 "TE tunnel source node ID.";
 }
 leaf destination {
 type te‑types:te‑node‑id;
 description
 "TE tunnel destination node ID";
 }
 leaf src‑tp‑id {
 type binary;
 description
 "TE tunnel source termination point identifier.";
 }
 leaf dst‑tp‑id {
 type binary;
 description
 "TE tunnel destination termination point identifier.";
 }
 leaf bidirectional {
 type boolean;
 default 'false';
 description "TE tunnel bidirectional";
 }
 uses tunnel‑p2p‑associations_config;
 uses protection‑restoration‑params_config;
 uses te‑types:tunnel‑constraints_config;
 uses p2p‑dependency‑tunnels_config;
 uses hierarchical‑link;
}

grouping tunnel‑p2p‑associations_config {
 description "TE tunnel association grouping";
 container association‑objects {
 description "TE tunnel associations";
 list association‑object {
 key "type ID source global‑source";
 description "List of association base objects";
 reference "RFC4872";
 leaf type {
 type identityref {
 base te‑types:association‑type;
 }
 description "Association type";
 reference "RFC4872";
 }
 leaf ID {
 type uint16;
 description "Association ID";
 reference "RFC4872";
 }
 leaf source {
 type inet:ip‑address;
 description "Association source";
 reference "RFC4872";
 }
 leaf global‑source {
 type inet:ip‑address;
 description "Association global source";
 reference "RFC4872";
 }
 }
 list association‑object‑extended {
 key "type ID source global‑source extended‑ID";
 description "List of extended association objects";
 reference "RFC6780";
 leaf type {
 type identityref {
 base te‑types:association‑type;
 }
 description "Association type";
 }
 leaf ID {
 type uint16;
 description "Association ID";
 reference "RFC4872";
 }
 leaf source {
 type inet:ip‑address;

 description "Association source";
 }
 leaf global‑source {
 type inet:ip‑address;
 description "Association global source";
 reference "RFC4872";
 }
 leaf extended‑ID {
 type binary;
 description "Association extended ID";
 reference "RFC4872";
 }
 }
 }
}

grouping tunnel‑p2p‑params_state {
 description
 "State parameters relating to TE tunnel";
 leaf operational‑state {
 type identityref {
 base te‑types:tunnel‑state‑type;
 }
 default te‑types:tunnel‑state‑up;
 description "TE tunnel administrative state.";
 }
}

grouping path‑access‑segment‑info {
 description
 "If an end‑to‑end tunnel crosses multiple domains using
 the same technology, some additional constraints have to be
 taken in consideration in each domain";
 container path‑in‑segment {
 presence
 "The end‑to‑end tunnel starts in a previous domain;
 this tunnel is a segment in the current domain.";
 description
 "This tunnel is a segment that needs to be coordinated
 with previous segment stitched on head‑end side.";
 uses te‑types:label‑set‑info;
 }
 container path‑out‑segment {
 presence
 "The end‑to‑end tunnel is not terminated in this domain;
 this tunnel is a segment in the current domain.";
 description
 "This tunnel is a segment that needs to be coordinated

 with previous segment stitched on head‑end side.";
 uses te‑types:label‑set‑info;
 }
}

/* TE tunnel configuration/state grouping */
grouping tunnel‑p2mp‑properties {
 description
 "Top level grouping for P2MP tunnel properties.";
 uses tunnel‑p2mp‑params_config;
 container state {
 config false;
 description
 "Configuration applied parameters and state";
 leaf operational‑state {
 type identityref {
 base te‑types:tunnel‑state‑type;
 }
 default te‑types:tunnel‑state‑up;
 description "TE tunnel administrative state.";
 }
 }
}

grouping p2p‑path‑candidate‑secondary‑path‑config {
 description
 "Configuration parameters relating to a secondary path which
 is a candidate for a particular primary path";

 leaf secondary‑path {
 type leafref {
 path "../../../../../p2p‑secondary‑paths/" +
 "p2p‑secondary‑path/name";
 }
 description
 "A reference to the secondary path that should be utilised
 when the containing primary path option is in use";
 }

 leaf path‑setup‑protocol {
 type identityref {
 base te‑types:path‑signaling‑type;
 }
 description
 "Signaling protocol used to set up this tunnel";
 }
}

grouping p2p‑reverse‑path‑candidate‑secondary‑path‑config {
 description
 "Configuration parameters relating to a secondary path which
 is a candidate for a particular primary path";

 leaf secondary‑path {
 type leafref {
 path "../../../../../p2p‑secondary‑paths/" +
 "p2p‑secondary‑path/name";
 }
 description
 "A reference to the secondary path that should be utilised
 when the containing primary path option is in use";
 }

 leaf path‑setup‑protocol {
 type identityref {
 base te‑types:path‑signaling‑type;
 }
 description
 "Signaling protocol used to set up this tunnel";
 }
}

grouping p2p‑path‑candidate‑secondary‑path‑state {
 description
 "Operational state parameters relating to a secondary path
 which is a candidate for a particular primary path";

 leaf active {
 type boolean;
 description
 "Indicates the current active path option that has
 been selected of the candidate secondary paths";
 }
}

grouping tunnel‑p2p‑properties {
 description
 "Top level grouping for tunnel properties.";
 uses tunnel‑p2p‑params_config;
 container state {
 config false;
 description
 "Configuration applied parameters and state";
 uses tunnel‑p2p‑params_state;
 }
 container p2p‑primary‑paths {

 description "Set of P2P primary aths container";
 list p2p‑primary‑path {
 key "name";
 description
 "List of primary paths for this tunnel.";
 uses p2p‑primary‑path‑properties;
 uses p2p‑reverse‑primary‑path‑properties;
 container candidate‑p2p‑secondary‑paths {
 description
 "The set of candidate secondary paths which may be used
 for this primary path. When secondary paths are specified
 in the list the path of the secondary LSP in use must be
 restricted to those path options referenced. The
 priority of the secondary paths is specified within the
 list. Higher priority values are less preferred ‑ that is
 to say that a path with priority 0 is the most preferred
 path. In the case that the list is empty, any secondary
 path option may be utilised when the current primary path
 is in use.";
 list candidate‑p2p‑secondary‑path {
 key "secondary‑path";
 description
 "List of secondary paths for this tunnel.";
 uses p2p‑path‑candidate‑secondary‑path‑config;

 container state {
 config false;
 description
 "Configuration applied parameters and state";
 uses p2p‑path‑candidate‑secondary‑path‑state;
 }
 }
 }
 }
 }
 container p2p‑secondary‑paths {
 description "Set of P2P secondary paths container";
 list p2p‑secondary‑path {
 key "name";
 description
 "List of secondary paths for this tunnel.";
 uses p2p‑secondary‑path‑properties;
 }
 }
}

 grouping shared-resources-tunnels_state {

 description

 "The specific tunnel that is using the shared secondary path
 resources";
 leaf lsp‑shared‑resources‑tunnel {
 type tunnel‑ref;
 description
 "Reference to the tunnel that sharing secondary path
 resources with this tunnel";
 }
}
grouping shared‑resources‑tunnels {
 description
 "Set of tunnels that share secondary path resources with
 this tunnnel";
 container shared‑resources‑tunnels {
 description
 "Set of tunnels that share secondary path resources with
 this tunnnel";
 leaf‑list lsp‑shared‑resources‑tunnel {
 type tunnel‑ref;
 description
 "Reference to the tunnel that sharing secondary path
 resources with this tunnel";
 }
 }
}

grouping tunnel‑actions {
 description "Tunnel actions";
 action tunnel‑action {
 description "Tunnel action";
 input {
 leaf action‑type {
 type identityref {
 base te‑types:tunnel‑action‑type;
 }
 description "Tunnel action type";
 }
 }
 output {
 leaf action‑result {
 type identityref {
 base te‑types:te‑action‑result;
 }
 description "The result of the RPC operation";
 }
 }
 }
}

grouping tunnel‑protection‑actions {
 description
 "Protection external command actions";
 action protection‑external‑commands {
 input {
 leaf protection‑external‑command {
 type identityref {
 base te‑types:protection‑external‑commands;
 }
 description
 "Protection external command";
 }
 leaf protection‑group‑ingress‑node‑id {
 type te‑types:te‑node‑id;
 description
 "When specified, indicates whether the action is
 applied on ingress node.
 By default, if neither ingress nor egress node‑id
 is set, the the action applies to ingress node only.";
 }
 leaf protection‑group‑egress‑node‑id {
 type te‑types:te‑node‑id;
 description
 "When specified, indicates whether the action is
 applied on egress node.
 By default, if neither ingress nor egress node‑id
 is set, the the action applies to ingress node only.";
 }
 leaf path‑ref {
 type path‑ref;
 description
 "Indicates to which path the external command applies to.";
 }
 leaf traffic‑type {
 type enumeration {
 enum normal‑traffic {
 description
 "The manual‑switch or forced‑switch command applies to
 the normal traffic (this Tunnel).";
 }
 enum null‑traffic {
 description
 "The manual‑switch or forced‑switch command applies to
 the null traffic.";
 }
 enum extra‑traffic {
 description
 "The manual‑switch or forced‑switch command applies to

 the extra traffic (the extra‑traffic Tunnel sharing
 protection bandwidth with this Tunnel).";
 }
 }
 description
 "Indicates whether the manual‑switch or forced‑switch
 commands applies to the normal traffic, the null traffic
 or the extra‑traffic.";
 reference
 "ITU‑T G.808, RFC 4427";
 }
 leaf extra‑traffic‑tunnel‑ref {
 type tunnel‑ref;
 description
 "In case there are multiple extra‑traffic tunnels sharing
 protection bandwidth with this Tunnel (m:n protection),
 represents which extra‑traffic Tunnel the manual‑switch or
 forced‑switch to extra‑traffic command applies to.";
 }
 }
 }
}

 /*** End of TE tunnel groupings ***/

/**
 * LSP related generic groupings
 */
grouping lsp‑record‑route‑information_state {
 description "recorded route information grouping";
 container lsp‑record‑route‑subobjects {
 description "RSVP recorded route object information";
 list record‑route‑subobject {
 when "../../origin‑type = 'ingress'" {
 description "Applicable on non‑ingress LSPs only";
 }
 key "index";
 description "Record route sub‑object list";
 uses te‑types:record‑route‑subobject_state;
 }
 }
}

grouping lsps‑state‑grouping {
 description
 "LSPs state operational data grouping";
 container lsps‑state {
 config false;

 description "TE LSPs state container";
 list lsp {
 key
 "source destination tunnel‑id lsp‑id "+
 "extended‑tunnel‑id";
 description "List of LSPs associated with the tunnel.";
 uses lsp‑properties_state;
 uses lsp‑record‑route‑information_state;
 }
 }
}

 /*** End of TE LSP groupings ***/

/**
 * TE global generic groupings
 */

/* Global named admin‑groups configuration data */
grouping named‑admin‑groups_config {
 description
 "Global named administrative groups configuration
 grouping";
 leaf name {
 type string;
 description
 "A string name that uniquely identifies a TE
 interface named admin‑group";
 }
 leaf bit‑position {
 type uint32;
 description
 "Bit position representing the administrative group";
 reference "RFC3209 and RFC7308";
 }
}
grouping named‑admin‑groups {
 description
 "Global named administrative groups configuration
 grouping";
 container named‑admin‑groups {
 description "TE named admin groups container";
 list named‑admin‑group {
 if‑feature te‑types:extended‑admin‑groups;
 if‑feature te‑types:named‑extended‑admin‑groups;
 key "name";
 description
 "List of named TE admin‑groups";

 uses named‑admin‑groups_config;
 }
 }
}

/* Global named admin‑srlgs configuration data */
grouping named‑srlgs_config {
 description
 "Global named SRLGs configuration grouping";
 leaf name {
 type string;
 description
 "A string name that uniquely identifies a TE
 interface named srlg";
 }
 leaf group {
 type te‑types:srlg;
 description "An SRLG value";
 }
 leaf cost {
 type uint32;
 description
 "SRLG associated cost. Used during path to append
 the path cost when traversing a link with this SRLG";
 }
}

grouping named‑srlgs {
 description
 "Global named SRLGs configuration grouping";
 container named‑srlgs {
 description "TE named SRLGs container";
 list named‑srlg {
 if‑feature te‑types:named‑srlg‑groups;
 key "name";
 description
 "A list of named SRLG groups";
 uses named‑srlgs_config;
 }
 }
}

/* Global named paths constraints configuration data */
grouping path‑constraints_state {
 description
 "TE path constraints state";
 leaf bandwidth‑generic_state {
 type te‑types:te‑bandwidth;

 description
 "A technology agnostic requested bandwidth to use
 for path computation";
 }
 leaf disjointness_state {
 type te‑types:te‑path‑disjointness;
 description
 "The type of resource disjointness.";
 }
}

grouping path‑constraints‑common_config {
 description
 "Global named path constraints configuration
 grouping";
 uses te‑types:common‑path‑constraints‑attributes;
 uses te‑types:generic‑path‑disjointness;
 uses te‑types:path‑route‑objects;
 uses shared‑resources‑tunnels {
 description
 "Set of tunnels that are allowed to share secondary path
 resources of this tunnel";
 }
 uses path‑access‑segment‑info {
 description
 "Tunnel constraints induced by other segments.";
 }
}

grouping path‑constraints {
 description "Per path constraints";
 uses path‑constraints‑common_config;
 container state {
 config false;
 description
 "Configuration applied parameters and state";
 uses path‑constraints_state;
 }
}

grouping named‑path‑constraints {
 description
 "Global named path constraints configuration
 grouping";
 container named‑path‑constraints {
 description "TE named path constraints container";
 list named‑path‑constraint {
 if‑feature te‑types:named‑path‑constraints;

 key "name";
 leaf name {
 type string;
 description
 "A string name that uniquely identifies a
 path constraint set";
 }
 uses path‑constraints;
 description
 "A list of named path constraints";
 }
 }
}

/* TE globals container data */
grouping globals‑grouping {
 description
 "Globals TE system‑wide configuration data grouping";
 container globals {
 description
 "Globals TE system‑wide configuration data container";
 uses named‑admin‑groups;
 uses named‑srlgs;
 uses named‑path‑constraints;
 }
}

/* TE tunnels container data */
grouping tunnels‑grouping {
 description
 "Tunnels TE configuration data grouping";
 container tunnels {
 description
 "Tunnels TE configuration data container";

 list tunnel {
 key "name";
 description "P2P TE tunnels list.";
 uses tunnel‑p2p‑properties;
 uses tunnel‑actions;
 uses tunnel‑protection‑actions;
 }
 list tunnel‑p2mp {
 key "name";
 unique "identifier";
 description "P2MP TE tunnels list.";
 uses tunnel‑p2mp‑properties;
 }

 }
}

/* TE LSPs ephemeral state container data */
grouping lsp‑properties_state {
 description
 "LSPs state operational data grouping";
 leaf source {
 type inet:ip‑address;
 description
 "Tunnel sender address extracted from
 SENDER_TEMPLATE object";
 reference "RFC3209";
 }
 leaf destination {
 type inet:ip‑address;
 description
 "Tunnel endpoint address extracted from
 SESSION object";
 reference "RFC3209";
 }
 leaf tunnel‑id {
 type uint16;
 description
 "Tunnel identifier used in the SESSION
 that remains constant over the life
 of the tunnel.";
 reference "RFC3209";
 }
 leaf lsp‑id {
 type uint16;
 description
 "Identifier used in the SENDER_TEMPLATE
 and the FILTER_SPEC that can be changed
 to allow a sender to share resources with
 itself.";
 reference "RFC3209";
 }
 leaf extended‑tunnel‑id {
 type inet:ip‑address;
 description
 "Extended Tunnel ID of the LSP.";
 reference "RFC3209";
 }
 leaf operational‑state {
 type identityref {
 base te‑types:lsp‑state‑type;
 }

 description "LSP operational state.";
 }
 leaf path‑setup‑protocol {
 type identityref {
 base te‑types:path‑signaling‑type;
 }
 description
 "Signaling protocol used to set up this tunnel";
 }
 leaf origin‑type {
 type enumeration {
 enum ingress {
 description
 "Origin ingress";
 }
 enum egress {
 description
 "Origin egress";
 }
 enum transit {
 description
 "transit";
 }
 }
 description
 "Origin type of LSP relative to the location
 of the local switch in the path.";
 }

 leaf lsp‑resource‑status {
 type enumeration {
 enum primary {
 description
 "A primary LSP is a fully established LSP for
 which the resource allocation has been committed
 at the data plane";
 }
 enum secondary {
 description
 "A secondary LSP is an LSP that has been provisioned
 in the control plane only; e.g. resource allocation
 has not been committed at the data plane";
 }
 }
 description "LSP resource allocation type";
 reference "rfc4872, section 4.2.1";
 }

 uses protection‑restoration‑params_state;
}
/*** End of TE global groupings ***/

/**
 * TE configurations container
 */
container te {
 presence "Enable TE feature.";
 description
 "TE global container.";

 /* TE Global Configuration Data */
 uses globals‑grouping;

 /* TE Tunnel Configuration Data */
 uses tunnels‑grouping;

 /* TE LSPs State Data */
 uses lsps‑state‑grouping;

 }

 /* TE Global RPCs/execution Data */
 rpc globals‑rpc {
 description
 "Execution data for TE global.";
 }

 /* TE interfaces RPCs/execution Data */
 rpc interfaces‑rpc {
 description
 "Execution data for TE interfaces.";
 }

 /* TE Tunnel RPCs/execution Data */
 rpc tunnels‑rpc {
 description "TE tunnels RPC nodes";
 input {
 container tunnel‑info {
 description "Tunnel Identification";
 choice type {
 description "Tunnel information type";
 case tunnel‑p2p {
 leaf p2p‑id {
 type tunnel‑ref;
 description "P2P TE tunnel";
 }

 }
 case tunnel‑p2mp {
 leaf p2mp‑id {
 type tunnel‑p2mp‑ref;
 description "P2MP TE tunnel";
 }
 }
 }
 }
 }
 output {
 container result {
 description
 "The container result of the RPC operation";
 leaf result {
 type enumeration {
 enum success {
 description "Origin ingress";
 }
 enum in‑progress {
 description "Origin egress";
 }
 enum fail {
 description "transit";
 }
 }
 description "The result of the RPC operation";
 }
 }
 }
 }

 /* TE Global Notification Data */
 notification globals‑notif {
 description
 "Notification messages for Global TE.";
 }

 /* TE Tunnel Notification Data */
 notification tunnels‑notif {
 description
 "Notification messages for TE tunnels.";
 }
}
<CODE ENDS>

 Figure 7: TE generic YANG module

<CODE BEGINS> file "ietf‑te‑device@2018‑10‑10.yang"
module ietf‑te‑device {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑te‑device";

 /* Replace with IANA when assigned */
 prefix "te‑dev";

 /* Import TE generic types */
 import ietf‑te {
 prefix te;
 reference "draft‑ietf‑teas‑yang‑te: A YANG Data Model for Traffic
 Engineering Tunnels and Interfaces";
 }

 /* Import TE generic types */
 import ietf‑te‑types {
 prefix te‑types;
 reference "draft‑ietf‑teas‑yang‑te‑types: A YANG Data Model for
 Common Traffic Engineering Types";
 }

 import ietf‑interfaces {
 prefix if;
 reference "RFC7223: A YANG Data Model for Interface Management";
 }

 import ietf‑inet‑types {
 prefix inet;
 reference "RFC6991: Common YANG Data Types";
 }

 import ietf‑routing‑types {
 prefix "rt‑types";
 reference "RFC6991: Common YANG Data Types";
 }

 organization

 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 WG Chair: Lou Berger

 <mailto:lberger@labn.net>

 WG Chair: Vishnu Pavan Beeram

 <mailto:vbeeram@juniper.net>

 Editor: Tarek Saad
 <mailto:tsaad@cisco.com>

 Editor: Rakesh Gandhi
 <mailto:rgandhi@cisco.com>

 Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

 Editor: Himanshu Shah
 <mailto:hshah@ciena.com>

 Editor: Xufeng Liu
 <mailto:xufeng.liu@ericsson.com>

 Editor: Xia Chen
 <mailto:jescia.chenxia@huawei.com>

 Editor: Raqib Jones
 <mailto:raqib@Brocade.com>

 Editor: Bin Wen
 <mailto:Bin_Wen@cable.comcast.com>";

description
 "YANG data module for TE device configurations,
 state, RPC and notifications.";

revision "2018‑10‑10" {
 description "Latest update to TE device YANG module.";
 reference "TBA";
}

/**
 * TE LSP device state grouping
 */
grouping lsps‑device_state {
 description "TE LSP device state grouping";
 container lsp‑timers {
 when "../te:origin‑type = 'ingress'" {
 description "Applicable to ingress LSPs only";
 }
 description "Ingress LSP timers";
 leaf life‑time {

 type uint32;
 units seconds;
 description
 "lsp life time";
 }

 leaf time‑to‑install {
 type uint32;
 units seconds;
 description
 "lsp installation delay time";
 }

 leaf time‑to‑destroy {
 type uint32;
 units seconds;
 description
 "lsp expiration delay time";
 }
 }

 container downstream‑info {
 when "../te:origin‑type != 'egress'" {
 description "Applicable to ingress LSPs only";
 }
 description
 "downstream information";

 leaf nhop {
 type inet:ip‑address;
 description
 "downstream nexthop.";
 }

 leaf outgoing‑interface {
 type if:interface‑ref;
 description
 "downstream interface.";
 }

 leaf neighbor {
 type inet:ip‑address;
 description
 "downstream neighbor.";
 }

 leaf label {

 type rt-types:generalized-label;

 description
 "downstream label.";
 }
 }

 container upstream‑info {
 when "../te:origin‑type != 'ingress'" {
 description "Applicable to non‑ingress LSPs only";
 }
 description
 "upstream information";

 leaf phop {
 type inet:ip‑address;
 description
 "upstream nexthop or previous‑hop.";
 }

 leaf neighbor {
 type inet:ip‑address;
 description
 "upstream neighbor.";
 }

 leaf label {
 type rt‑types:generalized‑label;
 description
 "upstream label.";
 }
 }
}

/**
 * Device general groupings.
 */
grouping tunnel‑device_config {
 description "Device TE tunnel configs";
 leaf path‑invalidation‑action {
 type identityref {
 base te‑types:path‑invalidation‑action‑type;
 }
 description "Tunnel path invalidtion action";
 }
}

grouping lsp‑device‑timers_config {
 description "Device TE LSP timers configs";
 leaf lsp‑install‑interval {

 type uint32;
 units seconds;
 description
 "lsp installation delay time";
 }
 leaf lsp‑cleanup‑interval {
 type uint32;
 units seconds;
 description
 "lsp cleanup delay time";
 }
 leaf lsp‑invalidation‑interval {
 type uint32;
 units seconds;
 description
 "lsp path invalidation before taking action delay time";
 }
}
grouping lsp‑device‑timers {
 description "TE LSP timers configuration";
 uses lsp‑device‑timers_config;
}

/**
 * TE global device generic groupings
 */

/* TE interface container data */
grouping interfaces‑grouping {
 description
 "Interface TE configuration data grouping";
 container interfaces {
 description
 "Configuration data model for TE interfaces.";
 uses te‑all‑attributes;
 list interface {
 key "interface";
 description "TE interfaces.";
 leaf interface {
 type if:interface‑ref;
 description
 "TE interface name.";
 }
 /* TE interface parameters */
 uses te‑attributes;
 }
 }
}

/**
 * TE interface device generic groupings
 */
grouping te‑admin‑groups_config {
 description
 "TE interface affinities grouping";
 choice admin‑group‑type {
 description
 "TE interface administrative groups
 representation type";
 case value‑admin‑groups {
 choice value‑admin‑group‑type {
 description "choice of admin‑groups";
 case admin‑groups {
 description
 "Administrative group/Resource
 class/Color.";
 leaf admin‑group {
 type te‑types:admin‑group;
 description
 "TE interface administrative group";
 }
 }
 case extended‑admin‑groups {
 if‑feature te‑types:extended‑admin‑groups;
 description
 "Extended administrative group/Resource
 class/Color.";
 leaf extended‑admin‑group {
 type te‑types:extended‑admin‑group;
 description
 "TE interface extended administrativei
 group";
 }
 }
 }
 }
 case named‑admin‑groups {
 list named‑admin‑groups {
 if‑feature te‑types:extended‑admin‑groups;
 if‑feature te‑types:named‑extended‑admin‑groups;
 key named‑admin‑group;
 description
 "A list of named admin‑group entries";
 leaf named‑admin‑group {
 type leafref {
 path "../../../../te:globals/" +
 "te:named‑admin‑groups/te:named‑admin‑group/" +

 "te:name";
 }
 description "A named admin‑group entry";
 }
 }
 }
 }
}

/* TE interface SRLGs */
grouping te‑srlgs_config {
 description "TE interface SRLG grouping";
 choice srlg‑type {
 description "Choice of SRLG configuration";
 case value‑srlgs {
 list values {
 key "value";
 description "List of SRLG values that
 this link is part of.";
 leaf value {
 type uint32 {
 range "0..4294967295";
 }
 description
 "Value of the SRLG";
 }
 }
 }
 case named‑srlgs {
 list named‑srlgs {
 if‑feature te‑types:named‑srlg‑groups;
 key named‑srlg;
 description
 "A list of named SRLG entries";
 leaf named‑srlg {
 type leafref {
 path "../../../../te:globals/" +
 "te:named‑srlgs/te:named‑srlg/te:name";
 }
 description
 "A named SRLG entry";
 }
 }
 }
 }
}

 grouping te-igp-flooding-bandwidth_config {

description
 "Configurable items for igp flooding bandwidth
 threshold configuration.";
leaf threshold‑type {
 type enumeration {
 enum DELTA {
 description
 "DELTA indicates that the local
 system should flood IGP updates when a
 change in reserved bandwidth >= the specified
 delta occurs on the interface.";
 }
 enum THRESHOLD_CROSSED {
 description
 "THRESHOLD‑CROSSED indicates that
 the local system should trigger an update (and
 hence flood) the reserved bandwidth when the
 reserved bandwidth changes such that it crosses,
 or becomes equal to one of the threshold values.";
 }
 }
 description
 "The type of threshold that should be used to specify the
 values at which bandwidth is flooded. DELTA indicates that
 the local system should flood IGP updates when a change in
 reserved bandwidth >= the specified delta occurs on the
 interface. Where THRESHOLD_CROSSED is specified, the local
 system should trigger an update (and hence flood) the
 reserved bandwidth when the reserved bandwidth changes such
 that it crosses, or becomes equal to one of the threshold
 values";
}

leaf delta‑percentage {
 when "../threshold‑type = 'DELTA'" {
 description
 "The percentage delta can only be specified when the
 threshold type is specified to be a percentage delta of
 the reserved bandwidth";
 }
 type rt‑types:percentage;
 description
 "The percentage of the maximum‑reservable‑bandwidth
 considered as the delta that results in an IGP update
 being flooded";
}
leaf threshold‑specification {
 when "../threshold‑type = 'THRESHOLD_CROSSED'" {

 description
 "The selection of whether mirrored or separate threshold
 values are to be used requires user specified thresholds to
 be set";
 }
 type enumeration {
 enum MIRRORED_UP_DOWN {
 description
 "MIRRORED_UP_DOWN indicates that a single set of
 threshold values should be used for both increasing
 and decreasing bandwidth when determining whether
 to trigger updated bandwidth values to be flooded
 in the IGP TE extensions.";
 }
 enum SEPARATE_UP_DOWN {
 description
 "SEPARATE_UP_DOWN indicates that a separate
 threshold values should be used for the increasing
 and decreasing bandwidth when determining whether
 to trigger updated bandwidth values to be flooded
 in the IGP TE extensions.";
 }
 }
 description
 "This value specifies whether a single set of threshold
 values should be used for both increasing and decreasing
 bandwidth when determining whether to trigger updated
 bandwidth values to be flooded in the IGP TE extensions.
 MIRRORED‑UP‑DOWN indicates that a single value (or set of
 values) should be used for both increasing and decreasing
 values, where SEPARATE‑UP‑DOWN specifies that the increasing
 and decreasing values will be separately specified";
}

leaf‑list up‑thresholds {
 when "../threshold‑type = 'THRESHOLD_CROSSED'" +
 "and ../threshold‑specification = 'SEPARATE_UP_DOWN'" {
 description
 "A list of up‑thresholds can only be specified when the
 bandwidth update is triggered based on crossing a
 threshold and separate up and down thresholds are
 required";
 }
 type rt‑types:percentage;
 description
 "The thresholds (expressed as a percentage of the maximum
 reservable bandwidth) at which bandwidth updates are to be
 triggered when the bandwidth is increasing.";

 }

 leaf‑list down‑thresholds {
 when "../threshold‑type = 'THRESHOLD_CROSSED'" +
 "and ../threshold‑specification = 'SEPARATE_UP_DOWN'" {
 description
 "A list of down‑thresholds can only be specified when the
 bandwidth update is triggered based on crossing a
 threshold and separate up and down thresholds are
 required";
 }
 type rt‑types:percentage;
 description
 "The thresholds (expressed as a percentage of the maximum
 reservable bandwidth) at which bandwidth updates are to be
 triggered when the bandwidth is decreasing.";
 }

 leaf‑list up‑down‑thresholds {
 when "../threshold‑type = 'THRESHOLD_CROSSED'" +
 "and ../threshold‑specification = 'MIRRORED_UP_DOWN'" {
 description
 "A list of thresholds corresponding to both increasing
 and decreasing bandwidths can be specified only when an
 update is triggered based on crossing a threshold, and
 the same up and down thresholds are required.";
 }
 type rt‑types:percentage;
 description
 "The thresholds (expressed as a percentage of the maximum
 reservable bandwidth of the interface) at which bandwidth
 updates are flooded ‑ used both when the bandwidth is
 increasing and decreasing";
 }
 }

 /* TE interface metric */
 grouping te‑metric_config {
 description "Interface TE metric grouping";
 leaf te‑metric {
 type te‑types:te‑metric;
 description "Interface TE metric.";
 }
 }

 /* TE interface switching capabilities */
 grouping te‑switching‑cap_config {
 description

 "TE interface switching capabilities";
 list switching‑capabilities {
 key "switching‑capability";
 description
 "List of interface capabilities for this interface";
 leaf switching‑capability {
 type identityref {
 base te‑types:switching‑capabilities;
 }
 description
 "Switching Capability for this interface";
 }
 leaf encoding {
 type identityref {
 base te‑types:lsp‑encoding‑types;
 }
 description
 "Encoding supported by this interface";
 }
 }
 }

 grouping te‑advertisements_state {
 description
 "TE interface advertisements state grouping";
 container te‑advertisements_state {
 description
 "TE interface advertisements state container";
 leaf flood‑interval {
 type uint32;
 description
 "The periodic flooding interval";
 }
 leaf last‑flooded‑time {
 type uint32;
 units seconds;
 description
 "Time elapsed since last flooding in seconds";
 }
 leaf next‑flooded‑time {
 type uint32;
 units seconds;
 description
 "Time remained for next flooding in seconds";
 }
 leaf last‑flooded‑trigger {
 type enumeration {
 enum link‑up {

 description "Link‑up flooding trigger";
 }
 enum link‑down {
 description "Link‑up flooding trigger";
 }
 enum threshold‑up {
 description
 "Bandwidth reservation up threshold";
 }
 enum threshold‑down {
 description
 "Bandwidth reservation down threshold";
 }
 enum bandwidth‑change {
 description "Banwidth capacity change";
 }
 enum user‑initiated {
 description "Initiated by user";
 }
 enum srlg‑change {
 description "SRLG property change";
 }
 enum periodic‑timer {
 description "Periodic timer expired";
 }
 }
 description "Trigger for the last flood";
 }
 list advertized‑level‑areas {
 key level‑area;
 description
 "List of areas the TE interface is advertised
 in";
 leaf level‑area {
 type uint32;
 description
 "The IGP area or level where the TE
 interface state is advertised in";
 }
 }
 }
 }

 /* TE interface attributes grouping */
 grouping te‑attributes {
 description "TE attributes configuration grouping";
 uses te‑metric_config;
 uses te‑admin‑groups_config;

 uses te‑srlgs_config;
 uses te‑igp‑flooding‑bandwidth_config;
 uses te‑switching‑cap_config;
 container state {
 config false;
 description
 "State parameters for interface TE metric";
 uses te‑advertisements_state;
 }
 }

 grouping te‑all‑attributes {
 description
 "TE attributes configuration grouping for all
 interfaces";
 uses te‑igp‑flooding‑bandwidth_config;
 }
 /*** End of TE interfaces device groupings ***/

 /**
 * TE device augmentations
 */
 augment "/te:te" {
 description "TE global container.";
 /* TE Interface Configuration Data */
 uses interfaces‑grouping;
 }

 /* TE globals device augmentation */
 augment "/te:te/te:globals" {
 description
 "Global TE device specific configuration parameters";
 uses lsp‑device‑timers;
 }

 /* TE tunnels device configuration augmentation */
 augment "/te:te/te:tunnels/te:tunnel" {
 description
 "Tunnel device dependent augmentation";
 uses lsp‑device‑timers_config;
 }
 augment "/te:te/te:tunnels/te:tunnel/te:state" {
 description
 "Tunnel device dependent augmentation";
 uses lsp‑device‑timers_config;
 }

 /* TE LSPs device state augmentation */
 augment "/te:te/te:lsps‑state/te:lsp" {
 description
 "LSP device dependent augmentation";
 uses lsps‑device_state;
 }

 augment "/te:te/te:tunnels/te:tunnel/te:p2p‑secondary‑paths" +
 "/te:p2p‑secondary‑path/te:state/te:lsps/te:lsp" {
 description
 "LSP device dependent augmentation";
 uses lsps‑device_state;
 }

 augment "/te:te/te:tunnels/te:tunnel/te:p2p‑primary‑paths" +
 "/te:p2p‑primary‑path/te:state/te:lsps/te:lsp" {
 description
 "LSP device dependent augmentation";
 uses lsps‑device_state;
 }

 /* TE interfaces RPCs/execution Data */
 rpc interfaces‑rpc {
 description
 "Execution data for TE interfaces.";
 }

 /* TE Interfaces Notification Data */
 notification interfaces‑notif {
 description
 "Notification messages for TE interfaces.";
 }
}
<CODE ENDS>

 Figure 8: TE device specific YANG module

5. IANA Considerations

 This document registers the following URIs in the IETF XML registry
 [RFC3688]. Following the format in [RFC3688], the following
 registration is requested to be made.

 URI: urn:ietf:params:xml:ns:yang:ietf-te XML: N/A, the requested URI
 is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-te-device XML: N/A, the
 requested URI is an XML namespace.

 This document registers a YANG module in the YANG Module Names
 registry [RFC6020].

 name: ietf-te namespace: urn:ietf:params:xml:ns:yang:ietf-te prefix:
 ietf-te reference: RFC3209

 name: ietf-te-device namespace: urn:ietf:params:xml:ns:yang:ietf-te
 prefix: ietf-te-device reference: RFC3209

6. Security Considerations

 The YANG module defined in this memo is designed to be accessed via
 the NETCONF protocol [RFC6241]. The lowest NETCONF layer is the
 secure transport layer and the mandatory-to-implement secure
 transport is SSH [RFC6242]. The NETCONF access control model
 [RFC8341] provides means to restrict access for particular NETCONF

 users to a pre-configured subset of all available NETCONF protocol
 operations and content.

 There are a number of data nodes defined in the YANG module which are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., <edit-config>)
 to these data nodes without proper protection can have a negative
 effect on network operations. Following are the subtrees and data
 nodes and their sensitivity/vulnerability:

 "/te/globals": This module specifies the global TE configurations on
 a device. Unauthorized access to this container could cause the
 device to ignore packets it should receive and process.

 "/te/tunnels": This list specifies the configured TE tunnels on a
 device. Unauthorized access to this list could cause the device to
 ignore packets it should receive and process.

 "/te/lsps-state": This list specifies the state derived LSPs.
 Unauthorized access to this list could cause the device to ignore
 packets it should receive and process.

 "/te/interfaces": This list specifies the configured TE interfaces on
 a device. Unauthorized access to this list could cause the device to
 ignore packets it should receive and process.

7. Acknowledgement

 The authors would like to thank the members of the multi-vendor YANG
 design team who are involved in the definition of this model.

 The authors would also like to thank Loa Andersson, Lou Berger,
 Sergio Belotti, Italo Busi, Carlo Perocchio, Francesco Lazzeri, Aihua
 Guo, Dhruv Dhody, Anurag Sharma, and Xian Zhang for their comments
 and providing valuable feedback on this document.

8. Contributors

Xia Chen
Huawei Technologies

 Email: jescia.chenxia@huawei.com

Raqib Jones
Brocade

 Email: raqib@Brocade.com

Bin Wen
Comcast

 Email: Bin_Wen@cable.comcast.com

9. Normative References

 [I-D.ietf-teas-yang-path-computation]

 Busi, I., Belotti, S., Lopezalvarez, V., Dios, O., Sharma,
 A., Shi, Y., Vilata, R., and K. Sethuraman, "Yang model
 for requesting Path Computation", draft-ietf-teas-yang-
 path-computation-02 (work in progress), June 2018.

 [I-D.ietf-teas-yang-rsvp]

 Beeram, V., Saad, T., Gandhi, R., Liu, X., Bryskin, I.,
 and H. Shah, "A YANG Data Model for Resource Reservation
 Protocol (RSVP)", draft-ietf-teas-yang-rsvp-09 (work in
 progress), May 2018.

 [I-D.ietf-teas-yang-te-types]

 Saad, T., Gandhi, R., Liu, X., Beeram, V., and I. Bryskin,
 "Traffic Engineering Common YANG Types", draft-ietf-teas-
 yang-te-types-01 (work in progress), October 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <https://www.rfc-editor.org/info/rfc3209>.

 [RFC3473]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Resource ReserVation Protocol-
 Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
 DOI 10.17487/RFC3473, January 2003,
 <https://www.rfc-editor.org/info/rfc3473>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6107]
 Shiomoto, K., Ed. and A. Farrel, Ed., "Procedures for
 Dynamically Signaled Hierarchical Label Switched Paths",
 RFC 6107, DOI 10.17487/RFC6107, February 2011,
 <https://www.rfc-editor.org/info/rfc6107>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8294]
 Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
 "Common YANG Data Types for the Routing Area", RFC 8294,
 DOI 10.17487/RFC8294, December 2017,
 <https://www.rfc-editor.org/info/rfc8294>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

Authors' Addresses

Tarek Saad
Cisco Systems Inc

 Email: tsaad@cisco.com

Rakesh Gandhi
Cisco Systems Inc

 Email: rgandhi@cisco.com

Xufeng Liu
Volta Networks

 Email: xufeng.liu.ietf@gmail.com

Vishnu Pavan Beeram
Juniper Networks

 Email: vbeeram@juniper.net

Himanshu Shah
Ciena

 Email: hshah@ciena.com

Igor Bryskin
Huawei Technologies

 Email: Igor.Bryskin@huawei.com

draft-ietf-teas-yang-te-topo-18 - Expires: December 27, 2018 June 27, 2018

Index
Back 5
Prev
Next
Forward 5

TEAS Working Group

Internet Draft

Intended status: Standards Track

Xufeng Liu

Volta Networks

Igor Bryskin

Huawei Technologies

Vishnu Pavan Beeram

Juniper Networks

Tarek Saad

Cisco Systems Inc

Himanshu Shah

Ciena

Oscar Gonzalez De Dios

Telefonica

Expires: December 27, 2018 June 27, 2018

 YANG Data Model for Traffic Engineering (TE) Topologies

 draft-ietf-teas-yang-te-topo-18

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

 This Internet-Draft will expire on December 23, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Abstract

 This document defines a YANG data model for representing, retrieving
 and manipulating Traffic Engineering (TE) Topologies. The model
 serves as a base model that other technology specific TE Topology
 models can augment.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Tree Structure

	 1.3. Prefixes in Data Node Names

	2. Characterizing TE Topologies

	3. Modeling Abstractions and Transformations
	 3.1. TE Topology

	 3.2. TE Node

	 3.3. TE Link

	 3.4. Transitional TE Link for Multi-Layer Topologies

	 3.5. TE Link Termination Point (LTP)

	 3.6. TE Tunnel Termination Point (TTP)

	 3.7. TE Node Connectivity Matrix

	 3.8. TTP Local Link Connectivity List (LLCL)

	 3.9. TE Path

	 3.10. TE Inter-Layer Lock

	 3.11. Underlay TE topology

	 3.12. Overlay TE topology

	 3.13. Abstract TE topology

	4. Model Applicability
	 4.1. Native TE Topologies

	 4.2. Customized TE Topologies

	 4.3. Merging TE Topologies Provided by Multiple Providers

	 4.4. Dealing with Multiple Abstract TE Topologies Provided by the Same Provider

	5. Modeling Considerations
	 5.1. Network topology building blocks

	 5.2. Technology agnostic TE Topology model

	 5.3. Model Structure

	 5.4. Topology Identifiers

	 5.5. Generic TE Link Attributes

	 5.6. Generic TE Node Attributes

	 5.7. TED Information Sources

	 5.8. Overlay/Underlay Relationship

	 5.9. Templates

	 5.10. Scheduling Parameters

	 5.11. Notifications

	6. Guidance for Writing Technology Specific TE Topology Augmentations

	7. TE Topology YANG Module

	8. Security Considerations

	9. IANA Considerations

	10. References
	 10.1. Normative References

	 10.2. Informative References

	11. Acknowledgments

	Appendix A. Complete Model Tree Structure

	Appendix B. Companion YANG Model for Non-NMDA Compliant Implementations

	Appendix C. Example: YANG Model for Technology Specific Augmentations

	Contributors

	Authors' Addresses

1. Introduction

 The Traffic Engineering Database (TED) is an essential component of
 Traffic Engineered (TE) systems that are based on MPLS-TE [RFC2702]
 and GMPLS [RFC3945]. The TED is a collection of all TE information
 about all TE nodes and TE links in the network. The TE Topology is a
 schematic arrangement of TE nodes and TE links present in a given
 TED. There could be one or more TE Topologies present in a given
 Traffic Engineered system. A TE Topology is the topology on which
 path computational algorithms are run to compute Traffic Engineered
 Paths (TE Paths).

 This document defines a YANG [RFC7950] data model for representing
 and manipulating TE Topologies. This model contains technology
 agnostic TE Topology building blocks that can be augmented and used
 by other technology-specific TE Topology models.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The reader is assumed to be familiar with general body of work
 captured in currently available TE related RFCs. [RFC7926] serves as
 a good starting point for those who may be less familiar with Traffic
 Engineering related RFCs.

 Some of the key terms used in this document are:

 TED: The Traffic Engineering Database is a collection of all TE
 information about all TE nodes and TE links in a given network.

 TE-Topology: The TE Topology is a schematic arrangement of TE nodes
 and TE links in a given TED. It forms the basis for a graph suitable
 for TE path computations.

 Native TE Topology: Native TE Topology is a topology that is native
 to a given provider network. Native TE topology could be discovered
 via various routing protocols and/or subscribe/publish techniques.
 This is the topology on which path computational algorithms are run
 to compute TE Paths.

 Customized TE Topology: Customized TE Topology is a custom topology
 that is produced by a provider for a given client. This topology
 typically makes abstractions on the provider's Native TE Topology,
 and is provided to the client. The client receives the Customized TE
 Topology, and merges it into the client's Native TE Topology. The
 client's path computational algorithms aren't typically run on the
 Customized TE Topology; they are run on the client's Native TE
 Topology after the merge.

1.2. Tree Structure

 A simplified graphical representation of the data model is presented
 in Appendix A. of this document. The tree format defined in [RFC8340]
 is used for the YANG data model tree representation.

1.3. Prefixes in Data Node Names

 In this document, names of data nodes and other data model objects
 are prefixed using the standard prefix associated with the
 corresponding YANG imported modules, as shown in Table 1.

+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Prefix | YANG module | Reference |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
yang	ietf‑yang‑types	[RFC6991]
inet	ietf‑inet‑types	[RFC6991]
nw	ietf‑network	[RFC6991]
nt	ietf‑network‑topology	[RFC8345]
te‑types	ietf‑te‑types	[I‑D.ietf‑teas‑yang‑te]
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1: Prefixes and corresponding YANG modules

2. Characterizing TE Topologies

 The data model proposed by this document takes the following
 characteristics of TE Topologies into account:

 - TE Topology is an abstract control-plane representation of the
 data-plane topology. Hence attributes specific to the data-plane
 must make their way into the corresponding TE Topology modeling.
 The TE Topology comprises of dynamic auto-discovered data as well
 as fairly static data associated with data-plane nodes and links.
 The dynamic data may change frequently, such as unreserved
 bandwidth available on data-plane links. The static data rarely
 changes, such as layer network identification, switching and
 adaptation capabilities and limitations, fate sharing, and
 administrative colors. It is possible for a single TE Topology to
 encompass TE information at multiple switching layers.

 - TE Topologies are protocol independent. Information about
 topological elements may be learnt via link-state protocols, but
 the topology can exist without being dependent on any particular
 protocol.

 - TE Topology may not be congruent to the routing topology in a
 given TE System. The routing topology is constructed based on
 routing adjacencies. There isn't always a one-to-one association
 between a TE-link and a routing adjacency. For example, the
 presence of a TE link between a pair of nodes doesn't necessarily
 imply the existence of a routing-adjacency between these nodes. To
 learn more, see [I-D.ietf-teas-te-topo-and-tunnel-modeling] and
 [I-D.ietf-teas-yang-l3-te-topo].

 - Each TE Topological element has at least one information source
 associated with it. In some scenarios, there could be more than
 one information source associated with any given topological
 element.

 - TE Topologies can be hierarchical. Each node and link of a given
 TE Topology can be associated with respective underlay topology.
 This means that each node and link of a given TE Topology can be
 associated with an independent stack of supporting TE Topologies.

 - TE Topologies can be customized. TE topologies of a given network
 presented by the network provider to its client could be
 customized on per-client request basis. This customization could
 be performed by provider, by client or by provider/client
 negotiation. The relationship between a customized topology and
 provider's native topology could be captured as hierarchical
 (overlay-underlay), but otherwise the two topologies are decoupled
 from each other. A customized topology is presented to the client,
 while provider's native topology is known in its entirety to the
 provider itself.

3. Modeling Abstractions and Transformations

 | +‑‑‑+ __
 | | | TE Node \/ TTP o LTP
 | +‑‑‑+
 |
 | ‑‑‑‑‑ TE Link
 | ***** Node Connectivity Matrix,
 | TTP Local Link Connectivity
 | @@@@@ TE Tunnel
 o‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

 Node‑1 Node‑3
+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
| TTP‑1 | | TTP‑1 |
|LTP __ | TE‑Tunel‑1 | __ |
|‑6 \/@@\/ |
o * * oLTP‑1 Node‑2 LTP‑6o * * o
| * * | +‑‑‑‑‑‑‑‑‑‑‑‑+ | * * | | |
| * TTP‑2* | | | | * TTP‑2* |
| * __ * |LTP‑2 LTP‑6| |LTP‑1 LTP‑5| * __ * |
o* \/ *o‑‑‑‑‑‑‑‑‑‑‑o************o‑‑‑‑‑‑‑‑‑‑‑o* \/ *o
|LTP * * | Link‑12 | * | Link‑23 | * * |
|‑5 * * | LTP‑5| * |LTP‑2 | * * |
+‑‑o‑‑‑‑‑‑o‑‑+ o************o +‑‑o‑‑‑‑‑‑o‑‑+
 LTP‑4 LTP‑3 | * * * | LTP‑4 LTP‑3
 | ** * |
 +‑‑o‑‑‑‑‑‑o‑‑+
 LTP‑4 LTP‑3

 Figure 1: TE Topology Modeling Abstractions

3.1. TE Topology

 TE topology is a traffic engineering representation of one or more
 layers of network topologies. TE topology is comprised of TE nodes
 (TE graph vertices) interconnected via TE links (TE graph edges). A
 TE topology is mapped to a TE graph.

3.2. TE Node

 TE node is an element of a TE topology, presented as a vertex on TE
 graph. TE node represents one or several nodes, or a fraction of a
 node, which can be a switch or router that is physical or virtual. TE
 node belongs to and is fully defined in exactly one TE topology. TE
 node is assigned a unique ID within the TE topology scope. TE node
 attributes include information related to the data plane aspects of
 the associated node(s) (e.g. connectivity matrix), as well as
 configuration data (such as TE node name). A given TE node can be
 reached on the TE graph over one of TE links terminated by the TE
 node.

 Multi-layer TE nodes providing switching functions at multiple
 network layers are an example where a physical node can be decomposed
 into multiple logical TE nodes, which are fractions of the physical
 node. Some of these (logical) TE nodes may reside in the client layer
 TE topology while the remaining TE nodes belong to the server layer
 TE topology.

 In Figure 1, Node-1, Node-2, and Node-3 are TE nodes.

3.3. TE Link

 TE link is an element of a TE topology, presented as an edge on TE
 graph. The arrows on an edge indicate one or both directions of the
 TE link. When there are a pair of parallel links of opposite
 directions, an edge without arrows is also used. TE link represents
 one or several (physical) links or a fraction of a link. TE link
 belongs to and is fully defined in exactly one TE topology. TE link
 is assigned a unique ID within the TE topology scope. TE link
 attributes include parameters related to the data plane aspects of
 the associated link(s) (e.g. unreserved bandwidth, resource
 maps/pools, etc.), as well as the configuration data (such as remote
 node/link IDs, SRLGs, administrative colors, etc.). TE link is
 connected to TE node, terminating the TE link via exactly one TE link
 termination point (LTP).

 In Figure 1, Link-12 and Link-23 are TE links.

3.4. Transitional TE Link for Multi-Layer Topologies

 Networks are typically composed of multiple network layers where one
 or multiple signals in the client layer network can be multiplexed
 and encapsulated into a server layer signal [RFC5212] [G.805]. The
 server layer signal can be carried in the server layer network across
 multiple nodes until the server layer signal is terminated and the
 client layer signals reappear in the node that terminates the server
 layer signal. Examples of multi-layer networks are: IP over MPLS over
 Ethernet, low order Optical Data Unit-k (ODUk) signals multiplexed
 into a high order ODUl (l>k) carried over an Optical Channel (OCh)
 signal in an optical transport network as defined in [G.872] and
 [G.709].

 TE links as defined in 3.3. can be used to represent links within a
 network layer. In case of a multi-layer network, TE nodes and TE
 links only allow representation of each network layer as a separate
 TE topology. Each of these single layer TE topologies would be
 isolated from their client and their server layer TE topology, if
 present. The highest and the lowest network layer in the hierarchy
 only have a single adjacent layer below or above, respectively.
 Multiplexing of client layer signals and encapsulating them into a
 server layer signal requires a function that is provided inside a
 node (typically realized in hardware). This function is also called
 layer transition.

 One of the key requirements for path computation is to be able to
 calculate a path between two endpoints across a multi-layer network
 based on the TE topology representing this multi-layer network. This
 means that an additional TE construct is needed that represents
 potential layer transitions in the multi-layer TE-topology that
 connects the TE-topologies representing each separate network layer.
 The so-called transitional TE link is such a construct and it
 represents the layer transition function residing inside a node that
 is decomposed into multiple logical nodes that are represented as TE
 nodes (see also the transitional link definition in [G.8080] for the
 optical transport network). Hence, a transitional TE link connects a
 client layer node with a server layer node. A TE link as defined in
 3.3. has LTPs of exactly the same kind on each link end whereas the
 transitional TE link has client layer LTPs on the client side of the
 transitional link and in most cases a single server layer LTP on the
 server side. It should be noted that transitional links are a helper
 construct in the multi-layer TE topology and they only exist as long
 as they are not in use, as they represent potential connectivity.
 When the server layer trail has been established between the server
 layer LTP of two transitional links in the server layer network, the
 resulting client layer link in the data plane will be represented as
 a normal TE link in the client layer topology. The transitional TE
 links will re-appear when the server layer trail has been torn down.

 | |
 | +‑‑‑+ ‑‑‑
 | | | TE Node \ / Transitional
 | +‑‑‑+ | Link
 |
 | ‑‑‑‑‑ Client Layer Link
 | ===== Server Layer Link
 | ***** Layer Boundary
 o‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | +‑‑‑‑‑‑+ | +‑‑‑‑‑‑+
‑‑‑‑‑|Client|‑‑‑‑‑‑+ | Client ‑‑‑‑‑|Client|
 | |Layer |‑‑‑+ | | Layer |Layer |
‑‑‑‑‑|Switch|‑+ | | | Links ‑‑‑‑‑|Node |
 | +‑‑‑‑‑‑+ | | | | +‑‑‑‑‑‑+
 | | | | | Client | | |
 | | | ‑‑‑_| Layer ‑‑‑ ‑‑‑
|*******|*| \ /*|***************************\ /*\ /****
‑‑‑		Server Transitional		
Layer \ /		Layer Links		
Term.				
+‑‑‑‑‑‑+	+‑‑‑‑‑‑+			
=============	Server	===== Server ====	Server	====
	Layer		Layer	Layer
=============	Switch	===== Links ====	Node	====
+‑‑‑‑‑‑+	+‑‑‑‑‑‑+			
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Physical Node View TE‑Topology View

 Figure 2: Modeling a Multi-Layer Node (Dual-Layer Example)

3.5. TE Link Termination Point (LTP)

 TE link termination point (LTP) is a conceptual point of connection
 of a TE node to one of the TE links, terminated by the TE node.
 Cardinality between an LTP and the associated TE link is 1:0..1.

 In Figure 1, Node-2 has six LTPs: LTP-1 to LTP-6.

3.6. TE Tunnel Termination Point (TTP)

 TE tunnel termination point (TTP) is an element of TE topology
 representing one or several of potential transport service
 termination points (i.e. service client adaptation points such as
 WDM/OCh transponder). TTP is associated with (hosted by) exactly one
 TE node. TTP is assigned a unique ID within the TE node scope.
 Depending on the TE node's internal constraints, a given TTP hosted
 by the TE node could be accessed via one, several or all TE links
 terminated by the TE node.

 In Figure 1, Node-1 has two TTPs: TTP-1 and TTP-2.

3.7. TE Node Connectivity Matrix

 TE node connectivity matrix is a TE node's attribute describing the
 TE node's switching limitations in a form of valid switching
 combinations of the TE node's LTPs (see below). From the point of
 view of a potential TE path arriving at the TE node at a given
 inbound LTP, the node's connectivity matrix describes valid
 (permissible) outbound LTPs for the TE path to leave the TE node
 from.

In Figure 1, the connectivity matrix on Node‑2 is:
{<LTP‑6, LTP‑1>, <LTP‑5, LTP‑2>, <LTP‑5, LTP‑4>, <LTP‑4, LTP‑1>,
<LTP‑3, LTP‑2>}

3.8. TTP Local Link Connectivity List (LLCL)

 TTP Local Link Connectivity List (LLCL) is a List of TE links
 terminated by the TTP hosting TE node (i.e. list of the TE link
 LTPs), which the TTP could be connected to. From the point of view of
 a potential TE path, LLCL provides a list of valid TE links the TE
 path needs to start/stop on for the connection, taking the TE path,
 to be successfully terminated on the TTP in question.

In Figure 1, the LLCL on Node‑1 is:
{<TTP‑1, LTP‑5>, <TTP‑1, LTP‑2>, <TTP‑2, LTP‑3>, <TTP‑2, LTP4>}

3.9. TE Path

 TE path is an ordered list of TE links and/or TE nodes on the TE
 topology graph, inter-connecting a pair of TTPs to be taken by a
 potential connection. TE paths, for example, could be a product of
 successful path computation performed for a given transport service.

In Figure 1, the TE Path for TE‑Tunnel‑1 is:
{Node‑1:TTP‑1, Link‑12, Node‑2, Link‑23, Node‑3:TTP1}

3.10. TE Inter-Layer Lock

 TE inter-layer lock is a modeling concept describing client-server
 layer adaptation relationships and hence important for the multi-
 layer traffic engineering. It is an association of M client layer
 LTPs and N server layer TTPs, within which data arriving at any of
 the client layer LTPs could be adopted onto any of the server layer
 TTPs. TE inter-layer lock is identified by inter-layer lock ID, which
 is unique across all TE topologies provided by the same provider. The
 client layer LTPs and the server layer TTPs associated within a given
 TE inter-layer lock are annotated with the same inter-layer lock ID
 attribute.

 | +‑‑‑+ __
 | | | TE Node \/ TTP o LTP
 | +‑‑‑+
 |
 | ‑‑‑‑‑ TE Link
 | ***** TTP Local Link Connectivity
 o‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

(IL‑1) C‑LTP‑1 +‑‑‑‑‑‑‑‑‑‑‑‑+ C‑LTP‑2 (IL‑1)
 ‑‑‑‑‑‑‑‑O (IL‑1) O‑‑‑‑‑‑‑‑
(IL‑1) C‑LTP‑3 | S‑TTP‑1 | C‑LTP‑4 (IL‑1)
 ‑‑‑‑‑‑‑‑O __ 0‑‑‑‑‑‑‑‑
(IL‑1) C‑LTP‑5 | *\/* | C‑LTP‑5 (IL‑1)
 ‑‑‑‑‑‑‑‑O * * O‑‑‑‑‑‑‑‑
 | *(IL‑1)* |
 S‑LTP‑3 | * S‑TTP‑2* | S‑LTP‑4
 ‑‑‑‑‑‑‑‑o* __ *o‑‑‑‑‑‑‑‑
 | *\/* |
 | * * |
 +‑‑o‑‑‑‑‑‑o‑‑+
 S‑LTP‑1 | | S‑LTP‑2

 Figure 3: TE Inter-Layer Lock ID Associations

On the picture above a TE inter‑layer lock with IL_1 ID associates 6
client layer LTPs (C‑LTP‑1 ‑ C‑LTP‑6) with two server layer TTPs (S‑
TTP‑1 and S‑TTP‑2). They all have the same attribute ‑ TE inter‑layer
lock ID: IL‑1, which is the only thing that indicates the
association. A given LTP may have 0, 1 or more inter‑layer lock IDs.
In the latter case this means that the data arriving at the LTP may
be adopted onto any of TTPs associated with all specified inter‑layer
locks. For example, C‑LTP‑1 could have two inter‑layer lock IDs ‑ IL‑
1 and IL‑2. This would mean that C‑LTP‑1 for adaptation purposes
could use not just TTPs associated with inter‑layer lock IL‑1 (i.e.

 S-TTP-1 and S-TTP-2 on the picture), but any of TTPs associated with
 inter-layer lock IL-2 as well. Likewise, a given TTP may have one or
 more inter-layer lock IDs, meaning that it can offer the adaptation
 service to any of client layer LTPs with inter-layer lock ID matching
 one of its own. Additionally, each TTP has an attribute - Unreserved
 Adaptation Bandwidth, which announces its remaining adaptation
 resources sharable between all potential client LTPs.

 LTPs and TTPs associated within the same TE inter-layer lock may be
 hosted by the same (hybrid, multi-layer) TE node or multiple TE nodes
 located in the same or separate TE topologies. The latter is
 especially important since TE topologies of different layer networks
 could be modeled by separate augmentations of the basic (common to
 all layers) TE topology model.

3.11. Underlay TE topology

 Underlay TE topology is a TE topology that serves as a base for
 constructing of overlay TE topologies

3.12. Overlay TE topology

 Overlay TE topology is a TE topology constructed based on one or more
 underlay TE topologies. Each TE node of the overlay TE topology
 represents an arbitrary segment of an underlay TE topology; each TE
 link of the overlay TE topology represents an arbitrary TE path in
 one of the underlay TE topologies. The overlay TE topology and the
 supporting underlay TE topologies may represent distinct layer
 networks (e.g. OTN/ODUk and WDM/OCh respectively) or the same layer
 network.

3.13. Abstract TE topology

 Abstract TE topology is a topology that contains abstract topological
 elements (nodes, links, tunnel termination points). Abstract TE
 topology is an overlay TE topology created by a topology provider and
 customized for a topology provider's client based on one or more of
 the provider's native TE topologies (underlay TE topologies), the
 provider's policies and the client's preferences. For example, a
 first level topology provider (such as Domain Controller) can create
 an abstract TE topology for its client (e.g. Multi-Domain Service
 Coordinator) based on the provider's one or more native TE
 topologies, local policies/profiles and the client's TE topology
 configuration requests

 Figure 4 shows an example of abstract TE topology.

 | +‑‑‑+
 | | | TE Node
 | +‑‑‑+
 | ‑‑‑‑‑ TE Link
 o‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

+‑‑‑+ +‑‑‑+
|s31|‑‑‑‑‑‑‑‑‑‑‑‑‑‑|S5 |
+‑‑‑+\ / +‑‑‑+
 \ /
 \ /
 \+‑‑‑+/ +‑‑‑+
 /|AN1|\‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|S8 |
 / +‑‑‑+ \ +‑‑‑+
+‑‑‑+ / \ +‑‑‑+
|S9 |‑‑‑‑‑‑‑‑‑‑‑‑‑|S11|
+‑‑‑+ +‑‑‑+
 Abstract TE Topology

 +‑‑‑+ +‑‑‑+
 |S1 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|S2 |
 +‑‑‑+ +‑‑‑+
 / \
 / \
+‑‑‑+ / +‑‑‑+ \ +‑‑‑+
|s3 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|S4 |‑‑‑‑‑‑‑‑‑|S5 |
+‑‑‑+\ +‑‑‑+ +‑‑‑+
 \ \ \
 \ \ \
 \+‑‑‑+ +‑‑‑+ +‑‑‑+
 /|S6 |\ |S7 |‑‑‑‑‑‑‑‑‑|S8 |
 / +‑‑‑+ \ +‑‑‑+\ /+‑‑‑+
+‑‑‑+ / \ +‑‑‑+ +‑‑‑+ /
|S9 |‑‑‑‑‑‑‑‑‑‑‑‑‑|S10|‑‑‑‑‑‑‑‑‑‑‑‑‑‑|S11|/
+‑‑‑+ +‑‑‑+ +‑‑‑+
 Native TE Topology

 Figure 4: Abstract TE Topology

4. Model Applicability

4.1. Native TE Topologies

 The model discussed in this draft can be used to represent and
 retrieve native TE topologies on a given TE system.

 | +‑‑‑+
 | | | TE Node
 | +‑‑‑+
 | ‑‑‑‑‑ TE Link
 o‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

+‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+
| R1|‑‑‑‑‑‑‑| R2|‑‑‑‑‑‑‑‑| R3|‑‑‑‑‑‑‑‑‑| R4|‑‑‑‑‑‑‑‑‑| R5|
+‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+
 | / \ / \ /
 | / \ / \ /
 | / \ / \ /
 | / \ / \ /
 | / \ / \ /
+‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+
| R6|‑‑‑‑‑‑‑‑‑‑‑‑‑| R7| | R8|‑‑‑‑‑‑‑‑‑| R9|
+‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+

 Figure 5a: Example Network Topology

 Consider the network topology depicted in Figure 5a. R1 .. R9 are
 nodes representing routers. An implementation MAY choose to construct
 a native TE Topology using all nodes and links present in the given
 TED as depicted in Figure 5b. The data model proposed in this
 document can be used to retrieve/represent this TE topology.

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | Native | | [] TE Node
 | TE‑Topology | | +++ TE Link
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ o‑‑‑‑‑‑‑‑‑‑‑‑‑‑

[R1] ++++ [R2] ++++ [R3] ++++ [R4] ++++ [R5]
 + + + + + +
 + + + + + +
 + + ++ ++
[R6] +++++++++ [R7] [R8] ++++ [R9]

 Figure 5b: Native TE Topology as seen on Node R3

 Consider the case of the topology being split in a way that some
 nodes participate in OSPF-TE while others participate in ISIS-TE
 (Figure 6a). An implementation MAY choose to construct separate TE
 Topologies based on the information source. The native TE Topologies
 constructed using only nodes and links that were learnt via a
 specific information source are depicted in Figure 6b. The data model
 proposed in this document can be used to retrieve/represent these TE
 topologies.

 Similarly, the data model can be used to represent/retrieve a TE
 Topology that is constructed using only nodes and links that belong
 to a particular technology layer. The data model is flexible enough
 to retrieve and represent many such native TE Topologies.

 :
TE info distributed via ISIS‑TE : TE info distributed via OSPF‑TE
 :
 +‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+
 | R1|‑‑‑‑‑‑‑| R2|‑‑‑‑‑‑‑‑| R3|‑‑‑‑‑‑‑‑‑| R4|‑‑‑‑‑‑‑‑‑| R5|
 +‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+
 | / : \ / \ /
 | / : \ / \ /
 | / : \ / \ /
 | / : \ / \ /
 | / : \ / \ /
 +‑‑‑+ +‑‑‑+ : +‑‑‑+ +‑‑‑+
 | R6|‑‑‑‑‑‑‑‑‑‑‑‑‑| R7| : | R8|‑‑‑‑‑‑‑‑‑| R9|
 +‑‑‑+ +‑‑‑+ : +‑‑‑+ +‑‑‑+
 :

 Figure 6a: Example Network Topology

‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ : ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
|Native TE Topology | : |Native TE Topology |
|Info‑Source: ISIS‑TE | : |Info‑Source: OSPF‑TE |
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ : ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 :
 [R1] ++++ [R2] ++++ [R3] : [R3'] ++++ [R4] ++++ [R5]
 + + : + + + +
 + + : + + + +
 + + : ++ ++
 [R6] +++++++++ [R7] : [R8] ++++ [R9]

 Figure 6b: Native TE Topologies as seen on Node R3

4.2. Customized TE Topologies

 Customized TE topology is a topology that was modified by the
 provider to honor a particular client's requirements or preferences.
 The model discussed in this draft can be used to represent, retrieve
 and manipulate customized TE Topologies. The model allows the
 provider to present the network in abstract TE Terms on a per client
 basis. These customized topologies contain sufficient information for
 the path computing client to select paths according to its policies.

 | +‑‑‑+ /‑\
 | | | Router () WDM
 | +‑‑‑+ Node \‑/ node
 |
 o‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

+‑‑‑+ /‑\ /‑\ /‑\ +‑‑‑+
| R1|‑‑‑‑‑‑‑(A)‑‑‑‑‑‑‑‑(C)‑‑‑‑‑‑‑‑‑(E)‑‑‑‑‑‑‑‑‑| R3|
+‑‑‑+ \‑/ \‑/ \‑/ +‑‑‑+
 / \ / \
 / \ / \
 / \ / \
 / \ / \
 / \ / \
 +‑‑‑+ /‑\ /‑\ /‑\ +‑‑‑+
 | R2|‑‑‑‑‑‑‑‑‑(B)‑‑‑‑‑‑‑‑‑(D)‑‑‑‑‑‑‑‑‑(F)‑‑‑‑‑‑‑‑‑| R4|
 +‑‑‑+ \‑/ \‑/ \‑/ +‑‑‑+

 Figure 7: Example packet optical topology

 Consider the network topology depicted in Figure 7. This is a typical
 packet optical transport deployment scenario where the WDM layer
 network domain serves as a Server Network Domain providing transport
 connectivity to the packet layer network Domain (Client Network
 Domain). Nodes R1, R2, R3 and R4 are IP routers that are connected to
 an Optical WDM transport network. A, B, C, D, E and F are WDM nodes
 that constitute the Server Network Domain.

 | ***** B‑F WDM Path
 | @@@@@ B‑E WDM Path
 | $$$$$ A‑E WDM Path
 o‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

+‑‑‑+ /‑\ $$$$$$$$ /‑\ $$$$$$$$$ /‑\ +‑‑‑+
| R1|‑‑‑‑‑‑‑(A)‑‑‑‑‑‑‑‑(C)‑‑‑‑‑‑‑‑‑(E)‑‑‑‑‑‑‑‑‑| R3|
+‑‑‑+ \‑/ @\‑/ @@@@@@@@@ \‑/ +‑‑‑+
 @/ \ / \
 @/ \ / \
 @/ \ / \
 @/ \ / \
 @/ \ / \
 +‑‑‑+ /‑\ ********* /‑\ ********* /‑\ +‑‑‑+
 | R2|‑‑‑‑‑‑‑‑‑(B)‑‑‑‑‑‑‑‑‑(D)‑‑‑‑‑‑‑‑‑(F)‑‑‑‑‑‑‑‑‑| R4|
 +‑‑‑+ \‑/ \‑/ \‑/ +‑‑‑+

 Figure 8a: Paths within the provider domain

++++++++ [A] ++++++++++++++++++++ [E] +++++++++
 +++++
 ++++
 ++++
 ++++
 ++++
++++++++ [B] ++++++++++++++++++++ [F] +++++++++

 Figure 8b: Customized TE Topology provided to the Client

 The goal here is to augment the Client TE Topology with a customized
 TE Topology provided by the WDM network. Given the availability of
 the paths A-E, B-F and B-E (Figure 8a), a customized TE Topology as
 depicted in Figure 8b is provided to the Client. This customized TE
 Topology is merged with the Client's Native TE Topology and the
 resulting topology is depicted in Figure 8c.

[R1] ++++++++ [A] ++++++++++++++++++++ [E] +++++++++ [R3]
 +++++
 ++++
 ++++
 ++++
 ++++
[R2] ++++++++ [B] ++++++++++++++++++++ [F] +++++++++ [R4]

 Figure 8c: Customized TE Topology merged with the Client's Native TE

 Topology

 The data model proposed in this document can be used to
 retrieve/represent/manipulate the customized TE Topology depicted in
 Figure 8b.

A customized TE topology is not necessarily an abstract TE topology.
The provider may produce, for example, an abstract TE topology of
certain type (e.g. single‑abstract‑node‑with‑connectivit‑matrix
topology, a border_nodes_connected_via_mesh_of_abstract_links
topology, etc.) and expose it to all/some clients in expectation that
the clients will use it without customization.
On the other hand, a client may request a customized version of the
provider's native TE topology (e.g. by requesting removal of TE links

 which belong to certain layers, are too slow, not protected and/or
 have a certain affinity). Note that the resulting TE topology will
 not be abstract (because it will not contain abstract elements), but
 customized (modified upon client's instructions).

 The client ID field in the TE topology identifier (Section 5.4.)
 indicates which client the TE topology is customized for. Although a
 authorized client MAY receive a TE topology with the client ID field
 matching some other client, the client can customize only TE
 topologies with the client ID field either 0 or matching the ID of
 the client in question. If the client starts reconfiguration of a
 topology its client ID will be automatically set in the topology ID
 field for all future configurations and updates wrt. the topology in
 question.

 The provider MAY tell the client that a given TE topology cannot be
 re-negotiated, by setting its own (provider's) ID in the client ID
 field of the topology ID.

4.3. Merging TE Topologies Provided by Multiple Providers

 A client may receive TE topologies provided by multiple providers,
 each of which managing a separate domain of multi-domain network. In
 order to make use of said topologies, the client is expected to merge
 the provided TE topologies into one or more client's native TE
 topologies, each of which homogeneously representing the multi-domain
 network. This makes it possible for the client to select end-to-end
 TE paths for its services traversing multiple domains.

 In particular, the process of merging TE topologies includes:

‑ Identifying neighboring domains and locking their topologies
 horizontally by connecting their inter‑domain open‑ended TE links;
‑ Renaming TE node, link, and SRLG IDs to ones allocated from a
 separate name space; this is necessary because all TE topologies
 are considered to be, generally speaking, independent with a
 possibility of clashes among TE node, link or SRLG IDs;
‑ Locking, vertically, TE topologies associated with different layer
 networks, according to provided topology inter‑layer locks; this is
 to facilitate inter‑layer path computations across multiple TE
 topologies provided by the same topology provider.

 /‑‑‑\ +‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+ /‑‑‑\
 |s3 |‑‑‑‑‑‑|S13|‑‑‑‑|S15|‑‑‑‑‑‑|S23|‑‑‑‑|S25|‑‑‑‑‑‑|C21|
 \‑‑‑/ +‑‑‑+\ +‑‑‑+ +‑‑‑+ /+‑‑‑+ \‑‑‑/
 \ /
 \ /
 \+‑‑‑+ +‑‑‑+/ +‑‑‑+ /‑‑‑\
 |S18|‑‑‑‑‑‑|S24| |S28|‑‑‑‑‑‑|C22|
 +‑‑‑+ +‑‑‑+\ /+‑‑‑+ \‑‑‑/
 \/
 /\
 /‑‑‑\ +‑‑‑+ +‑‑‑+ +‑‑‑+/ \+‑‑‑+ /‑‑‑\
 |C12|‑‑‑‑‑‑|S19|‑‑‑‑|S17|‑‑‑‑‑‑|S29|‑‑‑‑|S27|‑‑‑‑‑‑|C23|
 \‑‑‑/ +‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+ \‑‑‑/

 Domain 1 TE Topology Domain 2 TE Topology

 +‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+
 ‑‑‑‑‑|S13|‑‑‑‑|S15|‑‑‑‑ ‑‑‑‑|S23|‑‑‑‑|S25|‑‑‑‑
 +‑‑‑+\ +‑‑‑+ +‑‑‑+ /+‑‑‑+
 \ /
 \ /
 \+‑‑‑+ +‑‑‑+/ +‑‑‑+
 |S18|‑‑‑‑ ‑‑‑‑|S24| |S28|‑‑‑‑
 +‑‑‑+ +‑‑‑+\ /+‑‑‑+
 \/
 /\
 +‑‑‑+ +‑‑‑+ +‑‑‑+/ \+‑‑‑+
 ‑‑‑‑‑|S19|‑‑‑‑|S17|‑‑‑‑ ‑‑‑‑|S29|‑‑‑‑|S27|‑‑‑‑
 +‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+

 Figure 9: Merging Domain TE Topologies

 Figure 9 illustrates the process of merging, by the client, of TE
 topologies provided by the client's providers. In the Figure, each of
 the two providers caters to the client (abstract or native) TE
 topology, describing the network domain under the respective
 provider's control. The client, by consulting the attributes of the
 inter-domain TE links - such as inter-domain plug IDs or remote TE
 node/link IDs (as defined by the TE Topology model) - is able to
 determine that:

 a) the two domains are adjacent and are inter-connected via three

 inter-domain TE links, and;

 b) each domain is connected to a separate customer site, connecting

 the left domain in the Figure to customer devices C-11 and C-12,
 and the right domain to customer devices C-21, C-22 and C-23.

 Therefore, the client inter-connects the open-ended TE links, as
 shown on the upper part of the Figure.

 As mentioned, one way to inter-connect the open-ended inter-domain TE
 links of neighboring domains is to mandate the providers to specify
 remote nodeID/linkID attribute in the provided inter-domain TE links.
 This, however, may prove to be not flexible. For example, the
 providers may not know the respective remote nodeIDs/ linkIDs. More
 importantly, this option does not allow for the client to mix-n-match
 multiple (more than one) topologies catered by the same providers
 (see below). Another, more flexible, option to resolve the open-ended
 inter-domain TE links is by annotating them with the inter-domain
 plug ID attribute. Inter-domain plug ID is a network-wide unique
 number that identifies on the network a connectivity supporting a
 given inter-domain TE link. Instead of specifying remote node ID/link
 ID, an inter-domain TE link may provide a non-zero inter-domain plug
 ID. It is expected that two neighboring domain TE topologies
 (provided by separate providers) will have each at least one open-
 ended inter-domain TE link with an inter-domain plug ID matching to
 one provided by its neighbor. For example, the inter-domain TE link
 originating from node S15 of the Domain 1 TE topology (Figure 9) and
 the inter-domain TE link coming from node S23 of Domain 2 TE topology
 may specify matching inter-domain plug ID (e.g. 175344). This allows
 for the client to identify adjacent nodes in the separate neighboring
 TE topologies and resolve the inter-domain TE links connecting them
 regardless of their respective nodeIDs/linkIDs (which, as mentioned,
 could be allocated from independent name spaces). Inter-domain plug
 IDs may be assigned and managed by a central network authority.
 Alternatively, inter-domain plug IDs could be dynamically auto-
 discovered (e.g. via LMP protocol).

 Furthermore, the client renames the TE nodes, links and SRLGs offered
 in the abstract TE topologies by assigning to them IDs allocated from
 a separate name space managed by the client. Such renaming is
 necessary, because the two abstract TE topologies may have their own
 name spaces, generally speaking, independent one from another; hence,
 ID overlaps/clashes are possible. For example, both TE topologies
 have TE nodes named S7, which, after renaming, appear in the merged
 TE topology as S17 and S27, respectively.

 Once the merging process is complete, the client can use the merged
 TE topology for path computations across both domains, for example,
 to compute a TE path connecting C-11 to C-23.

4.4. Dealing with Multiple Abstract TE Topologies Provided by the Same
 Provider

Domain 1 Abstract TE Topology 1 Domain 2 Abstract TE Topology 1

 +‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+
 ‑‑‑‑‑|S13|‑‑‑‑|S15|‑‑‑‑ ‑‑‑‑|S23|‑‑‑‑|S25|‑‑‑‑
 +‑‑‑+\ +‑‑‑+ +‑‑‑+ /+‑‑‑+
 \ /
 \ /
 \+‑‑‑+ +‑‑‑+/ +‑‑‑+
 |S18|‑‑‑‑ ‑‑‑‑|S24| |S28|‑‑‑‑
 +‑‑‑+ +‑‑‑+\ /+‑‑‑+
 \/
 /\
 +‑‑‑+ +‑‑‑+ +‑‑‑+/ \+‑‑‑+
 ‑‑‑‑‑|S19|‑‑‑‑|S17|‑‑‑‑ ‑‑‑‑|S29|‑‑‑‑|S27|‑‑‑‑
 +‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+

Domain 1 Abstract TE Topology 1 Domain 2 Abstract TE Topology 1

 +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
 ‑‑‑‑‑| |‑‑‑‑ ‑‑‑‑| |‑‑‑‑
 | | | |
 | AN1 |‑‑‑‑ ‑‑‑‑| AN1 |‑‑‑‑
 | | | |
 ‑‑‑‑‑| |‑‑‑‑ ‑‑‑‑| |‑‑‑‑
 +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 10: Merging Domain TE Topologies

 Based on local configuration, templates and/or policies pushed by the
 client, a given provider may expose more than one abstract TE
 topology to the client. For example, one abstract TE topology could
 be optimized based on a lowest-cost criterion, while another one
 could be based on best possible delay metrics, while yet another one
 could be based on maximum bandwidth availability for the client
 services. Furthermore, the client may request all or some providers
 to expose additional abstract TE topologies, possibly of a different
 type and/or optimized differently, as compared to already-provided TE
 topologies. In any case, the client should be prepared for a provider
 to offer to the client more than one abstract TE topology.

 It should be up to the client (based on the client's local
 configuration and/or policies conveyed to the client by the client's
 clients) to decide how to mix-and-match multiple abstract TE
 topologies provided by each or some of the providers, as well as how
 to merge them into the client's native TE topologies. The client also
 decides how many such merged TE topologies it needs to produce and
 maintain. For example, in addition to the merged TE topology depicted
 in the upper part of Figure 9, the client may merge the abstract TE
 topologies received from the two providers, as shown in Figure 10,
 into the client's additional native TE topologies, as shown in Figure
 11.

 Note that allowing for the client mix-n-matching of multiple TE
 topologies assumes that inter-domain plug IDs (rather than remote
 nodeID/linkID) option is used for identifying neighboring domains and
 inter-domain TE link resolution.

 Client's Merged TE Topology 2

/‑‑‑\ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ /‑‑‑\
|s3 |‑‑‑‑‑‑| |‑‑‑‑‑‑| |‑‑‑‑‑‑|C21|
\‑‑‑/ | | | | \‑‑‑/
 | | | |
 | | | |
 | | | | /‑‑‑\
 | AN11 |‑‑‑‑‑‑| AN21 |‑‑‑‑‑‑|C22|
 | | | | \‑‑‑/
 | | | |
 | | | |
/‑‑‑\ | | | | /‑‑‑\
|C12|‑‑‑‑‑‑| |‑‑‑‑‑‑| |‑‑‑‑‑‑|C23|
\‑‑‑/ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ \‑‑‑/

 Client's Merged TE Topology 3

/‑‑‑\ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑+ +‑‑‑+ /‑‑‑\
|s3 |‑‑‑‑‑‑| |‑‑‑‑‑‑|S23|‑‑‑‑|S25|‑‑‑‑‑‑|C21|
\‑‑‑/ | | +‑‑‑+ /+‑‑‑+ \‑‑‑/
 | | /
 | | /
 | | +‑‑‑+/ +‑‑‑+ /‑‑‑\
 | AN11 |‑‑‑‑‑‑|S24| |S28|‑‑‑‑‑‑|C22|
 | | +‑‑‑+\ /+‑‑‑+ \‑‑‑/
 | | \/
 | | /\
/‑‑‑\ | | +‑‑‑+/ \+‑‑‑+ /‑‑‑\
|C12|‑‑‑‑‑‑| |‑‑‑‑‑‑|S29|‑‑‑‑|S27|‑‑‑‑‑‑|C23|
\‑‑‑/ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑+ +‑‑‑+ \‑‑‑/

 Figure 11: Multiple Native (Merged) Client's TE Topologies

 It is important to note that each of the three native (merged) TE
 topologies could be used by the client for computing TE paths for any
 of the multi-domain services. The choice as to which topology to use
 for a given service depends on the service parameters/requirements
 and the topology's style, optimization criteria and the level of
 details.

5. Modeling Considerations

5.1. Network topology building blocks

 The network topology building blocks are discussed in [RFC8345]. The
 TE Topology model proposed in this document augments and uses the
 ietf-network-topology module defined in [RFC8345].

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| |
| Network Topology Model |
| (ietf‑network‑topology)|
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 |
 |
 V
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| TE Topology |
| Model |
| |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 12: Augmenting the Network Topology Model

5.2. Technology agnostic TE Topology model

 The TE Topology model proposed in this document is meant to be
 network technology agnostic. Other technology specific TE Topology
 models can augment and use the building blocks provided by the
 proposed model.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | TE Topology Model |
 | (Defined in This Document) |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | | |
 V V V V
+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
Technology		Technology
Specific	Specific
TE Topology		TE Topology
Model 1		Model n
+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 13: Augmenting the Technology agnostic TE Topology model

5.3. Model Structure

 The high-level model structure proposed by this document is as shown
 below:

module: ietf‑te‑topology
augment /nw:networks/nw:network/nw:network‑types:
 +‑‑rw te‑topology!

augment /nw:networks:
 +‑‑rw te!
 +‑‑rw templates
 +‑‑rw node‑template* [name] {template}?
 |
 +‑‑rw link‑template* [name] {template}?

augment /nw:networks/nw:network:
 +‑‑rw provider‑id? te‑types:te‑global‑id
 +‑‑rw client‑id? te‑types:te‑global‑id
 +‑‑rw te‑topology‑id? te‑types:te‑topology‑id
 +‑‑rw te!
 |

augment /nw:networks/nw:network/nw:node:
 +‑‑rw te‑node‑id? te‑types:te‑node‑id
 +‑‑rw te!
 |
 +‑‑rw tunnel‑termination‑point* [tunnel‑tp‑id]
 +‑‑rw tunnel‑tp‑id binary

 |
 +‑‑rw supporting‑tunnel‑termination‑point* [node‑ref tunnel‑
tp‑ref]
 |

augment /nw:networks/nw:network/nt:link:
 +‑‑rw te!
 |

augment /nw:networks/nw:network/nw:node/nt:termination‑point:
 +‑‑rw te‑tp‑id? te‑types:te‑tp‑id
 +‑‑rw te!
 |

5.4. Topology Identifiers

 The TE-Topology is uniquely identified by a key that has 3
 constituents - te-topology-id, provider-id and client-id. The
 combination of provider-id and te-topology-id uniquely identifies a
 native TE Topology on a given provider. The client-id is used only
 when Customized TE Topologies come into play; a value of "0" is used
 as the client-id for native TE Topologies.

augment /nw:networks/nw:network:
 +‑‑rw provider‑id? te‑types:te‑global‑id
 +‑‑rw client‑id? te‑types:te‑global‑id
 +‑‑rw te‑topology‑id? te‑types:te‑topology‑id
 +‑‑rw te!
 |

5.5. Generic TE Link Attributes

 The model covers the definitions for generic TE Link attributes -
 bandwidth, admin groups, SRLGs, switching capabilities, TE metric
 extensions etc.

+‑‑rw te‑link‑attributes

 +‑‑rw admin‑status? te‑admin‑status
 |
 +‑‑rw link‑index? uint64
 +‑‑rw administrative‑group? te‑types:admin‑groups
 +‑‑rw link‑protection‑type? enumeration
 +‑‑rw max‑link‑bandwidth? te‑bandwidth
 +‑‑rw max‑resv‑link‑bandwidth? te‑bandwidth
 +‑‑rw unreserved‑bandwidth* [priority]

 |
 +‑‑rw te‑default‑metric? uint32
 |
 +‑‑rw te‑srlgs
 +‑‑rw te‑nsrlgs {nsrlg}?

5.6. Generic TE Node Attributes

 The model covers the definitions for generic TE Node attributes.

 The definition of a generic connectivity matrix is shown below:

+‑‑rw te‑node‑attributes

 +‑‑rw connectivity‑matrices

 | +‑‑rw connectivity‑matrix* [id]
 | | +‑‑rw id uint32
 | | +‑‑rw from
 | | | +‑‑rw tp‑ref? leafref
 | | | +‑‑rw label‑restrictions
 | | +‑‑rw to
 | | | +‑‑rw tp‑ref? leafref
 | | | +‑‑rw label‑restrictions
 | | +‑‑rw is‑allowed? boolean

 | | +‑‑rw underlay! {te‑topology‑hierarchy}?

 | | +‑‑rw path‑constraints

 | | +‑‑rw optimizations

 | | +‑‑ro path‑properties

 The definition of a TTP Local Link Connectivity List is shown below:

 +‑‑rw tunnel‑termination‑point* [tunnel‑tp‑id]
 +‑‑rw tunnel‑tp‑id binary
 +‑‑rw admin‑status? te‑types:te‑admin‑status
 +‑‑rw name? string
 +‑‑rw switching‑capability? identityref
 +‑‑rw encoding? identityref
 +‑‑rw inter‑layer‑lock‑id* uint32
 +‑‑rw protection‑type? Identityref
 +‑‑rw client‑layer‑adaptation

 +‑‑rw local‑link‑connectivities

 | +‑‑rw local‑link‑connectivity* [link‑tp‑ref]
 | +‑‑rw link‑tp‑ref leafref
 | +‑‑rw label‑restrictions

 | +‑‑rw is‑allowed? boolean
 | +‑‑rw underlay {te‑topology‑hierarchy}?

 | +‑‑rw path‑constraints

 | +‑‑rw optimizations

 | +‑‑ro path‑properties

 +‑‑rw supporting‑tunnel‑termination‑point* [node‑ref tunnel‑tp‑
ref]
 +‑‑rw node‑ref inet:uri
 +‑‑rw tunnel‑tp‑ref binary

 The attributes directly under container connectivity-matrices are the
 default attributes for all connectivity-matrix entries when the per
 entry corresponding attribute is not specified. When a per entry
 attribute is specified, it overrides the cooresponding attribute
 directly under the container connectivity-matrices. The same rule
 applies to the attributes directly under container local-link-
 connectivities.

 Each TTP (Tunnel Termination Point) MAY be supported by one or more
 supporting TTPs. If the TE node hosting the TTP in question refers to
 a supporting TE node, then the supporting TTPs are hosted by the
 supporting TE node. If the TE node refers to an underlay TE topology,
 the supporting TTPs are hosted by one or more specified TE nodes of
 the underlay TE topology.

5.7. TED Information Sources

 The model allows each TE topological element to have multiple TE
 information sources (OSPF-TE, ISIS-TE, BGP-LS, User-Configured,
 System-Processed, Other). Each information source is associated with
 a credibility preference to indicate precedence. In scenarios where a
 customized TE Topology is merged into a Client's native TE Topology,
 the merged topological elements would point to the corresponding
 customized TE Topology as its information source.

 augment /nw:networks/nw:network/nw:node:

 +‑‑rw te!

 +‑‑ro information‑source? te‑info‑source
 +‑‑ro information‑source‑state
 | +‑‑ro credibility‑preference? uint16
 | +‑‑ro logical‑network‑element? string
 | +‑‑ro network‑instance? string
 | +‑‑ro topology
 | +‑‑ro node‑ref? leafref
 | +‑‑ro network‑ref? leafref
 +‑‑ro information‑source‑entry* [information‑source]
 | +‑‑ro information‑source te‑info‑source

augment /nw:networks/nw:network/nt:link:
 +‑‑rw te!

 +‑‑ro information‑source? te‑info‑source
 +‑‑ro information‑source‑state
 | +‑‑ro credibility‑preference? uint16
 | +‑‑ro logical‑network‑element? string
 | +‑‑ro network‑instance? string
 | +‑‑ro topology
 | +‑‑ro link‑ref? leafref
 | +‑‑ro network‑ref? leafref
 +‑‑ro information‑source‑entry* [information‑source]
 | +‑‑ro information‑source te‑info‑source

5.8. Overlay/Underlay Relationship

 The model captures overlay and underlay relationship for TE
 nodes/links. For example - in networks where multiple TE Topologies
 are built hierarchically, this model allows the user to start from a
 specific topological element in the top most topology and traverse
 all the way down to the supporting topological elements in the bottom
 most topology.

 This relationship is captured via the "underlay-topology" field for
 the node and via the "underlay" field for the link. The use of these
 fields is optional and this functionality is tagged as a "feature"
 ("te-topology-hierarchy").

augment /nw:networks/nw:network/nw:node:
 +‑‑rw te‑node‑id? te‑types:te‑node‑id
 +‑‑rw te!
 +‑‑rw te‑node‑template* leafref {template}?

 +‑‑rw te‑node‑attributes
 | +‑‑rw admin‑status? te‑types:te‑admin‑status
 | |
 | +‑‑rw underlay‑topology {te‑topology‑hierarchy}?
 | +‑‑rw network‑ref? leafref

augment /nw:networks/nw:network/nt:link:
 +‑‑rw te!
 +‑‑rw te‑link‑attributes
 |
 | +‑‑rw underlay {te‑topology‑hierarchy}?
 | | +‑‑rw enabled? boolean
 | | +‑‑rw primary‑path
 | | | +‑‑rw network‑ref? leafref
 | | |
 | | +‑‑rw backup‑path* [index]
 | | | +‑‑rw index uint32
 | | | +‑‑rw network‑ref? leafref
 | | |
 | | +‑‑rw protection‑type? identityref
 | | +‑‑rw tunnel‑termination‑points
 | | | +‑‑rw source? binary
 | | | +‑‑rw destination? binary
 | | +‑‑rw tunnels
 | | |

5.9. Templates

 The data model provides the users with the ability to define
 templates and apply them to link and node configurations. The use of
 "template" configuration is optional and this functionality is tagged
 as a "feature" ("template").

augment /nw:networks/nw:network/nw:node:
 +‑‑rw te‑node‑id? te‑types:te‑node‑id
 +‑‑rw te!
 +‑‑rw te‑node‑template*
 | ‑> ../../../../te/templates/node‑template/name
 | {template}?

augment /nw:networks/nw:network/nt:link:
 +‑‑rw te!
 +‑‑rw te‑link‑template*
 | ‑> ../../../../te/templates/link‑template/name
 | {template}?

 augment /nw:networks:

+‑‑rw te!
 +‑‑rw templates
 +‑‑rw node‑template* [name] {template}?
 | +‑‑rw name
 | | te‑types:te‑template‑name
 | +‑‑rw priority? uint16
 | +‑‑rw reference‑change‑policy? enumeration
 | +‑‑rw te‑node‑attributes

 +‑‑rw link‑template* [name] {template}?
 +‑‑rw name
 | te‑types:te‑template‑name
 +‑‑rw priority? uint16
 +‑‑rw reference‑change‑policy? enumeration
 +‑‑rw te‑link‑attributes

 Multiple templates can be specified to a configuration element. When
 two or more templates specify values for the same configuration
 field, the value from the template with the highest priority is used.
 The reference-change-policy specifies the action that needs to be
 taken when the template changes on a configuration element that has a
 reference to this template. The choices of action include taking no
 action, rejecting the change to the template and applying the change
 to the corresponding configuration.

5.10. Scheduling Parameters

 The model allows time scheduling parameters to be specified for each
 topological element or for the topology as a whole. These parameters
 allow the provider to present different topological views to the
 client at different time slots. The use of "scheduling parameters" is
 optional.

 The YANG data model for configuration scheduling is defined in [I-
 D.liu-netmod-yang-schedule], which allows specifying configuration
 schedules without altering this data model.

5.11. Notifications

 Notifications are a key component of any topology data model.

 [I-D.ietf-netconf-subscribed-notifications] and [I-D.ietf-netconf-
 yang-push] define a subscription and push mechanism for YANG
 datastores. This mechanism currently allows the user to:

 - Subscribe notifications on a per client basis

‑ Specify subtree filters or xpath filters so that only interested
 contents will be sent.
‑ Specify either periodic or on‑demand notifications.

6. Guidance for Writing Technology Specific TE Topology Augmentations

 The TE topology model defined in this document is technology agnostic
 as it defines concepts, abstractions and attributes that are common
 across multiple network technologies. It is envisioned that this base
 model will be widely used when defining technology specific TE
 topology models for various layer networks. [I-D.ietf-ccamp-wson-
 yang], [I-D.ietf-ccamp-otn-topo-yang], and [I-D.ietf-teas-yang-l3-te-
 topo] are some examples of technology specific TE Topology models.
 Writers of such models are encouraged to augment the basic TE
 topology model's containers, such as TE Topology, TE Node, TE Link,
 Link Termination Point (LTP), Tunnel Termination Point (TTP),
 Bandwidth and Label with the layer specific attributes instead of
 defining new containers.

 Consider the following technology specific example-topology model:

module: example‑topology
 augment /nw:networks/nw:network/nw:network‑types/tet:te‑topology:
 +‑‑rw example‑topology!
 augment /nw:networks/nw:network/tet:te:
 +‑‑rw attributes
 +‑‑rw attribute‑1? uint8
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes:
 +‑‑rw attributes
 +‑‑rw attribute‑2? uint8
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices:
 +‑‑rw attributes
 +‑‑rw attribute‑3? uint8
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices
 /tet:connectivity‑matrix:
 +‑‑rw attributes
 +‑‑rw attribute‑3? uint8
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel‑termination‑point:
 +‑‑rw attributes

 +‑‑rw attribute‑4? uint8
 augment /nw:networks/nw:network/nw:node/nt:termination‑point
 /tet:te:
 +‑‑rw attributes
 +‑‑rw attribute‑5? uint8
 augment /nw:networks/nw:network/nt:link/tet:te
 /tet:te‑link‑attributes:
 +‑‑rw attributes
 +‑‑rw attribute‑6? uint8

 The technology specific TE bandwidth for this example topology can be
 specified using the following augment statements:

augment /nw:networks/tet:te/tet:templates/tet:link‑template
 /tet:te‑link‑attributes
 /tet:interface‑switching‑capability/tet:max‑lsp‑bandwidth
 /tet:te‑bandwidth/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw bandwidth‑1? uint32
augment /nw:networks/tet:te/tet:templates/tet:link‑template
 /tet:te‑link‑attributes/tet:max‑link‑bandwidth
 /tet:te‑bandwidth/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw bandwidth‑1? uint32
augment /nw:networks/tet:te/tet:templates/tet:link‑template
 /tet:te‑link‑attributes/tet:max‑resv‑link‑bandwidth
 /tet:te‑bandwidth/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw bandwidth‑1? uint32
augment /nw:networks/tet:te/tet:templates/tet:link‑template
 /tet:te‑link‑attributes/tet:unreserved‑bandwidth
 /tet:te‑bandwidth/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw bandwidth‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices

 /tet:path‑constraints/tet:te‑bandwidth/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw bandwidth‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices
 /tet:connectivity‑matrix/tet:path‑constraints
 /tet:te‑bandwidth/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw bandwidth‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information‑source‑entry/tet:connectivity‑matrices
 /tet:path‑constraints/tet:te‑bandwidth/tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro bandwidth‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information‑source‑entry/tet:connectivity‑matrices
 /tet:connectivity‑matrix/tet:path‑constraints
 /tet:te‑bandwidth/tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro bandwidth‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel‑termination‑point/tet:client‑layer‑adaptation
 /tet:switching‑capability/tet:te‑bandwidth
 /tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw bandwidth‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel‑termination‑point
 /tet:local‑link‑connectivities/tet:path‑constraints
 /tet:te‑bandwidth/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw bandwidth‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel‑termination‑point
 /tet:local‑link‑connectivities

 /tet:local‑link‑connectivity/tet:path‑constraints
 /tet:te‑bandwidth/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw bandwidth‑1? uint32
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:te‑link‑attributes
 /tet:interface‑switching‑capability/tet:max‑lsp‑bandwidth
 /tet:te‑bandwidth/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw bandwidth‑1? uint32
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:te‑link‑attributes/tet:max‑link‑bandwidth
 /tet:te‑bandwidth/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw bandwidth‑1? uint32
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:te‑link‑attributes/tet:max‑resv‑link‑bandwidth
 /tet:te‑bandwidth/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw bandwidth‑1? uint32
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:information‑source‑entry
 /tet:interface‑switching‑capability/tet:max‑lsp‑bandwidth
 /tet:te‑bandwidth/tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro bandwidth‑1? uint32
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:information‑source‑entry/tet:max‑link‑bandwidth
 /tet:te‑bandwidth/tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro bandwidth‑1? uint32
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:information‑source‑entry/tet:max‑resv‑link‑bandwidth
 /tet:te‑bandwidth/tet:technology:
 +‑‑:(example)

 +‑‑ro example
 +‑‑ro bandwidth‑1? uint32
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:information‑source‑entry/tet:unreserved‑bandwidth
 /tet:te‑bandwidth/tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro bandwidth‑1? uint32
augment /nw:networks/nw:network/nw:node/nt:termination‑point/tet:te
 /tet:interface‑switching‑capability/tet:max‑lsp‑bandwidth
 /tet:te‑bandwidth/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw bandwidth‑1? uint32

 The technology specific TE label for this example topology can be
 specified using the following augment statements:

augment /nw:networks/tet:te/tet:templates/tet:link‑template
 /tet:te‑link‑attributes/tet:underlay/tet:primary‑path
 /tet:path‑element/tet:type/tet:label/tet:label‑hop
 /tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/tet:te/tet:templates/tet:link‑template
 /tet:te‑link‑attributes/tet:underlay/tet:backup‑path
 /tet:path‑element/tet:type/tet:label/tet:label‑hop
 /tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/tet:te/tet:templates/tet:link‑template
 /tet:te‑link‑attributes/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑start/tet:te‑label
 /tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/tet:te/tet:templates/tet:link‑template

 /tet:te‑link‑attributes/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑end/tet:te‑label
 /tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices
 /tet:label‑restrictions/tet:label‑restriction
 /tet:label‑start/tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices
 /tet:label‑restrictions/tet:label‑restriction
 /tet:label‑end/tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices
 /tet:underlay/tet:primary‑path/tet:path‑element/tet:type
 /tet:label/tet:label‑hop/tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices
 /tet:underlay/tet:backup‑path/tet:path‑element/tet:type
 /tet:label/tet:label‑hop/tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices
 /tet:path‑properties/tet:path‑route‑objects
 /tet:path‑route‑object/tet:type/tet:label/tet:label‑hop
 /tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑ro example

 +‑‑ro label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices
 /tet:connectivity‑matrix/tet:from/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑start/tet:te‑label
 /tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices
 /tet:connectivity‑matrix/tet:from/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑end/tet:te‑label
 /tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices
 /tet:connectivity‑matrix/tet:to/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑start/tet:te‑label
 /tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices
 /tet:connectivity‑matrix/tet:to/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑end/tet:te‑label
 /tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices
 /tet:connectivity‑matrix/tet:underlay/tet:primary‑path
 /tet:path‑element/tet:type/tet:label/tet:label‑hop
 /tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32

augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices
 /tet:connectivity‑matrix/tet:underlay/tet:backup‑path
 /tet:path‑element/tet:type/tet:label/tet:label‑hop
 /tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te‑node‑attributes/tet:connectivity‑matrices
 /tet:connectivity‑matrix/tet:path‑properties
 /tet:path‑route‑objects/tet:path‑route‑object/tet:type
 /tet:label/tet:label‑hop/tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information‑source‑entry/tet:connectivity‑matrices
 /tet:label‑restrictions/tet:label‑restriction
 /tet:label‑start/tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information‑source‑entry/tet:connectivity‑matrices
 /tet:label‑restrictions/tet:label‑restriction
 /tet:label‑end/tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information‑source‑entry/tet:connectivity‑matrices
 /tet:underlay/tet:primary‑path/tet:path‑element/tet:type
 /tet:label/tet:label‑hop/tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information‑source‑entry/tet:connectivity‑matrices
 /tet:underlay/tet:backup‑path/tet:path‑element/tet:type
 /tet:label/tet:label‑hop/tet:te‑label/tet:technology:

 +‑‑:(example)
 +‑‑ro example
 +‑‑ro label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information‑source‑entry/tet:connectivity‑matrices
 /tet:path‑properties/tet:path‑route‑objects
 /tet:path‑route‑object/tet:type/tet:label/tet:label‑hop
 /tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information‑source‑entry/tet:connectivity‑matrices
 /tet:connectivity‑matrix/tet:from/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑start/tet:te‑label
 /tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information‑source‑entry/tet:connectivity‑matrices
 /tet:connectivity‑matrix/tet:from/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑end/tet:te‑label
 /tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information‑source‑entry/tet:connectivity‑matrices
 /tet:connectivity‑matrix/tet:to/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑start/tet:te‑label
 /tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information‑source‑entry/tet:connectivity‑matrices
 /tet:connectivity‑matrix/tet:to/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑end/tet:te‑label
 /tet:technology:
 +‑‑:(example)

 +‑‑ro example
 +‑‑ro label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information‑source‑entry/tet:connectivity‑matrices
 /tet:connectivity‑matrix/tet:underlay/tet:primary‑path
 /tet:path‑element/tet:type/tet:label/tet:label‑hop
 /tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information‑source‑entry/tet:connectivity‑matrices
 /tet:connectivity‑matrix/tet:underlay/tet:backup‑path
 /tet:path‑element/tet:type/tet:label/tet:label‑hop
 /tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information‑source‑entry/tet:connectivity‑matrices
 /tet:connectivity‑matrix/tet:path‑properties
 /tet:path‑route‑objects/tet:path‑route‑object/tet:type
 /tet:label/tet:label‑hop/tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel‑termination‑point
 /tet:local‑link‑connectivities/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑start/tet:te‑label
 /tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel‑termination‑point
 /tet:local‑link‑connectivities/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑end/tet:te‑label
 /tet:technology:
 +‑‑:(example)
 +‑‑rw example

 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel‑termination‑point
 /tet:local‑link‑connectivities/tet:underlay
 /tet:primary‑path/tet:path‑element/tet:type/tet:label
 /tet:label‑hop/tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel‑termination‑point
 /tet:local‑link‑connectivities/tet:underlay
 /tet:backup‑path/tet:path‑element/tet:type/tet:label
 /tet:label‑hop/tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel‑termination‑point
 /tet:local‑link‑connectivities/tet:path‑properties
 /tet:path‑route‑objects/tet:path‑route‑object/tet:type
 /tet:label/tet:label‑hop/tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel‑termination‑point
 /tet:local‑link‑connectivities
 /tet:local‑link‑connectivity/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑start/tet:te‑label
 /tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel‑termination‑point
 /tet:local‑link‑connectivities
 /tet:local‑link‑connectivity/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑end/tet:te‑label
 /tet:technology:
 +‑‑:(example)

 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel‑termination‑point
 /tet:local‑link‑connectivities
 /tet:local‑link‑connectivity/tet:underlay
 /tet:primary‑path/tet:path‑element/tet:type/tet:label
 /tet:label‑hop/tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel‑termination‑point
 /tet:local‑link‑connectivities
 /tet:local‑link‑connectivity/tet:underlay/tet:backup‑path
 /tet:path‑element/tet:type/tet:label/tet:label‑hop
 /tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel‑termination‑point
 /tet:local‑link‑connectivities
 /tet:local‑link‑connectivity/tet:path‑properties
 /tet:path‑route‑objects/tet:path‑route‑object/tet:type
 /tet:label/tet:label‑hop/tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro label‑1? uint32
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:te‑link‑attributes/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑start/tet:te‑label
 /tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:te‑link‑attributes/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑end/tet:te‑label
 /tet:technology:
 +‑‑:(example)

 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:te‑link‑attributes/tet:underlay/tet:primary‑path
 /tet:path‑element/tet:type/tet:label/tet:label‑hop
 /tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:te‑link‑attributes/tet:underlay/tet:backup‑path
 /tet:path‑element/tet:type/tet:label/tet:label‑hop
 /tet:te‑label/tet:technology:
 +‑‑:(example)
 +‑‑rw example
 +‑‑rw label‑1? uint32
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:information‑source‑entry/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑start/tet:te‑label
 /tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro label‑1? uint32
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:information‑source‑entry/tet:label‑restrictions
 /tet:label‑restriction/tet:label‑end/tet:te‑label
 /tet:technology:
 +‑‑:(example)
 +‑‑ro example
 +‑‑ro label‑1? uint32

 The YANG module to implement the above example topology can be seen
 in Appendix C.

7. TE Topology YANG Module

 This module references [RFC1195], [RFC3209], [RFC3272], [RFC3471],
 [RFC3630], [RFC3785], [RFC4201], [RFC4202], [RFC4203], [RFC4206],
 [RFC4872], [RFC5152], [RFC5212], [RFC5305], [RFC5316], [RFC5329],
 [RFC5392], [RFC6001], [RFC6241], [RFC6991], [RFC7308], [RFC7471],
 [RFC7579], [RFC7752], [RFC8345], and [I-D.ietf-teas-yang-te].

<CODE BEGINS> file "ietf‑te‑topology@2018‑06‑15.yang"
module ietf‑te‑topology {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑te‑topology";

 prefix "tet";

import ietf‑yang‑types {
 prefix "yang";
 reference "RFC 6991: Common YANG Data Types";
}

import ietf‑inet‑types {
 prefix "inet";
 reference "RFC 6991: Common YANG Data Types";
}

import ietf‑te‑types {
 prefix "te‑types";
 reference
 "I‑D.ietf‑teas‑yang‑te: A YANG Data Model for Traffic
 Engineering Tunnels and Interfaces";
}

import ietf‑network {
 prefix "nw";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
}

import ietf‑network‑topology {
 prefix "nt";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
}

 organization

 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>

 Editor: Igor Bryskin
 <mailto:Igor.Bryskin@huawei.com>

 Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

 Editor: Tarek Saad
 <mailto:tsaad@cisco.com>

 Editor: Himanshu Shah
 <mailto:hshah@ciena.com>

 Editor: Oscar Gonzalez De Dios
 <mailto:oscar.gonzalezdedios@telefonica.com>";

 description

 "TE topology model for representing and manipulating technology
 agnostic TE Topologies.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the
 RFC itself for full legal notices.";

revision "2018‑06‑15" {
 description "Initial revision";
 reference "RFC XXXX: YANG Data Model for TE Topologies";
// RFC Ed.: replace XXXX with actual RFC number and remove
// this note

 }

/*
 * Features
 */
feature nsrlg {
 description
 "This feature indicates that the system supports NSRLG
 (Not Sharing Risk Link Group).";
}

feature te‑topology‑hierarchy {
 description
 "This feature indicates that the system allows underlay
 and/or overlay TE topology hierarchy.";
}

feature template {
 description
 "This feature indicates that the system supports
 template configuration.";
}

/*
 * Typedefs
 */
typedef geographic‑coordinate‑degree {
 type decimal64 {
 fraction‑digits 8;
 }
 description
 "Decimal degree (DD) used to express latitude and longitude
 geographic coordinates.";
} // geographic‑coordinate‑degree

typedef te‑info‑source {
 type enumeration {
 enum "unknown" {
 description "The source is unknown.";
 }
 enum "locally‑configured" {

 description "Configured entity.";
 }
 enum "ospfv2" {
 description "OSPFv2.";
 }
 enum "ospfv3" {
 description "OSPFv3.";
 }
 enum "isis" {
 description "ISIS.";
 }
 enum "bgp‑ls" {
 description "BGP‑LS.";
 reference
 "RFC 7752: North‑Bound Distribution of Link‑State and
 Traffic Engineering (TE) Information Using BGP";
 }
 enum "system‑processed" {
 description "System processed entity.";
 }
 enum "other" {
 description "Other source.";
 }
 }
 description
 "Describining the type of source that has provided the
 related information, and the source credibility.";
} // te‑info‑source

/*
 * Groupings
 */
grouping connectivity‑matrix‑entry‑path‑attributes {
 description
 "Attributes of connectivity matrix entry.";
 leaf is‑allowed {
 type boolean;
 description
 "true ‑ switching is allowed,
 false ‑ switching is disallowed.";
 }

 container underlay {
 if‑feature te‑topology‑hierarchy;
 description "Attributes of the te‑link underlay.";
 reference
 "RFC 4206: Label Switched Paths (LSP) Hierarchy with
 Generalized Multi‑Protocol Label Switching (GMPLS)
 Traffic Engineering (TE)";

 uses te‑link‑underlay‑attributes;
 } // underlay

 uses te‑types:generic‑path‑constraints;
 uses te‑types:generic‑path‑optimization;
 uses te‑types:generic‑path‑properties;
} // connectivity‑matrix‑entry‑path‑attributes

grouping geolocation‑container {
 description
 "A container containing a GPS location.";
 container geolocation{
 config false;
 description
 "A container containing a GPS location.";
 leaf altitude {
 type int64;
 units millimeter;
 description
 "Distance above the sea level.";
 }
 leaf latitude {
 type geographic‑coordinate‑degree {
 range "‑90..90";
 }
 description
 "Relative position north or south on the Earth's surface.";
 }
 leaf longitude {
 type geographic‑coordinate‑degree {
 range "‑180..180";
 }
 description

 "Angular distance east or west on the Earth's surface.";
 }
 } // gps‑location
} // geolocation‑container

grouping information‑source‑state‑attributes {
 description
 "The attributes identifying source that has provided the
 related information, and the source credibility.";
 leaf credibility‑preference {
 type uint16;
 description
 "The preference value to calculate the traffic
 engineering database credibility value used for
 tie‑break selection between different
 information‑source values.
 Higher value is more preferable.";
 }
 leaf logical‑network‑element {
 type string;
 description
 "When applicable, this is the name of a logical network
 element from which the information is learned.";
 } // logical‑network‑element
 leaf network‑instance {
 type string;
 description
 "When applicable, this is the name of a network‑instance
 from which the information is learned.";
 } // network‑instance
} // information‑source‑state‑attributes

grouping information‑source‑per‑link‑attributes {
 description
 "Per node container of the attributes identifying source that
 has provided the related information, and the source
 credibility.";
 leaf information‑source {
 type te‑info‑source;
 config false;
 description

 "Indicates the source of the information.";
 }
 container information‑source‑state {
 config false;
 description
 "The container contains state attributes related to
 the information source.";
 uses information‑source‑state‑attributes;
 container topology {
 description
 "When the information is processed by the system,
 the attributes in this container indicate which topology
 is used to process to generate the result information.";
 uses nt:link‑ref;
 } // topology
 } // information‑source‑state
} // information‑source‑per‑link‑attributes

grouping information‑source‑per‑node‑attributes {
 description
 "Per node container of the attributes identifying source that
 has provided the related information, and the source
 credibility.";
 leaf information‑source {
 type te‑info‑source;
 config false;
 description
 "Indicates the source of the information.";
 }
 container information‑source‑state {
 config false;
 description
 "The container contains state attributes related to
 the information source.";
 uses information‑source‑state‑attributes;
 container topology {
 description
 "When the information is processed by the system,
 the attributes in this container indicate which topology
 is used to process to generate the result information.";
 uses nw:node‑ref;

 } // topology
 } // information‑source‑state
} // information‑source‑per‑node‑attributes

grouping interface‑switching‑capability‑list {
 description
 "List of Interface Switching Capabilities Descriptors (ISCD)";
 list interface‑switching‑capability {
 key "switching‑capability encoding";
 description
 "List of Interface Switching Capabilities Descriptors (ISCD)
 for this link.";
 reference
 "RFC 3471: Generalized Multi‑Protocol Label Switching (GMPLS)
 Signaling Functional Description.
 RFC 4203: OSPF Extensions in Support of Generalized
 Multi‑Protocol Label Switching (GMPLS).";
 leaf switching‑capability {
 type identityref {
 base te‑types:switching‑capabilities;
 }
 description
 "Switching Capability for this interface.";
 }
 leaf encoding {
 type identityref {
 base te‑types:lsp‑encoding‑types;
 }
 description
 "Encoding supported by this interface.";
 }
 uses te‑link‑iscd‑attributes;
 } // interface‑switching‑capability
} // interface‑switching‑capability‑list

grouping statistics‑per‑link {
 description
 "Statistics attributes per TE link.";
 leaf discontinuity‑time {
 type yang:date‑and‑time;
 description

 "The time on the most recent occasion at which any one or
 more of this interface's counters suffered a
 discontinuity. If no such discontinuities have occurred
 since the last re‑initialization of the local management
 subsystem, then this node contains the time the local
 management subsystem re‑initialized itself.";
 }
 /* Administrative attributes */
 leaf disables {
 type yang:counter32;
 description
 "Number of times that link was disabled.";
 }
 leaf enables {
 type yang:counter32;
 description
 "Number of times that link was enabled.";
 }
 leaf maintenance‑clears {
 type yang:counter32;
 description
 "Number of times that link was put out of maintenance.";
 }
 leaf maintenance‑sets {
 type yang:counter32;
 description
 "Number of times that link was put in maintenance.";
 }
 leaf modifies {
 type yang:counter32;
 description
 "Number of times that link was modified.";
 }
 /* Operational attributes */
 leaf downs {
 type yang:counter32;
 description
 "Number of times that link was set to operational down.";
 }
 leaf ups {
 type yang:counter32;

 description
 "Number of times that link was set to operational up.";
 }
 /* Recovery attributes */
 leaf fault‑clears {
 type yang:counter32;
 description
 "Number of times that link experienced fault clear event.";
 }
 leaf fault‑detects {
 type yang:counter32;
 description
 "Number of times that link experienced fault detection.";
 }
 leaf protection‑switches {
 type yang:counter32;
 description
 "Number of times that link experienced protection
 switchover.";
 }
 leaf protection‑reverts {
 type yang:counter32;
 description
 "Number of times that link experienced protection
 reversion.";
 }
 leaf restoration‑failures {
 type yang:counter32;
 description
 "Number of times that link experienced restoration
 failure.";
 }
 leaf restoration‑starts {
 type yang:counter32;
 description
 "Number of times that link experienced restoration
 start.";
 }
 leaf restoration‑successes {
 type yang:counter32;
 description

 "Number of times that link experienced restoration
 success.";
 }
 leaf restoration‑reversion‑failures {
 type yang:counter32;
 description
 "Number of times that link experienced restoration reversion
 failure.";
 }
 leaf restoration‑reversion‑starts {
 type yang:counter32;
 description
 "Number of times that link experienced restoration reversion
 start.";
 }
 leaf restoration‑reversion‑successes {
 type yang:counter32;
 description
 "Number of times that link experienced restoration reversion
 success.";
 }
} // statistics‑per‑link

grouping statistics‑per‑node {
 description
 "Statistics attributes per TE node.";
 leaf discontinuity‑time {
 type yang:date‑and‑time;
 description
 "The time on the most recent occasion at which any one or
 more of this interface's counters suffered a
 discontinuity. If no such discontinuities have occurred
 since the last re‑initialization of the local management
 subsystem, then this node contains the time the local
 management subsystem re‑initialized itself.";
 }
 container node {
 description
 "Containing TE node level statistics attributes.";
 leaf disables {
 type yang:counter32;

 description
 "Number of times that node was disabled.";
 }
 leaf enables {
 type yang:counter32;
 description
 "Number of times that node was enabled.";
 }
 leaf maintenance‑sets {
 type yang:counter32;
 description
 "Number of times that node was put in maintenance.";
 }
 leaf maintenance‑clears {
 type yang:counter32;
 description
 "Number of times that node was put out of maintenance.";
 }
 leaf modifies {
 type yang:counter32;
 description
 "Number of times that node was modified.";
 }
 } // node
 container connectivity‑matrix‑entry {
 description
 "Containing connectivity matrix entry level statistics
 attributes.";
 leaf creates {
 type yang:counter32;
 description
 "Number of times that a connectivity matrix entry was
 created.";
 reference
 "RFC 6241. Section 7.2 for 'create' operation. ";
 }
 leaf deletes {
 type yang:counter32;
 description
 "Number of times that a connectivity matrix entry was
 deleted.";

 reference
 "RFC 6241. Section 7.2 for 'delete' operation. ";
 }
 leaf disables {
 type yang:counter32;
 description
 "Number of times that a connectivity matrix entry was
 disabled.";
 }
 leaf enables {
 type yang:counter32;
 description
 "Number of times that a connectivity matrix entry was
 enabled.";
 }
 leaf modifies {
 type yang:counter32;
 description
 "Number of times that a connectivity matrix entry was
 modified.";
 }
 } // connectivity‑matrix‑entry
} // statistics‑per‑node

grouping statistics‑per‑ttp {
 description
 "Statistics attributes per TE TTP (Tunnel Termination Point).";
 leaf discontinuity‑time {
 type yang:date‑and‑time;
 description
 "The time on the most recent occasion at which any one or
 more of this interface's counters suffered a
 discontinuity. If no such discontinuities have occurred
 since the last re‑initialization of the local management
 subsystem, then this node contains the time the local
 management subsystem re‑initialized itself.";
 }
 container tunnel‑termination‑point {
 description
 "Containing TE TTP (Tunnel Termination Point) level
 statistics attributes.";

 /* Administrative attributes */
 leaf disables {
 type yang:counter32;
 description
 "Number of times that TTP was disabled.";
 }
 leaf enables {
 type yang:counter32;
 description
 "Number of times that TTP was enabled.";
 }
 leaf maintenance‑clears {
 type yang:counter32;
 description
 "Number of times that TTP was put out of maintenance.";
 }
 leaf maintenance‑sets {
 type yang:counter32;
 description
 "Number of times that TTP was put in maintenance.";
 }
 leaf modifies {
 type yang:counter32;
 description
 "Number of times that TTP was modified.";
 }
 /* Operational attributes */
 leaf downs {
 type yang:counter32;
 description
 "Number of times that TTP was set to operational down.";
 }
 leaf ups {
 type yang:counter32;
 description
 "Number of times that TTP was set to operational up.";
 }
 leaf in‑service‑clears {
 type yang:counter32;
 description
 "Number of times that TTP was taken out of service

 (TE tunnel was released).";
 }
 leaf in‑service‑sets {
 type yang:counter32;
 description
 "Number of times that TTP was put in service by a TE
 tunnel (TE tunnel was set up).";
 }
 } // tunnel‑termination‑point

 container local‑link‑connectivity {
 description
 "Containing TE LLCL (Local Link Connectivity List) level
 statistics attributes.";
 leaf creates {
 type yang:counter32;
 description
 "Number of times that an LLCL entry was created.";
 reference
 "RFC 6241. Section 7.2 for 'create' operation.";
 }
 leaf deletes {
 type yang:counter32;
 description
 "Number of times that an LLCL entry was deleted.";
 reference
 "RFC 6241. Section 7.2 for 'delete' operation.";
 }
 leaf disables {
 type yang:counter32;
 description
 "Number of times that an LLCL entry was disabled.";
 }
 leaf enables {
 type yang:counter32;
 description
 "Number of times that an LLCL entry was enabled.";
 }
 leaf modifies {
 type yang:counter32;
 description

 "Number of times that an LLCL entry was modified.";
 }
 } // local‑link‑connectivity
} // statistics‑per‑ttp

grouping te‑link‑augment {
 description
 "Augmentation for TE link.";
 uses te‑link‑config;
 uses te‑link‑state‑derived;
 container statistics {
 config false;
 description
 "Statistics data.";
 uses statistics‑per‑link;
 } // statistics
} // te‑link‑augment

grouping te‑link‑config {
 description
 "TE link configuration grouping.";
 choice bundle‑stack‑level {
 description
 "The TE link can be partitioned into bundled
 links, or component links.";
 case bundle {
 container bundled‑links {
 description
 "A set of bundled links.";
 reference
 "RFC 4201: Link Bundling in MPLS Traffic Engineering
 (TE).";
 list bundled‑link {
 key "sequence";
 description
 "Specify a bundled interface that is
 further partitioned.";
 leaf sequence {
 type uint32;
 description
 "Identify the sequence in the bundle.";

 }
 } // list bundled‑link
 }
 }
 case component {
 container component‑links {
 description
 "A set of component links";
 list component‑link {
 key "sequence";
 description
 "Specify a component interface that is
 sufficient to unambiguously identify the
 appropriate resources";

 leaf sequence {
 type uint32;
 description
 "Identify the sequence in the bundle.";
 }
 leaf src‑interface‑ref {
 type string;
 description
 "Reference to component link interface on the
 source node.";
 }
 leaf des‑interface‑ref {
 type string;
 description
 "Reference to component link interface on the
 destinatioin node.";
 }
 }
 }
 }
 } // bundle‑stack‑level

 leaf‑list te‑link‑template {
 if‑feature template;
 type leafref {
 path "../../../../te/templates/link‑template/name";

 }
 description
 "The reference to a TE link template.";
 }
 uses te‑link‑config‑attributes;
} // te‑link‑config

grouping te‑link‑config‑attributes {
 description
 "Link configuration attributes in a TE topology.";
 container te‑link‑attributes {
 description "Link attributes in a TE topology.";
 leaf access‑type {
 type te‑types:te‑link‑access‑type;
 description
 "Link access type, which can be point‑to‑point or
 multi‑access.";
 }
 container external‑domain {
 description
 "For an inter‑domain link, specify the attributes of
 the remote end of link, to facilitate the signalling at
 local end.";
 uses nw:network‑ref;
 leaf remote‑te‑node‑id {
 type te‑types:te‑node‑id;
 description
 "Remote TE node identifier, used together with
 remote‑te‑link‑id to identify the remote link
 termination point in a different domain.";
 }
 leaf remote‑te‑link‑tp‑id {
 type te‑types:te‑tp‑id;
 description
 "Remote TE link termination point identifier, used
 together with remote‑te‑node‑id to identify the remote
 link termination point in a different domain.";
 }
 }
 leaf is‑abstract {
 type empty;

 description "Present if the link is abstract.";
 }
 leaf name {
 type string;
 description "Link Name.";
 }
 container underlay {
 if‑feature te‑topology‑hierarchy;
 description "Attributes of the te‑link underlay.";
 reference
 "RFC 4206: Label Switched Paths (LSP) Hierarchy with
 Generalized Multi‑Protocol Label Switching (GMPLS)
 Traffic Engineering (TE)";

 uses te‑link‑underlay‑attributes;
 } // underlay
 leaf admin‑status {
 type te‑types:te‑admin‑status;
 description
 "The administrative state of the link.";
 }

 uses te‑link‑info‑attributes;
 } // te‑link‑attributes
} // te‑link‑config‑attributes

grouping te‑link‑info‑attributes {
 description
 "Advertised TE information attributes.";
 leaf link‑index {
 type uint64;
 description
 "The link identifier. If OSPF is used, this represents an
 ospfLsdbID. If IS‑IS is used, this represents an isisLSPID.
 If a locally configured link is used, this object represents
 a unique value, which is locally defined in a router.";
 }
 leaf administrative‑group {
 type te‑types:admin‑groups;
 description
 "Administrative group or color of the link.

 This attribute covers both administrative group (defined in
 RFC 3630, RFC 5305 and RFC 5329), and extended
 administrative group (defined in RFC 7308).";
 }

 uses interface‑switching‑capability‑list;
 uses te‑types:label‑set‑info;

 leaf link‑protection‑type {
 type enumeration {
 enum "unprotected" {
 description "Unprotected.";
 }
 enum "extra‑traffic" {
 description "Extra traffic.";
 }
 enum "shared" {
 description "Shared.";
 }
 enum "1‑for‑1" {
 description "One for one protection.";
 }
 enum "1‑plus‑1" {
 description "One plus one protection.";
 }
 enum "enhanced" {
 description "Enhanced protection.";
 }
 }
 description
 "Link Protection Type desired for this link.";
 reference
 "RFC 4202: Routing Extensions in Support of
 Generalized Multi‑Protocol Label Switching (GMPLS).";
 }

 container max‑link‑bandwidth {
 uses te‑types:te‑bandwidth;
 description
 "Maximum bandwidth that can be seen on this link in this
 direction. Units in bytes per second.";

 reference
 "RFC 3630: Traffic Engineering (TE) Extensions to OSPF
 Version 2.
 RFC 5305: IS‑IS Extensions for Traffic Engineering.";
 }
 container max‑resv‑link‑bandwidth {
 uses te‑types:te‑bandwidth;
 description
 "Maximum amount of bandwidth that can be reserved in this
 direction in this link. Units in bytes per second.";
 reference
 "RFC 3630: Traffic Engineering (TE) Extensions to OSPF
 Version 2.
 RFC 5305: IS‑IS Extensions for Traffic Engineering.";
 }
 list unreserved‑bandwidth {
 key "priority";
 max‑elements "8";
 description
 "Unreserved bandwidth for 0‑7 priority levels. Units in
 bytes per second.";
 reference
 "RFC 3630: Traffic Engineering (TE) Extensions to OSPF
 Version 2.
 RFC 5305: IS‑IS Extensions for Traffic Engineering.";
 leaf priority {
 type uint8 {
 range "0..7";
 }
 description "Priority.";
 }
 uses te‑types:te‑bandwidth;
 }
 leaf te‑default‑metric {
 type uint32;
 description
 "Traffic engineering metric.";
 reference
 "RFC 3630: Traffic Engineering (TE) Extensions to OSPF
 Version 2.
 RFC 5305: IS‑IS Extensions for Traffic Engineering.";

 }
 leaf te‑delay‑metric {
 type uint32;
 description
 "Traffic engineering delay metric.";
 reference
 "RFC 7471: OSPF Traffic Engineering (TE) Metric Extensions.";
 }
 leaf te‑igp‑metric {
 type uint32;
 description
 "IGP metric used for traffic engineering.";
 reference
 "RFC 3785: Use of Interior Gateway Protocol (IGP) Metric as a
 Second MPLS Traffic Engineering (TE) Metric.";
 }
 container te‑srlgs {
 description
 "Containing a list of SLRGs.";
 leaf‑list value {
 type te‑types:srlg;
 description "SRLG value.";
 reference
 "RFC 4202: Routing Extensions in Support of
 Generalized Multi‑Protocol Label Switching (GMPLS).";
 }
 }
 container te‑nsrlgs {
 if‑feature nsrlg;
 description
 "Containing a list of NSRLGs (Not Sharing Risk Link
 Groups).
 When an abstract TE link is configured, this list specifies
 the request that underlay TE paths need to be mutually
 disjoint with other TE links in the same groups.";
 leaf‑list id {
 type uint32;
 description
 "NSRLG ID, uniquely configured within a topology.";
 reference
 "RFC 4872: RSVP‑TE Extensions in Support of End‑to‑End

 Generalized Multi‑Protocol Label Switching (GMPLS)
 Recovery";
 }
 }
} // te‑link‑info‑attributes

grouping te‑link‑iscd‑attributes {
 description
 "TE link ISCD (Interface Switching Capability Descriptor)
 attributes.";
 reference
 "Sec 1.4, RFC 4203: OSPF Extensions in Support of Generalized
 Multi‑Protocol Label Switching (GMPLS). Section 1.4.";
 list max‑lsp‑bandwidth {
 key "priority";
 max‑elements "8";
 description
 "Maximum LSP Bandwidth at priorities 0‑7.";
 leaf priority {
 type uint8 {
 range "0..7";
 }
 description "Priority.";
 }
 uses te‑types:te‑bandwidth;
 }
} // te‑link‑iscd‑attributes

grouping te‑link‑state‑derived {
 description
 "Link state attributes in a TE topology.";
 leaf oper‑status {
 type te‑types:te‑oper‑status;
 config false;
 description
 "The current operational state of the link.";
 }
 leaf is‑transitional {
 type empty;
 config false;
 description

 "Present if the link is transitional, used as an
 alternative approach in lieu of inter‑layer‑lock‑id
 for path computation in a TE topology covering multiple
 layers or multiple regions.";
 reference
 "RFC 5212: Requirements for GMPLS‑Based Multi‑Region and
 Multi‑Layer Networks (MRN/MLN).
 RFC 6001: Generalized MPLS (GMPLS) Protocol Extensions
 for Multi‑Layer and Multi‑Region Networks (MLN/MRN).";
 }
 uses information‑source‑per‑link‑attributes;
 list information‑source‑entry {
 key "information‑source";
 config false;
 description
 "A list of information sources learned, including the one
 used.";
 uses information‑source‑per‑link‑attributes;
 uses te‑link‑info‑attributes;
 }
 container recovery {
 config false;
 description
 "Status of the recovery process.";
 leaf restoration‑status {
 type te‑types:te‑recovery‑status;
 description
 "Restoration status.";
 }
 leaf protection‑status {
 type te‑types:te‑recovery‑status;
 description
 "Protection status.";
 }
 }
 container underlay {
 if‑feature te‑topology‑hierarchy;
 config false;
 description "State attributes for te‑link underlay.";
 leaf dynamic {
 type boolean;

 description
 "true if the underlay is dynamically created.";
 }
 leaf committed {
 type boolean;
 description
 "true if the underlay is committed.";
 }
 }
} // te‑link‑state‑derived

grouping te‑link‑underlay‑attributes {
 description "Attributes for te‑link underlay.";
 reference
 "RFC 4206: Label Switched Paths (LSP) Hierarchy with
 Generalized Multi‑Protocol Label Switching (GMPLS)
 Traffic Engineering (TE)";
 leaf enabled {
 type boolean;
 description
 "'true' if the underlay is enabled.
 'false' if the underlay is disabled.";
 }
 container primary‑path {
 description
 "The service path on the underlay topology that
 supports this link.";
 uses nw:network‑ref;
 list path‑element {
 key "path‑element‑id";
 description
 "A list of path elements describing the service path.";
 leaf path‑element‑id {
 type uint32;
 description "To identify the element in a path.";
 }
 uses te‑path‑element;
 }
 } // primary‑path
 list backup‑path {
 key "index";

 description
 "A list of backup service paths on the underlay topology that
 protect the underlay primary path. If the primary path is
 not protected, the list contains zero elements. If the
 primary path is protected, the list contains one or more
 elements.";
 leaf index {
 type uint32;
 description
 "A sequence number to identify a backup path.";
 }
 uses nw:network‑ref;
 list path‑element {
 key "path‑element‑id";
 description
 "A list of path elements describing the backup service
 path";
 leaf path‑element‑id {
 type uint32;
 description "To identify the element in a path.";
 }
 uses te‑path‑element;
 }
 } // underlay‑backup‑path
 leaf protection‑type {
 type identityref {
 base te‑types:lsp‑protection‑type;
 }
 description
 "Underlay protection type desired for this link.";
 }
 container tunnel‑termination‑points {
 description
 "Underlay TTP(Tunnel Termination Points) desired for this
 link.";
 leaf source {
 type binary;
 description
 "Source tunnel termination point identifier.";
 }
 leaf destination {

 type binary;
 description
 "Destination tunnel termination point identifier.";
 }
 }
 container tunnels {
 description
 "Underlay TE tunnels supporting this TE link.";
 leaf sharing {
 type boolean;
 default true;
 description
 "'true' if the underlay tunnel can be shared with other
 TE links;
 'false' if the underlay tunnel is dedicated to this
 TE link.
 This leaf is the default option for all TE tunnels,
 and may be overridden by the per TE tunnel value.";
 }
 list tunnel {
 key "tunnel‑name";
 description
 "Zero, one or more underlay TE tunnels that support this TE
 link.";
 leaf tunnel‑name {
 type string;
 description
 "A tunnel name uniquely identifies an underlay TE tunnel,
 used together with the source‑node of this link.
 The detailed information of this tunnel can be retrieved
 from the ietf‑te model.";
 reference "RFC 3209";
 }
 leaf sharing {
 type boolean;
 description
 "'true' if the underlay tunnel can be shared with other
 TE links;
 'false' if the underlay tunnel is dedicated to this
 TE link.";
 }

 } // tunnel
 } // tunnels
} // te‑link‑underlay‑attributes

grouping te‑node‑augment {
 description
 "Augmentation for TE node.";
 uses te‑node‑config;
 uses te‑node‑state‑derived;
 container statistics {
 config false;
 description
 "Statistics data.";
 uses statistics‑per‑node;
 } // statistics

 list tunnel‑termination‑point {
 key "tunnel‑tp‑id";
 description
 "A termination point can terminate a tunnel.";
 leaf tunnel‑tp‑id {
 type binary;
 description
 "Tunnel termination point identifier.";
 }

 uses te‑node‑tunnel‑termination‑point‑config;
 leaf oper‑status {
 type te‑types:te‑oper‑status;
 config false;
 description
 "The current operational state of the tunnel
 termination point.";
 }
 uses geolocation‑container;
 container statistics {
 config false;
 description
 "Statistics data.";
 uses statistics‑per‑ttp;
 } // statistics

 // Relations to other tunnel termination points
 list supporting‑tunnel‑termination‑point {
 key "node‑ref tunnel‑tp‑ref";
 description
 "Identifies the tunnel termination points, that this
 tunnel termination point is depending on.";
 leaf node‑ref {
 type inet:uri;
 description
 "This leaf identifies the node in which the supporting
 tunnel termination point is present.
 This node is either the supporting node or a node in
 an underlay topology.";
 }
 leaf tunnel‑tp‑ref {
 type binary;
 description
 "Reference to a tunnel terminiation point, which is
 either in the supporting node or a node in an
 underlay topology.";
 }
 } // supporting‑tunnel‑termination‑point
 } // tunnel‑termination‑point
} // te‑node‑augment

grouping te‑node‑config {
 description "TE node configuration grouping.";
 leaf‑list te‑node‑template {
 if‑feature template;
 type leafref {
 path "../../../../te/templates/node‑template/name";
 }
 description
 "The reference to a TE node template.";
 }
 uses te‑node‑config‑attributes;
} // te‑node‑config

 grouping te-node-config-attributes {

 description "Configuration node attributes in a TE topology.";

 container te‑node‑attributes {
 description "Containing node attributes in a TE topology.";
 leaf admin‑status {
 type te‑types:te‑admin‑status;
 description
 "The administrative state of the link.";
 }
 uses te‑node‑connectivity‑matrices;
 uses te‑node‑info‑attributes;
 } // te‑node‑attributes
} // te‑node‑config‑attributes

grouping te‑node‑config‑attributes‑template {
 description
 "Configuration node attributes for template in a TE topology.";
 container te‑node‑attributes {
 description "Containing node attributes in a TE topology.";
 leaf admin‑status {
 type te‑types:te‑admin‑status;
 description
 "The administrative state of the link.";
 }
 uses te‑node‑info‑attributes;
 } // te‑node‑attributes
} // te‑node‑config‑attributes‑template

grouping te‑node‑connectivity‑matrices {
 description "Connectivity matrix on a TE node.";
 container connectivity‑matrices {
 description
 "Containing connectivity matrix on a TE node.";
 leaf number‑of‑entries {
 type uint16;
 description
 "The number of connectivity matrix entries.
 If this number is specified in the configuration request,
 the number is requested number of entries, which may not
 all be listed in the list;
 if this number is reported in the state data,
 the number is the current number of operational entries.";
 }

 uses te‑types:label‑set‑info;
 uses connectivity‑matrix‑entry‑path‑attributes;
 list connectivity‑matrix {
 key "id";
 description
 "Represents node's switching limitations, i.e. limitations
 in interconnecting network TE links across the node.";
 reference
 "RFC 7579: General Network Element Constraint Encoding
 for GMPLS‑Controlled Networks.";
 leaf id {
 type uint32;
 description "Identifies the connectivity‑matrix entry.";
 }
 } // connectivity‑matrix
 } // connectivity‑matrices
} // te‑node‑connectivity‑matrices

grouping te‑node‑connectivity‑matrix‑attributes {
 description
 "Termination point references of a connectivity matrix entry.";
 container from {
 description
 "Reference to source link termination point.";
 leaf tp‑ref {
 type leafref {
 path "../../../../../../nt:termination‑point/nt:tp‑id";
 }
 description
 "Relative reference to a termination point.";
 }
 uses te‑types:label‑set‑info;
 }
 container to {
 description
 "Reference to destination link termination point.";
 leaf tp‑ref {
 type leafref {
 path "../../../../../../nt:termination‑point/nt:tp‑id";
 }
 description

 "Relative reference to a termination point.";
 }
 uses te‑types:label‑set‑info;
 }
 uses connectivity‑matrix‑entry‑path‑attributes;
} // te‑node‑connectivity‑matrix‑attributes

grouping te‑node‑info‑attributes {
 description
 "Advertised TE information attributes.";
 leaf domain‑id {
 type uint32;
 description
 "Identifies the domain that this node belongs.
 This attribute is used to support inter‑domain links.";
 reference
 "RFC 5152: A Per‑Domain Path Computation Method for
 Establishing Inter‑Domain Traffic Engineering (TE)
 Label Switched Paths (LSPs).
 RFC 5392: OSPF Extensions in Support of Inter‑Autonomous
 System (AS) MPLS and GMPLS Traffic Engineering.
 RFC 5316: ISIS Extensions in Support of Inter‑Autonomous
 System (AS) MPLS and GMPLS Traffic Engineering.";
 }
 leaf is‑abstract {
 type empty;
 description
 "Present if the node is abstract, not present if the node
 is actual.";
 }
 leaf name {
 type string;
 description "Node name.";
 }
 leaf‑list signaling‑address {
 type inet:ip‑address;
 description "Node signaling address.";
 }
 container underlay‑topology {
 if‑feature te‑topology‑hierarchy;
 description

 "When an abstract node encapsulates a topology,
 the attributes in this container point to said topology.";
 uses nw:network‑ref;
 }
} // te‑node‑info‑attributes

grouping te‑node‑state‑derived {
 description "Node state attributes in a TE topology.";
 leaf oper‑status {
 type te‑types:te‑oper‑status;
 config false;
 description
 "The current operational state of the node.";
 }
 uses geolocation‑container;
 leaf is‑multi‑access‑dr {
 type empty;
 config false;
 description
 "The presence of this attribute indicates that this TE node
 is a pseudonode elected as a designated router.";
 reference
 "RFC 3630: Traffic Engineering (TE) Extensions to OSPF
 Version 2.
 RFC 1195: Use of OSI IS‑IS for Routing in TCP/IP and Dual
 Environments.";
 }
 uses information‑source‑per‑node‑attributes;
 list information‑source‑entry {
 key "information‑source";
 config false;
 description
 "A list of information sources learned, including the one
 used.";
 uses information‑source‑per‑node‑attributes;
 uses te‑node‑connectivity‑matrices;
 uses te‑node‑info‑attributes;
 }
} // te‑node‑state‑derived

 grouping te-node-tunnel-termination-point-config {

 description
 "Termination capability of a tunnel termination point on a
 TE node.";
 uses te‑node‑tunnel‑termination‑point‑config‑attributes;
 container local‑link‑connectivities {
 description
 "Containing local link connectivity list for
 a tunnel termination point on a TE node.";
 leaf number‑of‑entries {
 type uint16;
 description
 "The number of local link connectivity list entries.
 If this number is specified in the configuration request,
 the number is requested number of entries, which may not
 all be listed in the list;
 if this number is reported in the state data,
 the number is the current number of operational entries.";
 }
 uses te‑types:label‑set‑info;
 uses connectivity‑matrix‑entry‑path‑attributes;
 } // local‑link‑connectivities
} // te‑node‑tunnel‑termination‑point‑config

grouping te‑node‑tunnel‑termination‑point‑config‑attributes {
 description
 "Configuration attributes of a tunnel termination point on a
 TE node.";
 leaf admin‑status {
 type te‑types:te‑admin‑status;
 description
 "The administrative state of the tunnel termination point.";
 }
 leaf name {
 type string;
 description
 "A descriptive name for the tunnel termination point.";
 }
 leaf switching‑capability {
 type identityref {
 base te‑types:switching‑capabilities;
 }

 description
 "Switching Capability for this interface.";
 }
 leaf encoding {
 type identityref {
 base te‑types:lsp‑encoding‑types;
 }
 description
 "Encoding supported by this interface.";
 }
 leaf‑list inter‑layer‑lock‑id {
 type uint32;
 description
 "Inter layer lock ID, used for path computation in a TE
 topology covering multiple layers or multiple regions.";
 reference
 "RFC 5212: Requirements for GMPLS‑Based Multi‑Region and
 Multi‑Layer Networks (MRN/MLN).
 RFC 6001: Generalized MPLS (GMPLS) Protocol Extensions
 for Multi‑Layer and Multi‑Region Networks (MLN/MRN).";
 }
 leaf protection‑type {
 type identityref {
 base te‑types:lsp‑protection‑type;
 }
 description
 "The protection type that this tunnel termination point
 is capable of.";
 }

 container client‑layer‑adaptation {
 description
 "Containing capability information to support a client layer
 adaption in multi‑layer topology.";
 list switching‑capability {
 key "switching‑capability encoding";
 description
 "List of supported switching capabilities";
 reference
 "RFC 6001: Generalized MPLS (GMPLS) Protocol Extensions
 for Multi‑Layer and Multi‑Region Networks (MLN/MRN).

 RFC 4202: Routing Extensions in Support of
 Generalized Multi‑Protocol Label Switching (GMPLS).";
 leaf switching‑capability {
 type identityref {
 base te‑types:switching‑capabilities;
 }
 description
 "Switching Capability for the client layer adaption.";
 }
 leaf encoding {
 type identityref {
 base te‑types:lsp‑encoding‑types;
 }
 description
 "Encoding supported by the client layer adaption.";
 }
 uses te‑types:te‑bandwidth;
 }
 }
} // te‑node‑tunnel‑termination‑point‑config‑attributes

grouping te‑node‑tunnel‑termination‑point‑llc‑list {
 description
 "Local link connectivity list of a tunnel termination
 point on a TE node.";
 list local‑link‑connectivity {
 key "link‑tp‑ref";
 description
 "The termination capabilities between
 tunnel‑termination‑point and link termination‑point.
 The capability information can be used to compute
 the tunnel path.
 The Interface Adjustment Capability Descriptors (IACD)
 (defined in RFC 6001) on each link‑tp can be derived from
 this local‑link‑connectivity list.";
 reference
 "RFC 6001: Generalized MPLS (GMPLS) Protocol Extensions
 for Multi‑Layer and Multi‑Region Networks (MLN/MRN).";

 leaf link-tp-ref {

 type leafref {

 path "../../../../../nt:termination‑point/nt:tp‑id";
 }
 description
 "Link termination point.";
 }
 uses te‑types:label‑set‑info;
 uses connectivity‑matrix‑entry‑path‑attributes;
 } // local‑link‑connectivity
} // te‑node‑tunnel‑termination‑point‑config

grouping te‑path‑element {
 description
 "A group of attributes defining an element in a TE path
 such as TE node, TE link, TE atomic resource or label.";
 uses te‑types:explicit‑route‑hop;
} // te‑path‑element

grouping te‑termination‑point‑augment {
 description
 "Augmentation for TE termination point.";
 leaf te‑tp‑id {
 type te‑types:te‑tp‑id;
 description
 "An identifier to uniquely identify a TE termination
 point.";
 }
 container te {
 must "../te‑tp‑id";
 presence "TE support.";
 description
 "Indicates TE support.";

 uses te‑termination‑point‑config;
 leaf oper‑status {
 type te‑types:te‑oper‑status;
 config false;
 description
 "The current operational state of the link termination
 point.";
 }
 uses geolocation‑container;

 } // te
} // te‑termination‑point‑augment

grouping te‑termination‑point‑config {
 description
 "TE termination point configuration grouping.";
 leaf admin‑status {
 type te‑types:te‑admin‑status;
 description
 "The administrative state of the link termination point.";
 }
 leaf name {
 type string;
 description
 "A descriptive name for the link termination point.";
 }
 uses interface‑switching‑capability‑list;
 leaf inter‑domain‑plug‑id {
 type binary;
 description
 "A topology‑wide unique number that identifies on the
 network a connectivity supporting a given inter‑domain
 TE link. This is more flexible alternative to specifying
 remote‑te‑node‑id and remote‑te‑link‑tp‑id on a TE link,
 when the provider does not know remote‑te‑node‑id and
 remote‑te‑link‑tp‑id or need to give client the
 flexibility to mix‑n‑match multiple topologies.";
 }
 leaf‑list inter‑layer‑lock‑id {
 type uint32;
 description
 "Inter layer lock ID, used for path computation in a TE
 topology covering multiple layers or multiple regions.";
 reference
 "RFC 5212: Requirements for GMPLS‑Based Multi‑Region and
 Multi‑Layer Networks (MRN/MLN).
 RFC 6001: Generalized MPLS (GMPLS) Protocol Extensions
 for Multi‑Layer and Multi‑Region Networks (MLN/MRN).";
 }
} // te‑termination‑point‑config

grouping te‑topologies‑augment {
 description
 "Augmentation for TE topologies.";
 container te {
 presence "TE support.";
 description
 "Indicates TE support.";

 container templates {
 description
 "Configuration parameters for templates used for TE
 topology.";

 list node‑template {
 if‑feature template;
 key "name";
 leaf name {
 type te‑types:te‑template‑name;
 description
 "The name to identify a TE node template.";
 }
 description
 "The list of TE node templates used to define sharable
 and reusable TE node attributes.";
 uses template‑attributes;
 uses te‑node‑config‑attributes‑template;
 } // node‑template

 list link‑template {
 if‑feature template;
 key "name";
 leaf name {
 type te‑types:te‑template‑name;
 description
 "The name to identify a TE link template.";
 }
 description
 "The list of TE link templates used to define sharable
 and reusable TE link attributes.";
 uses template‑attributes;
 uses te‑link‑config‑attributes;

 } // link‑template
 } // templates
 } // te
} // te‑topologies‑augment

grouping te‑topology‑augment {
 description
 "Augmentation for TE topology.";
 leaf provider‑id {
 type te‑types:te‑global‑id;
 description
 "An identifier to uniquely identify a provider.";
 }
 leaf client‑id {
 type te‑types:te‑global‑id;
 description
 "An identifier to uniquely identify a client.";
 }
 leaf te‑topology‑id {
 type te‑types:te‑topology‑id;
 description
 "It is presumed that a datastore will contain many
 topologies. To distinguish between topologies it is
 vital to have UNIQUE topology identifiers.";
 }

 container te {
 must "../provider‑id and ../client‑id and ../te‑topology‑id";
 presence "TE support.";
 description
 "Indicates TE support.";

 uses te‑topology‑config;
 uses geolocation‑container;
 } // te
} // te‑topology‑augment

grouping te‑topology‑config {
 description
 "TE topology configuration grouping.";
 leaf name {

 type string;
 description
 "Name of the TE topology. This attribute is optional and can
 be specified by the operator to describe the TE topology,
 which can be useful when network‑id is not descriptive
 and not modifiable because of being generated by the
 system.";
 }
 leaf preference {
 type uint8 {
 range "1..255";
 }
 description
 "Specifies a preference for this topology. A lower number
 indicates a higher preference.";
 }
 leaf optimization‑criterion {
 type identityref {
 base te‑types:te‑optimization‑criterion;
 }
 description
 "Optimization criterion applied to this topology.";
 reference
 "RFC 3272: Overview and Principles of Internet Traffic
 Engineering.";
 }
 list nsrlg {
 if‑feature nsrlg;
 key "id";
 description
 "List of NSRLGs (Not Sharing Risk Link Groups).";
 reference
 "RFC 4872: RSVP‑TE Extensions in Support of End‑to‑End
 Generalized Multi‑Protocol Label Switching (GMPLS)
 Recovery";
 leaf id {
 type uint32;
 description
 "Identify the NSRLG entry.";
 }
 leaf disjointness {

 type te‑types:te‑path‑disjointness;
 description
 "The type of resource disjointness.";
 }
 } // nsrlg
} // te‑topology‑config

grouping template‑attributes {
 description
 "Common attributes for all templates.";
 leaf priority {
 type uint16;
 description
 "The preference value to resolve conflicts between different
 templates. When two or more templates specify values for
 one configuration attribute, the value from the template
 with the highest priority is used.";
 }
 leaf reference‑change‑policy {
 type enumeration {
 enum no‑action {
 description
 "When an attribute changes in this template, the
 configuration node referring to this template does
 not take any action.";
 }
 enum not‑allowed {
 description
 "When any configuration object has a reference to this
 template, changing this template is not allowed.";
 }
 enum cascade {
 description
 "When an attribute changes in this template, the
 configuration object referring to this template applies
 the new attribute value to the corresponding
 configuration.";
 }
 }
 description
 "This attribute specifies the action taken to a configuration

 node that has a reference to this template.";
 }
} // template‑attributes

/*
 * Data nodes
 */
augment "/nw:networks/nw:network/nw:network‑types" {
 description
 "Introduce new network type for TE topology.";
 container te‑topology {
 presence "Indicates TE topology.";
 description
 "Its presence identifies the TE topology type.";
 }
}

augment "/nw:networks" {
 description
 "Augmentation parameters for TE topologies.";
 uses te‑topologies‑augment;
}

augment "/nw:networks/nw:network" {
 when "nw:network‑types/tet:te‑topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Configuration parameters for TE topology.";
 uses te‑topology‑augment;
}

augment "/nw:networks/nw:network/nw:node" {
 when "../nw:network‑types/tet:te‑topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description

 "Configuration parameters for TE at node level.";
 leaf te‑node‑id {
 type te‑types:te‑node‑id;
 description
 "The identifier of a node in the TE topology.
 A node is specific to a topology to which it belongs.";
 }
 container te {
 must "../te‑node‑id" {
 description
 "te‑node‑id is mandatory.";
 }
 must "count(../nw:supporting‑node)<=1" {
 description
 "For a node in a TE topology, there cannot be more
 than 1 supporting node. If multiple nodes are abstracted,
 the underlay‑topology is used.";
 }
 presence "TE support.";
 description
 "Indicates TE support.";
 uses te‑node‑augment;
 } // te
}

augment "/nw:networks/nw:network/nt:link" {
 when "../nw:network‑types/tet:te‑topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Configuration parameters for TE at link level.";
 container te {
 must "count(../nt:supporting‑link)<=1" {
 description
 "For a link in a TE topology, there cannot be more
 than 1 supporting link. If one or more link paths are
 abstracted, the underlay is used.";
 }
 presence "TE support.";

 description
 "Indicates TE support.";
 uses te‑link‑augment;
 } // te
}

augment "/nw:networks/nw:network/nw:node/"
 + "nt:termination‑point" {
 when "../../nw:network‑types/tet:te‑topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Configuration parameters for TE at termination point level.";
 uses te‑termination‑point‑augment;
}

augment
 "/nw:networks/nw:network/nt:link/te/bundle‑stack‑level/"
 + "bundle/bundled‑links/bundled‑link" {
 when "../../../../nw:network‑types/tet:te‑topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Augment TE link bundled link.";
 leaf src‑tp‑ref {
 type leafref {
 path "../../../../../nw:node[nw:node‑id = "
 + "current()/../../../../nt:source/"
 + "nt:source‑node]/"
 + "nt:termination‑point/nt:tp‑id";
 require‑instance true;
 }
 description
 "Reference to another TE termination point on the
 same source node.";
 }
 leaf des‑tp‑ref {

 type leafref {
 path "../../../../../nw:node[nw:node‑id = "
 + "current()/../../../../nt:destination/"
 + "nt:dest‑node]/"
 + "nt:termination‑point/nt:tp‑id";
 require‑instance true;
 }
 description
 "Reference to another TE termination point on the
 same destination node.";
 }
}

augment
 "/nw:networks/nw:network/nw:node/te/"
 + "information‑source‑entry/connectivity‑matrices/"
 + "connectivity‑matrix" {
 when "../../../../../nw:network‑types/tet:te‑topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Augment TE node connectivity‑matrix.";
 uses te‑node‑connectivity‑matrix‑attributes;
}

augment
 "/nw:networks/nw:network/nw:node/te/te‑node‑attributes/"
 + "connectivity‑matrices/connectivity‑matrix" {
 when "../../../../../nw:network‑types/tet:te‑topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Augment TE node connectivity‑matrix.";
 uses te‑node‑connectivity‑matrix‑attributes;
}

 augment

 "/nw:networks/nw:network/nw:node/te/"
 + "tunnel‑termination‑point/local‑link‑connectivities" {
 when "../../../../nw:network‑types/tet:te‑topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Augment TE node tunnel termination point LLCs
 (Local Link Connectivities).";
 uses te‑node‑tunnel‑termination‑point‑llc‑list;
 }
}
<CODE ENDS>

8. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC5246].

 The NETCONF access control model [RFC6536] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config) to
 these data nodes without proper protection can have a negative effect
 on network operations. These are the subtrees and data nodes and
 their sensitivity/vulnerability:

o /nw:networks/nw:network/nw:network‑types/tet:te‑topology
 This subtree specifies the TE topology type. Modifying the
 configurations can make TE topology type invalid and cause
 interruption to all TE networks.

o /nw:networks/tet:te
 This subtree specifies the TE node templates and TE link
 templates. Modifying the configurations in this subtree will
 change related future TE configurations.

o /nw:networks/nw:network
 This subtree specifies the topology‑wide configurations, including
 the TE topology ID and topology‑wide policies. Modifying the
 configurations here can cause traffic disabled or rerouted in this
 topology and the connected topologies.

o /nw:networks/nw:network/nw:node
 This subtree specifies the configurations for TE nodes. Modifying
 the configurations in this subtree can add, remove, or modify TE
 nodes, causing traffic disabled or rerouted in the specified nodes
 and the related TE topologies.

o /nw:networks/nw:network/nt:link/tet:te
 This subtree specifies the configurations for TE links. Modifying
 the configurations in this subtree can add, remove, or modify TE
 links, causing traffic disabled or rerouted on the specified TE
 links and the related TE topologies.

o /nw:networks/nw:network/nw:node/nt:termination‑point
 This subtree specifies the configurations of TE link termination
 points. Modifying the configurations in this subtree can add,
 remove, or modify TE link terminations points, causing traffic
 disabled or rerouted on the related TE links and the related TE
 topologies.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 o /nw:networks/nw:network/nw:network-types/tet:te-topology
 Unauthorized access to this subtree can disclose the TE topology
 type.

o /nw:networks/tet:te
 Unauthorized access to this subtree can disclose the TE node
 templates and TE link templates.

o /nw:networks/nw:network
 Unauthorized access to this subtree can disclose the topology‑wide
 configurations, including the TE topology ID, the topology‑wide
 policies, and the topology geolocation.

o /nw:networks/nw:network/nw:node
 Unauthorized access to this subtree can disclose the operational
 state information of TE nodes.

o /nw:networks/nw:network/nt:link/tet:te
 Unauthorized access to this subtree can disclose the operational
 state information of TE links.

o /nw:networks/nw:network/nw:node/nt:termination‑point
 Unauthorized access to this subtree can disclose the operational
 state information of TE link termination points.

9. IANA Considerations

 This document registers the following URIs in the IETF XML registry
 [RFC3688]. Following the format in [RFC3688], the following
 registration is requested to be made.

URI: urn:ietf:params:xml:ns:yang:ietf‑te‑topology
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf‑te‑topology‑state
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.

 This document registers a YANG module in the YANG Module Names
 registry [RFC7950].

name: ietf‑te‑topology
namespace: urn:ietf:params:xml:ns:yang:ietf‑te‑topology
prefix: tet
reference: RFC XXXX

name: ietf‑te‑topology‑state
namespace: urn:ietf:params:xml:ns:yang:ietf‑te‑topology‑state
prefix: tet‑s
reference: RFC XXXX

10. References

10.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC3945]
 Mannie, E., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Architecture", RFC 3945,
 DOI 10.17487/RFC3945, October 2004,
 <https://www.rfc-editor.org/info/rfc3945>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6536]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <https://www.rfc-editor.org/info/rfc6536>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7926]
 Farrel, A., Ed., Drake, J., Bitar, N., Swallow, G.,
 Ceccarelli, D., and X. Zhang, "Problem Statement and
 Architecture for Information Exchange between
 Interconnected Traffic-Engineered Networks", BCP 206,
 RFC 7926, DOI 10.17487/RFC7926, July 2016,
 <https://www.rfc-editor.org/info/rfc7926>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8345]
 Clemm, A., Medved, J., Varga, R., Bahadur, N.,
 Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
 Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
 2018, <https://www.rfc-editor.org/info/rfc8345>.

 [I-D.ietf-teas-yang-te]

 Saad, T., Gandhi, R., Liu, X., Beeram, V., Shah, H., and
 I. Bryskin, "A YANG Data Model for Traffic Engineering
 Tunnels and Interfaces", draft-ietf-teas-yang-te-15 (work
 in progress), June 2018.

10.2. Informative References

 [G.709]
 ITU-T, "Interfaces for the optical transport network",
 ITU-T Recommendation G.709, June 2016.

 [G.805]
 ITU-T, "Generic functional architecture of transport
 networks", ITU-T Recommendation G.805, March 2000.

 [G.872]
 ITU-T, "Architecture of optical transport networks", ITU-T
 Recommendation G.872, January 2017.

 [G.8080]
 ITU-T, "Architecture for the automatically switched
 optical network", ITU-T Recommendation G.8080, February
 2012.

 [RFC1195]
 Callon, R., "Use of OSI IS-IS for routing in TCP/IP and
 dual environments", RFC 1195, DOI 10.17487/RFC1195,
 December 1990, <https://www.rfc-editor.org/info/rfc1195>.

 [RFC2702]
 Awduche, D., Malcolm, J., Agogbua, J., O'Dell, M., and J.
 McManus, "Requirements for Traffic Engineering Over MPLS",
 RFC 2702, DOI 10.17487/RFC2702, September 1999,
 <https://www.rfc-editor.org/info/rfc2702>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <https://www.rfc-editor.org/info/rfc3209>.

 [RFC3272]
 Awduche, D., Chiu, A., Elwalid, A., Widjaja, I., and X.
 Xiao, "Overview and Principles of Internet Traffic
 Engineering", RFC 3272, DOI 10.17487/RFC3272, May 2002,
 <https://www.rfc-editor.org/info/rfc3272>.

 [RFC3471]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Functional Description",
 RFC 3471, DOI 10.17487/RFC3471, January 2003,
 <https://www.rfc-editor.org/info/rfc3471>.

 [RFC3630]
 Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
 (TE) Extensions to OSPF Version 2", RFC 3630,
 DOI 10.17487/RFC3630, September 2003,
 <https://www.rfc-editor.org/info/rfc3630>.

 [RFC3785]
 Le Faucheur, F., Uppili, R., Vedrenne, A., Merckx, P., and
 T. Telkamp, "Use of Interior Gateway Protocol (IGP) Metric
 as a second MPLS Traffic Engineering (TE) Metric", BCP 87,
 RFC 3785, DOI 10.17487/RFC3785, May 2004,
 <https://www.rfc-editor.org/info/rfc3785>.

 [RFC4201]
 Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling
 in MPLS Traffic Engineering (TE)", RFC 4201,
 DOI 10.17487/RFC4201, October 2005,
 <https://www.rfc-editor.org/info/rfc4201>.

 [RFC4202]
 Kompella, K., Ed. and Y. Rekhter, Ed., "Routing Extensions
 in Support of Generalized Multi-Protocol Label Switching
 (GMPLS)", RFC 4202, DOI 10.17487/RFC4202, October 2005,
 <https://www.rfc-editor.org/info/rfc4202>.

 [RFC4203]
 Kompella, K., Ed. and Y. Rekhter, Ed., "OSPF Extensions in
 Support of Generalized Multi-Protocol Label Switching
 (GMPLS)", RFC 4203, DOI 10.17487/RFC4203, October 2005,
 <https://www.rfc-editor.org/info/rfc4203>.

 [RFC4206]
 Kompella, K. and Y. Rekhter, "Label Switched Paths (LSP)
 Hierarchy with Generalized Multi-Protocol Label Switching
 (GMPLS) Traffic Engineering (TE)", RFC 4206,
 DOI 10.17487/RFC4206, October 2005,
 <https://www.rfc-editor.org/info/rfc4206>.

 [RFC4872]
 Lang, J., Ed., Rekhter, Y., Ed., and D. Papadimitriou,
 Ed., "RSVP-TE Extensions in Support of End-to-End
 Generalized Multi-Protocol Label Switching (GMPLS)
 Recovery", RFC 4872, DOI 10.17487/RFC4872, May 2007,
 <https://www.rfc-editor.org/info/rfc4872>.

 [RFC5152]
 Vasseur, JP., Ed., Ayyangar, A., Ed., and R. Zhang, "A
 Per-Domain Path Computation Method for Establishing Inter-
 Domain Traffic Engineering (TE) Label Switched Paths
 (LSPs)", RFC 5152, DOI 10.17487/RFC5152, February 2008,
 <https://www.rfc-editor.org/info/rfc5152>.

 [RFC5212]
 Shiomoto, K., Papadimitriou, D., Le Roux, JL., Vigoureux,
 M., and D. Brungard, "Requirements for GMPLS-Based Multi-
 Region and Multi-Layer Networks (MRN/MLN)", RFC 5212,
 DOI 10.17487/RFC5212, July 2008,
 <https://www.rfc-editor.org/info/rfc5212>.

 [RFC5305]
 Li, T. and H. Smit, "IS-IS Extensions for Traffic
 Engineering", RFC 5305, DOI 10.17487/RFC5305, October
 2008, <https://www.rfc-editor.org/info/rfc5305>.

 [RFC5316]
 Chen, M., Zhang, R., and X. Duan, "ISIS Extensions in
 Support of Inter-Autonomous System (AS) MPLS and GMPLS
 Traffic Engineering", RFC 5316, DOI 10.17487/RFC5316,
 December 2008, <https://www.rfc-editor.org/info/rfc5316>.

 [RFC5329]
 Ishiguro, K., Manral, V., Davey, A., and A. Lindem, Ed.,
 "Traffic Engineering Extensions to OSPF Version 3",
 RFC 5329, DOI 10.17487/RFC5329, September 2008,
 <https://www.rfc-editor.org/info/rfc5329>.

 [RFC5392]
 Chen, M., Zhang, R., and X. Duan, "OSPF Extensions in
 Support of Inter-Autonomous System (AS) MPLS and GMPLS
 Traffic Engineering", RFC 5392, DOI 10.17487/RFC5392,
 January 2009, <https://www.rfc-editor.org/info/rfc5392>.

 [RFC6001]
 Papadimitriou, D., Vigoureux, M., Shiomoto, K., Brungard,
 D., and JL. Le Roux, "Generalized MPLS (GMPLS) Protocol
 Extensions for Multi-Layer and Multi-Region Networks (MLN/
 MRN)", RFC 6001, DOI 10.17487/RFC6001, October 2010,

 <https://www.rfc-editor.org/info/rfc6001>.

 [RFC7308]
 Osborne, E., "Extended Administrative Groups in MPLS
 Traffic Engineering (MPLS-TE)", RFC 7308,
 DOI 10.17487/RFC7308, July 2014,
 <https://www.rfc-editor.org/info/rfc7308>.

 [RFC7471]
 Giacalone, S., Ward, D., Drake, J., Atlas, A., and S.
 Previdi, "OSPF Traffic Engineering (TE) Metric
 Extensions", RFC 7471, DOI 10.17487/RFC7471, March 2015,
 <https://www.rfc-editor.org/info/rfc7471>.

 [RFC7579]
 Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and
 J. Han, "General Network Element Constraint Encoding for
 GMPLS-Controlled Networks", RFC 7579,
 DOI 10.17487/RFC7579, June 2015,
 <https://www.rfc-editor.org/info/rfc7579>.

 [RFC7752]
 Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
 S. Ray, "North-Bound Distribution of Link-State and
 Traffic Engineering (TE) Information Using BGP", RFC 7752,
 DOI 10.17487/RFC7752, March 2016,
 <https://www.rfc-editor.org/info/rfc7752>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [I-D.ietf-netconf-subscribed-notifications]

 Voit, E., Clemm, A., Prieto, A., Nilsen-Nygaard, E., and
 A. Tripathy, "Customized Subscriptions to a Publisher's
 Event Streams", draft-ietf-netconf-subscribed-
 notifications-12 (work in progress), April 2018.

 [I-D.ietf-netconf-yang-push]

 Clemm, A., Voit, E., Prieto, A., Tripathy, A., Nilsen-
 Nygaard, E., Bierman, A., and B. Lengyel, "YANG Datastore
 Subscription", draft-ietf-netconf-yang-push-16 (work in
 progress), May 2018.

 [I-D.liu-netmod-yang-schedule]

 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
 O. Dios, "A YANG Data Model for Configuration Scheduling",
 draft-liu-netmod-yang-schedule-05 (work in progress),
 March 2018.

 [I-D.ietf-ccamp-wson-yang]

 Lee, Y., Dhody, D., Zhang, X., Guo, A., Lopezalvarez, V.,
 King, D., Yoon, B., and R. Vilata, "A Yang Data Model for
 WSON Optical Networks", draft-ietf-ccamp-wson-yang-10
 (work in progress), February 2018.

 [I-D.ietf-ccamp-otn-topo-yang]

 zhenghaomian@huawei.com, z., Guo, A., Busi, I., Sharma,
 A., Liu, X., Belotti, S., Xu, Y., Wang, L., and O. Dios,
 "A YANG Data Model for Optical Transport Network
 Topology", draft-ietf-ccamp-otn-topo-yang-03 (work in
 progress), June 2018.

 [I-D.ietf-teas-yang-l3-te-topo]

 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
 O. Dios, "YANG Data Model for Layer 3 TE Topologies",
 draft-ietf-teas-yang-l3-te-topo-01 (work in progress),
 March 2018.

 [I-D.ietf-teas-te-topo-and-tunnel-modeling]

 Bryskin, I., Beeram, V., Saad, T., and X. Liu, "TE
 Topology and Tunnel Modeling for Transport Networks",
 draft-ietf-teas-te-topo-and-tunnel-modeling-01 (work in
 progress), March 2018.

11. Acknowledgments

 The authors would like to thank Lou Berger, Sue Hares, Mazen Khaddam,
 Cyril Margaria and Zafar Ali for participating in design discussions
 and providing valuable insights.

Appendix A. Complete Model Tree Structure

module: ietf‑te‑topology
 augment /nw:networks/nw:network/nw:network‑types:
 +‑‑rw te‑topology!
 augment /nw:networks:
 +‑‑rw te!
 +‑‑rw templates
 +‑‑rw node‑template* [name] {template}?
 | +‑‑rw name
 | | te‑types:te‑template‑name
 | +‑‑rw priority? uint16
 | +‑‑rw reference‑change‑policy? enumeration
 | +‑‑rw te‑node‑attributes
 | +‑‑rw admin‑status? te‑types:te‑admin‑status
 | +‑‑rw domain‑id? uint32
 | +‑‑rw is‑abstract? empty
 | +‑‑rw name? string
 | +‑‑rw signaling‑address* inet:ip‑address
 | +‑‑rw underlay‑topology {te‑topology‑hierarchy}?
 | +‑‑rw network‑ref?
 | ‑> /nw:networks/network/network‑id
 +‑‑rw link‑template* [name] {template}?
 +‑‑rw name
 | te‑types:te‑template‑name
 +‑‑rw priority? uint16
 +‑‑rw reference‑change‑policy? enumeration
 +‑‑rw te‑link‑attributes
 +‑‑rw access‑type?
 | te‑types:te‑link‑access‑type
 +‑‑rw external‑domain
 | +‑‑rw network‑ref?
 | | ‑> /nw:networks/network/network‑id
 | +‑‑rw remote‑te‑node‑id? te‑types:te‑node‑id
 | +‑‑rw remote‑te‑link‑tp‑id? te‑types:te‑tp‑id
 +‑‑rw is‑abstract? empty
 +‑‑rw name? string
 +‑‑rw underlay {te‑topology‑hierarchy}?
 | +‑‑rw enabled? boolean
 | +‑‑rw primary‑path
 | | +‑‑rw network‑ref?

 | | | ‑> /nw:networks/network/network‑id
 | | +‑‑rw path‑element* [path‑element‑id]
 | | +‑‑rw path‑element‑id uint32
 | | +‑‑rw index? uint32
 | | +‑‑rw (type)?
 | | +‑‑:(num‑unnum‑hop)
 | | | +‑‑rw num‑unnum‑hop
 | | | +‑‑rw node‑id?
 | | | | te‑types:te‑node‑id
 | | | +‑‑rw link‑tp‑id?
 | | | | te‑types:te‑tp‑id
 | | | +‑‑rw hop‑type? te‑hop‑type
 | | | +‑‑rw direction?
 | | | te‑link‑direction
 | | +‑‑:(as‑number)
 | | | +‑‑rw as‑number‑hop
 | | | +‑‑rw as‑number? binary
 | | | +‑‑rw hop‑type? te‑hop‑type
 | | +‑‑:(label)
 | | +‑‑rw label‑hop
 | | +‑‑rw te‑label
 | | +‑‑rw (technology)?
 | | | +‑‑:(generic)
 | | | +‑‑rw generic?
 | | | rt‑
types:generalized‑label
 | | +‑‑rw direction?
 | | te‑label‑direction
 | +‑‑rw backup‑path* [index]
 | | +‑‑rw index uint32
 | | +‑‑rw network‑ref?
 | | | ‑> /nw:networks/network/network‑id
 | | +‑‑rw path‑element* [path‑element‑id]
 | | +‑‑rw path‑element‑id uint32
 | | +‑‑rw index? uint32
 | | +‑‑rw (type)?
 | | +‑‑:(num‑unnum‑hop)
 | | | +‑‑rw num‑unnum‑hop
 | | | +‑‑rw node‑id?
 | | | | te‑types:te‑node‑id
 | | | +‑‑rw link‑tp‑id?

 | | | | te‑types:te‑tp‑id
 | | | +‑‑rw hop‑type? te‑hop‑type
 | | | +‑‑rw direction?
 | | | te‑link‑direction
 | | +‑‑:(as‑number)
 | | | +‑‑rw as‑number‑hop
 | | | +‑‑rw as‑number? binary
 | | | +‑‑rw hop‑type? te‑hop‑type
 | | +‑‑:(label)
 | | +‑‑rw label‑hop
 | | +‑‑rw te‑label
 | | +‑‑rw (technology)?
 | | | +‑‑:(generic)
 | | | +‑‑rw generic?
 | | | rt‑
types:generalized‑label
 | | +‑‑rw direction?
 | | te‑label‑direction
 | +‑‑rw protection‑type? identityref
 | +‑‑rw tunnel‑termination‑points
 | | +‑‑rw source? binary
 | | +‑‑rw destination? binary
 | +‑‑rw tunnels
 | +‑‑rw sharing? boolean
 | +‑‑rw tunnel* [tunnel‑name]
 | +‑‑rw tunnel‑name string
 | +‑‑rw sharing? boolean
 +‑‑rw admin‑status?
 | te‑types:te‑admin‑status
 +‑‑rw link‑index? uint64
 +‑‑rw administrative‑group?
 | te‑types:admin‑groups
 +‑‑rw interface‑switching‑capability*
 | [switching‑capability encoding]
 | +‑‑rw switching‑capability identityref
 | +‑‑rw encoding identityref
 | +‑‑rw max‑lsp‑bandwidth* [priority]
 | +‑‑rw priority uint8
 | +‑‑rw te‑bandwidth
 | +‑‑rw (technology)?
 | +‑‑:(generic)

 | +‑‑rw generic? te‑bandwidth
 +‑‑rw label‑restrictions
 | +‑‑rw label‑restriction* [index]
 | +‑‑rw restriction? enumeration
 | +‑‑rw index uint32
 | +‑‑rw label‑start
 | | +‑‑rw te‑label
 | | +‑‑rw (technology)?
 | | | +‑‑:(generic)
 | | | +‑‑rw generic?
 | | | rt‑types:generalized‑label
 | | +‑‑rw direction? te‑label‑direction
 | +‑‑rw label‑end
 | | +‑‑rw te‑label
 | | +‑‑rw (technology)?
 | | | +‑‑:(generic)
 | | | +‑‑rw generic?
 | | | rt‑types:generalized‑label
 | | +‑‑rw direction? te‑label‑direction
 | +‑‑rw range‑bitmap? binary
 +‑‑rw link‑protection‑type? enumeration
 +‑‑rw max‑link‑bandwidth
 | +‑‑rw te‑bandwidth
 | +‑‑rw (technology)?
 | +‑‑:(generic)
 | +‑‑rw generic? te‑bandwidth
 +‑‑rw max‑resv‑link‑bandwidth
 | +‑‑rw te‑bandwidth
 | +‑‑rw (technology)?
 | +‑‑:(generic)
 | +‑‑rw generic? te‑bandwidth
 +‑‑rw unreserved‑bandwidth* [priority]
 | +‑‑rw priority uint8
 | +‑‑rw te‑bandwidth
 | +‑‑rw (technology)?
 | +‑‑:(generic)
 | +‑‑rw generic? te‑bandwidth
 +‑‑rw te‑default‑metric? uint32
 +‑‑rw te‑delay‑metric? uint32
 +‑‑rw te‑igp‑metric? uint32
 +‑‑rw te‑srlgs

 | +‑‑rw value* te‑types:srlg
 +‑‑rw te‑nsrlgs {nsrlg}?
 +‑‑rw id* uint32
 augment /nw:networks/nw:network:
 +‑‑rw provider‑id? te‑types:te‑global‑id
 +‑‑rw client‑id? te‑types:te‑global‑id
 +‑‑rw te‑topology‑id? te‑types:te‑topology‑id
 +‑‑rw te!
 +‑‑rw name? string
 +‑‑rw preference? uint8
 +‑‑rw optimization‑criterion? identityref
 +‑‑rw nsrlg* [id] {nsrlg}?
 | +‑‑rw id uint32
 | +‑‑rw disjointness? te‑types:te‑path‑disjointness
 +‑‑ro geolocation
 +‑‑ro altitude? int64
 +‑‑ro latitude? geographic‑coordinate‑degree
 +‑‑ro longitude? geographic‑coordinate‑degree
 augment /nw:networks/nw:network/nw:node:
 +‑‑rw te‑node‑id? te‑types:te‑node‑id
 +‑‑rw te!
 +‑‑rw te‑node‑template*
 | ‑> ../../../../te/templates/node‑template/name
 | {template}?
 +‑‑rw te‑node‑attributes
 | +‑‑rw admin‑status? te‑types:te‑admin‑status
 | +‑‑rw connectivity‑matrices
 | | +‑‑rw number‑of‑entries? uint16
 | | +‑‑rw label‑restrictions
 | | | +‑‑rw label‑restriction* [index]
 | | | +‑‑rw restriction? enumeration
 | | | +‑‑rw index uint32
 | | | +‑‑rw label‑start
 | | | | +‑‑rw te‑label
 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic?
 | | | | | rt‑types:generalized‑label
 | | | | +‑‑rw direction? te‑label‑direction
 | | | +‑‑rw label‑end
 | | | | +‑‑rw te‑label

 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic?
 | | | | | rt‑types:generalized‑label
 | | | | +‑‑rw direction? te‑label‑direction
 | | | +‑‑rw range‑bitmap? binary
 | | +‑‑rw is‑allowed? boolean
 | | +‑‑rw underlay {te‑topology‑hierarchy}?
 | | | +‑‑rw enabled? boolean
 | | | +‑‑rw primary‑path
 | | | | +‑‑rw network‑ref?
 | | | | | ‑> /nw:networks/network/network‑id
 | | | | +‑‑rw path‑element* [path‑element‑id]
 | | | | +‑‑rw path‑element‑id uint32
 | | | | +‑‑rw index? uint32
 | | | | +‑‑rw (type)?
 | | | | +‑‑:(num‑unnum‑hop)
 | | | | | +‑‑rw num‑unnum‑hop
 | | | | | +‑‑rw node‑id?
 | | | | | | te‑types:te‑node‑id
 | | | | | +‑‑rw link‑tp‑id? te‑types:te‑tp‑id
 | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | | +‑‑rw direction? te‑link‑direction
 | | | | +‑‑:(as‑number)
 | | | | | +‑‑rw as‑number‑hop
 | | | | | +‑‑rw as‑number? binary
 | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | +‑‑:(label)
 | | | | +‑‑rw label‑hop
 | | | | +‑‑rw te‑label
 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic?
 | | | | | rt‑types:generalized‑
label
 | | | | +‑‑rw direction?
 | | | | te‑label‑direction
 | | | +‑‑rw backup‑path* [index]
 | | | | +‑‑rw index uint32
 | | | | +‑‑rw network‑ref?
 | | | | | ‑> /nw:networks/network/network‑id

 | | | | +‑‑rw path‑element* [path‑element‑id]
 | | | | +‑‑rw path‑element‑id uint32
 | | | | +‑‑rw index? uint32
 | | | | +‑‑rw (type)?
 | | | | +‑‑:(num‑unnum‑hop)
 | | | | | +‑‑rw num‑unnum‑hop
 | | | | | +‑‑rw node‑id?
 | | | | | | te‑types:te‑node‑id
 | | | | | +‑‑rw link‑tp‑id? te‑types:te‑tp‑id
 | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | | +‑‑rw direction? te‑link‑direction
 | | | | +‑‑:(as‑number)
 | | | | | +‑‑rw as‑number‑hop
 | | | | | +‑‑rw as‑number? binary
 | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | +‑‑:(label)
 | | | | +‑‑rw label‑hop
 | | | | +‑‑rw te‑label
 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic?
 | | | | | rt‑types:generalized‑
label
 | | | | +‑‑rw direction?
 | | | | te‑label‑direction
 | | | +‑‑rw protection‑type? identityref
 | | | +‑‑rw tunnel‑termination‑points
 | | | | +‑‑rw source? binary
 | | | | +‑‑rw destination? binary
 | | | +‑‑rw tunnels
 | | | +‑‑rw sharing? boolean
 | | | +‑‑rw tunnel* [tunnel‑name]
 | | | +‑‑rw tunnel‑name string
 | | | +‑‑rw sharing? boolean
 | | +‑‑rw path‑constraints
 | | | +‑‑rw te‑bandwidth
 | | | | +‑‑rw (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic? te‑bandwidth
 | | | +‑‑rw setup‑priority? uint8
 | | | +‑‑rw hold‑priority? uint8

 | | | +‑‑rw signaling‑type? identityref
 | | | +‑‑rw path‑metric‑bounds
 | | | | +‑‑rw path‑metric‑bound* [metric‑type]
 | | | | +‑‑rw metric‑type identityref
 | | | | +‑‑rw upper‑bound? uint64
 | | | +‑‑rw path‑affinities
 | | | | +‑‑rw constraint* [usage]
 | | | | +‑‑rw usage identityref
 | | | | +‑‑rw value? admin‑groups
 | | | +‑‑rw path‑srlgs
 | | | +‑‑rw usage? identityref
 | | | +‑‑rw values* srlg
 | | +‑‑rw optimizations
 | | | +‑‑rw (algorithm)?
 | | | +‑‑:(metric) {path‑optimization‑metric}?
 | | | | +‑‑rw optimization‑metric* [metric‑type]
 | | | | | +‑‑rw metric‑type
 | | | | | | identityref
 | | | | | +‑‑rw weight?
 | | | | | | uint8
 | | | | | +‑‑rw explicit‑route‑exclude‑objects
 | | | | | | +‑‑rw route‑object‑exclude‑object*
 | | | | | | [index]
 | | | | | | +‑‑rw index uint32
 | | | | | | +‑‑rw (type)?
 | | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | | +‑‑rw num‑unnum‑hop
 | | | | | | | +‑‑rw node‑id?
 | | | | | | | | te‑types:te‑node‑id
 | | | | | | | +‑‑rw link‑tp‑id?
 | | | | | | | | te‑types:te‑tp‑id
 | | | | | | | +‑‑rw hop‑type?
 | | | | | | | | te‑hop‑type
 | | | | | | | +‑‑rw direction?
 | | | | | | | te‑link‑direction
 | | | | | | +‑‑:(as‑number)
 | | | | | | | +‑‑rw as‑number‑hop
 | | | | | | | +‑‑rw as‑number? binary
 | | | | | | | +‑‑rw hop‑type?
 | | | | | | | te‑hop‑type
 | | | | | | +‑‑:(label)

 | | | | | | | +‑‑rw label‑hop
 | | | | | | | +‑‑rw te‑label
 | | | | | | | +‑‑rw (technology)?
 | | | | | | | | +‑‑:(generic)
 | | | | | | | | +‑‑rw generic?
 | | | | | | | | rt‑
types:generalized‑label
 | | | | | | | +‑‑rw direction?
 | | | | | | | te‑label‑direction
 | | | | | | +‑‑:(srlg)
 | | | | | | +‑‑rw srlg
 | | | | | | +‑‑rw srlg? uint32
 | | | | | +‑‑rw explicit‑route‑include‑objects
 | | | | | +‑‑rw route‑object‑include‑object*
 | | | | | [index]
 | | | | | +‑‑rw index uint32
 | | | | | +‑‑rw (type)?
 | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | +‑‑rw num‑unnum‑hop
 | | | | | | +‑‑rw node‑id?
 | | | | | | | te‑types:te‑node‑id
 | | | | | | +‑‑rw link‑tp‑id?
 | | | | | | | te‑types:te‑tp‑id
 | | | | | | +‑‑rw hop‑type?
 | | | | | | | te‑hop‑type
 | | | | | | +‑‑rw direction?
 | | | | | | te‑link‑direction
 | | | | | +‑‑:(as‑number)
 | | | | | | +‑‑rw as‑number‑hop
 | | | | | | +‑‑rw as‑number? binary
 | | | | | | +‑‑rw hop‑type?
 | | | | | | te‑hop‑type
 | | | | | +‑‑:(label)
 | | | | | +‑‑rw label‑hop
 | | | | | +‑‑rw te‑label
 | | | | | +‑‑rw (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑rw generic?
 | | | | | | rt‑
types:generalized‑label
 | | | | | +‑‑rw direction?

 | | | | | te‑label‑direction
 | | | | +‑‑rw tiebreakers
 | | | | +‑‑rw tiebreaker* [tiebreaker‑type]
 | | | | +‑‑rw tiebreaker‑type identityref
 | | | +‑‑:(objective‑function)
 | | | {path‑optimization‑objective‑function}?
 | | | +‑‑rw objective‑function
 | | | +‑‑rw objective‑function‑type? identityref
 | | +‑‑ro path‑properties
 | | | +‑‑ro path‑metric* [metric‑type]
 | | | | +‑‑ro metric‑type identityref
 | | | | +‑‑ro accumulative‑value? uint64
 | | | +‑‑ro path‑affinities
 | | | | +‑‑ro constraint* [usage]
 | | | | +‑‑ro usage identityref
 | | | | +‑‑ro value? admin‑groups
 | | | +‑‑ro path‑srlgs
 | | | | +‑‑ro usage? identityref
 | | | | +‑‑ro values* srlg
 | | | +‑‑ro path‑route‑objects
 | | | +‑‑ro path‑route‑object* [index]
 | | | +‑‑ro index uint32
 | | | +‑‑ro (type)?
 | | | +‑‑:(num‑unnum‑hop)
 | | | | +‑‑ro num‑unnum‑hop
 | | | | +‑‑ro node‑id?
 | | | | | te‑types:te‑node‑id
 | | | | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 | | | | +‑‑ro hop‑type? te‑hop‑type
 | | | | +‑‑ro direction? te‑link‑direction
 | | | +‑‑:(as‑number)
 | | | | +‑‑ro as‑number‑hop
 | | | | +‑‑ro as‑number? binary
 | | | | +‑‑ro hop‑type? te‑hop‑type
 | | | +‑‑:(label)
 | | | +‑‑ro label‑hop
 | | | +‑‑ro te‑label
 | | | +‑‑ro (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑ro generic?

 | | | | rt‑types:generalized‑
label
 | | | +‑‑ro direction?
 | | | te‑label‑direction
 | | +‑‑rw connectivity‑matrix* [id]
 | | +‑‑rw id uint32
 | | +‑‑rw from
 | | | +‑‑rw tp‑ref? leafref
 | | | +‑‑rw label‑restrictions
 | | | +‑‑rw label‑restriction* [index]
 | | | +‑‑rw restriction? enumeration
 | | | +‑‑rw index uint32
 | | | +‑‑rw label‑start
 | | | | +‑‑rw te‑label
 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic?
 | | | | | rt‑types:generalized‑
label
 | | | | +‑‑rw direction?
 | | | | te‑label‑direction
 | | | +‑‑rw label‑end
 | | | | +‑‑rw te‑label
 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic?
 | | | | | rt‑types:generalized‑
label
 | | | | +‑‑rw direction?
 | | | | te‑label‑direction
 | | | +‑‑rw range‑bitmap? binary
 | | +‑‑rw to
 | | | +‑‑rw tp‑ref? leafref
 | | | +‑‑rw label‑restrictions
 | | | +‑‑rw label‑restriction* [index]
 | | | +‑‑rw restriction? enumeration
 | | | +‑‑rw index uint32
 | | | +‑‑rw label‑start
 | | | | +‑‑rw te‑label
 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)

 | | | | | +‑‑rw generic?
 | | | | | rt‑types:generalized‑
label
 | | | | +‑‑rw direction?
 | | | | te‑label‑direction
 | | | +‑‑rw label‑end
 | | | | +‑‑rw te‑label
 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic?
 | | | | | rt‑types:generalized‑
label
 | | | | +‑‑rw direction?
 | | | | te‑label‑direction
 | | | +‑‑rw range‑bitmap? binary
 | | +‑‑rw is‑allowed? boolean
 | | +‑‑rw underlay {te‑topology‑hierarchy}?
 | | | +‑‑rw enabled? boolean
 | | | +‑‑rw primary‑path
 | | | | +‑‑rw network‑ref?
 | | | | | ‑> /nw:networks/network/network‑id
 | | | | +‑‑rw path‑element* [path‑element‑id]
 | | | | +‑‑rw path‑element‑id uint32
 | | | | +‑‑rw index? uint32
 | | | | +‑‑rw (type)?
 | | | | +‑‑:(num‑unnum‑hop)
 | | | | | +‑‑rw num‑unnum‑hop
 | | | | | +‑‑rw node‑id?
 | | | | | | te‑types:te‑node‑id
 | | | | | +‑‑rw link‑tp‑id?
 | | | | | | te‑types:te‑tp‑id
 | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | | +‑‑rw direction?
 | | | | | te‑link‑direction
 | | | | +‑‑:(as‑number)
 | | | | | +‑‑rw as‑number‑hop
 | | | | | +‑‑rw as‑number? binary
 | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | +‑‑:(label)
 | | | | +‑‑rw label‑hop
 | | | | +‑‑rw te‑label

 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic?
 | | | | | rt‑
types:generalized‑label
 | | | | +‑‑rw direction?
 | | | | te‑label‑direction
 | | | +‑‑rw backup‑path* [index]
 | | | | +‑‑rw index uint32
 | | | | +‑‑rw network‑ref?
 | | | | | ‑> /nw:networks/network/network‑id
 | | | | +‑‑rw path‑element* [path‑element‑id]
 | | | | +‑‑rw path‑element‑id uint32
 | | | | +‑‑rw index? uint32
 | | | | +‑‑rw (type)?
 | | | | +‑‑:(num‑unnum‑hop)
 | | | | | +‑‑rw num‑unnum‑hop
 | | | | | +‑‑rw node‑id?
 | | | | | | te‑types:te‑node‑id
 | | | | | +‑‑rw link‑tp‑id?
 | | | | | | te‑types:te‑tp‑id
 | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | | +‑‑rw direction?
 | | | | | te‑link‑direction
 | | | | +‑‑:(as‑number)
 | | | | | +‑‑rw as‑number‑hop
 | | | | | +‑‑rw as‑number? binary
 | | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | +‑‑:(label)
 | | | | +‑‑rw label‑hop
 | | | | +‑‑rw te‑label
 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic?
 | | | | | rt‑
types:generalized‑label
 | | | | +‑‑rw direction?
 | | | | te‑label‑direction
 | | | +‑‑rw protection‑type? identityref
 | | | +‑‑rw tunnel‑termination‑points
 | | | | +‑‑rw source? binary

 | | | | +‑‑rw destination? binary
 | | | +‑‑rw tunnels
 | | | +‑‑rw sharing? boolean
 | | | +‑‑rw tunnel* [tunnel‑name]
 | | | +‑‑rw tunnel‑name string
 | | | +‑‑rw sharing? boolean
 | | +‑‑rw path‑constraints
 | | | +‑‑rw te‑bandwidth
 | | | | +‑‑rw (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic? te‑bandwidth
 | | | +‑‑rw setup‑priority? uint8
 | | | +‑‑rw hold‑priority? uint8
 | | | +‑‑rw signaling‑type? identityref
 | | | +‑‑rw path‑metric‑bounds
 | | | | +‑‑rw path‑metric‑bound* [metric‑type]
 | | | | +‑‑rw metric‑type identityref
 | | | | +‑‑rw upper‑bound? uint64
 | | | +‑‑rw path‑affinities
 | | | | +‑‑rw constraint* [usage]
 | | | | +‑‑rw usage identityref
 | | | | +‑‑rw value? admin‑groups
 | | | +‑‑rw path‑srlgs
 | | | +‑‑rw usage? identityref
 | | | +‑‑rw values* srlg
 | | +‑‑rw optimizations
 | | | +‑‑rw (algorithm)?
 | | | +‑‑:(metric) {path‑optimization‑metric}?
 | | | | +‑‑rw optimization‑metric* [metric‑type]
 | | | | | +‑‑rw metric‑type
 | | | | | | identityref
 | | | | | +‑‑rw weight?
 | | | | | | uint8
 | | | | | +‑‑rw explicit‑route‑exclude‑objects
 | | | | | | +‑‑rw route‑object‑exclude‑object*
 | | | | | | [index]
 | | | | | | +‑‑rw index uint32
 | | | | | | +‑‑rw (type)?
 | | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | | +‑‑rw num‑unnum‑hop
 | | | | | | | +‑‑rw node‑id?

 | | | | | | | | te‑types:te‑node‑
id
 | | | | | | | +‑‑rw link‑tp‑id?
 | | | | | | | | te‑types:te‑tp‑id
 | | | | | | | +‑‑rw hop‑type?
 | | | | | | | | te‑hop‑type
 | | | | | | | +‑‑rw direction?
 | | | | | | | te‑link‑direction
 | | | | | | +‑‑:(as‑number)
 | | | | | | | +‑‑rw as‑number‑hop
 | | | | | | | +‑‑rw as‑number? binary
 | | | | | | | +‑‑rw hop‑type?
 | | | | | | | te‑hop‑type
 | | | | | | +‑‑:(label)
 | | | | | | | +‑‑rw label‑hop
 | | | | | | | +‑‑rw te‑label
 | | | | | | | +‑‑rw (technology)?
 | | | | | | | | +‑‑:(generic)
 | | | | | | | | +‑‑rw generic?
 | | | | | | | | rt‑
types:generalized‑label
 | | | | | | | +‑‑rw direction?
 | | | | | | | te‑label‑
direction
 | | | | | | +‑‑:(srlg)
 | | | | | | +‑‑rw srlg
 | | | | | | +‑‑rw srlg? uint32
 | | | | | +‑‑rw explicit‑route‑include‑objects
 | | | | | +‑‑rw route‑object‑include‑object*
 | | | | | [index]
 | | | | | +‑‑rw index uint32
 | | | | | +‑‑rw (type)?
 | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | +‑‑rw num‑unnum‑hop
 | | | | | | +‑‑rw node‑id?
 | | | | | | | te‑types:te‑node‑
id
 | | | | | | +‑‑rw link‑tp‑id?
 | | | | | | | te‑types:te‑tp‑id
 | | | | | | +‑‑rw hop‑type?
 | | | | | | | te‑hop‑type

 | | | | | | +‑‑rw direction?
 | | | | | | te‑link‑direction
 | | | | | +‑‑:(as‑number)
 | | | | | | +‑‑rw as‑number‑hop
 | | | | | | +‑‑rw as‑number? binary
 | | | | | | +‑‑rw hop‑type?
 | | | | | | te‑hop‑type
 | | | | | +‑‑:(label)
 | | | | | +‑‑rw label‑hop
 | | | | | +‑‑rw te‑label
 | | | | | +‑‑rw (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑rw generic?
 | | | | | | rt‑
types:generalized‑label
 | | | | | +‑‑rw direction?
 | | | | | te‑label‑
direction
 | | | | +‑‑rw tiebreakers
 | | | | +‑‑rw tiebreaker* [tiebreaker‑type]
 | | | | +‑‑rw tiebreaker‑type identityref
 | | | +‑‑:(objective‑function)
 | | | {path‑optimization‑objective‑
function}?
 | | | +‑‑rw objective‑function
 | | | +‑‑rw objective‑function‑type?
 | | | identityref
 | | +‑‑ro path‑properties
 | | +‑‑ro path‑metric* [metric‑type]
 | | | +‑‑ro metric‑type identityref
 | | | +‑‑ro accumulative‑value? uint64
 | | +‑‑ro path‑affinities
 | | | +‑‑ro constraint* [usage]
 | | | +‑‑ro usage identityref
 | | | +‑‑ro value? admin‑groups
 | | +‑‑ro path‑srlgs
 | | | +‑‑ro usage? identityref
 | | | +‑‑ro values* srlg
 | | +‑‑ro path‑route‑objects
 | | +‑‑ro path‑route‑object* [index]
 | | +‑‑ro index uint32

 | | +‑‑ro (type)?
 | | +‑‑:(num‑unnum‑hop)
 | | | +‑‑ro num‑unnum‑hop
 | | | +‑‑ro node‑id?
 | | | | te‑types:te‑node‑id
 | | | +‑‑ro link‑tp‑id?
 | | | | te‑types:te‑tp‑id
 | | | +‑‑ro hop‑type? te‑hop‑type
 | | | +‑‑ro direction?
 | | | te‑link‑direction
 | | +‑‑:(as‑number)
 | | | +‑‑ro as‑number‑hop
 | | | +‑‑ro as‑number? binary
 | | | +‑‑ro hop‑type? te‑hop‑type
 | | +‑‑:(label)
 | | +‑‑ro label‑hop
 | | +‑‑ro te‑label
 | | +‑‑ro (technology)?
 | | | +‑‑:(generic)
 | | | +‑‑ro generic?
 | | | rt‑
types:generalized‑label
 | | +‑‑ro direction?
 | | te‑label‑direction
 | +‑‑rw domain‑id? uint32
 | +‑‑rw is‑abstract? empty
 | +‑‑rw name? string
 | +‑‑rw signaling‑address* inet:ip‑address
 | +‑‑rw underlay‑topology {te‑topology‑hierarchy}?
 | +‑‑rw network‑ref? ‑> /nw:networks/network/network‑id
 +‑‑ro oper‑status? te‑types:te‑oper‑status
 +‑‑ro geolocation
 | +‑‑ro altitude? int64
 | +‑‑ro latitude? geographic‑coordinate‑degree
 | +‑‑ro longitude? geographic‑coordinate‑degree
 +‑‑ro is‑multi‑access‑dr? empty
 +‑‑ro information‑source? te‑info‑source
 +‑‑ro information‑source‑state
 | +‑‑ro credibility‑preference? uint16
 | +‑‑ro logical‑network‑element? string
 | +‑‑ro network‑instance? string

 | +‑‑ro topology
 | +‑‑ro node‑ref? leafref
 | +‑‑ro network‑ref? ‑> /nw:networks/network/network‑id
 +‑‑ro information‑source‑entry* [information‑source]
 | +‑‑ro information‑source te‑info‑source
 | +‑‑ro information‑source‑state
 | | +‑‑ro credibility‑preference? uint16
 | | +‑‑ro logical‑network‑element? string
 | | +‑‑ro network‑instance? string
 | | +‑‑ro topology
 | | +‑‑ro node‑ref? leafref
 | | +‑‑ro network‑ref?
 | | ‑> /nw:networks/network/network‑id
 | +‑‑ro connectivity‑matrices
 | | +‑‑ro number‑of‑entries? uint16
 | | +‑‑ro label‑restrictions
 | | | +‑‑ro label‑restriction* [index]
 | | | +‑‑ro restriction? enumeration
 | | | +‑‑ro index uint32
 | | | +‑‑ro label‑start
 | | | | +‑‑ro te‑label
 | | | | +‑‑ro (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑ro generic?
 | | | | | rt‑types:generalized‑label
 | | | | +‑‑ro direction? te‑label‑direction
 | | | +‑‑ro label‑end
 | | | | +‑‑ro te‑label
 | | | | +‑‑ro (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑ro generic?
 | | | | | rt‑types:generalized‑label
 | | | | +‑‑ro direction? te‑label‑direction
 | | | +‑‑ro range‑bitmap? binary
 | | +‑‑ro is‑allowed? boolean
 | | +‑‑ro underlay {te‑topology‑hierarchy}?
 | | | +‑‑ro enabled? boolean
 | | | +‑‑ro primary‑path
 | | | | +‑‑ro network‑ref?
 | | | | | ‑> /nw:networks/network/network‑id
 | | | | +‑‑ro path‑element* [path‑element‑id]

 | | | | +‑‑ro path‑element‑id uint32
 | | | | +‑‑ro index? uint32
 | | | | +‑‑ro (type)?
 | | | | +‑‑:(num‑unnum‑hop)
 | | | | | +‑‑ro num‑unnum‑hop
 | | | | | +‑‑ro node‑id?
 | | | | | | te‑types:te‑node‑id
 | | | | | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 | | | | | +‑‑ro hop‑type? te‑hop‑type
 | | | | | +‑‑ro direction? te‑link‑direction
 | | | | +‑‑:(as‑number)
 | | | | | +‑‑ro as‑number‑hop
 | | | | | +‑‑ro as‑number? binary
 | | | | | +‑‑ro hop‑type? te‑hop‑type
 | | | | +‑‑:(label)
 | | | | +‑‑ro label‑hop
 | | | | +‑‑ro te‑label
 | | | | +‑‑ro (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑ro generic?
 | | | | | rt‑types:generalized‑
label
 | | | | +‑‑ro direction?
 | | | | te‑label‑direction
 | | | +‑‑ro backup‑path* [index]
 | | | | +‑‑ro index uint32
 | | | | +‑‑ro network‑ref?
 | | | | | ‑> /nw:networks/network/network‑id
 | | | | +‑‑ro path‑element* [path‑element‑id]
 | | | | +‑‑ro path‑element‑id uint32
 | | | | +‑‑ro index? uint32
 | | | | +‑‑ro (type)?
 | | | | +‑‑:(num‑unnum‑hop)
 | | | | | +‑‑ro num‑unnum‑hop
 | | | | | +‑‑ro node‑id?
 | | | | | | te‑types:te‑node‑id
 | | | | | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 | | | | | +‑‑ro hop‑type? te‑hop‑type
 | | | | | +‑‑ro direction? te‑link‑direction
 | | | | +‑‑:(as‑number)
 | | | | | +‑‑ro as‑number‑hop

 | | | | | +‑‑ro as‑number? binary
 | | | | | +‑‑ro hop‑type? te‑hop‑type
 | | | | +‑‑:(label)
 | | | | +‑‑ro label‑hop
 | | | | +‑‑ro te‑label
 | | | | +‑‑ro (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑ro generic?
 | | | | | rt‑types:generalized‑
label
 | | | | +‑‑ro direction?
 | | | | te‑label‑direction
 | | | +‑‑ro protection‑type? identityref
 | | | +‑‑ro tunnel‑termination‑points
 | | | | +‑‑ro source? binary
 | | | | +‑‑ro destination? binary
 | | | +‑‑ro tunnels
 | | | +‑‑ro sharing? boolean
 | | | +‑‑ro tunnel* [tunnel‑name]
 | | | +‑‑ro tunnel‑name string
 | | | +‑‑ro sharing? boolean
 | | +‑‑ro path‑constraints
 | | | +‑‑ro te‑bandwidth
 | | | | +‑‑ro (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑ro generic? te‑bandwidth
 | | | +‑‑ro setup‑priority? uint8
 | | | +‑‑ro hold‑priority? uint8
 | | | +‑‑ro signaling‑type? identityref
 | | | +‑‑ro path‑metric‑bounds
 | | | | +‑‑ro path‑metric‑bound* [metric‑type]
 | | | | +‑‑ro metric‑type identityref
 | | | | +‑‑ro upper‑bound? uint64
 | | | +‑‑ro path‑affinities
 | | | | +‑‑ro constraint* [usage]
 | | | | +‑‑ro usage identityref
 | | | | +‑‑ro value? admin‑groups
 | | | +‑‑ro path‑srlgs
 | | | +‑‑ro usage? identityref
 | | | +‑‑ro values* srlg
 | | +‑‑ro optimizations

 | | | +‑‑ro (algorithm)?
 | | | +‑‑:(metric) {path‑optimization‑metric}?
 | | | | +‑‑ro optimization‑metric* [metric‑type]
 | | | | | +‑‑ro metric‑type
 | | | | | | identityref
 | | | | | +‑‑ro weight?
 | | | | | | uint8
 | | | | | +‑‑ro explicit‑route‑exclude‑objects
 | | | | | | +‑‑ro route‑object‑exclude‑object*
 | | | | | | [index]
 | | | | | | +‑‑ro index uint32
 | | | | | | +‑‑ro (type)?
 | | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | | +‑‑ro num‑unnum‑hop
 | | | | | | | +‑‑ro node‑id?
 | | | | | | | | te‑types:te‑node‑id
 | | | | | | | +‑‑ro link‑tp‑id?
 | | | | | | | | te‑types:te‑tp‑id
 | | | | | | | +‑‑ro hop‑type?
 | | | | | | | | te‑hop‑type
 | | | | | | | +‑‑ro direction?
 | | | | | | | te‑link‑direction
 | | | | | | +‑‑:(as‑number)
 | | | | | | | +‑‑ro as‑number‑hop
 | | | | | | | +‑‑ro as‑number? binary
 | | | | | | | +‑‑ro hop‑type?
 | | | | | | | te‑hop‑type
 | | | | | | +‑‑:(label)
 | | | | | | | +‑‑ro label‑hop
 | | | | | | | +‑‑ro te‑label
 | | | | | | | +‑‑ro (technology)?
 | | | | | | | | +‑‑:(generic)
 | | | | | | | | +‑‑ro generic?
 | | | | | | | | rt‑
types:generalized‑label
 | | | | | | | +‑‑ro direction?
 | | | | | | | te‑label‑direction
 | | | | | | +‑‑:(srlg)
 | | | | | | +‑‑ro srlg
 | | | | | | +‑‑ro srlg? uint32
 | | | | | +‑‑ro explicit‑route‑include‑objects

 | | | | | +‑‑ro route‑object‑include‑object*
 | | | | | [index]
 | | | | | +‑‑ro index uint32
 | | | | | +‑‑ro (type)?
 | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | +‑‑ro num‑unnum‑hop
 | | | | | | +‑‑ro node‑id?
 | | | | | | | te‑types:te‑node‑id
 | | | | | | +‑‑ro link‑tp‑id?
 | | | | | | | te‑types:te‑tp‑id
 | | | | | | +‑‑ro hop‑type?
 | | | | | | | te‑hop‑type
 | | | | | | +‑‑ro direction?
 | | | | | | te‑link‑direction
 | | | | | +‑‑:(as‑number)
 | | | | | | +‑‑ro as‑number‑hop
 | | | | | | +‑‑ro as‑number? binary
 | | | | | | +‑‑ro hop‑type?
 | | | | | | te‑hop‑type
 | | | | | +‑‑:(label)
 | | | | | +‑‑ro label‑hop
 | | | | | +‑‑ro te‑label
 | | | | | +‑‑ro (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑ro generic?
 | | | | | | rt‑
types:generalized‑label
 | | | | | +‑‑ro direction?
 | | | | | te‑label‑direction
 | | | | +‑‑ro tiebreakers
 | | | | +‑‑ro tiebreaker* [tiebreaker‑type]
 | | | | +‑‑ro tiebreaker‑type identityref
 | | | +‑‑:(objective‑function)
 | | | {path‑optimization‑objective‑function}?
 | | | +‑‑ro objective‑function
 | | | +‑‑ro objective‑function‑type? identityref
 | | +‑‑ro path‑properties
 | | | +‑‑ro path‑metric* [metric‑type]
 | | | | +‑‑ro metric‑type identityref
 | | | | +‑‑ro accumulative‑value? uint64
 | | | +‑‑ro path‑affinities

 | | | | +‑‑ro constraint* [usage]
 | | | | +‑‑ro usage identityref
 | | | | +‑‑ro value? admin‑groups
 | | | +‑‑ro path‑srlgs
 | | | | +‑‑ro usage? identityref
 | | | | +‑‑ro values* srlg
 | | | +‑‑ro path‑route‑objects
 | | | +‑‑ro path‑route‑object* [index]
 | | | +‑‑ro index uint32
 | | | +‑‑ro (type)?
 | | | +‑‑:(num‑unnum‑hop)
 | | | | +‑‑ro num‑unnum‑hop
 | | | | +‑‑ro node‑id?
 | | | | | te‑types:te‑node‑id
 | | | | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 | | | | +‑‑ro hop‑type? te‑hop‑type
 | | | | +‑‑ro direction? te‑link‑direction
 | | | +‑‑:(as‑number)
 | | | | +‑‑ro as‑number‑hop
 | | | | +‑‑ro as‑number? binary
 | | | | +‑‑ro hop‑type? te‑hop‑type
 | | | +‑‑:(label)
 | | | +‑‑ro label‑hop
 | | | +‑‑ro te‑label
 | | | +‑‑ro (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑ro generic?
 | | | | rt‑types:generalized‑
label
 | | | +‑‑ro direction?
 | | | te‑label‑direction
 | | +‑‑ro connectivity‑matrix* [id]
 | | +‑‑ro id uint32
 | | +‑‑ro from
 | | | +‑‑ro tp‑ref? leafref
 | | | +‑‑ro label‑restrictions
 | | | +‑‑ro label‑restriction* [index]
 | | | +‑‑ro restriction? enumeration
 | | | +‑‑ro index uint32
 | | | +‑‑ro label‑start
 | | | | +‑‑ro te‑label

 | | | | +‑‑ro (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑ro generic?
 | | | | | rt‑types:generalized‑
label
 | | | | +‑‑ro direction?
 | | | | te‑label‑direction
 | | | +‑‑ro label‑end
 | | | | +‑‑ro te‑label
 | | | | +‑‑ro (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑ro generic?
 | | | | | rt‑types:generalized‑
label
 | | | | +‑‑ro direction?
 | | | | te‑label‑direction
 | | | +‑‑ro range‑bitmap? binary
 | | +‑‑ro to
 | | | +‑‑ro tp‑ref? leafref
 | | | +‑‑ro label‑restrictions
 | | | +‑‑ro label‑restriction* [index]
 | | | +‑‑ro restriction? enumeration
 | | | +‑‑ro index uint32
 | | | +‑‑ro label‑start
 | | | | +‑‑ro te‑label
 | | | | +‑‑ro (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑ro generic?
 | | | | | rt‑types:generalized‑
label
 | | | | +‑‑ro direction?
 | | | | te‑label‑direction
 | | | +‑‑ro label‑end
 | | | | +‑‑ro te‑label
 | | | | +‑‑ro (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑ro generic?
 | | | | | rt‑types:generalized‑
label
 | | | | +‑‑ro direction?
 | | | | te‑label‑direction

 | | | +‑‑ro range‑bitmap? binary
 | | +‑‑ro is‑allowed? boolean
 | | +‑‑ro underlay {te‑topology‑hierarchy}?
 | | | +‑‑ro enabled? boolean
 | | | +‑‑ro primary‑path
 | | | | +‑‑ro network‑ref?
 | | | | | ‑> /nw:networks/network/network‑id
 | | | | +‑‑ro path‑element* [path‑element‑id]
 | | | | +‑‑ro path‑element‑id uint32
 | | | | +‑‑ro index? uint32
 | | | | +‑‑ro (type)?
 | | | | +‑‑:(num‑unnum‑hop)
 | | | | | +‑‑ro num‑unnum‑hop
 | | | | | +‑‑ro node‑id?
 | | | | | | te‑types:te‑node‑id
 | | | | | +‑‑ro link‑tp‑id?
 | | | | | | te‑types:te‑tp‑id
 | | | | | +‑‑ro hop‑type? te‑hop‑type
 | | | | | +‑‑ro direction?
 | | | | | te‑link‑direction
 | | | | +‑‑:(as‑number)
 | | | | | +‑‑ro as‑number‑hop
 | | | | | +‑‑ro as‑number? binary
 | | | | | +‑‑ro hop‑type? te‑hop‑type
 | | | | +‑‑:(label)
 | | | | +‑‑ro label‑hop
 | | | | +‑‑ro te‑label
 | | | | +‑‑ro (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑ro generic?
 | | | | | rt‑
types:generalized‑label
 | | | | +‑‑ro direction?
 | | | | te‑label‑direction
 | | | +‑‑ro backup‑path* [index]
 | | | | +‑‑ro index uint32
 | | | | +‑‑ro network‑ref?
 | | | | | ‑> /nw:networks/network/network‑id
 | | | | +‑‑ro path‑element* [path‑element‑id]
 | | | | +‑‑ro path‑element‑id uint32
 | | | | +‑‑ro index? uint32

 | | | | +‑‑ro (type)?
 | | | | +‑‑:(num‑unnum‑hop)
 | | | | | +‑‑ro num‑unnum‑hop
 | | | | | +‑‑ro node‑id?
 | | | | | | te‑types:te‑node‑id
 | | | | | +‑‑ro link‑tp‑id?
 | | | | | | te‑types:te‑tp‑id
 | | | | | +‑‑ro hop‑type? te‑hop‑type
 | | | | | +‑‑ro direction?
 | | | | | te‑link‑direction
 | | | | +‑‑:(as‑number)
 | | | | | +‑‑ro as‑number‑hop
 | | | | | +‑‑ro as‑number? binary
 | | | | | +‑‑ro hop‑type? te‑hop‑type
 | | | | +‑‑:(label)
 | | | | +‑‑ro label‑hop
 | | | | +‑‑ro te‑label
 | | | | +‑‑ro (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑ro generic?
 | | | | | rt‑
types:generalized‑label
 | | | | +‑‑ro direction?
 | | | | te‑label‑direction
 | | | +‑‑ro protection‑type? identityref
 | | | +‑‑ro tunnel‑termination‑points
 | | | | +‑‑ro source? binary
 | | | | +‑‑ro destination? binary
 | | | +‑‑ro tunnels
 | | | +‑‑ro sharing? boolean
 | | | +‑‑ro tunnel* [tunnel‑name]
 | | | +‑‑ro tunnel‑name string
 | | | +‑‑ro sharing? boolean
 | | +‑‑ro path‑constraints
 | | | +‑‑ro te‑bandwidth
 | | | | +‑‑ro (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑ro generic? te‑bandwidth
 | | | +‑‑ro setup‑priority? uint8
 | | | +‑‑ro hold‑priority? uint8
 | | | +‑‑ro signaling‑type? identityref

 | | | +‑‑ro path‑metric‑bounds
 | | | | +‑‑ro path‑metric‑bound* [metric‑type]
 | | | | +‑‑ro metric‑type identityref
 | | | | +‑‑ro upper‑bound? uint64
 | | | +‑‑ro path‑affinities
 | | | | +‑‑ro constraint* [usage]
 | | | | +‑‑ro usage identityref
 | | | | +‑‑ro value? admin‑groups
 | | | +‑‑ro path‑srlgs
 | | | +‑‑ro usage? identityref
 | | | +‑‑ro values* srlg
 | | +‑‑ro optimizations
 | | | +‑‑ro (algorithm)?
 | | | +‑‑:(metric) {path‑optimization‑metric}?
 | | | | +‑‑ro optimization‑metric* [metric‑type]
 | | | | | +‑‑ro metric‑type
 | | | | | | identityref
 | | | | | +‑‑ro weight?
 | | | | | | uint8
 | | | | | +‑‑ro explicit‑route‑exclude‑objects
 | | | | | | +‑‑ro route‑object‑exclude‑object*
 | | | | | | [index]
 | | | | | | +‑‑ro index uint32
 | | | | | | +‑‑ro (type)?
 | | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | | +‑‑ro num‑unnum‑hop
 | | | | | | | +‑‑ro node‑id?
 | | | | | | | | te‑types:te‑node‑
id
 | | | | | | | +‑‑ro link‑tp‑id?
 | | | | | | | | te‑types:te‑tp‑id
 | | | | | | | +‑‑ro hop‑type?
 | | | | | | | | te‑hop‑type
 | | | | | | | +‑‑ro direction?
 | | | | | | | te‑link‑direction
 | | | | | | +‑‑:(as‑number)
 | | | | | | | +‑‑ro as‑number‑hop
 | | | | | | | +‑‑ro as‑number? binary
 | | | | | | | +‑‑ro hop‑type?
 | | | | | | | te‑hop‑type
 | | | | | | +‑‑:(label)

 | | | | | | | +‑‑ro label‑hop
 | | | | | | | +‑‑ro te‑label
 | | | | | | | +‑‑ro (technology)?
 | | | | | | | | +‑‑:(generic)
 | | | | | | | | +‑‑ro generic?
 | | | | | | | | rt‑
types:generalized‑label
 | | | | | | | +‑‑ro direction?
 | | | | | | | te‑label‑
direction
 | | | | | | +‑‑:(srlg)
 | | | | | | +‑‑ro srlg
 | | | | | | +‑‑ro srlg? uint32
 | | | | | +‑‑ro explicit‑route‑include‑objects
 | | | | | +‑‑ro route‑object‑include‑object*
 | | | | | [index]
 | | | | | +‑‑ro index uint32
 | | | | | +‑‑ro (type)?
 | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | +‑‑ro num‑unnum‑hop
 | | | | | | +‑‑ro node‑id?
 | | | | | | | te‑types:te‑node‑
id
 | | | | | | +‑‑ro link‑tp‑id?
 | | | | | | | te‑types:te‑tp‑id
 | | | | | | +‑‑ro hop‑type?
 | | | | | | | te‑hop‑type
 | | | | | | +‑‑ro direction?
 | | | | | | te‑link‑direction
 | | | | | +‑‑:(as‑number)
 | | | | | | +‑‑ro as‑number‑hop
 | | | | | | +‑‑ro as‑number? binary
 | | | | | | +‑‑ro hop‑type?
 | | | | | | te‑hop‑type
 | | | | | +‑‑:(label)
 | | | | | +‑‑ro label‑hop
 | | | | | +‑‑ro te‑label
 | | | | | +‑‑ro (technology)?
 | | | | | | +‑‑:(generic)
 | | | | | | +‑‑ro generic?

 | | | | | | rt‑
types:generalized‑label
 | | | | | +‑‑ro direction?
 | | | | | te‑label‑
direction
 | | | | +‑‑ro tiebreakers
 | | | | +‑‑ro tiebreaker* [tiebreaker‑type]
 | | | | +‑‑ro tiebreaker‑type identityref
 | | | +‑‑:(objective‑function)
 | | | {path‑optimization‑objective‑
function}?
 | | | +‑‑ro objective‑function
 | | | +‑‑ro objective‑function‑type?
 | | | identityref
 | | +‑‑ro path‑properties
 | | +‑‑ro path‑metric* [metric‑type]
 | | | +‑‑ro metric‑type identityref
 | | | +‑‑ro accumulative‑value? uint64
 | | +‑‑ro path‑affinities
 | | | +‑‑ro constraint* [usage]
 | | | +‑‑ro usage identityref
 | | | +‑‑ro value? admin‑groups
 | | +‑‑ro path‑srlgs
 | | | +‑‑ro usage? identityref
 | | | +‑‑ro values* srlg
 | | +‑‑ro path‑route‑objects
 | | +‑‑ro path‑route‑object* [index]
 | | +‑‑ro index uint32
 | | +‑‑ro (type)?
 | | +‑‑:(num‑unnum‑hop)
 | | | +‑‑ro num‑unnum‑hop
 | | | +‑‑ro node‑id?
 | | | | te‑types:te‑node‑id
 | | | +‑‑ro link‑tp‑id?
 | | | | te‑types:te‑tp‑id
 | | | +‑‑ro hop‑type? te‑hop‑type
 | | | +‑‑ro direction?
 | | | te‑link‑direction
 | | +‑‑:(as‑number)
 | | | +‑‑ro as‑number‑hop
 | | | +‑‑ro as‑number? binary

 | | | +‑‑ro hop‑type? te‑hop‑type
 | | +‑‑:(label)
 | | +‑‑ro label‑hop
 | | +‑‑ro te‑label
 | | +‑‑ro (technology)?
 | | | +‑‑:(generic)
 | | | +‑‑ro generic?
 | | | rt‑
types:generalized‑label
 | | +‑‑ro direction?
 | | te‑label‑direction
 | +‑‑ro domain‑id? uint32
 | +‑‑ro is‑abstract? empty
 | +‑‑ro name? string
 | +‑‑ro signaling‑address* inet:ip‑address
 | +‑‑ro underlay‑topology {te‑topology‑hierarchy}?
 | +‑‑ro network‑ref? ‑> /nw:networks/network/network‑id
 +‑‑ro statistics
 | +‑‑ro discontinuity‑time? yang:date‑and‑time
 | +‑‑ro node
 | | +‑‑ro disables? yang:counter32
 | | +‑‑ro enables? yang:counter32
 | | +‑‑ro maintenance‑sets? yang:counter32
 | | +‑‑ro maintenance‑clears? yang:counter32
 | | +‑‑ro modifies? yang:counter32
 | +‑‑ro connectivity‑matrix‑entry
 | +‑‑ro creates? yang:counter32
 | +‑‑ro deletes? yang:counter32
 | +‑‑ro disables? yang:counter32
 | +‑‑ro enables? yang:counter32
 | +‑‑ro modifies? yang:counter32
 +‑‑rw tunnel‑termination‑point* [tunnel‑tp‑id]
 +‑‑rw tunnel‑tp‑id binary
 +‑‑rw admin‑status?
 | te‑types:te‑admin‑status
 +‑‑rw name? string
 +‑‑rw switching‑capability? identityref
 +‑‑rw encoding? identityref
 +‑‑rw inter‑layer‑lock‑id* uint32
 +‑‑rw protection‑type? identityref
 +‑‑rw client‑layer‑adaptation

 | +‑‑rw switching‑capability*
 | [switching‑capability encoding]
 | +‑‑rw switching‑capability identityref
 | +‑‑rw encoding identityref
 | +‑‑rw te‑bandwidth
 | +‑‑rw (technology)?
 | +‑‑:(generic)
 | +‑‑rw generic? te‑bandwidth
 +‑‑rw local‑link‑connectivities
 | +‑‑rw number‑of‑entries? uint16
 | +‑‑rw label‑restrictions
 | | +‑‑rw label‑restriction* [index]
 | | +‑‑rw restriction? enumeration
 | | +‑‑rw index uint32
 | | +‑‑rw label‑start
 | | | +‑‑rw te‑label
 | | | +‑‑rw (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic?
 | | | | rt‑types:generalized‑label
 | | | +‑‑rw direction? te‑label‑direction
 | | +‑‑rw label‑end
 | | | +‑‑rw te‑label
 | | | +‑‑rw (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic?
 | | | | rt‑types:generalized‑label
 | | | +‑‑rw direction? te‑label‑direction
 | | +‑‑rw range‑bitmap? binary
 | +‑‑rw is‑allowed? boolean
 | +‑‑rw underlay {te‑topology‑hierarchy}?
 | | +‑‑rw enabled? boolean
 | | +‑‑rw primary‑path
 | | | +‑‑rw network‑ref?
 | | | | ‑> /nw:networks/network/network‑id
 | | | +‑‑rw path‑element* [path‑element‑id]
 | | | +‑‑rw path‑element‑id uint32
 | | | +‑‑rw index? uint32
 | | | +‑‑rw (type)?
 | | | +‑‑:(num‑unnum‑hop)
 | | | | +‑‑rw num‑unnum‑hop

 | | | | +‑‑rw node‑id?
 | | | | | te‑types:te‑node‑id
 | | | | +‑‑rw link‑tp‑id? te‑types:te‑tp‑id
 | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | +‑‑rw direction? te‑link‑direction
 | | | +‑‑:(as‑number)
 | | | | +‑‑rw as‑number‑hop
 | | | | +‑‑rw as‑number? binary
 | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | +‑‑:(label)
 | | | +‑‑rw label‑hop
 | | | +‑‑rw te‑label
 | | | +‑‑rw (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic?
 | | | | rt‑types:generalized‑
label
 | | | +‑‑rw direction?
 | | | te‑label‑direction
 | | +‑‑rw backup‑path* [index]
 | | | +‑‑rw index uint32
 | | | +‑‑rw network‑ref?
 | | | | ‑> /nw:networks/network/network‑id
 | | | +‑‑rw path‑element* [path‑element‑id]
 | | | +‑‑rw path‑element‑id uint32
 | | | +‑‑rw index? uint32
 | | | +‑‑rw (type)?
 | | | +‑‑:(num‑unnum‑hop)
 | | | | +‑‑rw num‑unnum‑hop
 | | | | +‑‑rw node‑id?
 | | | | | te‑types:te‑node‑id
 | | | | +‑‑rw link‑tp‑id? te‑types:te‑tp‑id
 | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | +‑‑rw direction? te‑link‑direction
 | | | +‑‑:(as‑number)
 | | | | +‑‑rw as‑number‑hop
 | | | | +‑‑rw as‑number? binary
 | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | +‑‑:(label)
 | | | +‑‑rw label‑hop
 | | | +‑‑rw te‑label

 | | | +‑‑rw (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic?
 | | | | rt‑types:generalized‑
label
 | | | +‑‑rw direction?
 | | | te‑label‑direction
 | | +‑‑rw protection‑type? identityref
 | | +‑‑rw tunnel‑termination‑points
 | | | +‑‑rw source? binary
 | | | +‑‑rw destination? binary
 | | +‑‑rw tunnels
 | | +‑‑rw sharing? boolean
 | | +‑‑rw tunnel* [tunnel‑name]
 | | +‑‑rw tunnel‑name string
 | | +‑‑rw sharing? boolean
 | +‑‑rw path‑constraints
 | | +‑‑rw te‑bandwidth
 | | | +‑‑rw (technology)?
 | | | +‑‑:(generic)
 | | | +‑‑rw generic? te‑bandwidth
 | | +‑‑rw setup‑priority? uint8
 | | +‑‑rw hold‑priority? uint8
 | | +‑‑rw signaling‑type? identityref
 | | +‑‑rw path‑metric‑bounds
 | | | +‑‑rw path‑metric‑bound* [metric‑type]
 | | | +‑‑rw metric‑type identityref
 | | | +‑‑rw upper‑bound? uint64
 | | +‑‑rw path‑affinities
 | | | +‑‑rw constraint* [usage]
 | | | +‑‑rw usage identityref
 | | | +‑‑rw value? admin‑groups
 | | +‑‑rw path‑srlgs
 | | +‑‑rw usage? identityref
 | | +‑‑rw values* srlg
 | +‑‑rw optimizations
 | | +‑‑rw (algorithm)?
 | | +‑‑:(metric) {path‑optimization‑metric}?
 | | | +‑‑rw optimization‑metric* [metric‑type]
 | | | | +‑‑rw metric‑type
 | | | | | identityref

 | | | | +‑‑rw weight?
 | | | | | uint8
 | | | | +‑‑rw explicit‑route‑exclude‑objects
 | | | | | +‑‑rw route‑object‑exclude‑object*
 | | | | | [index]
 | | | | | +‑‑rw index uint32
 | | | | | +‑‑rw (type)?
 | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | +‑‑rw num‑unnum‑hop
 | | | | | | +‑‑rw node‑id?
 | | | | | | | te‑types:te‑node‑id
 | | | | | | +‑‑rw link‑tp‑id?
 | | | | | | | te‑types:te‑tp‑id
 | | | | | | +‑‑rw hop‑type?
 | | | | | | | te‑hop‑type
 | | | | | | +‑‑rw direction?
 | | | | | | te‑link‑direction
 | | | | | +‑‑:(as‑number)
 | | | | | | +‑‑rw as‑number‑hop
 | | | | | | +‑‑rw as‑number? binary
 | | | | | | +‑‑rw hop‑type?
 | | | | | | te‑hop‑type
 | | | | | +‑‑:(label)
 | | | | | | +‑‑rw label‑hop
 | | | | | | +‑‑rw te‑label
 | | | | | | +‑‑rw (technology)?
 | | | | | | | +‑‑:(generic)
 | | | | | | | +‑‑rw generic?
 | | | | | | | rt‑
types:generalized‑label
 | | | | | | +‑‑rw direction?
 | | | | | | te‑label‑direction
 | | | | | +‑‑:(srlg)
 | | | | | +‑‑rw srlg
 | | | | | +‑‑rw srlg? uint32
 | | | | +‑‑rw explicit‑route‑include‑objects
 | | | | +‑‑rw route‑object‑include‑object*
 | | | | [index]
 | | | | +‑‑rw index uint32
 | | | | +‑‑rw (type)?
 | | | | +‑‑:(num‑unnum‑hop)

 | | | | | +‑‑rw num‑unnum‑hop
 | | | | | +‑‑rw node‑id?
 | | | | | | te‑types:te‑node‑id
 | | | | | +‑‑rw link‑tp‑id?
 | | | | | | te‑types:te‑tp‑id
 | | | | | +‑‑rw hop‑type?
 | | | | | | te‑hop‑type
 | | | | | +‑‑rw direction?
 | | | | | te‑link‑direction
 | | | | +‑‑:(as‑number)
 | | | | | +‑‑rw as‑number‑hop
 | | | | | +‑‑rw as‑number? binary
 | | | | | +‑‑rw hop‑type?
 | | | | | te‑hop‑type
 | | | | +‑‑:(label)
 | | | | +‑‑rw label‑hop
 | | | | +‑‑rw te‑label
 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic?
 | | | | | rt‑
types:generalized‑label
 | | | | +‑‑rw direction?
 | | | | te‑label‑direction
 | | | +‑‑rw tiebreakers
 | | | +‑‑rw tiebreaker* [tiebreaker‑type]
 | | | +‑‑rw tiebreaker‑type identityref
 | | +‑‑:(objective‑function)
 | | {path‑optimization‑objective‑function}?
 | | +‑‑rw objective‑function
 | | +‑‑rw objective‑function‑type? identityref
 | +‑‑ro path‑properties
 | | +‑‑ro path‑metric* [metric‑type]
 | | | +‑‑ro metric‑type identityref
 | | | +‑‑ro accumulative‑value? uint64
 | | +‑‑ro path‑affinities
 | | | +‑‑ro constraint* [usage]
 | | | +‑‑ro usage identityref
 | | | +‑‑ro value? admin‑groups
 | | +‑‑ro path‑srlgs
 | | | +‑‑ro usage? identityref

 | | | +‑‑ro values* srlg
 | | +‑‑ro path‑route‑objects
 | | +‑‑ro path‑route‑object* [index]
 | | +‑‑ro index uint32
 | | +‑‑ro (type)?
 | | +‑‑:(num‑unnum‑hop)
 | | | +‑‑ro num‑unnum‑hop
 | | | +‑‑ro node‑id?
 | | | | te‑types:te‑node‑id
 | | | +‑‑ro link‑tp‑id? te‑types:te‑tp‑id
 | | | +‑‑ro hop‑type? te‑hop‑type
 | | | +‑‑ro direction? te‑link‑direction
 | | +‑‑:(as‑number)
 | | | +‑‑ro as‑number‑hop
 | | | +‑‑ro as‑number? binary
 | | | +‑‑ro hop‑type? te‑hop‑type
 | | +‑‑:(label)
 | | +‑‑ro label‑hop
 | | +‑‑ro te‑label
 | | +‑‑ro (technology)?
 | | | +‑‑:(generic)
 | | | +‑‑ro generic?
 | | | rt‑types:generalized‑
label
 | | +‑‑ro direction?
 | | te‑label‑direction
 | +‑‑rw local‑link‑connectivity* [link‑tp‑ref]
 | +‑‑rw link‑tp‑ref
 | | ‑> ../../../../../nt:termination‑point/tp‑id
 | +‑‑rw label‑restrictions
 | | +‑‑rw label‑restriction* [index]
 | | +‑‑rw restriction? enumeration
 | | +‑‑rw index uint32
 | | +‑‑rw label‑start
 | | | +‑‑rw te‑label
 | | | +‑‑rw (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic?
 | | | | rt‑types:generalized‑label
 | | | +‑‑rw direction? te‑label‑direction
 | | +‑‑rw label‑end

 | | | +‑‑rw te‑label
 | | | +‑‑rw (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic?
 | | | | rt‑types:generalized‑label
 | | | +‑‑rw direction? te‑label‑direction
 | | +‑‑rw range‑bitmap? binary
 | +‑‑rw is‑allowed? boolean
 | +‑‑rw underlay {te‑topology‑hierarchy}?
 | | +‑‑rw enabled? boolean
 | | +‑‑rw primary‑path
 | | | +‑‑rw network‑ref?
 | | | | ‑> /nw:networks/network/network‑id
 | | | +‑‑rw path‑element* [path‑element‑id]
 | | | +‑‑rw path‑element‑id uint32
 | | | +‑‑rw index? uint32
 | | | +‑‑rw (type)?
 | | | +‑‑:(num‑unnum‑hop)
 | | | | +‑‑rw num‑unnum‑hop
 | | | | +‑‑rw node‑id?
 | | | | | te‑types:te‑node‑id
 | | | | +‑‑rw link‑tp‑id?
 | | | | | te‑types:te‑tp‑id
 | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | +‑‑rw direction?
 | | | | te‑link‑direction
 | | | +‑‑:(as‑number)
 | | | | +‑‑rw as‑number‑hop
 | | | | +‑‑rw as‑number? binary
 | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | +‑‑:(label)
 | | | +‑‑rw label‑hop
 | | | +‑‑rw te‑label
 | | | +‑‑rw (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic?
 | | | | rt‑
types:generalized‑label
 | | | +‑‑rw direction?
 | | | te‑label‑direction
 | | +‑‑rw backup‑path* [index]

 | | | +‑‑rw index uint32
 | | | +‑‑rw network‑ref?
 | | | | ‑> /nw:networks/network/network‑id
 | | | +‑‑rw path‑element* [path‑element‑id]
 | | | +‑‑rw path‑element‑id uint32
 | | | +‑‑rw index? uint32
 | | | +‑‑rw (type)?
 | | | +‑‑:(num‑unnum‑hop)
 | | | | +‑‑rw num‑unnum‑hop
 | | | | +‑‑rw node‑id?
 | | | | | te‑types:te‑node‑id
 | | | | +‑‑rw link‑tp‑id?
 | | | | | te‑types:te‑tp‑id
 | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | +‑‑rw direction?
 | | | | te‑link‑direction
 | | | +‑‑:(as‑number)
 | | | | +‑‑rw as‑number‑hop
 | | | | +‑‑rw as‑number? binary
 | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | +‑‑:(label)
 | | | +‑‑rw label‑hop
 | | | +‑‑rw te‑label
 | | | +‑‑rw (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic?
 | | | | rt‑
types:generalized‑label
 | | | +‑‑rw direction?
 | | | te‑label‑direction
 | | +‑‑rw protection‑type? identityref
 | | +‑‑rw tunnel‑termination‑points
 | | | +‑‑rw source? binary
 | | | +‑‑rw destination? binary
 | | +‑‑rw tunnels
 | | +‑‑rw sharing? boolean
 | | +‑‑rw tunnel* [tunnel‑name]
 | | +‑‑rw tunnel‑name string
 | | +‑‑rw sharing? boolean
 | +‑‑rw path‑constraints
 | | +‑‑rw te‑bandwidth

 | | | +‑‑rw (technology)?
 | | | +‑‑:(generic)
 | | | +‑‑rw generic? te‑bandwidth
 | | +‑‑rw setup‑priority? uint8
 | | +‑‑rw hold‑priority? uint8
 | | +‑‑rw signaling‑type? identityref
 | | +‑‑rw path‑metric‑bounds
 | | | +‑‑rw path‑metric‑bound* [metric‑type]
 | | | +‑‑rw metric‑type identityref
 | | | +‑‑rw upper‑bound? uint64
 | | +‑‑rw path‑affinities
 | | | +‑‑rw constraint* [usage]
 | | | +‑‑rw usage identityref
 | | | +‑‑rw value? admin‑groups
 | | +‑‑rw path‑srlgs
 | | +‑‑rw usage? identityref
 | | +‑‑rw values* srlg
 | +‑‑rw optimizations
 | | +‑‑rw (algorithm)?
 | | +‑‑:(metric) {path‑optimization‑metric}?
 | | | +‑‑rw optimization‑metric* [metric‑type]
 | | | | +‑‑rw metric‑type
 | | | | | identityref
 | | | | +‑‑rw weight?
 | | | | | uint8
 | | | | +‑‑rw explicit‑route‑exclude‑objects
 | | | | | +‑‑rw route‑object‑exclude‑object*
 | | | | | [index]
 | | | | | +‑‑rw index uint32
 | | | | | +‑‑rw (type)?
 | | | | | +‑‑:(num‑unnum‑hop)
 | | | | | | +‑‑rw num‑unnum‑hop
 | | | | | | +‑‑rw node‑id?
 | | | | | | | te‑types:te‑node‑
id
 | | | | | | +‑‑rw link‑tp‑id?
 | | | | | | | te‑types:te‑tp‑id
 | | | | | | +‑‑rw hop‑type?
 | | | | | | | te‑hop‑type
 | | | | | | +‑‑rw direction?
 | | | | | | te‑link‑direction

 | | | | | +‑‑:(as‑number)
 | | | | | | +‑‑rw as‑number‑hop
 | | | | | | +‑‑rw as‑number? binary
 | | | | | | +‑‑rw hop‑type?
 | | | | | | te‑hop‑type
 | | | | | +‑‑:(label)
 | | | | | | +‑‑rw label‑hop
 | | | | | | +‑‑rw te‑label
 | | | | | | +‑‑rw (technology)?
 | | | | | | | +‑‑:(generic)
 | | | | | | | +‑‑rw generic?
 | | | | | | | rt‑
types:generalized‑label
 | | | | | | +‑‑rw direction?
 | | | | | | te‑label‑
direction
 | | | | | +‑‑:(srlg)
 | | | | | +‑‑rw srlg
 | | | | | +‑‑rw srlg? uint32
 | | | | +‑‑rw explicit‑route‑include‑objects
 | | | | +‑‑rw route‑object‑include‑object*
 | | | | [index]
 | | | | +‑‑rw index uint32
 | | | | +‑‑rw (type)?
 | | | | +‑‑:(num‑unnum‑hop)
 | | | | | +‑‑rw num‑unnum‑hop
 | | | | | +‑‑rw node‑id?
 | | | | | | te‑types:te‑node‑
id
 | | | | | +‑‑rw link‑tp‑id?
 | | | | | | te‑types:te‑tp‑id
 | | | | | +‑‑rw hop‑type?
 | | | | | | te‑hop‑type
 | | | | | +‑‑rw direction?
 | | | | | te‑link‑direction
 | | | | +‑‑:(as‑number)
 | | | | | +‑‑rw as‑number‑hop
 | | | | | +‑‑rw as‑number? binary
 | | | | | +‑‑rw hop‑type?
 | | | | | te‑hop‑type
 | | | | +‑‑:(label)

 | | | | +‑‑rw label‑hop
 | | | | +‑‑rw te‑label
 | | | | +‑‑rw (technology)?
 | | | | | +‑‑:(generic)
 | | | | | +‑‑rw generic?
 | | | | | rt‑
types:generalized‑label
 | | | | +‑‑rw direction?
 | | | | te‑label‑
direction
 | | | +‑‑rw tiebreakers
 | | | +‑‑rw tiebreaker* [tiebreaker‑type]
 | | | +‑‑rw tiebreaker‑type identityref
 | | +‑‑:(objective‑function)
 | | {path‑optimization‑objective‑
function}?
 | | +‑‑rw objective‑function
 | | +‑‑rw objective‑function‑type?
 | | identityref
 | +‑‑ro path‑properties
 | +‑‑ro path‑metric* [metric‑type]
 | | +‑‑ro metric‑type identityref
 | | +‑‑ro accumulative‑value? uint64
 | +‑‑ro path‑affinities
 | | +‑‑ro constraint* [usage]
 | | +‑‑ro usage identityref
 | | +‑‑ro value? admin‑groups
 | +‑‑ro path‑srlgs
 | | +‑‑ro usage? identityref
 | | +‑‑ro values* srlg
 | +‑‑ro path‑route‑objects
 | +‑‑ro path‑route‑object* [index]
 | +‑‑ro index uint32
 | +‑‑ro (type)?
 | +‑‑:(num‑unnum‑hop)
 | | +‑‑ro num‑unnum‑hop
 | | +‑‑ro node‑id?
 | | | te‑types:te‑node‑id
 | | +‑‑ro link‑tp‑id?
 | | | te‑types:te‑tp‑id
 | | +‑‑ro hop‑type? te‑hop‑type

 | | +‑‑ro direction?
 | | te‑link‑direction
 | +‑‑:(as‑number)
 | | +‑‑ro as‑number‑hop
 | | +‑‑ro as‑number? binary
 | | +‑‑ro hop‑type? te‑hop‑type
 | +‑‑:(label)
 | +‑‑ro label‑hop
 | +‑‑ro te‑label
 | +‑‑ro (technology)?
 | | +‑‑:(generic)
 | | +‑‑ro generic?
 | | rt‑
types:generalized‑label
 | +‑‑ro direction?
 | te‑label‑direction
 +‑‑ro oper‑status?
 | te‑types:te‑oper‑status
 +‑‑ro geolocation
 | +‑‑ro altitude? int64
 | +‑‑ro latitude? geographic‑coordinate‑degree
 | +‑‑ro longitude? geographic‑coordinate‑degree
 +‑‑ro statistics
 | +‑‑ro discontinuity‑time? yang:date‑and‑time
 | +‑‑ro tunnel‑termination‑point
 | | +‑‑ro disables? yang:counter32
 | | +‑‑ro enables? yang:counter32
 | | +‑‑ro maintenance‑clears? yang:counter32
 | | +‑‑ro maintenance‑sets? yang:counter32
 | | +‑‑ro modifies? yang:counter32
 | | +‑‑ro downs? yang:counter32
 | | +‑‑ro ups? yang:counter32
 | | +‑‑ro in‑service‑clears? yang:counter32
 | | +‑‑ro in‑service‑sets? yang:counter32
 | +‑‑ro local‑link‑connectivity
 | +‑‑ro creates? yang:counter32
 | +‑‑ro deletes? yang:counter32
 | +‑‑ro disables? yang:counter32
 | +‑‑ro enables? yang:counter32
 | +‑‑ro modifies? yang:counter32
 +‑‑rw supporting‑tunnel‑termination‑point*

 [node‑ref tunnel‑tp‑ref]
 +‑‑rw node‑ref inet:uri
 +‑‑rw tunnel‑tp‑ref binary
 augment /nw:networks/nw:network/nt:link:
 +‑‑rw te!
 +‑‑rw (bundle‑stack‑level)?
 | +‑‑:(bundle)
 | | +‑‑rw bundled‑links
 | | +‑‑rw bundled‑link* [sequence]
 | | +‑‑rw sequence uint32
 | | +‑‑rw src‑tp‑ref? leafref
 | | +‑‑rw des‑tp‑ref? leafref
 | +‑‑:(component)
 | +‑‑rw component‑links
 | +‑‑rw component‑link* [sequence]
 | +‑‑rw sequence uint32
 | +‑‑rw src‑interface‑ref? string
 | +‑‑rw des‑interface‑ref? string
 +‑‑rw te‑link‑template*
 | ‑> ../../../../te/templates/link‑template/name
 | {template}?
 +‑‑rw te‑link‑attributes
 | +‑‑rw access‑type?
 | | te‑types:te‑link‑access‑type
 | +‑‑rw external‑domain
 | | +‑‑rw network‑ref?
 | | | ‑> /nw:networks/network/network‑id
 | | +‑‑rw remote‑te‑node‑id? te‑types:te‑node‑id
 | | +‑‑rw remote‑te‑link‑tp‑id? te‑types:te‑tp‑id
 | +‑‑rw is‑abstract? empty
 | +‑‑rw name? string
 | +‑‑rw underlay {te‑topology‑hierarchy}?
 | | +‑‑rw enabled? boolean
 | | +‑‑rw primary‑path
 | | | +‑‑rw network‑ref?
 | | | | ‑> /nw:networks/network/network‑id
 | | | +‑‑rw path‑element* [path‑element‑id]
 | | | +‑‑rw path‑element‑id uint32
 | | | +‑‑rw index? uint32
 | | | +‑‑rw (type)?
 | | | +‑‑:(num‑unnum‑hop)

 | | | | +‑‑rw num‑unnum‑hop
 | | | | +‑‑rw node‑id? te‑types:te‑node‑id
 | | | | +‑‑rw link‑tp‑id? te‑types:te‑tp‑id
 | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | +‑‑rw direction? te‑link‑direction
 | | | +‑‑:(as‑number)
 | | | | +‑‑rw as‑number‑hop
 | | | | +‑‑rw as‑number? binary
 | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | +‑‑:(label)
 | | | +‑‑rw label‑hop
 | | | +‑‑rw te‑label
 | | | +‑‑rw (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic?
 | | | | rt‑types:generalized‑
label
 | | | +‑‑rw direction?
 | | | te‑label‑direction
 | | +‑‑rw backup‑path* [index]
 | | | +‑‑rw index uint32
 | | | +‑‑rw network‑ref?
 | | | | ‑> /nw:networks/network/network‑id
 | | | +‑‑rw path‑element* [path‑element‑id]
 | | | +‑‑rw path‑element‑id uint32
 | | | +‑‑rw index? uint32
 | | | +‑‑rw (type)?
 | | | +‑‑:(num‑unnum‑hop)
 | | | | +‑‑rw num‑unnum‑hop
 | | | | +‑‑rw node‑id? te‑types:te‑node‑id
 | | | | +‑‑rw link‑tp‑id? te‑types:te‑tp‑id
 | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | | +‑‑rw direction? te‑link‑direction
 | | | +‑‑:(as‑number)
 | | | | +‑‑rw as‑number‑hop
 | | | | +‑‑rw as‑number? binary
 | | | | +‑‑rw hop‑type? te‑hop‑type
 | | | +‑‑:(label)
 | | | +‑‑rw label‑hop
 | | | +‑‑rw te‑label
 | | | +‑‑rw (technology)?

 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic?
 | | | | rt‑types:generalized‑
label
 | | | +‑‑rw direction?
 | | | te‑label‑direction
 | | +‑‑rw protection‑type? identityref
 | | +‑‑rw tunnel‑termination‑points
 | | | +‑‑rw source? binary
 | | | +‑‑rw destination? binary
 | | +‑‑rw tunnels
 | | +‑‑rw sharing? boolean
 | | +‑‑rw tunnel* [tunnel‑name]
 | | +‑‑rw tunnel‑name string
 | | +‑‑rw sharing? boolean
 | +‑‑rw admin‑status?
 | | te‑types:te‑admin‑status
 | +‑‑rw link‑index? uint64
 | +‑‑rw administrative‑group?
 | | te‑types:admin‑groups
 | +‑‑rw interface‑switching‑capability*
 | | [switching‑capability encoding]
 | | +‑‑rw switching‑capability identityref
 | | +‑‑rw encoding identityref
 | | +‑‑rw max‑lsp‑bandwidth* [priority]
 | | +‑‑rw priority uint8
 | | +‑‑rw te‑bandwidth
 | | +‑‑rw (technology)?
 | | +‑‑:(generic)
 | | +‑‑rw generic? te‑bandwidth
 | +‑‑rw label‑restrictions
 | | +‑‑rw label‑restriction* [index]
 | | +‑‑rw restriction? enumeration
 | | +‑‑rw index uint32
 | | +‑‑rw label‑start
 | | | +‑‑rw te‑label
 | | | +‑‑rw (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic?
 | | | | rt‑types:generalized‑label
 | | | +‑‑rw direction? te‑label‑direction

 | | +‑‑rw label‑end
 | | | +‑‑rw te‑label
 | | | +‑‑rw (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑rw generic?
 | | | | rt‑types:generalized‑label
 | | | +‑‑rw direction? te‑label‑direction
 | | +‑‑rw range‑bitmap? binary
 | +‑‑rw link‑protection‑type? enumeration
 | +‑‑rw max‑link‑bandwidth
 | | +‑‑rw te‑bandwidth
 | | +‑‑rw (technology)?
 | | +‑‑:(generic)
 | | +‑‑rw generic? te‑bandwidth
 | +‑‑rw max‑resv‑link‑bandwidth
 | | +‑‑rw te‑bandwidth
 | | +‑‑rw (technology)?
 | | +‑‑:(generic)
 | | +‑‑rw generic? te‑bandwidth
 | +‑‑rw unreserved‑bandwidth* [priority]
 | | +‑‑rw priority uint8
 | | +‑‑rw te‑bandwidth
 | | +‑‑rw (technology)?
 | | +‑‑:(generic)
 | | +‑‑rw generic? te‑bandwidth
 | +‑‑rw te‑default‑metric? uint32
 | +‑‑rw te‑delay‑metric? uint32
 | +‑‑rw te‑igp‑metric? uint32
 | +‑‑rw te‑srlgs
 | | +‑‑rw value* te‑types:srlg
 | +‑‑rw te‑nsrlgs {nsrlg}?
 | +‑‑rw id* uint32
 +‑‑ro oper‑status? te‑types:te‑oper‑status
 +‑‑ro is‑transitional? empty
 +‑‑ro information‑source? te‑info‑source
 +‑‑ro information‑source‑state
 | +‑‑ro credibility‑preference? uint16
 | +‑‑ro logical‑network‑element? string
 | +‑‑ro network‑instance? string
 | +‑‑ro topology
 | +‑‑ro link‑ref? leafref

 | +‑‑ro network‑ref? ‑> /nw:networks/network/network‑id
 +‑‑ro information‑source‑entry* [information‑source]
 | +‑‑ro information‑source te‑info‑source
 | +‑‑ro information‑source‑state
 | | +‑‑ro credibility‑preference? uint16
 | | +‑‑ro logical‑network‑element? string
 | | +‑‑ro network‑instance? string
 | | +‑‑ro topology
 | | +‑‑ro link‑ref? leafref
 | | +‑‑ro network‑ref?
 | | ‑> /nw:networks/network/network‑id
 | +‑‑ro link‑index? uint64
 | +‑‑ro administrative‑group?
 | | te‑types:admin‑groups
 | +‑‑ro interface‑switching‑capability*
 | | [switching‑capability encoding]
 | | +‑‑ro switching‑capability identityref
 | | +‑‑ro encoding identityref
 | | +‑‑ro max‑lsp‑bandwidth* [priority]
 | | +‑‑ro priority uint8
 | | +‑‑ro te‑bandwidth
 | | +‑‑ro (technology)?
 | | +‑‑:(generic)
 | | +‑‑ro generic? te‑bandwidth
 | +‑‑ro label‑restrictions
 | | +‑‑ro label‑restriction* [index]
 | | +‑‑ro restriction? enumeration
 | | +‑‑ro index uint32
 | | +‑‑ro label‑start
 | | | +‑‑ro te‑label
 | | | +‑‑ro (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑ro generic?
 | | | | rt‑types:generalized‑label
 | | | +‑‑ro direction? te‑label‑direction
 | | +‑‑ro label‑end
 | | | +‑‑ro te‑label
 | | | +‑‑ro (technology)?
 | | | | +‑‑:(generic)
 | | | | +‑‑ro generic?
 | | | | rt‑types:generalized‑label

 | | | +‑‑ro direction? te‑label‑direction
 | | +‑‑ro range‑bitmap? binary
 | +‑‑ro link‑protection‑type? enumeration
 | +‑‑ro max‑link‑bandwidth
 | | +‑‑ro te‑bandwidth
 | | +‑‑ro (technology)?
 | | +‑‑:(generic)
 | | +‑‑ro generic? te‑bandwidth
 | +‑‑ro max‑resv‑link‑bandwidth
 | | +‑‑ro te‑bandwidth
 | | +‑‑ro (technology)?
 | | +‑‑:(generic)
 | | +‑‑ro generic? te‑bandwidth
 | +‑‑ro unreserved‑bandwidth* [priority]
 | | +‑‑ro priority uint8
 | | +‑‑ro te‑bandwidth
 | | +‑‑ro (technology)?
 | | +‑‑:(generic)
 | | +‑‑ro generic? te‑bandwidth
 | +‑‑ro te‑default‑metric? uint32
 | +‑‑ro te‑delay‑metric? uint32
 | +‑‑ro te‑igp‑metric? uint32
 | +‑‑ro te‑srlgs
 | | +‑‑ro value* te‑types:srlg
 | +‑‑ro te‑nsrlgs {nsrlg}?
 | +‑‑ro id* uint32
 +‑‑ro recovery
 | +‑‑ro restoration‑status? te‑types:te‑recovery‑status
 | +‑‑ro protection‑status? te‑types:te‑recovery‑status
 +‑‑ro underlay {te‑topology‑hierarchy}?
 | +‑‑ro dynamic? boolean
 | +‑‑ro committed? boolean
 +‑‑ro statistics
 +‑‑ro discontinuity‑time? yang:date‑and‑time
 +‑‑ro disables? yang:counter32
 +‑‑ro enables? yang:counter32
 +‑‑ro maintenance‑clears? yang:counter32
 +‑‑ro maintenance‑sets? yang:counter32
 +‑‑ro modifies? yang:counter32
 +‑‑ro downs? yang:counter32
 +‑‑ro ups? yang:counter32

 +‑‑ro fault‑clears? yang:counter32
 +‑‑ro fault‑detects? yang:counter32
 +‑‑ro protection‑switches? yang:counter32
 +‑‑ro protection‑reverts? yang:counter32
 +‑‑ro restoration‑failures? yang:counter32
 +‑‑ro restoration‑starts? yang:counter32
 +‑‑ro restoration‑successes? yang:counter32
 +‑‑ro restoration‑reversion‑failures? yang:counter32
 +‑‑ro restoration‑reversion‑starts? yang:counter32
 +‑‑ro restoration‑reversion‑successes? yang:counter32
 augment /nw:networks/nw:network/nw:node/nt:termination‑point:
 +‑‑rw te‑tp‑id? te‑types:te‑tp‑id
 +‑‑rw te!
 +‑‑rw admin‑status?
 | te‑types:te‑admin‑status
 +‑‑rw name? string
 +‑‑rw interface‑switching‑capability*
 | [switching‑capability encoding]
 | +‑‑rw switching‑capability identityref
 | +‑‑rw encoding identityref
 | +‑‑rw max‑lsp‑bandwidth* [priority]
 | +‑‑rw priority uint8
 | +‑‑rw te‑bandwidth
 | +‑‑rw (technology)?
 | +‑‑:(generic)
 | +‑‑rw generic? te‑bandwidth
 +‑‑rw inter‑domain‑plug‑id? binary
 +‑‑rw inter‑layer‑lock‑id* uint32
 +‑‑ro oper‑status?
 | te‑types:te‑oper‑status
 +‑‑ro geolocation
 +‑‑ro altitude? int64
 +‑‑ro latitude? geographic‑coordinate‑degree
 +‑‑ro longitude? geographic‑coordinate‑degree

Appendix B. Companion YANG Model for Non-NMDA Compliant Implementations

 The YANG module ietf-te-topology defined in this document is designed
 to be used in conjunction with implementations that support the
 Network Management Datastore Architecture (NMDA) defined in
 [RFC8342]. In order to allow implementations to use the model even in
 cases when NMDA is not supported, the following companion module
 ietf-te-topology-state is defined as a state model, which mirrors the
 module ietf-te-topology defined earlier in this document. However,
 all data nodes in the companion module are non-configurable, to
 represent the applied configuration or the derived operational
 states.

 The companion module, ietf-te-topology-state, is redundant and SHOULD
 NOT be supported by implementations that support NMDA.

 As the structure of the module ietf-te-topology-state mirrors that of
 the module ietf-te-topology. The YANG tree of the module ietf-te-
 topology-state is not depicted separately.

B.1. TE Topology State YANG Module

 This module references [RFC6001], [RFC8345], and [I-D.ietf-teas-yang-
 te].

<CODE BEGINS> file "ietf‑te‑topology‑state@2018‑06‑15.yang"
module ietf‑te‑topology‑state {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑te‑topology‑state";

 prefix "tet-s";

import ietf‑te‑types {
 prefix "te‑types";
 reference
 "I‑D.ietf‑teas‑yang‑te: A YANG Data Model for Traffic
 Engineering Tunnels and Interfaces";
}

import ietf‑te‑topology {
 prefix "tet";
}

 import ietf-network-state {

 prefix "nw‑s";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
}

import ietf‑network‑topology‑state {
 prefix "nt‑s";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
}

 organization

 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>

 Editor: Igor Bryskin
 <mailto:Igor.Bryskin@huawei.com>

 Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

 Editor: Tarek Saad
 <mailto:tsaad@cisco.com>

 Editor: Himanshu Shah
 <mailto:hshah@ciena.com>

 Editor: Oscar Gonzalez De Dios
 <mailto:oscar.gonzalezdedios@telefonica.com>";

 description "TE topology state model";

revision "2018‑06‑15" {
 description "Initial revision";
 reference "RFC XXXX: YANG Data Model for TE Topologies";
// RFC Ed.: replace XXXX with actual RFC number and remove

// this note
}

/*
 * Groupings
 */
grouping te‑node‑connectivity‑matrix‑attributes {
 description
 "Termination point references of a connectivity matrix entry.";
 container from {
 description
 "Reference to source link termination point.";
 leaf tp‑ref {
 type leafref {
 path "../../../../../../nt‑s:termination‑point/nt‑s:tp‑id";
 }
 description
 "Relative reference to a termination point.";
 }
 uses te‑types:label‑set‑info;
 }
 container to {
 description
 "Reference to destination link termination point.";
 leaf tp‑ref {
 type leafref {
 path "../../../../../../nt‑s:termination‑point/nt‑s:tp‑id";
 }
 description
 "Relative reference to a termination point.";
 }
 uses te‑types:label‑set‑info;
 }
 uses tet:connectivity‑matrix‑entry‑path‑attributes;
} // te‑node‑connectivity‑matrix‑attributes

grouping te‑node‑tunnel‑termination‑point‑llc‑list {
 description
 "Local link connectivity list of a tunnel termination
 point on a TE node.";
 list local‑link‑connectivity {

 key "link‑tp‑ref";
 description
 "The termination capabilities between
 tunnel‑termination‑point and link termination‑point.
 The capability information can be used to compute
 the tunnel path.
 The Interface Adjustment Capability Descriptors (IACD)
 (defined in RFC 6001) on each link‑tp can be derived from
 this local‑link‑connectivity list.";
 reference
 "RFC 6001: Generalized MPLS (GMPLS) Protocol Extensions
 for Multi‑Layer and Multi‑Region Networks (MLN/MRN).";

 leaf link‑tp‑ref {
 type leafref {
 path "../../../../../nt‑s:termination‑point/nt‑s:tp‑id";
 }
 description
 "Link termination point.";
 }
 uses te‑types:label‑set‑info;
 uses tet:connectivity‑matrix‑entry‑path‑attributes;
 } // local‑link‑connectivity
} // te‑node‑tunnel‑termination‑point‑config

/*
 * Data nodes
 */
augment "/nw‑s:networks/nw‑s:network/nw‑s:network‑types" {
 description
 "Introduce new network type for TE topology.";
 container te‑topology {
 presence "Indicates TE topology.";
 description
 "Its presence identifies the TE topology type.";
 }
}

augment "/nw‑s:networks" {
 description
 "Augmentation parameters for TE topologies.";

 uses tet:te‑topologies‑augment;
}

augment "/nw‑s:networks/nw‑s:network" {
 when "nw‑s:network‑types/tet‑s:te‑topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Configuration parameters for TE topology.";
 uses tet:te‑topology‑augment;
}

augment "/nw‑s:networks/nw‑s:network/nw‑s:node" {
 when "../nw‑s:network‑types/tet‑s:te‑topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Configuration parameters for TE at node level.";
 leaf te‑node‑id {
 type te‑types:te‑node‑id;
 description
 "The identifier of a node in the TE topology.
 A node is specific to a topology to which it belongs.";
 }
 container te {
 must "../te‑node‑id" {
 description
 "te‑node‑id is mandatory.";
 }
 must "count(../nw‑s:supporting‑node)<=1" {
 description
 "For a node in a TE topology, there cannot be more
 than 1 supporting node. If multiple nodes are abstracted,
 the underlay‑topology is used.";
 }
 presence "TE support.";
 description

 "Indicates TE support.";
 uses tet:te‑node‑augment;
 } // te
}

augment "/nw‑s:networks/nw‑s:network/nt‑s:link" {
 when "../nw‑s:network‑types/tet‑s:te‑topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Configuration parameters for TE at link level.";
 container te {
 must "count(../nt‑s:supporting‑link)<=1" {
 description
 "For a link in a TE topology, there cannot be more
 than 1 supporting link. If one or more link paths are
 abstracted, the underlay is used.";
 }
 presence "TE support.";
 description
 "Indicates TE support.";
 uses tet:te‑link‑augment;
 } // te
}

augment "/nw‑s:networks/nw‑s:network/nw‑s:node/"
 + "nt‑s:termination‑point" {
 when "../../nw‑s:network‑types/tet‑s:te‑topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Configuration parameters for TE at termination point level.";
 uses tet:te‑termination‑point‑augment;
}

 augment

 "/nw-s:networks/nw-s:network/nt-s:link/te/bundle-stack-level/"

 + "bundle/bundled‑links/bundled‑link" {
 when "../../../../nw‑s:network‑types/tet‑s:te‑topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Augment TE link bundled link.";
 leaf src‑tp‑ref {
 type leafref {
 path "../../../../../nw‑s:node[nw‑s:node‑id = "
 + "current()/../../../../nt‑s:source/"
 + "nt‑s:source‑node]/"
 + "nt‑s:termination‑point/nt‑s:tp‑id";
 require‑instance true;
 }
 description
 "Reference to another TE termination point on the
 same source node.";
 }
 leaf des‑tp‑ref {
 type leafref {
 path "../../../../../nw‑s:node[nw‑s:node‑id = "
 + "current()/../../../../nt‑s:destination/"
 + "nt‑s:dest‑node]/"
 + "nt‑s:termination‑point/nt‑s:tp‑id";
 require‑instance true;
 }
 description
 "Reference to another TE termination point on the
 same destination node.";
 }
 }

 augment
 "/nw‑s:networks/nw‑s:network/nw‑s:node/te/"
 + "information‑source‑entry/connectivity‑matrices/"
 + "connectivity‑matrix" {
 when "../../../../../nw‑s:network‑types/tet‑s:te‑topology" {
 description
 "Augmentation parameters apply only for networks with

 TE topology type.";
 }
 description
 "Augment TE node connectivity‑matrix.";
 uses te‑node‑connectivity‑matrix‑attributes;
 }

 augment
 "/nw‑s:networks/nw‑s:network/nw‑s:node/te/te‑node‑attributes/"
 + "connectivity‑matrices/connectivity‑matrix" {
 when "../../../../../nw‑s:network‑types/tet‑s:te‑topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Augment TE node connectivity‑matrix.";
 uses te‑node‑connectivity‑matrix‑attributes;
 }

 augment
 "/nw‑s:networks/nw‑s:network/nw‑s:node/te/"
 + "tunnel‑termination‑point/local‑link‑connectivities" {
 when "../../../../nw‑s:network‑types/tet‑s:te‑topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Augment TE node tunnel termination point LLCs
 (Local Link Connectivities).";
 uses te‑node‑tunnel‑termination‑point‑llc‑list;
 }
}
<CODE ENDS>

Appendix C. Example: YANG Model for Technology Specific Augmentations

 This section provides an example YANG module to define a technology
 specific TE topology model for the example-topology described in
 Section 6.

 module example-topology {

 yang-version 1.1;

namespace "http://example.com/example‑topology";
prefix "ex‑topo";

import ietf‑network {
 prefix "nw";
}

import ietf‑network‑topology {
 prefix "nt";
}

import ietf‑te‑topology {
 prefix "tet";
}

organization
 "Example Organization";
contact
 "Editor: Example Author";

 description

 "This module defines a topology data model for the example
 technology.";

revision 2018‑06‑15 {
 description
 "Initial revision.";
 reference
 "Example reference.";
}

 /*

 * Data nodes

 */
augment "/nw:networks/nw:network/nw:network‑types/"
 + "tet:te‑topology" {
 description
 "Augment network types to define example topology type.";
 container example‑topology {
 presence
 "Introduce new network type for example topology.";
 description
 "Its presence identifies the example topology type.";
 }
}

augment "/nw:networks/nw:network/tet:te" {
 when "../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 description "Augment network topology.";
 container attributes {
 description "Attributes for example technology.";
 leaf attribute‑1 {
 type uint8;
 description "Attribute 1 for example technology.";
 }
 }
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes" {
 when "../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 description "Augment node attributes.";
 container attributes {
 description "Attributes for example technology.";

 leaf attribute‑2 {
 type uint8;
 description "Attribute 2 for example technology.";
 }
 }
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet:connectivity‑matrices" {
 when "../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 description "Augment node connectivity matrices.";
 container attributes {
 description "Attributes for example technology.";
 leaf attribute‑3 {
 type uint8;
 description "Attribute 3 for example technology.";
 }
 }
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix" {
 when "../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 description "Augment node connectivity matrix.";
 container attributes {
 description "Attributes for example technology.";
 leaf attribute‑3 {
 type uint8;
 description "Attribute 3 for example technology.";
 }

 }
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel‑termination‑point" {
 when "../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 description "Augment tunnel termination point.";
 container attributes {
 description "Attributes for example technology.";
 leaf attribute‑4 {
 type uint8;
 description "Attribute 4 for example technology.";
 }
 }
}

augment "/nw:networks/nw:network/nw:node/nt:termination‑point/"
 + "tet:te" {
 when "../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 description "Augment link termination point.";
 container attributes {
 description "Attributes for example technology.";
 leaf attribute‑5 {
 type uint8;
 description "Attribute 5 for example technology.";
 }
 }
}

 augment "/nw:networks/nw:network/nt:link/tet:te/"

 + "tet:te-link-attributes" {

 when "../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 description "Augment link attributes.";
 container attributes {
 description "Attributes for example technology.";
 leaf attribute‑6 {
 type uint8;
 description "Attribute 6 for example technology.";
 }
 }
}

/*
 * Augment TE bandwidth.
 */

augment "/nw:networks/tet:te/tet:templates/"
 + "tet:link‑template/tet:te‑link‑attributes/"
 + "tet:interface‑switching‑capability/tet:max‑lsp‑bandwidth/"
 + "tet:te‑bandwidth/tet:technology" {
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/tet:te/tet:templates/"
 + "tet:link‑template/tet:te‑link‑attributes/"
 + "tet:max‑link‑bandwidth/"
 + "tet:te‑bandwidth/tet:technology" {
 case "example" {

 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/tet:te/tet:templates/"
 + "tet:link‑template/tet:te‑link‑attributes/"
 + "tet:max‑resv‑link‑bandwidth/"
 + "tet:te‑bandwidth/tet:technology" {
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/tet:te/tet:templates/"
 + "tet:link‑template/tet:te‑link‑attributes/"
 + "tet:unreserved‑bandwidth/"
 + "tet:te‑bandwidth/tet:technology" {
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";

 }

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet:connectivity‑matrices/"
 + "tet:path‑constraints/tet:te‑bandwidth/tet:technology" {
 when "../../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix/"
 + "tet:path‑constraints/tet:te‑bandwidth/tet:technology" {
 when "../../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }

 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information‑source‑entry/tet:connectivity‑matrices/"
 + "tet:path‑constraints/tet:te‑bandwidth/tet:technology" {
 when "../../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information‑source‑entry/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix/"
 + "tet:path‑constraints/tet:te‑bandwidth/tet:technology" {
 when "../../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";

 }
 }
 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel‑termination‑point/tet:client‑layer‑adaptation/"
 + "tet:switching‑capability/tet:te‑bandwidth/tet:technology" {
 when "../../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel‑termination‑point/tet:local‑link‑connectivities/"
 + "tet:path‑constraints/tet:te‑bandwidth/tet:technology" {
 when "../../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;

 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel‑termination‑point/tet:local‑link‑connectivities/"
 + "tet:local‑link‑connectivity/"
 + "tet:path‑constraints/tet:te‑bandwidth/tet:technology" {
 when "../../../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te‑link‑attributes/"
 + "tet:interface‑switching‑capability/tet:max‑lsp‑bandwidth/"
 + "tet:te‑bandwidth/tet:technology" {
 when "../../../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {

 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te‑link‑attributes/"
 + "tet:max‑link‑bandwidth/"
 + "tet:te‑bandwidth/tet:technology" {
 when "../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te‑link‑attributes/"
 + "tet:max‑resv‑link‑bandwidth/"
 + "tet:te‑bandwidth/tet:technology" {
 when "../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";

 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:information‑source‑entry/"
 + "tet:interface‑switching‑capability/tet:max‑lsp‑bandwidth/"
 + "tet:te‑bandwidth/tet:technology" {
 when "../../../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:information‑source‑entry/"
 + "tet:max‑link‑bandwidth/"
 + "tet:te‑bandwidth/tet:technology" {
 when "../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {

 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:information‑source‑entry/"
 + "tet:max‑resv‑link‑bandwidth/"
 + "tet:te‑bandwidth/tet:technology" {
 when "../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:information‑source‑entry/"
 + "tet:unreserved‑bandwidth/"

 + "tet:te‑bandwidth/tet:technology" {
 when "../../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/nw:network/nw:node/nt:termination‑point/"
 + "tet:te/"
 + "tet:interface‑switching‑capability/tet:max‑lsp‑bandwidth/"
 + "tet:te‑bandwidth/tet:technology" {
 when "../../../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth‑1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}

/*
 * Augment TE label.
 */

augment "/nw:networks/tet:te/tet:templates/"
 + "tet:link‑template/tet:te‑link‑attributes/"
 + "tet:underlay/tet:primary‑path/tet:path‑element/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/tet:te/tet:templates/"
 + "tet:link‑template/tet:te‑link‑attributes/"
 + "tet:underlay/tet:backup‑path/tet:path‑element/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/tet:te/tet:templates/"
 + "tet:link‑template/tet:te‑link‑attributes/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑start/"
 + "tet:te‑label/tet:technology" {
 case "example" {

 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/tet:te/tet:templates/"
 + "tet:link‑template/tet:te‑link‑attributes/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑end/"
 + "tet:te‑label/tet:technology" {
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

 /* Under te-node-attributes/connectivity-matrices */

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet:connectivity‑matrices/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑start/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {

 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet:connectivity‑matrices/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑end/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet:connectivity‑matrices/"
 + "tet:underlay/tet:primary‑path/tet:path‑element/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";

 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet:connectivity‑matrices/"
 + "tet:underlay/tet:backup‑path/tet:path‑element/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet:connectivity‑matrices/"
 + "tet:path‑properties/tet:path‑route‑objects/"
 + "tet:path‑route‑object/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../nw:network‑types/"

 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

 /* Under te-node-attributes/.../connectivity-matrix */

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix/tet:from/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑start/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix/tet:from/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑end/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix/tet:to/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑start/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";

 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix/tet:to/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑end/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix/"
 + "tet:underlay/tet:primary‑path/tet:path‑element/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {

 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix/"
 + "tet:underlay/tet:backup‑path/tet:path‑element/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te‑node‑attributes/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix/"
 + "tet:path‑properties/tet:path‑route‑objects/"
 + "tet:path‑route‑object/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../../nw:network‑types/"

 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

 /* Under information-source-entry/connectivity-matrices */

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information‑source‑entry/tet:connectivity‑matrices/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑start/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information‑source‑entry/tet:connectivity‑matrices/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑end/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information‑source‑entry/tet:connectivity‑matrices/"
 + "tet:underlay/tet:primary‑path/tet:path‑element/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }

 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information‑source‑entry/tet:connectivity‑matrices/"
 + "tet:underlay/tet:backup‑path/tet:path‑element/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information‑source‑entry/tet:connectivity‑matrices/"
 + "tet:path‑properties/tet:path‑route‑objects/"
 + "tet:path‑route‑object/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;

 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

 /* Under information-source-entry/.../connectivity-matrix */

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information‑source‑entry/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix/tet:from/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑start/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information‑source‑entry/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix/tet:from/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑end/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with

 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information‑source‑entry/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix/tet:to/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑start/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information‑source‑entry/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix/tet:to/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑end/"

 + "tet:te‑label/tet:technology" {
 when "../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information‑source‑entry/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix/"
 + "tet:underlay/tet:primary‑path/tet:path‑element/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information‑source‑entry/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix/"
 + "tet:underlay/tet:backup‑path/tet:path‑element/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information‑source‑entry/tet:connectivity‑matrices/"
 + "tet:connectivity‑matrix/"
 + "tet:path‑properties/tet:path‑route‑objects/"
 + "tet:path‑route‑object/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;

 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

 /* Under tunnel-termination-point/local-link-connectivities */

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel‑termination‑point/tet:local‑link‑connectivities/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑start/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel‑termination‑point/tet:local‑link‑connectivities/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑end/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../../nw:network‑types/tet:te‑topology/"
 + "ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }

 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel‑termination‑point/tet:local‑link‑connectivities/"
 + "tet:underlay/tet:primary‑path/tet:path‑element/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel‑termination‑point/tet:local‑link‑connectivities/"
 + "tet:underlay/tet:backup‑path/tet:path‑element/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description

 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel‑termination‑point/tet:local‑link‑connectivities/"
 + "tet:path‑properties/tet:path‑route‑objects/"
 + "tet:path‑route‑object/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

 /* Under tunnel-termination-point/.../local-link-connectivity */

 augment "/nw:networks/nw:network/nw:node/tet:te/"

 + "tet:tunnel‑termination‑point/tet:local‑link‑connectivities/"
 + "tet:local‑link‑connectivity/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑start/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel‑termination‑point/tet:local‑link‑connectivities/"
 + "tet:local‑link‑connectivity/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑end/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }

 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel‑termination‑point/tet:local‑link‑connectivities/"
 + "tet:local‑link‑connectivity/"
 + "tet:underlay/tet:primary‑path/tet:path‑element/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel‑termination‑point/tet:local‑link‑connectivities/"
 + "tet:local‑link‑connectivity/"
 + "tet:underlay/tet:backup‑path/tet:path‑element/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";

 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel‑termination‑point/tet:local‑link‑connectivities/"
 + "tet:local‑link‑connectivity/"
 + "tet:path‑properties/tet:path‑route‑objects/"
 + "tet:path‑route‑object/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

 /* Under te-link-attributes */

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te‑link‑attributes/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑start/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {

 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te‑link‑attributes/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑end/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te‑link‑attributes/"
 + "tet:underlay/tet:primary‑path/tet:path‑element/tet:type/"

 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te‑link‑attributes/"
 + "tet:underlay/tet:backup‑path/tet:path‑element/tet:type/"
 + "tet:label/tet:label‑hop/tet:te‑label/tet:technology" {
 when "../../../../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

 /* Under te-link information-source-entry */

 augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:information‑source‑entry/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑start/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
 }

 augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:information‑source‑entry/"
 + "tet:label‑restrictions/tet:label‑restriction/tet:label‑end/"
 + "tet:te‑label/tet:technology" {
 when "../../../../../../../nw:network‑types/"
 + "tet:te‑topology/ex‑topo:example‑topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label‑1 {
 type uint32;
 description "Label 1 for example technology.";
 }

 }
 }
 description "Augment TE label.";
 }
}

Contributors

Sergio Belotti
Nokia
Email: sergio.belotti@nokia.com

Dieter Beller
Nokia
Email: Dieter.Beller@nokia.com

Carlo Perocchio
Ericsson
Email: carlo.perocchio@ericsson.com

Italo Busi
Huawei Technologies
Email: Italo.Busi@huawei.com

Authors' Addresses

Xufeng Liu
Volta Networks
Email: xufeng.liu.ietf@gmail.com

Igor Bryskin
Huawei Technologies
Email: Igor.Bryskin@huawei.com

Vishnu Pavan Beeram
Juniper Networks
Email: vbeeram@juniper.net

Tarek Saad
Cisco Systems Inc
Email: tsaad@cisco.com

Himanshu Shah
Ciena
Email: hshah@ciena.com

Oscar Gonzalez De Dios
Telefonica
Email: oscar.gonzalezdedios@telefonica.com

draft-ietf-teas-yang-te-types-01 - Traffic Engineering Common YANG Types

Index
Back 5
Prev
Next
Forward 5

TEAS Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 10, 2019

T. Saad

R. Gandhi

Cisco Systems Inc

X. Liu

Volta Networks

V. Beeram

Juniper Networks

I. Bryskin

Huawei Technologies

October 07, 2018

Traffic Engineering Common YANG Types

draft-ietf-teas-yang-te-types-01

Abstract

 This document defines a collection of common data types and groupings
 in YANG data modeling language. These derived common types and
 groupings are intended to be imported by modules that model Traffic
 Engineering (TE) configuration and state capabilities.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 10, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Prefixes in Data Node Names

	2. Abbreviations

	3. Overview
	 3.1. TE Types Module

	 3.2. MPLS TE Types Module

	4. IETF TE Types YANG Module

	5. IETF MPLS TE Types YANG Module

	6. IANA Considerations

	7. Security Considerations

	8. Acknowledgement

	9. Contributors

	10. References
	 10.1. Normative References

	 10.2. Informative References

	Authors' Addresses

1. Introduction

 YANG [RFC6020] and [RFC7950] is a data modeling language used to
 model configuration data, state data, Remote Procedure Calls, and
 notifications for network management protocols such as NETCONF
 [RFC6241]. The YANG language supports a small set of built-in data
 types and provides mechanisms to derive other types from the built-in
 types.

 This document introduces a collection of common data types derived
 from the built-in YANG data types. The derived types and groupings
 are designed to be the common types applicable for modeling Traffic
 Engineering (TE) features, e.g. in models defined in
 [I-D.ietf-teas-yang-te], [I-D.ietf-teas-yang-te-topo] and
 [I-D.ietf-teas-yang-rsvp]).

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The terminology for describing YANG data models is found in
 [RFC7950].

1.2. Prefixes in Data Node Names

 In this document, names of data nodes and other data model objects
 are prefixed using the standard prefix associated with the
 corresponding YANG imported modules, as shown in Table 1.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Prefix | YANG module | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
yang	ietf‑yang‑types	[RFC6991]
inet	ietf‑inet‑types	[RFC6991]
rt‑types	ietf‑routing‑types	[RFC8294]
te‑types	ietf‑te‑types	this document
te‑mpls‑types	ietf‑te‑mpls‑types	this document
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1: Prefixes and corresponding YANG modules

2. Abbreviations

 GMPLS: Generalized Multiprotocol Label Switching

 LSP: Label Switched Path

 LSR: Label Switching Router

 LER: Label Edge Router

 MPLS: Multiprotocol Label Switching

 RSVP: Resource Reservation Protocol

 TE: Traffic Engineering

 DS-TE: Differentiated Services Traffic Engineering

 SRLG: Shared Link Risk Group

3. Overview

 This document defines two YANG modules for common TE types: ietf-te-
 types for TE generic types and ietf-te-mpls-types for MPLS technology
 specific types. Other technology specific TE types are outside the
 scope of this document.

3.1. TE Types Module

 The ietf-te-types module contains common TE types that are
 independent and agnostic of any specific technology or control plane
 instance.

 The ietf-te-types module imports the followinig modules:

 o ietf-yang-types and ietf-inet-types defined in [RFC6991]

 o ietf-routing-types defined in [RFC8294]

 The ietf-te-types module contains the following YANG reusable types
 and groupings:

 te-bandwidth:

 A YANG grouping that defines the generic TE bandwidth. The
 modeling structure allows augmentation for each technology. For
 un-specified technologies, the string encoded te-bandwidth type is
 used.

 te-label:

 A YANG grouping that defines the generic TE label. The modeling
 structure allows augmentation for each technology. For un-
 specified technologies, rt-types:generalized-label is used.

 te-ds-class:

 A type representing the Differentiated-Services (DS) Class-Type of
 traffic as defined in [RFC4124].

 te-label-direction:

 An enumerated type for specifying the forward or reverse direction
 of a label.

 te-hop-type:

 An enumerated type for specifying hop as loose or strict.

 te-global-id:

 A type representing the identifier that uniquely identify an
 operator, which can be either a provider or a client. The
 definition of this type is taken from [RFC6370] and [RFC5003].
 This attribute type is used solely to provide a globally unique
 context for TE topologies.

 te-node-id:

 A type representing the identifier for a node in a topology. The
 identifier is represented as 32-bit unsigned integer in the
 dotted-quad notation. This attribute is mapped to Router ID in
 [RFC3630], [RFC5329], [RFC5305], and [RFC6119].

 te-topology-id:

 A type representing the identifier for a topology. It is optional
 to have one or more prefixes at the beginning, separated by
 colons. The prefixes can be the network-types, defined in ietf-
 network, to help user to understand the topology better before
 further inquiry.

 te-tp-id:

 A type representing the identifier of a TE interface link
 termination endpoint (TP) on a specific TE node where the TE link
 connects. This attribute is mapped to local or remote link
 identifier in [RFC3630] and [RFC5305].

 te-path-disjointness:

 A type representing the different resource disjointness options
 for a TE tunnel path as defined in [RFC4872].

 admin-groups:

 A union type for TE link's classic or extended administrative
 groups as defined in [RFC3630] and [RFC5305].

 srlg:

 A type representing the Shared Risk Link Group (SRLG) as defined
 in [RFC4203] and [RFC5307].

 te-metric:

 A type representing the TE link metric as defined in [RFC3785].

 te-recovery-status:

 An enumerated type for the different status of a recovery action
 as defined in [RFC4427] and [RFC6378].

 restoration-scheme-type:

 A base YANG identity for supported LSP restoration schemes as
 defined in [RFC4872].

 protection-external-commands:

 A base YANG identity for supported protection external commands
 for trouble shooting purposes as defined in [RFC4427].

 association-type:

 A base YANG identity for supported Label Switched Path (LSP)
 association types as defined in [RFC6780], [RFC4872], [RFC4873].

 objective-function-type:

 A base YANG identity for supported path computation objective
 functions as defined in [RFC5541].

 te-tunnel-type:

 A base YANG identity for supported TE tunnel types as defined in
 [RFC3209] and [RFC4875].

 lsp-encoding-types:

 base YANG identity for supported LSP encoding types as defined in
 [RFC3471].

 lsp-protection-type:

 A base YANG identity for supported LSP protection types as defined
 in [RFC4872] and [RFC4873].

 switching-capabilities:

 A base YANG identity for supported interface switching
 capabilities as defined in [RFC3471].

 resource-affinities-type:

 A base YANG identity for supported attribute filters associated
 with a tunnel that must be satisfied for a link to be acceptable
 as defined in [RFC2702] and [RFC3209].

 path-metric-type:

 A base YANG identity for supported path metric types as defined in
 [RFC3785] and [RFC7471].

 performance-metric-container:

 A YANG grouping that defines supported performance metrics as
 defined in [RFC7471] and [RFC7810].

 explicit-route-hop:

 A YANG grouping that defines supported explicit routes as defined
 in [RFC3209] and [RFC3477].

 te-link-access-type:

 An enumerated type for the different TE link access types as
 defined in [RFC3630].

3.2. MPLS TE Types Module

 The ietf-te-mpls-types module covers the common types and groupings
 specific to MPLS technology.

 The ietf-te-mpls-types module contains the following YANG reusable
 types and groupings:

 backup-protection-type:

 A base YANG identity for supported protection types that a backup
 or bypass tunnel can provide as defined in [RFC4090].

 te-class-type:

 A type that represents the Diffserv-TE class-type as defined in
 [RFC4124].

 bc-type:

 A type that represents the Diffserv-TE Bandwidth Constraint (BC)
 as defined in [RFC4124].

 bc-model-type:

 A base YANG identity for supported Diffserv-TE bandwidth
 constraint models as defined in [RFC4125], [RFC4126] and
 [RFC4127].

 te-bandwidth-requested-type:

 An enumerated type for the different options to request bandwidth
 for a specific tunnel.

4. IETF TE Types YANG Module

<CODE BEGINS> file "ietf‑te‑types@2018‑10‑08.yang"
module ietf‑te‑types {

 namespace "urn:ietf:params:xml:ns:yang:ietf-te-types";

/* Replace with IANA when assigned */
prefix "te‑types";

import ietf‑inet‑types {
 prefix inet;
}

import ietf‑yang‑types {
 prefix "yang";
}

import ietf‑routing‑types {
 prefix "rt‑types";
}

organization
 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 WG Chair: Lou Berger

 <mailto:lberger@labn.net>

 WG Chair: Vishnu Pavan Beeram

 <mailto:vbeeram@juniper.net>

 Editor: Tarek Saad
 <mailto:tsaad@cisco.com>

 Editor: Rakesh Gandhi
 <mailto:rgandhi@cisco.com>

 Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

 Editor: Himanshu Shah
 <mailto:hshah@ciena.com>

 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>

 Editor: Igor Bryskin
 <mailto:Igor.Bryskin@huawei.com>

 Editor: Young Lee
 <mailto:leeyoung@huawei.com>";

description
 "This module contains a collection of generally
 useful TE specific YANG data type definitions.";

revision "2018‑10‑08" {
 description "Latest revision of TE types";
 reference "RFC3209";
}

/**
 * Typedefs
 */
typedef te‑bandwidth {
 type string {
 pattern
 '0[xX](0((\.0?)?[pP](\+)?0?|(\.0?))|'
 + '1(\.([\da‑fA‑F]{0,5}[02468aAcCeE]?)?)?[pP](\+)?(12[0‑7]|'
 + '1[01]\d|0?\d?\d)?)|0[xX][\da‑fA‑F]{1,8}|\d+'
 + '(,(0[xX](0((\.0?)?[pP](\+)?0?|(\.0?))|'
 + '1(\.([\da‑fA‑F]{0,5}[02468aAcCeE]?)?)?[pP](\+)?(12[0‑7]|'
 + '1[01]\d|0?\d?\d)?)|0[xX][\da‑fA‑F]{1,8}|\d+))*';
 }
 description
 "This is the generic bandwidth type that is a string containing
 a list of numbers separated by commas, with each of these
 number can be non‑negative decimal, hex integer, or hex float:
 (dec | hex | float)[*(','(dec | hex | float))]
 For packet switching type, a float number is used, such as
 0x1p10.
 For OTN switching type, a list of integers can be used, such

 as '0,2,3,1', indicating 2 odu0's and 1 odu3.
 For DWDM, a list of pairs of slot number and width can be
 used, such as '0, 2, 3, 3', indicating a frequency slot 0 with
 slot width 2 and a frequency slot 3 with slot width 3.";
} // te‑bandwidth

typedef te‑ds‑class {
 type uint8 {
 range "0..7";
 }
 description
 "The Differentiated Class‑Type of traffic.";
 reference "RFC4124: section‑4.3.1";
}

typedef te‑link‑direction {
 type enumeration {
 enum INCOMING {
 description
 "explicit route represents an incoming link on a node";
 }
 enum OUTGOING {
 description
 "explicit route represents an outgoing link on a node";
 }
 }
 description
 "enumerated type for specifying direction of link on a node";
}

typedef te‑label‑direction {
 type enumeration {
 enum FORWARD {
 description
 "Label allocated for the forward LSP direction";
 }
 enum REVERSE {
 description
 "Label allocated for the reverse LSP direction";
 }
 }
 description
 "enumerated type for specifying the forward or reverse
 label";
}

 typedef te-hop-type {

 type enumeration {

 enum LOOSE {
 description
 "loose hop in an explicit path";
 }
 enum STRICT {
 description
 "strict hop in an explicit path";
 }
 }
 description
 "enumerated type for specifying loose or strict
 paths";
 reference "RFC3209: section‑4.3.2";
}

typedef performance‑metric‑normality {
 type enumeration {
 enum "unknown" {
 value 0;
 description
 "Unknown.";
 }
 enum "normal" {
 value 1;
 description
 "Normal.";
 }
 enum "abnormal" {
 value 2;
 description
 "Abnormal. The anomalous bit is set.";
 }
 }
 description
 "Indicates whether a performance metric is normal, abnormal, or
 unknown.";
 reference
 "RFC7471: OSPF Traffic Engineering (TE) Metric Extensions.
 RFC7810: IS‑IS Traffic Engineering (TE) Metric Extensions.
 RFC7823: Performance‑Based Path Selection for Explicitly
 Routed Label Switched Paths (LSPs) Using TE Metric
 Extensions";
}

typedef te‑admin‑status {
 type enumeration {
 enum up {
 description

 "Enabled.";
 }
 enum down {
 description
 "Disabled.";
 }
 enum testing {
 description
 "In some test mode.";
 }
 enum preparing‑maintenance {
 description
 "Resource is disabled in the control plane to prepare for
 graceful shutdown for maintenance purposes.";
 reference
 "RFC5817: Graceful Shutdown in MPLS and Generalized MPLS
 Traffic Engineering Networks";
 }
 enum maintenance {
 description
 "Resource is disabled in the data plane for maintenance
 purposes.";
 }
 }
 description
 "Defines a type representing the administrative status of
 a TE resource.";
}

typedef te‑global‑id {
 type uint32;
 description
 "An identifier to uniquely identify an operator, which can be
 either a provider or a client.
 The definition of this type is taken from RFC6370 and RFC5003.
 This attribute type is used solely to provide a globally
 unique context for TE topologies.";
}

typedef te‑link‑access‑type {
 type enumeration {
 enum point‑to‑point {
 description
 "The link is point‑to‑point.";
 }
 enum multi‑access {
 description
 "The link is multi‑access, including broadcast and NBMA.";

 }
 }
 description
 "Defines a type representing the access type of a TE link.";
 reference
 "RFC3630: Traffic Engineering (TE) Extensions to OSPF
 Version 2.";
}

typedef te‑node‑id {
 type yang:dotted‑quad;
 description
 "An identifier for a node in a topology.
 The identifier is represented as 32‑bit unsigned integer in
 the dotted‑quad notation.
 This attribute is mapped to Router ID in
 RFC3630, RFC5329, RFC5305, and RFC6119.";
}

typedef te‑oper‑status {
 type enumeration {
 enum up {
 description
 "Operational up.";
 }
 enum down {
 description
 "Operational down.";
 }
 enum testing {
 description
 "In some test mode.";
 }
 enum unknown {
 description
 "Status cannot be determined for some reason.";
 }
 enum preparing‑maintenance {
 description
 "Resource is disabled in the control plane to prepare for
 graceful shutdown for maintenance purposes.";
 reference
 "RFC5817: Graceful Shutdown in MPLS and Generalized MPLS
 Traffic Engineering Networks";
 }
 enum maintenance {
 description
 "Resource is disabled in the data plane for maintenance

 purposes.";
 }
 }
 description
 "Defines a type representing the operational status of
 a TE resource.";
}

typedef te‑path‑disjointness {
 type bits {
 bit node {
 position 0;
 description "Node disjoint.";
 }
 bit link {
 position 1;
 description "Link disjoint.";
 }
 bit srlg {
 position 2;
 description "SRLG (Shared Risk Link Group) disjoint.";
 }
 }
 description
 "Type of the resource disjointness for a TE tunnel path.";
 reference
 "RFC4872: RSVP‑TE Extensions in Support of End‑to‑End
 Generalized Multi‑Protocol Label Switching (GMPLS)
 Recovery";
} // te‑path‑disjointness

typedef te‑recovery‑status {
 type enumeration {
 enum normal {
 description
 "Both the recovery and working spans are fully
 allocated and active, data traffic is being
 transported over (or selected from) the working
 span, and no trigger events are reported.";
 }
 enum recovery‑started {
 description
 "The recovery action has been started, but not completed.";
 }
 enum recovery‑succeeded {
 description
 "The recovery action has succeeded. The working span has
 reported a failure/degrade condition and the user traffic

 is being transported (or selected) on the recovery span.";
 }
 enum recovery‑failed {
 description
 "The recovery action has failed.";
 }
 enum reversion‑started {
 description
 "The reversion has started.";
 }
 enum reversion‑failed {
 description
 "The reversion has failed.";
 }
 enum recovery‑unavailable {
 description
 "The recovery is unavailable ‑‑ either as a result of an
 operator Lockout command or a failure condition detected
 on the recovery span.";
 }
 enum recovery‑admin {
 description
 "The operator has issued a command switching the user
 traffic to the recovery span.";
 }
 enum wait‑to‑restore {
 description
 "The recovery domain is recovering from a failure/degrade
 condition on the working span that is being controlled by
 the Wait‑to‑Restore (WTR) timer.";
 }
 }
 description
 "Defines the status of a recovery action.";
 reference
 "RFC4427: Recovery (Protection and Restoration) Terminology
 for Generalized Multi‑Protocol Label Switching (GMPLS).
 RFC6378: MPLS Transport Profile (MPLS‑TP) Linear Protection";
}

typedef te‑template‑name {
 type string {
 pattern '/?([a‑zA‑Z0‑9\‑_.]+)(/[a‑zA‑Z0‑9\‑_.]+)*';
 }
 description
 "A type for the name of a TE node template or TE link
 template.";
}

typedef te‑topology‑event‑type {
 type enumeration {
 enum "add" {
 value 0;
 description
 "A TE node or te‑link has been added.";
 }
 enum "remove" {
 value 1;
 description
 "A TE node or te‑link has been removed.";
 }
 enum "update" {
 value 2;
 description
 "A TE node or te‑link has been updated.";
 }
 }
 description "TE Event type for notifications";
} // te‑topology‑event‑type

typedef te‑topology‑id {
 type string {
 pattern
 '([a‑zA‑Z0‑9\‑_.]+:)*'
 + '/?([a‑zA‑Z0‑9\‑_.]+)(/[a‑zA‑Z0‑9\‑_.]+)*';
 }
 description
 "An identifier for a topology.
 It is optional to have one or more prefixes at the beginning,
 separated by colons. The prefixes can be the network‑types,
 defined in ietf‑network.yang, to help user to understand the
 topology better before further inquiry.";
}

typedef te‑tp‑id {
 type union {
 type uint32; // Unnumbered
 type inet:ip‑address; // IPv4 or IPv6 address
 }
 description
 "An identifier for a TE link endpoint on a node.
 This attribute is mapped to local or remote link identifier in
 RFC3630 and RFC5305.";
}

 typedef admin-group {

 type binary {

 length 4;
 }
 description
 "Administrative group/Resource class/Color.";
 reference "RFC3630 and RFC5305";
}

typedef extended‑admin‑group {
 type binary;
 description
 "Extended administrative group/Resource class/Color.";
 reference "RFC7308";
}

typedef admin‑groups {
 type union {
 type admin‑group;
 type extended‑admin‑group;
 }
 description "TE administrative group derived type";
}

typedef srlg {
 type uint32;
 description "SRLG type";
 reference "RFC4203 and RFC5307";
}

typedef te‑metric {
 type uint32;
 description
 "TE link metric";
 reference "RFC3785";
}

/* TE features */
feature p2mp‑te {
 description
 "Indicates support for P2MP‑TE";
 reference "RFC4875";
}

feature frr‑te {
 description
 "Indicates support for TE FastReroute (FRR)";
 reference "RFC4090";
}

feature extended‑admin‑groups {
 description
 "Indicates support for TE link extended admin
 groups.";
 reference "RFC7308";
}

feature named‑path‑affinities {
 description
 "Indicates support for named path affinities";
}

feature named‑extended‑admin‑groups {
 description
 "Indicates support for named extended admin groups";
}

feature named‑srlg‑groups {
 description
 "Indicates support for named SRLG groups";
}

feature named‑path‑constraints {
 description
 "Indicates support for named path constraints";
}

feature path‑optimization‑metric {
 description
 "Indicates support for path optimization metric";
}

feature path‑optimization‑objective‑function {
 description
 "Indicates support for path optimization objective function";
}

/*
 * Identities
 */
identity association‑type {
 description "Base identity for tunnel association";
 reference "RFC6780, RFC4872, RFC4873";
}
identity association‑type‑recovery {
 base association‑type;
 description
 "Association Type Recovery used to association LSPs of

 same tunnel for recovery";
 reference "RFC4872";
}
identity association‑type‑resource‑sharing {
 base association‑type;
 description
 "Association Type Resource Sharing used to enable resource
 sharing during make‑before‑break.";
 reference "RFC4873";
}
identity association‑type‑double‑sided‑bidir {
 base association‑type;
 description
 "Association Type Double Sided bidirectional used to associate
 two LSPs of two tunnels that are independently configured on
 either endpoint";
 reference "RFC7551";
}
identity association‑type‑single‑sided‑bidir {
 base association‑type;
 description
 "Association Type Single Sided bidirectional used to associate
 two LSPs of two tunnels, where a tunnel is configured on one
 side/endpoint, and the other tunnel is dynamically created on
 the other endpoint";
 reference "RFC7551";
}

identity objective‑function‑type {
 description "Base objective function type";
 reference "RFC4657";
}
identity of‑minimize‑cost‑path {
 base objective‑function‑type;
 description
 "Minimize cost of path objective function";
 reference "RFC5541";
}
identity of‑minimize‑load‑path {
 base objective‑function‑type;
 description
 "Minimize the load on path(s) objective
 function";
}
identity of‑maximize‑residual‑bandwidth {
 base objective‑function‑type;
 description
 "Maximize the residual bandwidth objective

 function";
}
identity of‑minimize‑agg‑bandwidth‑consumption {
 base objective‑function‑type;
 description
 "minimize the aggregate bandwidth consumption
 objective function";
}
identity of‑minimize‑load‑most‑loaded‑link {
 base objective‑function‑type;
 description
 "Minimize the load on the most loaded link
 objective function";
}
identity of‑minimize‑cost‑path‑set {
 base objective‑function‑type;
 description
 "Minimize the cost on a path set objective
 function";
}

identity path‑computation‑method {
 description
 "base identity for supported path computation
 mechanisms";
}
identity path‑locally‑computed {
 base path‑computation‑method;
 description
 "indicates a constrained‑path LSP in which the
 path is computed by the local LER";
}
identity path‑externally‑queried {
 base path‑computation‑method;
 description
 "Constrained‑path LSP in which the path is
 obtained by querying an external source, such as a PCE server.
 In the case that an LSP is defined to be externally queried, it
 may also have associated explicit definitions (provided
 to the external source to aid computation); and the path that is
 returned by the external source is not required to provide a
 wholly resolved path back to the originating system ‑ that is to
 say, some local computation may also be required";
}
identity path‑explicitly‑defined {
 base path‑computation‑method;
 description
 "constrained‑path LSP in which the path is

 explicitly specified as a collection of strict or/and loose
 hops";
}

identity LSP_METRIC_TYPE {
 description
 "Base identity for types of LSP metric specification";
}
identity LSP_METRIC_RELATIVE {
 base LSP_METRIC_TYPE;
 description
 "The metric specified for the LSPs to which this identity refers
 is specified as a relative value to the IGP metric cost to the
 LSP's tail‑end.";
}
identity LSP_METRIC_ABSOLUTE {
 base LSP_METRIC_TYPE;
 description
 "The metric specified for the LSPs to which this identity refers
 is specified as an absolute value";
}
identity LSP_METRIC_INHERITED {
 base LSP_METRIC_TYPE;
 description
 "The metric for the LSPs to which this identity refers is
 not specified explicitly ‑ but rather inherited from the IGP
 cost directly";
}

identity te‑tunnel‑type {
 description
 "Base identity from which specific tunnel types are
 derived.";
}
identity te‑tunnel‑p2p {
 base te‑tunnel‑type;
 description
 "TE point‑to‑point tunnel type.";
}
identity te‑tunnel‑p2mp {
 base te‑tunnel‑type;
 description
 "TE point‑to‑multipoint tunnel type.";
 reference "RFC4875";
}

 identity tunnel-action-type {

 description

 "Base identity from which specific tunnel action types
 are derived.";
}
identity tunnel‑action‑resetup {
 base tunnel‑action‑type;
 description
 "TE tunnel action resetup. Tears the
 tunnel's current LSP (if any) and
 attempts to re‑establish a new LSP";
}
identity tunnel‑action‑reoptimize {
 base tunnel‑action‑type;
 description
 "TE tunnel action reoptimize.
 Reoptimizes placement of the tunnel LSP(s)";
}
identity tunnel‑action‑switchpath {
 base tunnel‑action‑type;
 description
 "TE tunnel action switchpath
 Switches the tunnel's LSP to use the specified path";
}

identity te‑action‑result {
 description
 "Base identity from which specific TE action results
 are derived.";
}
identity te‑action‑success {
 base te‑action‑result;
 description "TE action successful.";
}
identity te‑action‑fail {
 base te‑action‑result;
 description "TE action failed.";
}
identity tunnel‑action‑inprogress {
 base te‑action‑result;
 description "TE action inprogress.";
}

identity tunnel‑admin‑state‑type {
 description
 "Base identity for TE tunnel admin states";
}
identity tunnel‑admin‑state‑up {
 base tunnel‑admin‑state‑type;
 description "Tunnel administratively state up";

}
identity tunnel‑admin‑state‑down {
 base tunnel‑admin‑state‑type;
 description "Tunnel administratively state down";
}

identity tunnel‑state‑type {
 description
 "Base identity for TE tunnel states";
}
identity tunnel‑state‑up {
 base tunnel‑state‑type;
 description "Tunnel state up";
}
identity tunnel‑state‑down {
 base tunnel‑state‑type;
 description "Tunnel state down";
}

identity lsp‑state‑type {
 description
 "Base identity for TE LSP states";
}
identity lsp‑path‑computing {
 base lsp‑state‑type;
 description
 "State path compute in progress";
}
identity lsp‑path‑computation‑ok {
 base lsp‑state‑type;
 description
 "State path compute successful";
}
identity lsp‑path‑computation‑failed {
 base lsp‑state‑type;
 description
 "State path compute failed";
}
identity lsp‑state‑setting‑up {
 base lsp‑state‑type;
 description
 "State setting up";
}
identity lsp‑state‑setup‑ok {
 base lsp‑state‑type;
 description
 "State setup successful";
}

identity lsp‑state‑setup‑failed {
 base lsp‑state‑type;
 description
 "State setup failed";
}
identity lsp‑state‑up {
 base lsp‑state‑type;
 description "State up";
}
identity lsp‑state‑tearing‑down {
 base lsp‑state‑type;
 description
 "State tearing down";
}
identity lsp‑state‑down {
 base lsp‑state‑type;
 description "State down";
}

identity path‑invalidation‑action‑type {
 description
 "Base identity for TE path invalidation action types";
}
identity path‑invalidation‑action‑drop‑type {
 base path‑invalidation‑action‑type;
 description
 "TE path invalidation action drop";
}
identity path‑invalidation‑action‑drop‑tear {
 base path‑invalidation‑action‑type;
 description
 "TE path invalidation action tear";
}

identity lsp‑restoration‑type {
 description
 "Base identity from which LSP restoration types are
 derived.";
}
identity lsp‑restoration‑restore‑any {
 base lsp‑restoration‑type;
 description
 "Restores when any of the LSPs is affected by a failure";
}
identity lsp‑restoration‑restore‑all {
 base lsp‑restoration‑type;
 description
 "Restores when all the tunnel LSPs are affected by failure";

 }

identity restoration‑scheme‑type {
 description
 "Base identity for LSP restoration schemes";
 reference "RFC4872";
}
identity restoration‑scheme‑preconfigured {
 base restoration‑scheme‑type;
 description
 "Restoration LSP is preconfigured prior to the failure";
}
identity restoration‑scheme‑precomputed {
 base restoration‑scheme‑type;
 description
 "Restoration LSP is precomputed prior to the failure";
}
identity restoration‑scheme‑presignaled {
 base restoration‑scheme‑type;
 description
 "Restoration LSP is presignaled prior to the failure";
}

identity lsp‑protection‑type {
 description
 "Base identity from which LSP protection types are
 derived.";
}
identity lsp‑protection‑unprotected {
 base lsp‑protection‑type;
 description
 "LSP protection 'Unprotected'";
 reference "RFC4872";
}
identity lsp‑protection‑reroute‑extra {
 base lsp‑protection‑type;
 description
 "LSP protection '(Full) Rerouting'";
 reference "RFC4872";
}
identity lsp‑protection‑reroute {
 base lsp‑protection‑type;
 description
 "LSP protection 'Rerouting without Extra‑Traffic'";
 reference "RFC4872";
}
identity lsp‑protection‑1‑for‑n {
 base lsp‑protection‑type;

 description
 "LSP protection '1:N Protection with Extra‑Traffic'";
 reference "RFC4872";
}
identity lsp‑protection‑unidir‑1‑to‑1 {
 base lsp‑protection‑type;
 description
 "LSP protection '1+1 Unidirectional Protection'";
 reference "RFC4872";
}
identity lsp‑protection‑bidir‑1‑to‑1 {
 base lsp‑protection‑type;
 description
 "LSP protection '1+1 Bidirectional Protection'";
 reference "RFC4872";
}
identity lsp‑protection‑extra‑traffic {
 base lsp‑protection‑type;
 description
 "LSP protection 'Extra‑Traffic'";
 reference
 "ITU‑T G.808, RFC 4427.";
}

identity lsp‑protection‑state {
 description
 "Base identity of protection states for reporting
 purposes.";
}
identity normal {
 base lsp‑protection‑state;
 description "Normal state.";
}
identity signal‑fail‑of‑protection {
 base lsp‑protection‑state;
 description
 "There is a SF condition on the protection transport
 entity which has higher priority than the FS command.";
 reference
 "ITU‑T G.873.1, G.8031, G.8131";
}
identity lockout‑of‑protection {
 base lsp‑protection‑state;
 description
 "A Loss of Protection (LoP) command is active.";
 reference
 "ITU‑T G.808, RFC 4427";
}

identity forced‑switch {
 base lsp‑protection‑state;
 description
 "A forced switch (FS) command is active.";
 reference
 "ITU‑T G.808, RFC 4427";
}
identity signal‑fail {
 base lsp‑protection‑state;
 description
 "There is a SF condition on either the working
 or the protection path.";
 reference
 "ITU‑T G.808, RFC 4427";
}
identity signal‑degrade {
 base lsp‑protection‑state;
 description
 "There is an SD condition on either the working or the
 protection path.";
 reference
 "ITU‑T G.808, RFC 4427";
}
identity manual‑switch {
 base lsp‑protection‑state;
 description
 "A manual switch (MS) command is active.";
 reference
 "ITU‑T G.808, RFC 4427";
}
identity wait‑to‑restore {
 base lsp‑protection‑state;
 description
 "A wait time to restore (WTR) is running.";
 reference
 "ITU‑T G.808, RFC 4427";
}
identity do‑not‑revert {
 base lsp‑protection‑state;
 description
 "A DNR condition is active because of a non‑revertive
 behavior.";
 reference
 "ITU‑T G.808, RFC 4427";
}
identity failure‑of‑protocol {
 base lsp‑protection‑state;
 description

 "The protection is not working because of a failure of
 protocol condition.";
 reference
 "ITU‑T G.873.1, G.8031, G.8131";
}

identity protection‑external‑commands {
 description
 "Protection external commands for trouble shooting
 purposes.";
}
identity action‑freeze {
 base protection‑external‑commands;
 description
 "A temporary configuration action initiated by an operator
 command to prevent any switch action to be taken and as such
 freezes the current state.";
 reference
 "ITU‑T G.808, RFC 4427";
}
identity clear‑freeze {
 base protection‑external‑commands;
 description
 "An action that clears the active freeze state.";
 reference
 "ITU‑T G.808, RFC 4427";
}
identity action‑lockout‑of‑normal {
 base protection‑external‑commands;
 description
 "A temporary configuration action initiated by an operator
 command to ensure that the normal traffic is not allowed
 to use the protection transport entity.";
 reference
 "ITU‑T G.808, RFC 4427";
}
identity clear‑lockout‑of‑normal {
 base protection‑external‑commands;
 description
 "An action that clears the active lockout of normal state.";
 reference
 "ITU‑T G.808, RFC 4427";
}
identity action‑lockout‑of‑protection {
 base protection‑external‑commands;
 description
 "A temporary configuration action initiated by an operator
 command to ensure that the protection transport entity is

 temporarily not available to transport a traffic signal
 (either normal or extra traffic).";
 reference
 "ITU‑T G.808, RFC 4427";
}
identity action‑forced‑switch {
 base protection‑external‑commands;
 description
 "A switch action initiated by an operator command to switch
 the extra traffic signal, the normal traffic signal, or the
 null signal to the protection transport entity, unless an
 equal or higher priority switch command is in effect.";
 reference
 "ITU‑T G.808, RFC 4427";
}
identity action‑manual‑switch {
 base protection‑external‑commands;
 description
 "A switch action initiated by an operator command to switch
 the extra traffic signal, the normal traffic signal, or
 the null signal to the protection transport entity, unless
 a fault condition exists on other transport entities or an
 equal or higher priority switch command is in effect.";
 reference
 "ITU‑T G.808, RFC 4427";
}
identity action‑exercise {
 base protection‑external‑commands;
 description
 "An action to start testing if the APS communication is
 operating correctly. It is lower priority than any other
 state or command.";
 reference
 "ITU‑T G.808, RFC 4427";
}
identity clear {
 base protection‑external‑commands;
 description
 "An action that clears the active near‑end lockout of
 protection, forced switch, manual switch, WTR state,
 or exercise command.";
 reference
 "ITU‑T G.808, RFC 4427";
}

identity switching‑capabilities {
 description
 "Base identity for interface switching capabilities";

 reference "RFC3471";
}
identity switching‑psc1 {
 base switching‑capabilities;
 description
 "Packet‑Switch Capable‑1 (PSC‑1)";
 reference "RFC3471";
}
identity switching‑evpl {
 base switching‑capabilities;
 description
 "Ethernet Virtual Private Line (EVPL)";
}
identity switching‑l2sc {
 base switching‑capabilities;
 description
 "Layer‑2 Switch Capable (L2SC)";
 reference "RFC3471";
}
identity switching‑tdm {
 base switching‑capabilities;
 description
 "Time‑Division‑Multiplex Capable (TDM)";
 reference "RFC3471";
}
identity switching‑otn {
 base switching‑capabilities;
 description
 "OTN‑TDM capable";
}
identity switching‑dcsc {
 base switching‑capabilities;
 description
 "Data Channel Switching Capable (DCSC)";
}
identity switching‑lsc {
 base switching‑capabilities;
 description
 "Lambda‑Switch Capable (LSC)";
 reference "RFC3471";
}
identity switching‑fsc {
 base switching‑capabilities;
 description
 "Fiber‑Switch Capable (FSC)";
 reference "RFC3471";
}

identity lsp‑encoding‑types {
 description
 "Base identity for encoding types";
 reference "RFC3471";
}
identity lsp‑encoding‑packet {
 base lsp‑encoding‑types;
 description
 "Packet LSP encoding";
 reference "RFC3471";
}
identity lsp‑encoding‑ethernet {
 base lsp‑encoding‑types;
 description
 "Ethernet LSP encoding";
 reference "RFC3471";
}
identity lsp‑encoding‑pdh {
 base lsp‑encoding‑types;
 description
 "ANSI/ETSI LSP encoding";
 reference "RFC3471";
}
identity lsp‑encoding‑sdh {
 base lsp‑encoding‑types;
 description
 "SDH ITU‑T G.707 / SONET ANSI T1.105 LSP encoding";
 reference "RFC3471";
}
identity lsp‑encoding‑digital‑wrapper {
 base lsp‑encoding‑types;
 description
 "Digital Wrapper LSP encoding";
 reference "RFC3471";
}
identity lsp‑encoding‑lambda {
 base lsp‑encoding‑types;
 description
 "Lambda (photonic) LSP encoding";
 reference "RFC3471";
}
identity lsp‑encoding‑fiber {
 base lsp‑encoding‑types;
 description
 "Fiber LSP encoding";
 reference "RFC3471";
}
identity lsp‑encoding‑fiber‑channel {

 base lsp‑encoding‑types;
 description
 "Fiber Channel LSP encoding";
 reference "RFC3471";
}
identity lsp‑encoding‑oduk {
 base lsp‑encoding‑types;
 description
 "G.709 ODUk (Digital Path) LSP encoding";
}
identity lsp‑encoding‑optical‑channel {
 base lsp‑encoding‑types;
 description
 "Line (e.g., 8B/10B) LSP encoding";
}
identity lsp‑encoding‑line {
 base lsp‑encoding‑types;
 description
 "Line (e.g., 8B/10B) LSP encoding";
}
identity path‑signaling‑type {
 description
 "base identity from which specific LSPs path
 setup types are derived";
}
identity path‑setup‑static {
 base path‑signaling‑type;
 description
 "Static LSP provisioning path setup";
}
identity path‑setup‑rsvp {
 base path‑signaling‑type;
 description
 "RSVP‑TE signaling path setup";
 reference "RFC3209";
}
identity path‑setup‑sr {
 base path‑signaling‑type;
 description
 "Segment‑routing path setup";
}

identity path‑scope‑type {
 description
 "base identity from which specific path
 scope types are derived";
}
identity path‑scope‑segment {

 base path‑scope‑type;
 description
 "Path scope segment";
}
identity path‑scope‑end‑to‑end {
 base path‑scope‑type;
 description
 "Path scope end to end";
}

identity route‑usage‑type {
 description
 "Base identity for route usage";
}
identity route‑include‑ero {
 base route‑usage‑type;
 description
 "Include ERO resource in route";
}
identity route‑exclude‑ero {
 base route‑usage‑type;
 description
 "Exclude ERO resource from route";
}
identity route‑exclude‑srlg {
 base route‑usage‑type;
 description
 "Exclude SRLG from route";
}

identity path‑metric‑type {
 description
 "Base identity for path metric type";
}
identity path‑metric‑te {
 base path‑metric‑type;
 description
 "TE path metric";
 reference "RFC3785";
}
identity path‑metric‑igp {
 base path‑metric‑type;
 description
 "IGP path metric";
 reference "RFC3785";
}
identity path‑metric‑hop {
 base path‑metric‑type;

 description
 "Hop path metric";
}
identity path‑metric‑delay‑average {
 base path‑metric‑type;
 description
 "Unidirectional average link delay";
 reference "RFC7471";
}
identity path‑metric‑delay‑minimum {
 base path‑metric‑type;
 description
 "Unidirectional minimum link delay";
 reference "RFC7471";
}

identity path‑metric‑residual‑bandwidth {
 base path‑metric‑type;
 description
 "Unidirectional Residual Bandwidth, which is defined to be
 Maximum Bandwidth [RFC3630] minus the bandwidth currently
 allocated to LSPs.";
 reference "RFC7471";
}
identity path‑metric‑optimize‑includes {
 base path‑metric‑type;
 description
 "A metric that optimizes the number of included resources
 specified in a set";
}
identity path‑metric‑optimize‑excludes {
 base path‑metric‑type;
 description
 "A metric that optimizes the number of excluded resources
 specified in a set";
}

identity path‑tiebreaker‑type {
 description
 "Base identity for path tie‑breaker type";
}
identity path‑tiebreaker‑minfill {
 base path‑tiebreaker‑type;
 description
 "Min‑Fill LSP path placement";
}
identity path‑tiebreaker‑maxfill {

 base path‑tiebreaker‑type;
 description
 "Max‑Fill LSP path placement";
}
identity path‑tiebreaker‑random {
 base path‑tiebreaker‑type;
 description
 "Random LSP path placement";
}

identity resource‑affinities‑type {
 description
 "Base identity for resource affinities";
 reference "RFC2702";
}
identity resource‑aff‑include‑all {
 base resource‑affinities‑type;
 description
 "The set of attribute filters associated with a
 tunnel all of which must be present for a link
 to be acceptable";
 reference "RFC2702 and RFC3209";
}
identity resource‑aff‑include‑any {
 base resource‑affinities‑type;
 description
 "The set of attribute filters associated with a
 tunnel any of which must be present for a link
 to be acceptable";
 reference "RFC2702 and RFC3209";
}
identity resource‑aff‑exclude‑any {
 base resource‑affinities‑type;
 description
 "The set of attribute filters associated with a
 tunnel any of which renders a link unacceptable";
 reference "RFC2702 and RFC3209";
}

identity te‑optimization‑criterion {
 description
 "Base identity for TE optimization criterion.";
 reference
 "RFC3272: Overview and Principles of Internet Traffic
 Engineering.";
}
identity not‑optimized {
 base te‑optimization‑criterion;

 description "Optimization is not applied.";
}
identity cost {
 base te‑optimization‑criterion;
 description "Optimized on cost.";
}
identity delay {
 base te‑optimization‑criterion;
 description "Optimized on delay.";
}

identity path‑computation‑srlg‑type {
 description
 "Base identity for SRLG path computation";
}
identity srlg‑ignore {
 base path‑computation‑srlg‑type;
 description
 "Ignores SRLGs in path computation";
}
identity srlg‑strict {
 base path‑computation‑srlg‑type;
 description
 "Include strict SRLG check in path computation";
}
identity srlg‑preferred {
 base path‑computation‑srlg‑type;
 description
 "Include preferred SRLG check in path computation";
}
identity srlg‑weighted {
 base path‑computation‑srlg‑type;
 description
 "Include weighted SRLG check in path computation";
}

identity otn‑rate‑type {
 description
 "Base type to identify OTN bit rates of various information
 structures.";
 reference "RFC7139";
}
identity odu0 {
 base otn‑rate‑type;
 description
 "ODU0 bit rate.";
}
identity odu1 {

 base otn‑rate‑type;
 description
 "ODU1 bit rate.";
}
identity odu2 {
 base otn‑rate‑type;
 description
 "ODU2 bit rate.";
}
identity odu3 {
 base otn‑rate‑type;
 description
 "ODU3 bit rate.";
}
identity odu4 {
 base otn‑rate‑type;
 description
 "ODU4 bit rate.";
}
identity odu2e {
 base otn‑rate‑type;
 description
 "ODU2e bit rate.";
}
identity oduc {
 base otn‑rate‑type;
 description
 "ODUCn bit rate.";
}
identity oduflex {
 base otn‑rate‑type;
 description
 "ODUflex bit rate.";
}

identity wdm‑spectrum‑type {
 description
 "Base type to identify WDM spectrum type.";
}
identity cwdm {
 base wdm‑spectrum‑type;
 description "CWDM.";
 reference "RFC6205";
}
identity dwdm {
 base wdm‑spectrum‑type;
 description "DWDM.";
 reference "RFC6205";

}
identity flexible‑grid {
 base wdm‑spectrum‑type;
 description "Flexible grid.";
 reference "RFC6205";
}

/**
 * TE bandwidth groupings
 **/
grouping te‑bandwidth {
 description
 "This grouping defines the generic TE bandwidth.
 For some known data plane technologies, specific modeling
 structures are specified. The string encoded te‑bandwidth
 type is used for un‑specified technologies.
 The modeling structure can be augmented later for other
 technologies.";
 container te‑bandwidth {
 description
 "Container that specifies TE bandwidth.";
 choice technology {
 default generic;
 description
 "Data plane technology type.";
 case generic {
 leaf generic {
 type te‑bandwidth;
 description
 "Bandwidth specified in a generic format.";
 }
 }
 }
 }
}

/**
 * TE label groupings
 **/
grouping te‑label {
 description
 "This grouping defines the generic TE label.
 The modeling structure can be augmented for each technology.
 For un‑specified technologies, rt‑types:generalized‑label
 is used.";
 container te‑label {
 description
 "Container that specifies TE label.";

 choice technology {
 default generic;
 description
 "Data plane technology type.";
 case generic {
 leaf generic {
 type rt‑types:generalized‑label;
 description
 "TE label specified in a generic format.";
 }
 }
 }
 leaf direction {
 type te‑label‑direction;
 description "Label direction";
 }
 }
}

grouping te‑topology‑identifier {
 description
 "Augmentation for TE topology.";
 container te‑topology‑identifier {
 description "TE topology identifier container";
 leaf provider‑id {
 type te‑types:te‑global‑id;
 description
 "An identifier to uniquely identify a provider.";
 }
 leaf client‑id {
 type te‑types:te‑global‑id;
 description
 "An identifier to uniquely identify a client.";
 }
 leaf topology‑id {
 type te‑types:te‑topology‑id;
 description
 "It is presumed that a datastore will contain many
 topologies. To distinguish between topologies it is
 vital to have UNIQUE topology identifiers.";
 }
 }
}

/**
 * TE performance metric groupings
 **/
grouping performance‑metric‑one‑way‑delay‑loss {

 description
 "Performance metric information in real time that can
 be applicable to links or connections. PM defined
 in this grouping is applicable to generic TE performance
 metrics as well as packet TE performance metrics.";
 reference
 "RFC7471: OSPF Traffic Engineering (TE) Metric Extensions.
 RFC7810: IS‑IS Traffic Engineering (TE) Metric Extensions.
 RFC7823: Performance‑Based Path Selection for Explicitly
 Routed Label Switched Paths (LSPs) Using TE Metric
 Extensions";
 leaf one‑way‑delay {
 type uint32 {
 range 0..16777215;
 }
 description "Delay or latency in micro seconds.";
 }
 leaf one‑way‑min‑delay {
 type uint32 {
 range 0..16777215;
 }
 description "Minimum delay or latency in micro seconds.";
 }
 leaf one‑way‑max‑delay {
 type uint32 {
 range 0..16777215;
 }
 description "Maximum delay or latency in micro seconds.";
 }
 leaf one‑way‑delay‑variation {
 type uint32 {
 range 0..16777215;
 }
 description "Delay variation in micro seconds.";
 }
 leaf one‑way‑packet‑loss {
 type decimal64 {
 fraction‑digits 6;
 range "0 .. 50.331642";
 }
 description
 "Packet loss as a percentage of the total traffic sent
 over a configurable interval. The finest precision is
 0.000003%.";
 }
}

 grouping performance-metric-two-way-delay-loss {

 description
 "Performance metric information in real time that can
 be applicable to links or connections. PM defined
 in this grouping is applicable to generic TE performance
 metrics as well as packet TE performance metrics.";
 reference
 "RFC7471: OSPF Traffic Engineering (TE) Metric Extensions.
 RFC7810: IS‑IS Traffic Engineering (TE) Metric Extensions.
 RFC7823: Performance‑Based Path Selection for Explicitly
 Routed Label Switched Paths (LSPs) Using TE Metric
 Extensions";
 leaf two‑way‑delay {
 type uint32 {
 range 0..16777215;
 }
 description "Delay or latency in micro seconds.";
 }
 leaf two‑way‑min‑delay {
 type uint32 {
 range 0..16777215;
 }
 description "Minimum delay or latency in micro seconds.";
 }
 leaf two‑way‑max‑delay {
 type uint32 {
 range 0..16777215;
 }
 description "Maximum delay or latency in micro seconds.";
 }
 leaf two‑way‑delay‑variation {
 type uint32 {
 range 0..16777215;
 }
 description "Delay variation in micro seconds.";
 }
 leaf two‑way‑packet‑loss {
 type decimal64 {
 fraction‑digits 6;
 range "0 .. 50.331642";
 }
 description
 "Packet loss as a percentage of the total traffic sent
 over a configurable interval. The finest precision is
 0.000003%.";
 }
}

 grouping performance-metric-one-way-bandwidth {

 description
 "Performance metric information in real time that can
 be applicable to links. PM defined
 in this grouping is applicable to generic TE performance
 metrics as well as packet TE performance metrics.";
 reference
 "RFC7471: OSPF Traffic Engineering (TE) Metric Extensions.
 RFC7810: IS‑IS Traffic Engineering (TE) Metric Extensions.
 RFC7823: Performance‑Based Path Selection for Explicitly
 Routed Label Switched Paths (LSPs) Using TE Metric
 Extensions";

 leaf one‑way‑residual‑bandwidth {
 type rt‑types:bandwidth‑ieee‑float32;
 description
 "Residual bandwidth that subtracts tunnel
 reservations from Maximum Bandwidth (or link capacity)
 [RFC3630] and provides an aggregated remainder across QoS
 classes.";
 }
 leaf one‑way‑available‑bandwidth {
 type rt‑types:bandwidth‑ieee‑float32;
 description
 "Available bandwidth that is defined to be residual
 bandwidth minus the measured bandwidth used for the
 actual forwarding of non‑RSVP‑TE LSP packets. For a
 bundled link, available bandwidth is defined to be the
 sum of the component link available bandwidths.";
 }
 leaf one‑way‑utilized‑bandwidth {
 type rt‑types:bandwidth‑ieee‑float32;
 description
 "Bandwidth utilization that represents the actual
 utilization of the link (i.e. as measured in the router).
 For a bundled link, bandwidth utilization is defined to
 be the sum of the component link bandwidth
 utilizations.";
 }
}

grouping performance‑metric‑container {
 description
 "A container containing performance metric attributes.";
 container performance‑metric‑one‑way {
 description
 "One‑way link performance information in real time.";
 reference
 "RFC7471: OSPF Traffic Engineering (TE) Metric Extensions.

 RFC7810: IS‑IS Traffic Engineering (TE) Metric Extensions.
 RFC7823: Performance‑Based Path Selection for Explicitly
 Routed Label Switched Paths (LSPs) Using TE Metric
 Extensions";
 uses performance‑metric‑one‑way‑delay‑loss;
 uses performance‑metric‑one‑way‑bandwidth;
 }
 container performance‑metric‑two‑way {
 description
 "Two‑way link performance information in real time.";
 reference
 "RFC7471: OSPF Traffic Engineering (TE) Metric Extensions.
 RFC7810: IS‑IS Traffic Engineering (TE) Metric Extensions.
 RFC7823: Performance‑Based Path Selection for Explicitly
 Routed Label Switched Paths (LSPs) Using TE Metric
 Extensions";
 uses performance‑metric‑two‑way‑delay‑loss;
 }
}

/**
 * TE tunnel generic groupings
 **/
grouping explicit‑route‑hop {
 description
 "The explicit route subobject grouping";
 choice type {
 description
 "The explicit route subobject type";
 case num‑unnum‑hop {
 container num‑unnum‑hop {
 leaf node‑id {
 type te‑types:te‑node‑id;
 description
 "The identifier of a node in the TE topology.";
 }
 leaf link‑tp‑id {
 type te‑types:te‑tp‑id;
 description
 "TE link termination point identifier. The combination
 of TE link ID and the TE node ID is used to identify an
 unnumbered TE link.";
 }
 leaf hop‑type {
 type te‑hop‑type;
 description "strict or loose hop";
 }
 leaf direction {

 type te‑link‑direction;
 default INCOMING;
 description "Link ERO direction";
 }
 description
 "Numbered and Unnumbered link/node explicit route
 subobject";
 reference
 "RFC3209: section 4.3 for EXPLICIT_ROUTE in RSVP‑TE
 RFC3477: Signalling Unnumbered Links in RSVP‑TE";
 }
 }
 case as‑number {
 container as‑number‑hop {
 leaf as‑number {
 type binary {
 length 16;
 }
 description "AS number";
 }
 leaf hop‑type {
 type te‑hop‑type;
 description
 "strict or loose hop";
 }
 description
 "Autonomous System explicit route subobject";
 }
 }
 case label {
 container label‑hop {
 description "Label hop type";
 uses te‑label;
 }
 description
 "The Label ERO subobject";
 }
 }
}

grouping record‑route‑subobject_state {
 description
 "The record route subobject grouping";
 leaf index {
 type uint32;
 description "RRO subobject index";
 }
 choice type {

 description
 "The record route subobject type";
 case numbered {
 leaf address {
 type te‑types:te‑tp‑id;
 description
 "Numbered link TE termination point address.";
 }
 leaf ip‑flags {
 type binary {
 length 8;
 }
 description
 "RRO IP address sub‑object flags";
 reference "RFC3209";
 }
 }
 case unnumbered {
 leaf node‑id {
 type te‑types:te‑node‑id;
 description
 "The identifier of a node in the TE topology.";
 }
 leaf link‑tp‑id {
 type te‑types:te‑tp‑id;
 description
 "TE link termination point identifier, used
 together with te‑node‑id to identify the
 link termination point";
 }
 description
 "Unnumbered link record route subobject";
 reference
 "RFC3477: Signalling Unnumbered Links in
 RSVP‑TE";
 }
 case label {
 container label‑hop {
 description "Label hop type";
 uses te‑label;
 leaf label‑flags {
 type binary {
 length 8;
 }
 description
 "Label sub‑object flags";
 reference "RFC3209";
 }

 }
 description
 "The Label RRO subobject";
 }
 }
}

grouping label‑restriction‑info {
 description "Label set item info";
 leaf restriction {
 type enumeration {
 enum inclusive {
 description "The label or label range is inclusive.";
 }
 enum exclusive {
 description "The label or label range is exclusive.";
 }
 }
 description
 "Whether the list item is inclusive or exclusive.";
 }
 leaf index {
 type uint32;
 description
 "Then index of the label restriction list entry.";
 }
 container label‑start {
 must "not(../label‑end/te‑label/direction) or "
 + "not(te‑label/direction) "
 + "or ../label‑end/te‑label/direction = te‑label/direction" {
 error‑message
 "label‑start and label‑end must have the same direction.";
 }
 description
 "This is the starting label if a label range is specified.
 This is the label value if a single label is specified,
 in which case, attribute 'label‑end' is not set.";
 uses te‑label;
 }
 container label‑end {
 must "not(../label‑end/te‑label/direction) or "
 + "not(te‑label/direction) "
 + "or ../label‑end/te‑label/direction = te‑label/direction" {
 error‑message
 "label‑start and label‑end must have the same direction.";
 }
 description
 "The ending label if a label range is specified;

 This attribute is not set, If a single label is
 specified.";
 uses te‑label;
 }
 container label‑step {
 description
 "The step increment between labels in the label range.
 The label start/end values will have to be consistent
 with the sign of label step. For example,
 label‑start < label‑end enforces label‑step > 0
 label‑start > label‑end enforces label‑step < 0";
 choice technology {
 default generic;
 description
 "Data plane technology type.";
 case generic {
 leaf generic {
 type int32;
 default 1;
 description "Label range step";
 }
 }
 }
 }
 leaf range‑bitmap {
 type binary;
 description
 "When there are gaps between label‑start and label‑end,
 this attribute is used to specify the positions
 of the used labels.";
 }
}

grouping label‑set‑info {
 description
 "Grouping for List of label restrictions specifying what labels
 may or may not be used on a link connectivity.";
 container label‑restrictions {
 description
 "The label restrictions container";
 list label‑restriction {
 key "index";
 description
 "The absence of label‑set implies that all labels are
 acceptable; otherwise only restricted labels are
 available.";
 reference
 "RFC7579: General Network Element Constraint Encoding

 for GMPLS‑Controlled Networks";
 uses label‑restriction‑info;
 }
 }
}

grouping optimizations_config {
 description "Optimization metrics configuration grouping";
 leaf metric‑type {
 type identityref {
 base te‑types:path‑metric‑type;
 }
 description "TE path metric type";
 }
 leaf weight {
 type uint8;
 description "TE path metric normalization weight";
 }
 container explicit‑route‑exclude‑objects {
 when "../metric‑type = " +
 "'te‑types:path‑metric‑optimize‑excludes'";
 description
 "Container for the exclude route object list";
 uses path‑route‑exclude‑objects;
 }
 container explicit‑route‑include‑objects {
 when "../metric‑type = " +
 "'te‑types:path‑metric‑optimize‑includes'";
 description
 "Container for the include route object list";
 uses path‑route‑include‑objects;
 }
}

grouping common‑constraints_config {
 description
 "Common constraints grouping that can be set on
 a constraint set or directly on the tunnel";

 uses te‑types:te‑bandwidth {
 description
 "A requested bandwidth to use for path computation";
 }

 leaf setup‑priority {
 type uint8 {
 range "0..7";
 }

 description
 "TE LSP requested setup priority";
 reference "RFC3209";
 }
 leaf hold‑priority {
 type uint8 {
 range "0..7";
 }
 description
 "TE LSP requested hold priority";
 reference "RFC3209";
 }
 leaf signaling‑type {
 type identityref {
 base te‑types:path‑signaling‑type;
 }
 description "TE tunnel path signaling type";
 }
}

grouping tunnel‑constraints_config {
 description
 "Tunnel constraints grouping that can be set on
 a constraint set or directly on the tunnel";
 uses te‑types:te‑topology‑identifier;
 uses te‑types:common‑constraints_config;
}

grouping path‑metrics‑bounds_config {
 description "TE path metric bounds grouping";
 leaf metric‑type {
 type identityref {
 base te‑types:path‑metric‑type;
 }
 description "TE path metric type";
 }
 leaf upper‑bound {
 type uint64;
 description "Upper bound on end‑to‑end TE path metric";
 }
}

grouping path‑objective‑function_config {
 description "Optimization metrics configuration grouping";
 leaf objective‑function‑type {
 type identityref {
 base te‑types:objective‑function‑type;
 }

 description
 "Objective function entry";
 }
}

grouping path‑route‑objects {
 description
 "List of EROs to be included or excluded when performing
 the path computation.";
 container explicit‑route‑objects {
 description
 "Container for the exclude route object list";
 list route‑object‑exclude‑always {
 key index;
 description
 "List of explicit route objects to always exclude
 from path computation";
 leaf index {
 type uint32;
 description "ERO subobject index";
 }
 uses te‑types:explicit‑route‑hop;
 }
 list route‑object‑include‑exclude {
 key index;
 description
 "List of explicit route objects to include or
 exclude in path computation";
 leaf explicit‑route‑usage {
 type identityref {
 base te‑types:route‑usage‑type;
 }
 description "Explicit‑route usage.";
 }
 leaf index {
 type uint32;
 description "ERO subobject index";
 }
 uses te‑types:explicit‑route‑hop {
 augment "type" {
 case srlg {
 container srlg {
 description "SRLG container";
 leaf srlg {
 type uint32;
 description "SRLG value";
 }
 }

 description "An SRLG value to be included or excluded";
 }
 description
 "Augmentation to generic explicit route for SRLG
 exclusion";
 }
 }
 }
 }
}

grouping path‑route‑include‑objects {
 description
 "List of EROs to be included when performing
 the path computation.";
 list route‑object‑include‑object {
 key index;
 description
 "List of explicit route objects to be included
 in path computation";
 leaf index {
 type uint32;
 description "ERO subobject index";
 }
 uses te‑types:explicit‑route‑hop;
 }
}

grouping path‑route‑exclude‑objects {
 description
 "List of EROs to be included when performing
 the path computation.";
 list route‑object‑exclude‑object {
 key index;
 description
 "List of explicit route objects to be excluded
 in path computation";
 leaf index {
 type uint32;
 description "ERO subobject index";
 }
 uses te‑types:explicit‑route‑hop {
 augment "type" {
 case srlg {
 container srlg {
 description "SRLG container";
 leaf srlg {
 type uint32;

 description "SRLG value";
 }
 }
 description "An SRLG value to be included or excluded";
 }
 description
 "Augmentation to generic explicit route for SRLG exclusion";
 }
 }
 }
}

grouping generic‑path‑metric‑bounds {
 description "TE path metric bounds grouping";
 container path‑metric‑bounds {
 description "TE path metric bounds container";
 list path‑metric‑bound {
 key metric‑type;
 description "List of TE path metric bounds";
 uses path‑metrics‑bounds_config;
 }
 }
}

 grouping generic-path-optimization {

 description "TE generic path optimization grouping";

 container optimizations {
 description
 "The objective function container that includes
 attributes to impose when computing a TE path";

 choice algorithm {
 description "Optimizations algorithm.";
 case metric {
 if‑feature path‑optimization‑metric;
 /* Optimize by metric */
 list optimization‑metric {
 key "metric‑type";
 description "TE path metric type";
 uses optimizations_config;
 }
 /* Tiebreakers */
 container tiebreakers {
 description
 "The list of tiebreaker criterion to apply
 on an equally favored set of paths to pick best";
 list tiebreaker {

 key "tiebreaker‑type";
 description
 "The list of tiebreaker criterion to apply
 on an equally favored set of paths to pick best";
 leaf tiebreaker‑type {
 type identityref {
 base te‑types:path‑metric‑type;
 }
 description "The objective function";
 }
 }
 }
 }
 case objective‑function {
 if‑feature path‑optimization‑objective‑function;
 /* Objective functions */
 container objective‑function {
 description
 "The objective function container that includes
 attributes to impose when computing a TE path";
 uses path‑objective‑function_config;
 }
 }
 }
 }
 }

 grouping generic‑path‑affinities {
 description
 "Path affinities grouping";
 container path‑affinities‑values {
 description
 "Path affinities values representation";
 list path‑affinities‑value {
 key "usage";
 description
 "List of named affinity constraints";
 leaf usage {
 type identityref {
 base resource‑affinities‑type;
 }
 description "Affinities usage";
 }
 leaf value {
 type admin‑groups;
 description "Affinity value";
 }
 }

 }
 container path‑affinity‑names {
 description
 "Path affinities named representation style";
 list path‑affinity‑name {
 key "usage";
 description "List of named affinity constraints";
 leaf usage {
 type identityref {
 base te‑types:resource‑affinities‑type;
 }
 description "Affinities usage";
 }
 list affinity‑name {
 key "name";
 leaf name {
 type string;
 description "Affinity name";
 }
 description "List of named affinities";
 }
 }
 }
 }

 grouping generic‑path‑srlgs {
 description
 "Path SRLG grouping";
 container path‑srlgs‑values {
 description
 "Path SRLG properties container";
 leaf usage {
 type identityref {
 base te‑types:route‑exclude‑srlg;
 }
 description "SRLG usage";
 }
 leaf‑list values {
 type srlg;
 description "SRLG value";
 }
 }
 container path‑srlgs‑names {
 description "Container for named SRLG list";
 list path‑srlgs‑name {
 key "usage";
 description "List of named SRLGs";
 leaf usage {

 type identityref {
 base te‑types:route‑exclude‑srlg;
 }
 description "SRLG usage";
 }
 list srlg‑name {
 key "name";
 leaf name {
 type string;
 description "The SRLG name";
 }
 description "List named SRLGs";
 }
 }
 }
 }

 grouping generic‑path‑disjointness {
 description "Path disjointness grouping";
 leaf disjointness {
 type te‑types:te‑path‑disjointness;
 description
 "The type of resource disjointness.
 Under primary path, disjointness level applies to
 all secondary LSPs. Under secondary, disjointness
 level overrides the one under primary";
 }
 }

 grouping common‑path‑constraints‑attributes {
 description
 "Common path constraints configuration grouping";
 uses common‑constraints_config;
 uses generic‑path‑metric‑bounds;
 uses generic‑path‑affinities;
 uses generic‑path‑srlgs;
 }

 grouping generic‑path‑constraints {
 description
 "Global named path constraints configuration
 grouping";
 container path‑constraints {
 description "TE named path constraints container";
 uses common‑path‑constraints‑attributes;
 uses generic‑path‑disjointness;
 }
 }

 grouping generic‑path‑properties {
 description "TE generic path properties grouping";
 container path‑properties {
 config false;
 description "The TE path properties";
 list path‑metric {
 key metric‑type;
 description "TE path metric type";
 leaf metric‑type {
 type identityref {
 base te‑types:path‑metric‑type;
 }
 description "TE path metric type";
 }
 leaf accumulative‑value {
 type uint64;
 description "TE path metric accumulative value";
 }
 }
 uses generic‑path‑affinities;
 uses generic‑path‑srlgs;
 container path‑route‑objects {
 description
 "Container for the list of route objects either returned by
 the computation engine or actually used by an LSP";
 list path‑route‑object {
 key index;
 description
 "List of route objects either returned by the computation
 engine or actually used by an LSP";
 leaf index {
 type uint32;
 description "ERO subobject index";
 }
 uses explicit‑route‑hop;
 }
 }
 }
 }
}
<CODE ENDS>

 Figure 1: TE basic types YANG module

5. IETF MPLS TE Types YANG Module

<CODE BEGINS> file "ietf‑te‑mpls‑types@2018‑10‑08.yang"
module ietf‑te‑mpls‑types {

 namespace "urn:ietf:params:xml:ns:yang:ietf-te-mpls-types";

/* Replace with IANA when assigned */
prefix "te‑mpls‑types";

 organization

 "IETF TEAS Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 WG Chair: Lou Berger

 <mailto:lberger@labn.net>

 WG Chair: Vishnu Pavan Beeram

 <mailto:vbeeram@juniper.net>

 Editor: Tarek Saad
 <mailto:tsaad@cisco.com>

 Editor: Rakesh Gandhi
 <mailto:rgandhi@cisco.com>

 Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

 Editor: Himanshu Shah
 <mailto:hshah@ciena.com>

 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>

 Editor: Igor Bryskin
 <mailto:Igor.Bryskin@huawei.com>

 Editor: Young Lee
 <mailto:leeyoung@huawei.com>";

 description
 "This module contains a collection of generally
 useful MPLS TE specific YANG data type definitions.";

 revision "2018‑10‑08" {
 description "Latest revision of TE MPLS types";
 reference "RFC3209";
 }

 /**
 * Typedefs
 */
 typedef te‑bandwidth‑requested‑type {
 type enumeration {
 enum SPECIFIED {
 description
 "Bandwidth is explicitly specified";
 }
 enum AUTO {
 description
 "Bandwidth is automatically computed";
 }
 }
 description
 "enumerated type for specifying whether bandwidth is
 explicitly specified or automatically computed";
 }

 typedef te‑class‑type {
 type uint8;
 description
 "Diffserv‑TE class‑type that defines a set of Traffic
 Trunks crossing a link that is governed by a specific
 set of bandwidth constraints. CT is used for the
 purposes of link bandwidth allocation, constraint‑
 based routing and admission control.";
 reference "RFC4124: Protocols for Diffserv‑aware TE";
 }

 typedef bc‑type {
 type uint8 {
 range "0..7";
 }
 description
 "Diffserv‑TE bandwidth constraint as defined in RFC4124";
 reference "RFC4124: Protocols for Diffserv‑aware TE";
 }

 typedef bandwidth‑kbps {
 type uint64;
 units "Kbps";
 description

 "Bandwidth values expressed in kilobits per second";
 }

 typedef bandwidth‑mbps {
 type uint64;
 units "Mbps";
 description
 "Bandwidth values expressed in megabits per second";
 }

 typedef bandwidth‑gbps {
 type uint64;
 units "Gbps";
 description
 "Bandwidth values expressed in gigabits per second";
 }

 identity backup‑protection‑type {
 description
 "Base identity for backup protection type";
 }

 identity backup‑protection‑link {
 base backup‑protection‑type;
 description
 "backup provides link protection only";
 }

 identity backup‑protection‑node‑link {
 base backup‑protection‑type;
 description
 "backup offers node (preferred) or link protection";
 }

 identity bc‑model‑type {
 description
 "Base identity for Diffserv‑TE bandwidth constraint
 model type";
 reference "RFC4124: Protocols for Diffserv‑aware TE";
 }

 identity bc‑model‑rdm {
 base bc‑model‑type;
 description
 "Russian Doll bandwidth constraint model type.";
 reference "RFC4127: Russian Dolls Model for DS‑TE";
 }

 identity bc‑model‑mam {
 base bc‑model‑type;
 description
 "Maximum Allocation bandwidth constraint
 model type.";
 reference "RFC4125: Maximum Allocation Model for DS‑TE";
 }

 identity bc‑model‑mar {
 base bc‑model‑type;
 description
 "Maximum Allocation with Reservation
 bandwidth constraint model type.";
 reference "RFC4126: MAR Bandwidth Constraints Model for DS‑TE";
 }
}
<CODE ENDS>

 Figure 2: TE MPLS types YANG module

6. IANA Considerations

 This document registers the following URIs in the IETF XML registry
 [RFC3688]. Following the format in [RFC3688], the following
 registration is requested to be made.

 URI: urn:ietf:params:xml:ns:yang:ietf-te-types XML: N/A, the
 requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-te-mpls-types XML: N/A, the
 requested URI is an XML namespace.

 This document registers a YANG module in the YANG Module Names
 registry [RFC6020].

 name: ietf-te-types namespace: urn:ietf:params:xml:ns:yang:ietf-te-
 types prefix: ietf-te-types reference: RFC3209

 name: ietf-te-mpls-types namespace: urn:ietf:params:xml:ns:yang:ietf-
 te-mpls-types prefix: ietf-te-mpls-types reference: RFC3209

7. Security Considerations

 This document defines common TE type definitions (i.e., typedef,
 identity and grouping statements) using the YANG data modeling
 language. The definitions themselves have no security or privacy
 impact on the Internet, but the usage of these definitions in
 concrete YANG modules might have. The security considerations
 spelled out in the YANG 1.1 specification [RFC7950] apply for this
 document as well.

8. Acknowledgement

 The authors would like to thank the members of the multi-vendor YANG
 design team who are involved in the definition of these data types.

 The authors would also like to thank Loa Andersson, Lou Berger,
 Sergio Belotti, Italo Busi, Carlo Perocchio, Francesco Lazzeri, Aihua
 Guo, Dhruv Dhody, Anurag Sharma, and Xian Zhang for their comments
 and providing valuable feedback on this document.

9. Contributors

Himanshu Shah
Ciena

 Email: hshah@ciena.com

Young Lee
Huawei Technologies

 Email: leeyoung@huawei.com

10. References

10.1. Normative References

 [I-D.ietf-teas-yang-rsvp]

 Beeram, V., Saad, T., Gandhi, R., Liu, X., Bryskin, I.,
 and H. Shah, "A YANG Data Model for Resource Reservation
 Protocol (RSVP)", draft-ietf-teas-yang-rsvp-09 (work in
 progress), May 2018.

 [I-D.ietf-teas-yang-te]

 Saad, T., Gandhi, R., Liu, X., Beeram, V., Shah, H., and
 I. Bryskin, "A YANG Data Model for Traffic Engineering
 Tunnels and Interfaces", draft-ietf-teas-yang-te-16 (work
 in progress), July 2018.

 [I-D.ietf-teas-yang-te-topo]

 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
 O. Dios, "YANG Data Model for Traffic Engineering (TE)
 Topologies", draft-ietf-teas-yang-te-topo-18 (work in
 progress), June 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <https://www.rfc-editor.org/info/rfc3209>.

 [RFC3471]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Functional Description",
 RFC 3471, DOI 10.17487/RFC3471, January 2003,
 <https://www.rfc-editor.org/info/rfc3471>.

 [RFC3477]
 Kompella, K. and Y. Rekhter, "Signalling Unnumbered Links
 in Resource ReSerVation Protocol - Traffic Engineering
 (RSVP-TE)", RFC 3477, DOI 10.17487/RFC3477, January 2003,
 <https://www.rfc-editor.org/info/rfc3477>.

 [RFC3630]
 Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
 (TE) Extensions to OSPF Version 2", RFC 3630,
 DOI 10.17487/RFC3630, September 2003,
 <https://www.rfc-editor.org/info/rfc3630>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC3785]
 Le Faucheur, F., Uppili, R., Vedrenne, A., Merckx, P., and
 T. Telkamp, "Use of Interior Gateway Protocol (IGP) Metric
 as a second MPLS Traffic Engineering (TE) Metric", BCP 87,
 RFC 3785, DOI 10.17487/RFC3785, May 2004,
 <https://www.rfc-editor.org/info/rfc3785>.

 [RFC4090]
 Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast
 Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090,
 DOI 10.17487/RFC4090, May 2005,
 <https://www.rfc-editor.org/info/rfc4090>.

 [RFC4124]
 Le Faucheur, F., Ed., "Protocol Extensions for Support of
 Diffserv-aware MPLS Traffic Engineering", RFC 4124,
 DOI 10.17487/RFC4124, June 2005,
 <https://www.rfc-editor.org/info/rfc4124>.

 [RFC4203]
 Kompella, K., Ed. and Y. Rekhter, Ed., "OSPF Extensions in
 Support of Generalized Multi-Protocol Label Switching
 (GMPLS)", RFC 4203, DOI 10.17487/RFC4203, October 2005,
 <https://www.rfc-editor.org/info/rfc4203>.

 [RFC4872]
 Lang, J., Ed., Rekhter, Y., Ed., and D. Papadimitriou,
 Ed., "RSVP-TE Extensions in Support of End-to-End
 Generalized Multi-Protocol Label Switching (GMPLS)
 Recovery", RFC 4872, DOI 10.17487/RFC4872, May 2007,
 <https://www.rfc-editor.org/info/rfc4872>.

 [RFC4873]
 Berger, L., Bryskin, I., Papadimitriou, D., and A. Farrel,
 "GMPLS Segment Recovery", RFC 4873, DOI 10.17487/RFC4873,
 May 2007, <https://www.rfc-editor.org/info/rfc4873>.

 [RFC4875]
 Aggarwal, R., Ed., Papadimitriou, D., Ed., and S.
 Yasukawa, Ed., "Extensions to Resource Reservation
 Protocol - Traffic Engineering (RSVP-TE) for Point-to-
 Multipoint TE Label Switched Paths (LSPs)", RFC 4875,
 DOI 10.17487/RFC4875, May 2007,
 <https://www.rfc-editor.org/info/rfc4875>.

 [RFC5003]
 Metz, C., Martini, L., Balus, F., and J. Sugimoto,
 "Attachment Individual Identifier (AII) Types for
 Aggregation", RFC 5003, DOI 10.17487/RFC5003, September
 2007, <https://www.rfc-editor.org/info/rfc5003>.

 [RFC5305]
 Li, T. and H. Smit, "IS-IS Extensions for Traffic
 Engineering", RFC 5305, DOI 10.17487/RFC5305, October
 2008, <https://www.rfc-editor.org/info/rfc5305>.

 [RFC5307]
 Kompella, K., Ed. and Y. Rekhter, Ed., "IS-IS Extensions
 in Support of Generalized Multi-Protocol Label Switching
 (GMPLS)", RFC 5307, DOI 10.17487/RFC5307, October 2008,
 <https://www.rfc-editor.org/info/rfc5307>.

 [RFC5329]
 Ishiguro, K., Manral, V., Davey, A., and A. Lindem, Ed.,
 "Traffic Engineering Extensions to OSPF Version 3",
 RFC 5329, DOI 10.17487/RFC5329, September 2008,
 <https://www.rfc-editor.org/info/rfc5329>.

 [RFC5541]
 Le Roux, JL., Vasseur, JP., and Y. Lee, "Encoding of
 Objective Functions in the Path Computation Element
 Communication Protocol (PCEP)", RFC 5541,
 DOI 10.17487/RFC5541, June 2009,
 <https://www.rfc-editor.org/info/rfc5541>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6119]
 Harrison, J., Berger, J., and M. Bartlett, "IPv6 Traffic
 Engineering in IS-IS", RFC 6119, DOI 10.17487/RFC6119,
 February 2011, <https://www.rfc-editor.org/info/rfc6119>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6370]
 Bocci, M., Swallow, G., and E. Gray, "MPLS Transport
 Profile (MPLS-TP) Identifiers", RFC 6370,
 DOI 10.17487/RFC6370, September 2011,
 <https://www.rfc-editor.org/info/rfc6370>.

 [RFC6378]
 Weingarten, Y., Ed., Bryant, S., Osborne, E., Sprecher,
 N., and A. Fulignoli, Ed., "MPLS Transport Profile (MPLS-
 TP) Linear Protection", RFC 6378, DOI 10.17487/RFC6378,
 October 2011, <https://www.rfc-editor.org/info/rfc6378>.

 [RFC6780]
 Berger, L., Le Faucheur, F., and A. Narayanan, "RSVP
 ASSOCIATION Object Extensions", RFC 6780,
 DOI 10.17487/RFC6780, October 2012,
 <https://www.rfc-editor.org/info/rfc6780>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7471]
 Giacalone, S., Ward, D., Drake, J., Atlas, A., and S.
 Previdi, "OSPF Traffic Engineering (TE) Metric
 Extensions", RFC 7471, DOI 10.17487/RFC7471, March 2015,
 <https://www.rfc-editor.org/info/rfc7471>.

 [RFC7810]
 Previdi, S., Ed., Giacalone, S., Ward, D., Drake, J., and
 Q. Wu, "IS-IS Traffic Engineering (TE) Metric Extensions",
 RFC 7810, DOI 10.17487/RFC7810, May 2016,
 <https://www.rfc-editor.org/info/rfc7810>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8294]
 Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
 "Common YANG Data Types for the Routing Area", RFC 8294,
 DOI 10.17487/RFC8294, December 2017,
 <https://www.rfc-editor.org/info/rfc8294>.

10.2. Informative References

 [RFC2702]
 Awduche, D., Malcolm, J., Agogbua, J., O'Dell, M., and J.
 McManus, "Requirements for Traffic Engineering Over MPLS",
 RFC 2702, DOI 10.17487/RFC2702, September 1999,
 <https://www.rfc-editor.org/info/rfc2702>.

 [RFC4125]
 Le Faucheur, F. and W. Lai, "Maximum Allocation Bandwidth
 Constraints Model for Diffserv-aware MPLS Traffic
 Engineering", RFC 4125, DOI 10.17487/RFC4125, June 2005,
 <https://www.rfc-editor.org/info/rfc4125>.

 [RFC4126]
 Ash, J., "Max Allocation with Reservation Bandwidth
 Constraints Model for Diffserv-aware MPLS Traffic
 Engineering & Performance Comparisons", RFC 4126,
 DOI 10.17487/RFC4126, June 2005,
 <https://www.rfc-editor.org/info/rfc4126>.

 [RFC4127]
 Le Faucheur, F., Ed., "Russian Dolls Bandwidth Constraints
 Model for Diffserv-aware MPLS Traffic Engineering",
 RFC 4127, DOI 10.17487/RFC4127, June 2005,
 <https://www.rfc-editor.org/info/rfc4127>.

 [RFC4427]
 Mannie, E., Ed. and D. Papadimitriou, Ed., "Recovery
 (Protection and Restoration) Terminology for Generalized
 Multi-Protocol Label Switching (GMPLS)", RFC 4427,
 DOI 10.17487/RFC4427, March 2006,
 <https://www.rfc-editor.org/info/rfc4427>.

Authors' Addresses

Tarek Saad
Cisco Systems Inc

 Email: tsaad@cisco.com

Rakesh Gandhi
Cisco Systems Inc

 Email: rgandhi@cisco.com

Xufeng Liu
Volta Networks

 Email: xufeng.liu.ietf@gmail.com

Vishnu Pavan Beeram
Juniper Networks

 Email: vbeeram@juniper.net

Igor Bryskin
Huawei Technologies

 Email: Igor.Bryskin@huawei.com

7551 - RSVP-TE Extensions for Associated Bidirectional Label Switched Paths (LSP

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7551

Category: Standards Track

ISSN: 2070-1721

F. Zhang, Ed.

Huawei

R. Jing

China Telecom

R. Gandhi, Ed.

Cisco Systems

May 2015

RSVP-TE Extensions for Associated Bidirectional Label Switched Paths (LSPs)

Abstract

 This document describes Resource Reservation Protocol (RSVP)
 extensions to bind two point-to-point unidirectional Label Switched
 Paths (LSPs) into an associated bidirectional LSP. The association
 is achieved by defining new Association Types for use in ASSOCIATION
 and in Extended ASSOCIATION Objects. One of these types enables
 independent provisioning of the associated bidirectional LSPs on both
 sides, while the other enables single-sided provisioning. The
 REVERSE_LSP Object is also defined to enable a single endpoint to
 trigger creation of the reverse LSP and to specify parameters of the
 reverse LSP in the single-sided provisioning case.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7551.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions Used in This Document
	 2.1. Key Word Definitions

	 2.2. Reverse Unidirectional LSPs

	 2.3. Message Formats

	3. Overview
	 3.1. Provisioning Model Overview
	 3.1.1. Single-Sided Provisioning

	 3.1.2. Double-Sided Provisioning

	 3.2. Association Signaling Overview
	 3.2.1. Single-Sided Provisioning

	 3.2.2. Double-Sided Provisioning

	 3.3. Asymmetric Bandwidth Signaling Overview
	 3.3.1. Single-Sided Provisioning

	 3.3.2. Double-Sided Provisioning

	 3.4. Recovery LSP Overview

	4. Message and Object Definitions
	 4.1. RSVP Message Formats

	 4.2. ASSOCIATION Object

	 4.3. Extended ASSOCIATION Object

	 4.4. REVERSE_LSP Object Definition
	 4.4.1. REVERSE_LSP Object Format

	 4.4.2. REVERSE_LSP Subobjects

	5. Processing Rules
	 5.1. Rules for ASSOCIATION Object
	 5.1.1. Compatibility for ASSOCIATION Object

	 5.2. Rules for REVERSE_LSP Object
	 5.2.1. Compatibility for REVERSE_LSP Object

	6. IANA Considerations
	 6.1. Association Types

	 6.2. REVERSE_LSP Object

	 6.3. Reverse LSP Failure PathErr Sub-code

	7. Security Considerations

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Acknowledgements

	Contributors

	Authors' Addresses

1. Introduction

 The MPLS Transport Profile (MPLS-TP) requirements document [RFC5654]
 specifies that MPLS-TP MUST support associated bidirectional point-
 to-point Label Switched Paths (LSPs). These requirements are given
 in Section 2.1 ("General Requirements") of that document and are
 partially rephrased below:

 7. MPLS-TP MUST support associated bidirectional point-to-point
 LSPs.

 11. The end points of an associated bidirectional LSP MUST be aware
 of the pairing relationship of the forward and reverse LSPs used
 to support the bidirectional service.

 12. Nodes on the LSP of an associated bidirectional LSP where both
 the forward and backward directions transit the same node in the
 same (sub)layer as the LSP SHOULD be aware of the pairing
 relationship of the forward and the backward directions of the
 LSP.

 50. The MPLS-TP control plane MUST support establishing associated
 bidirectional P2P LSP including configuration of protection
 functions and any associated maintenance functions.

 The above requirements are also repeated in [RFC6373].

 Furthermore, an associated bidirectional LSP is also useful for
 protection-switching for Operations, Administration, and Maintenance
 (OAM) messages that require a return path.

 A variety of applications, such as Internet services and the return
 paths of OAM messages, exist and may have different upstream and
 downstream bandwidth requirements. [RFC5654] specifies an asymmetric
 bandwidth requirement in Section 2.1 ("General Requirements"), and it
 is repeated below:

 14. MPLS-TP MUST support bidirectional LSPs with asymmetric
 bandwidth requirements, i.e., the amount of reserved bandwidth
 differs between the forward and backward directions.

 The approach for supporting asymmetric bandwidth co-routed
 bidirectional LSPs is defined in [RFC6387].

 The method of association and the corresponding Resource Reservation
 Protocol (RSVP) ASSOCIATION Object are defined in [RFC4872],
 [RFC4873], and [RFC6689]. In that context, the ASSOCIATION Object is
 used to associate a recovery LSP with the LSP it is protecting. This
 object also has broader applicability as a mechanism to associate
 RSVP states. [RFC6780] defines the Extended ASSOCIATION Objects that
 can be more generally applied for this purpose. This document uses
 the term "(Extended) ASSOCIATION Objects" to refer collectively to
 the ASSOCIATION Objects defined in [RFC4872] and the Extended
 ASSOCIATION Objects defined in [RFC6780].

 This document specifies mechanisms for binding two reverse
 unidirectional LSPs into an associated bidirectional LSP. The
 association is achieved by defining new Association Types for use in
 (Extended) ASSOCIATION Objects. One of these types enables
 independent provisioning of the associated bidirectional LSPs, while
 the other enables single-sided provisioning. The REVERSE_LSP Object
 is also defined to enable a single endpoint to trigger creation of
 the reverse LSP and to specify parameters of the reverse LSP in the
 single-sided provisioning case. For example, the REVERSE_LSP Object
 allow asymmetric upstream and downstream bandwidths for the
 associated bidirectional LSP.

2. Conventions Used in This Document

2.1. Key Word Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2.2. Reverse Unidirectional LSPs

 Two reverse unidirectional LSPs are setup in the opposite directions
 between a pair of source and destination nodes to form an associated
 bidirectional LSP. A reverse unidirectional LSP originates on the
 same node where the forward unidirectional LSP terminates, and it
 terminates on the same node where the forward unidirectional LSP
 originates.

2.3. Message Formats

 This document uses the Routing Backus-Naur Form (RBNF) to define
 message formats as defined in [RFC5511].

3. Overview

3.1. Provisioning Model Overview

 This section provides an overview and definition of the models for
 provisioning associated bidirectional LSPs.

 The associated bidirectional LSP's forward and reverse unidirectional
 LSPs are established, monitored, and protected independently as
 specified by [RFC5654]. Configuration information regarding the LSPs
 can be provided at one or both endpoints of the associated
 bidirectional LSP. Depending on the method chosen, there are two
 models of creating an associated bidirectional LSP -- single-sided
 provisioning and double-sided provisioning.

3.1.1. Single-Sided Provisioning

 For the single-sided provisioning, the Traffic Engineering (TE)
 tunnel is configured only on one endpoint. An LSP for this tunnel is
 initiated by the initiating endpoint with the (Extended) ASSOCIATION
 and REVERSE_LSP Objects inserted in the Path message. The other
 endpoint then creates the corresponding reverse TE tunnel and signals
 the reverse LSP in response using information from the REVERSE_LSP
 Object and other objects present in the received Path message.

3.1.2. Double-Sided Provisioning

 For the double-sided provisioning, two unidirectional TE tunnels are
 configured independently, one on each endpoint. The LSPs for the
 tunnels are signaled with (Extended) ASSOCIATION Objects inserted in
 the Path message by both endpoints to indicate that the two LSPs are
 to be associated to form a bidirectional LSP.

3.2. Association Signaling Overview

 This section provides an overview of the association signaling
 methods for the associated bidirectional LSPs.

 Three scenarios exist for binding two unidirectional LSPs together to
 form an associated bidirectional LSP. These are:

 1) Neither unidirectional LSP exists, and both must be established.

 2) Both unidirectional LSPs exist, but the association must be
 established.

 3) One LSP exists, but the reverse associated LSP must be
 established.

 The following sections describe the applicable provisioning models
 for each of these scenarios.

 Path Computation Element (PCE)-based approaches [RFC4655] may be used
 for path computation of an associated bidirectional LSP. However,
 these approaches are outside the scope of this document.

 Consider the topology described in Figure 1. LSP1 from node A to B,
 takes the path A,D,B, and LSP2 from node B to A takes the path
 B,D,C,A. These two LSPs, once established and associated, form an
 associated bidirectional LSP between nodes A and B.

LSP1 ‑‑>
A‑‑‑‑‑‑‑D‑‑‑‑‑‑‑B
 \ / <‑‑ LSP2
 \ /
 \ /
 C

 Figure 1: An Example of Associated Bidirectional LSP

3.2.1. Single-Sided Provisioning

 For the single-sided provisioning model, creation of reverse LSP1
 shown in Figure 1 is triggered by LSP2, or creation of reverse LSP2
 is triggered by LSP1. When creation of reverse LSP2 is triggered by
 LSP1, LSP1 is provisioned first (or refreshed, if LSP1 already
 exists) at node A. LSP1 is then signaled with an (Extended)
 ASSOCIATION, and REVERSE_LSP Objects are inserted in the Path
 message. The Association Type indicates single-sided provisioning.
 Upon receiving this Path message for LSP1, node B establishes reverse
 LSP2. The (Extended) ASSOCIATION Object inserted in LSP2's Path
 message is the same as that received in LSP1's Path message.

 A similar procedure is used if LSP2 is provisioned first at node B,
 and the creation of reverse LSP1 at node A is triggered by LSP2. In
 both scenarios, the two unidirectional LSPs are bound together to
 form an associated bidirectional LSP based on identical (Extended)
 ASSOCIATION Objects in the two LSPs' Path messages.

3.2.2. Double-Sided Provisioning

 For the double-sided provisioning model, both LSP1 and LSP2 shown in
 Figure 1 are signaled independently with (Extended) ASSOCIATION
 Objects inserted in the Path messages, in which the Association Type
 indicating double-sided provisioning is included. In this case, the
 two unidirectional LSPs are bound together to form an associated
 bidirectional LSP based on identical (Extended) ASSOCIATION Objects
 in the two LSPs' Path messages. In all three scenarios described in
 Section 3.2, the LSPs to be selected for the association are
 provisioned by the management action applied at both endpoints.

3.3. Asymmetric Bandwidth Signaling Overview

 This section provides an overview of the methods for signaling
 asymmetric upstream and downstream bandwidths for the associated
 bidirectional LSPs.

3.3.1. Single-Sided Provisioning

 A new REVERSE_LSP Object for use in the single-sided provisioning
 model is defined in this document, in Section 4.4. The REVERSE_LSP
 Object allows the initiating node of the single-sided provisioned LSP
 to trigger creation of the reverse LSP on the remote node. When the
 single-sided provisioning model is used, a SENDER_TSPEC Object can be
 added in the REVERSE_LSP Object as a subobject in the initiating
 LSP's Path message to specify a different bandwidth for the reverse
 LSP. As described in Section 4.4, addition of the REVERSE_LSP Object
 also allows the initiating node to control other aspects of the
 reverse LSP (such as its path) by including other objects in a
 REVERSE_LSP Object.

 Consider again the topology described in Figure 1, where the creation
 of reverse LSP2 is triggered by LSP1. Node A signals LSP1 with the
 (Extended) ASSOCIATION Object with Association Type indicating
 single-sided provisioning and inserts a SENDER_TSPEC subobject for
 use by LSP2 in the REVERSE_LSP Object in the Path message. Node B
 then establishes the LSP2 in the reverse direction using the
 asymmetric bandwidth thus specified by LSP1 and allows node A to
 control the reverse LSP2.

3.3.2. Double-Sided Provisioning

 When the double-sided provisioning model is used, the two
 unidirectional LSPs are established with separate bandwidths, which
 may or may not be identical. However, these LSPs are associated
 purely based on the identical contents of their (Extended)
 ASSOCIATION Objects.

3.4. Recovery LSP Overview

 Recovery of each unidirectional LSP forming the bidirectional LSP is
 independent [RFC5654] and is based on the parameters signaled in
 their respective RSVP Path messages.

 Recovery LSP association is based on the identical content of the
 (Extended) ASSOCIATION Objects signaled in their Path messages during
 the initial LSP setup for both single-sided and double-sided
 provisioning. As defined in [RFC6780], multiple ASSOCIATION Objects
 may be present in the signaling of a single LSP.

4. Message and Object Definitions

4.1. RSVP Message Formats

 This section presents the RSVP message-related formats as modified by
 this document. Unmodified RSVP message formats are not listed.

 The format of a Path message is as follows:

<Path Message> ::= <Common Header> [<INTEGRITY>]
 [[<MESSAGE_ID_ACK> | <MESSAGE_ID_NACK>] ...]
 [<MESSAGE_ID>]
 <SESSION> <RSVP_HOP>
 <TIME_VALUES>
 [<EXPLICIT_ROUTE>]
 <LABEL_REQUEST>
 [<PROTECTION>]
 [<LABEL_SET> ...]
 [<SESSION_ATTRIBUTE>]
 [<NOTIFY_REQUEST> ...]
 [<ADMIN_STATUS>]
 [<ASSOCIATION> ...]
 [<REVERSE_LSP> ...]
 [<POLICY_DATA> ...]
 <sender descriptor>

 The format of the <sender descriptor> is not modified by this
 document.

4.2. ASSOCIATION Object

 The ASSOCIATION Object is populated using the rules defined below for
 associating two reverse unidirectional LSPs to form an associated
 bidirectional LSP.

 Association Types:

 In order to bind two reverse unidirectional LSPs to be an
 associated bidirectional LSP, the Association Type MUST be set to
 indicate either single-sided or double-sided LSPs.

 The new Association Types are defined as follows:

Value Type
‑‑‑‑‑ ‑‑‑‑‑
 3 Double‑Sided Associated Bidirectional LSP (D)
 4 Single‑Sided Associated Bidirectional LSP (A)

 Association ID:

 For both single-sided and double-sided provisioning, Association
 ID MUST be set to a value assigned by the node that originates the
 association for the bidirectional LSP.

 Association Source:

 Association Source MUST be set to an address selected by the node
 that originates the association for the bidirectional LSP. For
 example, this may be a management entity or, in the case of
 single-sided provisioning, an address assigned to the node that
 originates the LSP.

4.3. Extended ASSOCIATION Object

 The Extended ASSOCIATION Object is populated using the rules defined
 below for associating two reverse unidirectional LSPs to form a
 bidirectional LSP.

 The Association Type, Association ID, and Association Source MUST be
 set as defined for the ASSOCIATION Object in Section 4.1.

 Global Association Source:

 For both single-sided and double-sided provisioning, Global
 Association Source, when used, MUST be set to the Global_ID
 [RFC6370] of the node that originates the association for the
 bidirectional LSP.

 Extended Association ID:

 For both single-sided and double-sided provisioning, Extended
 Association ID, when used, MUST be set to a value selected by the
 node that originates the association for the bidirectional LSP.

4.4. REVERSE_LSP Object Definition

4.4.1. REVERSE_LSP Object Format

 The REVERSE_LSP Object is carried in the Path message of a forward
 LSP to provide information to be used by the reverse LSP. The object
 also indicates that the LSP is the forward LSP of a single-sided
 associated bidirectional LSP.

 The Object has the following format:

 Class_Num = 203, C_Type = 1.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| |
// (Subobjects) //
| |
+‑+

4.4.2. REVERSE_LSP Subobjects

 Subobjects are used to override the default contents of a Path
 message of a reverse LSP; see Section 5.2. The contents of a
 REVERSE_LSP Object is zero or more variable-length subobjects that
 have the same format as RSVP Objects; see Section 3.1.2 of [RFC2205].
 Any object that may be carried in a Path message MAY be carried in
 the REVERSE_LSP Object. Subobject ordering MUST follow any Path
 message Object ordering requirements.

 Examples of the Path message Objects that can be carried in the
 REVERSE_LSP Object are (but not limited to):

‑ SENDER_TSPEC [RFC2205]
‑ EXPLICIT_ROUTE Object (ERO) [RFC3209]
‑ SESSION_ATTRIBUTE Object [RFC3209]
‑ ADMIN_STATUS Object [RFC3473]
‑ LSP_REQUIRED_ATTRIBUTES Object [RFC5420]
‑ PROTECTION Object [RFC3473] [RFC4872]

5. Processing Rules

 In general, the processing rules for the ASSOCIATION Object are as
 specified in [RFC4872], and those for the Extended ASSOCIATION Object
 are as specified in [RFC6780]. The following sections describe the
 rules for processing (Extended) ASSOCIATION Objects for both double-
 sided and single-sided associated bidirectional LSPs and REVERSE_LSP
 Objects for single-sided associated bidirectional LSPs.

5.1. Rules for ASSOCIATION Object

 This section defines the processing for the association of two
 unidirectional LSPs to form an associated bidirectional LSP. Such
 association is based on the use of an (Extended) ASSOCIATION Object.

 The procedures related to the actual identification of associations
 between LSPs based on (Extended) ASSOCIATION Objects are defined in
 [RFC6780]. [RFC6780] specifies that in the absence of rules for
 identifying the association that are specific to the Association
 Type, the included (Extended) ASSOCIATION Objects in the LSPs MUST be
 identical in order for an association to exist. This document adds
 no specific rules for the new Association Types defined, and the
 identification of an LSP association therefore proceeds as specified
 in [RFC6780].

 As described in [RFC6780], association of LSPs can be upstream or
 downstream initiated, as indicated by (Extended) ASSOCIATION Objects
 in Path or Resv Messages. The association of bidirectional LSPs is
 always upstream initiated; therefore, the Association Types defined
 in this document are only to be interpreted in Path Messages. These
 types SHOULD NOT be used in ASSOCIATION Objects carried in Resv
 messages and SHOULD be ignored if present.

 To indicate an associated bidirectional LSP, an ingress node MUST
 insert an (Extended) ASSOCIATION Object into the Path message of the
 unidirectional LSP that is part of the associated bidirectional LSP
 it initiates. If either Global Association Source or Extended
 Association Address is required, then an Extended ASSOCIATION Object
 [RFC6780] MUST be inserted in the Path message. Otherwise, an
 ASSOCIATION Object MAY be used. (Extended) ASSOCIATION Objects with
 both single-sided and double-sided Association Types MUST NOT be
 added or sent in the same Path message.

 The ingress node MUST set the Association Type field in the
 (Extended) ASSOCIATION Object to "Single-Sided Associated
 Bidirectional LSP" when single-sided provisioning is used, and to
 "Double-Sided Associated Bidirectional LSP" when double-sided
 provisioning is used.

 A transit node MAY identify the unidirectional LSPs of an associated
 bidirectional LSP based on (Extended) ASSOCIATION Objects, with the
 Association Type values defined in this document, carried in Path
 messages. Clearly, such associations are only possible when the LSPs
 transit the node. As mentioned above, such associations are made per
 the rules defined in [RFC6780].

 Egress nodes that support the Association Types defined in this
 document identify the unidirectional LSPs of an associated
 bidirectional LSP based on (Extended) ASSOCIATION Objects carried in
 Path messages. Note that an ingress node will normally be the
 ingress for one of the unidirectional LSPs that make up an associated
 bidirectional LSP. When an egress node receives a Path message
 containing an (Extended) ASSOCIATION Object with one of the
 Association Types defined in this document, it MUST attempt to
 identify other LSPs (including ones for which it is an ingress node)
 with which the LSP being processed is associated. As defined above,
 such associations are made per the rules defined in [RFC6780]. An
 LSP not being associated at the time of signaling (for example,
 during rerouting or re-optimization) on an egress node is not
 necessarily considered an error condition.

 Associated bidirectional LSP teardown follows the standard procedures
 defined in [RFC3209] and [RFC3473] either without or with the
 administrative status. Generally, the teardown procedures of the
 unidirectional LSPs forming an associated bidirectional LSP are
 independent of each other, so it is possible that while one LSP
 follows graceful teardown with administrative status, the reverse LSP
 is torn down without administrative status (using
 PathTear/ResvTear/PathErr with state removal). See Section 5.2 for
 additional rules related to LSPs established using single-sided
 provisioning.

 When an LSP signaled with a Path message containing an (Extended)
 ASSOCIATION Object with an Association Type defined in this document
 is torn down, the processing node SHALL remove the binding of the LSP
 to any previously identified associated bidirectional LSP.

 No additional processing is needed for Path messages with an
 (Extended) ASSOCIATION Object containing an Association Type field
 set to "Double-Sided Associated Bidirectional LSP".

5.1.1. Compatibility for ASSOCIATION Object

 The ASSOCIATION Object has been defined in [RFC4872] and the Extended
 ASSOCIATION Object has been defined in [RFC6780], both with class
 numbers in the form 11bbbbbb, which ensures compatibility with non-
 supporting nodes. Per [RFC2205], such nodes will ignore the object
 but forward it without modification.

 Operators wishing to use a function supported by a particular
 Association Type SHOULD ensure that the type is supported on any node
 that is expected to act on the association [RFC6780].

 An egress node that does not support the Association Types defined in
 this document is expected to return a PathErr with Error Code
 "Admission Control Failure" (1) [RFC2205] and Sub-code "Bad
 Association Type" (5) [RFC4872].

 LSP recovery as defined in [RFC4872] and [RFC4873] is not impacted by
 this document. The recovery mechanisms defined in [RFC4872] and
 [RFC4873] rely on the use of the (Extended) ASSOCIATION Objects, but
 they use a different value for Association Type; multiple ASSOCIATION
 Objects can be present in the LSP Path message and can coexist with
 the procedures defined in this document.

5.2. Rules for REVERSE_LSP Object

 When a node initiates setup of an LSP using a Path message containing
 an ASSOCIATION or Extended ASSOCIATION Object, and the Association
 Type set to "Single-Sided Associated Bidirectional LSP", the Path
 message MUST carry the REVERSE_LSP Object to trigger creation of a
 reverse LSP on the egress node.

 The REVERSE_LSP subobject MAY contain any of the objects that the
 initiating node desires to have included in the Path message for the
 associated reverse LSP. The REVERSE_LSP Object SHOULD NOT be
 included in a REVERSE_LSP Object.

 A transit node receiving a valid Path message containing a
 REVERSE_LSP Object MUST forward the REVERSE_LSP Object unchanged in
 the outgoing Path message.

 An egress node, upon receiving a Path message containing an
 REVERSE_LSP Object MUST verify that the Path message contains an
 ASSOCIATION or Extended ASSOCIATION Object with the Association Type
 set to "Single-Sided Associated Bidirectional LSP". If it does not,
 the Path message MUST NOT trigger a reverse LSP. This verification
 failure SHOULD NOT trigger any RSVP message but can be logged
 locally, and perhaps reported through network management mechanisms.
 Once validated, the egress node MUST create an LSP in the reverse
 direction or reject the Path message. If the creation of a reverse
 LSP fails, the egress node MUST return a PathErr with Error Code
 "Admission Control Failure" (1) [RFC2205] and Sub-code "Reverse LSP
 Failure" (6) defined in this document. Note that normal Resv
 processing SHOULD NOT be impacted by the presence of an ASSOCIATION
 Object with an Association Type set to "Single-Sided Associated
 Bidirectional LSP".

 The egress node MUST use the subobjects contained in the REVERSE_LSP
 Object for initiating the reverse LSP. When a subobject is not
 present in the received REVERSE_LSP Object, the egress node SHOULD
 initiate the reverse LSP based on the information contained in the
 received Path message of the forward LSP as follows:

 o The egress node SHOULD copy the information from the received
 SESSION_ATTRIBUTE, CLASS_TYPE, LABEL_REQUEST, ASSOCIATION,
 ADMIN_STATUS, and PROTECTION Objects in the forward LSP Path
 message to form the Path message of the reverse LSP when the
 object is not present in the received REVERSE_LSP Object.

 o The IP address in the reverse LSP's SESSION Object SHOULD be set
 to the IP address carried in the received SENDER_TEMPLATE Object;
 and conversely, the IP address in the SENDER_TEMPLATE Object
 SHOULD be set to the IP address carried in the received SESSION
 Object. There are no additional requirements related to the IDs
 carried in the SESSION and SENDER_TEMPLATE Objects.

 o When the forward LSP Path message contains a RECORD_ROUTE Object,
 the egress node SHOULD include the received RECORD_ROUTE Object in
 the reverse LSP Path message. Local node information SHOULD also
 be recorded per standard Path message processing.

 o There are no specific requirements related to other objects.

 The resulting Path message is used to create the reverse LSP. From
 this point on, standard Path message processing is used in processing
 the resulting Path message.

 Note that the contents of a forward LSP, including a carried
 REVERSE_LSP Object, may change over the life of an LSP, and such
 changes MUST result in corresponding changes in the reverse LSP. In
 particular, any object or subobject that was copied during the
 creation of the initial reverse LSP's Path message MUST be copied
 when modified in the forward LSP, and a trigger Path message MUST be
 processed.

 The removal of the REVERSE_LSP Object in the received Path message
 SHOULD cause the egress node to tear down any previously established
 reverse LSP.

 When the egress node receives a PathTear message for the forward LSP
 or whenever the forward LSP is torn down, the node MUST remove the
 associated reverse LSP using standard PathTear message processing.
 Teardown of the reverse LSP for other reasons SHOULD NOT trigger
 removal of the initiating LSP, but it SHOULD result in the egress
 node sending a PathErr with Error Code "Admission Control Failure"
 (1) [RFC2205] and Sub-code "Reverse LSP Failure" (6) defined in this
 document.

5.2.1. Compatibility for REVERSE_LSP Object

 The REVERSE_LSP Object is defined with class numbers in the form
 11bbbbbb, which ensures compatibility with non-supporting nodes. Per
 [RFC2205], such nodes will ignore the object but forward it without
 modification.

6. IANA Considerations

 IANA has registered values for the namespace defined in this document
 and summarized in this section.

6.1. Association Types

 IANA maintains the "Generalized Multi-Protocol Label Switching
 (GMPLS) Signaling Parameters" registry (see
 <http://www.iana.org/assignments/gmpls-sig-parameters>). The
 "Association Type" subregistry is included in this registry.

 This registry has been updated by new Association Types for
 ASSOCIATION and Extended ASSOCIATION Objects defined in this document
 as follows:

Value Name Reference
 3 Double‑Sided Associated Bidirectional LSP (D) Section 4.2
 4 Single‑Sided Associated Bidirectional LSP (A) Section 4.2

6.2. REVERSE_LSP Object

 IANA maintains the "Resource Reservation Protocol (RSVP) Parameters"
 registry (see <http://www.iana.org/assignments/rsvp-parameters>).
 The "Class Names, Class Numbers, and Class Types" subregistry is
 included in this registry.

 This registry has been extended for new Class Number (Class-Num) and
 Class Type (C-type) for RSVP REVERSE_LSP Object requested in the
 11bbbbbb range defined in this document as follows:

Class Number Class Name Reference
 203 REVERSE_LSP Section 4.4

 o REVERSE_LSP : Class Type or C-type = 1

6.3. Reverse LSP Failure PathErr Sub-code

 IANA maintains the "Resource Reservation Protocol (RSVP) Parameters"
 registry (see <http://www.iana.org/assignments/rsvp-parameters>).
 The "Error Codes and Globally-Defined Error Value Sub-Codes"
 subregistry is included in this registry.

 This registry has been extended for the new PathErr Sub-code defined
 in this document as follows:

 Error Code = 01: "Admission Control Failure" (see [RFC2205])

 o "Reverse LSP Failure" (6)

7. Security Considerations

 This document introduces two new Association Types for the (Extended)
 ASSOCIATION Object, Double-Sided Associated Bidirectional LSP and
 Single-Sided Associated Bidirectional LSP. These types, by
 themselves, introduce no additional information to signaling.
 Related security considerations are already covered for this in RFC
 6780.

 The REVERSE_LSP Object is carried in the Path message of a forward
 LSP of the single-sided associated bidirectional LSP. It can carry
 parameters for the reverse LSP. This does allow for additional
 information to be conveyed, but this information is not fundamentally
 different from the information that is already carried in a
 bidirectional LSP message. The processing of such messages is
 already subject to local policy as well as security considerations
 discussions. For a general discussion on MPLS- and GMPLS-related
 security issues, see the MPLS/GMPLS security framework [RFC5920].

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2205]
 Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
 September 1997, <http://www.rfc-editor.org/info/rfc2205>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <http://www.rfc-editor.org/info/rfc3209>.

 [RFC3473]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Resource ReserVation Protocol-
 Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
 DOI 10.17487/RFC3473, January 2003,
 <http://www.rfc-editor.org/info/rfc3473>.

 [RFC4872]
 Lang, J., Ed., Rekhter, Y., Ed., and D. Papadimitriou,
 Ed., "RSVP-TE Extensions in Support of End-to-End
 Generalized Multi-Protocol Label Switching (GMPLS)
 Recovery", RFC 4872, DOI 10.17487/RFC4872, May 2007,
 <http://www.rfc-editor.org/info/rfc4872>.

 [RFC4873]
 Berger, L., Bryskin, I., Papadimitriou, D., and A. Farrel,
 "GMPLS Segment Recovery", RFC 4873, DOI 10.17487/RFC4873,
 May 2007, <http://www.rfc-editor.org/info/rfc4873>.

 [RFC5511]
 Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax
 Used to Form Encoding Rules in Various Routing Protocol
 Specifications", RFC 5511, DOI 10.17487/RFC5511, April
 2009, <http://www.rfc-editor.org/info/rfc5511>.

 [RFC6780]
 Berger, L., Le Faucheur, F., and A. Narayanan, "RSVP
 ASSOCIATION Object Extensions", RFC 6780,
 DOI 10.17487/RFC6780, October 2012,
 <http://www.rfc-editor.org/info/rfc6780>.

8.2. Informative References

 [RFC4655]
 Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
 Computation Element (PCE)-Based Architecture", RFC 4655,
 DOI 10.17487/RFC4655, August 2006,
 <http://www.rfc-editor.org/info/rfc4655>.

 [RFC5420]
 Farrel, A., Ed., Papadimitriou, D., Vasseur, JP., and A.
 Ayyangarps, "Encoding of Attributes for MPLS LSP
 Establishment Using Resource Reservation Protocol Traffic
 Engineering (RSVP-TE)", RFC 5420, DOI 10.17487/RFC5420,
 February 2009, <http://www.rfc-editor.org/info/rfc5420>.

 [RFC5654]
 Niven-Jenkins, B., Ed., Brungard, D., Ed., Betts, M., Ed.,
 Sprecher, N., and S. Ueno, "Requirements of an MPLS
 Transport Profile", RFC 5654, DOI 10.17487/RFC5654,
 September 2009, <http://www.rfc-editor.org/info/rfc5654>.

 [RFC5920]
 Fang, L., Ed., "Security Framework for MPLS and GMPLS
 Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010,
 <http://www.rfc-editor.org/info/rfc5920>.

 [RFC6370]
 Bocci, M., Swallow, G., and E. Gray, "MPLS Transport
 Profile (MPLS-TP) Identifiers", RFC 6370,
 DOI 10.17487/RFC6370, September 2011,
 <http://www.rfc-editor.org/info/rfc6370>.

 [RFC6373]
 Andersson, L., Ed., Berger, L., Ed., Fang, L., Ed., Bitar,
 N., Ed., and E. Gray, Ed., "MPLS Transport Profile
 (MPLS-TP) Control Plane Framework", RFC 6373,
 DOI 10.17487/RFC6373, September 2011,
 <http://www.rfc-editor.org/info/rfc6373>.

 [RFC6387]
 Takacs, A., Berger, L., Caviglia, D., Fedyk, D., and J.
 Meuric, "GMPLS Asymmetric Bandwidth Bidirectional Label
 Switched Paths (LSPs)", RFC 6387, DOI 10.17487/RFC6387,
 September 2011, <http://www.rfc-editor.org/info/rfc6387>.

 [RFC6689]
 Berger, L., "Usage of the RSVP ASSOCIATION Object",
 RFC 6689, DOI 10.17487/RFC6689, July 2012,
 <http://www.rfc-editor.org/info/rfc6689>.

Acknowledgements

 The authors would like to thank Lou Berger and George Swallow for
 their great guidance in this work; Jie Dong for the discussion of the
 recovery LSP; Lamberto Sterling for his valuable comments about
 asymmetric bandwidth signaling; Attila Takacs for the discussion of
 the provisioning model; Siva Sivabalan, Eric Osborne, and Robert
 Sawaya for the discussions on the ASSOCIATION Object; and Matt
 Hartley for providing useful suggestions on the document. At the
 same time, the authors would like to acknowledge the contributions of
 Bo Wu, Xihua Fu, and Lizhong Jin for the initial discussions; Wenjuan
 He for the prototype implementation; and Lou Berger, Daniel King, and
 Deborah Brungard for the review of the document.

Contributors

Fan Yang
ZTE

 EMail: yang.fan240347@gmail.com

Weilian Jiang
ZTE

 EMail: jiang.weilian@gmail.com

Authors' Addresses

Fei Zhang (editor)
Huawei

 EMail: zhangfei7@huawei.com

Ruiquan Jing
China Telecom

 EMail: jingrq@ctbri.com.cn

Rakesh Gandhi (editor)
Cisco Systems

 EMail: rgandhi@cisco.com

7570 - Label Switched Path (LSP) Attribute in the Explicit Route Object (ERO)

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7570

Category: Standards Track

ISSN: 2070-1721

C. Margaria, Ed.

Juniper

G. Martinelli

Cisco

S. Balls

B. Wright

Metaswitch

July 2015

Label Switched Path (LSP) Attribute in the Explicit Route Object (ERO)

Abstract

 RFC 5420 extends RSVP-TE to specify or record generic attributes that
 apply to the whole of the path of a Label Switched Path (LSP). This
 document defines an extension to the RSVP Explicit Route Object (ERO)
 and Record Route Object (RRO) to allow them to specify or record
 generic attributes that apply to a given hop.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7570.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	2. ERO Hop Attributes Subobject
	 2.1. Encoding

	 2.2. Hop Attributes TLVs

	 2.3. Procedures

	3. RRO Hop Attributes Subobject
	 3.1. Encoding

	 3.2. Procedures
	 3.2.1. Subobject Presence Rule

	 3.2.2. Reporting Compliance with ERO Hop Attributes

	 3.2.3. Compatibility with RRO Attributes Subobject

	4. IANA Considerations
	 4.1. ERO Hop Attributes Subobject

	 4.2. RRO Hop Attributes Subobject

	 4.3. Existing Attribute Flags

	 4.4. Existing LSP Attribute TLVs

	5. Security Considerations

	6. References
	 6.1. Normative References

	 6.2. Informative References

	Acknowledgments

	Authors' Addresses

1. Introduction

 Generalized MPLS (GMPLS) Traffic Engineering (TE) Label Switched
 Paths (LSPs) can be route constrained by making use of the Explicit
 Route Object (ERO) and related subobjects as defined in [RFC3209],
 [RFC3473], [RFC3477], [RFC4873], [RFC4874], [RFC5520], and [RFC5553].
 Several documents have identified the need for attributes that can be
 targeted at specific hops in the path of an LSP, including [RFC6163],
 [WSON-SIG], [RFC7571], or [OBJ-FUN]. This document provides a
 generic mechanism for use by these other documents.

 RSVP already supports generic extension of LSP attributes in
 [RFC5420]. In order to support current and future ERO constraint
 extensions, this document provides a mechanism to define per-hop
 attributes.

 The document describes a generic mechanism for carrying information
 related to specific nodes when signaling an LSP. This document does
 not restrict what that information can be used for. The defined
 approach builds on LSP attributes defined in [RFC5420] and enables
 attributes to be expressed in ERO and Secondary Explicit Route
 Objects (SEROs). A new ERO subobject is defined, containing a list
 of generic per-hop attributes.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. ERO Hop Attributes Subobject

 The ERO Hop Attributes subobject is OPTIONAL. If used, it is carried
 in the ERO or SERO. The subobject uses the standard format of an ERO
 subobject.

2.1. Encoding

 The length is variable and content is a list of Hop Attributes TLVs
 defined in Section 2.2. The size of the ERO subobject limits the
 size of the Hop Attributes TLV to 250 bytes. The typical size of
 currently defined and forthcoming LSP_ATTRIBUTE TLVs applicable to a
 specific hop (WSON_SIGNALING, Objective Function (OF), and Metric) is
 not foreseen to exceed this limit.

 The ERO Hop Attributes subobject is defined as follows:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
|L| Type | Length | Reserved |R|
+‑+
| |
// Hop Attributes TLVs //
| |
+‑+

 The L, Type, and Length parameters are as defined in [RFC3209],
 Section 4.3.3. The L bit MUST be set to 0. The Type for the ERO Hop
 Attributes subobject is 35. The Hop Attributes TLVs are encoded as
 defined in Section 2.2.

Reserved: Reserved MUST be set to 0 when the subobject is inserted
 in the ERO, MUST NOT be changed when a node processes the ERO, and
 MUST be ignored on the node addressed by the preceding ERO
 subobjects.

 R: This bit reflects the LSP_REQUIRED_ATTRIBUTE and LSP_ATTRIBUTE

 semantic defined in [RFC5420]. When set, it indicates required
 hop attributes to be processed by the node. When cleared, it
 indicates that the hop attributes are not required as described in
 Section 2.3.

Hop Attributes TLVs: The TLVs as defined in Section 2.2.

2.2. Hop Attributes TLVs

 ERO attributes carried by the new objects defined in this document
 are encoded within TLVs. Each object MAY contain one or more TLVs.
 There are no ordering rules for TLVs, and interpretation SHOULD NOT
 be placed on the order in which TLVs are received. The TLV format is
 defined in [RFC5420], Section 3.

 The Attribute Flags TLV defined in [RFC5420] is carried in an ERO Hop
 Attributes subobject. Flags set in the Attribute Flags TLV [RFC5420]
 carried in an ERO Hop Attributes subobject SHALL be interpreted in
 the context of the received ERO. Only a subset of defined flags are
 defined as valid for use in Attribute Flags TLV carried in an ERO Hop
 Attributes subobject. Invalid flags SHALL be silently ignored.
 Unknown flags SHOULD trigger the generation of a PathErr with Error
 Code "Unknown Attributes Bit" as defined in [RFC5420], Section 5.2.
 The set of valid flags are defined in Section 4.3.

 The presence and ordering rule of the Attribute Flags TLV in an ERO
 Hop Attributes subobject is defined by each Flag. A document
 defining a flag to be used in an Attribute Flags TLV carried in the
 ERO Hop Attributes subobject has to describe:

 o after which kinds of ERO subobject the flag is valid,

 o if ordering of the flag and other ERO subobjects associated with
 the same hop (e.g., Label subobjects) is significant,

 o if ordering is significant, how the flag is interpreted in
 association with the preceding subobjects, and

 o any flag modification rules that might apply.

2.3. Procedures

 As described in [RFC3209], the ERO is managed as a list of subobjects
 each identifying a specific entity, an abstract node, or a link that
 defines a waypoint in the network path. Identifying subobjects of
 various types are defined in [RFC3209], [RFC3477], [RFC4873],
 [RFC4874], [RFC5520], and [RFC5553].

 [RFC3473] modified the ERO list by allowing one or two Label
 subobjects to be interposed in the list after a subobject identifying
 a link. One or more ERO Hop Attributes subobjects applicable to a
 particular hop MAY be inserted directly after any of the existing
 identifying subobjects defined in[RFC3209], [RFC3477], [RFC4873],
 [RFC4874], [RFC5520], and [RFC5553]. If any Label subobjects are
 present for a hop, the ERO Hop Attributes subobject(s) MAY also be
 inserted after the Label subobjects.

 The attributes specified in an ERO Hop Attributes subobject apply to
 the immediately preceding subobject(s) in the ERO subobject list.

 A document defining a specific Hop Attributes TLV has to describe:

 o after which kinds of ERO subobject they are valid,

 o if ordering of the Hop Attributes subobject and other ERO
 subobjects associated with the same hop (e.g., Label subobjects)
 is significant,

 o if ordering is significant, how the attribute is interpreted in
 association with the preceding ERO subobjects, and

 o any TLV modification rules that might apply.

 For instance, subobject presence rules can be defined by describing
 rules similar to [RFC4990], Section 6.1.

 If a node is processing an ERO Hop Attributes subobject and does not
 support the handling of the subobject, it will behave as described in
 [RFC3209] when an unrecognized ERO subobject is encountered. This
 node will return a PathErr with Error Code "Routing Error" and Error
 Value "Bad EXPLICIT_ROUTE object" with the EXPLICIT_ROUTE object
 included, truncated (on the left) to the offending unrecognized
 subobject.

 When the R bit is set, a node MUST examine the attributes TLV present
 in the subobject following the rules described in [RFC5420],
 Section 5.2. When the R bit is not set, a node MUST examine the
 attributes TLV present in the subobject following the rules described
 in [RFC5420], Section 4.2.

 A node processing an ERO Hop Attributes subobject with a Hop
 Attributes TLV longer than the ERO subobject SHOULD return a PathErr
 with Error Code "Routing Error" and Error Value "Bad EXPLICIT_ROUTE
 object" with the EXPLICIT_ROUTE object included, truncated (on the
 left) to the offending malformed subobject. A processing node MUST
 NOT originate a Hop Attributes TLV longer than the ERO Hop Attributes
 subobject. The processing of the Hop Attributes TLVs SHOULD be
 described in the documents defining them.

3. RRO Hop Attributes Subobject

 In some cases, it is important to determine if an OPTIONAL hop
 attribute has been processed by a node.

3.1. Encoding

 The RRO Hop Attributes subobject is OPTIONAL. If used, it is carried
 in the RECORD_ROUTE object. The subobject uses the standard format
 of an RRO subobject.

 The RRO Hop Attributes subobject is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Reserved |
+‑+
| |
// Hop Attributes TLVs //
| |
+‑+

 The Type and Length parameters are as defined in [RFC3209],
 Section 4.4.1. The Type for the RRO Hop Attributes subobject is 35.
 The Hop Attributes TLVs are encoded as defined in Section 2.2.

Reserved: Reserved MUST be set to 0 when the subobject is inserted
 in the RRO, MUST NOT be changed when a node processes the RRO, and
 MUST be ignored on the node addressed by the preceding RRO
 subobjects.

Hop Attributes TLVs: The processed or additional Hop Attributes
 TLVs, using the format defined in Section 2.2.

3.2. Procedures

3.2.1. Subobject Presence Rule

 The RRO rules defined in [RFC3209] are not changed. The RRO Hop
 Attributes subobject MUST be pushed after the RRO Attributes
 subobject (if present) as defined in [RFC5420]. The RRO Hop
 Attributes subobject MAY be present between a pair of subobjects
 identifying the Label Switching Router (LSR) or links. Unless local
 policy applies, all such subobjects SHOULD be forwarded unmodified by
 transit LSRs.

 It is noted that a node (e.g., a domain edge node) MAY edit the RRO
 to prune/modify the RRO, including the RRO Hop Attributes subobject
 before forwarding due to confidentiality policy or other reasons (for
 instance, RRO size reduction).

3.2.2. Reporting Compliance with ERO Hop Attributes

 To report that an ERO hop attribute has been considered, or to report
 an additional attribute, an LSR can add a RRO Hop Attributes
 subobject with the Hop Attributes TLV, which describes the attribute
 to be reported. The requirement to report compliance MUST be
 specified in the document that defines the usage of a hop attribute.

3.2.3. Compatibility with RRO Attributes Subobject

 The RRO Hop Attributes subobject extends the capability of the RRO
 Attributes subobject defined in [RFC5420], Section 7.2 by allowing
 the node to report the attribute value. The mechanism defined in
 this document is compatible with the RRO Attributes subobject using
 the following procedures.

 For LSP attributes signaled in the LSP_ATTRIBUTES or
 LSP_REQUIRED_ATTRIBUTES objects, a node SHOULD use the RRO Attributes
 subobject to report processing of those attributes.

 For LSP attributes signaled in the ERO Hop Attributes subobject and
 not in the LSP_ATTRIBUTES or LSP_REQUIRED_ATTRIBUTES objects, if a
 node desires to report the attributes, it SHOULD use the RRO Hop
 Attributes subobject and SHOULD NOT use the RRO Attributes subobject.
 Ingress nodes not supporting the RRO Hop Attributes subobject will
 drop the information, as described in [RFC3209], Section 4.4.5.

 A node can use the RRO Hop Attributes subobject to report an LSP
 attribute signaled in LSP_ATTRIBUTES or LSP_REQUIRED_ATTRIBUTES only
 if the following conditions are met:

 The attribute and its corresponding flag is allowed on both the
 LSP_ATTRIBUTES or LSP_REQUIRED_ATTRIBUTES and LSP Hop Attributes
 subobject.

 The reporting of an LSP attribute signaled in LSP_ATTRIBUTES or
 LSP_REQUIRED_ATTRIBUTES in the RRO Hop Attribute is specified in
 the document defining that LSP attribute.

4. IANA Considerations

4.1. ERO Hop Attributes Subobject

 IANA manages the "Resource Reservation Protocol (RSVP) Parameters"
 registry located at
 <http://www.iana.org/assignments/rsvp-parameters>. Per this
 document, IANA has made an allocation in the Sub-object type 20
 EXPLICIT_ROUTE - Type 1 Explicit Route registry.

 This document introduces a new ERO subobject:

Value Description Reference
‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
35 Hop Attributes This document, Section 2

4.2. RRO Hop Attributes Subobject

 IANA manages the "Resource Reservation Protocol (RSVP) Parameters"
 registry located at
 <http://www.iana.org/assignments/rsvp-parameters>. Per this
 document, IANA has made an allocation in the Sub-object type 21
 ROUTE_RECORD - Type 1 Route Record registry. This value is the same
 as that in Section 4.1.

 This document introduces a new RRO subobject:

Value Description Reference
‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
35 Hop Attributes This document, Section 3

4.3. Existing Attribute Flags

 IANA manages the "Attribute Flags" registry as part of the "Resource
 Reservation Protocol-Traffic Engineering (RSVP-TE) Parameters"
 registry located at
 <http://www.iana.org/assignments/rsvp-te-parameters>. A new column
 in the registry is introduced by this document. This column
 indicates if the flag is permitted to be used in an Attribute Flags
 TLV carried in the ERO Hop Attributes subobject. The column uses the
 heading "ERO" and the registry has been updated as follows:

Bit Name Attribute Attribute RRO ERO Reference
No. FlagsPath FlagsResv
0 End‑to‑end re‑ Yes No No No [RFC4920]
 routing [RFC5420]
 This Document
1 Boundary re‑routing Yes No No No [RFC4920]
 [RFC5420]
 This Document
2 Segment‑based re‑ Yes No No No [RFC4920]
 routing [RFC5420]
 This Document
3 LSP Integrity Yes No No No [RFC4875]
 Required
 This Document
4 Contiguous LSP Yes No Yes No [RFC5151]
 This Document
5 LSP stitching Yes No Yes No [RFC5150]
 desired
 This Document
6 Pre‑Planned LSP Flag Yes No No No [RFC6001]
 This Document
7 Non‑PHP behavior Yes No Yes No [RFC6511]
 flag
 This Document
8 OOB mapping flag Yes No Yes No [RFC6511]
 This Document
9 Entropy Label Yes Yes No No [RFC6790]
 Capability
 This Document
10 OAM MEP entities Yes Yes Yes No [RFC7260]
 desired
 This Document
11 OAM MIP entities Yes Yes Yes No [RFC7260]
 desired
 This Document
12 SRLG collection Flag Yes Yes Yes No [SRLG‑COLLECT]
 (TEMPORARY ‑ This Document
 registered
 2014‑09‑11, expires
 2015‑09‑11)

 New allocation requests to this registry SHALL indicate the value to
 be used in the ERO column.

4.4. Existing LSP Attribute TLVs

 IANA manages the "Resource Reservation Protocol-Traffic Engineering
 (RSVP-TE) Parameters" registry located at
 <http://www.iana.org/assignments/rsvp-te-parameters>. The
 "Attributes TLV Space" registry manages the following attributes, as
 defined in [RFC5420]:

 o TLV Type (T-field value)

 o TLV Name

 o Whether allowed on LSP_ATTRIBUTES object

 o Whether allowed on LSP_REQUIRED_ATTRIBUTES object

 Per this document, IANA has added the following information for each
 TLV in the RSVP TLV type identifier registry.

 o Whether allowed on LSP Hop Attributes ERO subobject

 The existing registry has been modified for existing TLVs as follows.
 The following abbreviations are used below:

LSP_A: Whether allowed on LSP_ATTRIBUTES object.

LSP_RA: Whether allowed on LSP_REQUIRED_ATTRIBUTES object.

HOP_A: Whether allowed on LSP Hop Attributes subobject.

 T Name LSP_A LSP_RA HOP_A Ref.
 ‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑ ‑‑‑‑‑‑ ‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 1 Attribute Flags Yes Yes Yes [RFC5420]
 This Document
 2 Service ID TLV Yes No No [RFC6060]
 This Document
 3 OAM Configuration TLV Yes Yes No [RFC7260]
 This Document

5. Security Considerations

 This document adds a new subobject in the EXPLICIT_ROUTE and the
 ROUTE_RECORD objects carried in RSVP messages used in MPLS and GMPLS
 signaling. It builds on mechanisms defined in [RFC3209] and
 [RFC5420] and does not introduce any new security. The existing
 security considerations described in [RFC2205], [RFC3209], [RFC3473],
 and [RFC5420] do apply.

 As with any RSVP-TE signaling request, the procedures defined in this
 document permit the transfer and reporting of functional preferences
 on a specific node. The mechanism added in this document does allow
 more control of LSP attributes at a given node. A node SHOULD check
 the hop attributes against its policies and admission procedures as
 it does with other inputs. A node MAY reject the message using
 existing RSVP Error Codes like "Policy Control Failure" or "Admission
 Control Failure". The node MAY also, depending on the specific TLV
 procedures, modify the requested attribute. This can reveal
 information about the LSP request and status to anyone with
 unauthorized access. The mechanism described in this document does
 not contribute to this issue, which can be only resolved by
 encrypting the content of the whole signaling message.

 In addition, the reporting of attributes using the RRO can reveal
 details about the node that the operator wishes to remain
 confidential. The same strategy and policies that apply to other RRO
 subobjects also apply to this new mechanism. It is RECOMMENDED that
 domain boundary policies take the releasing of RRO hop attributes
 into consideration.

6. References

6.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2205]
 Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
 September 1997, <http://www.rfc-editor.org/info/rfc2205>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <http://www.rfc-editor.org/info/rfc3209>.

 [RFC3473]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Resource ReserVation Protocol-
 Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
 DOI 10.17487/RFC3473, January 2003,
 <http://www.rfc-editor.org/info/rfc3473>.

 [RFC3477]
 Kompella, K. and Y. Rekhter, "Signalling Unnumbered Links
 in Resource ReSerVation Protocol - Traffic Engineering
 (RSVP-TE)", RFC 3477, DOI 10.17487/RFC3477, January 2003,
 <http://www.rfc-editor.org/info/rfc3477>.

 [RFC4873]
 Berger, L., Bryskin, I., Papadimitriou, D., and A. Farrel,
 "GMPLS Segment Recovery", RFC 4873, DOI 10.17487/RFC4873,
 May 2007, <http://www.rfc-editor.org/info/rfc4873>.

 [RFC4874]
 Lee, CY., Farrel, A., and S. De Cnodder, "Exclude Routes -
 Extension to Resource ReserVation Protocol-Traffic
 Engineering (RSVP-TE)", RFC 4874, DOI 10.17487/RFC4874,
 April 2007, <http://www.rfc-editor.org/info/rfc4874>.

 [RFC4875]
 Aggarwal, R., Ed., Papadimitriou, D., Ed., and S.
 Yasukawa, Ed., "Extensions to Resource Reservation
 Protocol - Traffic Engineering (RSVP-TE) for Point-to-
 Multipoint TE Label Switched Paths (LSPs)", RFC 4875,
 DOI 10.17487/RFC4875, May 2007,
 <http://www.rfc-editor.org/info/rfc4875>.

 [RFC4920]
 Farrel, A., Ed., Satyanarayana, A., Iwata, A., Fujita, N.,
 and G. Ash, "Crankback Signaling Extensions for MPLS and
 GMPLS RSVP-TE", RFC 4920, DOI 10.17487/RFC4920, July 2007,
 <http://www.rfc-editor.org/info/rfc4920>.

 [RFC5150]
 Ayyangar, A., Kompella, K., Vasseur, JP., and A. Farrel,
 "Label Switched Path Stitching with Generalized
 Multiprotocol Label Switching Traffic Engineering (GMPLS
 TE)", RFC 5150, DOI 10.17487/RFC5150, February 2008,
 <http://www.rfc-editor.org/info/rfc5150>.

 [RFC5151]
 Farrel, A., Ed., Ayyangar, A., and JP. Vasseur, "Inter-
 Domain MPLS and GMPLS Traffic Engineering -- Resource
 Reservation Protocol-Traffic Engineering (RSVP-TE)
 Extensions", RFC 5151, DOI 10.17487/RFC5151, February
 2008, <http://www.rfc-editor.org/info/rfc5151>.

 [RFC5420]
 Farrel, A., Ed., Papadimitriou, D., Vasseur, JP., and A.
 Ayyangarps, "Encoding of Attributes for MPLS LSP
 Establishment Using Resource Reservation Protocol Traffic
 Engineering (RSVP-TE)", RFC 5420, DOI 10.17487/RFC5420,
 February 2009, <http://www.rfc-editor.org/info/rfc5420>.

 [RFC5520]
 Bradford, R., Ed., Vasseur, JP., and A. Farrel,
 "Preserving Topology Confidentiality in Inter-Domain Path
 Computation Using a Path-Key-Based Mechanism", RFC 5520,
 DOI 10.17487/RFC5520, April 2009,
 <http://www.rfc-editor.org/info/rfc5520>.

 [RFC5553]
 Farrel, A., Ed., Bradford, R., and JP. Vasseur, "Resource
 Reservation Protocol (RSVP) Extensions for Path Key
 Support", RFC 5553, DOI 10.17487/RFC5553, May 2009,
 <http://www.rfc-editor.org/info/rfc5553>.

 [RFC6001]
 Papadimitriou, D., Vigoureux, M., Shiomoto, K., Brungard,
 D., and JL. Le Roux, "Generalized MPLS (GMPLS) Protocol
 Extensions for Multi-Layer and Multi-Region Networks (MLN/
 MRN)", RFC 6001, DOI 10.17487/RFC6001, October 2010,
 <http://www.rfc-editor.org/info/rfc6001>.

 [RFC6060]
 Fedyk, D., Shah, H., Bitar, N., and A. Takacs,
 "Generalized Multiprotocol Label Switching (GMPLS) Control
 of Ethernet Provider Backbone Traffic Engineering (PBB-
 TE)", RFC 6060, DOI 10.17487/RFC6060, March 2011,
 <http://www.rfc-editor.org/info/rfc6060>.

 [RFC6511]
 Ali, Z., Swallow, G., and R. Aggarwal, "Non-Penultimate
 Hop Popping Behavior and Out-of-Band Mapping for RSVP-TE
 Label Switched Paths", RFC 6511, DOI 10.17487/RFC6511,
 February 2012, <http://www.rfc-editor.org/info/rfc6511>.

 [RFC6790]
 Kompella, K., Drake, J., Amante, S., Henderickx, W., and
 L. Yong, "The Use of Entropy Labels in MPLS Forwarding",
 RFC 6790, DOI 10.17487/RFC6790, November 2012,
 <http://www.rfc-editor.org/info/rfc6790>.

 [RFC7260]
 Takacs, A., Fedyk, D., and J. He, "GMPLS RSVP-TE
 Extensions for Operations, Administration, and Maintenance
 (OAM) Configuration", RFC 7260, DOI 10.17487/RFC7260, June
 2014, <http://www.rfc-editor.org/info/rfc7260>.

6.2. Informative References

 [OBJ-FUN]
 Ali, Z., Swallow, G., Filsfils, C., Fang, L., Kumaki, K.,
 Kunze, R., Ceccarelli, D., and X. Zhang, "Resource
 ReserVation Protocol-Traffic Engineering (RSVP-TE)
 Extension for Signaling Objective Function and Metric
 Bound", Work in Progress, draft-ali-ccamp-rc-objective-
 function-metric-bound-05, February 2014.

 [RFC4990]
 Shiomoto, K., Papneja, R., and R. Rabbat, "Use of
 Addresses in Generalized Multiprotocol Label Switching
 (GMPLS) Networks", RFC 4990, DOI 10.17487/RFC4990,
 September 2007, <http://www.rfc-editor.org/info/rfc4990>.

 [RFC6163]
 Lee, Y., Ed., Bernstein, G., Ed., and W. Imajuku,
 "Framework for GMPLS and Path Computation Element (PCE)
 Control of Wavelength Switched Optical Networks (WSONs)",
 RFC 6163, DOI 10.17487/RFC6163, April 2011,
 <http://www.rfc-editor.org/info/rfc6163>.

 [RFC7571]
 Dong, J., Chen, M., Li, Z., and D. Ceccarelli, "GMPLS
 RSVP-TE Extensions for Lock Instruct and Loopback", RFC
 7571, DOI 10.17487/RFC7571, July 2015,
 <http://www.rfc-editor.org/info/rfc7571>.

 [RSVP-TE-HOPS]

 Kern, A. and A. Takacs, "Encoding of Attributes of LSP
 intermediate hops using RSVP-TE", Work in Progress,
 draft-kern-ccamp-rsvpte-hop-attributes-00, October 2009.

 [SRLG-COLLECT]

 Zhang, F., Dios, O., Li, D., Margaria, C., Hartley, M.,
 and Z. Ali, "RSVP-TE Extensions for Collecting SRLG
 Information", Work in Progress, draft-ietf-teas-rsvp-te-
 srlg-collect-00, December 2014.

 [WSON-SIG]

 Bernstein, G., Xu, S., Lee, Y., Martinelli, G., and H.
 Harai, "Signaling Extensions for Wavelength Switched
 Optical Networks", Work in Progress, draft-ietf-ccamp-
 wson-signaling-10, March 2015.

Acknowledgments

 The authors would like to thank Lou Berger for his directions and
 Attila Takacs for inspiring [RSVP-TE-HOPS]. The authors also thank
 Dirk Schroetter for his contribution to the initial draft versions of
 this document.

Authors' Addresses

Cyril Margaria (editor)
Juniper
200 Somerset Corporate Boulevard, Suite 4001
Bridgewater, NJ 08807
United States

 Email: cmargaria@juniper.net

Giovanni Martinelli
Cisco
via Philips 12
Monza 20900
Italy

Phone: +39 039 209 2044
Email: giomarti@cisco.com

Steve Balls
Metaswitch
100 Church Street
Enfield EN2 6BQ
United Kingdom

Phone: +44 208 366 1177
Email: steve.balls@metaswitch.com

Ben Wright
Metaswitch
100 Church Street
Enfield EN2 6BQ
United Kingdom

Phone: +44 208 366 1177
Email: Ben.Wright@metaswitch.com

7571 - GMPLS RSVP-TE Extensions for Lock Instruct and Loopback

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7571

Category: Standards Track

ISSN: 2070-1721

J. Dong

M. Chen

Huawei Technologies

Z. Li

China Mobile

D. Ceccarelli

Ericsson

July 2015

GMPLS RSVP-TE Extensions for Lock Instruct and Loopback

Abstract

 This document specifies extensions to Resource Reservation Protocol -
 Traffic Engineering (RSVP-TE) to support Lock Instruct (LI) and
 Loopback (LB) mechanisms for Label Switched Paths (LSPs). These
 mechanisms are applicable to technologies that use Generalized MPLS
 (GMPLS) for the control plane.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7571.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	2. Flag Definitions for LI and LB
	 2.1. Lock Instruct Indication

	 2.2. Extensions for Loopback

	3. Operational Procedures
	 3.1. Lock Instruct

	 3.2. Loopback

	4. IANA Considerations
	 4.1. Attribute Flags

	 4.2. RSVP Error Value Sub-Codes

	 4.3. Allocation Rule for ERO Subobjects

	5. Security Considerations

	6. References
	 6.1. Normative References

	 6.2. Informative References

	Acknowledgments

	Authors' Addresses

1. Introduction

 The requirements for Lock Instruct (LI) and Loopback (LB) in the
 Multiprotocol Label Switching Transport Profile (MPLS-TP) are
 specified in [RFC5860], and the framework of LI and LB is specified
 in [RFC6371]. A Label Switched Path (LSP) that is locked, using LI,
 is prevented from carrying user data traffic. The LB function can
 only be applied to an LSP that has been previously locked.

 In general, the LI and LB are useful Operations, Administration, and
 Maintenance (OAM) functions for technologies that use Generalized
 MPLS (GMPLS) for the control plane, e.g., time-division multiplexing,
 wavelength-division multiplexing, and packet switching. It is
 natural to use and extend the GMPLS control-plane protocol to provide
 a unified approach for LI and LB provisioning in all these
 technologies.

 [RFC7487] specifies the RSVP-TE extensions for the configuration of
 proactive MPLS-TP OAM functions, such as Continuity Check (CC),
 Connectivity Verification (CV), Delay Measurement (DM), and Loss
 Measurement (LM). The provisioning of on-demand OAM functions such
 as LI and LB are not covered in that document.

 This document specifies extensions to Resource Reservation Protocol-
 Traffic Engineering (RSVP-TE) to support lock instruct and loopback
 mechanisms for LSPs. The mechanisms are applicable to technologies
 that use GMPLS for the control plane. For a network supporting MPLS-
 TP, the mechanisms defined in this document are complementary to
 [RFC6435].

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Flag Definitions for LI and LB

2.1. Lock Instruct Indication

 In order to indicate the lock/unlock status of the LSP, the A
 (Administratively down) bit in the Administrative Status
 (ADMIN_STATUS) Object [RFC3471] [RFC3473] is used.

2.2. Extensions for Loopback

 In order to indicate the loopback mode of LSP, a new bit flag is
 defined in the Attribute Flags TLV [RFC5420].

 Loopback flag:

 This flag indicates a particular node on the LSP is required to
 enter loopback mode. This can also be used for specifying the
 loopback state of the node.

 - Bit number: 13

 - Attribute flag carried in Path message: Yes

 - Attribute flag carried in Resv message: No

 - Attribute flag carried in the Record Route Object (RRO)
 Attributes subobject: Yes

3. Operational Procedures

3.1. Lock Instruct

 When an ingress node intends to put an LSP into lock mode, it MUST
 send a Path message with the Administratively down (A) bit used as
 specified above and the Reflect (R) bit in the ADMIN_STATUS Object
 set.

 On receipt of this Path message, the egress node SHOULD try to take
 the LSP out of service. If the egress node locks the LSP
 successfully, it MUST send a Resv message with the A bit in the
 ADMIN_STATUS Object set. Otherwise, it MUST send a PathErr message
 with the Error Code "OAM Problem" [RFC7260] and the new Error Value
 "Lock Failure", and the following Resv messages MUST be sent with the
 A bit cleared.

 When an LSP is put in lock mode, the subsequent Path and Resv
 messages MUST keep the A bit in the ADMIN_STATUS Object set.

 When the ingress node intends to take the LSP out of the lock mode,
 it MUST send a Path message with the A bit in the ADMIN_STATUS Object
 cleared.

 On receipt of this Path message, the egress node SHOULD try to bring
 the LSP back to service. If the egress node unlocks the LSP
 successfully, it MUST send a Resv message with the A bit in the
 ADMIN_STATUS Object cleared. Otherwise, it MUST send a PathErr
 message with the Error Code "OAM Problem" [RFC7260] and the new Error
 Value "Unlock Failure", and the following Resv messages MUST be sent
 with the A bit set.

 When an LSP is taken out of lock mode, the subsequent Path and Resv
 messages MUST keep the A bit in the ADMIN_STATUS Object cleared.

3.2. Loopback

 The loopback request can be sent either to the egress node or to a
 particular intermediate node. The mechanism defined in [RFC7570] is
 used for addressing the loopback request to a particular node on the
 LSP. The ingress node MUST ensure that the LSP is in lock mode
 before it requests setting a particular node on the LSP into loopback
 mode.

 When an ingress node intends to put a particular node on the LSP into
 loopback mode, it MUST send a Path message with the Loopback
 Attribute Flag defined above in the Attribute Flags TLV set. The
 mechanism defined in [RFC7570] is used to address the loopback
 request to the particular node. The ingress node MUST ensure that
 the entity at which loopback is intended to occur is explicitly
 identified by the immediately preceding subobject of the Explicit
 Route Object (ERO) Hop Attributes subobject. The Administratively
 down (A) bit in the ADMIN_STATUS Object MUST be kept set to indicate
 that the LSP is still in lock mode.

 On receipt of this Path message, the target node of the loopback
 request MUST check if the LSP is in lock mode by verifying that the
 Administratively down (A) bit is set in the ADMIN_STATUS Object. If
 the bit is not set, the loopback request MUST be ignored. If the bit
 is set, the node MUST check that the desired loopback entity is
 explicitly identified by the ERO subobject prior to the ERO Hop
 Attributes subobject. Currently, the type value MUST be verified to
 be less than 32 (i.e., able to identify a specific entity where a
 loopback can occur; see Section 4.3), and for type values 1 (IPv4
 prefix) and 2 (IPv6 prefix), the prefix length MUST be 32 and 128,
 respectively. If the desired loopback entity is not explicitly
 identified, the request MUST be ignored and a "Bad EXPLICIT_ROUTE
 object" error SHOULD be generated. Otherwise, the node SHOULD try to
 put the LSP into loopback mode. The loopback SHOULD be enabled on
 the entity identified by the ERO subobject immediately prior to the
 ERO Hop Attributes subobject. If the immediately preceding subobject
 is a label subobject [RFC3473], the loopback SHOULD be enabled for
 the direction indicated by the U bit of the label subobject.

 If the node puts the LSP into loopback mode successfully, it MUST set
 the Loopback Attribute Flag if it adds, per [RFC7570], an RRO Hop
 Attributes subobject to the RRO of a Path or Resv message. The
 Administratively down (A) bit in the ADMIN_STATUS Object MUST be kept
 set in the message. If the node cannot put the LSP into loopback
 mode, it MUST send a PathErr message with the Error Code "OAM
 Problem" [RFC7260] and the new Error Value "Loopback Failure".

 When the ingress node intends to take the particular node out of
 loopback mode, it MUST send a Path message with the Loopback
 Attribute Flag in the Attribute Flags TLV cleared. The mechanism
 defined in [RFC7570] is used to indicate that the particular node
 SHOULD exit loopback mode for this LSP. The Administratively down
 (A) bit in the ADMIN_STATUS Object MUST be kept set to indicate the
 LSP is still in lock mode.

 On receipt of this Path message, the target node SHOULD try to take
 the LSP out of loopback mode. If the node takes the LSP out of
 loopback mode successfully, it MUST clear the Loopback Attribute Flag
 in the RRO Hop Attributes subobject and push this subobject onto the
 RRO object in the corresponding Path or Resv message. The
 Administratively down (A) bit in the ADMIN_STATUS Object MUST be kept
 set in the message. Otherwise, the node MUST send a PathErr message
 with the Error Code "OAM Problem" [RFC7260] and the new Error Value
 "Exit Loopback Failure".

 After the loopback mode is cleared successfully, the ingress node MAY
 remove the Lock Instruct using the mechanism defined in Section 3.1.
 The ingress node MUST NOT request to exit lock mode if the LSP is
 still in loopback mode. The egress node MUST ignore such a request
 when the LSP is still in loopback mode.

4. IANA Considerations

 IANA has assigned new values defined in this document and summarized
 in this section.

4.1. Attribute Flags

 IANA maintains a registry called "Resource Reservation Protocol-
 Traffic Engineering (RSVP-TE) Parameters" with a sub-registry called
 "Attribute Flags".

 IANA has assigned a new bit flag as follows:

 Bit | | Attribute | Attribute | | |
 No. | Name | Flags Path | Flags Resv | RRO | ERO | Reference
‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑
 13 | Loopback | Yes | No | Yes | Yes |this document

4.2. RSVP Error Value Sub-Codes

 IANA maintains a registry called "Resource Reservation Protocol
 (RSVP) Parameters" with a sub-registry called "Error Codes and
 Globally-Defined Error Value Sub-Codes".

 IANA has assigned four new Error Value sub-codes for the "OAM
 Problem" Error Code:

 Value | Description | Reference
‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 26 | Lock Failure | this document
 27 | Unlock Failure | this document
 28 | Loopback Failure | this document
 29 | Exit Loopback Failure | this document

4.3. Allocation Rule for ERO Subobjects

 IANA maintains a registry called "Resource Reservation Protocol
 (RSVP) Parameters" with a sub-registry called "Class Names, Class
 Numbers, and Class Types".

 For Explicit Route Object, the allocation rule for subobject types in
 the range 5-31 (0x05 - 0x1F) has been updated as:

5‑31 Unassigned (For explicit resource identification)

5. Security Considerations

 This document does not introduce any new security issues beyond those
 identified in [RFC3209], [RFC3473], and [RFC7570]. For a more
 comprehensive discussion of GMPLS security and attack mitigation
 techniques, please see "Security Framework for MPLS and GMPLS
 Networks" [RFC5920].

 In addition, the reporting of the loopback status using the RRO may
 reveal details about the node that the operator wishes to remain
 confidential. The privacy considerations as described in paragraph 3
 of Section 5 of [RFC7570] also apply to this document.

6. References

6.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <http://www.rfc-editor.org/info/rfc3209>.

 [RFC3471]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Functional Description", RFC
 3471, DOI 10.17487/RFC3471, January 2003,
 <http://www.rfc-editor.org/info/rfc3471>.

 [RFC3473]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Resource ReserVation Protocol-
 Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
 DOI 10.17487/RFC3473, January 2003,
 <http://www.rfc-editor.org/info/rfc3473>.

 [RFC5420]
 Farrel, A., Ed., Papadimitriou, D., Vasseur, JP., and A.
 Ayyangarps, "Encoding of Attributes for MPLS LSP
 Establishment Using Resource Reservation Protocol Traffic
 Engineering (RSVP-TE)", RFC 5420, DOI 10.17487/RFC5420,
 February 2009, <http://www.rfc-editor.org/info/rfc5420>.

 [RFC5860]
 Vigoureux, M., Ed., Ward, D., Ed., and M. Betts, Ed.,
 "Requirements for Operations, Administration, and
 Maintenance (OAM) in MPLS Transport Networks", RFC 5860,
 DOI 10.17487/RFC5860, May 2010,
 <http://www.rfc-editor.org/info/rfc5860>.

 [RFC7260]
 Takacs, A., Fedyk, D., and J. He, "GMPLS RSVP-TE
 Extensions for Operations, Administration, and Maintenance
 (OAM) Configuration", RFC 7260, DOI 10.17487/RFC7260, June
 2014, <http://www.rfc-editor.org/info/rfc7260>.

 [RFC7570]
 Margaria, C., Ed., Martinelli, G., Balls, S., and B.
 Wright, "Label Switched Path (LSP) Attribute in the
 Explicit Route Object (ERO)", RFC 7570,
 DOI 10.17487/RFC7570, July 2015,
 <http://www.rfc-editor.org/info/rfc7570>.

6.2. Informative References

 [RFC5920]
 Fang, L., Ed., "Security Framework for MPLS and GMPLS
 Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010,
 <http://www.rfc-editor.org/info/rfc5920>.

 [RFC6371]
 Busi, I., Ed. and D. Allan, Ed., "Operations,
 Administration, and Maintenance Framework for MPLS-Based
 Transport Networks", RFC 6371, DOI 10.17487/RFC6371,
 September 2011, <http://www.rfc-editor.org/info/rfc6371>.

 [RFC6435]
 Boutros, S., Ed., Sivabalan, S., Ed., Aggarwal, R., Ed.,
 Vigoureux, M., Ed., and X. Dai, Ed., "MPLS Transport
 Profile Lock Instruct and Loopback Functions", RFC 6435,
 DOI 10.17487/RFC6435, November 2011,
 <http://www.rfc-editor.org/info/rfc6435>.

 [RFC7487]
 Bellagamba, E., Takacs, A., Mirsky, G., Andersson, L.,
 Skoldstrom, P., and D. Ward, "Configuration of Proactive
 Operations, Administration, and Maintenance (OAM)
 Functions for MPLS-Based Transport Networks Using RSVP-
 TE", RFC 7487, DOI 10.17487/RFC7487, March 2015,
 <http://www.rfc-editor.org/info/rfc7487>.

Acknowledgments

 The authors would like to thank Greg Mirsky, Lou Berger, and
 Francesco Fondelli for their comments and suggestions.

Authors' Addresses

Jie Dong
Huawei Technologies
Huawei Campus, No.156 Beiqing Rd.
Beijing 100095
China

 Email: jie.dong@huawei.com

Mach(Guoyi) Chen
Huawei Technologies
Huawei Campus, No.156 Beiqing Rd.
Beijing 100095
China

 Email: mach.chen@huawei.com

Zhenqiang Li
China Mobile
Unit2, Dacheng Plaza, No. 28 Xuanwumenxi Ave.
Beijing 100053
China

 Email: lizhenqiang@chinamobile.com

Daniele Ceccarelli
Ericsson
Via A. Negrone 1/A
Genova ‑ Sestri Ponente
Italy

 Email: daniele.ceccarelli@ericsson.com

7709 - Requirements for Very Fast Setup of GMPLS Label Switched Paths (LSPs)

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7709

Category: Informational

ISSN: 2070-1721

A. Malis, Ed.

Huawei Technologies

B. Wilson

Applied Communication Sciences

G. Clapp

AT&T Labs Research

V. Shukla

Verizon Communications

November 2015

Requirements for Very Fast Setup of GMPLS Label Switched Paths (LSPs)

Abstract

 Establishment and control of Label Switch Paths (LSPs) have become
 mainstream tools of commercial and government network providers. One
 of the elements of further evolving such networks is scaling their
 performance in terms of LSP bandwidth and traffic loads, LSP
 intensity (e.g., rate of LSP creation, deletion, and modification),
 LSP set up delay, quality-of-service differentiation, and different
 levels of resilience.

 The goal of this document is to present target scaling objectives and
 the related protocol requirements for Generalized Multi-Protocol
 Label Switching (GMPLS).

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7709.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Background

	3. Motivation

	4. Driving Applications and Their Requirements
	 4.1. Key Application Requirements

	5. Requirements for Very Fast Setup of GMPLS LSPs
	 5.1. Protocol and Procedure Requirements

	6. Security Considerations

	7. Acknowledgements

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Authors' Addresses

1. Introduction

 Generalized Multi-Protocol Label Switching (GMPLS) [RFC3471]
 [RFC3945] includes an architecture and a set of control-plane
 protocols that can be used to operate data networks ranging from
 packet-switch-capable networks, through those networks that use Time
 Division Multiplexing, to WDM networks. The Path Computation Element
 (PCE) architecture [RFC4655] defines functional components that can
 be used to compute and suggest appropriate paths in connection-
 oriented traffic-engineered networks. Additional wavelength switched
 optical networks (WSON) considerations were defined in [RFC6163].

 This document refers to the same general framework and technologies,
 but it adds requirements related to expediting LSP setup under heavy
 connection churn scenarios, while achieving low blocking under an
 overall distributed control plane. This document focuses on a
 specific problem space -- high-capacity and highly dynamic connection
 request scenarios -- that may require clarification and or extensions
 to current GMPLS protocols and procedures. In particular, the
 purpose of this document is to address the potential need for
 protocols and procedures that enable expediting the setup of LSPs in
 high-churn scenarios. Both single-domain and multi-domain network
 scenarios are considered.

 This document focuses on the following two topics: 1) the driving
 applications and main characteristics and requirements of this
 problem space, and 2) the key requirements that may be novel with
 respect to current GMPLS protocols.

 This document presents the objectives and related requirements for
 GMPLS to provide the control for networks operating with such
 performance requirements. While specific deployment scenarios are
 considered part of the presentation of objectives, the stated
 requirements are aimed at ensuring the control protocols are not the
 limiting factor in achieving a particular network's performance.
 Implementation dependencies are out of scope of this document.

 Other documents may be needed to define how GMPLS protocols meet the
 requirements laid out in this document. Such future documents may
 define extensions or simply clarify how existing mechanisms may be
 used to address the key requirements of highly dynamic networks.

2. Background

 The Defense Advanced Research Projects Agency (DARPA) Core Optical
 Networks (CORONET) program [Chiu] is an example target environment
 that includes IP and optical commercial and government networks, with
 a focus on highly dynamic and resilient multi-terabit core networks.
 It anticipates the need for rapid (sub-second) setup and SONET/SDH-
 like restoration times for high-churn (up to tens of requests per
 second network wide and holding times as short as one second) on-
 demand wavelength, sub-wavelength, and packet services for a variety
 of applications (e.g., grid computing, cloud computing, data
 visualization, fast data transfer, etc.). This must be done while
 meeting stringent call-blocking requirements and while minimizing the
 use of resources such as time slots, switch ports, wavelength
 conversion, etc.

3. Motivation

 The motivation for this document, and envisioned related future
 documents, is two-fold:

 1. The anticipated need for rapid setup, while maintaining low
 blocking, of large bandwidth and highly churned on-demand
 connections (in the form of sub-wavelengths, e.g., OTN ODUx, and
 wavelengths, e.g., OTN OCh) for a variety of applications
 including grid computing, cloud computing, data visualization,
 and intra- and inter-datacenter communications.

 2. The ability to set up circuit-like LSPs for large bandwidth flows
 with low setup delays provides an alternative to packet-based
 solutions implemented over static circuits that may require tying
 up more expensive and power-consuming resources (e.g., router
 ports). Reducing the LSP setup delay will reduce the minimum
 bandwidth threshold at which a GMPLS circuit approach is
 preferred over a layer 3 (e.g., IP) approach. Dynamic circuit
 and virtual circuit switching intrinsically provide guaranteed
 bandwidth, guaranteed low-latency and jitter, and faster
 restoration, all of which are very hard to provide in packet-only
 networks. Again, a key element in achieving these benefits is
 enabling the fastest possible circuit setup times.

 Future applications are expected to require setup times that are as
 fast as 100 ms in highly dynamic, national-scale network environments
 while meeting stringent blocking requirements and minimizing the use
 of resources such as switch ports, wavelength converters/
 regenerators, and other network design parameters. Of course, the
 benefits of low setup delay diminish for connections with long
 holding times. For some specific applications, a trade-off may be
 required, as the need for rapid setup may be more important than
 their requirements for other features currently provided in GMPLS
 (e.g., robustness against setup errors).

 With the advent of data centers, cloud computing, video, gaming,
 mobile and other broadband applications, it is anticipated that
 connection request rates may increase, even for connections with
 longer holding times, either during limited time periods (such as
 during the restoration from a data center failure) or over the longer
 term, to the point where the current GMPLS procedures of path
 computation/selection and resource allocation may not be timely, thus
 leading to increased blocking or increased resource cost. Thus,
 extensions of GMPLS signaling and routing protocols (e.g., OSPF-TE)
 may also be needed to address heavy churn of connection requests
 (i.e., high-connection-request arrival rate) in networks with high-
 traffic loads, even for connections with relatively longer holding
 times.

4. Driving Applications and Their Requirements

 There are several emerging applications that fall under the problem
 space addressed here in several service areas such as provided by
 telecommunication carriers, government networks, enterprise networks,
 content providers, and cloud providers. Such applications include
 research and education networks / grid computing, and cloud
 computing. Detailing and standardizing protocols to address these
 applications will expedite the transition to commercial deployment.

 In the target environment, there are multiple Bandwidth-on-Demand
 service requests per second, such as might arise as cloud services
 proliferate. It includes dynamic services with connection setup
 requirements that range from seconds to milliseconds. The aggregate
 traffic demand, which is composed of both packet (IP) and circuit
 (wavelength and sub-wavelength) services, represents a five to
 twenty-fold increase over today's traffic levels for the largest of
 any individual carrier. Thus, the aggressive requirements must be
 met with solutions that are scalable, cost effective, and power
 efficient, while providing the desired quality of service (QoS).

4.1. Key Application Requirements

 There are two key performance-scaling requirements in the target
 environment that are the main drivers behind this document:

 1. Connection request rates ranging from a few requests per second
 for high-capacity (e.g., 40 Gb/s, 100 Gb/s) wavelength-based LSPs
 to around 100 requests per second for sub-wavelength LSPs (e.g.,
 OTN ODU0, ODU1, and ODU2).

 2. Connection setup delay of around 100 ms across a national or
 regional network. To meet this target, assuming pipelined cross-
 connection and worst-case propagation delay and hop count, it is
 estimated that the maximum processing delay per hop is around 700
 microseconds [Lehmen]. Optimal path selection and resource
 allocation may require somewhat longer processing (up to 5
 milliseconds) in either the destination or source nodes and
 possibly tighter processing delays (around 500 microseconds) in
 intermediate nodes.

 The model for a national network is that of the continental US with
 up to 100 nodes and LSPs with distances up to ~3000 km and up to 15
 hops.

 A connection setup delay is defined here as the time between the
 arrival of a connection request at an ingress edge switch -- or more
 generally a Label Switch Router (LSR) -- and the time at which
 information can start flowing from that ingress switch over that
 connection. Note that this definition is more inclusive than the LSP
 setup time defined in [RFC5814] and [RFC6777], which do not include
 PCE path computation delays.

5. Requirements for Very Fast Setup of GMPLS LSPs

 This section lists the protocol requirements for very fast setup of
 GMPLS LSPs in order to adequately support the service characteristics
 described in the previous sections. These requirements may be the
 basis for future documents, some of which may be simply
 informational, while others may describe specific GMPLS protocol
 extensions. While some of these requirements may have implications
 on implementations, the intent is for the requirements to apply to
 GMPLS protocols and their standardized mechanisms.

5.1. Protocol and Procedure Requirements

R1 The portion of the LSP establishment time related to protocol
 processing should scale linearly based on the number of traversed
 nodes.

R2 End‑to‑end LSP data path availability should be bounded by the
 worst‑case single‑node data path establishment time. In other
 words, pipelined cross‑connect processing as discussed in
 [RFC6383] should be enabled.

R3 LSP establishment time shall depend on the number of nodes
 supporting an LSP and link propagation delays and not on any off
 (control) path transactions, e.g., PCC‑PCE and PCC‑PCC
 communications at the time of connection setup, even when PCE‑
 based approaches are used.

R4 LSP holding times as short as one second must be supported.

R5 The protocol aspects of LSP signaling must not preclude LSP
 request rates of tens per second.

R6 The above requirements should be met even when there are failures
 in connection establishment, i.e., LSPs should be established
 faster than when crank‑back is used.

R7 These requirements are applicable even when an LSP crosses one or
 more administrative domains/boundaries.

R8 The above are additional requirements and do not replace existing
 requirements, e.g., alarm‑free setup and teardown, recovery, or
 inter‑domain confidentiality.

6. Security Considerations

 Being able to support very fast setup and a high-churn rate of GMPLS
 LSPs is not expected to adversely affect the underlying security
 issues associated with existing GMPLS signaling. If encryption that
 requires key exchange is intended to be used on the signaled LSPs,
 then this requirement needs to be included as a part of the protocol
 design process, as the usual extra round-trip time (RTT) for key
 exchange will have an effect on the setup and churn rate of the GMPLS
 LSPs. It is possible to amortize the costs of key exchange over
 multiple exchanges (if those occur between the same peers) so that
 some exchanges need not cost a full RTT and operate in so-called
 zero-RTT mode.

7. Acknowledgements

 The authors would like to thank Ann Von Lehmen, Joe Gannett, Ron
 Skoog, and Haim Kobrinski of Applied Communication Sciences for their
 comments and assistance on this document. Lou Berger provided
 editorial comments on this document.

8. References

8.1. Normative References

 [RFC3471]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Functional Description",
 RFC 3471, DOI 10.17487/RFC3471, January 2003,
 <http://www.rfc-editor.org/info/rfc3471>.

 [RFC3945]
 Mannie, E., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Architecture", RFC 3945,
 DOI 10.17487/RFC3945, October 2004,
 <http://www.rfc-editor.org/info/rfc3945>.

 [RFC4655]
 Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
 Element (PCE)-Based Architecture", RFC 4655,
 DOI 10.17487/RFC4655, August 2006,
 <http://www.rfc-editor.org/info/rfc4655>.

 [RFC5814]
 Sun, W., Ed. and G. Zhang, Ed., "Label Switched Path (LSP)
 Dynamic Provisioning Performance Metrics in Generalized
 MPLS Networks", RFC 5814, DOI 10.17487/RFC5814, March
 2010, <http://www.rfc-editor.org/info/rfc5814>.

 [RFC6163]
 Lee, Y., Ed., Bernstein, G., Ed., and W. Imajuku,
 "Framework for GMPLS and Path Computation Element (PCE)
 Control of Wavelength Switched Optical Networks (WSONs)",
 RFC 6163, DOI 10.17487/RFC6163, April 2011,
 <http://www.rfc-editor.org/info/rfc6163>.

 [RFC6383]
 Shiomoto, K. and A. Farrel, "Advice on When It Is Safe to
 Start Sending Data on Label Switched Paths Established
 Using RSVP-TE", RFC 6383, DOI 10.17487/RFC6383, September
 2011, <http://www.rfc-editor.org/info/rfc6383>.

 [RFC6777]
 Sun, W., Ed., Zhang, G., Ed., Gao, J., Xie, G., and R.
 Papneja, "Label Switched Path (LSP) Data Path Delay
 Metrics in Generalized MPLS and MPLS Traffic Engineering
 (MPLS-TE) Networks", RFC 6777, DOI 10.17487/RFC6777,
 November 2012, <http://www.rfc-editor.org/info/rfc6777>.

8.2. Informative References

 [Chiu]
 Chiu, A., et al., "Architectures and Protocols for
 Capacity Efficient, Highly Dynamic and Highly Resilient
 Core Networks", Journal of Optical Communications and
 Networking vol. 4, No. 1, pp. 1-14, 2012,
 DOI 10.1364/JOCN.4.000001,
 <http://dx.doi.org/10.1364/JOCN.4.000001>.

 [Lehmen]
 Von Lehmen, A., et al., "CORONET: Testbeds, Demonstration,
 and Lessons Learned", Journal of Optical Communications
 and Networking Vol. 7, Issue 3, pp. A447-A458, 2015,
 DOI 10.1364/JOCN.7.00A447,
 <http://dx.doi.org/10.1364/JOCN.7.00A447>.

Authors' Addresses

Andrew G. Malis (editor)
Huawei Technologies

 Email: agmalis@gmail.com

Brian J. Wilson
Applied Communication Sciences

 Email: bwilson@appcomsci.com

George Clapp
AT&T Labs Research

 Email: clapp@research.att.com

Vishnu Shukla
Verizon Communications

 Email: vishnu.shukla@verizon.com

7823 - Performance-Based Path Selection for Explicitly Routed Label Switched Pat

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7823

Category: Informational

ISSN: 2070-1721

A. Atlas

J. Drake

Juniper Networks

S. Giacalone

Microsoft

S. Previdi

Cisco Systems

May 2016

Performance-Based Path Selection for Explicitly Routed Label Switched Paths (LSPs) Using TE Metric Extensions

Abstract

 In certain networks, it is critical to consider network performance
 criteria when selecting the path for an explicitly routed RSVP-TE
 Label Switched Path (LSP). Such performance criteria can include
 latency, jitter, and loss or other indications such as the
 conformance to link performance objectives and non-RSVP TE traffic
 load. This specification describes how a path computation function
 may use network performance data, such as is advertised via the OSPF
 and IS-IS TE metric extensions (defined outside the scope of this
 document) to perform such path selections.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7823.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Basic Requirements

	 1.2. Oscillation and Stability Considerations

	2. Using Performance Data Constraints
	 2.1. End-to-End Constraints

	 2.2. Link Constraints

	 2.3. Links out of Compliance with Link Performance Objectives
	 2.3.1. Use of Anomalous Links for New Paths

	 2.3.2. Links Entering the Anomalous State

	 2.3.3. Links Leaving the Anomalous State

	3. Security Considerations

	4. References
	 4.1. Normative References

	 4.2. Informative References

	Acknowledgements

	Contributors

	Authors' Addresses

1. Introduction

 In certain networks, such as financial information networks, network
 performance information is becoming as critical to data-path
 selection as other existing metrics. Network performance information
 can be obtained via either the TE Metric Extensions in OSPF [RFC7471]
 or IS-IS [RFC7810] or via a management system. As with other TE
 information flooded via OSPF or IS-IS, the TE metric extensions have
 a flooding scope limited to the local area or level. This document
 describes how a path computation function, whether in an ingress LSR
 or a PCE [RFC4655], can use that information for path selection for
 explicitly routed LSPs. The selected path may be signaled via RSVP-
 TE [RFC3209] [RFC3473] or simply used by the ingress with segment
 routing [SEG-ROUTE-MPLS] to properly forward the packet. Methods of
 optimizing path selection for multiple parameters are generally
 computationally complex. However, there are good heuristics for the
 delay-constrained lowest-cost (DCLC) computation problem
 [k-Paths_DCLC] that can be applied to consider both path cost and a
 maximum delay bound. Some of the network performance information can
 also be used to prune links from a topology before computing the
 path.

 The path selection mechanisms described in this document apply to
 paths that are fully computed by the head-end of the LSP and then
 signaled in an Explicit Route Object (ERO) where every sub-object is
 strict. This allows the head-end to consider IGP-distributed
 performance data without requiring the ability to signal the
 performance constraints in an object of the RSVP Path message.

 When considering performance-based data, it is obvious that there are
 additional contributors to latency beyond just the links. Clearly
 end-to-end latency is a combination of router latency (e.g., latency
 from traversing a router without queueing delay), queuing latency,
 physical link latency, and other factors. While traversing a router
 can cause delay, that router latency can be included in the
 advertised link delay. As described in [RFC7471] and [RFC7810],
 queuing delay must not be included in the measurements advertised by
 OSPF or IS-IS.

 Queuing latency is specifically excluded to insure freedom from
 oscillations and stability issues that have plagued prior attempts to
 use delay as a routing metric. If application traffic follows a path
 based upon latency constraints, the same traffic might be in an
 Expedited Forwarding Per-Hop Behavior (PHB) [RFC3246] with minimal
 queuing delay or another PHB with potentially very substantial per-
 hop queuing delay. Only traffic that experiences relatively low
 congestion, such as Expedited Forwarding traffic, will experience
 delays very close to the sum of the reported link delays.

 This document does not specify how a router determines what values to
 advertise by the IGP; it does assume that the constraints specified
 in [RFC7471] and [RFC7810] are followed. Additionally, the end-to-
 end performance that is computed for an LSP path should be built from
 the individual link data. Any end-to-end characterization used to
 determine an LSP's performance compliance should be fully reflected
 in the Traffic Engineering Database so that a path calculation can
 also determine whether a path under consideration would be in
 compliance.

1.1. Basic Requirements

 The following are the requirements considered for a path computation
 function that uses network performance criteria.

 1. Select a TE tunnel's path based upon a combination of existing
 constraints as well as on link-latency, packet loss, jitter,
 conformance with link performance objectives, and bandwidth
 consumed by non-RSVP-TE traffic.

 2. Ability to define different end-to-end performance requirements
 for each TE tunnel regardless of common use of resources.

 3. Ability to periodically verify with the TE Link State Database
 (LSDB) that a TE tunnel's current LSP complies with its
 configured end-to-end performance requirements.

 4. Ability to move tunnels, using make-before-break, based upon
 computed end-to-end performance complying with constraints.

 5. Ability to move tunnels away from any link that is violating an
 underlying link performance objective.

 6. Ability to optionally avoid setting up tunnels using any link
 that is violating a link performance objective, regardless of
 whether end-to-end performance would still meet requirements.

 7. Ability to revert back, using make-before-break, to the best path
 after a configurable period.

1.2. Oscillation and Stability Considerations

 Past attempts to use unbounded delay or loss as a metric suffered
 from severe oscillations. The use of performance based data must be
 such that undamped oscillations are not possible and stability cannot
 be impacted.

 The use of timers is often cited as a cure. Oscillation that is
 damped by timers is known as "slosh". If advertisement timers are
 very short relative to the jitter applied to RSVP-TE Constrained
 Shortest Path First (CSPF) timers, then a partial oscillation occurs.
 If RSVP-TE CSPF timers are short relative to advertisement timers,
 full oscillation (all traffic moving back and forth) can occur. Even
 a partial oscillation causes unnecessary reordering that is
 considered at least minimally disruptive.

 Delay variation or jitter is affected by even small traffic levels.
 At even tiny traffic levels, the probability of a queue occupancy of
 one can produce a measured jitter proportional to or equal to the
 packet serialization delay. Very low levels of traffic can increase
 the probability of queue occupancies of two or three packets enough
 to further increase the measured jitter. Because jitter measurement
 is extremely sensitive to very low traffic levels, any use of jitter
 is likely to oscillate. However, there may be uses of a jitter
 measurement in path computation that can be considered free of
 oscillation.

 Delay measurements that are not sensitive to traffic loads may be
 safely used in path computation. Delay measurements made at the link
 layer or measurements made at a queuing priority higher than any
 significant traffic (such as Differentiated Services Code Point
 (DSCP) CS7 or CS6 [RFC4594], but not CS2 if traffic levels at CS3 and
 higher or Expedited Forwarding and Assured Forwarding can affect the
 measurement). Making delay measurements at the same priority as the
 traffic on affected paths is likely to cause oscillations.

2. Using Performance Data Constraints

2.1. End-to-End Constraints

 The per-link performance data available in the IGP [RFC7471]
 [RFC7810] includes: unidirectional link delay, unidirectional delay
 variation, and link loss. Each (or all) of these parameters can be
 used to create the path-level link-based parameter.

 It is possible to compute a CSPF where the link latency values are
 used instead of TE metrics; this results in ignoring the TE metrics
 and causing LSPs to prefer the lowest-latency paths. In practical
 scenarios, latency constraints are typically a bound constraint
 rather than a minimization objective. An end-to-end latency upper
 bound merely requires that the path computed be no more than that
 bound and does not require that it be the minimum latency path. The
 latter is exactly the DCLC problem to which good heuristics have been
 proposed in the literature (e.g., [k-Paths_DCLC]).

 An end-to-end bound on delay variation can be used similarly as a
 constraint in the path computation on what links to explore where the
 path's delay variation is the sum of the used links' delay
 variations.

For link loss, the path loss is not the sum of the used links'
losses. Instead, the path loss fraction is 1 ‑ (1 ‑ loss_L1)*
(1 ‑ loss_L2)*...*(1 ‑ loss_Ln), where the links along the path are
L1 to Ln with loss_Li in fractions. This computation is discussed in

 more detail in Sections 5.1.4 and 5.1.5 in [RFC6049]. The end-to-end
 link loss bound, computed in this fashion, can also be used as a
 constraint in the path computation.

 The heuristic algorithms for DCLC only address one constraint bound
 but having a CSPF that limits the paths explored (i.e., based on hop
 count) can be combined [hop-count_DCLC].

2.2. Link Constraints

 In addition to selecting paths that conform to a bound on performance
 data, it is also useful to avoid using links that do not meet a
 necessary constraint. Naturally, if such a parameter were a known
 fixed value, then resource attribute flags could be used to express
 this behavior. However, when the parameter associated with a link
 may vary dynamically, there is not currently a configuration-time
 mechanism to enforce such behavior. An example of this is described
 in Section 2.3, where links may move in and out of conformance for
 link performance objectives with regards to latency, delay variation,
 and link loss.

 When doing path selection for TE tunnels, it has not been possible to
 know how much actual bandwidth is available that includes the
 bandwidth used by non-RSVP-TE traffic. In [RFC7471] and [RFC7810],
 the Unidirectional Available Bandwidth is advertised as is the
 Residual Bandwidth. When computing the path for a TE tunnel, only
 links with at least a minimum amount of Unidirectional Available
 Bandwidth might be permitted.

 Similarly, only links whose loss is under a configurable value might
 be acceptable. For these constraints, each link can be tested
 against the constraint and only explored in the path computation if
 the link passes. In essence, a link that fails the constraint test
 is treated as if it contained a resource attribute in the exclude-any
 filter.

2.3. Links out of Compliance with Link Performance Objectives

 Link conformance to a link performance objective can change as a
 result of rerouting at lower layers. This could be due to optical
 regrooming or simply rerouting of an FA-LSP. When this occurs, there
 are two questions to be asked:

 a. Should the link be trusted and used for the setup of new LSPs?

 b. Should LSPs using this link automatically be moved to a secondary
 path?

2.3.1. Use of Anomalous Links for New Paths

 If the answer to (a) is no for link latency performance objectives,
 then any link that has the Anomalous bit set in the Unidirectional
 Link Delay sub-TLV [RFC7471] [RFC7810] should be removed from the
 topology before a path calculation is used to compute a new path. In
 essence, the link should be treated exactly as if it fails the
 exclude-any resource attributes filter [RFC3209].

 Similarly, if the answer to (a) is no for link loss performance
 objectives, then any link that has the Anomalous bit set in the Link
 Loss sub-TLV should be treated as if it fails the exclude-any
 resource attributes filter.

2.3.2. Links Entering the Anomalous State

 When the Anomalous bit transitions from clear to set, this indicates
 that the associated link has entered the Anomalous state with respect
 to the associated parameter; similarly, a transition from set to
 clear indicates that the Anomalous state has been exited for that
 link and associated parameter.

 When a link enters the Anomalous state with respect to a parameter,
 this is an indication that LSPs using that link might also no longer
 be in compliance with their performance bounds. It can also be
 considered an indication that something is changing that link and so
 it might no longer be trustworthy to carry performance-critical
 traffic. Naturally, which performance criteria are important for a
 particular LSP is dependent upon the LSP's configuration; thus, the
 compliance of a link with respect to a particular link performance
 objective is indicated per performance criterion.

 At the ingress of a TE tunnel, a TE tunnel may be configured to be
 sensitive to the Anomalous state of links in reference to latency,
 delay variation, and/or loss. Additionally, such a TE tunnel may be
 configured to either verify continued compliance, to switch
 immediately to a standby LSP, or to move to a different path.

 When a sub-TLV is received with the Anomalous bit set when previously
 it was clear, the list of interested TE tunnels must be scanned.
 Each such TE tunnel should have its continued compliance verified, be
 switched to a hot standby, or do a make-before-break to a secondary
 path.

 It is not sufficient to just look at the Anomalous bit in order to
 determine when TE tunnels must have their compliance verified. When
 changing to set, the Anomalous bit merely provides a hint that
 interested TE tunnels should have their continued compliance
 verified.

2.3.3. Links Leaving the Anomalous State

 When a link leaves the Anomalous state with respect to a parameter,
 this can serve as an indication that those TE tunnels, whose LSPs
 were changed due to administrative policy when the link entered the
 Anomalous state, may want to reoptimize to a better path. The hint
 provided by the Anomalous state change may help optimize when to
 recompute for a better path.

3. Security Considerations

 This document is not currently believed to introduce new security
 concerns.

4. References

4.1. Normative References

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <http://www.rfc-editor.org/info/rfc3209>.

 [RFC7471]
 Giacalone, S., Ward, D., Drake, J., Atlas, A., and S.
 Previdi, "OSPF Traffic Engineering (TE) Metric
 Extensions", RFC 7471, DOI 10.17487/RFC7471, March 2015,
 <http://www.rfc-editor.org/info/rfc7471>.

 [RFC7810]
 Previdi, S., Ed., Giacalone, S., Ward, D., Drake, J., and
 Q. Wu, "IS-IS Traffic Engineering (TE) Metric Extensions",
 RFC 7810, DOI 10.17487/7810, May 2016,
 <http://www.rfc-editor.org/info/rfc7810>.

4.2. Informative References

 [hop-count_DCLC]

 Agrawal, H., Grah, M., and M. Gregory, "Optimization of
 QoS Routing", 6th IEEE/AACIS International Conference on
 Computer and Information Science,
 DOI 10.1109/ICIS.2007.144, July 2007,
 <http://ieeexplore.ieee.org/xpl/
 articleDetails.jsp?arnumber=4276447>.

 [k-Paths_DCLC]

 Jia, Z. and P. Varaiya, "Heuristic methods for delay
 constrained least cost routing using k-shortest-paths",
 IEEE Transactions on Automatic Control, vol. 51, no. 4,
 April 2006, <http://dx.doi.org/10.1109/TAC.2006.872827>.

 [RFC3246]
 Davie, B., Charny, A., Bennet, J., Benson, K., Le Boudec,
 J., Courtney, W., Davari, S., Firoiu, V., and D.
 Stiliadis, "An Expedited Forwarding PHB (Per-Hop
 Behavior)", RFC 3246, DOI 10.17487/RFC3246, March 2002,
 <http://www.rfc-editor.org/info/rfc3246>.

 [RFC3473]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Resource ReserVation Protocol-
 Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
 DOI 10.17487/RFC3473, January 2003,
 <http://www.rfc-editor.org/info/rfc3473>.

 [RFC4594]
 Babiarz, J., Chan, K., and F. Baker, "Configuration
 Guidelines for DiffServ Service Classes", RFC 4594,
 DOI 10.17487/RFC4594, August 2006,
 <http://www.rfc-editor.org/info/rfc4594>.

 [RFC4655]
 Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
 Element (PCE)-Based Architecture", RFC 4655,
 DOI 10.17487/RFC4655, August 2006,
 <http://www.rfc-editor.org/info/rfc4655>.

 [RFC6049]
 Morton, A. and E. Stephan, "Spatial Composition of
 Metrics", RFC 6049, DOI 10.17487/RFC6049, January 2011,
 <http://www.rfc-editor.org/info/rfc6049>.

 [SEG-ROUTE-MPLS]

 Filsfils, C., Ed., Previdi, S., Ed., Bashandy, A.,
 Decraene, B., Litkowski, S., Horneffer, M., Shakir, R.,
 Tantsura, J., and E. Crabbe, "Segment Routing with MPLS
 data plane", Work in Progress, draft-ietf-spring-segment-
 routing-mpls-04, March 2016.

Acknowledgements

 The authors would like to thank Curtis Villamizar for his extensive
 detailed comments and suggested text in Sections 1 and 1.2. The
 authors would like to thank Dhruv Dhody for his useful comments and
 his care and persistence in making sure that these important
 corrections weren't missed. The authors would also like to thank
 Xiaohu Xu and Sriganesh Kini for their reviews.

Contributors

 Dave Ward and Clarence Filsfils contributed to this document.

Authors' Addresses

Alia Atlas
Juniper Networks
10 Technology Park Drive
Westford, MA 01886
United States

 Email: akatlas@juniper.net

John Drake
Juniper Networks
1194 N. Mathilda Ave.
Sunnyvale, CA 94089
United States

 Email: jdrake@juniper.net

Spencer Giacalone
Microsoft

 Email: spencer.giacalone@gmail.com

Stefano Previdi
Cisco Systems
Via Del Serafico 200
Rome 00142
Italy

 Email: sprevidi@cisco.com

7898 - Domain Subobjects for Resource Reservation Protocol - Traffic Engineering

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7898

Category: Experimental

ISSN: 2070-1721

D. Dhody

U. Palle

V. Kondreddy

Huawei Technologies

R. Casellas

CTTC

June 2016

Domain Subobjects for Resource Reservation Protocol - Traffic Engineering (RSVP-TE)

Abstract

 The Resource Reservation Protocol - Traffic Engineering (RSVP-TE)
 specification and the Generalized Multiprotocol Label Switching
 (GMPLS) extensions to RSVP-TE allow abstract nodes and resources to
 be explicitly included in a path setup. Further, Exclude Route
 extensions to RSVP-TE allow abstract nodes and resources to be
 explicitly excluded in a path setup.

 This document specifies new subobjects to include or exclude
 Autonomous Systems (ASes), which are identified by a 4-byte AS
 number, and Interior Gateway Protocol (IGP) areas during path setup.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7898.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved. This document is subject to
 BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
 Documents (http://trustee.ietf.org/license-info) in effect on the
 date of publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Scope

	 1.2. Requirements Language

	2. Terminology

	3. Subobjects for Domains
	 3.1. Domains

	 3.2. Explicit Route Object (ERO) Subobjects
	 3.2.1. Autonomous System

	 3.2.2. IGP Area

	 3.2.3. Mode of Operation

	 3.3. Exclude Route Object (XRO) Subobjects
	 3.3.1. Autonomous System

	 3.3.2. IGP Area

	 3.3.3. Mode of Operation

	 3.4. Explicit Exclusion Route Subobject

	4. Interaction with Path Computation Element (PCE)

	5. IANA Considerations
	 5.1. New Subobjects

	6. Security Considerations

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Appendix A. Examples
	 A.1. Inter-Area LSP Path Setup

	 A.2. Inter-AS LSP Path Setup
	 A.2.1. Example 1

	 A.2.2. Example 2

	Acknowledgments

	Authors' Addresses

1. Introduction

 The RSVP-TE specification [RFC3209] and the GMPLS extensions to
 RSVP-TE [RFC3473] allow abstract nodes and resources to be explicitly
 included in a path setup using the Explicit Route Object (ERO).
 Further, Exclude Route extensions [RFC4874] allow abstract nodes or
 resources to be excluded from the whole path using the Exclude Route
 Object (XRO). To exclude certain abstract nodes or resources between
 a specific pair of abstract nodes present in an ERO, an Explicit
 Exclusion Route subobject (EXRS) is used.

 [RFC3209] already describes the notion of abstract nodes, where an
 abstract node is a group of nodes whose internal topology is opaque
 to the ingress node of the Label Switched Path (LSP). It further
 defines a subobject for AS, but with a 2-byte AS number only.

 This document extends the notion of abstract nodes by adding new
 subobjects for IGP areas and 4-byte AS numbers (as per [RFC6793]).
 These subobjects can be included in ERO, XRO, or EXRS.

 In case of per-domain path computation [RFC5152], where the full path
 of an inter-domain TE LSP cannot be or is not determined at the
 ingress node, the signaling message could use domain identifiers.
 The use of these new subobjects is illustrated in Appendix A.

 Further, the domain identifier could simply act as a delimiter to
 specify where the domain boundary starts and ends.

 This is a companion document to Path Computation Element Protocol
 (PCEP) extensions for the domain sequence [RFC7897].

1.1. Scope

 The procedures described in this document are experimental. The
 experiment is intended to enable research for the usage of domain
 subobjects for inter-domain path setup. For this purpose, this
 document specifies new domain subobjects as well as how they
 incorporate with existing subobjects.

 The experiment will end two years after the RFC is published. At
 that point, the RFC authors will attempt to determine how widely this
 has been implemented and deployed.

 This document does not change the procedures for handling subobjects
 in RSVP-TE.

 The new subobjects introduced by this document will not be understood
 by legacy implementations. If a legacy implementation receives one
 of the subobjects that it does not understand in an RSVP-TE object,
 the legacy implementation will behave as described in [RFC3209] and
 [RFC4874]. Therefore, it is assumed that this experiment will be
 conducted only when all nodes processing the new subobject form part
 of the experiment.

 When the result of implementation and deployment are available, this
 document will be updated and refined, and then it will be moved from
 Experimental to Standards Track.

 It should be noted that there are other ways such as the use of a
 boundary node to identify the domain (instead of a domain
 identifier); the mechanism defined in this document is just another
 tool in the toolkit for the operator.

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Terminology

 The following terminology is used in this document.

AS: Autonomous System

Domain: As per [RFC4655], any collection of network elements within
 a common sphere of address management or path computational
 responsibility. Examples of domains include IGP areas and ASes.

ERO: Explicit Route Object

EXRS: Explicit Exclusion Route subobject

IGP: Interior Gateway Protocol. Either of the two routing
 protocols: Open Shortest Path First (OSPF) or Intermediate System
 to Intermediate System (IS‑IS).

IS‑IS: Intermediate System to Intermediate System

OSPF: Open Shortest Path First

PCE: Path Computation Element. An entity (component, application,
 or network node) that is capable of computing a network path or
 route based on a network graph and applying computational
 constraints.

PCEP: Path Computation Element Protocol

RSVP: Resource Reservation Protocol

TE LSP: Traffic Engineering Label Switched Path

XRO: Exclude Route Object

3. Subobjects for Domains

3.1. Domains

 [RFC4726] and [RFC4655] define domain as a separate administrative or
 geographic environment within the network. A domain could be further
 defined as a zone of routing or computational ability. Under these
 definitions, a domain might be categorized as an AS or an IGP area.

 As per [RFC3209], an abstract node is a group of nodes whose internal
 topology is opaque to the ingress node of the LSP. Using this
 concept of abstraction, an explicitly routed LSP can be specified as
 a sequence of IP prefixes or a sequence of ASes. In this document,
 we extend the notion to include the IGP area and 4-byte AS number.

 These subobjects appear in RSVP-TE, notably in:

 o Explicit Route Object (ERO): As per [RFC3209], an explicit route
 is a particular path in the network topology including abstract
 nodes (including domains).

 o Exclude Route Object (XRO): As per [RFC4874], an Exclude Route
 identifies a list of abstract nodes (including domains) that
 should not be traversed along the path of the LSP being
 established.

 o Explicit Exclusion Route Subobject (EXRS): As per [RFC4874], used
 to specify exclusion of certain abstract nodes between a specific
 pair of nodes. EXRS is a subobject carried inside the ERO. These
 subobjects can be used to specify the domains to be excluded
 between two abstract nodes.

3.2. Explicit Route Object (ERO) Subobjects

 As stated in [RFC3209], an explicit route is a particular path in the
 network topology. In addition to the ability to identify specific
 nodes along the path, an explicit route can identify a group of nodes
 (abstract nodes) to be traversed along the path.

 Some subobjects are defined in [RFC3209], [RFC3473], [RFC3477],
 [RFC4874], and [RFC5553], but new subobjects related to domains are
 needed.

 This document extends the support for 4-byte AS numbers and IGP
 areas.

Value Description
‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
5 4‑byte AS number
6 OSPF Area ID
7 IS‑IS Area ID

3.2.1. Autonomous System

 [RFC3209] already defines 2-byte AS numbers.

 To support 4-byte AS numbers as per [RFC6793], the following
 subobject is defined:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
|L| Type | Length | Reserved |
+‑+
| AS Number (4 bytes) |
+‑+

 L: The L bit is an attribute of the subobject as defined in

 [RFC3209], i.e., it's set if the subobject represents a loose hop
 in the explicit route. If the bit is not set, the subobject
 represents a strict hop in the explicit route.

Type: 5 (indicating a 4‑byte AS number).

Length: 8 (total length of the subobject in bytes).

Reserved: Zero at transmission; ignored at receipt.

AS Number: The 4‑byte AS number. Note that if 2‑byte AS numbers are
 in use, the low‑order bits (16 through 31) MUST be used, and the
 high‑order bits (0 through 15) MUST be set to zero. For the
 purpose of this experiment, it is advised to use a 4‑byte AS
 number subobject as the default.

3.2.2. IGP Area

 Since the length and format of Area ID is different for OSPF and
 IS-IS, the following two subobjects are defined:

 For OSPF, the Area ID is a 32-bit number. The subobject is encoded
 as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
|L| Type | Length | Reserved |
+‑+
| OSPF Area ID (4 bytes) |
+‑+

 L: The L bit is an attribute of the subobject as defined in

 [RFC3209].

Type: 6 (indicating a 4‑byte OSPF Area ID).

Length: 8 (total length of the subobject in bytes).

Reserved: Zero at transmission; ignored at receipt.

OSPF Area ID: The 4‑byte OSPF Area ID.

 For IS-IS, the Area ID is of variable length; thus, the length of the
 subobject is variable. The Area ID is as described in IS-IS by the
 ISO standard [ISO10589]. The subobject is encoded as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
|L| Type | Length | Area‑Len | Reserved |
+‑+
| |
// IS‑IS Area ID //
| |
+‑+

 L: The L bit is an attribute of the subobject as defined in

 [RFC3209].

Type: 7 (indicating the IS‑IS Area ID).

Length: Variable. The length MUST be at least 8 and MUST be a
 multiple of 4.

Area‑Len: Variable (length of the actual (non‑padded) IS‑IS area
 identifier in octets; valid values are from 1 to 13, inclusive).

Reserved: Zero at transmission; ignored at receipt.

IS‑IS Area ID: The variable‑length IS‑IS area identifier. Padded
 with trailing zeroes to a 4‑byte boundary.

3.2.3. Mode of Operation

 The new subobjects to support 4-byte AS numbers and the IGP (OSPF /
 IS-IS) area could be used in the ERO to specify an abstract node (a
 group of nodes whose internal topology is opaque to the ingress node
 of the LSP).

 All the rules of processing (for example, next-hop selection, L bit
 processing, unrecognized subobjects, etc.) are as per the [RFC3209].
 Note that if a node is called upon to process subobjects defined in
 this document that it does not recognize, it will behave as described
 in [RFC3209] when an unrecognized ERO subobject is encountered. This
 means that this node will return a PathErr with error code "Routing
 Error" and error value "Bad EXPLICIT_ROUTE object" with the
 EXPLICIT_ROUTE object included, truncated (on the left) to the
 offending subobject.

3.3. Exclude Route Object (XRO) Subobjects

 As stated in [RFC4874], the Exclude Route identifies a list of
 abstract nodes to exclude (not be traversed) along the path of the
 LSP being established.

 Some subobjects are defined in [RFC3209], [RFC3477], [RFC4874], and
 [RFC6001], but new subobjects related to domains are needed.

 This document extends the support for 4-byte AS numbers and IGP
 areas.

Value Description
‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
5 4‑byte AS number
6 OSPF Area ID
7 IS‑IS Area ID

3.3.1. Autonomous System

 [RFC3209] and [RFC4874] already define a 2-byte AS number.

 To support 4-byte AS numbers as per [RFC6793], a subobject has the
 same format as defined in Section 3.2.1 with the following
 difference:

 The meaning of the L bit is as per [RFC4874], where:

 0: indicates that the abstract node specified MUST be excluded.

 1: indicates that the abstract node specified SHOULD be avoided.

3.3.2. IGP Area

 Since the length and format of Area ID is different for OSPF and IS-
 IS, the following two subobjects are defined:

 For OSPF, the Area ID is a 32-bit number. Subobjects for OSPF and
 IS-IS are of the same format as defined in Section 3.2.2 with the
 following difference:

 The meaning of the L bit is as per [RFC4874].

3.3.3. Mode of Operation

 The new subobjects to support 4-byte AS numbers and the IGP (OSPF /
 IS-IS) area could also be used in the XRO to specify exclusion of an
 abstract node (a group of nodes whose internal topology is opaque to
 the ingress node of the LSP).

 All the rules of processing are as per [RFC4874].

 Note that if a node is called upon to process a subobject defined in
 this document that it does not recognize, it will behave as described
 in [RFC4874] when an unrecognized XRO subobject is encountered, i.e.,
 ignore it. In this case, the desired exclusion will not be carried
 out.

 IGP area subobjects in the XRO are local to the current AS. In case
 of multi-AS path computation that excludes an IGP area in a different
 AS, an IGP area subobject should be part of EXRS in the ERO to
 specify the AS in which the IGP area is to be excluded. Further,
 policy may be applied to prune/ignore area subobjects in XRO at the
 AS boundary.

3.4. Explicit Exclusion Route Subobject

 As per [RFC4874], the Explicit Exclusion Route is used to specify
 exclusion of certain abstract nodes between a specific pair of nodes
 or resources in the explicit route. EXRS is an ERO subobject that
 contains one or more subobjects of its own, called EXRS subobjects.

 The EXRS subobject could carry any of the subobjects defined for XRO;
 thus, the new subobjects to support 4-byte AS numbers and the IGP
 (OSPF / IS-IS) area can also be used in the EXRS. The meanings of
 the fields of the new XRO subobjects are unchanged when the
 subobjects are included in an EXRS, except that the scope of the
 exclusion is limited to the single hop between the previous and
 subsequent elements in the ERO.

 All the rules of processing are as per [RFC4874].

4. Interaction with Path Computation Element (PCE)

 The domain subobjects to be used in PCEP are referred to in
 [RFC7897]. Note that the new domain subobjects follow the principle
 that subobjects used in PCEP [RFC5440] are identical to the
 subobjects used in RSVP-TE and thus are interchangeable between PCEP
 and RSVP-TE.

5. IANA Considerations

5.1. New Subobjects

 IANA maintains the "Resource Reservation Protocol (RSVP) Parameters"
 registry at <http://www.iana.org/assignments/rsvp-parameters>.
 Within this registry, IANA maintains two sub-registries:

 o EXPLICIT_ROUTE subobjects (see "Sub-object type - 20
 EXPLICIT_ROUTE - Type 1 Explicit Route")

 o EXCLUDE_ROUTE subobjects (see "Sub-object types of Class Types or
 C-Types - 232 EXCLUDE_ROUTE")

 IANA has made identical additions to these registries as follows, in
 sync with [RFC7897]:

Value Description Reference
‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
5 4‑byte AS number [RFC7897], RFC 7898
6 OSPF Area ID [RFC7897], RFC 7898
7 IS‑IS Area ID [RFC7897], RFC 7898

 Further, IANA has added a reference to this document to the new PCEP
 numbers that are registered by [RFC7897], as shown on
 <http://www.iana.org/assignments/pcep>.

6. Security Considerations

 Security considerations for RSVP-TE and GMPLS signaling RSVP-TE
 extensions are covered in [RFC3209] and [RFC3473]. This document
 does not introduce any new messages or any substantive new
 processing, so those security considerations continue to apply.
 Further, general considerations for securing RSVP-TE in MPLS-TE and
 GMPLS networks can be found in [RFC5920]. Section 8 of [RFC5920]
 describes the inter-provider security considerations, which continue
 to apply.

 The route exclusion security considerations are covered in [RFC4874]
 and continue to apply.

7. References

7.1. Normative References

 [ISO10589]

 International Organization for Standardization,
 "Information technology -- Telecommunications and
 information exchange between systems -- Intermediate
 System to Intermediate System intra-domain routeing
 information exchange protocol for use in conjunction with
 the protocol for providing the connectionless-mode network
 service (ISO 8473)", ISO/IEC 10589:2002, Second Edition,
 November 2002.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <http://www.rfc-editor.org/info/rfc3209>.

 [RFC3473]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Resource ReserVation Protocol-
 Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
 DOI 10.17487/RFC3473, January 2003,
 <http://www.rfc-editor.org/info/rfc3473>.

 [RFC3477]
 Kompella, K. and Y. Rekhter, "Signalling Unnumbered Links
 in Resource ReSerVation Protocol - Traffic Engineering
 (RSVP-TE)", RFC 3477, DOI 10.17487/RFC3477, January 2003,
 <http://www.rfc-editor.org/info/rfc3477>.

 [RFC4874]
 Lee, CY., Farrel, A., and S. De Cnodder, "Exclude Routes -
 Extension to Resource ReserVation Protocol-Traffic
 Engineering (RSVP-TE)", RFC 4874, DOI 10.17487/RFC4874,
 April 2007, <http://www.rfc-editor.org/info/rfc4874>.

 [RFC7897]
 Dhody, D., Palle, U., and R. Casellas, "Domain Subobjects
 for the Path Computation Element Communication Protocol
 (PCEP)", RFC 7897, DOI 10.17487/RFC7897, June 2016,
 <http://www.rfc-editor.org/info/rfc7897>.

7.2. Informative References

 [RFC4655]
 Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
 Element (PCE)-Based Architecture", RFC 4655,
 DOI 10.17487/RFC4655, August 2006,
 <http://www.rfc-editor.org/info/rfc4655>.

 [RFC4726]
 Farrel, A., Vasseur, J., and A. Ayyangar, "A Framework for
 Inter-Domain Multiprotocol Label Switching Traffic
 Engineering", RFC 4726, DOI 10.17487/RFC4726, November
 2006, <http://www.rfc-editor.org/info/rfc4726>.

 [RFC5152]
 Vasseur, JP., Ed., Ayyangar, A., Ed., and R. Zhang, "A
 Per-Domain Path Computation Method for Establishing Inter-
 Domain Traffic Engineering (TE) Label Switched Paths
 (LSPs)", RFC 5152, DOI 10.17487/RFC5152, February 2008,
 <http://www.rfc-editor.org/info/rfc5152>.

 [RFC5440]
 Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
 Element (PCE) Communication Protocol (PCEP)", RFC 5440,
 DOI 10.17487/RFC5440, March 2009,
 <http://www.rfc-editor.org/info/rfc5440>.

 [RFC5553]
 Farrel, A., Ed., Bradford, R., and JP. Vasseur, "Resource
 Reservation Protocol (RSVP) Extensions for Path Key
 Support", RFC 5553, DOI 10.17487/RFC5553, May 2009,
 <http://www.rfc-editor.org/info/rfc5553>.

 [RFC5920]
 Fang, L., Ed., "Security Framework for MPLS and GMPLS
 Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010,
 <http://www.rfc-editor.org/info/rfc5920>.

 [RFC6001]
 Papadimitriou, D., Vigoureux, M., Shiomoto, K., Brungard,
 D., and JL. Le Roux, "Generalized MPLS (GMPLS) Protocol
 Extensions for Multi-Layer and Multi-Region Networks (MLN/
 MRN)", RFC 6001, DOI 10.17487/RFC6001, October 2010,
 <http://www.rfc-editor.org/info/rfc6001>.

 [RFC6793]
 Vohra, Q. and E. Chen, "BGP Support for Four-Octet
 Autonomous System (AS) Number Space", RFC 6793,
 DOI 10.17487/RFC6793, December 2012,
 <http://www.rfc-editor.org/info/rfc6793>.

Appendix A. Examples

 These examples are for illustration purposes only to show how the new
 subobjects could be encoded. They are not meant to be an exhaustive
 list of all possible use cases and combinations.

A.1. Inter-Area LSP Path Setup

 In an inter-area LSP path setup where the ingress and the egress
 belong to different IGP areas within the same AS, the domain
 subobjects could be represented using an ordered list of IGP area
 subobjects in an ERO.

 D2 Area D
 |
 |
 D1
 |
 |
 ********BD1******
 * | *
 * | * Area C
 Area A * | *
 * | *
 Ingress‑‑‑‑‑‑A1‑‑‑‑‑ABF1‑‑‑‑‑‑B1‑‑‑‑‑‑BC1‑‑‑‑‑‑C1‑‑‑‑‑‑Egress
 / * | *
 / * | *
 / * Area | B *
 F1 * | *
 / ********BE1******
 / |
 / |
 F2 E1
 |
Area F |
 E2 Area E

 * All IGP areas in one AS (AS 100)

 Figure 1: Domain Corresponding to IGP Area

 As per Figure 1, the signaling at the ingress could be:

 ERO:(A1, ABF1, area B, area C, egress)

 It should be noted that there are other ways to achieve the desired
 signaling; the area subobject provides another tool in the toolkit
 and can have operational benefits when:

 o Use of PCEP-like domain sequence [RFC7897] configurations in the
 explicit path is such that area subobjects can be used to signal
 the loose path.

 o Alignment of subobjects and registries is between PCEP and RSVP-
 TE, thus allowing easier interworking between path computation and
 signaling, i.e., subobjects are able to switch between signaling
 and path computation (if need be).

A.2. Inter-AS LSP Path Setup

A.2.1. Example 1

 In an inter-AS LSP path setup where the ingress and the egress belong
 to a different AS, the domain subobjects (ASes) could be used in an
 ERO.

 AS A AS E AS C
 <‑‑‑‑‑‑‑‑‑‑‑‑‑> <‑‑‑‑‑‑‑‑‑‑> <‑‑‑‑‑‑‑‑‑‑‑‑‑>

 A4‑‑‑‑‑‑‑‑‑‑E1‑‑‑E2‑‑‑E3‑‑‑‑‑‑‑‑‑C4
 / / \
 / / \
 / / AS B \
 / / <‑‑‑‑‑‑‑‑‑‑> \
Ingress‑‑‑‑‑‑A1‑‑‑A2‑‑‑‑‑‑B1‑‑‑B2‑‑‑B3‑‑‑‑‑‑C1‑‑‑C2‑‑‑‑‑‑Egress
 \ / /
 \ / /
 \ / /
 \ / /
 A3‑‑‑‑‑‑‑‑‑‑D1‑‑‑D2‑‑‑D3‑‑‑‑‑‑‑‑‑C3

 <‑‑‑‑‑‑‑‑‑‑>
 AS D

 * All ASes have one area (area 0)

 Figure 2: Domain Corresponding to AS

 As per Figure 2, the signaling at the ingress could be:

 ERO:(A1, A2, AS B, AS C, egress); or

 ERO:(A1, A2, AS B, area 0, AS C, area 0, egress).

 Each AS has a single IGP area (area 0); the area subobject is
 optional.

 Note that to get a domain disjoint path, the ingress could also
 signal the backup path with:

 XRO:(AS B)

A.2.2. Example 2

 As shown in Figure 3, where AS 200 is made up of multiple areas, the
 signaling can include both an AS and area subobject to uniquely
 identify a domain.

 Ingress *
 | *
 | *
 | *
 X1 *
 \\ *
 \ \ *
 \ * Inter‑AS
AS 100 * \ Link
 * \ \
 * \ \
 * \ \
 \ \ D2 Area D
 AS 200 \ \ |
 \ \ |
 Inter‑ \ \ D1
 AS \ \ |
 Link \ \|
 \ ********BD1******
 \ * | *
 \ * | * Area C
 Area A \ * | *
 * | *
 A2‑‑‑‑‑‑A1‑‑‑‑‑‑AB1‑‑‑‑‑‑B1‑‑‑‑‑‑BC1‑‑‑‑‑‑C1‑‑‑‑‑‑Egress
 * | *
 * | *
 * | *
 * Area | B *
 ********BE1******
 |
 |
 E1
 |
 |
 E2 Area E

 Figure 3: Domain Corresponding to AS and Area

 As per Figure 3, the signaling at the ingress could be:

 ERO:(X1, AS 200, area B, area C, egress).

Acknowledgments

 We would like to thank Adrian Farrel, Lou Berger, George Swallow,
 Chirag Shah, Reeja Paul, Sandeep Boina, and Avantika for their useful
 comments and suggestions.

 Thanks to Vishnu Pavan Beeram for shepherding this document.

 Thanks to Deborah Brungard for being the responsible AD.

 Thanks to Amanda Baber for the IANA review.

 Thanks to Brian Carpenter for the Gen-ART review.

 Thanks to Liang Xia (Frank) for the SecDir review.

 Thanks to Spencer Dawkins and Barry Leiba for comments during the
 IESG review.

Authors' Addresses

Dhruv Dhody
Huawei Technologies
Divyashree Techno Park, Whitefield
Bangalore, Karnataka 560066
India

 Email: dhruv.ietf@gmail.com

Udayasree Palle
Huawei Technologies
Divyashree Techno Park, Whitefield
Bangalore, Karnataka 560066
India

 Email: udayasree.palle@huawei.com

Venugopal Reddy Kondreddy
Huawei Technologies
Divyashree Techno Park, Whitefield
Bangalore, Karnataka 560066
India

 Email: venugopalreddyk@huawei.com

Ramon Casellas
CTTC
Av. Carl Friedrich Gauss n7
Castelldefels, Barcelona 08860
Spain

 Email: ramon.casellas@cttc.es

7926 - Problem Statement and Architecture for Information Exchange between Inter

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7926

BCP: 206

Category: Best Current Practice

ISSN: 2070-1721

A. Farrel, Ed.

J. Drake

Juniper Networks

N. Bitar

Nokia

G. Swallow

Cisco Systems, Inc.

D. Ceccarelli

Ericsson

X. Zhang

Huawei

July 2016

Problem Statement and Architecture for Information Exchange between Interconnected Traffic-Engineered Networks

Abstract

 In Traffic-Engineered (TE) systems, it is sometimes desirable to
 establish an end-to-end TE path with a set of constraints (such as
 bandwidth) across one or more networks from a source to a
 destination. TE information is the data relating to nodes and TE
 links that is used in the process of selecting a TE path. TE
 information is usually only available within a network. We call such
 a zone of visibility of TE information a domain. An example of a
 domain may be an IGP area or an Autonomous System.

 In order to determine the potential to establish a TE path through a
 series of connected networks, it is necessary to have available a
 certain amount of TE information about each network. This need not
 be the full set of TE information available within each network but
 does need to express the potential of providing TE connectivity.
 This subset of TE information is called TE reachability information.

 This document sets out the problem statement for the exchange of TE
 information between interconnected TE networks in support of end-to-
 end TE path establishment and describes the best current practice
 architecture to meet this problem statement. For reasons that are
 explained in this document, this work is limited to simple TE
 constraints and information that determine TE reachability.

Status of This Memo

 This memo documents an Internet Best Current Practice.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 BCPs is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7926.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology
	 1.1.1. TE Paths and TE Connections

	 1.1.2. TE Metrics and TE Attributes

	 1.1.3. TE Reachability

	 1.1.4. Domain

	 1.1.5. Server Network

	 1.1.6. Client Network

	 1.1.7. Aggregation

	 1.1.8. Abstraction

	 1.1.9. Abstract Link

	 1.1.10. Abstract Node or Virtual Node

	 1.1.11. Abstraction Layer Network

	2. Overview of Use Cases
	 2.1. Peer Networks

	 2.2. Client-Server Networks

	 2.3. Dual-Homing

	 2.4. Requesting Connectivity
	 2.4.1. Discovering Server Network Information

	3. Problem Statement
	 3.1. Policy and Filters

	 3.2. Confidentiality

	 3.3. Information Overload

	 3.4. Issues of Information Churn

	 3.5. Issues of Aggregation

	4. Architecture
	 4.1. TE Reachability

	 4.2. Abstraction, Not Aggregation
	 4.2.1. Abstract Links

	 4.2.2. The Abstraction Layer Network

	 4.2.3. Abstraction in Client-Server Networks

	 4.2.4. Abstraction in Peer Networks

	 4.3. Considerations for Dynamic Abstraction

	 4.4. Requirements for Advertising Links and Nodes

	 4.5. Addressing Considerations

	5. Building on Existing Protocols
	 5.1. BGP-LS

	 5.2. IGPs

	 5.3. RSVP-TE

	 5.4. Notes on a Solution

	6. Application of the Architecture to Optical Domains and Networks

	7. Application of the Architecture to the User-Network Interface

	8. Application of the Architecture to L3VPN Multi-AS Environments

	9. Scoping Future Work
	 9.1. Limiting Scope to Only Part of the Internet

	 9.2. Working with "Related" Domains

	 9.3. Not Finding Optimal Paths in All Situations

	 9.4. Sanity and Scaling

	10. Manageability Considerations
	 10.1. Managing the Abstraction Layer Network

	 10.2. Managing Interactions of Abstraction Layer and Client Networks

	 10.3. Managing Interactions of Abstraction Layer and Server Networks

	11. Security Considerations

	12. Informative References

	Appendix A. Existing Work
	 A.1. Per-Domain Path Computation

	 A.2. Crankback

	 A.3. Path Computation Element

	 A.4. GMPLS UNI and Overlay Networks

	 A.5. Layer 1 VPN

	 A.6. Policy and Link Advertisement

	Appendix B. Additional Features
	 B.1. Macro Shared Risk Link Groups

	 B.2. Mutual Exclusivity

	Acknowledgements

	Contributors

	Authors' Addresses

1. Introduction

 Traffic-Engineered (TE) systems such as MPLS-TE [RFC2702] and GMPLS
 [RFC3945] offer a way to establish paths through a network in a
 controlled way that reserves network resources on specified links.
 TE paths are computed by examining the Traffic Engineering Database
 (TED) and selecting a sequence of links and nodes that are capable of
 meeting the requirements of the path to be established. The TED is
 constructed from information distributed by the Interior Gateway
 Protocol (IGP) running in the network -- for example, OSPF-TE
 [RFC3630] or ISIS-TE [RFC5305].

 It is sometimes desirable to establish an end-to-end TE path that
 crosses more than one network or administrative domain as described
 in [RFC4105] and [RFC4216]. In these cases, the availability of TE
 information is usually limited to within each network. Such networks
 are often referred to as domains [RFC4726], and we adopt that
 definition in this document; viz.,

 For the purposes of this document, a domain is considered to be
 any collection of network elements within a common sphere of
 address management or path computational responsibility. Examples
 of such domains include IGP areas and Autonomous Systems (ASes).

 In order to determine the potential to establish a TE path through a
 series of connected domains and to choose the appropriate domain
 connection points through which to route a path, it is necessary to
 have available a certain amount of TE information about each domain.
 This need not be the full set of TE information available within each
 domain but does need to express the potential of providing TE
 connectivity. This subset of TE information is called TE
 reachability information. The TE reachability information can be
 exchanged between domains based on the information gathered from the
 local routing protocol, filtered by configured policy, or statically
 configured.

 This document sets out the problem statement for the exchange of TE
 information between interconnected TE networks in support of end-to-
 end TE path establishment and describes the best current practice
 architecture to meet this problem statement. The scope of this
 document is limited to the simple TE constraints and information
 (such as TE metrics, hop count, bandwidth, delay, shared risk)
 necessary to determine TE reachability: discussion of multiple
 additional constraints that might qualify the reachability can
 significantly complicate aggregation of information and the stability
 of the mechanism used to present potential connectivity, as is
 explained in the body of this document.

 Appendix A summarizes relevant existing work that is used to route TE
 paths across multiple domains.

1.1. Terminology

 This section introduces some key terms that need to be understood to
 arrive at a common understanding of the problem space. Some of the
 terms are defined in more detail in the sections that follow (in
 which case forward pointers are provided), and some terms are taken
 from definitions that already exist in other RFCs (in which case
 references are given, but no apology is made for repeating or
 summarizing the definitions here).

1.1.1. TE Paths and TE Connections

 A TE connection is a Label Switched Path (LSP) through an MPLS-TE or
 GMPLS network that directs traffic along a particular path (the TE
 path) in order to provide a specific service such as bandwidth
 guarantee, separation of traffic, or resilience between a well-known
 pair of end points.

1.1.2. TE Metrics and TE Attributes

 "TE metrics" and "TE attributes" are terms applied to parameters of
 links (and possibly nodes) in a network that is traversed by TE
 connections. The TE metrics and TE attributes are used by path
 computation algorithms to select the TE paths that the TE connections
 traverse. A TE metric is a quantifiable value (including measured
 characteristics) describing some property of a link or node that can
 be used as part of TE routing or planning, while a TE attribute is a
 wider term (i.e., including the concept of a TE metric) that refers
 to any property or characteristic of a link or node that can be used
 as part of TE routing or planning. Thus, the delay introduced by
 transmission of a packet on a link is an example of a TE metric,
 while the geographic location of a router is an example of a more
 general attribute.

 Provisioning a TE connection through a network may result in dynamic
 changes to the TE metrics and TE attributes of the links and nodes in
 the network.

 These terms are also sometimes used to describe the end-to-end
 characteristics of a TE connection and can be derived according to a
 formula from the TE metrics and TE attributes of the links and nodes
 that the TE connection traverses. Thus, for example, the end-to-end
 delay for a TE connection is usually considered to be the sum of the
 delay on each link that the connection traverses.

1.1.3. TE Reachability

 In an IP network, reachability is the ability to deliver a packet to
 a specific address or prefix, i.e., the existence of an IP path to
 that address or prefix. TE reachability is the ability to reach a
 specific address along a TE path. More specifically, it is the
 ability to establish a TE connection in an MPLS-TE or GMPLS sense.
 Thus, we talk about TE reachability as the potential of providing TE
 connectivity.

 TE reachability may be unqualified (there is a TE path, but no
 information about available resources or other constraints is
 supplied); this is helpful especially in determining a path to a
 destination that lies in an unknown domain or that may be qualified
 by TE attributes and TE metrics such as hop count, available
 bandwidth, delay, and shared risk.

1.1.4. Domain

 As defined in [RFC4726], a domain is any collection of network
 elements within a common sphere of address management or path
 computational responsibility. Examples of such domains include IGP
 areas and ASes.

1.1.5. Server Network

 A Server Network is a network that provides connectivity for another
 network (the Client Network) in a client-server relationship. A
 Server Network is sometimes referred to as an underlay network.

1.1.6. Client Network

 A Client Network is a network that uses the connectivity provided by
 a Server Network. A Client Network is sometimes referred to as an
 overlay network.

1.1.7. Aggregation

 The concept of aggregation is discussed in Section 3.5. In
 aggregation, multiple network resources from a domain are represented
 outside the domain as a single entity. Thus, multiple links and
 nodes forming a TE connection may be represented as a single link, or
 a collection of nodes and links (perhaps the whole domain) may be
 represented as a single node with its attachment links.

1.1.8. Abstraction

 Section 4.2 introduces the concept of abstraction and distinguishes
 it from aggregation. Abstraction may be viewed as "policy-based
 aggregation" where the policies are applied to overcome the issues
 with aggregation as identified in Section 3 of this document.

 Abstraction is the process of applying policy to the available TE
 information within a domain, to produce selective information that
 represents the potential ability to connect across the domain. Thus,
 abstraction does not necessarily offer all possible connectivity
 options, but it presents a general view of potential connectivity
 according to the policies that determine how the domain's
 administrator wants to allow the domain resources to be used.

1.1.9. Abstract Link

 An abstract link is the representation of the characteristics of a
 path between two nodes in a domain produced by abstraction. The
 abstract link is advertised outside that domain as a TE link for use
 in signaling in other domains. Thus, an abstract link represents the
 potential to connect between a pair of nodes.

 More details regarding abstract links are provided in Section 4.2.1.

1.1.10. Abstract Node or Virtual Node

 An abstract node was defined in [RFC3209] as a group of nodes whose
 internal topology is opaque to an ingress node of the LSP. More
 generally, an abstract node is the representation as a single node in
 a TE topology of some or all of the resources of one or more nodes
 and the links that connect them. An abstract node may be advertised
 outside the domain as a TE node for use in path computation and
 signaling in other domains.

 The term "virtual node" has typically been applied to the aggregation
 of a domain (that is, a collection of nodes and links that operate as
 a single administrative entity for TE purposes) into a single entity
 that is treated as a node for the purposes of end-to-end traffic
 engineering. Virtual nodes are often considered a way to present
 islands of single-vendor equipment in an optical network.

 Sections 3.5 and 4.2.2.1 provide more information about the uses and
 issues of abstract nodes and virtual nodes.

1.1.11. Abstraction Layer Network

 The abstraction layer network is introduced in Section 4.2.2. It may
 be seen as a brokerage-layer network between one or more server
 networks and one or more client networks. The abstraction layer
 network is the collection of abstract links that provide potential
 connectivity across the server networks and on which path computation
 can be performed to determine edge-to-edge paths that provide
 connectivity as links in the client network.

 In the simplest case, the abstraction layer network is just a set of
 edge-to-edge connections (i.e., abstract links), but to make the use
 of server network resources more flexible, the abstract links might
 not all extend from edge to edge but might offer connectivity between
 server network nodes to form a more complex network.

2. Overview of Use Cases

2.1. Peer Networks

 The peer network use case can be most simply illustrated by the
 example in Figure 1. A TE path is required between the source (Src)
 and destination (Dst), which are located in different domains. There
 are two points of interconnection between the domains, and selecting
 the wrong point of interconnection can lead to a suboptimal path or
 even fail to make a path available. Note that peer networks are
 assumed to have the same technology type -- that is, the same
 "switching capability", to use the term from GMPLS [RFC3945].

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑
| Domain A | x1 | Domain Z |
| ‑‑‑‑‑ +‑‑‑‑+ ‑‑‑‑‑ |
| | Src | +‑‑‑‑+ | Dst | |
| ‑‑‑‑‑ | x2 | ‑‑‑‑‑ |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑

 Figure 1: Peer Networks

 For example, when Domain A attempts to select a path, it may
 determine that adequate bandwidth is available from Src through both
 interconnection points x1 and x2. It may pick the path through x1
 for local policy reasons: perhaps the TE metric is smaller. However,
 if there is no connectivity in Domain Z from x1 to Dst, the path
 cannot be established. Techniques such as crankback may be used to
 alleviate this situation, but such techniques do not lead to rapid
 setup or guaranteed optimality. Furthermore, RSVP signaling creates
 state in the network that is immediately removed by the crankback
 procedure. Frequent events of this kind will impact scalability in a
 non-deterministic manner. More details regarding crankback can be
 found in Appendix A.2.

There are countless more complicated examples of the problem of peer
networks. Figure 2 shows the case where there is a simple mesh of
domains. Clearly, to find a TE path from Src to Dst, Domain A
must not select a path leaving through interconnect x1, since
Domain B has no connectivity to Domain Z. Furthermore, in deciding
whether to select interconnection x2 (through Domain C) or
interconnection x3 through Domain D, Domain A must be sensitive to
the TE connectivity available through each of Domains C and D,
as well as the TE connectivity from each of interconnections x4 and
x5 to Dst within Domain Z. The problem may be further complicated
when the source domain does not know in which domain the destination
node is located, since the choice of a domain path clearly depends on
the knowledge of the destination domain: this issue is obviously
mitigated in IP networks by inter‑domain routing [RFC4271].

 Of course, many network interconnection scenarios are going to be a
 combination of the situations expressed in these two examples. There
 may be a mesh of domains, and the domains may have multiple points of
 interconnection.

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | Domain B |
 | |
 | |
 /‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 /
 /x1
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑/ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Domain A		Domain Z		
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑			
‑‑‑‑‑	x2	Domain C	x4	‑‑‑‑‑
	Src	+‑‑‑+ +‑‑‑+	Dst	
‑‑‑‑‑				‑‑‑‑‑
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑			
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑\ /‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 \x3 /
 \ /
 \ /x5
 \‑‑‑‑‑‑‑‑‑‑‑‑‑‑/
 | Domain D |
 | |
 | |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑

 Figure 2: Peer Networks in a Mesh

2.2. Client-Server Networks

Two major classes of use case relate to the client‑server
relationship between networks. These use cases have sometimes been
referred to as overlay networks. In both of these classes of
use case, the client and server networks may have the same switching
capability, or they may be built from nodes and links that have
different technology types in the client and server networks.

 The first group of use cases, shown in Figure 3, occurs when domains
 belonging to one network are connected by a domain belonging to
 another network. In this scenario, once connectivity is formed
 across the lower-layer network, the domains of the upper-layer
 network can be merged into a single domain by running IGP adjacencies
 and by treating the server-network-layer connectivity as links in the
 higher-layer network. The TE relationship between the domains
 (higher and lower layers) in this case is reduced to determining what
 server network connectivity to establish, how to trigger it, how to
 route it in the server network, and what resources and capacity to
 assign within the server network layer. As the demands in the
 higher-layer (client) network vary, the connectivity in the server
 network may need to be modified. Section 2.4 explains in a little
 more detail how connectivity may be requested.

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Client Network		Client Network				
Domain A		Domain B				
‑‑‑‑‑		‑‑‑‑‑				
	Src				Dst	
‑‑‑‑‑		‑‑‑‑‑				
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑\ /‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 \x1 x2/
 \ /
 \ /
 \‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/
 | Server Network |
 | Domain |
 | |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

 Figure 3: Client-Server Networks

 The second class of use case relating to client-server networking is
 for Virtual Private Networks (VPNs). In this case, as opposed to the
 former one, it is assumed that the client network has a different
 address space than that of the server network, where non-overlapping
 IP addresses between the client and the server networks cannot be
 guaranteed. A simple example is shown in Figure 4. The VPN sites
 comprise a set of domains that are interconnected over a core domain
 (i.e., the provider network) that is the server network in our model.
 Note that in the use cases shown in Figures 3 and 4 the client
 network domains may (and, in fact, probably do) operate as a single
 connected network.

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Domain A		Domain Z				
(VPN site)		(VPN site)				
‑‑‑‑‑		‑‑‑‑‑				
	Src				Dst	
‑‑‑‑‑		‑‑‑‑‑				
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑\ /‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 \x1 x2/
 \ /
 \ /
 \‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/
 | Core Domain |
 | |
 | |
 /‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑\
 / \
 / \
 /x3 x4\
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑/ \‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Domain B		Domain C
(VPN site)		(VPN site)
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑

 Figure 4: A Virtual Private Network

 Both use cases in this section become "more interesting" when
 combined with the use case in Section 2.1 -- that is, when the
 connectivity between higher-layer domains or VPN sites is provided by
 a sequence or mesh of lower-layer domains. Figure 5 shows how this
 might look in the case of a VPN.

 ‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑
Domain A		Domain Z				
(VPN site)		(VPN site)				
‑‑‑‑‑		‑‑‑‑‑				
	Src				Dst	
‑‑‑‑‑		‑‑‑‑‑				
 ‑‑‑‑‑‑‑‑‑‑‑‑\ /‑‑‑‑‑‑‑‑‑‑‑‑
 \x1 x2/
 \ /
 \ /
 \‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑/
 | Domain X |x5 | Domain Y |
 | (core) +‑‑‑+ (core) |
 | | | |
 | +‑‑‑+ |
 | |x6 | |
 /‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑\
 / \
 / \
 /x3 x4\
 ‑‑‑‑‑‑‑‑‑‑‑‑/ \‑‑‑‑‑‑‑‑‑‑‑‑
Domain B		Domain C
(VPN site)		(VPN site)
 ‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑

 Figure 5: A VPN Supported over Multiple Server Domains

2.3. Dual-Homing

 A further complication may be added to the client-server relationship
 described in Section 2.2 by considering what happens when a client
 network domain is attached to more than one domain in the server
 network or has two points of attachment to a server network domain.
 Figure 6 shows an example of this for a VPN.

 ‑‑‑‑‑‑‑‑‑‑‑‑
 | Domain B |
 | (VPN site) |
 ‑‑‑‑‑‑‑‑‑‑‑‑ | ‑‑‑‑‑ |
Domain A			Src	
(VPN site)		‑‑‑‑‑		
 ‑‑‑‑‑‑‑‑‑‑‑‑\ ‑+‑‑‑‑‑‑‑‑+‑
 \x1 | |
 \ x2| |x3
 \ | | ‑‑‑‑‑‑‑‑‑‑‑‑
 \‑‑‑‑‑‑‑‑+‑ ‑+‑‑‑‑‑‑‑‑ | Domain C |
 | Domain X | x8 | Domain Y | x4 | (VPN site) |
 | (core) +‑‑‑‑+ (core) +‑‑‑‑+ ‑‑‑‑‑ |
 | | | | | | Dst | |
 | +‑‑‑‑+ +‑‑‑‑+ ‑‑‑‑‑ |
 | | x9 | | x5 | |
 /‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑\ ‑‑‑‑‑‑‑‑‑‑‑‑
 / \
 / \
 /x6 x7\
 ‑‑‑‑‑‑‑‑‑‑‑‑/ \‑‑‑‑‑‑‑‑‑‑‑‑
Domain D		Domain E
(VPN site)		(VPN site)
 ‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑

 Figure 6: Dual-Homing in a Virtual Private Network

2.4. Requesting Connectivity

 The relationship between domains can be entirely under the control of
 management processes, dynamically triggered by the client network, or
 some hybrid of these cases. In the management case, the server
 network may be asked to establish a set of LSPs to provide client
 network connectivity. In the dynamic case, the client network may
 make a request to the server network exerting a range of controls
 over the paths selected in the server network. This range extends
 from no control (i.e., a simple request for connectivity), through a
 set of constraints (latency, path protection, etc.), up to and
 including full control of the path and resources used in the server
 network (i.e., the use of explicit paths with label subobjects).

 There are various models by which a server network can be asked to
 set up the connections that support a service provided to the client
 network. These requests may come from management systems, directly
 from the client network control plane, or through an intermediary
 broker such as the Virtual Network Topology Manager (VNTM) [RFC5623].

 The trigger that causes the request to the server network is also
 flexible. It could be that the client network discovers a pressing
 need for server network resources (such as the desire to provision an
 end-to-end connection in the client network or severe congestion on a
 specific path), or it might be that a planning application has
 considered how best to optimize traffic in the client network or how
 to handle a predicted traffic demand.

 In all cases, the relationship between client and server networks is
 subject to policy so that server network resources are under the
 administrative control of the operator or the server network and are
 only used to support a client network in ways that the server network
 operator approves.

 As just noted, connectivity requests issued to a server network may
 include varying degrees of constraint upon the choice of path that
 the server network can implement.

 o "Basic provisioning" is a simple request for connectivity. The
 only constraints are the end points of the connection and the
 capacity (bandwidth) that the connection will support for the
 client network. In the case of some server networks, even the
 bandwidth component of a basic provisioning request is superfluous
 because the server network has no facility to vary bandwidth and
 can offer connectivity only at a default capacity.

 o "Basic provisioning with optimization" is a service request that
 indicates one or more metrics that the server network must
 optimize in its selection of a path. Metrics may be hop count,
 path length, summed TE metric, jitter, delay, or any number of
 technology-specific constraints.

 o "Basic provisioning with optimization and constraints" enhances
 the optimization process to apply absolute constraints to
 functions of the path metrics. For example, a connection may be
 requested that optimizes for the shortest path but in any case
 requests that the end-to-end delay be less than a certain value.

 Equally, optimization may be expressed in terms of the impact on
 the network. For example, a service may be requested in order to
 leave maximal flexibility to satisfy future service requests.

 o "Fate diversity requests" ask the server network to provide a path
 that does not use any network resources (usually links and nodes)
 that share fate (i.e., can fail as the result of a single event)
 as the resources used by another connection. This allows the
 client network to construct protection services over the server
 network -- for example, by establishing links that are known to be
 fate diverse. The connections that have diverse paths need not
 share end points.

o "Provisioning with fate sharing" is the exact opposite of
 fate diversity. In this case, two or more connections are
 requested to follow the same path in the server network. This may
 be requested, for example, to create a bundled or aggregated link
 in the client network where each component of the client‑layer
 composite link is required to have the same server network
 properties (metrics, delay, etc.) and the same failure
 characteristics.

 o "Concurrent provisioning" enables the interrelated connection
 requests described in the previous two bullets to be enacted
 through a single, compound service request.

 o "Service resilience" requests that the server network provide
 connectivity for which the server network takes responsibility to
 recover from faults. The resilience may be achieved through the
 use of link-level protection, segment protection, end-to-end
 protection, or recovery mechanisms.

2.4.1. Discovering Server Network Information

 Although the topology and resource availability information of a
 server network may be hidden from the client network, the service
 request interface may support features that report details about the
 services and potential services that the server network supports.

 o Reporting of path details, service parameters, and issues such as
 path diversity of LSPs that support deployed services allows the
 client network to understand to what extent its requests were
 satisfied. This is particularly important when the requests were
 made as "best effort".

 o A server network may support requests of the form "If I were to
 ask you for this service, would you be able to provide it?" --
 that is, a service request that does everything except actually
 provision the service.

3. Problem Statement

 The problem statement presented in this section is as much about the
 issues that may arise in any solution (and so have to be avoided) and
 the features that are desirable within a solution, as it is about the
 actual problem to be solved.

 The problem can be stated very simply and with reference to the use
 cases presented in the previous section.

 A mechanism is required that allows TE path computation in one
 domain to make informed choices about the TE capabilities and exit
 points from the domain when signaling an end-to-end TE path that
 will extend across multiple domains.

 Thus, the problem is one of information collection and presentation,
 not about signaling. Indeed, the existing signaling mechanisms for
 TE LSP establishment are likely to prove adequate [RFC4726] with the
 possibility of minor extensions. Similarly, TE information may
 currently be distributed in a domain by TE extensions to one of the
 two IGPs as described in OSPF-TE [RFC3630] and ISIS-TE [RFC5305], and
 TE information may be exported from a domain (for example,
 northbound) using link-state extensions to BGP [RFC7752].

 An interesting annex to the problem is how the path is made available
 for use. For example, in the case of a client-server network, the
 path established in the server network needs to be made available as
 a TE link to provide connectivity in the client network.

3.1. Policy and Filters

 A solution must be amenable to the application of policy and filters.
 That is, the operator of a domain that is sharing information with
 another domain must be able to apply controls to what information is
 shared. Furthermore, the operator of a domain that has information
 shared with it must be able to apply policies and filters to the
 received information.

 Additionally, the path computation within a domain must be able to
 weight the information received from other domains according to local
 policy such that the resultant computed path meets the local
 operator's needs and policies rather than those of the operators of
 other domains.

3.2. Confidentiality

 A feature of the policy described in Section 3.1 is that an operator
 of a domain may desire to keep confidential the details about its
 internal network topology and loading. This information could be
 construed as commercially sensitive.

 Although it is possible that TE information exchange will take place
 only between parties that have significant trust, there are also use
 cases (such as the VPN supported over multiple server network domains
 described in Section 2.2) where information will be shared between
 domains that have a commercial relationship but a low level of trust.

 Thus, it must be possible for a domain to limit the shared
 information to only that which the computing domain needs to know,
 with the understanding that the less information that is made
 available the more likely it is that the result will be a less
 optimal path and/or more crankback events.

3.3. Information Overload

 One reason that networks are partitioned into separate domains is to
 reduce the set of information that any one router has to handle.
 This also applies to the volume of information that routing protocols
 have to distribute.

 Over the years, routers have become more sophisticated, with greater
 processing capabilities and more storage; the control channels on
 which routing messages are exchanged have become higher capacity; and
 the routing protocols (and their implementations) have become more
 robust. Thus, some of the arguments in favor of dividing a network
 into domains may have been reduced. Conversely, however, the size of
 networks continues to grow dramatically with a consequent increase in
 the total amount of routing-related information available.
 Additionally, in this case, the problem space spans two or more
 networks.

 Any solution to the problems voiced in this document must be aware of
 the issues of information overload. If the solution was to simply
 share all TE information between all domains in the network, the
 effect from the point of view of the information load would be to
 create one single flat network domain. Thus, the solution must
 deliver enough information to make the computation practical (i.e.,
 to solve the problem) but not so much as to overload the receiving
 domain. Furthermore, the solution cannot simply rely on the policies
 and filters described in Section 3.1 because such filters might not
 always be enabled.

3.4. Issues of Information Churn

 As LSPs are set up and torn down, the available TE resources on links
 in the network change. In order to reliably compute a TE path
 through a network, the computation point must have an up-to-date view
 of the available TE resources. However, collecting this information
 may result in considerable load on the distribution protocol and
 churn in the stored information. In order to deal with this problem
 even in a single domain, updates are sent at periodic intervals or
 whenever there is a significant change in resources, whichever
 happens first.

 Consider, for example, that a TE LSP may traverse ten links in a
 network. When the LSP is set up or torn down, the resources
 available on each link will change, resulting in a new advertisement
 of the link's capabilities and capacity. If the arrival rate of new
 LSPs is relatively fast, and the hold times relatively short, the
 network may be in a constant state of flux. Note that the problem
 here is not limited to churn within a single domain, since the
 information shared between domains will also be changing.
 Furthermore, the information that one domain needs to share with
 another may change as the result of LSPs that are contained within or
 cross the first domain but that are of no direct relevance to the
 domain receiving the TE information.

 In packet networks, where the capacity of an LSP is often a small
 fraction of the resources available on any link, this issue is
 partially addressed by the advertising routers. They can apply a
 threshold so that they do not bother to update the advertisement of
 available resources on a link if the change is less than a configured
 percentage of the total (or, alternatively, the remaining) resources.
 The updated information in that case will be disseminated based on an
 update interval rather than a resource change event.

 In non-packet networks, where link resources are physical switching
 resources (such as timeslots or wavelengths), the capacity of an LSP
 may more frequently be a significant percentage of the available link
 resources. Furthermore, in some switching environments, it is
 necessary to achieve end-to-end resource continuity (such as using
 the same wavelength on the whole length of an LSP), so it is far more
 desirable to keep the TE information held at the computation points
 up to date. Fortunately, non-packet networks tend to be quite a bit
 smaller than packet networks, the arrival rates of non-packet LSPs
 are much lower, and the hold times are considerably longer. Thus,
 the information churn may be sustainable.

3.5. Issues of Aggregation

 One possible solution to the issues raised in other subsections of
 this section is to aggregate the TE information shared between
 domains. Two aggregation mechanisms are often considered:

 - Virtual node model. In this view, the domain is aggregated as if
 it was a single node (or router/switch). Its links to other
 domains are presented as real TE links, but the model assumes that
 any LSP entering the virtual node through a link can be routed to
 leave the virtual node through any other link (although recent
 work on "limited cross-connect switches" may help with this
 problem [RFC7579]).

 - Virtual link model. In this model, the domain is reduced to a set
 of edge-to-edge TE links. Thus, when computing a path for an LSP
 that crosses the domain, a computation point can see which domain
 entry points can be connected to which others, and with what TE
 attributes.

 Part of the nature of aggregation is that information is removed from
 the system. This can cause inaccuracies and failed path computation.
 For example, in the virtual node model there might not actually be a
 TE path available between a pair of domain entry points, but the
 model lacks the sophistication to represent this "limited
 cross-connect capability" within the virtual node. On the other
 hand, in the virtual link model it may prove very hard to aggregate
 multiple link characteristics: for example, there may be one path
 available with high bandwidth, and another with low delay, but this
 does not mean that the connectivity should be assumed or advertised
 as having both high bandwidth and low delay.

 The trick to this multidimensional problem, therefore, is to
 aggregate in a way that retains as much useful information as
 possible while removing the data that is not needed. An important
 part of this trick is a clear understanding of what information is
 actually needed.

 It should also be noted in the context of Section 3.4 that changes in
 the information within a domain may have a bearing on what aggregated
 data is shared with another domain. Thus, while the data shared is
 reduced, the aggregation algorithm (operating on the routers
 responsible for sharing information) may be heavily exercised.

4. Architecture

4.1. TE Reachability

 As described in Section 1.1, TE reachability is the ability to reach
 a specific address along a TE path. The knowledge of TE reachability
 enables an end-to-end TE path to be computed.

 In a single network, TE reachability is derived from the Traffic
 Engineering Database (TED), which is the collection of all TE
 information about all TE links in the network. The TED is usually
 built from the data exchanged by the IGP, although it can be
 supplemented by configuration and inventory details, especially in
 transport networks.

 In multi-network scenarios, TE reachability information can be
 described as "You can get from node X to node Y with the following TE
 attributes." For transit cases, nodes X and Y will be edge nodes of
 the transit network, but it is also important to consider the
 information about the TE connectivity between an edge node and a
 specific destination node. TE reachability may be qualified by TE
 attributes such as TE metrics, hop count, available bandwidth, delay,
 and shared risk.

 TE reachability information can be exchanged between networks so that
 nodes in one network can determine whether they can establish TE
 paths across or into another network. Such exchanges are subject to
 a range of policies imposed by the advertiser (for security and
 administrative control) and by the receiver (for scalability and
 stability).

4.2. Abstraction, Not Aggregation

 Aggregation is the process of synthesizing from available
 information. Thus, the virtual node and virtual link models
 described in Section 3.5 rely on processing the information available
 within a network to produce the aggregate representations of links
 and nodes that are presented to the consumer. As described in
 Section 3, dynamic aggregation is subject to a number of pitfalls.

 In order to distinguish the architecture described in this document
 from the previous work on aggregation, we use the term "abstraction"
 in this document. The process of abstraction is one of applying
 policy to the available TE information within a domain, to produce
 selective information that represents the potential ability to
 connect across the domain.

 Abstraction does not offer all possible connectivity options (refer
 to Section 3.5) but does present a general view of potential
 connectivity. Abstraction may have a dynamic element but is not
 intended to keep pace with the changes in TE attribute availability
 within the network.

 Thus, when relying on an abstraction to compute an end-to-end path,
 the process might not deliver a usable path. That is, there is no
 actual guarantee that the abstractions are current or feasible.

 Although abstraction uses available TE information, it is subject to
 policy and management choices. Thus, not all potential connectivity
 will be advertised to each client network. The filters may depend on
 commercial relationships, the risk of disclosing confidential
 information, and concerns about what use is made of the connectivity
 that is offered.

4.2.1. Abstract Links

 An abstract link is a measure of the potential to connect a pair of
 points with certain TE parameters. That is, it is a path and its
 characteristics in the server network. An abstract link represents
 the possibility of setting up an LSP, and LSPs may be set up over the
 abstract link.

 When looking at a network such as the network shown in Figure 7, the
 link from CN1 to CN4 may be an abstract link. It is easy to
 advertise it as a link by abstracting the TE information in the
 server network, subject to policy.

 The path (i.e., the abstract link) represents the possibility of
 establishing an LSP from client network edge to client network edge
 across the server network. There is not necessarily a one-to-one
 relationship between the abstract link and the LSP, because more than
 one LSP could be set up over the path.

 Since the client network nodes do not have visibility into the server
 network, they must rely on abstraction information delivered to them
 by the server network. That is, the server network will report on
 the potential for connectivity.

4.2.2. The Abstraction Layer Network

 Figure 7 introduces the abstraction layer network. This construct
 separates the client network resources (nodes C1, C2, C3, and C4, and
 the corresponding links) and the server network resources (nodes CN1,
 CN2, CN3, and CN4, and the corresponding links). Additionally, the
 architecture introduces an intermediary network layer called the
 abstraction layer. The abstraction layer contains the client network
 edge nodes (C2 and C3), the server network edge nodes (CN1 and CN4),
 the client-server links (C2-CN1 and CN4-C3), and the abstract link
 (CN1-CN4).

 The client network is able to operate as normal. Connectivity across
 the network can be either found or not found, based on links that
 appear in the client network TED. If connectivity cannot be found,
 end-to-end LSPs cannot be set up. This failure may be reported, but
 no dynamic action is taken by the client network.

 The server network also operates as normal. LSPs across the server
 network between client network edges are set up in response to
 management commands or in response to signaling requests.

 The abstraction layer consists of the physical links between the two
 networks, and also the abstract links. The abstract links are
 created by the server network according to local policy and represent
 the potential connectivity that could be created across the server
 network and that the server network is willing to make available for
 use by the client network. Thus, in this example, the diameter of
 the abstraction layer network is only three hops, but an instance of
 an IGP could easily be run so that all nodes participating in the
 abstraction layer (and, in particular, the client network edge nodes)
 can see the TE connectivity in the layer.

 ‑‑ ‑‑ ‑‑ ‑‑
|C1|‑‑|C2| |C3|‑‑|C4| Client Network
 ‑‑ | | | | ‑‑
 | | | |
 | | | |
 | | | |
 | | ‑‑‑ ‑‑‑ | | Abstraction
 | |‑‑‑|CN1|================|CN4|‑‑‑| | Layer Network
 ‑‑ | | | | ‑‑
 | | | |
 | | | |
 | | | |
 | | ‑‑‑ ‑‑‑ | | Server Network
 | |‑‑|CN2|‑‑|CN3|‑‑| |
 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

 Key
 ‑‑‑ Direct connection between two nodes
 === Abstract link

 Figure 7: Architecture for Abstraction Layer Network

 When the client network needs additional connectivity, it can make a
 request to the abstraction layer network. For example, the operator
 of the client network may want to create a link from C2 to C3. The
 abstraction layer can see the potential path C2-CN1-CN4-C3 and can
 set up an LSP C2-CN1-CN4-C3 across the server network and make the
 LSP available as a link in the client network.

 Sections 4.2.3 and 4.2.4 show how this model is used to satisfy the
 requirements for connectivity in client-server networks and in peer
 networks.

4.2.2.1. Nodes in the Abstraction Layer Network

 Figure 7 shows a very simplified network diagram, and the reader
 would be forgiven for thinking that only client network edge nodes
 and server network edge nodes may appear in the abstraction layer
 network. But this is not the case: other nodes from the server
 network may be present. This allows the abstraction layer network to
 be more complex than a full mesh with access spokes.

 Thus, as shown in Figure 8, a transit node in the server network
 (here, the node is CN3) can be exposed as a node in the abstraction
 layer network with abstract links connecting it to other nodes in the
 abstraction layer network. Of course, in the network shown in
 Figure 8, there is little if any value in exposing CN3, but if it had
 other abstract links to other nodes in the abstraction layer network
 and/or direct connections to client network nodes, then the resulting
 network would be richer.

 ‑‑ ‑‑ ‑‑ ‑‑ Client
|C1|‑‑|C2| |C3|‑‑|C4| Network
 ‑‑ | | | | ‑‑
 | | | |
 | | | |
 | | | |
 | | ‑‑‑ ‑‑‑ ‑‑‑ | | Abstraction
 | |‑‑|CN1|========|CN3|========|CN5|‑‑| | Layer Network
 ‑‑ | | | | | | ‑‑
 | | | | | |
 | | | | | |
 | | | | | | Server
 | | ‑‑‑ | | ‑‑‑ | | Network
 | |‑‑|CN2|‑| |‑|CN4|‑‑| |
 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

 Figure 8: Abstraction Layer Network with Additional Node

 It should be noted that the nodes included in the abstraction layer
 network in this way are not "abstract nodes" in the sense of a
 virtual node described in Section 3.5. Although it is the case that
 the policy point responsible for advertising server network resources
 into the abstraction layer network could choose to advertise abstract
 nodes in place of real physical nodes, it is believed that doing so
 would introduce significant complexity in terms of:

 - Coordination between all of the external interfaces of the
 abstract node.

 - Management of changes in the server network that lead to limited
 capabilities to reach (cross-connect) across the abstract node.
 There has been recent work on control-plane extensions to describe
 and operate devices (such as asymmetrical switches) that have
 limited cross-connect capabilities [RFC7579] [RFC7580]. These or
 similar extensions could be used to represent the same type of
 limitations, as they also apply in an abstract node.

4.2.3. Abstraction in Client-Server Networks

 Figure 9 shows the basic architectural concepts for a client-server
 network. The nodes in the client network are C1, C2, CE1, CE2, C3,
 and C4, where the client edge (CE) nodes are CE1 and CE2. The core
 (server) network nodes are CN1, CN2, CN3, and CN4. The interfaces
 CE1-CN1 and CE2-CN4 are the interfaces between the client and server
 networks.

 The technologies (switching capabilities) of the client and server
 networks may be the same or different. If they are different, the
 client network traffic must be tunneled over a server network LSP.
 If they are the same, the client network LSP may be routed over the
 server network links, tunneled over a server network LSP, or
 constructed from the concatenation (stitching) of client network and
 server network LSP segments.

 : :
 Client Network : Server Network : Client Network
 : :
 ‑‑ ‑‑ ‑‑‑ ‑‑‑ ‑‑ ‑‑
|C1|‑‑|C2|‑‑|CE1|................................|CE2|‑‑|C3|‑‑|C4|
 ‑‑ ‑‑ | | ‑‑‑ ‑‑‑ | | ‑‑ ‑‑
 | |===|CN1|================|CN4|===| |
 | |‑‑‑| | | |‑‑‑| |
 ‑‑‑ | | ‑‑‑ ‑‑‑ | | ‑‑‑
 | |‑‑|CN2|‑‑|CN3|‑‑| |
 ‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑

 Key
 ‑‑‑ Direct connection between two nodes
 ... CE‑to‑CE LSP tunnel
 === Potential path across the server network (abstract link)

 Figure 9: Architecture for Client-Server Network

 The objective is to be able to support an end-to-end connection,
 C1-to-C4, in the client network. This connection may support TE or
 normal IP forwarding. To achieve this, CE1 is to be connected to CE2
 by a link in the client network. This enables the client network to
 view itself as connected and to select an end-to-end path.

 As shown in the figure, three abstraction layer links are formed:
 CE1-CN1, CN1-CN2, and CN4-CE2. A three-hop LSP is then established
 from CE1 to CE2 that can be presented as a link in the client
 network.

 The practicalities of how the CE1-CE2 LSP is carried across the
 server network LSP may depend on the switching and signaling options
 available in the server network. The CE1-CE2 LSP may be tunneled
 down the server network LSP using the mechanisms of a hierarchical
 LSP [RFC4206], or the LSP segments CE1-CN1 and CN4-CE2 may be
 stitched to the server network LSP as described in [RFC5150].

 Section 4.2.2 has already introduced the concept of the abstraction
 layer network through an example of a simple layered network. But it
 may be helpful to expand on the example using a slightly more complex
 network.

 Figure 10 shows a multi-layer network comprising client network nodes
 (labeled as Cn for n = 0 to 9) and server network nodes (labeled as
 Sn for n = 1 to 9).

 ‑‑ ‑‑
 |C3|‑‑‑|C4|
 /‑‑ ‑‑\
 ‑‑ ‑‑ ‑‑ ‑‑ ‑‑/ \‑‑
|C1|‑‑‑|C2|‑‑‑|S1|‑‑‑|S2|‑‑‑‑|S3| |C5|
 ‑‑ /‑‑ ‑‑\ ‑‑\ ‑‑\ /‑‑
 / \‑‑ \‑‑ \‑‑ ‑‑/ ‑‑
 / |S4| |S5|‑‑‑‑|S6|‑‑‑|C6|‑‑‑|C7|
 / /‑‑ ‑‑\ /‑‑ /‑‑ ‑‑
 ‑‑/ ‑‑ ‑‑/ ‑‑ \‑‑/ ‑‑/
|C8|‑‑‑|C9|‑‑‑|S7|‑‑‑|S8|‑‑‑‑|S9|‑‑‑|C0|
 ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑

 Figure 10: An Example Multi-Layer Network

 If the network in Figure 10 is operated as separate client and server
 networks, then the client network topology will appear as shown in
 Figure 11. As can be clearly seen, the network is partitioned, and
 there is no way to set up an LSP from a node on the left-hand side
 (say C1) to a node on the right-hand side (say C7).

 ‑‑ ‑‑
 |C3|‑‑‑|C4|
 ‑‑ ‑‑\
 ‑‑ ‑‑ \‑‑
|C1|‑‑‑|C2| |C5|
 ‑‑ /‑‑ /‑‑
 / ‑‑/ ‑‑
 / |C6|‑‑‑|C7|
 / /‑‑ ‑‑
 ‑‑/ ‑‑ ‑‑/
|C8|‑‑‑|C9| |C0|
 ‑‑ ‑‑ ‑‑

 Figure 11: Client Network Topology Showing Partitioned Network

 For reference, Figure 12 shows the corresponding server network
 topology.

 ‑‑ ‑‑ ‑‑
|S1|‑‑‑|S2|‑‑‑‑|S3|
 ‑‑\ ‑‑\ ‑‑\
 \‑‑ \‑‑ \‑‑
 |S4| |S5|‑‑‑‑|S6|
 /‑‑ ‑‑\ /‑‑
 ‑‑/ ‑‑ \‑‑/
|S7|‑‑‑|S8|‑‑‑‑|S9|
 ‑‑ ‑‑ ‑‑

 Figure 12: Server Network Topology

 Operating on the TED for the server network, a management entity or a
 software component may apply policy and consider what abstract links
 it might offer for use by the client network. To do this, it
 obviously needs to be aware of the connections between the layers
 (there is no point in offering an abstract link S2-S8, since this
 could not be of any use in this example).

 In our example, after consideration of which LSPs could be set up in
 the server network, four abstract links are offered: S1-S3, S3-S6,
 S1-S9, and S7-S9. These abstract links are shown as double lines on
 the resulting topology of the abstraction layer network in Figure 13.
 As can be seen, two of the links must share part of a path (S1-S9
 must share with either S1-S3 or S7-S9). This could be achieved using
 distinct resources (for example, separate lambdas) where the paths
 are common, but it could also be done using resource sharing.

 ‑‑
 |C3|
 /‑‑
 ‑‑ ‑‑ ‑‑/
|C2|‑‑‑|S1|==========|S3|
 ‑‑ ‑‑\\ ‑‑\\
 \\ \\
 \\ \\‑‑ ‑‑
 \\ |S6|‑‑‑|C6|
 \\ ‑‑ ‑‑
 ‑‑ ‑‑ \\‑‑ ‑‑
|C9|‑‑‑|S7|=====|S9|‑‑‑|C0|
 ‑‑ ‑‑ ‑‑ ‑‑

 Figure 13: Abstraction Layer Network with Abstract Links

 That would mean that when both paths S1-S3 and S7-S9 carry
 client-edge-to-client-edge LSPs, the resources on path S1-S9 are used
 and might be depleted to the point that the path is resource
 constrained and cannot be used.

 The separate IGP instance running in the abstraction layer network
 means that this topology is visible at the edge nodes (C2, C3, C6,
 C9, and C0) as well as at a Path Computation Element (PCE) if one is
 present.

 Now the client network is able to make requests to the abstraction
 layer network to provide connectivity. In our example, it requests
 that C2 be connected to C3 and that C2 be connected to C0. This
 results in several actions:

 1. The management component for the abstraction layer network asks
 its PCE to compute the paths necessary to make the connections.
 This yields C2-S1-S3-C3 and C2-S1-S9-C0.

 2. The management component for the abstraction layer network
 instructs C2 to start the signaling process for the new LSPs in
 the abstraction layer.

 3. C2 signals the LSPs for setup using the explicit routes
 C2-S1-S3-C3 and C2-S1-S9-C0.

 4. When the signaling messages reach S1 (in our example, both LSPs
 traverse S1), the server network may support them by a number of
 means, including establishing server network LSPs as tunnels,
 depending on the mismatch of technologies between the client and
 server networks. For example, S1-S2-S3 and S1-S2-S5-S9 might be
 traversed via an LSP tunnel, using LSPs stitched together, or
 simply by routing the client network LSP through the server
 network. If server network LSPs are needed, they can be signaled
 at this point.

 5. Once any server network LSPs that are needed have been
 established, S1 can continue to signal the client-edge-to-client-
 edge LSP across the abstraction layer, using the server network
 LSPs as either tunnels or stitching segments, or simply routing
 through the server network.

 6. Finally, once the client-edge-to-client-edge LSPs have been set
 up, the client network can be informed and can start to advertise
 the new TE links C2-C3 and C2-C0. The resulting client network
 topology is shown in Figure 14.

 ‑‑ ‑‑
 |C3|‑|C4|
 /‑‑ ‑‑\
 / \‑‑
 ‑‑ ‑‑/ |C5|
|C1|‑‑‑|C2| /‑‑
 ‑‑ /‑‑\ ‑‑/ ‑‑
 / \ |C6|‑‑‑|C7|
 / \ /‑‑ ‑‑
 / \‑‑/
 ‑‑/ ‑‑ |C0|
|C8|‑‑‑|C9| ‑‑
 ‑‑ ‑‑

 Figure 14: Connected Client Network with Additional Links

 7. Now the client network can compute an end-to-end path from C1

 to C7.

4.2.3.1. A Server with Multiple Clients

 A single server network may support multiple client networks. This
 is not an uncommon state of affairs -- for example, when the server
 network provides connectivity for multiple customers.

 In this case, the abstraction provided by the server network may vary
 considerably according to the policies and commercial relationships
 with each customer. This variance would lead to a separate
 abstraction layer network maintained to support each client network.

 On the other hand, it may be that multiple client networks are
 subject to the same policies and the abstraction can be identical.
 In this case, a single abstraction layer network can support more
 than one client.

 The choices here are made as an operational issue by the server
 network.

4.2.3.2. A Client with Multiple Servers

 A single client network may be supported by multiple server networks.
 The server networks may provide connectivity between different parts
 of the client network or may provide parallel (redundant)
 connectivity for the client network.

 In this case, the abstraction layer network should contain the
 abstract links from all server networks so that it can make suitable
 computations and create the correct TE links in the client network.
 That is, the relationship between the client network and the
 abstraction layer network should be one to one.

4.2.4. Abstraction in Peer Networks

 Figure 15 shows the basic architectural concepts for connecting
 across peer networks. Nodes from four networks are shown: A1 and A2
 come from one network; B1, B2, and B3 from another network; etc. The
 interfaces between the networks (sometimes known as External Network
 Network Interfaces - ENNIs) are A2-B1, B3-C1, and C3-D1.

 The objective is to be able to support an end-to-end connection,
 A1-to-D2. This connection is for TE connectivity.

 As shown in the figure, abstract links that span the transit networks
 are used to achieve the required connectivity. These links form the
 key building blocks of the end-to-end connectivity. An end-to-end
 LSP uses these links as part of its path. If the stitching
 capabilities of the networks are homogeneous, then the end-to-end LSP
 may simply traverse the path defined by the abstract links across the
 various peer networks or may utilize stitching of LSP segments that
 each traverse a network along the path of an abstract link. If the
 network switching technologies support or necessitate the use of LSP
 hierarchies, the end-to-end LSP may be tunneled across each network
 using hierarchical LSPs that each traverse a network along the path
 of an abstract link.

 : : :
Network A : Network B : Network C : Network D
 : : :
 ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑
|A1|‑‑|A2|‑‑‑|B1|‑‑|B2|‑‑|B3|‑‑‑|C1|‑‑|C2|‑‑|C3|‑‑‑|D1|‑‑|D2|
 ‑‑ ‑‑ | | ‑‑ | | | | ‑‑ | | ‑‑ ‑‑
 | |========| | | |========| |
 ‑‑ ‑‑ ‑‑ ‑‑

Key
‑‑‑ Direct connection between two nodes
=== Abstract link across transit network

 Figure 15: Architecture for Peering

 Peer networks exist in many situations in the Internet. Packet
 networks may peer as IGP areas (levels) or as ASes. Transport
 networks (such as optical networks) may peer to provide
 concatenations of optical paths through single-vendor environments
 (see Section 6). Figure 16 shows a simple example of three peer
 networks (A, B, and C) each comprising a few nodes.

 Network A : Network B : Network C
 : :
 ‑‑ ‑‑ ‑‑ : ‑‑ ‑‑ ‑‑ : ‑‑ ‑‑
|A1|‑‑‑|A2|‑‑‑‑|A3|‑‑‑|B1|‑‑‑|B2|‑‑‑|B3|‑‑‑|C1|‑‑‑|C2|
 ‑‑ ‑‑\ /‑‑ : ‑‑ /‑‑\ ‑‑ : ‑‑ ‑‑
 \‑‑/ : / \ :
 |A4| : / \ :
 ‑‑\ : / \ :
 ‑‑ \‑‑ : ‑‑/ \‑‑ : ‑‑ ‑‑
 |A5|‑‑‑|A6|‑‑‑|B4|‑‑‑‑‑‑‑‑‑‑|B6|‑‑‑|C3|‑‑‑|C4|
 ‑‑ ‑‑ : ‑‑ ‑‑ : ‑‑ ‑‑
 : :
 : :

 Figure 16: A Network Comprising Three Peer Networks

 As discussed in Section 2, peered networks do not share visibility of
 their topologies or TE capabilities for scaling and confidentiality
 reasons. That means, in our example, that computing a path from A1
 to C4 can be impossible without the aid of cooperating PCEs or some
 form of crankback.

But it is possible to produce abstract links for reachability across
transit peer networks and to create an abstraction layer network.
That network can be enhanced with specific reachability information
if a destination network is partitioned, as is the case with
Network C in Figure 16.

 Suppose that Network B decides to offer three abstract links B1-B3,
 B4-B3, and B4-B6. The abstraction layer network could then be
 constructed to look like the network in Figure 17.

 ‑‑ ‑‑ ‑‑ ‑‑
|A3|‑‑‑|B1|====|B3|‑‑‑‑|C1|
 ‑‑ ‑‑ //‑‑ ‑‑
 //
 //
 //
 ‑‑ ‑‑// ‑‑ ‑‑
|A6|‑‑‑|B4|=====|B6|‑‑‑|C3|
 ‑‑ ‑‑ ‑‑ ‑‑

 Figure 17: Abstraction Layer Network for the Peer Network Example

 Using a process similar to that described in Section 4.2.3, Network A
 can request connectivity to Network C, and abstract links can be
 advertised that connect the edges of the two networks and that can be
 used to carry LSPs that traverse both networks. Furthermore, if
 Network C is partitioned, reachability information can be exchanged
 to allow Network A to select the correct abstract link, as shown in
 Figure 18.

 Network A : Network C
 :
 ‑‑ ‑‑ ‑‑ : ‑‑ ‑‑
|A1|‑‑‑|A2|‑‑‑‑|A3|=========|C1|.....|C2|
 ‑‑ ‑‑\ /‑‑ : ‑‑ ‑‑
 \‑‑/ :
 |A4| :
 ‑‑\ :
 ‑‑ \‑‑ : ‑‑ ‑‑
 |A5|‑‑‑|A6|=========|C3|.....|C4|
 ‑‑ ‑‑ : ‑‑ ‑‑

 Figure 18: Tunnel Connections to Network C with TE Reachability

 Peer networking cases can be made far more complex by dual-homing
 between network peering nodes (for example, A3 might connect to B1
 and B4 in Figure 17) and by the networks themselves being arranged in
 a mesh (for example, A6 might connect to B4 and C1 in Figure 17).

 These additional complexities can be handled gracefully by the
 abstraction layer network model.

 Further examples of abstraction in peer networks can be found in
 Sections 6 and 8.

4.3. Considerations for Dynamic Abstraction

 It is possible to consider a highly dynamic system where the server
 network adaptively suggests new abstract links into the abstraction
 layer, and where the abstraction layer proactively deploys new
 client-edge-to-client-edge LSPs to provide new links in the client
 network. Such fluidity is, however, to be treated with caution. In
 particular, in the case of client-server networks of differing
 technologies where hierarchical server network LSPs are used, this
 caution is needed for three reasons: there may be longer turn-up
 times for connections in some server networks; the server networks
 are likely to be sparsely connected; and expensive physical resources
 will only be deployed where there is believed to be a need for them.
 More significantly, the complex commercial, policy, and
 administrative relationships that may exist between client and server
 network operators mean that stability is more likely to be the
 desired operational practice.

 Thus, proposals for fully automated multi-layer networks based on
 this architecture may be regarded as forward-looking topics for
 research both in terms of network stability and with regard to
 economic impact.

 However, some elements of automation should not be discarded. A
 server network may automatically apply policy to determine the best
 set of abstract links to offer and the most suitable way for the
 server network to support them. And a client network may dynamically
 observe congestion, lack of connectivity, or predicted changes in
 traffic demand and may use this information to request additional
 links from the abstraction layer. And, once policies have been
 configured, the whole system should be able to operate independently
 of operator control (which is not to say that the operator will not
 have the option of exerting control at every step in the process).

4.4. Requirements for Advertising Links and Nodes

 The abstraction layer network is "just another network layer". The
 links and nodes in the network need to be advertised along with their
 associated TE information (metrics, bandwidth, etc.) so that the
 topology is disseminated and so that routing decisions can be made.

 This requires a routing protocol running between the nodes in the
 abstraction layer network. Note that this routing information
 exchange could be piggybacked on an existing routing protocol
 instance (subject to different switching capabilities applying to the
 links in the different networks, or to adequate address space
 separation) or use a new instance (or even a new protocol). Clearly,
 the information exchanged is only information that has been created
 as part of the abstraction function according to policy.

It should be noted that in many cases the abstract link represents
the potential for connectivity across the server network but that
no such connectivity exists. In this case, we may ponder how the
routing protocol in the abstraction layer will advertise topology
information for, and over, a link that has no underlying
connectivity. In other words, there must be a communication channel
between the abstraction layer nodes so that the routing protocol
messages can flow. The answer is that control‑plane connectivity
already exists in the server network and on the client‑server edge
links, and this can be used to carry the routing protocol messages
for the abstraction layer network. The same consideration applies to
the advertisement, in the client network, of the potential
connectivity that the abstraction layer network can provide, although
it may be more normal to establish that connectivity before
advertising a link in the client network.

4.5. Addressing Considerations

 The network layers in this architecture should be able to operate
 with separate address spaces, and these may overlap without any
 technical issues. That is, one address may mean one thing in the
 client network, yet the same address may have a different meaning in
 the abstraction layer network or the server network. In other words,
 there is complete address separation between networks.

 However, this will require some care, both because human operators
 may well become confused, and because mapping between address spaces
 is needed at the interfaces between the network layers. That mapping
 requires configuration so that, for example, when the server network
 announces an abstract link from A to B, the abstraction layer network
 must recognize that A and B are server network addresses and must map
 them to abstraction layer addresses (say P and Q) before including
 the link in its own topology. And similarly, when the abstraction
 layer network informs the client network that a new link is available
 from S to T, it must map those addresses from its own address space
 to that of the client network.

 This form of address mapping will become particularly important in
 cases where one abstraction layer network is constructed from
 connectivity in multiple server networks, or where one abstraction
 layer network provides connectivity for multiple client networks.

5. Building on Existing Protocols

 This section is non-normative and is not intended to prejudge a
 solutions framework or any applicability work. It does, however,
 very briefly serve to note the existence of protocols that could be
 examined for applicability to serve in realizing the model described
 in this document.

 The general principle of protocol reuse is preferred over the
 invention of new protocols or additional protocol extensions, and it
 would be advantageous to make use of an existing protocol that is
 commonly implemented on network nodes and is currently deployed, or
 to use existing computational elements such as PCEs. This has many
 benefits in network stability, time to deployment, and operator
 training.

 It is recognized, however, that existing protocols are unlikely to be
 immediately suitable to this problem space without some protocol
 extensions. Extending protocols must be done with care and with
 consideration for the stability of existing deployments. In extreme
 cases, a new protocol can be preferable to a messy hack of an
 existing protocol.

5.1. BGP-LS

 BGP - Link State (BGP-LS) is a set of extensions to BGP, as described
 in [RFC7752]. Its purpose is to announce topology information from
 one network to a "northbound" consumer. Application of BGP-LS to
 date has focused on a mechanism to build a TED for a PCE. However,
 BGP's mechanisms would also serve well to advertise abstract links
 from a server network into the abstraction layer network or to
 advertise potential connectivity from the abstraction layer network
 to the client network.

5.2. IGPs

 Both OSPF and IS-IS have been extended through a number of RFCs to
 advertise TE information. Additionally, both protocols are capable
 of running in a multi-instance mode either as ships that pass in the
 night (i.e., completely separate instances using different address
 spaces) or as dual instances on the same address space. This means
 that either OSPF or IS-IS could probably be used as the routing
 protocol in the abstraction layer network.

5.3. RSVP-TE

 RSVP-TE signaling can be used to set up all TE LSPs demanded by this
 model, without the need for any protocol extensions.

 If necessary, LSP hierarchy [RFC4206] or LSP stitching [RFC5150] can
 be used to carry LSPs over the server network, again without needing
 any protocol extensions.

 Furthermore, the procedures in [RFC6107] allow the dynamic signaling
 of the purpose of any LSP that is established. This means that when
 an LSP tunnel is set up, the two ends can coordinate into which
 routing protocol instance it should be advertised and can also agree
 on the addressing to be said to identify the link that will be
 created.

5.4. Notes on a Solution

 This section is not intended to be prescriptive or dictate the
 protocol solutions that may be used to satisfy the architecture
 described in this document, but it does show how the existing
 protocols listed in the previous sections can be combined, with only
 minor modifications, to provide a solution.

 A server network can be operated using GMPLS routing and signaling
 protocols. Using information gathered from the routing protocol, a
 TED can be constructed containing resource availability information
 and Shared Risk Link Group (SRLG) details. A policy-based process
 can then determine which nodes and abstract links it wishes to
 advertise to form the abstraction layer network.

 The server network can now use BGP-LS to advertise a topology of
 links and nodes to form the abstraction layer network. This
 information would most likely be advertised from a single point of
 control that made all of the abstraction decisions, but the function
 could be distributed to multiple server network edge nodes. The
 information can be advertised by BGP-LS to multiple points within the
 abstraction layer (such as all client network edge nodes) or to a
 single controller.

 Multiple server networks may advertise information that is used to
 construct an abstraction layer network, and one server network may
 advertise different information in different instances of BGP-LS to
 form different abstraction layer networks. Furthermore, in the case
 of one controller constructing multiple abstraction layer networks,
 BGP-LS uses the route target mechanism defined in [RFC4364] to
 distinguish the different applications (effectively abstraction layer
 network VPNs) of the exported information.

 Extensions may be made to BGP-LS to allow advertisement of Macro
 Shared Risk Link Groups (MSRLGs) (Appendix B.1) and the
 identification of mutually exclusive links (Appendix B.2), and to
 indicate whether the abstract link has been pre-established or not.
 Such extensions are valid options but do not form a core component of
 this architecture.

 The abstraction layer network may operate under central control or
 use a distributed control plane. Since the links and nodes may be a
 mix of physical and abstract links, and since the nodes may have
 diverse cross-connect capabilities, it is most likely that a GMPLS
 routing protocol will be beneficial for collecting and correlating
 the routing information and for distributing updates. No special
 additional features are needed beyond adding those extra parameters
 just described for BGP-LS, but it should be noted that the control
 plane of the abstraction layer network must run in an out-of-band
 control network because the data-bearing links might not yet have
 been established via connections in the server network.

 The abstraction layer network is also able to determine potential
 connectivity from client network edge to client network edge. It
 will determine which client network links to create according to
 policy and subject to requests from the client network, and will take
 four steps:

 - First, it will compute a path across the abstraction layer
 network.

‑ Then, if support of the abstract links requires the use of
 server network LSPs for tunneling or stitching and if those LSPs
 are not already established, it will ask the server layer to set
 them up.

 - Then, it will signal the client-edge-to-client-edge LSP.

 - Finally, the abstraction layer network will inform the client
 network of the existence of the new client network link.

This last step can be achieved by either (1) coordination of the
end points of the LSPs that span the abstraction layer (these points
are client network edge nodes) using mechanisms such as those
described in [RFC6107] or (2) using BGP‑LS from a central controller.

 Once the client network edge nodes are aware of a new link, they will
 automatically advertise it using their routing protocol and it will
 become available for use by traffic in the client network.

 Sections 6, 7, and 8 discuss the applicability of this architecture
 to different network types and problem spaces, while Section 9 gives
 some advice about scoping future work. Section 10 ("Manageability
 Considerations") is particularly relevant in the context of this
 section because it contains a discussion of the policies and
 mechanisms for indicating connectivity and link availability between
 network layers in this architecture.

6. Application of the Architecture to Optical Domains and Networks

 Many optical networks are arranged as a set of small domains. Each
 domain is a cluster of nodes, usually from the same equipment vendor
 and with the same properties. The domain may be constructed as a
 mesh or a ring, or maybe as an interconnected set of rings.

 The network operator seeks to provide end-to-end connectivity across
 a network constructed from multiple domains, and so (of course) the
 domains are interconnected. In a network under management control,
 such as through an Operations Support System (OSS), each domain is
 under the operational control of a Network Management System (NMS).
 In this way, an end-to-end path may be commissioned by the OSS
 instructing each NMS, and the NMSes setting up the path fragments
 across the domains.

 However, in a system that uses a control plane, there is a need for
 integration between the domains.

 Consider a simple domain, D1, as shown in Figure 19. In this case,
 nodes A through F are arranged in a topological ring. Suppose that
 there is a control plane in use in this domain and that OSPF is used
 as the TE routing protocol.

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
| D1 |
| B‑‑‑C |
| / \ |
| / \ |
| A D |
| \ / |
| \ / |
| F‑‑‑E |
| |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

 Figure 19: A Simple Optical Domain

 Now consider that the operator's network is built from a mesh of such
 domains, D1 through D7, as shown in Figure 20. It is possible that
 these domains share a single, common instance of OSPF, in which case
 there is nothing further to say because that OSPF instance will
 distribute sufficient information to build a single TED spanning the
 whole network, and an end-to-end path can be computed. A more likely
 scenario is that each domain is running its own OSPF instance. In
 this case, each is able to handle the peculiarities (or, rather,
 advanced functions) of each vendor's equipment capabilities.

 ‑‑‑‑‑‑ ‑‑‑‑‑‑ ‑‑‑‑‑‑ ‑‑‑‑‑‑
D1	‑‑‑	D2	‑‑‑	D3	‑‑‑	D4
 ‑‑‑‑‑‑\ ‑‑‑‑‑‑\ ‑‑‑‑‑‑\ ‑‑‑‑‑‑
 \ | \ | \ |
 \‑‑‑‑‑‑ \‑‑‑‑‑‑ \‑‑‑‑‑‑
 | | | | | |
 | D5 |‑‑‑| D6 |‑‑‑| D7 |
 | | | | | |
 ‑‑‑‑‑‑ ‑‑‑‑‑‑ ‑‑‑‑‑‑

 Figure 20: A Mesh of Simple Optical Domains

 The question now is how to combine the multiple sets of information
 distributed by the different OSPF instances. Three possible models
 suggest themselves, based on pre-existing routing practices.

 o In the first model (the area-based model), each domain is treated
 as a separate OSPF area. The end-to-end path will be specified to
 traverse multiple areas, and each area will be left to determine
 the path across the nodes in the area. The feasibility of an
 end-to-end path (and, thus, the selection of the sequence of
 areas and their interconnections) can be derived using
 hierarchical PCEs.

 This approach, however, fits poorly with established use of the
 OSPF area: in this form of optical network, the interconnection
 points between domains are likely to be links, and the mesh of
 domains is far more interconnected and unstructured than we are
 used to seeing in the normal area-based routing paradigm.

 Furthermore, while hierarchical PCEs may be able to resolve this
 type of network, the effort involved may be considerable for more
 than a small collection of domains.

 o Another approach (the AS-based model) treats each domain as a
 separate Autonomous System (AS). The end-to-end path will be
 specified to traverse multiple ASes, and each AS will be left to
 determine the path across the nodes in that AS.

 This model sits more comfortably with the established routing
 paradigm but causes a massive escalation of ASes in the global
 Internet. It would, in practice, require that the operator use
 private AS numbers [RFC6996], of which there are plenty.

 Then, as suggested in the area-based model, hierarchical PCEs
 could be used to determine the feasibility of an end-to-end path
 and to derive the sequence of domains and the points of
 interconnection to use. But just as in the area-based model, the
 scalability of this model using a hierarchical PCE must be
 questioned, given the sheer number of ASes and their
 interconnectivity.

 Furthermore, determining the mesh of domains (i.e., the inter-AS
 connections) conventionally requires the use of BGP as an
 inter-domain routing protocol. However, not only is BGP not
 normally available on optical equipment, but this approach
 indicates that the TE properties of the inter-domain links would
 need to be distributed and updated using BGP -- something for
 which it is not well suited.

 o The third approach (the Automatically Switched Optical Network
 (ASON) model) follows the architectural model set out by the ITU-T
 [G.8080] and uses the routing protocol extensions described in
 [RFC6827]. In this model, the concept of "levels" is introduced
 to OSPF. Referring back to Figure 20, each OSPF instance running
 in a domain would be construed as a "lower-level" OSPF instance
 and would leak routes into a "higher-level" instance of the
 protocol that runs across the whole network.

 This approach handles the awkwardness of representing the domains
 as areas or ASes by simply considering them as domains running
 distinct instances of OSPF. Routing advertisements flow "upward"
 from the domains to the high-level OSPF instance, giving it a full
 view of the whole network and allowing end-to-end paths to be
 computed. Routing advertisements may also flow "downward" from
 the network-wide OSPF instance to any one domain so that it can
 see the connectivity of the whole network.

Although architecturally satisfying, this model suffers from
having to handle the different characteristics of different
equipment vendors. The advertisements coming from each low‑level
domain would be meaningless when distributed into the other
domains, and the high‑level domain would need to be kept
up to date with the semantics of each new release of each vendor's
equipment. Additionally, the scaling issues associated with a
well‑meshed network of domains, each with many entry and exit
points and each with network resources that are continually being
updated, reduces to the same problem, as noted in the virtual link
model. Furthermore, in the event that the domains are under the
control of different administrations, the domains would not want
to distribute the details of their topologies and TE resources.

 Practically, this third model turns out to be very close to the
 methodology described in this document. As noted in Section 6.1 of
 [RFC6827], there are policy rules that can be applied to define
 exactly what information is exported from or imported to a low-level
 OSPF instance. [RFC6827] even notes that some forms of aggregation
 may be appropriate. Thus, we can apply the following simplifications
 to the mechanisms defined in [RFC6827]:

 - Zero information is imported to low-level domains.

 - Low-level domains export only abstracted links as defined in this
 document and according to local abstraction policy, and with
 appropriate removal of vendor-specific information.

 - There is no need to formally define routing levels within OSPF.

 - Export of abstracted links from the domains to the network-wide
 routing instance (the abstraction routing layer) can take place
 through any mechanism, including BGP-LS or direct interaction
 between OSPF implementations.

 With these simplifications, it can be seen that the framework defined
 in this document can be constructed from the architecture discussed
 in [RFC6827], but without needing any of the protocol extensions
 defined in that document. Thus, using the terminology and concepts
 already established, the problem may be solved as shown in Figure 21.
 The abstraction layer network is constructed from the inter-domain
 links, the domain border nodes, and the abstracted (cross-domain)
 links.

 Abstraction Layer
 ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑
 | |===========| |‑‑| |===========| |‑‑| |===========| |
 | | | | | | | | | | | |
..| |...........| |..| |...........| |..| |...........| |......
	‑‑ ‑‑				‑‑ ‑‑				‑‑ ‑‑													
	_		_		_				_		_		_				_		_		_	
 ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑
 Domain 1 Domain 2 Domain 3
 Key Optical Layer
 ... Layer separation
 ‑‑‑ Physical link
 === Abstract link

 Figure 21: The Optical Network Implemented

 through the Abstraction Layer Network

7. Application of the Architecture to the User-Network Interface

 The User-Network Interface (UNI) is an important architectural
 concept in many implementations and deployments of client-server
 networks, especially those where the client and server network have
 different technologies. The UNI is described in [G.8080], and the
 GMPLS approach to the UNI is documented in [RFC4208]. Other
 GMPLS-related documents describe the application of GMPLS to specific
 UNI scenarios: for example, [RFC6005] describes how GMPLS can support
 a UNI that provides access to Ethernet services.

 Figure 1 of [RFC6005] is reproduced here as Figure 22. It shows the
 Ethernet UNI reference model, and that figure can serve as an example
 for all similar UNIs. In this case, the UNI is an interface between
 client network edge nodes and the server network. It should be noted
 that neither the client network nor the server network need be an
 Ethernet switching network.

 There are three network layers in this model: the client network, the
 "Ethernet service network", and the server network. The so-called
 Ethernet service network consists of links comprising the UNI links
 and the tunnels across the server network, and nodes comprising the
 client network edge nodes and various server network nodes. That is,
 the Ethernet service network is equivalent to the abstraction layer
 network, with the UNI links being the physical links between the
 client and server networks, the client edge nodes taking the role of
 UNI Client-side (UNI-C) nodes, and the server edge nodes acting as
 the UNI Network-side (UNI-N) nodes.

 Client Client
 Network +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ Network
‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | | | +‑‑‑‑‑‑‑‑‑‑‑‑‑
 +‑‑‑‑+ | | +‑‑‑‑‑+ | | +‑‑‑‑‑+ | | +‑‑‑‑+
‑‑‑‑‑‑+ | | | | | | | | | | | | +‑‑‑‑‑‑
‑‑‑‑‑‑+ EN +‑+‑‑‑‑‑+‑‑+ CN +‑+‑‑‑‑+‑‑+ CN +‑‑+‑‑‑‑‑+‑+ EN +‑‑‑‑‑‑
 | | | +‑‑+‑‑| +‑+‑+ | | +‑‑+‑‑‑‑‑+‑+ |
 +‑‑‑‑+ | | | +‑‑+‑‑+ | | | +‑‑+‑‑+ | | +‑‑‑‑+
 | | | | | | | | | |
‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | | | | | | | +‑‑‑‑‑‑‑‑‑‑‑‑‑
 | | | | | | | |
‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | | | | | | | +‑‑‑‑‑‑‑‑‑‑‑‑‑
 | | | +‑‑+‑‑+ | | | +‑‑+‑‑+ | |
 +‑‑‑‑+ | | | | | | +‑‑+‑‑+ | | | +‑‑‑‑+
‑‑‑‑‑‑+ +‑+‑‑+ | | CN +‑+‑‑‑‑+‑‑+ CN | | | | +‑‑‑‑‑‑
‑‑‑‑‑‑+ EN +‑+‑‑‑‑‑+‑‑+ | | | | +‑‑+‑‑‑‑‑+‑+ EN +‑‑‑‑‑‑
 | | | | +‑‑‑‑‑+ | | +‑‑‑‑‑+ | | | |
 +‑‑‑‑+ | | | | | | +‑‑‑‑+
 | +‑‑‑‑‑‑‑‑‑‑+ |‑‑‑‑‑‑‑‑‑‑‑+ |
‑‑‑‑‑‑‑‑‑‑‑‑‑+ Server Networks +‑‑‑‑‑‑‑‑‑‑‑‑‑
 Client UNI UNI Client
 Network <‑‑‑‑‑> <‑‑‑‑‑> Network
 Scope of This Document

 Legend: EN ‑ Client Network Edge Node
 CN ‑ Server Network (Core) Node

 Figure 22: Ethernet UNI Reference Model

 An issue that is often raised relates to how a dual-homed client
 network edge node (such as that shown at the bottom left-hand corner
 of Figure 22) can make determinations about how they connect across
 the UNI. This can be particularly important when reachability across
 the server network is limited or when two diverse paths are desired
 (for example, to provide protection). However, in the model
 described in this network, the edge node (the UNI-C node) is part of
 the abstraction layer network and can see sufficient topology
 information to make these decisions. If the approach introduced in
 this document is used to model the UNI as described in this section,
 there is no need to enhance the signaling protocols at the GMPLS UNI
 nor to add routing exchanges at the UNI.

8. Application of the Architecture to L3VPN Multi-AS Environments

 Serving Layer 3 VPNs (L3VPNs) across a multi-AS or multi-operator
 environment currently provides a significant planning challenge.
 Figure 6 shows the general case of the problem that needs to be
 solved. This section shows how the abstraction layer network can
 address this problem.

 In the VPN architecture, the CE nodes are the client network edge
 nodes, and the PE nodes are the server network edge nodes. The
 abstraction layer network is made up of the CE nodes, the CE-PE
 links, the PE nodes, and PE-PE tunnels that are the abstract links.

 In the multi-AS or multi-operator case, the abstraction layer network
 also includes the PEs (maybe Autonomous System Border Routers
 (ASBRs)) at the edges of the multiple server networks, and the PE-PE
 (maybe inter-AS) links. This gives rise to the architecture shown in
 Figure 23.

 The policy for adding abstract links to the abstraction layer network
 will be driven substantially by the needs of the VPN. Thus, when a
 new VPN site is added and the existing abstraction layer network
 cannot support the required connectivity, a new abstract link will be
 created out of the underlying network.

...........
 VPN Site : : VPN Site
 ‑‑ ‑‑ : : ‑‑ ‑‑
|C1|‑|CE| : : |CE|‑|C2|
 ‑‑ | | : : | | ‑‑
 | | : : | | | | | | | | | |
 | | : : | |
 | | : : | |
 | | : ‑‑ ‑‑ ‑‑ ‑‑ : | |
 | |‑‑‑‑|PE|=========|PE|‑‑‑|PE|=====|PE|‑‑‑‑| |
 ‑‑ : | | | | | | | | : ‑‑
........... | | | | | | | |
 | | | | | | | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | ‑ ‑ | | | | ‑ | |
 | |‑|P|‑|P|‑| | | |‑|P|‑| |
 ‑‑ ‑ ‑ ‑‑ ‑‑ ‑ ‑‑

 Figure 23: The Abstraction Layer Network for a Multi-AS VPN

 It is important to note that each VPN instance can have a separate
 abstraction layer network. This means that the server network
 resources can be partitioned and that traffic can be kept separate.

 This can be achieved even when VPN sites from different VPNs connect
 at the same PE. Alternatively, multiple VPNs can share the same
 abstraction layer network if that is operationally preferable.

 Lastly, just as for the UNI discussed in Section 7, the issue of
 dual-homing of VPN sites is a function of the abstraction layer
 network and so is just a normal routing problem in that network.

9. Scoping Future Work

 This section is provided to help guide the work on this problem. The
 overarching view is that it is important to limit and focus the work
 on those things that are core and necessary to achieve the main
 function, and to not attempt to add unnecessary features or to
 over-complicate the architecture or the solution by attempting to
 address marginal use cases or corner cases. This guidance is
 non-normative for this architecture description.

9.1. Limiting Scope to Only Part of the Internet

 The scope of the use cases and problem statement in this document is
 limited to "some small set of interconnected domains." In
 particular, it is not the objective of this work to turn the whole
 Internet into one large, interconnected TE network.

9.2. Working with "Related" Domains

 Starting with this subsection, the intention of this work is to solve
 the TE interconnectivity for only "related" domains. Such domains
 may be under common administrative operation (such as IGP areas
 within a single AS, or ASes belonging to a single operator) or may
 have a direct commercial arrangement for the sharing of TE
 information to provide specific services. Thus, in both cases, there
 is a strong opportunity for the application of policy.

9.3. Not Finding Optimal Paths in All Situations

 As has been well described in this document, abstraction necessarily
 involves compromises and removal of information. That means that it
 is not possible to guarantee that an end-to-end path over
 interconnected TE domains follows the absolute optimal (by any
 measure of optimality) path. This is taken as understood, and future
 work should not attempt to achieve such paths, which can only be
 found by a full examination of all network information across all
 connected networks.

9.4. Sanity and Scaling

 All of the above points play into a final observation. This work is
 intended to "bite off" a small problem for some relatively simple use
 cases as described in Section 2. It is not intended that this work
 will be immediately (or even soon) extended to cover many large
 interconnected domains. Obviously, the solution should, as far as
 possible, be designed to be extensible and scalable; however, it is
 also reasonable to make trade-offs in favor of utility and
 simplicity.

10. Manageability Considerations

 Manageability should not be a significant additional burden. Each
 layer in the network model can, and should, be managed independently.

 That is, each client network will run its own management systems and
 tools to manage the nodes and links in the client network: each
 client network link that uses an abstract link will still be
 available for management in the client network as any other link.

 Similarly, each server network will run its own management systems
 and tools to manage the nodes and links in that network just as
 normal.

 Three issues remain for consideration:

 - How is the abstraction layer network managed?

 - How is the interface between the client network and the
 abstraction layer network managed?

 - How is the interface between the abstraction layer network and the
 server network managed?

10.1. Managing the Abstraction Layer Network

 Management of the abstraction layer network differs from the client
 and server networks because not all of the links that are visible in
 the TED are real links. That is, it is not possible to run
 Operations, Administration, and Maintenance (OAM) on the links that
 constitute the potential of a link.

 Other than that, however, the management of the abstraction layer
 network should be essentially the same. Routing and signaling
 protocols can be run in the abstraction layer (using out-of-band
 channels for links that have not yet been established), and a
 centralized TED can be constructed and used to examine the
 availability and status of the links and nodes in the network.

 Note that different deployment models will place the "ownership" of
 the abstraction layer network differently. In some cases, the
 abstraction layer network will be constructed by the operator of the
 server network and run by that operator as a service for one or more
 client networks. In other cases, one or more server networks will
 present the potential of links to an abstraction layer network run by
 the operator of the client network. And it is feasible that a
 business model could be built where a third-party operator manages
 the abstraction layer network, constructing it from the connectivity
 available in multiple server networks and facilitating connectivity
 for multiple client networks.

10.2. Managing Interactions of Abstraction Layer and Client Networks

 The interaction between the client network and the abstraction layer
 network is a management task. It might be automated (software
 driven), or it might require manual intervention.

 This is a two-way interaction:

 - The client network can express the need for additional
 connectivity. For example, the client network may try, and fail,
 to find a path across the client network and may request
 additional, specific connectivity (this is similar to the
 situation with the Virtual Network Topology Manager (VNTM)
 [RFC5623]). Alternatively, a more proactive client network
 management system may monitor traffic demands (current and
 predicted), network usage, and network "hot spots" and may request
 changes in connectivity by both releasing unused links and
 requesting new links.

 - The abstraction layer network can make links available to the
 client network or can withdraw them. These actions can be in
 response to requests from the client network or can be driven by
 processes within the abstraction layer (perhaps reorganizing the
 use of server network resources). In any case, the presentation
 of new links to the client network is heavily subject to policy,
 since this is both operationally key to the success of this
 architecture and the central plank of the commercial model
 described in this document. Such policies belong to the operator
 of the abstraction layer network and are expected to be fully
 configurable.

 Once the abstraction layer network has decided to make a link
 available to the client network, it will install it at the link
 end points (which are nodes in the client network) such that it
 appears and can be advertised as a link in the client network.

 In all cases, it is important that the operators of both networks are
 able to track the requests and responses, and the operator of the
 client network should be able to see which links in that network are
 "real" physical links and which links are presented by the
 abstraction layer network.

10.3. Managing Interactions of Abstraction Layer and Server Networks

 The interactions between the abstraction layer network and the server
 network are similar to those described in Section 10.2, but there is
 a difference in that the server network is more likely to offer up
 connectivity and the abstraction layer network is less likely to ask
 for it.

 That is, the server network will, according to policy that may
 include commercial relationships, offer the abstraction layer network
 a "set" of potential connectivity that the abstraction layer network
 can treat as links. This server network policy will include:

 - how much connectivity to offer

 - what level of server network redundancy to include

 - how to support the use of the abstract links

 This process of offering links from the server network may include a
 mechanism to indicate which links have been pre-established in the
 server network and can include other properties, such as:

 - link-level protection [RFC4202]

 - SRLGs and MSRLGs (see Appendix B.1)

 - mutual exclusivity (see Appendix B.2)

 The abstraction layer network needs a mechanism to tell the server
 network which links it is using. This mechanism could also include
 the ability to request additional connectivity from the server
 network, although it seems most likely that the server network will
 already have presented as much connectivity as it is physically
 capable of, subject to the constraints of policy.

 Finally, the server network will need to confirm the establishment of
 connectivity, withdraw links if they are no longer feasible, and
 report failures.

 Again, it is important that the operators of both networks are able
 to track the requests and responses, and the operator of the server
 network should be able to see which links are in use.

11. Security Considerations

 Security of signaling and routing protocols is usually administered
 and achieved within the boundaries of a domain. Thus, and for
 example, a domain with a GMPLS control plane [RFC3945] would apply
 the security mechanisms and considerations that are appropriate to
 GMPLS [RFC5920]. Furthermore, domain-based security relies strongly
 on ensuring that control-plane messages are not allowed to enter the
 domain from outside.

 In this context, additional security considerations arising from this
 document relate to the exchange of control-plane information between
 domains. Messages are passed between domains using control-plane
 protocols operating between peers that have predictable relationships
 (for example, UNI-C to UNI-N, between BGP-LS speakers, or between
 peer domains). Thus, the security that needs to be given additional
 attention for inter-domain TE concentrates on authentication of
 peers; assertion that messages have not been tampered with; and, to a
 lesser extent, protecting the content of the messages from
 inspection, since that might give away sensitive information about
 the networks. The protocols described in Appendix A, which are
 likely to provide the foundation for solutions to this architecture,
 already include such protection and also can be run over protected
 transports such as IPsec [RFC6071], Transport Layer Security (TLS)
 [RFC5246], and the TCP Authentication Option (TCP-AO) [RFC5925].

 It is worth noting that the control plane of the abstraction layer
 network is likely to be out of band. That is, control-plane messages
 will be exchanged over network links that are not the links to which
 they apply. This models the facilities of GMPLS (but not of
 MPLS-TE), and the security mechanisms can be applied to the protocols
 operating in the out-of-band network.

12. Informative References

 [G.8080]
 International Telecommunication Union, "Architecture for
 the automatically switched optical network", ITU-T
 Recommendation G.8080/Y.1304, February 2012,
 <https://www.itu.int/rec/T-REC-G.8080-201202-I/en>.

 [GMPLS-ENNI]

 Bryskin, I., Ed., Doonan, W., Beeram, V., Ed., Drake, J.,
 Ed., Grammel, G., Paul, M., Kunze, R., Armbruster, F.,
 Margaria, C., Gonzalez de Dios, O., and D. Ceccarelli,
 "Generalized Multiprotocol Label Switching (GMPLS)
 External Network Network Interface (E-NNI): Virtual Link
 Enhancements for the Overlay Model", Work in Progress,
 draft-beeram-ccamp-gmpls-enni-03, September 2013.

 [RFC2702]
 Awduche, D., Malcolm, J., Agogbua, J., O'Dell, M., and J.
 McManus, "Requirements for Traffic Engineering Over MPLS",
 RFC 2702, DOI 10.17487/RFC2702, September 1999,
 <http://www.rfc-editor.org/info/rfc2702>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <http://www.rfc-editor.org/info/rfc3209>.

 [RFC3473]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Resource ReserVation
 Protocol-Traffic Engineering (RSVP-TE) Extensions",
 RFC 3473, DOI 10.17487/RFC3473, January 2003,
 <http://www.rfc-editor.org/info/rfc3473>.

 [RFC3630]
 Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
 (TE) Extensions to OSPF Version 2", RFC 3630,
 DOI 10.17487/RFC3630, September 2003,
 <http://www.rfc-editor.org/info/rfc3630>.

 [RFC3945]
 Mannie, E., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Architecture", RFC 3945,
 DOI 10.17487/RFC3945, October 2004,
 <http://www.rfc-editor.org/info/rfc3945>.

 [RFC4105]
 Le Roux, J.-L., Ed., Vasseur, J.-P., Ed., and J. Boyle,
 Ed., "Requirements for Inter-Area MPLS Traffic
 Engineering", RFC 4105, DOI 10.17487/RFC4105, June 2005,
 <http://www.rfc-editor.org/info/rfc4105>.

 [RFC4202]
 Kompella, K., Ed., and Y. Rekhter, Ed., "Routing
 Extensions in Support of Generalized Multi-Protocol Label
 Switching (GMPLS)", RFC 4202, DOI 10.17487/RFC4202,
 October 2005, <http://www.rfc-editor.org/info/rfc4202>.

 [RFC4206]
 Kompella, K. and Y. Rekhter, "Label Switched Paths (LSP)
 Hierarchy with Generalized Multi-Protocol Label Switching
 (GMPLS) Traffic Engineering (TE)", RFC 4206,
 DOI 10.17487/RFC4206, October 2005,
 <http://www.rfc-editor.org/info/rfc4206>.

 [RFC4208]
 Swallow, G., Drake, J., Ishimatsu, H., and Y. Rekhter,
 "Generalized Multiprotocol Label Switching (GMPLS)
 User-Network Interface (UNI): Resource ReserVation
 Protocol-Traffic Engineering (RSVP-TE) Support for the
 Overlay Model", RFC 4208, DOI 10.17487/RFC4208,
 October 2005, <http://www.rfc-editor.org/info/rfc4208>.

 [RFC4216]
 Zhang, R., Ed., and J.-P. Vasseur, Ed., "MPLS
 Inter-Autonomous System (AS) Traffic Engineering (TE)
 Requirements", RFC 4216, DOI 10.17487/RFC4216,
 November 2005, <http://www.rfc-editor.org/info/rfc4216>.

 [RFC4271]
 Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271,
 DOI 10.17487/RFC4271, January 2006,
 <http://www.rfc-editor.org/info/rfc4271>.

 [RFC4364]
 Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
 Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364,
 February 2006, <http://www.rfc-editor.org/info/rfc4364>.

 [RFC4655]
 Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
 Computation Element (PCE)-Based Architecture", RFC 4655,
 DOI 10.17487/RFC4655, August 2006,
 <http://www.rfc-editor.org/info/rfc4655>.

 [RFC4726]
 Farrel, A., Vasseur, J.-P., and A. Ayyangar, "A Framework
 for Inter-Domain Multiprotocol Label Switching Traffic
 Engineering", RFC 4726, DOI 10.17487/RFC4726,
 November 2006, <http://www.rfc-editor.org/info/rfc4726>.

 [RFC4847]
 Takeda, T., Ed., "Framework and Requirements for Layer 1
 Virtual Private Networks", RFC 4847, DOI 10.17487/RFC4847,
 April 2007, <http://www.rfc-editor.org/info/rfc4847>.

 [RFC4874]
 Lee, CY., Farrel, A., and S. De Cnodder, "Exclude Routes -
 Extension to Resource ReserVation Protocol-Traffic
 Engineering (RSVP-TE)", RFC 4874, DOI 10.17487/RFC4874,
 April 2007, <http://www.rfc-editor.org/info/rfc4874>.

 [RFC4920]
 Farrel, A., Ed., Satyanarayana, A., Iwata, A., Fujita, N.,
 and G. Ash, "Crankback Signaling Extensions for MPLS and
 GMPLS RSVP-TE", RFC 4920, DOI 10.17487/RFC4920, July 2007,
 <http://www.rfc-editor.org/info/rfc4920>.

 [RFC5150]
 Ayyangar, A., Kompella, K., Vasseur, JP., and A. Farrel,
 "Label Switched Path Stitching with Generalized
 Multiprotocol Label Switching Traffic Engineering
 (GMPLS TE)", RFC 5150, DOI 10.17487/RFC5150,
 February 2008, <http://www.rfc-editor.org/info/rfc5150>.

 [RFC5152]
 Vasseur, JP., Ed., Ayyangar, A., Ed., and R. Zhang, "A
 Per-Domain Path Computation Method for Establishing
 Inter-Domain Traffic Engineering (TE) Label Switched Paths
 (LSPs)", RFC 5152, DOI 10.17487/RFC5152, February 2008,
 <http://www.rfc-editor.org/info/rfc5152>.

 [RFC5195]
 Ould-Brahim, H., Fedyk, D., and Y. Rekhter, "BGP-Based
 Auto-Discovery for Layer-1 VPNs", RFC 5195,
 DOI 10.17487/RFC5195, June 2008,
 <http://www.rfc-editor.org/info/rfc5195>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5251]
 Fedyk, D., Ed., Rekhter, Y., Ed., Papadimitriou, D.,
 Rabbat, R., and L. Berger, "Layer 1 VPN Basic Mode",
 RFC 5251, DOI 10.17487/RFC5251, July 2008,
 <http://www.rfc-editor.org/info/rfc5251>.

 [RFC5252]
 Bryskin, I. and L. Berger, "OSPF-Based Layer 1 VPN
 Auto-Discovery", RFC 5252, DOI 10.17487/RFC5252,
 July 2008, <http://www.rfc-editor.org/info/rfc5252>.

 [RFC5305]
 Li, T. and H. Smit, "IS-IS Extensions for Traffic
 Engineering", RFC 5305, DOI 10.17487/RFC5305,
 October 2008, <http://www.rfc-editor.org/info/rfc5305>.

 [RFC5440]
 Vasseur, JP., Ed., and JL. Le Roux, Ed., "Path Computation
 Element (PCE) Communication Protocol (PCEP)", RFC 5440,
 DOI 10.17487/RFC5440, March 2009,
 <http://www.rfc-editor.org/info/rfc5440>.

 [RFC5441]
 Vasseur, JP., Ed., Zhang, R., Bitar, N., and JL. Le Roux,
 "A Backward-Recursive PCE-Based Computation (BRPC)
 Procedure to Compute Shortest Constrained Inter-Domain
 Traffic Engineering Label Switched Paths", RFC 5441,
 DOI 10.17487/RFC5441, April 2009,
 <http://www.rfc-editor.org/info/rfc5441>.

 [RFC5523]
 Berger, L., "OSPFv3-Based Layer 1 VPN Auto-Discovery",
 RFC 5523, DOI 10.17487/RFC5523, April 2009,
 <http://www.rfc-editor.org/info/rfc5523>.

 [RFC5553]
 Farrel, A., Ed., Bradford, R., and JP. Vasseur, "Resource
 Reservation Protocol (RSVP) Extensions for Path Key
 Support", RFC 5553, DOI 10.17487/RFC5553, May 2009,
 <http://www.rfc-editor.org/info/rfc5553>.

 [RFC5623]
 Oki, E., Takeda, T., Le Roux, JL., and A. Farrel,
 "Framework for PCE-Based Inter-Layer MPLS and GMPLS
 Traffic Engineering", RFC 5623, DOI 10.17487/RFC5623,
 September 2009, <http://www.rfc-editor.org/info/rfc5623>.

 [RFC5920]
 Fang, L., Ed., "Security Framework for MPLS and GMPLS
 Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010,
 <http://www.rfc-editor.org/info/rfc5920>.

 [RFC5925]
 Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <http://www.rfc-editor.org/info/rfc5925>.

 [RFC6005]
 Berger, L. and D. Fedyk, "Generalized MPLS (GMPLS) Support
 for Metro Ethernet Forum and G.8011 User Network Interface
 (UNI)", RFC 6005, DOI 10.17487/RFC6005, October 2010,
 <http://www.rfc-editor.org/info/rfc6005>.

 [RFC6071]
 Frankel, S. and S. Krishnan, "IP Security (IPsec) and
 Internet Key Exchange (IKE) Document Roadmap", RFC 6071,
 DOI 10.17487/RFC6071, February 2011,
 <http://www.rfc-editor.org/info/rfc6071>.

 [RFC6107]
 Shiomoto, K., Ed., and A. Farrel, Ed., "Procedures for
 Dynamically Signaled Hierarchical Label Switched Paths",
 RFC 6107, DOI 10.17487/RFC6107, February 2011,
 <http://www.rfc-editor.org/info/rfc6107>.

 [RFC6805]
 King, D., Ed., and A. Farrel, Ed., "The Application of the
 Path Computation Element Architecture to the Determination
 of a Sequence of Domains in MPLS and GMPLS", RFC 6805,
 DOI 10.17487/RFC6805, November 2012,
 <http://www.rfc-editor.org/info/rfc6805>.

 [RFC6827]
 Malis, A., Ed., Lindem, A., Ed., and D. Papadimitriou,
 Ed., "Automatically Switched Optical Network (ASON)
 Routing for OSPFv2 Protocols", RFC 6827,
 DOI 10.17487/RFC6827, January 2013,
 <http://www.rfc-editor.org/info/rfc6827>.

 [RFC6996]
 Mitchell, J., "Autonomous System (AS) Reservation for
 Private Use", BCP 6, RFC 6996, DOI 10.17487/RFC6996,
 July 2013, <http://www.rfc-editor.org/info/rfc6996>.

 [RFC7399]
 Farrel, A. and D. King, "Unanswered Questions in the Path
 Computation Element Architecture", RFC 7399,
 DOI 10.17487/RFC7399, October 2014,
 <http://www.rfc-editor.org/info/rfc7399>.

 [RFC7579]
 Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and
 J. Han, "General Network Element Constraint Encoding for
 GMPLS-Controlled Networks", RFC 7579,
 DOI 10.17487/RFC7579, June 2015,
 <http://www.rfc-editor.org/info/rfc7579>.

 [RFC7580]
 Zhang, F., Lee, Y., Han, J., Bernstein, G., and Y. Xu,
 "OSPF-TE Extensions for General Network Element
 Constraints", RFC 7580, DOI 10.17487/RFC7580, June 2015,
 <http://www.rfc-editor.org/info/rfc7580>.

 [RFC7752]
 Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
 S. Ray, "North-Bound Distribution of Link-State and
 Traffic Engineering (TE) Information Using BGP", RFC 7752,
 DOI 10.17487/RFC7752, March 2016,
 <http://www.rfc-editor.org/info/rfc7752>.

 [RSVP-TE-EXCL]

 Ali, Z., Ed., Swallow, G., Ed., Zhang, F., Ed., and D.
 Beller, Ed., "Resource ReserVation Protocol-Traffic
 Engineering (RSVP-TE) Path Diversity using Exclude Route",
 Work in Progress, draft-ietf-teas-lsp-diversity-05,
 June 2016.

 [RSVP-TE-EXT]

 Zhang, F., Ed., Gonzalez de Dios, O., Ed., Hartley, M.,
 Ali, Z., and C. Margaria, "RSVP-TE Extensions for
 Collecting SRLG Information", Work in Progress,
 draft-ietf-teas-rsvp-te-srlg-collect-06, May 2016.

 [RSVP-TE-METRIC]

 Ali, Z., Swallow, G., Filsfils, C., Hartley, M., Kumaki,
 K., and R. Kunze, "Resource ReserVation Protocol-Traffic
 Engineering (RSVP-TE) extension for recording TE Metric of
 a Label Switched Path", Work in Progress,
 draft-ietf-teas-te-metric-recording-04, March 2016.

Appendix A. Existing Work

 This appendix briefly summarizes relevant existing work that is used
 to route TE paths across multiple domains. It is non-normative.

A.1. Per-Domain Path Computation

 The mechanism for per-domain path establishment is described in
 [RFC5152], and its applicability is discussed in [RFC4726]. In
 summary, this mechanism assumes that each domain entry point is
 responsible for computing the path across the domain but that details
 regarding the path in the next domain are left to the next domain
 entry point. The computation may be performed directly by the entry
 point or may be delegated to a computation server.

 This basic mode of operation can run into many of the issues
 described alongside the use cases in Section 2. However, in practice
 it can be used effectively, with a little operational guidance.

 For example, RSVP-TE [RFC3209] includes the concept of a "loose hop"
 in the explicit path that is signaled. This allows the original
 request for an LSP to list the domains or even domain entry points to
 include on the path. Thus, in the example in Figure 1, the source
 can be told to use interconnection x2. Then, the source computes the
 path from itself to x2 and initiates the signaling. When the
 signaling message reaches Domain Z, the entry point to the domain
 computes the remaining path to the destination and continues the
 signaling.

 Another alternative suggested in [RFC5152] is to make TE routing
 attempt to follow inter-domain IP routing. Thus, in the example
 shown in Figure 2, the source would examine the BGP routing
 information to determine the correct interconnection point for
 forwarding IP packets and would use that to compute and then signal a
 path for Domain A. Each domain in turn would apply the same approach
 so that the path is progressively computed and signaled domain by
 domain.

 Although the per-domain approach has many issues and drawbacks in
 terms of achieving optimal (or, indeed, any) paths, it has been the
 mainstay of inter-domain LSP setup to date.

A.2. Crankback

 Crankback addresses one of the main issues with per-domain path
 computation: What happens when an initial path is selected that
 cannot be completed toward the destination? For example, what
 happens if, in Figure 2, the source attempts to route the path
 through interconnection x2 but Domain C does not have the right TE
 resources or connectivity to route the path further?

 Crankback for MPLS-TE and GMPLS networks is described in [RFC4920]
 and is based on a concept similar to the Acceptable Label Set
 mechanism described for GMPLS signaling in [RFC3473]. When a node
 (i.e., a domain entry point) is unable to compute a path further
 across the domain, it returns an error message in the signaling
 protocol that states where the blockage occurred (link identifier,
 node identifier, domain identifier, etc.) and gives some clues about
 what caused the blockage (bad choice of label, insufficient bandwidth
 available, etc.). This information allows a previous computation
 point to select an alternative path, or to aggregate crankback
 information and return it upstream to a previous computation point.

 Crankback is a very powerful mechanism and can be used to find an
 end-to-end path in a multi-domain network if one exists.

 On the other hand, crankback can be quite resource-intensive, as
 signaling messages and path setup attempts may "wander around" in the
 network, attempting to find the correct path for a long time. Since
 (1) RSVP-TE signaling ties up network resources for partially
 established LSPs, (2) network conditions may be in flux, and (3) most
 particularly, LSP setup within well-known time limits is highly
 desirable, crankback is not a popular mechanism.

 Furthermore, even if crankback can always find an end-to-end path, it
 does not guarantee that the optimal path will be found. (Note that
 there have been some academic proposals to use signaling-like
 techniques to explore the whole network in order to find optimal
 paths, but these tend to place even greater burdens on network
 processing.)

A.3. Path Computation Element

 The Path Computation Element (PCE) is introduced in [RFC4655]. It is
 an abstract functional entity that computes paths. Thus, in the
 example of per-domain path computation (see Appendix A.1), both the
 source node and each domain entry point are PCEs. On the other hand,
 the PCE can also be realized as a separate network element (a server)
 to which computation requests can be sent using the Path Computation
 Element Communication Protocol (PCEP) [RFC5440].

Each PCE is responsible for computations within a domain and has
visibility of the attributes within that domain. This immediately
enables per‑domain path computation with the opportunity to offload
complex, CPU‑intensive, or memory‑intensive computation functions
from routers in the network. But the use of PCEs in this way
does not solve any of the problems articulated in Appendices A.1
and A.2.

 Two significant mechanisms for cooperation between PCEs have been
 described. These mechanisms are intended to specifically address the
 problems of computing optimal end-to-end paths in multi-domain
 environments.

 - The Backward-Recursive PCE-Based Computation (BRPC) mechanism
 [RFC5441] involves cooperation between the set of PCEs along the
 inter-domain path. Each one computes the possible paths from the
 domain entry point (or source node) to the domain exit point (or
 destination node) and shares the information with its upstream
 neighbor PCE, which is able to build a tree of possible paths
 rooted at the destination. The PCE in the source domain can
 select the optimal path.

 BRPC is sometimes described as "crankback at computation time".
 It is capable of determining the optimal path in a multi-domain
 network but depends on knowing the domain that contains the
 destination node. Furthermore, the mechanism can become quite
 complicated and can involve a lot of data in a mesh of
 interconnected domains. Thus, BRPC is most often proposed for a
 simple mesh of domains and specifically for a path that will cross
 a known sequence of domains, but where there may be a choice of
 domain interconnections. In this way, BRPC would only be applied
 to Figure 2 if a decision had been made (externally) to traverse
 Domain C rather than Domain D (notwithstanding that it could
 functionally be used to make that choice itself), but BRPC could
 be used very effectively to select between interconnections x1 and
 x2 in Figure 1.

 - The Hierarchical PCE (H-PCE) [RFC6805] mechanism offers a parent
 PCE that is responsible for navigating a path across the domain
 mesh and for coordinating intra-domain computations by the child
 PCEs responsible for each domain. This approach makes computing
 an end-to-end path across a mesh of domains far more tractable.
 However, it still leaves unanswered the issue of determining the
 location of the destination (i.e., discovering the destination
 domain) as described in Section 2.1. Furthermore, it raises the
 question of who operates the parent PCE, especially in networks
 where the domains are under different administrative and
 commercial control.

 It should also be noted that [RFC5623] discusses how PCEs are used in
 a multi-layer network with coordination between PCEs operating at
 each network layer. Further issues and considerations regarding the
 use of PCEs can be found in [RFC7399].

A.4. GMPLS UNI and Overlay Networks

 [RFC4208] defines the GMPLS User-Network Interface (UNI) to present a
 routing boundary between an overlay (client) network and the server
 network, i.e., the client-server interface. In the client network,
 the nodes connected directly to the server network are known as edge
 nodes, while the nodes in the server network are called core nodes.

 In the overlay model defined by [RFC4208], the core nodes act as a
 closed system and the edge nodes do not participate in the routing
 protocol instance that runs among the core nodes. Thus, the UNI
 allows access to, and limited control of, the core nodes by edge
 nodes that are unaware of the topology of the core nodes. This
 respects the operational and layer boundaries while scaling the
 network.

 [RFC4208] does not define any routing protocol extension for the
 interaction between core and edge nodes but allows for the exchange
 of reachability information between them. In terms of a VPN, the
 client network can be considered as the customer network comprised of
 a number of disjoint sites, and the edge nodes match the VPN CE
 nodes. Similarly, the provider network in the VPN model is
 equivalent to the server network.

 [RFC4208] is, therefore, a signaling-only solution that allows edge
 nodes to request connectivity across the server network and leaves
 the server network to select the paths for the LSPs as they traverse
 the core nodes (setting up hierarchical LSPs if necessitated by the
 technology). This solution is supplemented by a number of signaling
 extensions, such as [RFC4874], [RFC5553], [RSVP-TE-EXCL],
 [RSVP-TE-EXT], and [RSVP-TE-METRIC], to give the edge node more
 control over the path within the server network and by allowing the
 edge nodes to supply additional constraints on the path used in the
 server network. Nevertheless, in this UNI/overlay model, the edge
 node has limited information regarding precisely what LSPs could be
 set up across the server network and what TE services (diverse routes
 for end-to-end protection, end-to-end bandwidth, etc.) can be
 supported.

A.5. Layer 1 VPN

 A Layer 1 VPN (L1VPN) is a service offered by a Layer 1 server
 network to provide Layer 1 connectivity (Time-Division Multiplexing
 (TDM), Lambda Switch Capable (LSC)) between two or more customer
 networks in an overlay service model [RFC4847].

 As in the UNI case, the customer edge has some control over the
 establishment and type of connectivity. In the L1VPN context, three
 different service models have been defined, classified by the
 semantics of information exchanged over the customer interface: the
 management-based model, the signaling-based (a.k.a. basic) service
 model, and the signaling and routing (a.k.a. enhanced) service model.

In the management‑based model, all edge‑to‑edge connections are
set up using configuration and management tools. This is not a
dynamic control‑plane solution and need not concern us here.

 In the signaling-based (basic) service model [RFC5251], the CE-PE
 interface allows only for signaling message exchange, and the
 provider network does not export any routing information about the
 server network. VPN membership is known a priori (presumably through
 configuration) or is discovered using a routing protocol [RFC5195]
 [RFC5252] [RFC5523], as is the relationship between CE nodes and
 ports on the PE. This service model is much in line with GMPLS UNI
 as defined in [RFC4208].

 In the signaling and routing (enhanced) service model, there is an
 additional limited exchange of routing information over the CE-PE
 interface between the provider network and the customer network. The
 enhanced model considers four different types of service models,
 namely the overlay extension, virtual node, virtual link, and per-VPN
 service models. All of these represent particular cases of the TE
 information aggregation and representation.

A.6. Policy and Link Advertisement

 Inter-domain networking relies on policy and management input to
 coordinate the allocation of resources under different administrative
 control. [RFC5623] introduces a functional component called the VNTM
 for this purpose.

 An important companion to this function is determining how
 connectivity across the abstraction layer network is made available
 as a TE link in the client network. Obviously, if the connectivity
 is established using management intervention, the consequent client
 network TE link can also be configured manually. However, if
 connectivity from client edge to client edge is achieved using
 dynamic signaling, then there is need for the end points to exchange
 the link properties that they should advertise within the client
 network, and in the case of support for more than one client network,
 it will be necessary to indicate which client network or networks can
 use the link. This capability it provided in [RFC6107].

Appendix B. Additional Features

 This appendix describes additional features that may be desirable and
 that can be achieved within this architecture. It is non-normative.

B.1. Macro Shared Risk Link Groups

 Network links often share fate with one or more other links. That
 is, a scenario that may cause a link to fail could cause one or more
 other links to fail. This may occur, for example, if the links are
 supported by the same fiber bundle, or if some links are routed down
 the same duct or in a common piece of infrastructure such as a
 bridge. A common way to identify the links that may share fate is to
 label them as belonging to a Shared Risk Link Group (SRLG) [RFC4202].

 TE links created from LSPs in lower layers may also share fate, and
 it can be hard for a client network to know about this problem
 because it does not know the topology of the server network or the
 path of the server network LSPs that are used to create the links in
 the client network.

 For example, looking at the example used in Section 4.2.3 and
 considering the two abstract links S1-S3 and S1-S9, there is no way
 for the client network to know whether links C2-C0 and C2-C3 share
 fate. Clearly, if the client layer uses these links to provide a
 link-diverse end-to-end protection scheme, it needs to know that the
 links actually share a piece of network infrastructure (the server
 network link S1-S2).

 Per [RFC4202], an SRLG represents a shared physical network resource
 upon which the normal functioning of a link depends. Multiple SRLGs
 can be identified and advertised for every TE link in a network.
 However, this can produce a scalability problem in a multi-layer
 network that equates to advertising in the client network the server
 network route of each TE link.

 Macro SRLGs (MSRLGs) address this scaling problem and are a form of
 abstraction performed at the same time that the abstract links are
 derived. In this way, links that actually share resources in the
 server network are advertised as having the same MSRLG, rather than
 advertising each SRLG for each resource on each path in the server
 network. This saving is possible because the abstract links are
 formulated on behalf of the server network by a central management
 agency that is aware of all of the link abstractions being offered.

 It may be noted that a less optimal alternative path for the abstract
 link S1-S9 exists in the server network (S1-S4-S7-S8-S9). It would
 be possible for the client network request for C2-C0 connectivity to
 also ask that the path be maximally disjoint from path C2-C3.
 Although nothing can be done about the shared link C2-S1, the
 abstraction layer could make a request to use link S1-S9 in a way
 that is diverse from the use of link S1-S3, and this request could be
 honored if the server network policy allows it.

 Note that SRLGs and MSRLGs may be very hard to describe in the case
 of multiple server networks because the abstraction points will not
 know whether the resources in the various server layers share
 physical locations.

B.2. Mutual Exclusivity

 As noted in the discussion of Figure 13, it is possible that some
 abstraction layer links cannot be used at the same time. This arises
 when the potentiality of the links is indicated by the server
 network, but the use of the links would actually compete for server
 network resources. Referring to Figure 13, this situation would
 arise when both link S1-S3 and link S7-S9 are used to carry LSPs: in
 that case, link S1-S9 could no longer be used.

 Such a situation need not be an issue when client-edge-to-client-edge
 LSPs are set up one by one, because the use of one abstraction layer
 link and the corresponding use of server network resources will cause
 the server network to withdraw the availability of the other
 abstraction layer links, and these will become unavailable for
 further abstraction layer path computations.

 Furthermore, in deployments where abstraction layer links are only
 presented as available after server network LSPs have been
 established to support them, the problem is unlikely to exist.

 However, when the server network is constrained but chooses to
 advertise the potential of multiple abstraction layer links even
 though they compete for resources, and when multiple client-edge-to-
 client-edge LSPs are computed simultaneously (perhaps to provide
 protection services), there may be contention for server network
 resources. In the case where protected abstraction layer LSPs are
 being established, this situation would be avoided through the use of
 SRLGs and/or MSRLGs, since the two abstraction layer links that
 compete for server network resources must also fate-share across
 those resources. But in the case where the multiple client-edge-to-
 client-edge LSPs do not care about fate sharing, it may be necessary
 to flag the mutually exclusive links in the abstraction layer TED so
 that path computation can avoid accidentally attempting to utilize
 two of a set of such links at the same time.

Acknowledgements

 Thanks to Igor Bryskin for useful discussions in the early stages of
 this work and to Gert Grammel for discussions on the extent of
 aggregation in abstract nodes and links.

 Thanks to Deborah Brungard, Dieter Beller, Dhruv Dhody, Vallinayakam
 Somasundaram, Hannes Gredler, Stewart Bryant, Brian Carpenter, and
 Hilarie Orman for review and input.

 Particular thanks to Vishnu Pavan Beeram for detailed discussions and
 white-board scribbling that made many of the ideas in this document
 come to life.

 Text in Section 4.2.3 is freely adapted from the work of Igor
 Bryskin, Wes Doonan, Vishnu Pavan Beeram, John Drake, Gert Grammel,
 Manuel Paul, Ruediger Kunze, Friedrich Armbruster, Cyril Margaria,
 Oscar Gonzalez de Dios, and Daniele Ceccarelli in [GMPLS-ENNI], for
 which the authors of this document express their thanks.

Contributors

Gert Grammel
Juniper Networks
Email: ggrammel@juniper.net

Vishnu Pavan Beeram
Juniper Networks
Email: vbeeram@juniper.net

Oscar Gonzalez de Dios
Email: ogondio@tid.es

Fatai Zhang
Email: zhangfatai@huawei.com

Zafar Ali
Email: zali@cisco.com

Rajan Rao
Email: rrao@infinera.com

Sergio Belotti
Email: sergio.belotti@alcatel‑lucent.com

Diego Caviglia
Email: diego.caviglia@ericsson.com

Jeff Tantsura
Email: jeff.tantsura@ericsson.com

Khuzema Pithewan
Email: kpithewan@infinera.com

Cyril Margaria
Email: cyril.margaria@googlemail.com

Victor Lopez
Email: vlopez@tid.es

Authors' Addresses

Adrian Farrel (editor)
Juniper Networks

 Email: adrian@olddog.co.uk

John Drake
Juniper Networks

 Email: jdrake@juniper.net

Nabil Bitar
Nokia

 Email: nbitar40@gmail.com

George Swallow
Cisco Systems, Inc.
1414 Massachusetts Ave.
Boxborough, MA 01719

 Email: swallow@cisco.com

Daniele Ceccarelli
Ericsson
Via A. Negrone 1/A
Genova ‑ Sestri Ponente
Italy

 Email: daniele.ceccarelli@ericsson.com

Xian Zhang
Huawei Technologies

 Email: zhang.xian@huawei.com

8001 - RSVP-TE Extensions for Collecting Shared Risk Link Group (SRLG) Informati

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8001

Category: Standards Track

ISSN: 2070-1721

F. Zhang, Ed.

Huawei

O. Gonzalez de Dios, Ed.

Telefonica Global CTO

C. Margaria

Juniper

M. Hartley

Z. Ali

Cisco

January 2017

RSVP-TE Extensions for Collecting Shared Risk Link Group (SRLG) Information

Abstract

 This document provides extensions for Resource Reservation Protocol -
 Traffic Engineering (RSVP-TE), including GMPLS, to support automatic
 collection of Shared Risk Link Group (SRLG) information for the TE
 link formed by a Label Switched Path (LSP).

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8001.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Applicability Example: Dual-Homing

	2. Requirements Language

	3. RSVP-TE Requirements
	 3.1. SRLG Collection Indication

	 3.2. SRLG Collection

	 3.3. SRLG Update

	 3.4. SRLG ID Definition

	4. Encodings
	 4.1. SRLG Collection Flag

	 4.2. RRO SRLG Subobject

	5. Signaling Procedures
	 5.1. SRLG Collection

	 5.2. SRLG Update

	 5.3 Domain Boundaries

	 5.4. Compatibility

	6. Manageability Considerations
	 6.1. Policy Configuration

	 6.2. Coherent SRLG IDs

	7. Security Considerations

	8. IANA Considerations
	 8.1. RSVP Attribute Bit Flags

	 8.2. ROUTE_RECORD Object

	 8.3. Policy Control Failure Error Subcodes

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Acknowledgements

	Contributors

	Authors' Addresses

1. Introduction

 It is important to understand which Traffic Engineering (TE) links in
 a given network might be at risk from the same failures. In this
 sense, a set of links can constitute a Shared Risk Link Group (SRLG)
 if they share a resource whose failure can affect all links in the
 set [RFC4202].

 On the other hand, as described in [RFC4206] and [RFC6107], a
 Hierarchical LSP (H-LSP) or stitched LSP (S-LSP) can be used for
 carrying one or more other LSPs. Both the H-LSP and S-LSP can be
 formed as a TE link. In such cases, it is important to know the SRLG
 information of the LSPs that will be used to carry further LSPs.

 This document provides a signaling mechanism that collects the SRLGs
 that are used by an LSP and can then be advertised as properties of
 the TE link formed by that LSP.

1.1. Applicability Example: Dual-Homing

 An interesting use case for the SRLG collection procedures defined in
 this document is achieving LSP diversity in a dual-homing scenario.
 The use case is illustrated in Figure 1, when the overlay model is
 applied as defined in [RFC4208]. In this example, the exchange of
 routing information over the User-Network Interface (UNI) is
 prohibited by operator policy.

 +‑‑‑+ +‑‑‑+
 | P |....| P |
 +‑‑‑+ +‑‑‑+
 / \
 +‑‑‑‑‑+ +‑‑‑‑‑+
+‑‑‑+ | PE1 | | PE3 | +‑‑‑+
|CE1|‑‑‑‑| | | |‑‑‑‑|CE2|
+‑‑‑+\ +‑‑‑‑‑+ +‑‑‑‑‑+ /+‑‑‑+
 \ | | /
 \ +‑‑‑‑‑+ +‑‑‑‑‑+ /
 \| PE2 | | PE4 |/
 | | | |
 +‑‑‑‑‑+ +‑‑‑‑‑+
 \ /
 +‑‑‑+ +‑‑‑+
 | P |....| P |
 +‑‑‑+ +‑‑‑+

 Figure 1: Dual-Homing Configuration

 Single-homed customer edge (CE) devices are connected to a single
 provider edge (PE) device via a single UNI link (which could be a
 bundle of parallel links, typically using the same fiber cable).
 This single UNI link can constitute a single point of failure. Such
 a single point of failure can be avoided if the CE device is
 connected to two PE devices via two UNI interfaces for CE1 and CE2,
 respectively, as depicted in Figure 1.

 For the dual-homing case, it is possible to establish two connections
 (LSPs) from the source CE device to the same destination CE device
 where one connection is using one UNI link to PE1, for example, and
 the other connection is using the UNI link to PE2. In order to avoid
 single points of failure within the provider network, it is necessary
 to also ensure path (LSP) diversity within the provider network to
 achieve end-to-end diversity for the two LSPs between the two CE
 devices CE1 and CE2. This use case describes how it is possible to
 achieve path diversity within the provider network based on collected
 SRLG information. As the two connections (LSPs) enter the provider
 network at different PE devices, the PE device that receives the
 connection request for the second connection needs to know the
 additional path computation constraints such that the path of the
 second LSP is disjoint with respect to the already established first
 connection.

 As SRLG information is normally not shared between the provider
 network and the client network, i.e., between PE and CE devices, the
 challenge is how to solve the diversity problem when a CE is dual-
 homed. The RSVP extensions for collecting SRLG information defined
 in this document make it possible to retrieve SRLG information for an
 LSP and hence solve the dual-homing LSP diversity problem. For
 example, CE1 in Figure 1 may have requested an LSP1 to CE2 via PE1
 that is routed via PE3 to CE2. CE1 can then subsequently request an
 LSP2 to CE2 via PE2 with the constraint that it needs to be maximally
 SRLG disjoint with respect to LSP1. PE2, however, does not have any
 SRLG information associated with LSP1, and this is needed as input
 for its constraint-based path computation function. If CE1 is
 capable of retrieving the SRLG information associated with LSP1 from
 PE1, it can pass this discovered information to PE2 as part of the
 LSP2 setup request (RSVP PATH message) in an EXCLUDE_ROUTE Object
 (XRO) or Explicit Exclusion Route Subobject (EXRS) as described in
 [RFC4874], and PE2 can now calculate a path for LSP2 that is SRLG
 disjoint with respect to LSP1. The SRLG information associated with
 LSP1 can be retrieved when LSP1 is established or at any time before
 LSP2 is set up.

 When CE1 sends the setup request for LSP2 to PE2, it can also request
 the collection of SRLG information for LSP2 and send that information
 to PE1 by re-signaling LSP1 with SRLG-exclusion based on LSP2's
 discovered SRLGs. This will ensure that the two paths for the two
 LSPs remain mutually diverse; this is important when the provider
 network is capable of restoring connections that failed due to a
 network failure (fiber cut) in the provider network.

 Note that the knowledge of SRLG information even for multiple LSPs
 does not allow a CE device to derive the provider network topology
 based on the collected SRLG information. It would, however, be
 possible for an entity controlling multiple CE devices to derive some
 information related to the topology. This document therefore allows
 PE devices to control the communication of SRLGs outside the provider
 network if desired.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. RSVP-TE Requirements

 The SRLG collection process takes place in three stages:

 o The LSP's ingress node requests that SRLG collection take place;

 o SRLG data is added to the Path and Resv ROUTE_RECORD Objects
 (RROs) by all nodes during signaling;

 o Changes to previously signaled SRLG data are made by sending
 updated Path and Resv messages as required.

3.1. SRLG Collection Indication

 The ingress node of the LSP needs be capable of indicating whether
 the SRLG information of the LSP is to be collected during the
 signaling procedure of setting up an LSP. There is no need for SRLG
 information to be collected without an explicit request by the
 ingress node.

 It may be preferable for the SRLG collection request to be understood
 by all nodes along the LSP's path, or it may be more important for
 the LSP to be established successfully even if it traverses nodes
 that cannot supply SRLG information or have not implemented the
 procedures specified in this document. It is desirable for the
 ingress node to make the SRLG collection request in a manner that
 best suits its own policy.

3.2. SRLG Collection

 If requested, the SRLG information is collected during the setup of
 an LSP. SRLG information is added by each hop to the Path RRO during
 Path message processing. The same information is also added to the
 Resv RRO during Resv processing at each hop.

3.3. SRLG Update

 When the SRLG information of an existing LSP for which SRLG
 information was collected during signaling changes, the relevant
 nodes of the LSP need to be capable of updating the SRLG information
 of the LSP. This means that the signaling procedure needs to be
 capable of updating the new SRLG information.

3.4. SRLG ID Definition

 The identifier of an SRLG (SRLG ID) is defined as a 32-bit quantity
 in [RFC4202]. This definition is used in this document.

4. Encodings

4.1. SRLG Collection Flag

 In order to indicate to nodes that SRLG collection is desired, this
 document defines a new flag in the Attribute Flags TLV (see
 [RFC5420]). This document defines a new SRLG Collection Flag in the
 Attribute Flags TLV. A node that wishes to indicate that SRLG
 collection is desired MUST set this flag in an Attribute Flags TLV in
 an LSP_REQUIRED_ATTRIBUTES object (if collection is to be mandatory)
 or an LSP_ATTRIBUTES object (if collection is desired but not
 mandatory).

 o Bit Number (specified in Section 8.1): SRLG Collection Flag

 The SRLG Collection Flag is meaningful on a Path message. If the
 SRLG Collection Flag is set to 1, it means that the SRLG information
 SHOULD be reported to the ingress and egress node along the setup of
 the LSP.

 The rules for the processing of the Attribute Flags TLV are not
 changed.

4.2. RRO SRLG Subobject

 This document defines a new RRO subobject (ROUTE_RECORD subobject) to
 record the SRLG information of the LSP. Its format is modeled on the
 RRO subobjects defined in [RFC3209].

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length |D| Reserved |
+‑+
| SRLG ID 1 (4 octets) |
+‑+

~ ~
+‑+
| SRLG ID n (4 octets) |
+‑+

 Type (8 bits)

 The type of the subobject. The value is specified in Section 8.2.

 Length (8 bits)

 The Length field contains the total length of the subobject in
 octets, including the Type and Length fields. The Length depends on
 the number of SRLG IDs.

 Direction bit (D-bit) (1 bit)

 If not set, the SRLGs contained in this subobject apply to the
 downstream direction. If set, they apply to the upstream direction.

 Reserved (15 bits)

 This 15-bit field is reserved. It SHOULD be set to zero on
 transmission and MUST be ignored on receipt.

 SRLG ID (4 octets)

 This field contains one SRLG ID. There is one SRLG ID field per SRLG
 collected. There MAY be multiple SRLG ID fields in an SRLG
 subobject.

 A node MUST NOT push an SRLG subobject in the ROUTE_RECORD without
 also pushing either an IPv4 subobject, an IPv6 subobject, an
 Unnumbered Interface ID subobject, or a Path Key Subobject (PKS).
 As described in [RFC3209], the ROUTE_RECORD object is managed as a
 stack. The SRLG subobject MUST be pushed by the node before the node
 IP address or link identifier. The SRLG subobject SHOULD be pushed
 after the Attribute subobject, if present, and after the LABEL
 subobject, if requested. It MUST be pushed within the hop to which
 it applies.

 [RFC5553] describes mechanisms to carry a PKS in the RRO so as to
 facilitate confidentiality in the signaling of inter-domain TE LSPs.
 RFC 5553 allows the path segment that needs to be hidden (that is, a
 Confidential Path Segment (CPS)) to be replaced in the RRO with a
 PKS. If the CPS contains SRLG subobjects, these MAY be retained in
 the RRO by adding them again after the PKS in the RRO. The CPS is
 defined in [RFC5520].

 The rules for the processing of the LSP_REQUIRED_ATTRIBUTES,
 LSP_ATTRIBUTES, and ROUTE_RECORD objects are not changed.

5. Signaling Procedures

 The ingress node of the LSP MUST be capable of indicating whether the
 SRLG information of the LSP is to be collected during the signaling
 procedure of setting up an LSP.

5.1. SRLG Collection

 Per [RFC3209], an ingress node initiates the recording of the route
 information of an LSP by adding an RRO to a Path message. If an
 ingress node also desires SRLG recording, it MUST set the SRLG
 Collection Flag in the Attribute Flags TLV, which MAY be carried in
 either an LSP_REQUIRED_ATTRIBUTES object (when the collection is
 mandatory) or an LSP_ATTRIBUTES object (when the collection is
 desired, but not mandatory).

 A node MUST NOT add SRLG information without an explicit request by
 the ingress node in the Path message.

 When a node receives a Path message that carries an
 LSP_REQUIRED_ATTRIBUTES object with the SRLG Collection Flag set, if
 local policy determines that the SRLG information is not to be
 provided to the endpoints, it MUST return a PathErr message with

 o Error Code 2 (policy) and

 o Error subcode "SRLG Recording Rejected" (see Section 8.3 for
 value)

 to reject the Path message.

 When a node receives a Path message that carries an LSP_ATTRIBUTES
 object with the SRLG Collection Flag set, if local policy determines
 that the SRLG information is not to be provided to the endpoints, the
 Path message MUST NOT be rejected due to the SRLG recording
 restriction, and the Path message MUST be forwarded without any SRLG
 subobject(s) added to the RRO of the corresponding outgoing Path
 message.

 If local policy permits the recording of the SRLG information, the
 processing node SHOULD add local SRLG information, as defined below,
 to the RRO of the corresponding outgoing Path message. The
 processing node MAY add multiple SRLG subobjects to the RRO if
 necessary. It then forwards the Path message to the next node in the
 downstream direction. The processing node MUST retain a record of
 the SRLG recording request for reference during Resv processing
 described below.

 If the addition of SRLG information to the RRO would result in the
 RRO exceeding its maximum possible size or becoming too large for the
 Path message to contain it, the requested SRLGs MUST NOT be added.
 If the SRLG collection request was contained in an
 LSP_REQUIRED_ATTRIBUTES object, the processing node MUST behave as
 specified by [RFC3209] and drop the RRO from the Path message
 entirely. If the SRLG collection request was contained in an
 LSP_ATTRIBUTES object, the processing node MAY omit some or all of
 the requested SRLGs from the RRO; otherwise, it MUST behave as
 specified by [RFC3209] and drop the RRO from the Path message
 entirely. Subsequent processing of the LSP proceeds as further
 specified in [RFC3209].

 Following the steps described above, the intermediate nodes of the
 LSP can collect the SRLG information in the RRO during the processing
 of the Path message hop by hop. When the Path message arrives at the
 egress node, the egress node receives SRLG information in the RRO.

 Per [RFC3209], when issuing a Resv message for a Path message that
 contains an RRO, an egress node initiates the RRO process by adding
 an RRO to the outgoing Resv message. The processing for RROs
 contained in Resv messages then mirrors that of the Path messages.

 When a node receives a Resv message for an LSP for which SRLG
 Collection was specified in the corresponding Path message, then when
 local policy allows recording SRLG information, the node MUST add
 SRLG information to the RRO of the corresponding outgoing Resv
 message as specified below. When the Resv message arrives at the
 ingress node, the ingress node can extract the SRLG information from
 the RRO in the same way as the egress node.

 Note that a link's SRLG information for the upstream direction cannot
 be assumed to be the same as that for the downstream direction.

 o For Path and Resv messages for a unidirectional LSP, a node SHOULD
 include SRLG subobjects in the RRO for the downstream data link
 only.

 o For Path and Resv messages for a bidirectional LSP, a node SHOULD
 include SRLG subobjects in the RRO for both the upstream data link
 and the downstream data link from the local node. In this case,
 the node MUST include the information in the same order for both
 Path messages and Resv messages. That is, the SRLG subobject for
 the upstream link is added to the RRO before the SRLG subobject
 for the downstream link.

 If SRLG data is added for both the upstream and downstream links,
 the two sets of SRLG data MUST be added in separate SRLG
 subobjects. A single SRLG subobject MUST NOT contain a mixture of
 upstream and downstream SRLGs. When adding a SRLG subobject to an
 RRO, the D-bit MUST be set appropriately to indicate the direction
 of the SRLGs. If an SRLG ID applies in both directions, it SHOULD
 be added to both the upstream and downstream SRLG subobjects.

 Based on the above procedure, the endpoints can get the SRLG
 information automatically. Then, for instance, the endpoints can
 advertise it as a TE link to the routing instance based on the
 procedure described in [RFC6107] and configure the SRLG information
 of the Forwarding Adjacency (FA) automatically.

5.2. SRLG Update

 When the SRLG information of a link is changed, the endpoints of LSPs
 using that link need to be made aware of the changes. When a change
 to the set of SRLGs associated with a link occurs, the procedures
 defined in Section 4.4.3 of [RFC3209] MUST be used to refresh the
 SRLG information for each affected LSP if the local node's policy
 dictates that the SRLG change be communicated to other nodes.

5.3 Domain Boundaries

 If mandated by local policy as specified by the network operator, a
 node MAY remove SRLG information from any RRO in a Path or Resv
 message being processed. It MAY add a summary of the removed SRLGs
 or map them to other SRLG values. However, this SHOULD NOT be done
 unless explicitly mandated by local policy.

5.4. Compatibility

 A node that does not recognize the SRLG Collection Flag in the
 Attribute Flags TLV is expected to proceed as specified in [RFC5420].
 It is expected to pass the TLV on unaltered if it appears in an
 LSP_ATTRIBUTES object or to reject the Path message with the
 appropriate Error Code and Value if it appears in a
 LSP_REQUIRED_ATTRIBUTES object.

 A node that does not recognize the SRLG RRO subobject is expected to
 behave as specified in [RFC3209]: unrecognized subobjects are to be
 ignored and passed on unchanged.

6. Manageability Considerations

6.1. Policy Configuration

 In a border node of an inter-domain or inter-layer network, the
 following SRLG processing policy MUST be capable of being configured:

 o Whether the node is allowed to participate in SRLG collection and
 notify changes to collected SRLG information to endpoint nodes as
 described in Section 5.2.

 o Whether the SRLG IDs of the domain or specific layer network can
 be exposed to the nodes outside the domain or layer network, or
 whether they SHOULD be summarized, mapped to values that are
 comprehensible to nodes outside the domain or layer network, or
 removed entirely as described in Section 5.3.

 A node using [RFC5553] and PKS MAY apply the same policy.

6.2. Coherent SRLG IDs

 In a multi-layer, multi-domain scenario, SRLG IDs can be configured
 by different management entities in each layer or domain. In such
 scenarios, maintaining a coherent set of SRLG IDs is a key
 requirement in order to be able to use the SRLG information properly.
 Thus, SRLG IDs SHOULD be unique. Note that current procedures are
 targeted towards a scenario where the different layers and domains
 belong to the same operator or to several coordinated administrative
 groups. Ensuring the aforementioned coherence of SRLG IDs is beyond
 the scope of this document.

 Further scenarios, where coherence in the SRLG IDs cannot be
 guaranteed, are out of the scope of the present document and are left
 for further study.

7. Security Considerations

 This document builds on the mechanisms defined in [RFC3473], which
 also discusses related security measures. In addition, [RFC5920]
 provides an overview of security vulnerabilities and protection
 mechanisms for the GMPLS control plane. The procedures defined in
 this document permit the transfer of SRLG data between layers or
 domains during the signaling of LSPs, subject to policy at the layer
 or domain boundary. As described in Sections 5.3 and 6.1, local
 policy as specified by the network operator will explicitly mandate
 the processing of information at domain or layer boundaries.

8. IANA Considerations

8.1. RSVP Attribute Bit Flags

 IANA has created a registry and manages the space of the Attribute
 bit flags of the Attribute Flags TLV, as described in Section 11.3 of
 [RFC5420], in the "Attribute Flags" subregistry of the "Resource
 Reservation Protocol-Traffic Engineering (RSVP-TE) Parameters"
 registry located at
 <http://www.iana.org/assignments/rsvp-te-parameters>.

 This document introduces a new Attribute bit flag:

Bit No Name Attribute Attribute RRO ERO Reference
 Flags Path Flags Resv
‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑ ‑‑‑ ‑‑‑‑‑‑‑‑‑
12 SRLG Yes No Yes No RFC 8001,
 Collection [RFC7570]
 Flag

8.2. ROUTE_RECORD Object

 IANA manages the "Resource Reservation Protocol (RSVP) Parameters"
 registry located at
 <http://www.iana.org/assignments/rsvp-parameters>. This document
 introduces a new RRO subobject under the "Sub-object type - 21
 ROUTE_RECORD - Type 1 Route Record" subregistry:

Value Description Reference
‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
34 SRLG subobject RFC 8001

8.3. Policy Control Failure Error Subcodes

 IANA manages the assignments in the "Error Codes and Globally-Defined
 Error Value Sub-Codes" section of the "Resource Reservation Protocol
 (RSVP) Parameters" registry located at
 <http://www.iana.org/assignments/rsvp-parameters>.

 This document introduces a new value under "Sub-Codes - 2 Policy
 Control Failure":

Value Description Reference
‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
21 SRLG Recording Rejected RFC 8001

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <http://www.rfc-editor.org/info/rfc3209>.

 [RFC3473]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Resource ReserVation Protocol-
 Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
 DOI 10.17487/RFC3473, January 2003,
 <http://www.rfc-editor.org/info/rfc3473>.

 [RFC4202]
 Kompella, K., Ed., and Y. Rekhter, Ed., "Routing
 Extensions in Support of Generalized Multi-Protocol Label
 Switching (GMPLS)", RFC 4202, DOI 10.17487/RFC4202,
 October 2005, <http://www.rfc-editor.org/info/rfc4202>.

 [RFC5420]
 Farrel, A., Ed., Papadimitriou, D., Vasseur, JP., and A.
 Ayyangarps, "Encoding of Attributes for MPLS LSP
 Establishment Using Resource Reservation Protocol Traffic
 Engineering (RSVP-TE)", RFC 5420, DOI 10.17487/RFC5420,
 February 2009, <http://www.rfc-editor.org/info/rfc5420>.

 [RFC5520]
 Bradford, R., Ed., Vasseur, JP., and A. Farrel,
 "Preserving Topology Confidentiality in Inter-Domain Path
 Computation Using a Path-Key-Based Mechanism", RFC 5520,
 DOI 10.17487/RFC5520, April 2009,
 <http://www.rfc-editor.org/info/rfc5520>.

 [RFC5553]
 Farrel, A., Ed., Bradford, R., and JP. Vasseur, "Resource
 Reservation Protocol (RSVP) Extensions for Path Key
 Support", RFC 5553, DOI 10.17487/RFC5553, May 2009,
 <http://www.rfc-editor.org/info/rfc5553>.

9.2. Informative References

 [RFC4206]
 Kompella, K. and Y. Rekhter, "Label Switched Paths (LSP)
 Hierarchy with Generalized Multi-Protocol Label Switching
 (GMPLS) Traffic Engineering (TE)", RFC 4206,
 DOI 10.17487/RFC4206, October 2005,
 <http://www.rfc-editor.org/info/rfc4206>.

 [RFC4208]
 Swallow, G., Drake, J., Ishimatsu, H., and Y. Rekhter,
 "Generalized Multiprotocol Label Switching (GMPLS) User-
 Network Interface (UNI): Resource ReserVation Protocol-
 Traffic Engineering (RSVP-TE) Support for the Overlay
 Model", RFC 4208, DOI 10.17487/RFC4208, October 2005,
 <http://www.rfc-editor.org/info/rfc4208>.

 [RFC4874]
 Lee, CY., Farrel, A., and S. De Cnodder, "Exclude Routes -
 Extension to Resource ReserVation Protocol-Traffic
 Engineering (RSVP-TE)", RFC 4874, DOI 10.17487/RFC4874,
 April 2007, <http://www.rfc-editor.org/info/rfc4874>.

 [RFC5920]
 Fang, L., Ed., "Security Framework for MPLS and GMPLS
 Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010,
 <http://www.rfc-editor.org/info/rfc5920>.

 [RFC6107]
 Shiomoto, K., Ed., and A. Farrel, Ed., "Procedures for
 Dynamically Signaled Hierarchical Label Switched Paths",
 RFC 6107, DOI 10.17487/RFC6107, February 2011,
 <http://www.rfc-editor.org/info/rfc6107>.

 [RFC7570]
 Margaria, C., Ed., Martinelli, G., Balls, S., and B.
 Wright, "Label Switched Path (LSP) Attribute in the
 Explicit Route Object (ERO)", RFC 7570,
 DOI 10.17487/RFC7570, July 2015,
 <http://www.rfc-editor.org/info/rfc7570>.

Acknowledgements

 The authors would like to thank Dieter Beller, Vishnu Pavan Beeram,
 Lou Berger, Deborah Brungard, Igor Bryskin, Ramon Casellas, Niclas
 Comstedt, Alan Davey, Elwyn Davies, Dhruv Dhody, Himanshu Shah, and
 Xian Zhang for their useful comments and improvements to this
 document.

Contributors

Dan Li
Huawei
F3‑5‑B RD Center
Bantian, Longgang District, Shenzhen 518129
China

 Email: danli@huawei.com

Authors' Addresses

Fatai Zhang (editor)
Huawei
F3‑5‑B RD Center
Bantian, Longgang District, Shenzhen 518129
China

 Email: zhangfatai@huawei.com

Oscar Gonzalez de Dios (editor)
Telefonica Global CTO
Distrito Telefonica, edificio sur, Ronda de la Comunicacion 28045
Madrid 28050
Spain
Phone: +34 913129647

 Email: oscar.gonzalezdedios@telefonica.com

Cyril Margaria
Juniper
200 Somerset Corporate Blvd., Suite 4001
Bridgewater, NJ 08807
United States of America

 Email: cmargaria@juniper.net

Matt Hartley
Cisco

 Email: mhartley@cisco.com

Zafar Ali
Cisco

 Email: zali@cisco.com

8131 - RSVP-TE Signaling Procedure for End-to-End GMPLS Restoration and Resource

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8131

Category: Informational

ISSN: 2070-1721

X. Zhang

H. Zheng, Ed.

Huawei Technologies

R. Gandhi, Ed.

Z. Ali

Cisco Systems, Inc.

P. Brzozowski

ADVA Optical

March 2017

RSVP-TE Signaling Procedure for End-to-End GMPLS Restoration and Resource Sharing

Abstract

 In non-packet transport networks, there are requirements where the
 Generalized Multiprotocol Label Switching (GMPLS) end-to-end recovery
 scheme needs to employ a restoration Label Switched Path (LSP) while
 keeping resources for the working and/or protecting LSPs reserved in
 the network after the failure occurs.

 This document reviews how the LSP association is to be provided using
 Resource Reservation Protocol - Traffic Engineering (RSVP-TE)
 signaling in the context of a GMPLS end-to-end recovery scheme when
 using restoration LSP where failed LSP is not torn down. In
 addition, this document discusses resource sharing-based setup and
 teardown of LSPs as well as LSP reversion procedures. No new
 signaling extensions are defined by this document, and it is strictly
 informative in nature.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8131.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions Used in This Document
	 2.1. Terminology

	 2.2. Abbreviations

	3. Overview
	 3.1. Examples of Restoration Schemes
	 3.1.1. 1+R Restoration

	 3.1.2. 1+1+R Restoration
	 3.1.2.1. 1+1+R Restoration - Variants

	 3.2. Resource Sharing by Restoration LSP

	4. RSVP-TE Signaling Procedure
	 4.1. Restoration LSP Association

	 4.2. Resource Sharing-Based Restoration LSP Setup

	 4.3. LSP Reversion
	 4.3.1. Make-While-Break Reversion

	 4.3.2. Make-Before-Break Reversion

	5. Security Considerations

	6. IANA Considerations

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Acknowledgements

	Contributors

	Authors' Addresses

1. Introduction

 Generalized Multiprotocol Label Switching (GMPLS) [RFC3945] defines a
 set of protocols, including Open Shortest Path First - Traffic
 Engineering (OSPF-TE) [RFC4203] and Resource Reservation Protocol -
 Traffic Engineering (RSVP-TE) [RFC3473]. These protocols can be used
 to set up Label Switched Paths (LSPs) in non-packet transport
 networks. The GMPLS protocol extends MPLS to support interfaces
 capable of Time Division Multiplexing (TDM), Lambda Switching and
 Fiber Switching. These switching technologies provide several
 protection schemes [RFC4426] [RFC4427] (e.g., 1+1, 1:N, and M:N).

 RSVP-TE signaling has been extended to support various GMPLS recovery
 schemes, such as end-to-end recovery [RFC4872] and segment recovery
 [RFC4873]. As described in [RFC6689], an ASSOCIATION object with
 Association Type "Recovery" [RFC4872] can be signaled in the RSVP
 Path message to identify the LSPs for restoration. Also, an
 ASSOCIATION object with Association Type "Resource Sharing" [RFC4873]
 can be signaled in the RSVP Path message to identify the LSPs for
 resource sharing. Section 2.2 of [RFC6689] reviews the procedure for
 providing LSP associations for GMPLS end-to-end recovery, and Section
 2.4 of that document reviews the procedure for providing LSP
 associations for sharing resources.

 Generally, GMPLS end-to-end recovery schemes have the restoration LSP
 set up after the failure has been detected and notified on the
 working LSP. For a recovery scheme with revertive behavior, a
 restoration LSP is set up while the working LSP and/or protecting LSP
 are not torn down in the control plane due to a failure. In non-
 packet transport networks, because working LSPs are typically set up
 over preferred paths, service providers would like to keep resources
 associated with the working LSPs reserved. This is to make sure that
 the service can be reverted to the preferred path (working LSP) when
 the failure is repaired to provide deterministic behavior and a
 guaranteed Service Level Agreement (SLA).

 In this document, we review procedures for GMPLS LSP associations,
 resource-sharing-based LSP setup, teardown, and LSP reversion for
 non-packet transport networks, including the following:

 o The procedure for providing LSP associations for the GMPLS end-to-
 end recovery using restoration LSP where working and protecting
 LSPs are not torn down and resources are kept reserved in the
 network after the failure.

 o The procedure for resource sharing using the Shared Explicit (SE)
 flag in conjunction with an ASSOCIATION object. In [RFC3209], the
 Make-Before-Break (MBB) method assumes the old and new LSPs share

 the SESSION object and signal SE flag in the SESSION_ATTRIBUTE
 object for sharing resources. According to [RFC6689], an
 ASSOCIATION object with Association Type "Resource Sharing" in the
 Path message enables the sharing of resources across LSPs with
 different SESSION objects.

 o The procedures for LSP reversion and resource sharing, when using
 end-to-end recovery scheme with revertive behavior.

 This document is strictly informative in nature and does not define
 any RSVP-TE signaling extensions.

2. Conventions Used in This Document

2.1. Terminology

 The reader is assumed to be familiar with the terminology in
 [RFC3209], [RFC3473], [RFC4872], and [RFC4873]. The terminology for
 GMPLS recovery is defined in [RFC4427].

2.2. Abbreviations

 GMPLS: Generalized Multiprotocol Label Switching

 LSP: Label Switched Path

 MBB: Make-Before-Break

 MPLS: Multiprotocol Label Switching

 RSVP: Resource Reservation Protocol

 SE: Shared Explicit (flag)

 TDM: Time Division Multiplexing

 TE: Traffic Engineering

3. Overview

 The GMPLS end-to-end recovery scheme, as defined in [RFC4872] and
 discussed in this document, switches normal traffic to an alternate
 LSP that is not even partially established only after the working LSP
 failure occurs. The new alternate route is selected at the LSP head-
 end node, it may reuse resources of the failed LSP at intermediate
 nodes and may include additional intermediate nodes and/or links.

3.1. Examples of Restoration Schemes

 Two forms of end-to-end recovery schemes, 1+R restoration and 1+1+R
 restoration, are described in the following sections. Other forms of
 end-to-end recovery schemes also exist, and they can use these
 signaling techniques.

3.1.1. 1+R Restoration

 One example of the recovery scheme considered in this document is 1+R
 recovery. The 1+R recovery scheme is exemplified in Figure 1. In
 this example, a working LSP on path A-B-C-Z is pre-established.
 Typically, after a failure detection and notification on the working
 LSP, a second LSP on path A-H-I-J-Z is established as a restoration
 LSP. Unlike a protecting LSP, which is set up before the failure, a
 restoration LSP is set up when needed, after the failure.

+‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+
| A +‑‑‑‑+ B +‑‑‑‑‑+ C +‑‑‑‑‑+ Z |
+‑‑+‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑+‑‑+
 \ /
 \ /
 +‑‑+‑‑+ +‑‑‑‑‑+ +‑‑+‑‑+
 | H +‑‑‑‑‑‑‑+ I +‑‑‑‑‑‑‑‑+ J |
 +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+

 Figure 1: An Example of 1+R Recovery Scheme

 During failure switchover with 1+R recovery scheme, in general,
 working LSP resources are not released so that working and
 restoration LSPs coexist in the network. Nonetheless, working and
 restoration LSPs can share network resources. Typically, when the
 failure has recovered on the working LSP, the restoration LSP is no
 longer required and is torn down while the traffic is reverted to the
 original working LSP.

3.1.2. 1+1+R Restoration

 Another example of the recovery scheme considered in this document is
 1+1+R. In 1+1+R, a restoration LSP is set up for the working LSP
 and/or the protecting LSP after the failure has been detected; this
 recovery scheme is exemplified in Figure 2.

 +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+
 | D +‑‑‑‑‑‑‑+ E +‑‑‑‑‑‑‑‑+ F |
 +‑‑+‑‑+ +‑‑‑‑‑+ +‑‑+‑‑+
 / \
 / \
+‑‑+‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑+‑‑+
| A +‑‑‑‑+ B +‑‑‑‑‑+ C +‑‑‑‑‑+ Z |
+‑‑+‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑+‑‑+
 \ /
 \ /
 +‑‑+‑‑+ +‑‑‑‑‑+ +‑‑+‑‑+
 | H +‑‑‑‑‑‑‑+ I +‑‑‑‑‑‑‑‑+ J |
 +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+

 Figure 2: An Example of 1+1+R Recovery Scheme

 In this example, a working LSP on path A-B-C-Z and a protecting LSP
 on path A-D-E-F-Z are pre-established. After a failure detection and
 notification on the working LSP or protecting LSP, a third LSP on
 path A-H-I-J-Z is established as a restoration LSP. The restoration
 LSP, in this case, provides protection against failure of both the
 working and protecting LSPs. During failure switchover with the
 1+1+R recovery scheme, in general, failed LSP resources are not
 released so that working, protecting, and restoration LSPs coexist in
 the network. The restoration LSP can share network resources with
 the working LSP, and it can share network resources with the
 protecting LSP. Typically, the restoration LSP is torn down when the
 traffic is reverted to the original LSP and is no longer needed.

 There are two possible models when using a restoration LSP with 1+1+R
 recovery scheme:

 o A restoration LSP is set up after either a working or a protecting
 LSP fails. Only one restoration LSP is present at a time.

 o A restoration LSP is set up after both the working and protecting
 LSPs fail. Only one restoration LSP is present at a time.

3.1.2.1. 1+1+R Restoration - Variants

 Two other possible variants exist when using a restoration LSP with
 1+1+R recovery scheme:

 o A restoration LSP is set up after either a working or protecting
 LSP fails. Two different restoration LSPs may be present, one for
 the working LSP and one for the protecting LSP.

 o Two different restoration LSPs are set up after both working and
 protecting LSPs fail, one for the working LSP and one for the
 protecting LSP.

 In all these models, if a restoration LSP also fails, it is torn down
 and a new restoration LSP is set up.

3.2. Resource Sharing by Restoration LSP

 +‑‑‑‑‑+ +‑‑‑‑‑+
 | F +‑‑‑‑‑‑+ G +‑‑‑‑‑‑‑‑+
 +‑‑+‑‑+ +‑‑‑‑‑+ |
 | |
 | |
+‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑+‑‑+ +‑‑‑‑‑+ +‑‑+‑‑+
| A +‑‑‑‑+ B +‑‑‑‑‑+ C +‑‑X‑‑‑+ D +‑‑‑‑‑+ E |
+‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+

 Figure 3: Resource Sharing in 1+R Recovery Scheme

 Using the network shown in Figure 3 as an example using 1+R recovery
 scheme, LSP1 (A-B-C-D-E) is the working LSP; assume it allows for
 resource sharing when the LSP traffic is dynamically restored. Upon
 detecting the failure of a link along the LSP1, e.g., Link C-D, node
 A needs to decide which alternative path it will use to signal
 restoration LSP and reroute traffic. In this case, A-B-C-F-G-E is
 chosen as the restoration LSP path, and the resources on the path
 segment A-B-C are reused by this LSP. The working LSP is not torn
 down and coexists with the restoration LSP. When the head-end node A
 signals the restoration LSP, nodes C, F, G, and E reconfigure the
 resources (as listed in Table 1 of this document) to set up the LSP
 by sending cross-connection command to the data plane.

 In the recovery scheme employing revertive behavior, after the
 failure is repaired, the resources on nodes C and E need to be
 reconfigured to set up the working LSP (using a procedure described
 in Section 4.3 of this document) by sending cross-connection command
 to the data plane. The traffic is then reverted back to the original
 working LSP.

4. RSVP-TE Signaling Procedure

4.1. Restoration LSP Association

 Where GMPLS end-to-end recovery scheme needs to employ a restoration
 LSP while keeping resources for the working and/or protecting LSPs
 reserved in the network after the failure, the restoration LSP is set
 up with an ASSOCIATION object that has the Association Type set to
 "Recovery" [RFC4872], the Association ID and the Association Source
 set to the corresponding Association ID and the Association Source
 signaled in the Path message of the LSP it is restoring. For
 example, when a restoration LSP is signaled for a failed working LSP,
 the ASSOCIATION object in the Path message of the restoration LSP
 contains the Association ID and Association Source set to the
 Association ID and Association Source signaled in the working LSP for
 the "Recovery" Association Type. Similarly, when a restoration LSP
 is set up for a failed protecting LSP, the ASSOCIATION object in the
 Path message of the restoration LSP contains the Association ID and
 Association Source is set to the Association ID and Association
 Source signaled in the protecting LSP for the "Recovery" Association
 Type.

 The procedure for signaling the PROTECTION object is specified in
 [RFC4872]. Specifically, the restoration LSP used for a working LSP
 is set up with the P bit cleared in the PROTECTION object in the Path
 message of the restoration LSP and the restoration LSP used for a
 protecting LSP is set up with the P bit set in the PROTECTION object
 in the Path message of the restoration LSP.

4.2. Resource Sharing-Based Restoration LSP Setup

 GMPLS LSPs can share resources during LSP setup if they have the
 Shared Explicit (SE) flag set in the SESSION_ATTRIBUTE objects
 [RFC3209] in the Path messages that create them and:

 o As defined in [RFC3209], LSPs have identical SESSION objects,
 and/or

 o As defined in [RFC6689], LSPs have matching ASSOCIATION objects
 with the Association Type set to "Resource Sharing" signaled in
 their Path messages. In this case, LSPs can have different
 SESSION objects i.e., a different Tunnel ID, Source and/or
 Destination signaled in their Path messages.

 As described in Section 2.5 of [RFC3209], the purpose of make-before-
 break is not to disrupt traffic, or adversely impact network
 operations while TE tunnel rerouting is in progress. In non-packet
 transport networks, during the RSVP-TE signaling procedure, the nodes
 set up cross-connections along the LSP accordingly. Because the
 cross-connection cannot simultaneously connect a shared resource to
 different resources in two alternative LSPs, nodes may not be able to
 fulfill this request when LSPs share resources.

 For LSP restoration upon failure, as explained in Section 11 of
 [RFC4872], the reroute procedure may reuse existing resources. The
 action of the intermediate nodes during the rerouting process to
 reconfigure cross-connections does not further impact the traffic
 since it has been interrupted due to the already failed LSP.

 The node actions for setting up the restoration LSP can be
 categorized into the following:

‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
| Category | Action |
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Reusing existing resource on	This type of node needs to
both input and output interfaces	reserve the existing resources
(nodes A & B in Figure 3).	and no cross‑connection
	command is needed.
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	
Reusing an existing resource only	This type of node needs to
on one of the interfaces, either	reserve the resources and send
input or output interfaces, and	the reconfiguration
using new resource on the	cross‑connection command to its
other interfaces.	corresponding data plane
(nodes C & E in Figure 3).	node on the interfaces where
	new resources are needed, and
	it needs to reuse the existing
	resources on the other
	interfaces.
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	
Using new resources on both	This type of node needs to
interfaces.	reserve the new resources
(nodes F & G in Figure 3).	and send the cross‑connection
	command on both interfaces.
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

 Table 1: Node Actions during Restoration LSP Setup

 Depending on whether or not the resource is reused, the node actions
 differ. This deviates from normal LSP setup, since some nodes do not
 need to reconfigure the cross-connection. Also, the judgment of
 whether the control plane node needs to send a cross-connection setup
 or modification command to its corresponding data plane node(s)
 relies on the check whether the LSPs are sharing resources.

4.3. LSP Reversion

 If the end-to-end LSP recovery scheme employs the revertive behavior,
 as described in Section 3 of this document, traffic can be reverted
 from the restoration LSP to the working or protecting LSP after its
 failure is recovered. The LSP reversion can be achieved using two
 methods:

 1. Make-While-Break Reversion: resources associated with a working or
 protecting LSP are reconfigured while removing reservations for
 the restoration LSP.

 2. Make-Before-Break Reversion: resources associated with a working
 or protecting LSP are reconfigured before removing reservations
 for the restoration LSP.

 In non-packet transport networks, both of the above reversion methods
 will result in some traffic disruption when the restoration LSP and
 the LSP being restored are sharing resources and the cross-
 connections need to be reconfigured on intermediate nodes.

4.3.1. Make-While-Break Reversion

 In this reversion method, restoration LSP is simply requested to be
 deleted by the head-end. Removing reservations for restoration LSP
 triggers reconfiguration of resources associated with a working or
 protecting LSP on every node where resources are shared. The working
 or protecting LSP state was not removed from the nodes when the
 failure occurred. Whenever reservation for restoration LSP is
 removed from a node, data plane configuration changes to reflect
 reservations of working or protecting LSP as signaling progresses.
 Eventually, after the whole restoration LSP is deleted, data plane
 configuration will fully match working or protecting LSP reservations
 on the whole path. Thus, reversion is complete.

 Make-while-break, while being relatively simple in its logic, has a
 few limitations as follows which may not be acceptable in some
 networks:

 o No rollback

 If, for some reason, reconfiguration of the data plane on one of the
 nodes, to match working or protecting LSP reservations, fails,
 falling back to restoration LSP is no longer an option, as its state
 might have already been removed from other nodes.

 o No completion guarantee

 Deletion of an LSP provides no guarantees of completion. In
 particular, if RSVP packets are lost due to a node or link failure,
 it is possible for an LSP to be only partially deleted. To mitigate
 this, RSVP could maintain soft state reservations and, hence,
 eventually remove remaining reservations due to refresh timeouts.
 This approach is not feasible in non-packet transport networks,
 however, where control and data channels are often separated; hence,
 soft state reservations are not useful.

 Finally, one could argue that graceful LSP deletion [RFC3473] would
 provide a guarantee of completion. While this is true for most
 cases, many implementations will time out graceful deletion if LSP is
 not removed within certain amount of time, e.g., due to a transit
 node fault. After that, deletion procedures that provide no
 completion guarantees will be attempted. Hence, in corner cases a
 completion guarantee cannot be provided.

 o No explicit notification of completion to head-end node

 In some cases, it may be useful for a head-end node to know when the
 data plane has been reconfigured to match working or protecting LSP
 reservations. This knowledge could be used for initiating operations
 like enabling alarm monitoring, power equalization, and others.
 Unfortunately, for the reasons mentioned above, make-while-break
 reversion lacks such explicit notification.

4.3.2. Make-Before-Break Reversion

 This reversion method can be used to overcome limitations of make-
 while-break reversion. It is similar in spirit to the MBB concept
 used for re-optimization. Instead of relying on deletion of the
 restoration LSP, the head-end chooses to establish a new reversion
 LSP that duplicates the configuration of the resources on the working
 or protecting LSP and uses identical ASSOCIATION and PROTECTION
 objects in the Path message of that LSP. Only if the setup of this
 LSP is successful will other (restoration and working or protecting)
 LSPs be deleted by the head-end. MBB reversion consists of two
 parts:

 A) Make part:

 Creating a new reversion LSP following working or protecting the LSP.
 The reversion LSP shares all of the resources of the working or
 protecting LSP and may share resources with the restoration LSP. As
 the reversion LSP is created, resources are

 reconfigured to match its reservations. Hence, after the reversion
 LSP is created, data plane configuration reflects working or
 protecting LSP reservations.

 B) Break part:

 After the "make" part is finished, the original working or protecting
 and restoration LSPs are torn down, and the reversion LSP becomes the
 new working or protecting LSP. Removing reservations for working or
 restoration LSPs does not cause any resource reconfiguration on the
 reversion LSP -- nodes follow same procedures for the "break" part of
 any MBB operation. Hence, after working or protecting and
 restoration LSPs are removed, the data plane configuration is exactly
 the same as before starting restoration. Thus, reversion is
 complete.

 MBB reversion uses make-before-break characteristics to overcome
 challenges related to make-while-break reversion as follow:

 o Rollback

 If the "make" part fails, the (existing) restoration LSP will still
 be used to carry existing traffic as the restoration LSP state was
 not removed. Same logic applies here as for any MBB operation
 failure.

 o Completion guarantee

 LSP setup is resilient against RSVP message loss, as Path and Resv
 messages are refreshed periodically. Hence, given that the network
 recovers from node and link failures eventually, reversion LSP setup
 is guaranteed to finish with either success or failure.

 o Explicit notification of completion to head-end node

 The head-end knows that the data plane has been reconfigured to match
 working or protecting LSP reservations on the intermediate nodes when
 it receives a Resv message for the reversion LSP.

5. Security Considerations

 This document reviews procedures defined in [RFC3209], [RFC4872],
 [RFC4873], and [RFC6689] and does not define any new procedures.
 This document does not introduce any new security issues; security
 issues were already covered in [RFC3209], [RFC4872], [RFC4873], and
 [RFC6689].

6. IANA Considerations

 This document does not require any IANA actions.

7. References

7.1. Normative References

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <http://www.rfc-editor.org/info/rfc3209>.

 [RFC3473]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Resource ReserVation
 Protocol-Traffic Engineering (RSVP-TE) Extensions",
 RFC 3473, DOI 10.17487/RFC3473, January 2003,
 <http://www.rfc-editor.org/info/rfc3473>.

 [RFC4872]
 Lang, J., Ed., Rekhter, Y., Ed., and D. Papadimitriou,
 Ed., "RSVP-TE Extensions in Support of End-to-End
 Generalized Multi-Protocol Label Switching (GMPLS)
 Recovery", RFC 4872, DOI 10.17487/RFC4872, May 2007,
 <http://www.rfc-editor.org/info/rfc4872>.

 [RFC4873]
 Berger, L., Bryskin, I., Papadimitriou, D., and A.
 Farrel, "GMPLS Segment Recovery", RFC 4873,
 DOI 10.17487/RFC4873, May 2007,
 <http://www.rfc-editor.org/info/rfc4873>.

 [RFC6689]
 Berger, L., "Usage of the RSVP ASSOCIATION Object",
 RFC 6689, DOI 10.17487/RFC6689, July 2012,
 <http://www.rfc-editor.org/info/rfc6689>.

7.2. Informative References

 [RFC3945]
 Mannie, E., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Architecture", RFC 3945,
 DOI 10.17487/RFC3945, October 2004,
 <http://www.rfc-editor.org/info/rfc3945>.

 [RFC4203]
 Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions
 in Support of Generalized Multi-Protocol Label Switching
 (GMPLS)", RFC 4203, DOI 10.17487/RFC4203, October 2005,
 <http://www.rfc-editor.org/info/rfc4203>.

 [RFC4426]
 Lang, J., Ed., Rajagopalan, B., Ed., and D.
 Papadimitriou, Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Recovery Functional Specification",
 RFC 4426, DOI 10.17487/RFC4426, March 2006,
 <http://www.rfc-editor.org/info/rfc4426>.

 [RFC4427]
 Mannie, E., Ed., and D. Papadimitriou, Ed., "Recovery
 (Protection and Restoration) Terminology for Generalized
 Multi-Protocol Label Switching (GMPLS)", RFC 4427,
 DOI 10.17487/RFC4427, March 2006,
 <http://www.rfc-editor.org/info/rfc4427>.

Acknowledgements

 The authors would like to thank:

 - George Swallow for the discussions on the GMPLS restoration.

 - Lou Berger for the guidance on this work.

 - Lou Berger, Vishnu Pavan Beeram, and Christian Hopps for reviewing
 this document and providing valuable comments.

 A special thanks to Dale Worley for his thorough review of this
 document.

Contributors

Gabriele Maria Galimberti
Cisco Systems, Inc.

 Email: ggalimbe@cisco.com

Authors' Addresses

Xian Zhang
Huawei Technologies
F3‑1‑B R&D Center, Huawei Base
Bantian, Longgang District
Shenzhen 518129
China

 Email: zhang.xian@huawei.com

Haomian Zheng (editor)
Huawei Technologies
F3‑1‑B R&D Center, Huawei Base
Bantian, Longgang District
Shenzhen 518129
China

 Email: zhenghaomian@huawei.com

Rakesh Gandhi (editor)
Cisco Systems, Inc.

 Email: rgandhi@cisco.com

Zafar Ali
Cisco Systems, Inc.

 Email: zali@cisco.com

Pawel Brzozowski
ADVA Optical

 Email: PBrzozowski@advaoptical.com

8149 - RSVP Extensions for Reoptimization of Loosely Routed Point-to-Multipoint

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8149

Category: Standards Track

ISSN: 2070-1721

T. Saad, Ed.

R. Gandhi, Ed.

Z. Ali

Cisco Systems, Inc.

R. Venator

Defense Information Systems Agency

Y. Kamite

NTT Communications Corporation

April 2017

RSVP Extensions for Reoptimization of Loosely Routed Point-to-Multipoint Traffic Engineering Label Switched Paths (LSPs)

Abstract

 The reoptimization of a Point-to-Multipoint (P2MP) Traffic
 Engineering (TE) Label Switched Path (LSP) may be triggered based on
 the need to reoptimize an individual source-to-leaf (S2L) sub-LSP or
 a set of S2L sub-LSPs, both using the Sub-Group-based reoptimization
 method, or the entire P2MP-TE LSP tree using the Make-Before-Break
 (MBB) method. This document discusses the application of the
 existing mechanisms for path reoptimization of loosely routed Point-
 to-Point (P2P) TE LSPs to the P2MP-TE LSPs, identifies issues in
 doing so, and defines procedures to address them. When reoptimizing
 a large number of S2L sub-LSPs in a tree using the Sub-Group-based
 reoptimization method, the S2L sub-LSP descriptor list may need to be
 semantically fragmented. This document defines the notion of a
 fragment identifier to help recipient nodes unambiguously reconstruct
 the fragmented S2L sub-LSP descriptor list.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8149.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions Used in This Document
	 2.1. Key Word Definitions

	 2.2. Abbreviations

	 2.3. Terminology

	3. Overview
	 3.1. Loosely Routed Inter-domain P2MP-TE LSP Tree

	 3.2. Existing Mechanism for Tree-Based P2MP-TE LSP Reoptimization

	 3.3. Existing Mechanism for Sub-Group-Based P2MP-TE LSP Reoptimization

	4. Signaling Extensions for Loosely Routed P2MP-TE LSP Reoptimization
	 4.1. Tree-Based Reoptimization

	 4.2. Sub-Group-Based Reoptimization Using Fragment Identifier

	5. Message and Object Definitions
	 5.1. "P2MP-TE Tree Re-evaluation Request" Flag

	 5.2. "Preferable P2MP-TE Tree Exists" Path Error Sub-code

	 5.3. Fragment Identifier for S2L Sub-LSP Descriptor

	6. Compatibility

	7. IANA Considerations
	 7.1. "P2MP-TE Tree Re-evaluation Request" Flag

	 7.2. "Preferable P2MP-TE Tree Exists" Path Error Sub-code

	 7.3. Fragment Identifier for S2L Sub-LSP Descriptor

	8. Security Considerations

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Acknowledgments

	Authors' Addresses

1. Introduction

 This document defines Resource Reservation Protocol - Traffic
 Engineering (RSVP-TE) [RFC2205] [RFC3209] signaling extensions for
 reoptimizing loosely routed Point-to-Multipoint (P2MP) Traffic
 Engineering (TE) Label Switched Paths (LSPs) [RFC4875] in a
 Multiprotocol Label Switching (MPLS) or Generalized MPLS (GMPLS)
 [RFC3473] network.

 A P2MP-TE LSP is comprised of one or more source-to-leaf (S2L)
 sub-LSPs. A loosely routed P2MP-TE S2L sub-LSP is defined as one
 whose path does not contain the full explicit route identifying each
 node along the path to the egress node at the time of its signaling
 by the ingress node. Such an S2L sub-LSP is signaled with no
 Explicit Route Object (ERO) [RFC3209], with an ERO that contains at
 least one "loose next hop", or with an ERO that contains an abstract
 node that identifies more than one node. This is often the case with
 inter-domain P2MP-TE LSPs where a Path Computation Element (PCE) is
 not used [RFC5440].

 As per [RFC4875], an ingress node may reoptimize the entire P2MP-TE
 LSP tree by re-signaling all its S2L sub-LSPs using the
 Make-Before-Break (MBB) method, or it may reoptimize an individual
 S2L sub-LSP or a set of S2L sub-LSPs, i.e., an individual destination
 or a set of destinations, both using the Sub-Group-based
 reoptimization method.

 [RFC4736] defines an RSVP signaling procedure for reoptimizing the
 path(s) of loosely routed Point-to-Point (P2P) TE LSP(s). The
 mechanisms listed in [RFC4736] include a method for the ingress node
 to trigger a new path re-evaluation request and a method for the
 midpoint node to send a notification regarding the availability of a
 preferred path. This document discusses the application of those
 mechanisms to the reoptimization of loosely routed P2MP-TE LSPs,
 identifies issues in doing so, and defines procedures to address
 them.

 For reoptimizing a group of S2L sub-LSPs in a tree using the
 Sub-Group-based reoptimization method, an S2L sub-LSP descriptor list
 can be used to signal one or more S2L sub-LSPs in an RSVP message.
 This RSVP message may need to be semantically fragmented when a large
 number of S2L sub-LSPs are added to the descriptor list. This
 document defines the notion of a fragment identifier to help
 recipient nodes unambiguously reconstruct the fragmented S2L sub-LSP
 descriptor list.

2. Conventions Used in This Document

2.1. Key Word Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2.2. Abbreviations

 ABR: Area Border Router.

 ERO: Explicit Route Object.

 LSP: Label Switched Path.

 LSR: Label Switching Router.

 RRO: Record Route Object.

 S2L sub-LSP: Source-to-leaf sub-LSP.

 TE LSP: Traffic Engineering LSP.

2.3. Terminology

 This document defines the following terms:

 o Ingress node: Head-end / source node of the TE LSP.

 o Egress node: Tail-end / destination node of the TE LSP.

 It is assumed that the reader is also familiar with the terminology
 in [RFC4736] and [RFC4875].

3. Overview

 [RFC4736] defines RSVP signaling extensions for reoptimizing loosely
 routed P2P TE LSPs as follows:

 o A midpoint LSR that expands loose next hop(s) sends a solicited or
 unsolicited PathErr with Notify error code 25 (as defined in
 [RFC3209]), with sub-code 6 to indicate "Preferable Path Exists"
 to the ingress node.

 o An ingress node triggers a path re-evaluation request at all
 midpoint LSRs that expand loose next hop(s) by setting the "Path
 Re-evaluation Request" flag (0x20) in the SESSION_ATTRIBUTES
 object in the Path message.

 o The ingress node, upon receiving this PathErr with the Notify
 error code (either solicited or unsolicited), initiates the
 reoptimization of the LSP, using the MBB method with a different
 LSP-ID.

 The following sections discuss the issues that may arise when
 applying the mechanisms defined in [RFC4736] for reoptimizing loosely
 routed P2MP-TE LSPs.

3.1. Loosely Routed Inter-domain P2MP-TE LSP Tree

 An example of a loosely routed inter-domain P2MP-TE LSP tree is shown
 in Figure 1. In this example, the P2MP-TE LSP tree consists of three
 S2L sub-LSPs, to destinations (i.e., leafs) R10, R11, and R12 from
 the ingress node (i.e., source) R1. Nodes R2 and R5 are branch
 nodes, and nodes ABR3, ABR4, ABR7, ABR8, and ABR9 are ABRs. For the
 S2L sub-LSP to destination R10, nodes ABR3, ABR7, and R10 are defined
 as loose next hops. For the S2L sub-LSP to destination R11, nodes
 ABR3, ABR8, and R11 are defined as loose next hops. For the S2L
 sub-LSP to destination R12, nodes ABR4, ABR9, and R12 are defined as
 loose next hops.

<‑‑area1‑‑><‑‑area0‑‑><‑area2‑>

 ABR7‑‑‑R10
 /
 /
 ABR3‑‑‑R5
 / \
 / \
 R1‑‑‑R2 ABR8‑‑‑R11
 \
 \
 ABR4‑‑‑R6
 \
 \
 ABR9‑‑‑R12

 Figure 1: Example of Loosely Routed Inter-domain P2MP-TE LSP Tree

3.2. Existing Mechanism for Tree-Based P2MP-TE LSP Reoptimization

The mechanisms defined in [RFC4736] can be easily applied to trigger
the reoptimization of an individual S2L sub‑LSP or a group of S2L
sub‑LSPs. However, to apply those mechanisms for triggering the
reoptimization of a P2MP‑TE LSP tree, an ingress node needs to send
path re‑evaluation requests on all (typically hundreds) of the
S2L sub‑LSPs, and the midpoint LSR needs to send PathErrs with the
Notify error code for all S2L sub‑LSPs. Such mechanisms may lead to
the following issues:

 o A midpoint LSR that expands loose next hop(s) may have to
 accumulate the received path re-evaluation request(s) for all S2L
 sub-LSPs (e.g., by using a wait timer) and interpret them as a
 reoptimization request for the whole P2MP-TE LSP tree. Otherwise,
 a midpoint LSR may prematurely send a "Preferable Path Exists"
 notification for one S2L sub-LSP or a subset of S2L sub-LSPs.

 o Similarly, the ingress node may have to heuristically determine
 when to perform P2MP-TE LSP tree reoptimization and when to
 perform S2L sub-LSP reoptimization. For example, an
 implementation may choose to delay reoptimization long enough to
 allow all PathErrs to be received. Such timer-based procedures
 may produce undesired results.

 o The ingress node that receives (un)solicited PathErr(s) with the
 Notify error code for one or more individual S2L sub-LSPs may
 prematurely start reoptimizing the subset of S2L sub-LSPs.
 However, as mentioned in [RFC4875], Section 14.2, such a
 Sub-Group-based reoptimization procedure may result in data

duplication that can be avoided if the entire P2MP‑TE LSP tree is
reoptimized using the MBB method with a different LSP‑ID,
especially if the ingress node eventually receives PathErrs with
the Notify error code for all S2L sub‑LSPs of the P2MP‑TE
LSP tree.

 In order to address the above-mentioned issues and to align the
 reoptimization of P2MP-TE LSPs with P2P LSPs [RFC4736], a mechanism
 is needed to trigger the reoptimization of the LSP tree by
 re-signaling all S2L sub-LSPs with a different LSP-ID. To meet this
 requirement, this document defines RSVP-TE signaling extensions for
 the ingress node to trigger the re-evaluation of the P2MP LSP tree on
 every hop that has a next hop defined as a loose or abstract hop for
 one or more S2L sub-LSP paths, and a midpoint LSR to signal to the
 ingress node that a preferable LSP tree exists (compared to the
 current path) or that the whole P2MP-TE LSP must be reoptimized
 (because of maintenance required on the TE LSP path) (see
 Section 4.1).

3.3. Existing Mechanism for Sub-Group-Based P2MP-TE LSP Reoptimization

 Applying the procedures discussed in [RFC4736] in conjunction with
 the Sub-Group-based reoptimization procedures ([RFC4875],
 Section 14.2), an ingress node MAY trigger path re-evaluation
 requests for a set of S2L sub-LSPs in a single Path message using an
 S2L sub-LSP descriptor list. Similarly, a midpoint LSR may send a
 PathErr with Notify error code 25 and sub-code 6 ("Preferable Path
 Exists") containing a list of S2L sub-LSPs transiting through the LSR
 using an S2L sub-LSP descriptor list to notify the ingress node.
 This method can be used for reoptimizing a sub-group of S2L sub-LSPs
 within an LSP tree using the same LSP-ID. This method can alleviate
 the scaling issue associated with sending RSVP messages for
 individual S2L sub-LSPs. However, this procedure can lead to the
 following issues when used to reoptimize the LSP tree:

 o A Path message that is intended to carry the path re-evaluation
 request as defined in [RFC4736] with a full list of S2L sub-LSPs
 in an S2L sub-LSP descriptor list will be decomposed at branching
 LSRs, and only a subset of the S2L sub-LSPs that are routed over
 the same next hop will be added in the descriptor list of the Path
 message propagated to downstream midpoint LSRs. Consequently,
 when a preferable path exists at such midpoint LSRs, the PathErr
 with the Notify error code can only include the subset of S2L
 sub-LSPs traversing the LSR. In this case, at the ingress node
 there is no way to distinguish which mode of reoptimization to
 invoke, i.e., Sub-Group-based reoptimization using the same LSP-ID
 or tree-based reoptimization using a different LSP-ID.

 o An LSR may semantically fragment a large RSVP message (when a
 combined message may not be large enough to fit all S2L sub-LSPs).
 In this case, the ingress node may receive multiple PathErrs with
 subsets of S2L sub-LSPs in each (due to either the combined Path
 message getting fragmented or the combined PathErr message getting
 fragmented) and would require additional logic to determine how to
 reoptimize the LSP tree (for example, waiting for some time to
 aggregate all possible PathErr messages before taking an action).
 When fragmented, RSVP messages may arrive out of order, and the
 receiver has no way of knowing the beginning and end of the S2L
 sub-LSP list.

 In order to address the above-mentioned issues caused by semantic
 fragmentation of an RSVP message, this document defines a new
 fragment identifier object for the S2L sub-LSP descriptor list when
 combining a large number of S2L sub-LSPs in an RSVP message (see
 Section 4.2).

4. Signaling Extensions for Loosely Routed P2MP-TE LSP Reoptimization

4.1. Tree-Based Reoptimization

 To evaluate a P2MP-TE LSP tree on midpoint LSRs that expand loose
 next hop(s), an ingress node MAY send a Path message with the
 "P2MP-TE Tree Re-evaluation Request" flag set (bit number 14 in the
 Attribute Flags TLV) as defined in this document. The ingress node
 selects one of the S2L sub-LSPs of the P2MP-TE LSP tree transiting a
 midpoint LSR to trigger the re-evaluation request. The ingress node
 MAY send a re-evaluation request to each border LSR on the path of
 the LSP tree.

 A midpoint LSR that expands loose next hop(s) for one or more S2L
 sub-LSP paths does the following upon receiving a Path message with
 the "P2MP-TE Tree Re-evaluation Request" flag set:

 o The midpoint LSR MUST check for a preferable P2MP-TE LSP tree by
 re-evaluating all S2L sub-LSPs that are expanded paths of the
 loose next hops of the P2MP-TE LSP.

 o If a preferable P2MP-TE LSP tree is found, the midpoint LSR MUST
 send to the ingress node an RSVP PathErr with Notify error code 25
 [RFC3209] and sub-code 13 ("Preferable P2MP-TE Tree Exists)" as
 defined in this document. The midpoint LSR, in turn, SHOULD NOT
 propagate the "P2MP-TE Tree Re-evaluation Request" flag in the
 subsequent RSVP Path messages sent downstream for the re-evaluated
 P2MP-TE LSP.

 o If no preferable tree for P2MP-TE LSPs can be found, the midpoint
 LSR that expands loose next hop(s) for one or more S2L sub-LSP
 paths MUST propagate the request downstream by setting the
 "P2MP-TE Tree Re-evaluation Request" flag in the LSP_ATTRIBUTES
 object of the RSVP Path message.

 A midpoint LSR MAY send an unsolicited PathErr with the Notify error
 code and the "Preferable P2MP-TE Tree Exists" sub-code to the ingress
 node to notify the ingress node of a preferred P2MP-TE LSP tree when
 it determines that it exists. In this case, the midpoint LSR that
 expands loose next hop(s) for one or more S2L sub-LSP paths selects
 one of the S2L sub-LSPs of the P2MP-TE LSP tree to send this PathErr
 message to the ingress node. The midpoint LSR SHOULD consider how
 frequently it chooses to send such a PathErr, considering that both
 (1) a PathErr may be lost during its transit to the ingress node and
 (2) the ingress node may choose not to reoptimize the LSP when such a
 PathErr is received.

 The sending of an RSVP PathErr with the Notify error code and the
 "Preferable P2MP-TE Tree Exists" sub-code to the ingress node
 notifies the ingress node of the existence of a preferable P2MP-TE
 LSP tree, and upon receiving this PathErr, the ingress node SHOULD
 trigger the reoptimization of the LSP, using the MBB method with a
 different LSP-ID.

4.2. Sub-Group-Based Reoptimization Using Fragment Identifier

 It might be preferable, as per [RFC4875], to reoptimize the entire
 P2MP-TE LSP by re-signaling all of its S2L sub-LSPs (Section 14.1
 ("Make-before-Break") in [RFC4875]) or to reoptimize an individual
 S2L sub-LSP or a group of S2L sub-LSPs, i.e., an individual
 destination or a group of destinations (Section 14.2
 ("Sub-Group-Based Re-Optimization") in [RFC4875]), both using the
 same LSP-ID. For loosely routed S2L sub-LSPs, this can be achieved
 by using the procedures defined in [RFC4736] to reoptimize one or
 more S2L sub-LSPs of the P2MP-TE LSP.

 An ingress node may trigger path re-evaluation requests using the
 procedures defined in [RFC4736] for a set of S2L sub-LSPs by
 combining multiple Path messages using an S2L sub-LSP descriptor list
 [RFC4875]. An S2L sub-LSP descriptor list is created using a series
 of S2L_SUB_LSP objects as defined in [RFC4875]. Similarly, a
 midpoint LSR may send a PathErr with Notify error code 25 and
 sub-code 6 ("Preferable Path Exists") containing a list of S2L
 sub-LSPs transiting through the LSR using an S2L sub-LSP descriptor
 list to notify the ingress node of preferable paths available.

 The S2L_SUB_LSP_FRAG object defined in this document is optional,
 with the following exceptions:

 o As per [RFC4875], Section 5.2.3 ("Transit Fragmentation of Path
 State Information"), when a Path message is not large enough to
 fit all S2L sub-LSPs in the descriptor list, an LSR may
 semantically fragment the message. In this case, the LSR MUST add
 the S2L_SUB_LSP_FRAG object defined in this document for each
 fragment in the S2L sub-LSP descriptor to be able to rebuild the
 list from the received fragments that may arrive out of order.

 o In any other situation where an RSVP message needs to be
 fragmented, an LSR MUST add the S2L_SUB_LSP_FRAG object for each
 fragment in the S2L sub-LSP descriptor.

 A midpoint LSR SHOULD wait to accumulate all S2L sub-LSPs before
 attempting to re-evaluate a preferable path when a Path message for
 "Path Re-evaluation Request" is received with the S2L_SUB_LSP_FRAG
 object. If a midpoint LSR does not receive all fragments of the Path
 message (for example, when fragments are lost) within a configurable
 time interval, it SHOULD trigger the re-evaluation of all S2L
 sub-LSPs of the P2MP-TE LSP transiting on the node. A midpoint LSR
 MUST receive at least one fragment of the Path message to trigger
 this behavior.

 An ingress node SHOULD wait to accumulate all S2L sub-LSPs before
 attempting to trigger reoptimization when a PathErr with the Notify
 error code and the "Preferable Path Exists" sub-code is received with
 an S2L_SUB_LSP_FRAG object. If an ingress node does not receive all
 fragments of the PathErr message (for example, when fragments are
 lost) within a configurable time interval, it SHOULD trigger the
 reoptimization of all S2L sub-LSPs of the P2MP-TE LSP transiting on
 the midpoint node that had sent the PathErr message. An ingress node
 MUST receive at least one fragment of the PathErr message to trigger
 this behavior.

 The S2L_SUB_LSP_FRAG object defined in this document has a wider
 applicability in addition to the P2MP-TE LSP reoptimization. It can
 also be used (in Path and Resv messages) to set up a new P2MP-TE LSP
 and to send other PathErr messages as well as Path Tear and Resv Tear
 messages for a set of S2L sub-LSPs. This is outside the scope of
 this document.

5. Message and Object Definitions

5.1. "P2MP-TE Tree Re-evaluation Request" Flag

 In order to trigger a tree re-evaluation request, a new flag in the
 Attribute Flags TLV of the LSP_ATTRIBUTES object [RFC5420] is defined
 by this document:

 Bit Number 14: "P2MP-TE Tree Re-evaluation Request" flag

 The "P2MP-TE Tree Re-evaluation Request" flag is meaningful in a Path
 message of a P2MP-TE S2L sub-LSP and is inserted by the ingress node
 using the message format defined in [RFC6510].

5.2. "Preferable P2MP-TE Tree Exists" Path Error Sub-code

 In order to indicate to an ingress node that a preferable P2MP-TE LSP
 tree exists, the following new sub-code for PathErr messages with
 Notify error code 25 [RFC3209] is defined by this document:

 Sub-code 13: "Preferable P2MP-TE Tree Exists" sub-code

 When a preferable path for a P2MP-TE LSP tree exists, the midpoint
 LSR sends a solicited or unsolicited "Preferable P2MP-TE Tree Exists"
 sub-code with a PathErr message with Notify error code 25 to the
 ingress node of the P2MP-TE LSP.

5.3. Fragment Identifier for S2L Sub-LSP Descriptor

 The S2L_SUB_LSP object [RFC4875] identifies a particular S2L sub-LSP
 belonging to the P2MP-TE LSP. An S2L sub-LSP descriptor list is
 created using a series of S2L_SUB_LSP objects as defined in
 [RFC4875]. The RSVP message may need to be semantically fragmented
 [RFC4875] due to a large number of S2L sub-LSPs added in the
 descriptor list, and such fragments may be received out of order. To
 be able to rebuild the fragmented S2L sub-LSP descriptor list
 correctly, the following object is defined to identify the fragments:

 S2L_SUB_LSP_FRAG: Class Number 204

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Length (8 bytes) | Class Num 204 | C‑Type 1 |
+‑+
| Fragment ID | Fragments Tot.| Fragment Num. |
+‑+

 Fragment ID: 16-bit integer in the range of 1 to 65535.

 This value is incremented for each new RSVP message that needs to
 be semantically fragmented. The fragment ID is reset to 1 when it
 reaches the maximum value of 65535. The scope of the fragment ID
 is limited to the RSVP message type (e.g., Path) carrying the
 fragment. In other words, fragment IDs do not have any
 correlation between different RSVP message types (e.g., Path and
 PathErr). The receiver does not check to ensure that the
 consecutive new RSVP messages (e.g., Path messages) are received
 with fragment IDs incremented by 1.

 Fragments Total: 8-bit integer in the range of 1 to 255.

 This value indicates the number of fragments sent for the given
 RSVP message. This value MUST be the same in all fragmented RSVP
 messages with a common fragment ID.

 Fragment Number: 8-bit integer in the range of 1 to 255.

 This value indicates the position of this fragment in the given
 RSVP message.

 The format of an S2L sub-LSP descriptor message is as follows:

<S2L sub‑LSP descriptor> ::=
 [<S2L_SUB_LSP_FRAG>]
 <S2L_SUB_LSP>
 [<P2MP SECONDARY_EXPLICIT_ROUTE>]

 The S2L_SUB_LSP_FRAG object is added before adding the S2L_SUB_LSP
 object in the semantically fragmented RSVP message.

6. Compatibility

 The LSP_ATTRIBUTES object has been defined in [RFC5420] and its
 message formats in [RFC6510] with class numbers in the form 11bbbbbb,
 which ensures compatibility with non-supporting nodes. Per
 [RFC2205], nodes not supporting this extension will ignore the new
 flag defined for this object in this document and will forward it
 without modification.

 The S2L_SUB_LSP_FRAG object has been defined with class numbers in
 the form 11bbbbbb, which ensures compatibility with non-supporting
 nodes. Per [RFC2205], nodes not supporting this object will ignore
 the object and will forward it without modification.

7. IANA Considerations

 IANA has performed the actions described below.

7.1. "P2MP-TE Tree Re-evaluation Request" Flag

 IANA maintains the "Resource Reservation Protocol-Traffic Engineering
 (RSVP-TE) Parameters" registry (see
 <http://www.iana.org/assignments/rsvp-te-parameters>). Per
 Section 5.1 of this document, IANA has registered a new flag in the
 "Attribute Flags" registry. This new flag is defined for the
 Attribute Flags TLV in the LSP_ATTRIBUTES object [RFC5420].

+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
Bit	Name	Attribute	Attribute	RRO	ERO	Reference
No		Flags	Flags			
		Path	Resv			
+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+						
	P2MP‑TE Tree	Yes	No	No	No	This
14	Re‑evaluation					document
	Request					
+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

7.2. "Preferable P2MP-TE Tree Exists" Path Error Sub-code

 IANA maintains the "Resource Reservation Protocol (RSVP) Parameters"
 registry (see <http://www.iana.org/assignments/rsvp-parameters>).
 Per Section 5.2 of this document, IANA has registered a new error
 code in the "Sub-Codes - 25 Notify Error" sub-registry of the "Error
 Codes and Globally-Defined Error Value Sub-Codes" registry.

 As defined in [RFC3209], error code 25 in the ERROR_SPEC object
 corresponds to a PathErr with the Notify error. This document adds a
 new "Preferable P2MP-TE Tree Exists" sub-code for this PathErr as
 follows:

+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Value | Description | PathErr | PathErr | Reference |
| | | Code | Name | |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| 13 | Preferable P2MP‑TE | 25 | Notify | This |
| | Tree Exists | | Error | document |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

7.3. Fragment Identifier for S2L Sub-LSP Descriptor

 IANA maintains the "Resource Reservation Protocol (RSVP) Parameters"
 registry (see <http://www.iana.org/assignments/rsvp-parameters>).
 Per Section 5.3 of this document, IANA has registered a new class
 number in the "Class Names, Class Numbers, and Class Types" registry.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Class Number | Class Name | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 204 | S2L_SUB_LSP_FRAG | This document |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 IANA has also created the "Class Types or C-Types - 204
 S2L_SUB_LSP_FRAG" registry and populated it as follows:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Value | Description | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 1 | S2L_SUB_LSP_FRAG | This document |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

8. Security Considerations

 This document defines RSVP-TE signaling extensions to allow an
 ingress node of a P2MP-TE LSP to request the re-evaluation of the LSP
 tree downstream of a node and to allow a midpoint LSR to notify the
 ingress node of the existence of a preferable tree by sending a
 PathErr message. As per [RFC4736], in the case of a P2MP-TE LSP S2L
 sub-LSP spanning multiple domains, it may be desirable for a midpoint
 LSR to modify the RSVP PathErr message to preserve confidentiality
 across domains.

 This document also defines a fragment identifier for the S2L sub-LSP
 descriptor when combining a large number of S2L sub-LSPs in an RSVP
 message and the message needs to be semantically fragmented. The
 introduction of the fragment identifier, by itself, introduces no
 additional information to signaling. For a general discussion on
 security issues related to MPLS and GMPLS, see the MPLS/GMPLS
 security framework [RFC5920].

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2205]
 Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
 September 1997, <http://www.rfc-editor.org/info/rfc2205>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <http://www.rfc-editor.org/info/rfc3209>.

 [RFC4736]
 Vasseur, JP., Ed., Ikejiri, Y., and R. Zhang,
 "Reoptimization of Multiprotocol Label Switching (MPLS)
 Traffic Engineering (TE) Loosely Routed Label Switched
 Path (LSP)", RFC 4736, DOI 10.17487/RFC4736,
 November 2006, <http://www.rfc-editor.org/info/rfc4736>.

 [RFC4875]
 Aggarwal, R., Ed., Papadimitriou, D., Ed., and S.
 Yasukawa, Ed., "Extensions to Resource Reservation
 Protocol - Traffic Engineering (RSVP-TE) for
 Point-to-Multipoint TE Label Switched Paths (LSPs)",
 RFC 4875, DOI 10.17487/RFC4875, May 2007,
 <http://www.rfc-editor.org/info/rfc4875>.

 [RFC5420]
 Farrel, A., Ed., Papadimitriou, D., Vasseur, JP., and A.
 Ayyangarps, "Encoding of Attributes for MPLS LSP
 Establishment Using Resource Reservation Protocol Traffic
 Engineering (RSVP-TE)", RFC 5420, DOI 10.17487/RFC5420,
 February 2009, <http://www.rfc-editor.org/info/rfc5420>.

9.2. Informative References

 [RFC3473]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Resource ReserVation
 Protocol-Traffic Engineering (RSVP-TE) Extensions",
 RFC 3473, DOI 10.17487/RFC3473, January 2003,
 <http://www.rfc-editor.org/info/rfc3473>.

 [RFC5440]
 Vasseur, JP., Ed., and JL. Le Roux, Ed., "Path Computation
 Element (PCE) Communication Protocol (PCEP)", RFC 5440,
 DOI 10.17487/RFC5440, March 2009,
 <http://www.rfc-editor.org/info/rfc5440>.

 [RFC5920]
 Fang, L., Ed., "Security Framework for MPLS and GMPLS
 Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010,
 <http://www.rfc-editor.org/info/rfc5920>.

 [RFC6510]
 Berger, L. and G. Swallow, "Resource Reservation Protocol
 (RSVP) Message Formats for Label Switched Path (LSP)
 Attributes Objects", RFC 6510, DOI 10.17487/RFC6510,
 February 2012, <http://www.rfc-editor.org/info/rfc6510>.

Acknowledgments

 The authors would like to thank Loa Andersson, Sriganesh Kini, Curtis
 Villamizar, Dimitri Papadimitriou, Nobo Akiya, Vishnu Pavan Beeram,
 and Joel M. Halpern for reviewing this document and providing many
 useful comments and suggestions. The authors would also like to
 thank Ling Zeng with Cisco Systems for implementing the mechanisms
 defined in this document. A special thanks to Adrian Farrel for his
 thorough review of this document.

Authors' Addresses

Tarek Saad (editor)
Cisco Systems, Inc.

 Email: tsaad@cisco.com

Rakesh Gandhi (editor)
Cisco Systems, Inc.

 Email: rgandhi@cisco.com

Zafar Ali
Cisco Systems, Inc.

 Email: zali@cisco.com

Robert H. Venator
Defense Information Systems Agency

 Email: robert.h.venator.civ@mail.mil

Yuji Kamite
NTT Communications Corporation

 Email: y.kamite@ntt.com

8258 - Generalized SCSI: A Generic Structure for Interface Switching Capability

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8258

Category: Standards Track

ISSN: 2070-1721

D. Ceccarelli

Ericsson

L. Berger

LabN Consulting, L.L.C.

October 2017

Generalized SCSI: A Generic Structure for Interface Switching Capability Descriptor (ISCD) Switching Capability Specific Information (SCSI)

Abstract

 This document defines a generic information structure for information
 carried in routing protocol Interface Switching Capability Descriptor
 (ISCD) Switching Capability Specific Information (SCSI) fields. This
 "Generalized SCSI" can be used with routing protocols that define
 GMPLS ISCDs and any specific technology. This document does not
 modify any existing technology-specific formats and is defined for
 use in conjunction with new GMPLS Switching Capability types. The
 context for this document is Generalized MPLS, and the reader is
 expected to be familiar with the GMPLS architecture and associated
 protocol standards.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8258.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Generalized SCSI Formats

	4. Procedures

	5. Security Considerations

	6. IANA Considerations

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Acknowledgments

	Authors' Addresses

1. Introduction

 The context for this document is Generalized MPLS, and the reader is
 expected to be familiar with the GMPLS architecture, associated
 terminology, and protocol standards: notably, but not limited to,
 [RFC3945], [RFC4202], [RFC4203] and [RFC5307].

 The Interface Switching Capability Descriptor (ISCD) [RFC4202] allows
 routing protocols such as OSPF and ISIS to carry technology-specific
 information in the Switching Capability-specific information field,
 see [RFC4203] and [RFC5307]. The format of an SCSI field is dictated
 by the specific technology being represented as indicated by the ISCD
 Switching Capability field. Existing Switching Capabilities are
 managed by IANA in the "Switching Types" registry
 <http://www.iana.org/assignments/gmpls-sig-parameters> and the
 related "IANA-GMPLS-TC-MIB" definitions.

 [RFC7138]
 introduced a "sub-TLV" structure to its technology-specific
 SCSI field. The sub-TLV-based approach allows for greater
 flexibility in the structure, ordering, and ability to support
 extensions of the SC-specific format. This Sub-TLV approach is also
 used in [RFC7688].

 This document generalizes this approach and defines a new generalized
 SCSI field format for use by future specific technologies and
 Switching Capability types. The generalized SCSI carries SCSI-TLVs
 that may be defined within the scope of a specific technology or
 shared across multiple technologies (e.g., [AVAIL-EXT]). This
 document also establishes a registry for SCSI-TLV definitions that
 may be shared across multiple technologies.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The reader is expected to be familiar with GMPLS terminology (e.g.,
 as found in [RFC3945]) as well as the terminology used in [RFC4202],
 [RFC4203], and [RFC5307].

3. Generalized SCSI Formats

 The Generalized SCSI is composed of zero or more variable-length TLV
 fields each of which is called an "SCSI-TLV". There are no specific
 size restrictions on these SCSI-TLVs. Size and other formatting
 restrictions may be imposed by the routing protocol ISCD field (refer
 to [RFC4203] and [RFC5307]). Please refer to [RFC3630] for the
 treatment of malformed Link TLVs.

 The SCSI-TLV format is:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length |
+‑+
... Value ...
+‑+

 Figure 1: TLV Format

 Type (2 octets):

 This field indicates the type and structure of the information
 contained in the Value field.

 Length (2 octets):

 This field MUST be set to the size, in octets (bytes), of the
 Value field. The value of the field MUST be zero or divisible by
 4. Note that this implies that the Value field can be omitted or
 contain padding.

 Value (variable):

 A variable-length field, formatted according to the definition
 indicated by value of the Type field. This field can be omitted
 for certain types.

4. Procedures

 The ISCD can include a Generalized SCSI when advertising technologies
 whose Switching Capability definition references this document. The
 corollary of this is that the Generalized SCSI MUST NOT be used for
 ISCDs of technologies whose Switching Capability definition do not
 reference this document.

 The Generalized SCSI MAY contain a sequence of zero or more SCSI-
 TLVs. Sub-TLV parsing (format) errors MUST be treated as a malformed
 ISCD. SCSI-TLVs MUST be processed in the order received and, if re-
 originated, ordering MUST be preserved. Unknown SCSI-TLVs MUST be
 ignored and transparently processed, i.e., re-originated when
 appropriate. Processing related to multiple SCSI-TLVs of the same
 type may be further refined based on the definition on the type.

5. Security Considerations

 This document does not introduce any security issue beyond those
 discussed in [RFC4203] and [RFC5307]. As discussed there, the
 information carried in ISCDs is not used for Shortest Path First
 (SPF) computation or normal routing, and the extensions here defined
 do not have a direct effect on IP routing. Tampering with GMPLS
 Traffic Engineering (TE) Link State Advertisements (LSAs) may have an
 effect on the underlying transport network. Mechanisms such as those
 described in [RFC2154] and [RFC5304] to protect the transmission of
 this information are suggested.

6. IANA Considerations

 This document defines a new SCSI-TLV that is carried in the SCSI
 field of the ISCDs defined in [RFC4203] and [RFC5307]. The SCSI-TLV
 includes a 16-bit type identifier (the Type field). The same Type
 field values are applicable to the new SCSI-TLV.

 IANA has created and will maintain a new registry, the "Generalized
 SCSI (Switching Capability Specific Information) TLV Types" registry
 under the "Generalized Multi-Protocol Label Switching (GMPLS)
 Signaling Parameters" registry.

 The initial contents of this registry are as follows:

Value SCSI‑TLV Switching Type Reference
‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
0 Reserved [RFC8258]
1‑65535 Unassigned (value list)

 New allocation requests to this registry must indicate the value or
 values to be used in the Switching Type column.

 The registry should be established with registration policies of
 "Specification Required", see [RFC8126].

7. References

7.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3630]
 Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
 (TE) Extensions to OSPF Version 2", RFC 3630,
 DOI 10.17487/RFC3630, September 2003,
 <https://www.rfc-editor.org/info/rfc3630>.

 [RFC4202]
 Kompella, K., Ed. and Y. Rekhter, Ed., "Routing Extensions
 in Support of Generalized Multi-Protocol Label Switching
 (GMPLS)", RFC 4202, DOI 10.17487/RFC4202, October 2005,
 <https://www.rfc-editor.org/info/rfc4202>.

 [RFC4203]
 Kompella, K., Ed. and Y. Rekhter, Ed., "OSPF Extensions in
 Support of Generalized Multi-Protocol Label Switching
 (GMPLS)", RFC 4203, DOI 10.17487/RFC4203, October 2005,
 <https://www.rfc-editor.org/info/rfc4203>.

 [RFC5307]
 Kompella, K., Ed. and Y. Rekhter, Ed., "IS-IS Extensions
 in Support of Generalized Multi-Protocol Label Switching
 (GMPLS)", RFC 5307, DOI 10.17487/RFC5307, October 2008,
 <https://www.rfc-editor.org/info/rfc5307>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [AVAIL-EXT]

 Long, H., Ye, M., Mirsky, G., D'Alessandro, A., and H.
 Shah, "OSPF-TE Link Availability Extension for Links with
 Variable Discrete Bandwidth", Work in Progress,
 draft-ietf-ccamp-ospf-availability-extension-10,
 August 2017.

 [RFC2154]
 Murphy, S., Badger, M., and B. Wellington, "OSPF with
 Digital Signatures", RFC 2154, DOI 10.17487/RFC2154, June
 1997, <https://www.rfc-editor.org/info/rfc2154>.

 [RFC3945]
 Mannie, E., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Architecture", RFC 3945,
 DOI 10.17487/RFC3945, October 2004,
 <https://www.rfc-editor.org/info/rfc3945>.

 [RFC5304]
 Li, T. and R. Atkinson, "IS-IS Cryptographic
 Authentication", RFC 5304, DOI 10.17487/RFC5304, October
 2008, <https://www.rfc-editor.org/info/rfc5304>.

 [RFC7138]
 Ceccarelli, D., Ed., Zhang, F., Belotti, S., Rao, R., and
 J. Drake, "Traffic Engineering Extensions to OSPF for
 GMPLS Control of Evolving G.709 Optical Transport
 Networks", RFC 7138, DOI 10.17487/RFC7138, March 2014,
 <https://www.rfc-editor.org/info/rfc7138>.

 [RFC7688]
 Lee, Y., Ed. and G. Bernstein, Ed., "GMPLS OSPF
 Enhancement for Signal and Network Element Compatibility
 for Wavelength Switched Optical Networks", RFC 7688,
 DOI 10.17487/RFC7688, November 2015,
 <https://www.rfc-editor.org/info/rfc7688>.

 [RFC8126]
 Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

Acknowledgments

 The authors would like to thank Adrian Farrel and Julien Meuric for
 the careful review and suggestions. Thomas Heide Clausen provided
 useful comments as part of the Routing Directorate review.

Authors' Addresses

Daniele Ceccarelli
Ericsson
Torshamnsgatan 21
Kista ‑ Stockholm
Sweden

 Email: daniele.ceccarelli@ericsson.com

Lou Berger
LabN Consulting, L.L.C.

 Email: lberger@labn.net

8271 - Updates to the Resource Reservation Protocol for Fast Reroute of Traffic

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8271

Updates: 4090

Category: Standards Track

ISSN: 2070-1721

M. Taillon

T. Saad, Ed.

R. Gandhi, Ed.

Z. Ali

Cisco Systems, Inc.

M. Bhatia

Nokia

October 2017

Updates to the Resource Reservation Protocol for Fast Reroute of Traffic Engineering GMPLS Label Switched Paths (LSPs)

Abstract

 This document updates the Resource Reservation Protocol - Traffic
 Engineering (RSVP-TE) Fast Reroute (FRR) procedures defined in RFC
 4090 to support Packet Switch Capable (PSC) Generalized Multiprotocol
 Label Switching (GMPLS) Label Switched Paths (LSPs). These updates
 allow the coordination of a bidirectional bypass tunnel assignment
 protecting a common facility in both forward and reverse directions
 of a co-routed bidirectional LSP. In addition, these updates enable
 the redirection of bidirectional traffic onto bypass tunnels that
 ensure the co-routing of data paths in the forward and reverse
 directions after FRR and avoid RSVP soft-state timeout in the control
 plane.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8271.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions Used in This Document
	 2.1. Key Word Definitions

	 2.2. Terminology

	 2.3. Abbreviations

	3. Fast Reroute for Unidirectional GMPLS LSPs

	4. Bypass Tunnel Assignment for Bidirectional GMPLS LSPs
	 4.1. Bidirectional GMPLS Bypass Tunnel Direction

	 4.2. Merge Point Labels

	 4.3. Merge Point Addresses

	 4.4. RRO IPv4/IPv6 Subobject Flags

	 4.5. Bidirectional Bypass Tunnel Assignment Coordination
	 4.5.1. Bidirectional Bypass Tunnel Assignment Signaling Procedure

	 4.5.2. One-to-One Bidirectional Bypass Tunnel Assignment

	 4.5.3. Multiple Bidirectional Bypass Tunnel Assignments

	5. Fast Reroute for Bidirectional GMPLS LSPs with In-Band Signaling
	 5.1. Link Protection for Bidirectional GMPLS LSPs
	 5.1.1. Behavior after Link Failure

	 5.1.2. Revertive Behavior after Fast Reroute

	 5.2. Node Protection for Bidirectional GMPLS LSPs
	 5.2.1. Behavior after Link Failure

	 5.2.2. Behavior after Link Failure to Restore Co-routing

	 5.2.3. Revertive Behavior after Fast Reroute

	 5.2.4. Behavior after Node Failure

	 5.3. Unidirectional Link Failures

	6. Fast Reroute For Bidirectional GMPLS LSPs with Out-of-Band Signaling

	7. Message and Object Definitions
	 7.1. BYPASS_ASSIGNMENT Subobject

	 7.2. FRR Bypass Assignment Error Notify Message

	8. Compatibility

	9. Security Considerations

	10. IANA Considerations
	 10.1. BYPASS_ASSIGNMENT Subobject

	 10.2. FRR Bypass Assignment Error Notify Message

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Acknowledgements

	Contributors

	Authors' Addresses

1. Introduction

 Packet Switch Capable (PSC) Traffic Engineering (TE) Label Switched
 Paths (LSPs) can be set up using Generalized Multiprotocol Label
 Switching (GMPLS) signaling procedures specified in [RFC3473] for
 both unidirectional and bidirectional tunnels. The GMPLS signaling
 allows sending and receiving the RSVP messages in-band with the data
 traffic or out-of-band over a separate control channel. Fast Reroute
 (FRR) [RFC4090] has been widely deployed in the packet TE networks
 today and is desirable for TE GMPLS LSPs. Using FRR methods also
 allows the leveraging of existing mechanisms for failure detection
 and restoration in deployed networks.

 The FRR procedures defined in [RFC4090] describe the behavior of the
 Point of Local Repair (PLR) to reroute traffic and signaling onto the
 bypass tunnel in the event of a failure for protected LSPs. Those
 procedures are applicable to the unidirectional protected LSPs
 signaled using either RSVP-TE [RFC3209] or GMPLS procedures
 [RFC3473]. When using the FRR procedures defined in [RFC4090] with
 co-routed bidirectional GMPLS LSPs, it is desired that same PLR and
 Merge Point (MP) pairs are selected in each direction and that both
 PLR and MP assign the same bidirectional bypass tunnel. This
 document updates the FRR procedures defined in [RFC4090] to
 coordinate the bidirectional bypass tunnel assignment and to exchange
 MP labels between upstream and downstream PLRs of the protected
 co-routed bidirectional LSP.

 When using FRR procedures with co-routed bidirectional GMPLS LSPs, it
 is possible in some cases for the RSVP signaling refreshes to stop
 reaching certain nodes along the protected LSP path after the PLRs
 finish rerouting of the signaling messages. This can occur after a
 failure event when using node protection bypass tunnels. As shown in
 Figure 2, this is possible even with selecting the same bidirectional
 bypass tunnels in both directions and the same PLR and MP pairs.
 This is caused by the asymmetry of paths that may be taken by the
 bidirectional LSP's signaling in the forward and reverse directions
 due to upstream and downstream PLRs independently triggering FRR. In
 such cases, after FRR, the RSVP soft-state timeout causes the
 protected bidirectional LSP to be torn down, with subsequent traffic
 loss.

 Protection State Coordination Protocol [RFC6378] is applicable to FRR
 [RFC4090] for local protection of co-routed bidirectional LSPs in
 order to minimize traffic disruptions in both directions. However,
 this does not address the above-mentioned problem of RSVP soft-state
 timeout that can occur in the control plane.

 This document defines a solution to the RSVP soft-state timeout issue
 by providing mechanisms in the control plane to complement the FRR
 procedures of [RFC4090]. This solution allows the RSVP soft state
 for co-routed, protected bidirectional GMPLS LSPs to be maintained in
 the control plane and enables co-routing of the traffic paths in the
 forward and reverse directions after FRR.

 The procedures defined in this document apply to PSC TE co-routed,
 protected bidirectional LSPs and co-routed bidirectional FRR bypass
 tunnels both signaled by GMPLS. Unless otherwise specified in this
 document, the FRR procedures defined in [RFC4090] are not modified by
 this document. The FRR mechanism for associated bidirectional GMPLS
 LSPs where two unidirectional GMPLS LSPs are bound together by using
 association signaling [RFC7551] is outside the scope of this
 document.

2. Conventions Used in This Document

2.1. Key Word Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2.2. Terminology

 The reader is assumed to be familiar with the terminology in
 [RFC2205], [RFC3209], [RFC3471], [RFC3473], and [RFC4090].

 Downstream PLR: Downstream Point of Local Repair

 The PLR that locally detects a failure in the downstream direction
 of the traffic flow and reroutes traffic in the same direction of
 the protected bidirectional LSP RSVP Path signaling. A downstream
 PLR has a corresponding downstream MP.

 Downstream MP: Downstream Merge Point

 The LSR where one or more backup tunnels rejoin the path of the
 protected LSP in the downstream direction of the traffic flow.
 The same LSR can be both a downstream MP and an upstream PLR
 simultaneously.

 Upstream PLR: Upstream Point of Local Repair

 The PLR that locally detects a failure in the upstream direction
 of the traffic flow and reroutes traffic in the opposite direction
 of the protected bidirectional LSP RSVP Path signaling. An
 upstream PLR has a corresponding upstream MP.

 Upstream MP: Upstream Merge Point

 The LSR where one or more backup tunnels rejoin the path of the
 protected LSP in the upstream direction of the traffic flow. The
 same LSR can be both an upstream MP and a downstream PLR
 simultaneously.

 Point of Remote Repair (PRR)

 A downstream MP that assumes the role of upstream PLR upon
 receiving the protected LSP's rerouted Path message and triggers
 reroute of traffic and signaling in the upstream direction of the
 traffic flow using the procedures described in this document.

2.3. Abbreviations

 GMPLS: Generalized Multiprotocol Label Switching

 LSP: Label Switched Path

 LSR: Label Switching Router

 MP: Merge Point

 MPLS: Multiprotocol Label Switching

 PLR: Point of Local Repair

 PSC: Packet Switch Capable

 RSVP: Resource Reservation Protocol

 TE: Traffic Engineering

3. Fast Reroute for Unidirectional GMPLS LSPs

 The FRR procedures defined in [RFC4090] for RSVP-TE signaling
 [RFC3209] are equally applicable to the unidirectional protected LSPs
 signaled using GMPLS [RFC3473] and are not modified by the updates
 defined in this document except for the following:

 When using the GMPLS out-of-band signaling [RFC3473], after a link
 failure event, the RSVP messages are not rerouted over the bypass
 tunnel by the downstream PLR but instead are rerouted over a control
 channel to the downstream MP.

4. Bypass Tunnel Assignment for Bidirectional GMPLS LSPs

 This section describes signaling procedures for FRR bidirectional
 bypass tunnel assignment for GMPLS signaled PSC co-routed
 bidirectional TE LSPs for both in-band and out-of-band signaling.

4.1. Bidirectional GMPLS Bypass Tunnel Direction

 This document defines procedures where bidirectional GMPLS bypass
 tunnels are signaled in the same direction as the protected GMPLS
 LSPs. In other words, the bidirectional GMPLS bypass tunnels
 originate on the downstream PLRs and terminate on the corresponding
 downstream MPs. As the originating downstream PLR has the policy
 information about the locally provisioned bypass tunnels, it always
 initiates the bypass tunnel assignment. The bidirectional GMPLS
 bypass tunnels originating from the upstream PLRs and terminating on
 the corresponding upstream MPs are outside the scope of this
 document.

4.2. Merge Point Labels

 To correctly reroute data traffic over a node protection bypass
 tunnel, the downstream and upstream PLRs have to know, in advance,
 the downstream and upstream MP labels of the protected LSP so that
 data in the forward and reverse directions can be redirected through
 the bypass tunnel after FRR, respectively.

 [RFC4090] defines procedures for the downstream PLR to obtain the
 protected LSP's downstream MP label from recorded labels in the
 RECORD_ROUTE Object (RRO) of the RSVP Resv message received at the
 downstream PLR.

 To obtain the upstream MP label, the procedures specified in
 [RFC4090] are used to record the upstream MP label in the RRO of the
 RSVP Path message of the protected LSP. The upstream PLR obtains the
 upstream MP label from the recorded labels in the RRO of the received
 RSVP Path message.

4.3. Merge Point Addresses

 To correctly assign a bidirectional bypass tunnel, the downstream and
 upstream PLRs have to know, in advance, the downstream and upstream
 MP addresses.

 [RFC4561] defines procedures for the downstream PLR to obtain the
 protected LSP's downstream MP address from the recorded Node-IDs in
 the RRO of the RSVP Resv message received at the downstream PLR.

 To obtain the upstream MP address, the procedures specified in
 [RFC4561] are used to record upstream MP Node-ID in the RRO of the
 RSVP Path message of the protected LSP. The upstream PLR obtains the
 upstream MP address from the recorded Node-IDs in the RRO of the
 received RSVP Path message.

4.4. RRO IPv4/IPv6 Subobject Flags

 RRO IPv4/IPv6 subobject flags are defined in [RFC4090], Section 4.4
 and are equally applicable to the FRR procedure for the protected
 bidirectional GMPLS LSPs.

 The procedures defined in [RFC4090] are used by the downstream PLR to
 signal the IPv4/IPv6 subobject flags upstream in the RRO of the RSVP
 Resv message of the protected LSP. Similarly, those procedures are
 used by the downstream PLR to signal the IPv4/IPv6 subobject flags
 downstream in the RRO of the RSVP Path message of the protected LSP.

4.5. Bidirectional Bypass Tunnel Assignment Coordination

 This document defines signaling procedures and a new
 BYPASS_ASSIGNMENT subobject in the RSVP RECORD_ROUTE Object (RRO)
 used to coordinate the bidirectional bypass tunnel assignment between
 the downstream and upstream PLRs.

4.5.1. Bidirectional Bypass Tunnel Assignment Signaling Procedure

 It is desirable to coordinate the bidirectional bypass tunnel
 selected at the downstream and upstream PLRs so that the rerouted
 traffic flows on co-routed paths after FRR. To achieve this, a new
 RSVP subobject is defined for RRO that identifies a bidirectional
 bypass tunnel that is assigned at a downstream PLR to protect a
 bidirectional LSP.

 When the procedures defined in this document are in use, the
 BYPASS_ASSIGNMENT subobject MUST be added by each downstream PLR in
 the RSVP Path RRO message of the GMPLS signaled bidirectional
 protected LSP to record the downstream bidirectional bypass tunnel
 assignment. This subobject is sent in the RSVP Path RRO message
 every time the downstream PLR assigns or updates the bypass tunnel
 assignment. The downstream PLR can assign a bypass tunnel when
 processing the first Path message of the protected LSP as long as it
 has a topological view of the downstream MP and the traversed path
 information in the Explicit Route Object (ERO). For the protected
 LSP where the downstream MP cannot be determined from the first Path
 message (e.g., when using loose hops in the ERO), the downstream PLR
 needs to wait for the Resv message with RRO in order to assign a
 bypass tunnel. However, in both cases, the downstream PLR cannot
 update the data plane until it receives Resv messages containing the
 MP labels.

 The upstream PLR (downstream MP) simply reflects the bypass tunnel
 assignment in the reverse direction. The absence of the
 BYPASS_ASSIGNMENT subobject in Path RRO means that the relevant node
 or interface is not protected by a bidirectional bypass tunnel.

 Hence, the upstream PLR need not assign a bypass tunnel in the
 reverse direction.

 When the BYPASS_ASSIGNMENT subobject is added in the Path RRO:

 o The IPv4 or IPv6 subobject containing the Node-ID address MUST
 also be added [RFC4561]. The Node-ID address MUST match the
 source address of the bypass tunnel selected for this protected
 LSP.

 o The BYPASS_ASSIGNMENT subobject MUST be added immediately after
 the Node-ID address.

 o The Label subobject MUST also be added [RFC3209].

 The rules for adding an IPv4 or IPv6 Interface address subobject and
 Unnumbered Interface ID subobject as specified in [RFC3209] and
 [RFC4090] are not modified by the above procedure. The options
 specified in Section 6.1.3 in [RFC4990] are also applicable as long
 as the above-mentioned rules are followed when using the FRR
 procedures defined in this document.

 An upstream PLR (downstream MP) SHOULD check all BYPASS_ASSIGNMENT
 subobjects in the Path RRO to see if the destination address in the
 BYPASS_ASSIGNMENT matches the address of the upstream PLR. For each
 BYPASS_ASSIGNMENT subobject that matches, the upstream PLR looks for
 a tunnel that has a source address matching the downstream PLR that
 inserted the BYPASS_ASSIGNMENT, as indicated by the Node-ID address
 and the same Tunnel ID as indicated in the BYPASS_ASSIGNMENT. The
 RRO can contain multiple addresses to identify a node. However, the
 upstream PLR relies on the Node-ID address preceding the
 BYPASS_ASSIGNMENT subobject for identifying the bypass tunnel. If
 the bypass tunnel is not found, the upstream PLR SHOULD send a Notify
 message [RFC3473] with Error Code "FRR Bypass Assignment Error"
 (value 44) and Sub-code "Bypass Tunnel Not Found" (value 1) to the
 downstream PLR. Upon receiving this error, the downstream PLR SHOULD
 remove the bypass tunnel assignment and select an alternate bypass
 tunnel if one available. The RRO containing BYPASS_ASSIGNMENT
 subobject(s) is then simply forwarded downstream in the RSVP Path
 message.

 A downstream PLR may add, remove, or change the bypass tunnel
 assignment for a protected LSP resulting in the addition, removal, or
 modification of the BYPASS_ASSIGNMENT subobject in the Path RRO,
 respectively. In this case, the downstream PLR SHOULD generate a
 modified Path message and forward it downstream. The downstream MP
 SHOULD check the RRO in the received Path message and update the
 bypass tunnel assignment in the reverse direction accordingly.

4.5.2. One-to-One Bidirectional Bypass Tunnel Assignment

 The bidirectional bypass tunnel assignment coordination procedure
 defined in this document can be used for both the facility backup
 described in Section 3.2 of [RFC4090] and the one-to-one backup
 described in Section 3.1 of [RFC4090]. As specified in Section 4.2
 of [RFC4090], the DETOUR object can be used in the one-to-one backup
 method to identify the detour LSPs. In the one-to-one backup method,
 if the bypass tunnel is already in use at the upstream PLR, it SHOULD
 send a Notify message [RFC3473] with Error Code "FRR Bypass
 Assignment Error" (value 44) and Sub-code "One-to-One Bypass Already
 in Use" (value 2) to the downstream PLR. Upon receiving this error,
 the downstream PLR SHOULD remove the bypass tunnel assignment and
 select an alternate bypass tunnel if one is available.

4.5.3. Multiple Bidirectional Bypass Tunnel Assignments

 The upstream PLR may receive multiple bypass tunnel assignments for a
 protected LSP from different downstream PLRs, leading to an
 asymmetric bypass tunnel assignment as shown in the following two
 examples.

 As shown in Examples 1 and 2, for the protected bidirectional GMPLS
 LSP R4-R5-R6, the upstream PLR R6 receives multiple bypass tunnel
 assignments, one from downstream PLR R4 for node protection and one
 from downstream PLR R5 for link protection. In Example 1, R6 prefers
 the link protection bypass tunnel from downstream PLR R5, whereas, in
 Example 2, R6 prefers the node protection bypass tunnel from
 downstream PLR R4.

 +‑‑‑‑‑‑‑>>‑‑‑‑‑‑‑+
 / +‑>>‑‑+ \
 / / \ \
 / / \ \
[R4]‑‑‑>>‑‑‑[R5]‑‑‑>>‑‑‑[R6]
 PATH ‑> \ /
 \ /
 +‑<<‑‑+

 Example 1: Link Protection Is Preferred on Downstream MP

 +‑‑‑‑‑‑‑>>‑‑‑‑‑‑‑‑+
 / +‑>>‑‑+ \
 / / \ \
 / / \ \
[R4]‑‑‑>>‑‑‑[R5]‑‑‑>>‑‑‑[R6]

 \ PATH ‑> /
 \ /
 \ /
 +‑‑‑‑‑‑‑<<‑‑‑‑‑‑‑‑+

 Example 2: Node Protection Is Preferred on Downstream MP

 The asymmetry of bypass tunnel assignments can be avoided by using
 the flags in the SESSION_ATTRIBUTE object defined in Section 4.3 of
 [RFC4090]. In particular, the "node protection desired" flag is
 signaled by the head-end node to request node protection bypass
 tunnels. When this flag is set, both downstream PLR and upstream PLR
 nodes assign node protection bypass tunnels as shown in Example 2.
 When the "node protection desired" flag is not set, the downstream
 PLR nodes may only signal the link protection bypass tunnels avoiding
 the asymmetry of bypass tunnel assignments shown in Example 1.

 When multiple bypass tunnel assignments are received, the upstream
 PLR SHOULD send a Notify message [RFC3473] with Error Code "FRR
 Bypass Assignment Error" (value 44) and Sub-code "Bypass Assignment
 Cannot Be Used" (value 0) to the downstream PLR to indicate that it
 cannot use the bypass tunnel assignment in the reverse direction.
 Upon receiving this error, the downstream PLR MAY remove the bypass
 tunnel assignment and select an alternate bypass tunnel if one is
 available.

 If multiple bypass tunnel assignments are present on the upstream PLR
 R6 at the time of a failure, any resulted asymmetry gets corrected
 using the procedure for restoring co-routing after FRR as specified
 in Section 5.2.2.

5. Fast Reroute for Bidirectional GMPLS LSPs with In-Band Signaling

 When a bidirectional bypass tunnel is used after a link failure, the
 following procedure is followed when using the in-band signaling:

 o The downstream PLR reroutes protected LSP traffic and RSVP Path
 signaling over the bidirectional bypass tunnel using the
 procedures defined in [RFC4090]. The RSVP Path messages are
 modified as described in Section 6.4.3 of [RFC4090].

 o The upstream PLR reroutes protected LSP traffic upon detecting the
 link failure or upon receiving an RSVP Path message over the
 bidirectional bypass tunnel.

 o The upstream PLR also reroutes protected LSP RSVP Resv signaling
 after receiving the modified RSVP Path message over the
 bidirectional bypass tunnel. The upstream PLR uses the procedure
 defined in Section 7 of [RFC4090] to detect that RSVP Path
 messages have been rerouted over the bypass tunnel by the
 downstream PLR. The upstream PLR does not modify the RSVP Resv
 message before sending it over the bypass tunnel.

 The above procedure allows both traffic and RSVP signaling to flow on
 symmetric paths in the forward and reverse directions of a protected
 bidirectional GMPLS LSP. The following sections describe the
 handling for link protection and node protection bypass tunnels.

5.1. Link Protection for Bidirectional GMPLS LSPs

 <‑ RESV
[R1]‑‑‑‑[R2]‑‑‑‑[R3]‑‑‑‑‑x‑‑‑‑‑[R4]‑‑‑‑[R5]‑‑‑‑[R6]
 PATH ‑> \ /
 \ /
 +<<‑‑‑‑‑>>+
 T3
 PATH ‑>
 <‑ RESV

 Protected LSP: {R1‑R2‑R3‑R4‑R5‑R6}
 R3's Bypass T3: {R3‑R4}

 Figure 1: Flow of RSVP Signaling after Link Failure and FRR

 Consider the TE network shown in Figure 1. Assume that every link in
 the network is protected with a link protection bypass tunnel (e.g.,
 bypass tunnel T3). For the protected co-routed bidirectional LSP
 whose head-end is on node R1 and tail-end is on node R6, each
 traversed node (a potential PLR) assigns a link protection co-routed
 bidirectional bypass tunnel.

5.1.1. Behavior after Link Failure

 Consider the link R3-R4 on the protected LSP path failing. The
 downstream PLR R3 and upstream PLR R4 independently trigger fast
 reroute to redirect traffic onto bypass tunnel T3 in the forward and
 reverse directions. The downstream PLR R3 also reroutes RSVP Path
 messages onto the bypass tunnel T3 using the procedures described in
 [RFC4090]. The upstream PLR R4 reroutes RSVP Resv messages onto the
 reverse bypass tunnel T3 upon receiving an RSVP Path message over
 bypass tunnel T3.

5.1.2. Revertive Behavior after Fast Reroute

 The revertive behavior defined in [RFC4090], Section 6.5.2, is
 applicable to the link protection of bidirectional GMPLS LSPs. When
 using the local revertive mode, after the link R3-R4 (in Figure 1) is
 restored, following node behaviors apply:

 o The downstream PLR R3 starts sending the Path messages and traffic
 flow of the protected LSP over the restored link and stops sending
 them over the bypass tunnel.

 o The upstream PLR R4 starts sending the traffic flow of the
 protected LSP over the restored link and stops sending it over the
 bypass tunnel.

 o When upstream PLR R4 receives the protected LSP Path messages over
 the restored link, if not already done, it starts sending Resv
 messages and traffic flow of the protected LSP over the restored
 link and stops sending them over the bypass tunnel.

5.2. Node Protection for Bidirectional GMPLS LSPs

 T1
 +<<‑‑‑‑‑‑‑>>+
 / \
 / \ <‑ RESV
[R1]‑‑‑‑[R2]‑‑‑‑[R3]‑‑x‑‑[R4]‑‑‑‑[R5]‑‑‑‑[R6]
 PATH ‑> \ /
 \ /
 +<<‑‑‑‑‑‑‑>>+
 T2

 Protected LSP: {R1‑R2‑R3‑R4‑R5‑R6}
 R3's Bypass T2: {R3‑R5}
 R4's Bypass T1: {R4‑R2}

 Figure 2: Flow of RSVP Signaling after Link Failure and FRR

 Consider the TE network shown in Figure 2. Assume that every link in
 the network is protected with a node protection bypass tunnel. For
 the protected co-routed bidirectional LSP whose head-end is on node
 R1 and tail-end is on node R6, each traversed node (a potential PLR)
 assigns a node protection co-routed bidirectional bypass tunnel.

 The solution introduces two phases for invoking FRR procedures by the
 PLR after the link failure. The first phase comprises of FRR
 procedures to fast reroute data traffic onto bypass tunnels in the
 forward and reverse directions. The second phase restores the
 co-routing of signaling and data traffic in the forward and reverse
 directions after the first phase.

5.2.1. Behavior after Link Failure

 Consider a link R3-R4 (in Figure 2) on the protected LSP path
 failing. The downstream PLR R3 and upstream PLR R4 independently
 trigger fast reroute procedures to redirect the protected LSP traffic
 onto respective bypass tunnels T2 and T1 in the forward and reverse
 directions. The downstream PLR R3 also reroutes RSVP Path messages
 over the bypass tunnel T2 using the procedures described in
 [RFC4090]. Note, at this point, that node R4 stops receiving RSVP
 Path refreshes for the protected bidirectional LSP while protected
 traffic continues to flow over bypass tunnels. As node R4 does not
 receive Path messages over bypass tunnel T1, it does not reroute RSVP
 Resv messages over the reverse bypass tunnel T1.

5.2.2. Behavior after Link Failure to Restore Co-routing

 The downstream MP R5 that receives the rerouted protected LSP RSVP
 Path message through the bypass tunnel, in addition to the regular MP
 processing defined in [RFC4090], gets promoted to a Point of Remote
 Repair (PRR) role and performs the following actions to restore
 co-routing signaling and data traffic over the same path in the
 reverse direction:

 o Finds the bypass tunnel in the reverse direction that terminates
 on the downstream PLR R3. Note: the downstream PLR R3's address
 can be extracted from the "IPV4 tunnel sender address" in the
 SENDER_TEMPLATE Object of the protected LSP (see [RFC4090],
 Section 6.1.1).

 o If the reverse bypass tunnel is found and the protected LSP
 traffic is not already rerouted over the found bypass tunnel T2,
 the PRR R5 activates FRR reroute procedures to direct traffic over
 the found bypass tunnel T2 in the reverse direction. In addition,
 the PRR R5 also reroutes RSVP Resv over the bypass tunnel T2 in
 the reverse direction. This can happen when the downstream PLR

 has changed the bypass tunnel assignment but the upstream PLR has
 not yet processed the updated Path RRO and programmed the data
 plane when link failure occurs.

 o If the reverse bypass tunnel is not found, the PRR R5 immediately
 tears down the protected LSP.

 <‑ RESV
[R1]‑‑‑‑[R2]‑‑‑‑[R3]‑‑X‑‑[R4]‑‑‑‑[R5]‑‑‑‑[R6]
 PATH ‑> \ /
 \ /
 +<<‑‑‑‑‑‑‑>>+

 Bypass Tunnel T2

 traffic + signaling

Protected LSP: {R1‑R2‑R3‑R4‑R5‑R6}
R3's Bypass T2: {R3‑R5}

 Figure 3: Flow of RSVP Signaling after FRR and Restoring Co-routing

 Figure 3 describes the path taken by the traffic and signaling after
 restoring co-routing of data and signaling in the forward and reverse
 paths described above. Node R4 will stop receiving the Path and Resv
 messages and it will timeout the RSVP soft state. However, this will
 not cause the LSP to be torn down. RSVP signaling at node R2 is not
 affected by the FRR and restoring co-routing.

 If downstream MP R5 receives multiple RSVP Path messages through
 multiple bypass tunnels (e.g., as a result of multiple failures), the
 PRR SHOULD identify a bypass tunnel that terminates on the farthest
 downstream PLR along the protected LSP path (closest to the protected
 bidirectional LSP head-end) and activate the reroute procedures
 mentioned above.

5.2.2.1. Restoring Co-routing in Data Plane after Link Failure

 The downstream MP (upstream PLR) MAY optionally support restoring
 co-routing in the data plane as follows. If the downstream MP has
 assigned a bidirectional bypass tunnel, as soon as the downstream MP
 receives the protected LSP packets on the bypass tunnel, it MAY
 switch the upstream traffic on to the bypass tunnel. In order to
 identify the protected LSP packets through the bypass tunnel,
 Penultimate Hop Popping (PHP) of the bypass tunnel MUST be disabled.
 The downstream MP checks whether the protected LSP signaling is
 rerouted over the found bypass tunnel, and if not, it performs the
 signaling procedure described in Section 5.2.2.

5.2.3. Revertive Behavior after Fast Reroute

 The revertive behavior defined in [RFC4090], Section 6.5.2, is
 applicable to the node protection of bidirectional GMPLS LSPs. When
 using the local revertive mode, after the link R3-R4 (in Figures 2
 and 3) is restored, the following node behaviors apply:

 o The downstream PLR R3 starts sending the Path messages and traffic
 flow of the protected LSP over the restored link and stops sending
 them over the bypass tunnel.

 o The upstream PLR R4 (when the protected LSP is present) starts
 sending the traffic flow of the protected LSP over the restored
 link towards downstream PLR R3 and forwarding the Path messages
 towards PRR R5 and stops sending the traffic over the bypass
 tunnel.

 o When upstream PLR R4 receives the protected LSP Path messages over
 the restored link, if not already done, the node R4 (when the
 protected LSP is present) starts sending Resv messages and traffic
 flow over the restored link towards downstream PLR R3 and
 forwarding the Path messages towards PRR R5 and stops sending them
 over the bypass tunnel.

 o When PRR R5 receives the protected LSP Path messages over the
 restored path, it starts sending Resv messages and traffic flow
 over the restored path and stops sending them over the bypass
 tunnel.

5.2.4. Behavior after Node Failure

 Consider the node R4 (in Figure 3) on the protected LSP path failing.
 The downstream PLR R3 and upstream PLR R5 independently trigger fast
 reroute procedures to redirect the protected LSP traffic onto bypass
 tunnel T2 in forward and reverse directions. The downstream PLR R3
 also reroutes RSVP Path messages over the bypass tunnel T2 using the
 procedures described in [RFC4090]. The upstream PLR R5 reroutes RSVP
 Resv signaling after receiving the modified RSVP Path message over
 the bypass tunnel T2.

5.3. Unidirectional Link Failures

 Unidirectional link failures can result in the traffic flowing on
 asymmetric paths in the forward and reverse directions. In addition,
 unidirectional link failures can cause RSVP soft-state timeout in the
 control plane in some cases. As an example, if the unidirectional
 link failure is in the upstream direction (from R4 to R3 in Figures 1
 and 2), the downstream PLR (node R3) can stop receiving the Resv
 messages of the protected LSP from the upstream PLR (node R4 in
 Figures 1 and 2) and this can cause RSVP soft-state timeout to occur
 on the downstream PLR (node R3).

 A unidirectional link failure in the downstream direction (from R3 to
 R4 in Figures 1 and 2), does not cause RSVP soft-state timeout when
 using the FRR procedures defined in this document, since the upstream
 PLR (node R4 in Figure 1 and node R5 in Figure 2) triggers the
 procedure to restore co-routing (defined in Section 5.2.2) after
 receiving RSVP Path messages of the protected LSP over the bypass
 tunnel from the downstream PLR (node R3 in Figures 1 and 2).

6. Fast Reroute For Bidirectional GMPLS LSPs with Out-of-Band Signaling

 When using the GMPLS out-of-band signaling [RFC3473], after a link
 failure event, the RSVP messages are not rerouted over the
 bidirectional bypass tunnel by the downstream and upstream PLRs but
 are instead rerouted over the control channels to the downstream and
 upstream MPs, respectively.

 The RSVP soft-state timeout after FRR as described in Section 5.2 is
 equally applicable to the GMPLS out-of-band signaling as the RSVP
 signaling refreshes can stop reaching certain nodes along the
 protected LSP path after the downstream and upstream PLRs finish
 rerouting of the signaling messages. However, unlike with the
 in-band signaling, unidirectional link failures as described in
 Section 5.3 do not result in soft-state timeout with GMPLS out-of-
 band signaling. Apart from this, the FRR procedure described in
 Section 5 is equally applicable to the GMPLS out-of-band signaling.

7. Message and Object Definitions

7.1. BYPASS_ASSIGNMENT Subobject

 The BYPASS_ASSIGNMENT subobject is used to inform the downstream MP
 of the bypass tunnel being assigned by the PLR. This can be used to
 coordinate the bypass tunnel assignment for the protected LSP by the
 downstream and upstream PLRs in the forward and reverse directions
 respectively prior or after the failure occurrence.

 This subobject SHOULD be inserted into the Path RRO by the downstream
 PLR. It SHOULD NOT be inserted into an RRO by a node that is not a
 downstream PLR. It MUST NOT be changed by downstream LSRs and MUST
 NOT be added to a Resv RRO.

 The BYPASS_ASSIGNMENT IPv4 subobject in RRO has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type: 38 | Length | Bypass Tunnel ID |
+‑+
| IPv4 Bypass Destination Address |
+‑+

 Figure 4: BYPASS ASSIGNMENT IPv4 RRO Subobject

 Type

 Downstream Bypass Assignment. Value is 38.

 Length

 The Length contains the total length of the subobject in
 bytes, including the Type and Length fields. The length is 8
 bytes.

 Bypass Tunnel ID

 The bypass tunnel identifier (16 bits).

 Bypass Destination Address

 The bypass tunnel IPv4 destination address.

 The BYPASS_ASSIGNMENT IPv6 subobject in RRO has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type: 39 | Length | Bypass Tunnel ID |
+‑+
| |
+ +
| IPv6 Bypass Destination Address |
+ (16 bytes) +
| |
+ +
| |
+‑+

 Figure 5: BYPASS_ASSIGNMENT IPv6 RRO Subobject

 Type

 Downstream Bypass Assignment. Value is 39.

 Length

 The Length contains the total length of the subobject in
 bytes, including the Type and Length fields. The length is 20
 bytes.

 Bypass Tunnel ID

 The bypass tunnel identifier (16 bits).

 Bypass Destination Address

 The bypass tunnel IPv6 destination address.

7.2. FRR Bypass Assignment Error Notify Message

 New Error Code "FRR Bypass Assignment Error" (value 44) and its sub-
 codes are defined for the ERROR_SPEC Object (C-Type 6) [RFC2205] in
 this document, that is carried by the Notify message (Type 21)
 defined in [RFC3473] Section 4.3. This Error message is sent by the
 upstream PLR to the downstream PLR to notify a bypass assignment
 error. In the Notify message, the IP destination address is set to
 the node address of the downstream PLR that had initiated the bypass
 assignment. In the ERROR_SPEC Object, the IP address is set to the
 node address of the upstream PLR that detected the bypass assignment
 error. This Error MUST NOT be sent in a Path Error message. This
 Error does not cause the protected LSP to be torn down.

8. Compatibility

 New RSVP subobject BYPASS_ASSIGNMENT is defined for the RECORD_ROUTE
 Object in this document that is carried in the RSVP Path message.
 Per [RFC3209], nodes not supporting this subobject will ignore the
 subobject but forward it without modification. As described in
 Section 7, this subobject is not carried in the RSVP Resv message and
 is ignored by sending the Notify message for "FRR Bypass Assignment
 Error" (with Sub-code "Bypass Assignment Cannot Be Used") defined in
 this document. Nodes not supporting the Notify message defined in
 this document will ignore it but forward it without modification.

9. Security Considerations

 This document introduces a new BYPASS_ASSIGNMENT subobject for the
 RECORD_ROUTE Object that is carried in an RSVP signaling message.
 Thus, in the event of the interception of a signaling message, more
 information about the LSP's fast reroute protection can be deduced
 than was previously the case. This is judged to be a very minor
 security risk as this information is already available by other
 means. If an MP does not find a matching bypass tunnel with given
 source and destination addresses locally, it ignores the
 BYPASS_ASSIGNMENT subobject. Due to this, security risks introduced
 by inserting a random address in this subobject is minimal. The
 Notify message for the "FRR Bypass Assignment Error" defined in this
 document does not result in tear-down of the protected LSP and does
 not affect service.

 Security considerations for RSVP-TE and GMPLS signaling extensions
 are covered in [RFC3209] and [RFC3473]. Further, general
 considerations for securing RSVP-TE in MPLS-TE and GMPLS networks can
 be found in [RFC5920]. This document updates the mechanisms defined
 in [RFC4090], which also discusses related security measures that are
 also applicable to this document. As specified in [RFC4090], a PLR
 and its selected merge point trust RSVP messages received from each
 other. The security considerations pertaining to the original RSVP
 protocol [RFC2205] also remain relevant to the updates in this
 document.

10. IANA Considerations

10.1. BYPASS_ASSIGNMENT Subobject

 IANA manages the "Resource Reservation Protocol (RSVP) Parameters"
 registry (see <http://www.iana.org/assignments/rsvp-parameters>).
 IANA has assigned a value for the new BYPASS_ASSIGNMENT subobject in
 the "Class Type 21 ROUTE_RECORD - Type 1 Route Record" registry.

 This document introduces a new subobject for the RECORD_ROUTE Object:

+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Type | Description | Carried in | Carried in | Reference |
| | | Path | Resv | |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
38	BYPASS_ASSIGNMENT	Yes	No	RFC 8271
	IPv4 subobject			
39	BYPASS_ASSIGNMENT	Yes	No	RFC 8271
	IPv6 subobject			
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

10.2. FRR Bypass Assignment Error Notify Message

 IANA maintains the "Resource Reservation Protocol (RSVP) Parameters"
 registry (see <http://www.iana.org/assignments/rsvp-parameters>).
 The "Error Codes and Globally-Defined Error Value Sub-Codes"
 subregistry is included in this registry.

 This registry has been extended for the new Error Code and Sub-codes
 defined in this document as follows:

 o Error Code 44: FRR Bypass Assignment Error

 o Sub-code 0: Bypass Assignment Cannot Be Used

 o Sub-code 1: Bypass Tunnel Not Found

 o Sub-code 2: One-to-One Bypass Already in Use

11. References

11.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2205]
 Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
 September 1997, <https://www.rfc-editor.org/info/rfc2205>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <https://www.rfc-editor.org/info/rfc3209>.

 [RFC3473]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Resource ReserVation Protocol-
 Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
 DOI 10.17487/RFC3473, January 2003,
 <https://www.rfc-editor.org/info/rfc3473>.

 [RFC4090]
 Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast
 Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090,
 DOI 10.17487/RFC4090, May 2005,
 <https://www.rfc-editor.org/info/rfc4090>.

 [RFC4561]
 Vasseur, J., Ed., Ali, Z., and S. Sivabalan, "Definition
 of a Record Route Object (RRO) Node-Id Sub-Object",
 RFC 4561, DOI 10.17487/RFC4561, June 2006,
 <https://www.rfc-editor.org/info/rfc4561>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [RFC3471]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Functional Description",
 RFC 3471, DOI 10.17487/RFC3471, January 2003,
 <https://www.rfc-editor.org/info/rfc3471>.

 [RFC4990]
 Shiomoto, K., Papneja, R., and R. Rabbat, "Use of
 Addresses in Generalized Multiprotocol Label Switching
 (GMPLS) Networks", RFC 4990, DOI 10.17487/RFC4990,
 September 2007, <https://www.rfc-editor.org/info/rfc4990>.

 [RFC5920]
 Fang, L., Ed., "Security Framework for MPLS and GMPLS
 Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010,
 <https://www.rfc-editor.org/info/rfc5920>.

 [RFC6378]
 Weingarten, Y., Ed., Bryant, S., Osborne, E., Sprecher,
 N., and A. Fulignoli, Ed., "MPLS Transport Profile (MPLS-
 TP) Linear Protection", RFC 6378, DOI 10.17487/RFC6378,
 October 2011, <https://www.rfc-editor.org/info/rfc6378>.

 [RFC7551]
 Zhang, F., Ed., Jing, R., and R. Gandhi, Ed., "RSVP-TE
 Extensions for Associated Bidirectional Label Switched
 Paths (LSPs)", RFC 7551, DOI 10.17487/RFC7551, May 2015,
 <https://www.rfc-editor.org/info/rfc7551>.

Acknowledgements

 The authors would like to thank George Swallow for many useful
 comments and suggestions. The authors would like to thank Lou Berger
 for the guidance on this work and for providing review comments. The
 authors would also like to thank Nobo Akiya, Loa Andersson, Matt
 Hartley, Himanshu Shah, Gregory Mirsky, Mach Chen, Vishnu Pavan
 Beeram, and Alia Atlas for reviewing this document and providing
 valuable comments. A special thanks to Adrian Farrel for his
 thorough review of this document.

Contributors

Frederic Jounay
Orange
Switzerland

 Email: frederic.jounay@salt.ch

Lizhong Jin
Shanghai
China

 Email: lizho.jin@gmail.com

Authors' Addresses

Mike Taillon
Cisco Systems, Inc.

 Email: mtaillon@cisco.com

Tarek Saad (editor)
Cisco Systems, Inc.

 Email: tsaad@cisco.com

Rakesh Gandhi (editor)
Cisco Systems, Inc.

 Email: rgandhi@cisco.com

Zafar Ali
Cisco Systems, Inc.

 Email: zali@cisco.com

Manav Bhatia
Nokia
Bangalore, India

 Email: manav.bhatia@nokia.com

8283 - An Architecture for Use of PCE and the PCE Communication Protocol (PCEP)

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8283

Category: Informational

ISSN: 2070-1721

A. Farrel, Ed.

Juniper Networks

Q. Zhao, Ed.

R. Li

Huawei Technologies

C. Zhou

Cisco Systems

December 2017

An Architecture for Use of PCE and the PCE Communication Protocol (PCEP) in a Network with Central Control

Abstract

 The Path Computation Element (PCE) is a core component of Software-
 Defined Networking (SDN) systems. It can compute optimal paths for
 traffic across a network and can also update the paths to reflect
 changes in the network or traffic demands.

 PCE was developed to derive paths for MPLS Label Switched Paths
 (LSPs), which are supplied to the head end of the LSP using the Path
 Computation Element Communication Protocol (PCEP).

 SDN has a broader applicability than signaled MPLS traffic-engineered
 (TE) networks, and the PCE may be used to determine paths in a range
 of use cases including static LSPs, segment routing, Service Function
 Chaining (SFC), and most forms of a routed or switched network. It
 is, therefore, reasonable to consider PCEP as a control protocol for
 use in these environments to allow the PCE to be fully enabled as a
 central controller.

 This document briefly introduces the architecture for PCE as a
 central controller, examines the motivations and applicability for
 PCEP as a control protocol in this environment, and introduces the
 implications for the protocol. A PCE-based central controller can
 simplify the processing of a distributed control plane by blending it
 with elements of SDN and without necessarily completely replacing it.

 This document does not describe use cases in detail and does not
 define protocol extensions: that work is left for other documents.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8283.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Architecture
	 2.1. Resilience and Scaling
	 2.1.1. Partitioned Network

	 2.1.2. Multiple Parallel Controllers

	 2.1.3. Hierarchical Controllers

	3. Applicability
	 3.1. Technology-Oriented Applicability
	 3.1.1. Applicability to Control-Plane Operated Networks

	 3.1.2. Static LSPs in MPLS

	 3.1.3. MPLS Multicast

	 3.1.4. Transport SDN

	 3.1.5. Segment Routing

	 3.1.6. Service Function Chaining

	 3.2. High-Level Applicability
	 3.2.1. Traffic Engineering

	 3.2.2. Traffic Classification

	 3.2.3. Service Delivery

	4. Protocol Implications / Guidance for Solution Developers

	5. Security Considerations

	6. Manageability Considerations

	7. IANA Considerations

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Acknowledgments

	Contributors

	Authors' Addresses

1. Introduction

 The Path Computation Element (PCE) [RFC4655] was developed to offload
 path computation function from routers in an MPLS traffic-engineered
 network. Since then, the role and function of the PCE has grown to
 cover a number of other uses (such as GMPLS [RFC7025]) and to allow
 delegated control [RFC8231] and PCE-initiated use of network
 resources [RFC8281].

 According to [RFC7399], Software-Defined Networking (SDN) refers to a
 separation between the control elements and the forwarding components
 so that software running in a centralized system, called a
 controller, can act to program the devices in the network to behave
 in specific ways. A required element in an SDN architecture is a
 component that plans how the network resources will be used and how
 the devices will be programmed. It is possible to view this
 component as performing specific computations to place traffic flows
 within the network given knowledge of the availability of network
 resources, how other forwarding devices are programmed, and the way
 that other flows are routed. This is the function and purpose of a
 PCE, and the way that a PCE integrates into a wider network control
 system (including an SDN system) is presented in [RFC7491].

 In early PCE implementations, where the PCE was used to derive paths
 for MPLS Label Switched Paths (LSPs), paths were requested by network
 elements (known as Path Computation Clients (PCCs)), and the results
 of the path computations were supplied to network elements using the
 Path Computation Element Communication Protocol (PCEP) [RFC5440].
 This protocol was later extended to allow a PCE to send unsolicited
 requests to the network for LSP establishment [RFC8281].

 SDN has a far broader applicability than just signaled MPLS or GMPLS
 traffic-engineered networks. The PCE component in an SDN system may
 be used to determine paths in a wide range of use cases including
 static LSPs, segment routing [SR-ARCH], SFC [RFC7665], and indeed any
 form of routed or switched network. It is, therefore, reasonable to
 consider PCEP as a general southbound control protocol (i.e., a
 control protocol for communicating from the central controller to
 network elements) for use in these environments to allow the PCE to
 be fully enabled as a central controller.

 This document introduces the architecture for PCE as a central
 controller as an extension of the architecture described in [RFC4655]
 and assumes the continued use of PCEP as the protocol used between
 PCE and PCC. This document also examines the motivations and
 applicability for PCEP as a Southbound Interface (SBI) and introduces
 the implications for the protocol used in this way. A PCE-based
 central controller can simplify the processing of a distributed
 control plane by blending it with elements of SDN and without
 necessarily completely replacing it.

 This document does not describe use cases in detail and does not
 define protocol extensions: that work is left for other documents.

2. Architecture

 The architecture for the use of PCE within centralized control of a
 network is based on the understanding that a PCE can determine how
 connections should be placed and how resources should be used within
 the network, and that the PCE can then cause those connections to be
 established. Figure 1 shows how this control relationship works in a
 network with an active control plane. This is a familiar view for
 those who have read and understood [RFC4655] and [RFC8281].

 In this mode of operation, the central controller is asked to create
 connectivity by a network orchestrator, a service manager, an
 Operations Support System (OSS), a Network Management Station (NMS),
 or some other application. The PCE-based controller computes paths
 with awareness of the network topology, the available resources, and
 the other services supported in the network. This information is
 held in the Traffic Engineering Database (TED) and other databases
 available to the PCE. Then the PCE sends a request using PCEP to one
 of the Network Elements (NEs), and that NE uses a control plane to
 establish the requested connections and reserve the network
 resources.

 Note that other databases (such as an LSP Database (LSP-DB)) might
 also be used, but for simplicity of illustration, just the TED is
 shown.

 ‑‑
| Orchestrator / Service Manager / OSS / NMS |
 ‑‑
 ^
 |
 v
 ‑‑‑‑‑‑‑‑‑‑‑‑
 | | ‑‑‑‑‑
 | PCE‑Based |<‑‑‑| TED |
 | Controller | ‑‑‑‑‑
 | |
 ‑‑‑‑‑‑‑‑‑‑‑‑
 ^
 PCEP|
 v
 ‑‑‑‑ ‑‑‑‑ ‑‑‑‑ ‑‑‑‑
 | NE |<‑‑‑‑‑‑‑‑‑>| NE |<‑‑‑>| NE |<‑‑‑>| NE |
 ‑‑‑‑ Signaling ‑‑‑‑ ‑‑‑‑ ‑‑‑‑
 Protocol

 Figure 1: Architecture for the Central Controller with

 a Control Plane

 Although the architecture shown in Figure 1 represents a form of SDN,
 one objective of SDN in some environments is to remove the dependency
 on a control plane. A transition architecture toward this goal is
 presented in [RFC7491] and is shown in Figure 2. In this case,
 services are still requested in the same way, and the PCE-based
 controller still requests use of the network using PCEP. The main
 difference is that the consumer of the PCEP messages is a network
 controller that provisions the resources and instructs the data plane
 using an SBI that provides an interface to each NE.

 ‑‑
| Orchestrator / Service Manager / OSS / NMS |
 ‑‑
 ^
 |
 v
 ‑‑‑‑‑‑‑‑‑‑‑‑
 | | ‑‑‑‑‑
 | PCE‑Based |<‑‑‑| TED |
 | Controller | ‑‑‑‑‑
 | |
 ‑‑‑‑‑‑‑‑‑‑‑‑
 ^
 | PCEP
 v
 ‑‑‑‑‑‑‑‑‑‑‑‑
 | Network |
 | Controller |
 /‑‑‑‑‑‑‑‑‑‑‑‑\
 SBI / ^ ^ \
 / | | \
 / v v \
 ‑‑‑‑/ ‑‑‑‑ ‑‑‑‑ \‑‑‑‑
 | NE | | NE | | NE | | NE |
 ‑‑‑‑ ‑‑‑‑ ‑‑‑‑ ‑‑‑‑

 Figure 2: Architecture Including a Network Controller

 The approach in Figure 2 delivers the SDN functionality but is overly
 complicated and insufficiently flexible.

 o The complication is created by the use of two controllers in a
 hierarchical organization and the resultant use of two protocols
 in a southbound direction.

 o The lack of flexibility arises from the assumed or required lack
 of a control plane.

 This document describes an architecture that reduces the number of
 components and is flexible to a number of deployment models and use
 cases. In this hybrid approach (shown in Figure 3), the network
 controller is PCE enabled and can also speak PCEP as the SBI (i.e.,
 it can communicate with each node along the path using PCEP). That
 means that the controller can communicate with a conventional
 control-plane-enabled NE using PCEP and can also use the same
 protocol to program individual NEs. In this way, the PCE-based
 controller can control a wider range of networks and deliver many
 different functions as described in Section 3.

 There will be a trade-off in different application scenarios. In
 some cases, the use of a control plane will simplify deployment (for
 example, by distributing recovery actions), and in other cases, a
 control plane may add operational complexity.

 PCEP is essentially already capable of acting as an SBI and only
 small, use-case-specific modifications to the protocol are needed to
 support this architecture. The implications for the protocol are
 discussed further in Section 4.

 ‑‑
 | Orchestrator / Service Manager / OSS / NMS |
 ‑‑
 ^
 |
 v
 ‑‑‑‑‑‑‑‑‑‑‑‑
 | | ‑‑‑‑‑
 | PCE‑Based |<‑‑‑| TED |
 | Controller | ‑‑‑‑‑
 | |
 /‑‑‑‑‑‑‑‑‑‑‑‑\
 PCEP / ^ ^ \
 / | | \
 / v v \
 / ‑‑‑‑ ‑‑‑‑ \
 / | NE | | NE | \
 ‑‑‑‑/ ‑‑‑‑ ‑‑‑‑ \‑‑‑‑
 | NE | | NE |
 ‑‑‑‑ ‑‑‑‑
 ^ ‑‑‑‑ ‑‑‑‑ ^
 :......>| NE |...| NE |<....:
Signaling Protocol ‑‑‑‑ ‑‑‑‑

 Figure 3: Architecture for Node-by-Node Central Control

2.1. Resilience and Scaling

 Systems with central controllers are vulnerable to two problems:
 failure of the controller or overload of the controller. These
 concerns are not unique to the use of a PCE-based controller, but
 they need to be addressed in this document before the PCE-based
 controller architecture can be considered for use in all but the
 smallest networks.

 There are three architectural mechanisms that can be applied to
 address these issues. The mechanisms are described separately for
 clarity, but a deployment may use any combination of the approaches.

 For simplicity of illustration, these three approaches are shown in
 the sections that follow without a control plane. However, the
 general, hybrid approach of Figure 3 is applicable in each case.

2.1.1. Partitioned Network

 The first and simplest approach to handling controller overload or
 scalability is to use multiple controllers, each responsible for a
 part of the network. We can call the resultant areas of control
 "domains" [RFC4655].

 This approach is shown in Figure 4. It can clearly address some of
 the scaling and overload concerns since each controller now only has
 responsibility for a subset of the network elements. But this comes
 at a cost because end-to-end connections require coordination between
 the controllers. Furthermore, this technique does not remove the
 concern about a single point-of-failure even if it does reduce the
 impact on the network of the failure of a single controller.

 Note that PCEP is designed to work as a PCE-to-PCE protocol as well
 as a PCE-to-PCC protocol, so it should be possible to use it to
 coordinate between PCE-based controllers in this model.

 ‑‑
 | Orchestrator / Service Manager / OSS / NMS |
 ‑‑
 ^ ^
 | |
 v v
 ‑‑‑‑‑‑‑‑‑‑‑‑ Coordi‑ ‑‑‑‑‑‑‑‑‑‑‑‑
 ‑‑‑‑‑ | | nation | | ‑‑‑‑‑
| TED |‑‑‑>| PCE‑Based |<‑‑‑‑‑‑‑‑>| PCE‑Based |<‑‑‑| TED |
 ‑‑‑‑‑ | Controller | | Controller | ‑‑‑‑‑
 | | :: | |
 /‑‑‑‑‑‑‑‑‑‑‑‑ :: ‑‑‑‑‑‑‑‑‑‑‑‑\
 / ^ ^ :: ^ ^ \
 / | | :: | | \
 | | | :: | | |
 v v v :: v v v
 ‑‑‑‑ ‑‑‑‑ ‑‑‑‑ :: ‑‑‑‑ ‑‑‑‑ ‑‑‑‑
 | NE | | NE | | NE | :: | NE | | NE | | NE |
 ‑‑‑‑ ‑‑‑‑ ‑‑‑‑ :: ‑‑‑‑ ‑‑‑‑ ‑‑‑‑
 ::
 Domain 1 :: Domain 2
 ::

 Figure 4: Multiple Controllers on a Partitioned Network

2.1.2. Multiple Parallel Controllers

 Multiple controllers may be deployed where each controller is capable
 of controlling all of the network elements. Thus, the failure of any
 one controller will not leave the network unmanageable and, in normal
 circumstances, the load can be distributed across the controllers.

 Multiple parallel controllers may be deployed as shown in Figure 5.
 Each controller is capable of controlling all of the network
 elements; thus, the failure of any one controller will not leave the
 network unmanageable, and in normal circumstances, the load can be
 distributed across the controllers. In this model, the orchestrator
 (or any requester) must select a controller to consume its request.

 ‑‑
| Orchestrator / Service Manager / OSS / NMS |
 ‑‑
 ^ ^
 | ___________________ |
 | | Synchronization | |
 v v v v
 ‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑
	‑‑‑‑‑			
PCE‑Based	<‑‑‑	TED	‑‑‑>	PCE‑Based
Controller	‑‑‑‑‑	Controller		
	__ 			
 ‑‑‑‑‑‑‑‑‑‑‑‑\ _:__ :‑‑‑‑‑‑‑‑‑‑‑‑
 ^ ^ ___: \ : ^ ^
 | | :\ _:___ ..: :
 | |__:___ ___:_ _:___ :
 |: |: | ..: | :
 | : | : | : | :
 v v v v v v v v
 ‑‑‑‑ ‑‑‑‑ ‑‑‑‑ ‑‑‑‑
 | NE | | NE | | NE | | NE |
 ‑‑‑‑ ‑‑‑‑ ‑‑‑‑ ‑‑‑‑

 Figure 5: Multiple Redundant Controllers

 An alternate approach is to present the controllers as a "cluster"
 that represents itself externally as a single controller as in
 Figure 3 but that is actually comprised of multiple controllers. The
 size of the cluster may be varied according to the load in the manner
 of Network Functions Virtualization (NFV), and the cluster is
 responsible for sharing load among the members of the cluster. This
 approach is shown in Figure 6.

 ‑‑
 | Orchestrator / Service Manager / OSS / NMS |
 ‑‑
 ^
 |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Controller ______________	_____________			
Cluster				

		Synchronization		
v v v v				
‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑				
	PCE‑Based	<‑‑‑	TED	‑‑‑>
	Controller	‑‑‑‑‑	Controller	
	Instance		Instance	
‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑				
^ ^				

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 _____________|_____________
 | | | |
 v v v v
 ‑‑‑‑ ‑‑‑‑ ‑‑‑‑ ‑‑‑‑
 | NE | | NE | | NE | | NE |
 ‑‑‑‑ ‑‑‑‑ ‑‑‑‑ ‑‑‑‑

 Figure 6: Multiple Controllers Presented as a Cluster

 To achieve full redundancy and to be able to continue to provide full
 function in the event of a controller failure, the controllers must
 synchronize with each other. This is nominally a simple task if
 there are just two controllers but can actually be quite complex if
 state changes in the network are not to be lost. Furthermore, if
 there are more than two controllers, the synchronization between
 controllers can become a hard problem.

 Synchronization issues are often off-loaded as "database
 synchronization" problems, because distributed database packages have
 already had to address these challenges, or by using a shared
 database. In networking, the problem may also be addressed by
 collecting the state from the network (effectively using the network
 as a database) using normal routing protocols such as OSPF, IS-IS,
 and BGP. It should be noted that addressing the synchronization
 problem through a shared database may be hiding the issues of
 congestion and of a single point of failure: while the controllers
 may have been made resilient by allowing redundancy, the shared
 database is still a problem, so the whole system is still vulnerable.

2.1.3. Hierarchical Controllers

 Figure 7 shows an approach with hierarchical controllers. This
 approach was developed for PCEs in [RFC6805] and appears in various
 SDN architectures where a "parent PCE", an "orchestrator", or a
 "super controller" takes responsibility for a high-level view of the
 network before distributing tasks to lower-level PCEs or controllers.

 On its own, this approach does little to protect against the failure
 of a controller, but it can make significant improvements in loading
 and scaling of the individual controllers. It also offers a good way
 to support end-to-end connectivity across multiple administrative or
 technology-specific domains.

 Note that this model can be arbitrarily recursive with a PCE-based
 controller being the child of one parent PCE-based controller while
 acting as the parent of another set of PCE-based controllers.

 ‑‑
 | Orchestrator / Service Manager / OSS / NMS |
 ‑‑
 ^
 |
 v
 ‑‑‑‑‑‑‑‑‑‑‑‑
 | Parent | ‑‑‑‑‑
 | PCE‑Based |<‑‑‑| TED |
 | Controller | ‑‑‑‑‑
 | |
 ‑‑‑‑‑‑‑‑‑‑‑‑
 ^ ^
 | |
 v :: v
 ‑‑‑‑‑‑‑‑‑‑‑‑ :: ‑‑‑‑‑‑‑‑‑‑‑‑
 ‑‑‑‑‑ | | :: | | ‑‑‑‑‑
| TED |‑‑‑>| PCE‑Based | :: | PCE‑Based |<‑‑‑| TED |
 ‑‑‑‑‑ | Controller | :: | Controller | ‑‑‑‑‑
 /| | :: | |\
 / ‑‑‑‑‑‑‑‑‑‑‑‑ :: ‑‑‑‑‑‑‑‑‑‑‑‑ \
 / ^ ^ :: ^ ^ \
 / | | :: | | \
 / | | :: | | \
 | | | :: | | |
 v v v :: v v v
 ‑‑‑‑ ‑‑‑‑ ‑‑‑‑ :: ‑‑‑‑ ‑‑‑‑ ‑‑‑‑
 | NE | | NE | | NE | :: | NE | | NE | | NE |
 ‑‑‑‑ ‑‑‑‑ ‑‑‑‑ :: ‑‑‑‑ ‑‑‑‑ ‑‑‑‑
 ::
 Domain 1 :: Domain 2
 ::

 Figure 7: Hierarchical Controllers

3. Applicability

 This section gives a very high-level introduction to the
 applicability of a PCE-based centralized controller. There is no
 attempt to explain each use case in detail, and the inclusion of a
 use case is not intended to suggest that deploying a PCE-based
 controller is a mandatory or recommended approach. The sections
 below are provided as a stimulus to the discussion of the
 applicability of a PCE-based controller, and it is expected that
 separate documents will be written to develop the use cases in which
 there is interest for implementation and deployment. As described in
 Section 4, specific enhancements to PCEP may be needed for some of
 these use cases, and it is expected that the documents that develop
 each use case will also address any extensions to PCEP.

 The rest of this section is divided into two sub-sections. The first
 approaches the question of applicability from a consideration of the
 network technology. The second looks at the high-level functions
 that can be delivered by using a PCE-based controller.

 As previously mentioned, this section is intended to just make
 suggestions. Thus, the material supplied is very brief. The
 omission of a use case is in no way meant to imply some limit on the
 applicability of PCE-based control.

3.1. Technology-Oriented Applicability

 This section provides a list of use cases based on network
 technology.

3.1.1. Applicability to Control-Plane Operated Networks

 This mode of operation is the common approach for an active, stateful
 PCE to control a traffic-engineered MPLS or GMPLS network [RFC8231].
 Note that the PCE-based controller determines what LSPs are needed
 and where to place them. PCEP is used to instruct the head end of
 each LSP, and the head end signals in the control plane to set up the
 LSP.

 In this mode of operation, the PCE may construct its TED in a number
 of ways as described in [RFC4655], including (but not limited to)
 participating in the IGP or receiving information from a network
 element via BGP-LS [RFC7752].

3.1.2. Static LSPs in MPLS

 Static LSPs are provisioned without the use of a control plane. This
 means that they are established using a management plane or "manual"
 configuration.

 Static LSPs can be provisioned as explicit label instructions at each
 hop on the end-to-end path LSP. Each router along the path must be
 told what label-forwarding instructions to program and what resources
 to reserve. The PCE-based controller keeps a view of the network and
 determines the paths of the end-to-end LSPs just as it does for the
 use case described in Section 3.1.1, but the controller uses PCEP to
 communicate with each router along the path of the end-to-end LSP.
 In this case, the PCE-based controller will take responsibility for
 managing some part of the MPLS label space for each of the routers
 that it controls, and it may taker wider responsibility for
 partitioning the label space for each router and allocating different
 parts for different uses, communicating the ranges to the router
 using PCEP.

3.1.3. MPLS Multicast

 Multicast LSPs may be provisioned with a control plane or as static
 LSPs. No extra considerations apply above those described in
 Sections 3.1.1 and 3.1.2 except, of course, to note that the PCE must
 also include the instructions about where the LSP branches, i.e.,
 where packets must be copied.

3.1.4. Transport SDN

 Transport SDN (T-SDN) is the application of SDN techniques to
 transport networks. In this respect, a transport network is a
 network built from any technology below the IP layer and designed to
 carry traffic transparently in a connection-oriented way. Thus, an
 MPLS traffic-engineered network is a transport network, although it
 is more common to consider technologies such as Time Division
 Multiplexing (TDM) and Optical Transport Networks (OTNs) to be
 transport networks.

 Transport networks may be operated with or without a control plane
 and may have point-to-point or point-to-multipoint connections.
 Thus, all of the considerations in Sections 3.1.1, 3.1.2, and 3.1.3
 apply so that the normal PCEP message allows a PCE-based central
 controller to provision a transport network. It is usually the case
 that additional technology-specific parameters are needed to
 configure the NEs or LSPs in transport networks, such as optical
 characteristic. Such parameters will need to be carried in the PCEP
 messages: new protocol extensions may be needed, as described, for
 example, in [PCEP-WSON-RWA].

3.1.5. Segment Routing

 Segment routing is described in [SR-ARCH]. It relies on a series of
 forwarding instructions being placed in the header of a packet. At
 each hop in the network, a router looks at the first instruction and
 may: continue to forward the packet unchanged; strip the top
 instruction and forward the packet; or strip the top instruction,
 insert some additional instructions, and forward the packet.

 The segment routing architecture supports operations that can be used
 to steer packet flows in a network, thus providing a form of traffic
 engineering. A PCE-based controller can be responsible for computing
 the paths for packet flows in a segment routing network, configuring
 the forwarding actions on the routers, and telling the edge routers
 what instructions to attach to packets as they enter the network.
 These last two operations can be achieved using PCEP, and the
 PCE-based controller will assume responsibility for managing the
 space of labels or path identifiers used to determine how packets are
 forwarded.

3.1.6. Service Function Chaining

 SFC is described in [RFC7665]. It is the process of directing
 traffic in a network such that it passes through specific hardware
 devices or virtual machines (known as service function nodes) that
 can perform particular desired functions on the traffic. The set of
 functions to be performed and the order in which they are to be
 performed is known as a service function chain. The chain is
 enhanced with the locations at which the service functions are to be
 performed to derive a Service Function Path (SFP). Each packet is
 marked as belonging to a specific SFP, and that marking lets each
 successive service function node know which functions to perform and
 to which service function node to send the packet next.

 To operate an SFC network, the service function nodes must be
 configured to understand the packet markings, and the edge nodes must
 be told how to mark packets entering the network. Additionally, it
 may be necessary to establish tunnels between service function nodes
 to carry the traffic.

 Planning an SFC network requires load balancing between service
 function nodes and traffic engineering across the network that
 connects them. These are operations that can be performed by a
 PCE-based controller, and that controller can use PCEP to program the
 network and install the service function chains and any required
 tunnels.

3.2. High-Level Applicability

 This section provides a list of the high-level functions that can be
 delivered by using a PCE-based controller.

3.2.1. Traffic Engineering

 According to [RFC2702], TE is concerned with performance optimization
 of operational networks. In general, it encompasses the application
 of technology and scientific principles to the measurement, modeling,
 characterization, control of Internet traffic, and application of
 such knowledge and techniques to achieve specific performance
 objectives.

 From a practical point of view, this involves having an understanding
 of the topology of the network, the characteristics of the nodes and
 links in the network, and the traffic demands and flows across the
 network. It also requires that actions can be taken to ensure that
 traffic follows specific paths through the network.

 PCE was specifically developed to address TE in an MPLS network, so a
 PCE-based controller is well suited to analyze TE problems and supply
 answers that can be installed in the network using PCEP. PCEP can be
 responsible for initiating paths across the network through a control
 plane or for installing state in the network node by node such as in
 a segment-routed network (see Section 3.1.5) or by configuring IGP
 metrics.

3.2.2. Traffic Classification

 Traffic classification is an important part of traffic engineering.
 It is the process of looking at a packet to determine how it should
 be treated as it is forwarded through the network. It applies in
 many scenarios including MPLS traffic engineering (where it
 determines what traffic is forwarded onto which LSPs); segment
 routing (where it is used to select which set of forwarding
 instructions to add to a packet); and SFC (where it indicates along
 which service function path a packet should be forwarded). In
 conjunction with traffic engineering, traffic classification is an
 important enabler for load balancing.

 Traffic classification is closely linked to the computational
 elements of planning for the network functions just listed because it
 determines how traffic load is balanced and distributed through the
 network. Therefore, selecting what traffic classification should be
 performed by a router is an important part of the work done by a
 PCE-based controller.

 Instructions can be passed from the controller to the routers using
 PCEP. These instructions tell the routers how to map traffic to
 paths or connections.

3.2.3. Service Delivery

 Various network services may be offered over a network. These
 include protection services (including end-to-end protection
 [RFC4427], restoration after failure, and fast reroute [RFC4090]);
 Virtual Private Network (VPN) services (such as Layer 3 VPNs
 [RFC4364] or Ethernet VPNs [RFC7432]); or Pseudowires [RFC3985].
 Delivering services over a network in an optimal way requires
 coordination in the way that network resources are allocated to
 support the services. A PCE-based central controller can consider
 the whole network and all components of a service at once when
 planning how to deliver the service. It can then use PCEP to manage
 the network resources and to install the necessary associations
 between those resources.

4. Protocol Implications / Guidance for Solution Developers

 PCEP is a push-pull protocol that is designed to move requests and
 responses between a server (the PCE) and clients (the PCCs, i.e., the
 network elements). In particular, it has a message (the LSP Initiate
 Request (PCInitiate); see [RFC8281]) that can be sent by the PCE to
 install state or cause actions at the PCC and a response message
 (Path Computation State Report (PCRpt)) that is used to confirm the
 request.

 As such, there is an expectation that only relatively minor changes
 to PCEP are required to support the concept of a PCE-based
 controller. The only work expected to be needed is extensions to
 existing PCEP messages to carry additional or specific information
 elements for the individual use cases, which maintain backward
 compatibility and do not impact existing PCEP deployments. [RFC5440]
 already describes how legacy implementations handle unknown protocol
 extensions and how to use the PCEP Open message to indicate support
 for PCEP features. Where possible, consistent with the general
 principles of how protocols are extended, any additions to the
 protocol should be made in a generic way such that they are open to
 use in a range of applications.

 It is anticipated that new documents (such as [PCEP-CONTROLLER]) will
 be produced for each use case dependent on support and demand. Such
 documents will explain the use case and define the necessary protocol
 extensions.

 Protocol extensions could have impact on existing PCEP deployments
 and the interoperability between different implementations. It is
 anticipated that changes of the PCEP protocol or addition of
 information elements could require additional testing to ensure
 interoperability between different PCEP implementations.

 It is reasonable to expect that implementations are able to select a
 subset or profile of the protocol extensions and PCEP features that
 are relevant for the application scenario in which they will be
 deployed. Identification of these profiles should form part of the
 protocol itself so that interoperability can be easily determined and
 testing can be limited to the specific profiles.

 Note that protocol mechanisms to handle synchronization of state in
 parallel PCE-based controllers will also be required if parallel
 controllers are used as described in Section 2.1.2. In [RFC8231],
 there is a discussion of mechanisms to achieve PCE state
 synchronization.

5. Security Considerations

 Security considerations for a PCE-based controller are little
 different from those for any other PCE system. That is, the
 operation relies heavily on the use and security of PCEP, so
 consideration should be given to the security features discussed in
 [RFC5440] and the additional mechanisms described in [RFC8253].

 It should be observed that the trust model of a network that operates
 without a control plane is different from one with a control plane.
 The conventional "chain of trust" used with a control plane is
 replaced by individual trust relationships between the controller and
 each individual NE. This model may be considerably easier to manage,
 so it is more likely to be operated with a high level of security.

 However, an architecture with a central controller has a central
 point of failure, and this is also a security weakness since the
 network can be vulnerable to denial-of-service attacks on the
 controller. Similarly, the central controller provides a focus for
 interception and modification of messages sent to individual NEs. In
 short, while the interactions with a PCE-based controller are not
 substantially different to those in any other SDN architecture, the
 security implications of SDN have not been fully discussed or
 described. Therefore, protocol and applicability work-around
 solutions for this architecture must take proper account of these
 concerns.

 It is expected that each new document that is produced for a specific
 use case will also include considerations of the security impacts of
 the use of a PCE-based central controller on the network type and
 services being managed.

6. Manageability Considerations

 The architecture described in this document is a management
 architecture: the PCE-based controller is a management component that
 controls the network through a southbound control protocol (PCEP).

 An implementation of a PCE-based controller will require access to
 information about the state of the network, its nodes, and its links.
 Some of this will be the TED as is normal for a PCE and can be
 collected using the mechanisms already in place (such as listening to
 the IGPs, using BGP-LS [RFC7752], or northbound export of
 YANG-encoded data [YANG-TE] from the network elements to the
 controller). More information may be collected in the LSP database
 for stateful PCEs as described in [RFC7399] and [RFC8231].
 Additional information may be needed for other specific use cases and
 will need to be collected and passed to the controller. This may
 require protocol extensions for the mechanisms listed in this
 paragraph.

 The use of different PCEP options and protocol extensions may have an
 impact on interoperability, which is a management issue. As noted in
 Section 4, protocol extensions should be done in a way that makes it
 possible to identify profiles of PCEP to aid interoperability, and
 this will aid deployment and manageability.

 [RFC5440] contains a substantive Manageability Considerations section
 that examines how a PCE-based system and a PCE-enabled system may be
 managed. A MIB module for PCEP was published as [RFC7420], and a
 YANG module for PCEP has also been proposed [YANG-PCEP].

7. IANA Considerations

 This document does not require any IANA actions.

8. References

8.1. Normative References

 [RFC4655]
 Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
 Element (PCE)-Based Architecture", RFC 4655,
 DOI 10.17487/RFC4655, August 2006,
 <https://www.rfc-editor.org/info/rfc4655>.

 [RFC5440]
 Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
 Element (PCE) Communication Protocol (PCEP)", RFC 5440,
 DOI 10.17487/RFC5440, March 2009,
 <https://www.rfc-editor.org/info/rfc5440>.

 [RFC8281]
 Crabbe, E., Minei, I., Sivabalan, S., and R. Varga, "Path
 Computation Element Communication Protocol (PCEP)
 Extensions for PCE-Initiated LSP Setup in a Stateful PCE
 Model", RFC 8281, DOI 10.17487/RFC8281, December 2017,
 <https://www.rfc-editor.org/info/rfc8281>.

8.2. Informative References

 [PCECC]
 Zhao, Q., Li, Z., Khasanov, B., Ke, Z., Fang, L., Zhou,
 C., Communications, T., Rachitskiy, A., and A. Gulida,
 "The Use Cases for Using PCE as the Central
 Controller(PCECC) of LSPs", Work in Progress,
 draft-zhao-teas-pcecc-use-cases-02, October 2016.

 [PCEP-CONTROLLER]

 Zhao, Q., Li, Z., Dhody, D., Karunanithi, S., Farrel, A.,
 and C. Zhou, "PCEP Procedures and Protocol Extensions for
 Using PCE as a Central Controller (PCECC) of LSPs", Work
 in Progress, draft-zhao-pce-pcep-extension-for-pce-
 controller-06, October 2017.

 [PCEP-WSON-RWA]

 Lee, Y. and R. Casellas, "PCEP Extension for WSON Routing
 and Wavelength Assignment", Work in Progress,
 draft-ietf-pce-wson-rwa-ext-07, November 2017.

 [RFC2702]
 Awduche, D., Malcolm, J., Agogbua, J., O'Dell, M., and J.
 McManus, "Requirements for Traffic Engineering Over MPLS",
 RFC 2702, DOI 10.17487/RFC2702, September 1999,
 <https://www.rfc-editor.org/info/rfc2702>.

 [RFC3985]
 Bryant, S., Ed. and P. Pate, Ed., "Pseudo Wire Emulation
 Edge-to-Edge (PWE3) Architecture", RFC 3985,
 DOI 10.17487/RFC3985, March 2005,
 <https://www.rfc-editor.org/info/rfc3985>.

 [RFC4090]
 Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast
 Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090,
 DOI 10.17487/RFC4090, May 2005,
 <https://www.rfc-editor.org/info/rfc4090>.

 [RFC4364]
 Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
 Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
 2006, <https://www.rfc-editor.org/info/rfc4364>.

 [RFC4427]
 Mannie, E., Ed. and D. Papadimitriou, Ed., "Recovery
 (Protection and Restoration) Terminology for Generalized
 Multi-Protocol Label Switching (GMPLS)", RFC 4427,
 DOI 10.17487/RFC4427, March 2006,
 <https://www.rfc-editor.org/info/rfc4427>.

 [RFC6805]
 King, D., Ed. and A. Farrel, Ed., "The Application of the
 Path Computation Element Architecture to the Determination
 of a Sequence of Domains in MPLS and GMPLS", RFC 6805,
 DOI 10.17487/RFC6805, November 2012,
 <https://www.rfc-editor.org/info/rfc6805>.

 [RFC7025]
 Otani, T., Ogaki, K., Caviglia, D., Zhang, F., and C.
 Margaria, "Requirements for GMPLS Applications of PCE",
 RFC 7025, DOI 10.17487/RFC7025, September 2013,
 <https://www.rfc-editor.org/info/rfc7025>.

 [RFC7399]
 Farrel, A. and D. King, "Unanswered Questions in the Path
 Computation Element Architecture", RFC 7399,
 DOI 10.17487/RFC7399, October 2014,
 <https://www.rfc-editor.org/info/rfc7399>.

 [RFC7420]
 Koushik, A., Stephan, E., Zhao, Q., King, D., and J.
 Hardwick, "Path Computation Element Communication Protocol
 (PCEP) Management Information Base (MIB) Module",
 RFC 7420, DOI 10.17487/RFC7420, December 2014,
 <https://www.rfc-editor.org/info/rfc7420>.

 [RFC7432]
 Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A.,
 Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based
 Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February
 2015, <https://www.rfc-editor.org/info/rfc7432>.

 [RFC7491]
 King, D. and A. Farrel, "A PCE-Based Architecture for
 Application-Based Network Operations", RFC 7491,
 DOI 10.17487/RFC7491, March 2015,
 <https://www.rfc-editor.org/info/rfc7491>.

 [RFC7665]
 Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
 Chaining (SFC) Architecture", RFC 7665,
 DOI 10.17487/RFC7665, October 2015,
 <https://www.rfc-editor.org/info/rfc7665>.

 [RFC7752]
 Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
 S. Ray, "North-Bound Distribution of Link-State and
 Traffic Engineering (TE) Information Using BGP", RFC 7752,
 DOI 10.17487/RFC7752, March 2016,
 <https://www.rfc-editor.org/info/rfc7752>.

 [RFC8231]
 Crabbe, E., Minei, I., Medved, J., and R. Varga, "Path
 Computation Element Communication Protocol (PCEP)
 Extensions for Stateful PCE", RFC 8231,
 DOI 10.17487/RFC8231, September 2017,
 <https://www.rfc-editor.org/info/rfc8231>.

 [RFC8253]
 Lopez, D., Gonzalez de Dios, O., Wu, Q., and D. Dhody,
 "PCEPS: Usage of TLS to Provide a Secure Transport for the
 Path Computation Element Communication Protocol (PCEP)",
 RFC 8253, DOI 10.17487/RFC8253, October 2017,
 <https://www.rfc-editor.org/info/rfc8253>.

 [SR-ARCH]
 Filsfils, C., Previdi, S., Ginsberg, L., Decraene, B.,
 Litkowski, S., and R. Shakir, "Segment Routing
 Architecture", Work in Progress, draft-ietf-spring-
 segment-routing-13, October 2017.

 [YANG-PCEP]

 Dhody, D., Hardwick, J., Beeram, V., and j.
 jefftant@gmail.com, "A YANG Data Model for Path
 Computation Element Communications Protocol (PCEP)", Work
 in Progress, draft-ietf-pce-pcep-yang-05, June 2017.

 [YANG-TE]
 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
 O. Dios, "YANG Data Model for Traffic Engineering (TE)
 Topologies", Work in Progress, draft-ietf-teas-yang-te-
 topo-13, October 2017.

Acknowledgments

 The ideas in this document owe a lot to the work started by the
 authors of [PCECC] and [PCEP-CONTROLLER]. The authors of this
 document fully acknowledge the prior work and thank those involved
 for opening the discussion. The individuals concerned are: King Ke,
 Luyuan Fang, Chao Zhou, Boris Zhang, and Zhenbin Li.

 This document has benefited from the discussions within a small ad
 hoc design team; the members of which are listed as document
 contributors.

 Thanks to Michael Scharf and Andy Malis for a lively discussion of
 this document.

 Thanks to Phil Bedard, Aijun Wang, and Elwyn Davies for last call
 comments on this document.

 Spencer Dawkins, Adam Roach, and Ben Campbell provided helpful
 comments during IESG review.

Contributors

 The following people contributed to discussions that led to the
 development of this document:

Cyril Margaria
Email: cmargaria@juniper.net

Sudhir Cheruathur
Email: scheruathur@juniper.net

Dhruv Dhody
Email: dhruv.dhody@huawei.com

Daniel King
Email: daniel@olddog.co.uk

Iftekhar Hussain
Email: IHussain@infinera.com

Anurag Sharma
Email: AnSharma@infinera.com

Eric Wu
Email: eric.wu@huawei.com

Authors' Addresses

Adrian Farrel (editor)
Juniper Networks

 Email: afarrel@juniper.net

Quintin Zhao (editor)
Huawei Technologies
125 Nagog Technology Park
Acton, MA 01719
United States of America

 Email: quintin.zhao@huawei.com

Robin Li
Huawei Technologies
Huawei Bld., No.156 Beiqing Road
Beijing 100095
China

 Email: lizhenbin@huawei.com

Chao Zhou
Cisco Systems

 Email: chao.zhou@cisco.com

8359 - Network-Assigned Upstream Label

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8359

Updates: 3471, 3473, 6205

Category: Standards Track

ISSN: 2070-1721

X. Zhang, Ed.

Huawei Technologies

V. Beeram, Ed.

Juniper Networks

I. Bryskin

Huawei Technologies

D. Ceccarelli

Ericsson

O. Gonzalez de Dios

Telefonica

March 2018

Network-Assigned Upstream Label

Abstract

 This document discusses a Generalized Multi-Protocol Label Switching
 (GMPLS) Resource reSerVation Protocol with Traffic Engineering
 (RSVP-TE) mechanism that enables the network to assign an upstream
 label for a bidirectional Label Switched Path (LSP). This is useful
 in scenarios where a given node does not have sufficient information
 to assign the correct upstream label on its own and needs to rely on
 the downstream node to pick an appropriate label. This document
 updates RFCs 3471, 3473, and 6205 as it defines processing for a
 special label value in the UPSTREAM_LABEL object.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8359.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Requirements Language

	3. Unassigned Upstream Label
	 3.1. Procedures

	 3.2. Backwards Compatibility

	4. Use-Case: Wavelength Setup for IP over Optical Networks
	 4.1. Initial Setup

	 4.2. Wavelength Change

	5. IANA Considerations

	6. Security Considerations

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Acknowledgements

	Contributors

	Authors' Addresses

1. Introduction

 A functional description of the Generalized Multi-Protocol Label
 Switching (GMPLS) signaling extensions for setting up a bidirectional
 Label Switched Path (LSP) is provided in [RFC3471]. The GMPLS
 Resource reSerVation Protocol with Traffic Engineering (RSVP-TE)
 extensions for setting up a bidirectional LSP are specified in
 [RFC3473]. The bidirectional LSP setup is indicated by the presence
 of an UPSTREAM_LABEL object in the Path message. As per the existing
 setup procedure outlined for a bidirectional LSP, each upstream node
 must allocate a valid upstream label on the outgoing interface before
 sending the initial Path message downstream. However, there are
 certain scenarios (see Section 4) where it is not desirable or
 possible for a given node to pick the upstream label on its own.
 This document defines the protocol mechanism to be used in such
 scenarios. This mechanism enables a given node to offload the task
 of assigning the upstream label for a given bidirectional LSP to
 nodes downstream in the network. It is meant to be used only for
 bidirectional LSPs that assign symmetric labels at each hop along the
 path of the LSP. Bidirectional Lambda Switch Capable (LSC) LSPs use
 symmetric lambda labels (format specified in [RFC6205]) at each hop
 along the path of the LSP.

 As per the bidirectional LSP setup procedures specified in [RFC3471]
 and [RFC3473], the UPSTREAM_LABEL object must indicate a label that
 is valid for forwarding. This document updates that by allowing the
 UPSTREAM_LABEL object to indicate a special label that isn't valid
 for forwarding. As per the bidirectional LSC LSP setup procedures
 specified in [RFC6205], the LABEL_SET object and the UPSTREAM_LABEL
 object must contain the same label value. This document updates that
 by allowing the UPSTREAM_LABEL object to carry a special label value
 that is different from the one used in the LABEL_SET object.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Unassigned Upstream Label

 This document defines a special label value -- "0xFFFFFFFF" (for a
 4-octet label) -- to indicate an Unassigned Upstream Label. Similar
 "all-ones" patterns are expected to be used for labels of other
 sizes.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
|1 1|
| ... |
+‑+

 Figure 1: Unassigned UPSTREAM_LABEL - "all-ones" Pattern

 The presence of this value in the UPSTREAM_LABEL object of a Path
 message indicates that the upstream node has not assigned an upstream
 label on its own and has requested the downstream node to provide a
 label that it can use in both the forward and reverse directions.
 The presence of this value in the UPSTREAM_LABEL object of a Path
 message MUST also be interpreted by the receiving node as a request
 to mandate symmetric labels for the LSP.

3.1. Procedures

 The scope of the procedures is limited to the exchange and processing
 of messages between an upstream node and its immediate downstream
 node. The Unassigned Upstream Label is used by an upstream node when
 it is not in a position to pick the upstream label on its own. In
 such a scenario, the upstream node sends a Path message downstream
 with an Unassigned Upstream Label and requests the downstream node to
 provide a symmetric label. If the upstream node desires to make the
 downstream node aware of its limitations with respect to label
 selection, it MUST specify a list of valid labels via the LABEL_SET
 object as specified in [RFC3473].

 In response, the downstream node picks an appropriate symmetric label
 and sends it via the LABEL object in the Resv message. The upstream
 node would then start using this symmetric label for both directions
 of the LSP. If the downstream node cannot pick the symmetric label,
 it MUST issue a PathErr message with a "Routing Problem/Unacceptable
 Label Value" indication. If the upstream node that signals an
 Unassigned Upstream Label receives a label with the "all-ones"
 pattern or any other unacceptable label in the LABEL object of the
 Resv message, it MUST issue a ResvErr message with a "Routing
 Problem/Unacceptable Label Value" indication.

 The upstream node will continue to signal the Unassigned Upstream
 Label in the Path message even after it receives an appropriate
 symmetric label in the Resv message. This is done to make sure that
 the downstream node would pick a different symmetric label if and
 when it needs to change the label at a later time. If the upstream
 node receives an unacceptable changed label, then it MUST issue a
 ResvErr message with a "Routing Problem/Unacceptable Label Value"
 indication.

 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
‑‑‑| Upstream |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| Downstream |‑‑‑
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+

 Path
 Upstream Label (Unassigned)
 Label‑Set (L1, L2 ... Ln)
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>

 Resv
 Label (Assigned ‑ L2)
 <‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

 Figure 2: Signaling Sequence

3.2. Backwards Compatibility

 If the downstream node is running an implementation that doesn't
 support the semantics of an Unassigned UPSTREAM LABEL, it will either
 (a) reject the special label value and generate an error as specified
 in Section 3.1 of [RFC3473] or (b) accept it and treat it as a valid
 label.

 If the behavior that is exhibited is (a), then there are no backwards
 compatibility concerns. If the behavior that is exhibited is (b),
 then the downstream node will send a label with the "all-ones"
 pattern in the LABEL object of the Resv message. In response, the
 upstream node will issue a ResvErr message with a "Routing Problem/
 Unacceptable Label Value" indication.

4. Use-Case: Wavelength Setup for IP over Optical Networks

 Consider the network topology depicted in Figure 3. Nodes A and B
 are client IP routers that are connected to an optical Wavelength
 Division Multiplexing (WDM) transport network. F and I represent WDM
 nodes. The transponder sits on the router and is directly connected
 to the add-drop port on a WDM node.

 The optical signal originating on "Router A" is tuned to a particular
 wavelength. On "WDM-Node F", it gets multiplexed with optical
 signals at other wavelengths. Depending on the implementation of
 this multiplexing function, it may not be acceptable to have the
 router send the signal into the optical network unless it is at the
 appropriate wavelength. In other words, having the router send
 signals with a wrong wavelength may adversely impact existing optical
 trails. If the clients do not have full visibility into the optical
 network, they are not in a position to pick the correct wavelength in
 advance.

 The rest of this section examines how the protocol mechanism proposed
 in this document allows the optical network to select and communicate
 the correct wavelength to its clients.

4.1. Initial Setup

+‑‑‑+ /‑\ /‑\ +‑‑‑+
| A |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑(F) ~~~~~~~~~ (I)‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| B |
+‑‑‑+ \‑/ \‑/ +‑‑‑+

 Path
 Upstream Label (Unassigned/0xFFFFFFFF)
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>
 ‑‑ ~~ ‑‑ ~~ ‑‑>
 Path
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>
 Resv
 <‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 <‑‑ ~~ ‑‑ ~~ ‑‑
 Resv
 Label (Assigned)
 <‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

 Figure 3: Initial Setup Sequence

 Steps:

 o "Router A" does not have enough information to pick an appropriate
 client wavelength. It sends a Path message downstream requesting
 the network to assign an appropriate symmetric label for its use.
 Since the client wavelength is unknown, the laser is off at the
 ingress client.

 o The downstream node (Node F) receives the Path message, chooses
 the appropriate wavelength values, and forwards them in
 appropriate label fields to the egress client ("Router B").

 o "Router B" receives the Path message, turns the laser ON and tunes
 it to the appropriate wavelength (received in the UPSTREAM_LABEL/
 LABEL_SET of the Path) and sends a Resv message upstream.

 o The Resv message received by the ingress client carries a valid
 symmetric label in the LABEL object. "Router A" turns on the
 laser and tunes it to the wavelength specified in the network
 assigned symmetric LABEL.

 For cases where the egress-node relies on RSVP signaling to determine
 exactly when to start using the LSP, implementations may choose to
 integrate the above sequence with any of the existing graceful setup
 procedures:

 o "ResvConf" setup procedure ([RFC2205])

 o Two-step "ADMIN STATUS" based setup procedure ("A" bit set in the
 first step; "A" bit cleared when the LSP is ready for use)
 ([RFC3473])

4.2. Wavelength Change

 After the LSP is set up, the network may decide to change the
 wavelength for the given LSP. This could be for a variety of reasons
 including policy reasons, restoration within the core, preemption,
 etc.

 In such a scenario, if the ingress client receives a changed label
 via the LABEL object in a modified Resv message, it retunes the laser
 at the ingress to the new wavelength. Similarly, if the egress
 client receives a changed label via UPSTREAM_LABEL/LABEL_SET in a
 modified Path message, it retunes the laser at the egress to the new
 wavelength.

5. IANA Considerations

 IANA maintains the "Generalized Multi-Protocol Label Switching
 (GMPLS) Signaling Parameters" registry. IANA has added a new
 subregistry titled "Special Purpose Generalized Label Values". New
 values are assigned according to Standards Action [RFC8126].

 Special Purpose Generalized Label Values

Pattern/ Label Name Applicable Reference
Value Objects
‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑
all‑ones Unassigned UPSTREAM_LABEL [RFC8359]
 Upstream Label

6. Security Considerations

 This document defines a special label value to be carried in the
 UPSTREAM_LABEL object of a Path message. This special label value is
 used to enable the function of requesting network assignment of an
 upstream label. The changes proposed in this document pertain to the
 semantics of a specific field in an existing RSVP object and the
 corresponding procedures. Thus, there are no new security
 implications raised by this document and the security considerations
 discussed by [RFC3473] still apply.

 For a general discussion on MPLS and GMPLS related security issues,
 see the MPLS/GMPLS security framework [RFC5920].

7. References

7.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2205]
 Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
 September 1997, <https://www.rfc-editor.org/info/rfc2205>.

 [RFC3471]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Functional Description",
 RFC 3471, DOI 10.17487/RFC3471, January 2003,
 <https://www.rfc-editor.org/info/rfc3471>.

 [RFC3473]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Resource ReserVation Protocol-
 Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
 DOI 10.17487/RFC3473, January 2003,
 <https://www.rfc-editor.org/info/rfc3473>.

 [RFC6205]
 Otani, T., Ed. and D. Li, Ed., "Generalized Labels for
 Lambda-Switch-Capable (LSC) Label Switching Routers",
 RFC 6205, DOI 10.17487/RFC6205, March 2011,
 <https://www.rfc-editor.org/info/rfc6205>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [RFC5920]
 Fang, L., Ed., "Security Framework for MPLS and GMPLS
 Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010,
 <https://www.rfc-editor.org/info/rfc5920>.

 [RFC8126]
 Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

Acknowledgements

 The authors would like to thank Adrian Farrel and Chris Bowers for
 their inputs.

Contributors

John Drake
Juniper Networks
Email: jdrake@juniper.net

Gert Grammel
Juniper Networks
Email: ggrammel@juniper.net

Pawel Brzozowski
ADVA Optical Networking
Email: pbrzozowski@advaoptical.com

Zafar Ali
Cisco Systems, Inc.
Email: zali@cisco.com

Authors' Addresses

Xian Zhang (editor)
Huawei Technologies

 Email: zhang.xian@huawei.com

Vishnu Pavan Beeram (editor)
Juniper Networks

 Email: vbeeram@juniper.net

Igor Bryskin
Huawei Technologies

 Email: igor.bryskin@huawei.com

Daniele Ceccarelli
Ericsson

 Email: daniele.ceccarelli@ericsson.com

Oscar Gonzalez de Dios
Telefonica

 Email: ogondio@tid.es

8370 - Techniques to Improve the Scalability of RSVP-TE Deployments

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8370

Category: Standards Track

ISSN: 2070-1721

V. Beeram, Ed.

Juniper Networks

I. Minei

R. Shakir

Google, Inc

D. Pacella

Verizon

T. Saad

Cisco Systems

May 2018

Techniques to Improve the Scalability of RSVP-TE Deployments

Abstract

 Networks that utilize RSVP-TE LSPs are encountering implementations
 that have a limited ability to support the growth in the number of
 LSPs deployed.

 This document defines two techniques, Refresh-Interval Independent
 RSVP (RI-RSVP) and Per-Peer Flow Control, that reduce the number of
 processing cycles required to maintain RSVP-TE LSP state in Label
 Switching Routers (LSRs) and hence allow implementations to support
 larger scale deployments.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8370.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Required Support for RFC 2961
	 2.1. Required Functionality from RFC 2961

	 2.2. Making Acknowledgements Mandatory

	3. Refresh-Interval Independent RSVP (RI-RSVP)
	 3.1. Capability Advertisement

	 3.2. Compatibility

	4. Per-Peer Flow Control
	 4.1. Capability Advertisement

	 4.2. Compatibility

	5. IANA Considerations
	 5.1. Capability Object Values

	6. Security Considerations

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Appendix A. Recommended Defaults

	Acknowledgements

	Contributors

	Authors' Addresses

1. Introduction

 Networks that utilize RSVP-TE [RFC3209] LSPs are encountering
 implementations that have a limited ability to support the growth in
 the number of LSPs deployed.

 The set of RSVP Refresh Overhead Reduction procedures [RFC2961]
 serves as a powerful toolkit for RSVP-TE implementations to help
 cover a majority of the concerns about soft-state scaling. However,
 even with these tools in the toolkit, analysis of existing
 implementations [RFC5439] indicates that the processing required
 beyond a certain scale may still cause significant disruption to a
 Label Switching Router (LSR).

 This document builds on existing scaling work and analysis and
 defines protocol extensions to help RSVP-TE deployments push the
 envelope further on scaling by increasing the threshold above which
 an LSR struggles to achieve sufficient processing to maintain LSP
 state.

 This document defines two techniques, Refresh-Interval Independent
 RSVP (RI-RSVP) and Per-Peer Flow Control, that cut down the number of
 processing cycles required to maintain LSP state. RI-RSVP helps
 completely eliminate RSVP's reliance on refreshes and refresh
 timeouts, while Per-Peer Flow Control enables a busy RSVP speaker to
 apply back pressure to its peer(s). This document defines a unique
 RSVP Capability [RFC5063] for each technique (support for the
 CAPABILITY object is a prerequisite for implementing these
 techniques). Note that the Per-Peer Flow-Control technique requires
 the RI-RSVP technique as a prerequisite. In order to reap maximum
 scaling benefits, it is strongly recommended that implementations
 support both techniques and have them enabled by default. Both
 techniques are fully backward compatible and can be deployed
 incrementally.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Required Support for RFC 2961

 The techniques defined in Sections 3 and 4 are based on proposals
 made in [RFC2961]. Implementations of these techniques need to
 support the RSVP messages and procedures defined in [RFC2961] with
 some minor modifications and alterations to recommended time
 intervals and iteration counts (see Appendix A for the set of
 recommended defaults).

2.1. Required Functionality from RFC 2961

 An implementation that supports the techniques discussed in Sections
 3 and 4 must support the functionality described in [RFC2961] as
 follows:

 o It MUST indicate support for RSVP Refresh Overhead Reduction
 extensions (as specified in Section 2 of [RFC2961]).

 o It MUST support receipt of any RSVP Refresh Overhead Reduction
 message as defined in [RFC2961].

 o It MUST initiate all RSVP Refresh Overhead Reduction mechanisms as
 defined in [RFC2961] (including the SRefresh message) with the
 default behavior being to initiate the mechanisms; however, a
 configuration override should be offered.

 o It MUST support reliable delivery of Path/Resv and the
 corresponding Tear/Err messages (as specified in Section 4 of
 [RFC2961]).

 o It MUST support retransmission of all unacknowledged RSVP-TE
 messages using exponential backoff (as specified in Section 6 of
 [RFC2961]).

2.2. Making Acknowledgements Mandatory

 The reliable message delivery mechanism specified in [RFC2961] states
 that "Nodes receiving a non-out of order [sic] message containing a
 MESSAGE_ID object with the ACK_Desired flag set, SHOULD respond with
 a MESSAGE_ID_ACK object."

 In an implementation that supports the techniques discussed in
 Sections 3 and 4, nodes receiving a non-out-of-order message
 containing a MESSAGE_ID object with the ACK_Desired flag set MUST
 respond with a MESSAGE_ID_ACK object. This MESSAGE_ID_ACK object can
 be packed with other MESSAGE_ID_ACK or MESSAGE_ID_NACK objects and
 sent in an Ack message (or piggybacked in any other RSVP message).
 This improvement to the predictability of the system in terms of
 reliable message delivery is key for being able to take any action
 based on a non-receipt of an ACK.

3. Refresh-Interval Independent RSVP (RI-RSVP)

 The RSVP protocol relies on periodic refreshes for state
 synchronization between RSVP neighbors and recovery from lost RSVP
 messages. It relies on a refresh timeout for stale-state cleanup.
 The primary motivation behind introducing the notion of Refresh-
 Interval Independent RSVP (RI-RSVP) is to completely eliminate RSVP's
 reliance on refreshes and refresh timeouts. This is done by simply
 increasing the refresh interval to a fairly large value. [RFC2961]
 and [RFC5439] talk about increasing the value of the refresh interval
 to provide linear improvement of transmission overhead, but they also
 point out the degree of functionality that is lost by doing so. This
 section revisits this notion, but also sets out additional
 requirements to make sure that there is no loss of functionality
 incurred by increasing the value of the refresh interval.

 An implementation that supports RI-RSVP:

 o MUST support all of the requirements specified in Section 2.

 o MUST make the default value of the configurable refresh interval
 (R) be a large value (tens of minutes). A default value of 20
 minutes is RECOMMENDED by this document.

 o MUST use a separate shorter refresh interval for refreshing state
 associated with unacknowledged Path/Resv (uR) messages. A default
 value of 30 seconds is RECOMMENDED by this document.

 o MUST implement coupling the state of individual LSPs with the
 state of the corresponding RSVP-TE signaling adjacency. When an
 RSVP-TE speaker detects RSVP-TE signaling adjacency failure, the
 speaker MUST act as if all the Path and Resv states learned via
 the failed signaling adjacency have timed out.

 o MUST make use of the Hello session based on the Node-ID ([RFC3209]
 [RFC4558]) for detection of RSVP-TE signaling adjacency failures.
 A default value of 9 seconds is RECOMMENDED by this document for
 the configurable node hello interval (as opposed to the default
 value of 5 milliseconds proposed in Section 5.3 of [RFC3209]).

 o MUST indicate support for RI-RSVP via the CAPABILITY object
 [RFC5063] in Hello messages.

3.1. Capability Advertisement

 An implementation supporting the RI-RSVP technique MUST set a new
 flag, RI-RSVP Capable, in the CAPABILITY object signaled in Hello
 messages. The following bit indicates that the sender supports
 RI-RSVP:

 Bit Number 28 (0x0008) - RI-RSVP Capable (I-bit)

 Any node that sets the new I-bit in its CAPABILITY object MUST also
 set the Refresh-Reduction-Capable bit [RFC2961] in the common header
 of all RSVP-TE messages. If a peer sets the I-bit in the CAPABILITY
 object but does not set the Refresh-Reduction-Capable bit, then the
 RI-RSVP functionality MUST NOT be activated for that peer.

3.2. Compatibility

 The RI-RSVP functionality MUST NOT be activated with a peer that does
 not indicate support for this functionality. Inactivation of the
 RI-RSVP functionality MUST result in the use of the traditional
 smaller refresh interval [RFC2205].

4. Per-Peer Flow Control

 The functionality discussed in this section provides an RSVP speaker
 with the ability to apply back pressure to its peer(s) to reduce/
 eliminate a significant portion of the RSVP-TE control message load.

 An implementation that supports Per-Peer Flow Control:

 o MUST support all of the requirements specified in Section 2.

 o MUST support RI-RSVP (Section 3).

 o MUST treat lack of ACKs from a peer as an indication of a peer's
 RSVP-TE control-plane congestion. If congestion is detected, the
 local system MUST throttle RSVP-TE messages to the affected peer.
 This MUST be done on a per-peer basis. (Per-peer throttling MAY
 be implemented by a traffic-shaping mechanism that proportionally
 reduces the RSVP-signaling packet rate as the number of
 outstanding ACKs increases. When the number of outstanding ACKs
 decreases, the send rate would be adjusted up again.)

 o SHOULD use a Retry Limit (Rl) value of 7 (Section 6.2 of [RFC2961]
 suggests using 3).

 o SHOULD prioritize Hello messages and messages carrying
 Acknowledgements over other RSVP messages.

 o SHOULD prioritize Tear/Error over trigger Path/Resv (messages that
 bring up new LSP state) sent to a peer when the local system
 detects RSVP-TE control-plane congestion in the peer.

 o MUST indicate support for this technique via the CAPABILITY object
 [RFC5063] in Hello messages.

4.1. Capability Advertisement

 An implementation supporting the Per-Peer Flow-Control technique MUST
 set a new flag, Per-Peer Flow-Control Capable, in the CAPABILITY
 object signaled in Hello messages. The following bit indicates that
 the sender supports Per-Peer Flow Control:

 Bit Number 27 (0x0010) - Per-Peer Flow-Control Capable (F-bit)

 Any node that sets the new F-bit in its CAPABILITY object MUST also
 set the Refresh-Reduction-Capable bit in the common header of all
 RSVP-TE messages. If a peer sets the F-bit in the CAPABILITY object
 but does not set the Refresh-Reduction-Capable bit, then the Per-Peer
 Flow-Control functionality MUST NOT be activated for that peer.

4.2. Compatibility

 The Per-Peer Flow-Control functionality MUST NOT be activated with a
 peer that does not indicate support for this functionality. If a
 peer hasn't indicated that it is capable of participating in Per-Peer
 Flow Control, then it SHOULD NOT be assumed that the peer would
 always acknowledge a non-out-of-order message containing a MESSAGE_ID
 object with the ACK_Desired flag set.

5. IANA Considerations

5.1. Capability Object Values

 IANA maintains the "Capability Object values" subregistry [RFC5063]
 within the "Resource Reservation Protocol (RSVP) Parameters" registry
 <http://www.iana.org/assignments/rsvp-parameters>. IANA has assigned
 two new Capability Object Value bit flags as follows:

Bit Hex Name Reference
Number Value
‑‑
 28 0x0008 RI‑RSVP Capable (I) Section 3
 27 0x0010 Per‑Peer Flow‑Control Capable (F) Section 4

6. Security Considerations

 This document does not introduce new security issues. The security
 considerations pertaining to the original RSVP protocol [RFC2205] and
 RSVP-TE [RFC3209], and those that are described in [RFC5920], remain
 relevant.

7. References

7.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2205]
 Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
 September 1997, <https://www.rfc-editor.org/info/rfc2205>.

 [RFC2961]
 Berger, L., Gan, D., Swallow, G., Pan, P., Tommasi, F.,
 and S. Molendini, "RSVP Refresh Overhead Reduction
 Extensions", RFC 2961, DOI 10.17487/RFC2961, April 2001,
 <https://www.rfc-editor.org/info/rfc2961>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <https://www.rfc-editor.org/info/rfc3209>.

 [RFC4558]
 Ali, Z., Rahman, R., Prairie, D., and D. Papadimitriou,
 "Node-ID Based Resource Reservation Protocol (RSVP) Hello:
 A Clarification Statement", RFC 4558,
 DOI 10.17487/RFC4558, June 2006,
 <https://www.rfc-editor.org/info/rfc4558>.

 [RFC5063]
 Satyanarayana, A., Ed. and R. Rahman, Ed., "Extensions to
 GMPLS Resource Reservation Protocol (RSVP) Graceful
 Restart", RFC 5063, DOI 10.17487/RFC5063, October 2007,
 <https://www.rfc-editor.org/info/rfc5063>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [RFC5439]
 Yasukawa, S., Farrel, A., and O. Komolafe, "An Analysis of
 Scaling Issues in MPLS-TE Core Networks", RFC 5439,
 DOI 10.17487/RFC5439, February 2009,
 <https://www.rfc-editor.org/info/rfc5439>.

 [RFC5920]
 Fang, L., Ed., "Security Framework for MPLS and GMPLS
 Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010,
 <https://www.rfc-editor.org/info/rfc5920>.

Appendix A. Recommended Defaults

 a. Refresh Interval (R) - 20 minutes (Section 3):

 Given that an implementation supporting RI-RSVP doesn't rely on
 refreshes for state sync between peers, the function of the RSVP
 refresh interval is analogous to that of IGP refresh interval
 (the default of which is typically in the order of tens of
 minutes). Choosing a default of 20 minutes allows the refresh
 timer to be randomly set to a value in the range [10 minutes
 (0.5R), 30 minutes (1.5R)].

 b. Node Hello Interval - 9 seconds (Section 3):

 [RFC3209] defines the hello timeout as 3.5 times the hello
 interval. Choosing 9 seconds for the node hello interval gives a
 hello timeout of 3.5 * 9 = 31.5 seconds. This puts the hello
 timeout value in the vicinity of the IGP hello timeout value.

 c. Retry-Limit (Rl) - 7 (Section 4):

 Choosing 7 as the retry-limit results in an overall rapid
 retransmit phase of 31.5 seconds. This matches up with the hello
 timeout of 31.5 seconds.

 d. Refresh Interval for refreshing state associated with
 unacknowledged Path/Resv messages (uR) - 30 seconds (Section 3):
 The recommended refresh interval (R) value of 20 minutes (for an
 implementation supporting RI-RSVP) cannot be used for refreshing
 state associated with unacknowledged Path/Resv messages. This
 document recommends the use of the traditional default refresh
 interval value of 30 seconds for uR.

Acknowledgements

 The authors would like to thank Yakov Rekhter for initiating this
 work and providing valuable input. They would like to thank
 Raveendra Torvi and Chandra Ramachandran for participating in the
 many discussions that led to the techniques discussed in this
 document. They would also like to thank Adrian Farrel, Lou Berger,
 and Elwyn Davies for providing detailed review comments and text
 suggestions.

Contributors

Markus Jork
Juniper Networks
Email: mjork@juniper.net

Ebben Aries
Juniper Networks
Email: exa@juniper.net

Authors' Addresses

Vishnu Pavan Beeram (editor)
Juniper Networks

 Email: vbeeram@juniper.net

Ina Minei
Google, Inc

 Email: inaminei@google.com

Rob Shakir
Google, Inc

 Email: rjs@rob.sh

Dante Pacella
Verizon

 Email: dante.j.pacella@verizon.com

Tarek Saad
Cisco Systems

 Email: tsaad@cisco.com

8390 - RSVP-TE Path Diversity Using Exclude Route

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8390

Updates: 4874

Category: Standards Track

ISSN: 2070-1721

Z. Ali, Ed.

Cisco Systems

G. Swallow, Ed.

SETC

F. Zhang, Ed.

Huawei

D. Beller, Ed.

Nokia

July 2018

RSVP-TE Path Diversity Using Exclude Route

Abstract

 RSVP-TE provides support for the communication of exclusion
 information during Label Switched Path (LSP) setup. A typical LSP
 diversity use case is for protection, where two LSPs should follow
 different paths through the network in order to avoid single points
 of failure, thus greatly improving service availability. This
 document specifies an approach that can be used for network scenarios
 where the full path(s) is not necessarily known by use of an abstract
 identifier for the path. Three types of abstract identifiers are
 specified: client based, Path Computation Element (PCE) based, and
 network based. This document specifies two new diversity subobjects
 for the RSVP eXclude Route Object (XRO) and the Explicit Exclusion
 Route Subobject (EXRS).

 For the protection use case, LSPs are typically created at a slow
 rate and exist for a long time so that it is reasonable to assume
 that a given (reference) path currently existing (with a well-known
 identifier) will continue to exist and can be used as a reference
 when creating the new diverse path. Re-routing of the existing
 (reference) LSP, before the new path is established, is not
 considered.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8390.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Conventions Used in This Document

	 1.2. Terms and Abbreviations

	 1.3. Client-Initiated Identifier

	 1.4. PCE-Allocated Identifier

	 1.5. Network-Assigned Identifier

	2. RSVP-TE Signaling Extensions
	 2.1. Diversity XRO Subobject

	 2.2. Diversity EXRS Subobject

	 2.3. Processing Rules for the Diversity XRO and EXRS Subobjects

	3. Security Considerations

	4. IANA Considerations
	 4.1. New XRO Subobject Types

	 4.2. New EXRS Subobject Types

	 4.3. New RSVP Error Sub-codes

	5. References
	 5.1. Normative References

	 5.2. Informative References

	Acknowledgements

	Contributors

	Authors' Addresses

1. Introduction

 Path diversity for multiple connections is a well-known operational
 requirement. Diversity constraints ensure that Label Switched Paths
 (LSPs) can be established without sharing network resources, thus
 greatly reducing the probability of simultaneous connection failures.

 The source node can compute diverse paths for LSPs when it has full
 knowledge of the network topology and is permitted to signal an
 Explicit Route Object (ERO). However, there are scenarios where
 different nodes perform path computations, and therefore there is a
 need for relevant diversity constraints to be signaled to those
 nodes. These include (but are not limited to):

 o LSPs with loose hops in the Explicit Route Object, e.g., inter-
 domain LSPs; and

 o Generalized Multiprotocol Label Switching (GMPLS) User-Network
 Interface (UNI), where the core node may perform path computation
 [RFC4208].

 [RFC4874] introduced a means of specifying nodes and resources to be
 excluded from a route using the eXclude Route Object (XRO) and
 Explicit Exclusion Route Subobject (EXRS). It facilitates the
 calculation of diverse paths for LSPs based on known properties of
 those paths including addresses of links and nodes traversed and
 Shared Risk Link Groups (SRLGs) of traversed links. Employing these
 mechanisms requires that the source node that initiates signaling
 knows the relevant properties of the path(s) from which diversity is
 desired. However, there are circumstances under which this may not
 be possible or desirable, including (but not limited to):

 o Exclusion of a path that does not originate, terminate, or
 traverse the source node of the diverse LSP, in which case the
 addresses of links and SRLGs of the path from which diversity is
 required are unknown to the source node.

 o Exclusion of a path that is known to the source node of the
 diverse LSP for which the node has incomplete or no path
 information, e.g., due to operator policy. In this case, the
 source node is aware of the existence of the reference path, but
 the information required to construct an XRO object to guarantee
 diversity from the reference path is not fully known. Inter-
 domain and GMPLS overlay networks can impose such restrictions.

 This is illustrated in Figure 1, where the overlay reference model
 from [RFC4208] is shown.

 Overlay Overlay
 Network +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ Network
+‑‑‑‑‑‑‑‑‑+ | | +‑‑‑‑‑‑‑‑‑+
| +‑‑‑‑+ | | +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ | | +‑‑‑‑+ |
| | | | UNI | | | | | | | | UNI | | | |
| ‑+ EN1+‑+‑‑‑‑‑+‑‑+ CN1 +‑‑‑‑+ CN2 +‑‑‑‑+ CN3 +‑‑‑+‑‑‑‑‑+‑+ EN3+‑ |
| | | | +‑‑+‑‑+ | | | | | | +‑‑‑+‑| | |
| +‑‑‑‑+ | | | +‑‑+‑‑+ +‑‑+‑‑+ +‑‑+‑‑+ | | | +‑‑‑‑+ |
+‑‑‑‑‑‑‑‑‑+ | | | | | | | +‑‑‑‑‑‑‑‑‑+
 | | | | | | |
+‑‑‑‑‑‑‑‑‑+ | | +‑‑+‑‑+ | +‑‑+‑‑+ | | +‑‑‑‑‑‑‑‑‑+
+‑‑‑‑+					+‑‑‑‑‑‑‑+ +‑‑‑‑‑+	+‑‑‑‑+		
	+‑+‑‑+		CN4 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ CN5					
‑+ EN2+‑+‑‑‑‑‑+‑‑+		+‑‑‑+‑‑‑‑‑+‑+ EN4+‑						
			UNI	+‑‑‑‑‑+ +‑‑‑‑‑+	UNI			
+‑‑‑‑+				+‑‑‑‑+				
+‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
 Overlay Core Network Overlay
 Network Network
 Legend: EN ‑ Edge Node
 CN ‑ Core Node

 Figure 1: Overlay Reference Model [RFC4208]

 Figure 1 depicts two types of UNI connectivity: single-homed and
 dual-homed ENs (which also applies to higher-order multihomed
 connectivity). Single-homed EN devices are connected to a single CN
 device via a single UNI link. This single UNI link may constitute a
 single point of failure. UNI connection between EN1 and CN1 is an
 example of singled-homed UNI connectivity.

Such a single point of failure can be avoided when the EN device is
connected to two different CN devices, as depicted for EN2 in
Figure 1. For the dual‑homing case, it is possible to establish two
different UNI connections from the same source EN device to the same
destination EN device. For example, two connections from EN2 to EN3
may use the two UNI links EN2‑CN1 and EN2‑CN4. To avoid single
points of failure within the provider network, it is necessary to
also ensure path (LSP) diversity within the core network.

 In a network providing a set of UNI interfaces between ENs and CNs
 such as that shown in Figure 1, the CNs typically perform path
 computation. Information sharing across the UNI boundary is
 restricted based on the policy rules imposed by the core network.
 Typically, the core network topology information as well as LSP path
 information is not exposed to the ENs. In the network shown in
 Figure 1, consider a use case where an LSP from EN2 to EN4 needs to
 be SRLG diverse from an LSP from EN1 to EN3. In this case, EN2 may
 not know SRLG attributes of the EN1-EN3 LSP and hence cannot
 construct an XRO to exclude these SRLGs. In this example, EN2 cannot
 use the procedures described in [RFC4874]. Similarly, an LSP from
 EN2 to EN3 traversing CN1 needs to be diverse from an LSP from EN2 to
 EN3 going via CN4. Again, in this case, exclusions based on
 [RFC4874] cannot be used.

 This document addresses these diversity requirements by introducing
 an approach of excluding the path taken by these particular LSP(s).
 Each reference LSP or route from which diversity is required is
 identified by an abstract "identifier". The type of identifier to
 use is highly dependent on the core network operator's networking
 deployment scenario; it could be client initiated (provided by the
 EN), provided by a PCE, or allocated by the (core) network. This
 document defines three different types of identifiers corresponding
 to these three cases: a client-initiated identifier, a PCE-allocated
 identifier, and an identifier allocated by the CN ingress node
 (UNI-N), i.e., a network-assigned identifier.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Terms and Abbreviations

Diverse LSP: A diverse Label Switched Path (LSP) is an LSP that has
 a path that does not have any link or SRLG in common with the path
 of a given LSP. Diverse LSPs are meaningful in the context of
 protection or restoration.

ERO: Explicit Route Object as defined in [RFC3209].

EXRS: Explicit Exclusion Route Subobject as defined in [RFC4874].

SRLG: Shared Risk Link Group as defined in [RFC4202].

Reference Path: The reference path is the path of an existing LSP to
 which the path of a diverse LSP shall be diverse.

XRO: eXclude Route Object as defined in [RFC4874].

1.3. Client-Initiated Identifier

 The following fields MUST be used to represent the client-initiated
 identifier: IPv4/IPv6 tunnel sender address, IPv4/IPv6 tunnel
 endpoint address, Tunnel ID, and Extended Tunnel ID. Based on local
 policy, the client MAY also include the LSP ID to identify a specific
 LSP within the tunnel. These fields are defined in Sections 4.6.1.1
 and 4.6.2.1 of [RFC3209].

 The usage of the client-initiated identifier is illustrated by
 Figure 1. Suppose an LSP from EN2 to EN4 needs to be diverse with
 respect to an LSP from EN1 to EN3.

 The LSP identifier of the EN1-EN3 LSP is LSP-IDENTIFIER1, where LSP-
 IDENTIFIER1 is defined by the tuple

(tunnel‑id = T1,
LSP ID = L1,
source address = EN1.RID (Route Identifier),
destination address = EN3.RID,
extended tunnel‑id = EN1.RID).

 Similarly, the LSP identifier of the EN2-EN4 LSP is LSP-IDENTIFIER2,
 where LSP-IDENTIFIER2 is defined by the tuple

(tunnel‑id = T2,
LSP ID = L2,
source address = EN2.RID,
destination address = EN4.RID,
extended tunnel‑id = EN2.RID).

 The EN1-EN3 LSP is signaled with an exclusion requirement from LSP-
 IDENTIFIER2, and the EN2-EN4 LSP is signaled with an exclusion
 requirement from LSP-IDENTIFIER1. In order to maintain diversity
 between these two connections within the core network, the core
 network SHOULD implement crankback signaling extensions as defined in
 [RFC4920]. Note that crankback signaling is known to lead to slower
 setup times and suboptimal paths under some circumstances as
 described by [RFC4920].

1.4. PCE-Allocated Identifier

 In scenarios where a PCE is deployed and used to perform path
 computation, typically the ingress node of the core network (e.g.,
 node CN1 in Figure 1) could consult a PCE to allocate identifiers,
 which are used to signal path diversity constraints. In other
 deployment scenarios, a PCE is deployed at a network node(s) or it is
 part of a Network Management System (NMS). In all these cases, the
 PCE is consulted and the Path Key, as defined in [RFC5520], can be
 used in RSVP signaling as the identifier to ensure diversity.

 An example of specifying LSP diversity using a Path Key is shown in
 Figure 2, where a simple network with two domains is shown. It is
 desired to set up a pair of path-disjoint LSPs from the source in
 Domain 1 to the destination in Domain 2, but the domains keep strict
 confidentiality about all path and topology information.

 The first LSP is signaled by the source with ERO {A, B, loose Dst}
 and is set up with the path {Src, A, B, U, V, W, Dst}. However, when
 sending the Record Route Object (RRO) out of Domain 2, node U would
 normally strip the path and replace it with a loose hop to the
 destination. With this limited information, the source is unable to
 include enough detail in the ERO of the second LSP to avoid it
 taking, for example, the path {Src, C, D, X, V, W, Dst} for path-
 disjointness.

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Domain 1		Domain 2								
‑‑‑ ‑‑‑		‑‑‑ ‑‑‑ ‑‑‑								
	A	‑‑	B	‑‑+‑‑+‑‑	U	‑‑	V	‑‑‑	W	
/ ‑‑‑ ‑‑‑		‑‑‑ ‑‑‑ ‑‑‑ \								
‑‑‑/		/ / \‑‑‑								
	Src			/ /	Dst					
‑‑‑\		/ / /‑‑‑								
\ ‑‑‑ ‑‑‑		‑‑‑ / ‑‑‑ / ‑‑‑ /								
	C	‑‑	D	‑‑+‑‑+‑‑	X	‑‑‑	Y	‑‑	Z	
‑‑‑ ‑‑‑		‑‑‑ ‑‑‑ ‑‑‑								
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

 Figure 2: A Simple Multi-domain Network

 In order to support LSP diversity, node U consults the PCE and
 replaces the path segment {U, V, W} in the RRO with a Path Key
 subobject. The PCE function assigns an "identifier" and puts it into
 the Path Key field of the Path Key subobject. The PCE ID in the
 message indicates that this replacement operation was performed by
 node U.

 With this additional information, the source node is able to signal
 the subsequent LSPs with the ERO set to {C, D, exclude Path Key
 (signaled in the EXRS RSVP subobject), loose Dst}. When the
 signaling message reaches node X, it can consult the PCE function
 associated with node U to expand the Path Key in order to calculate a
 path that is diverse with respect to the first LSP. Alternatively,
 the source node could use an ERO of {C, D, loose Dst} and include an
 XRO containing the Path Key.

 This mechanism can work with all the Path Key resolution mechanisms,
 as detailed in Section 3.1 of [RFC5553]. A PCE, co-located or not,
 may be used to resolve the Path Key, but the node (i.e., a Label
 Switching Router (LSR)) can also use the Path Key information to
 index a path segment previously supplied to it by the entity that
 originated the Path Key (for example, the LSR that inserted the Path
 Key in the RRO or a management system).

1.5. Network-Assigned Identifier

 There are scenarios in which the network provides diversity-related
 information for a service that allows the client device to include
 this information in the signaling message. If the Shared Risk Link
 Group (SRLG) identifier information is both available and shareable
 (by policy) with the ENs, the procedure defined in [RFC8001] can be
 used to collect SRLG identifiers associated with an LSP (LSP1). When
 a second LSP (LSP2) needs to be diverse with respect to LSP1, the EN
 constructing the RSVP signaling message for setting up LSP2 can
 insert the SRLG identifiers associated with LSP1 as diversity
 constraints into the XRO using the procedure described in [RFC4874].
 However, if the core network SRLG identifiers are either not
 available or not shareable with the ENs based on policies enforced by
 the core network, existing mechanisms cannot be used.

 In this document, a signaling mechanism is defined where information
 signaled to the CN via the UNI does not require shared knowledge of
 core network SRLG information. For this purpose, the concept of a
 Path Affinity Set (PAS) is defined for abstracting SRLG information.
 The motive behind the introduction of the PAS is to minimize the
 exchange of diversity information between the core network (CNs) and
 the client devices (ENs). The PAS contains an abstract SRLG
 identifier associated with a given path rather than a detailed SRLG
 list. The PAS is a single identifier that can be used to request
 diversity and associate diversity. The means by which the processing
 node determines the path corresponding to the PAS is beyond the scope
 of this document.

 A CN on the core network boundary interprets the specific PAS
 identifier (e.g., "123") as meaning to exclude the core network SRLG
 information (or equivalent) that has been allocated by LSPs
 associated with this PAS identifier value. For example, if a path
 exists for the LSP with the PAS identifier "123", the CN would use
 local knowledge of the core network SRLGs associated with the LSPs
 tagged with PAS attribute "123" and use those SRLGs as constraints
 for path computation. If a PAS identifier is used as an exclusion
 identifier in the connection request, the CN (UNI-N) in the core
 network is assumed to be able to determine the existing core network
 SRLG information and calculate a path that meets the determined
 diversity constraints.

 When a CN satisfies a connection setup for an SRLG-diverse signaled
 path, the CN may optionally record the core network SRLG information
 for that connection in terms of CN-based parameters and associate
 that with the EN addresses in the Path message. Specifically, for
 Layer 1 Virtual Private Networks (L1VPNs), Port Information Tables
 (PITs) [RFC5251] can be leveraged to translate between client (EN)
 addresses and core network addresses.

 The means to distribute the PAS information within the core network
 is beyond the scope of this document. For example, the PAS and the
 associated SRLG information can be distributed within the core
 network by an Interior Gateway Protocol (IGP) or by other means such
 as configuration. Regardless of means used to distribute the PAS
 information, the information is kept inside the core network and is
 not shared with the overlay network (see Figure 1).

2. RSVP-TE Signaling Extensions

 This section describes the signaling extensions required to address
 the aforementioned requirements and use cases.

2.1. Diversity XRO Subobject

 New Diversity XRO subobjects are defined below for the IPv4 and IPv6
 address families. Most of the fields in the IPv4 and IPv6 Diversity
 XRO subobjects are common and are described following the definition
 of the two subobjects.

 The IPv4 Diversity XRO subobject is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
|L| XRO Type | Length |DI Type|A‑Flags|E‑Flags| Resvd |
+‑+
| IPv4 Diversity Identifier Source Address |
+‑+
| Diversity Identifier Value |
// ... //
| |
+‑+

 Similarly, the IPv6 Diversity XRO subobject is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
|L| XRO Type | Length |DI Type|A‑Flags|E‑Flags| Resvd |
+‑+
| IPv6 Diversity Identifier Source Address |
+‑+
| IPv6 Diversity Identifier Source Address (cont.) |
+‑+
| IPv6 Diversity Identifier Source Address (cont.) |
+‑+
| IPv6 Diversity Identifier Source Address (cont.) |
+‑+
| Diversity Identifier Value |
// ... //
| |
+‑+

 L:

 The L flag is used in the same way as for the XRO subobjects
 defined in [RFC4874], that is:

 0 indicates that the diversity constraints MUST be satisfied, and

 1 indicates that the diversity constraints SHOULD be satisfied.

 XRO Type:

 The value is set to 38 for the IPv4 Diversity XRO subobject. The
 value is set to 39 for the IPv6 Diversity XRO subobject.

 Length:

 Per [RFC4874], the Length contains the total length of the
 IPv4/IPv6 subobject in bytes, including the XRO Type and Length
 fields. The Length is variable, depending on the Diversity
 Identifier Value.

 Diversity Identifier Type (DI Type):

 Diversity Identifier Type (DI Type) indicates the way the
 reference LSP(s) or route(s) with which diversity is required is
 identified in the IPv4/IPv6 Diversity subobjects. The following
 three DI Type values are defined in this document:

DI Type value Definition
‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 1 Client‑Initiated Identifier
 2 PCE‑Allocated Identifier
 3 Network‑Assigned Identifier

 Attribute Flags (A-Flags):

 The Attribute Flags (A-Flags) are used to communicate desirable
 attributes of the LSP being signaled in the IPv4/IPv6 Diversity
 subobjects. Each flag acts independently. Any combination of
 flags is permitted.

 0x01 = Destination node exception

 Indicates that the exclusion does not apply to the destination
 node of the LSP being signaled.

 0x02 = Processing node exception

 Indicates that the exclusion does not apply to the node(s)
 performing ERO expansion for the LSP being signaled. An
 ingress UNI-N node is an example of such a node.

 0x04 = Penultimate node exception

 Indicates that the penultimate node of the LSP being signaled
 MAY be shared with the excluded path even when this violates
 the exclusion flags. This flag is useful, for example, when an
 EN is not dual homed (like EN4 in Figure 1, where all LSPs have
 to go through CN5).

The "Penultimate node exception" flag is typically set when the
destination node is single homed (e.g., EN1 or EN4 in
Figure 2). In such a case, LSP diversity can only be
accomplished inside the core network up to the egress node and
the penultimate hop must be the same for the LSPs.

 0x08 = LSP ID to be ignored

 This flag is used to indicate tunnel-level exclusion.
 Specifically, this flag is used to indicate that if the
 diversity identifier contains an LSP ID field, then the LSP ID
 is to be ignored, and the exclusion applies to any LSP matching
 the rest of the diversity identifier.

 Exclusion Flags (E-Flags):

 The Exclusion Flags are used to communicate the desired type(s) of
 exclusion requested in the IPv4/IPv6 Diversity subobjects. The
 following flags are defined. Any combination of these flags is
 permitted. Please note that the exclusion specified by these
 flags may be modified by the value of the A-Flags. For example,
 the node exclusion flag is ignored for the penultimate node if the
 "Penultimate node exception" flag of the A-Flags is set.

 0x01 = SRLG exclusion

 Indicates that the path of the LSP being signaled is requested
 to be SRLG disjoint with respect to the excluded path specified
 by the IPv4/IPv6 Diversity XRO subobject.

 0x02 = Node exclusion

 Indicates that the path of the LSP being signaled is requested
 to be "node diverse" from the excluded path specified by the
 IPv4/IPv6 Diversity XRO subobject.

 0x04 = Link exclusion

 Indicates that the path of the LSP being signaled is requested
 to be "link diverse" from the path specified by the IPv4/IPv6
 Diversity XRO subobject.

 0x08 = Reserved

 This flag is reserved. It MUST be set to zero on transmission
 and MUST be ignored on receipt for both IPv4/IPv6 Diversity XRO
 subobjects.

 Resvd:

 This field is reserved. It MUST be set to zero on transmission
 and MUST be ignored on receipt for both IPv4/IPv6 Diversity XRO
 subobjects.

 IPv4/IPv6 Diversity Identifier Source Address:

 This field MUST be set to the IPv4/IPv6 address of the node that
 assigns the diversity identifier. Depending on the Diversity
 Identifier Type, the diversity identifier source may be a client
 node, PCE entity, or network node. Specifically:

 * When the Diversity Identifier Type is set to the "Client-
 Initiated Identifier", the value MUST be set to IPv4/IPv6
 tunnel sender address of the reference LSP against which
 diversity is desired. The IPv4/IPv6 tunnel sender address is
 as defined in [RFC3209].

 * When the Diversity Identifier Type is set to "PCE-Allocated
 Identifier", the value MUST be set to the IPv4/IPv6 address of
 the node that assigned the Path Key identifier and that can
 return an expansion of the Path Key or use the Path Key as
 exclusion in a path computation. The Path Key is defined in
 [RFC5553]. The PCE ID is carried in the Diversity Identifier
 Source Address field of the subobject.

 * When the Diversity Identifier Type is set to "Network-Assigned
 Identifier", the value MUST be set to the IPv4/IPv6 address of
 the node allocating the Path Affinity Set (PAS).

Diversity Identifier Value: Encoding for this field depends on the
 Diversity Identifier Type, as defined in the following.

 When the Diversity Identifier Type is set to "Client-Initiated
 Identifier" in the IPv4 Diversity XRO subobject, the Diversity
 Identifier Value MUST be encoded as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| IPv4 Tunnel Endpoint Address |
+‑+
| Must Be Zero | Tunnel ID |
+‑+
| Extended Tunnel ID |
+‑+
| Must Be Zero | LSP ID |
+‑+

 The IPv4 Tunnel Endpoint Address, Tunnel ID, Extended Tunnel ID,
 and LSP ID are as defined in [RFC3209].

 When the Diversity Identifier Type is set to "Client-Initiated
 Identifier" in the IPv6 Diversity XRO subobject, the Diversity
 Identifier Value MUST be encoded as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| IPv6 Tunnel Endpoint Address |
+‑+
| IPv6 Tunnel Endpoint Address (cont.) |
+‑+
| IPv6 Tunnel Endpoint Address (cont.) |
+‑+
| IPv6 Tunnel Endpoint Address (cont.) |
+‑+
| Must Be Zero | Tunnel ID |
+‑+
| Extended Tunnel ID |
+‑+
| Extended Tunnel ID (cont.) |
+‑+
| Extended Tunnel ID (cont.) |
+‑+
| Extended Tunnel ID (cont.) |
+‑+
| Must Be Zero | LSP ID |
+‑+

 The IPv6 Tunnel Endpoint Address, Tunnel ID, IPv6 Extended Tunnel
 ID, and LSP ID are as defined in [RFC3209].

 When the Diversity Identifier Type is set to "PCE-Allocated
 Identifier" in the IPv4 or IPv6 Diversity XRO subobject, the
 Diversity Identifier Value MUST be encoded as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Must Be Zero | Path Key |
+‑+

 The Path Key is defined in [RFC5553].

 When the Diversity Identifier Type is set to "Network-Assigned
 Identifier" in the IPv4 or IPv6 Diversity XRO subobject, the
 Diversity Identifier Value MUST be encoded as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Path Affinity Set (PAS) Identifier |
+‑+

 The Path Affinity Set (PAS) Identifier field is a 32-bit value
 that is scoped by (i.e., is only meaningful when used in
 combination with) the Diversity Identifier Source Address field.
 There are no restrictions on how a node selects a PAS identifier
 value. Section 1.3 defines the PAS term and provides context on
 how values may be selected.

2.2. Diversity EXRS Subobject

 [RFC4874] defines the EXRS ERO subobject. An EXRS is used to
 identify abstract nodes or resources that must not or should not be
 used on the path between two inclusive abstract nodes or resources in
 the explicit route. An EXRS contains one or more subobjects of its
 own, called EXRS subobjects [RFC4874].

 An EXRS MAY include a Diversity subobject as specified in this
 document. The same type values 38 and 39 MUST be used.

2.3. Processing Rules for the Diversity XRO and EXRS Subobjects

 The procedure defined in [RFC4874] for processing the XRO and EXRS is
 not changed by this document. The processing rules for the Diversity
 XRO and EXRS subobjects are similar unless the differences are
 explicitly described. Similarly, IPv4 and IPv6 Diversity XRO
 subobjects and IPv4 and IPv6 Diversity EXRS subobjects follow the
 same processing rules.

 If the processing node cannot recognize the Diversity XRO/EXRS
 subobject, the node is expected to follow the procedure defined in
 [RFC4874].

 An XRO/EXRS object MAY contain multiple Diversity subobjects of the
 same DI Type. For example, in order to exclude multiple Path Keys, a
 node MAY include multiple Diversity XRO subobjects, each with a
 different Path Key. Similarly, in order to exclude the routes taken
 by multiple LSPs, a node MAY include multiple Diversity XRO/EXRS
 subobjects, each with a different LSP identifier. Likewise, to
 exclude multiple PAS identifiers, a node MAY include multiple
 Diversity XRO/EXRS subobjects, each with a different PAS identifier.
 However, all Diversity subobjects in an XRO/EXRS MUST contain the
 same Diversity Identifier Type. If a Path message contains an XRO/
 EXRS with multiple Diversity subobjects of different DI Types, the
 processing node MUST return a PathErr with the error code "Routing
 Problem" (24) and error sub-code "XRO/EXRS Too Complex" (68/69).

 If the processing node recognizes the Diversity XRO/EXRS subobject
 but does not support the DI Type, it MUST return a PathErr with the
 error code "Routing Problem" (24) and error sub-code "Unsupported
 Diversity Identifier Type" (36).

 In the case of DI Type "Client-Initiated Identifier", all nodes along
 the path SHOULD process the diversity information signaled in the
 XRO/EXRS Diversity subobjects to verify that the signaled diversity
 constraint is satisfied. If a diversity violation is detected,
 crankback signaling MAY be initiated.

 In the case of DI Type "PCE-Allocated Identifier" and "Network-
 Assigned Identifier", the nodes in the domain that perform path
 computation SHOULD process the diversity information signaled in the
 XRO/EXRS Diversity subobjects as follows. In the PCE case, the
 ingress node of a domain sends a path computation request for a path
 from ingress node to egress node, including diversity constraints to
 a PCE. Or, in the PAS case, the ingress node is capable of
 calculating the path for the new LSP from ingress node to the egress
 node, taking the diversity constraints into account. The calculated
 path is then carried in the Explicit Route Object (ERO). Hence, the
 transit nodes in a domain and the domain egress node SHOULD NOT
 process the signaled diversity information unless path computation is
 performed.

 While processing the EXRS object, if a loose hop expansion results in
 the creation of another loose hop in the outgoing ERO, the processing
 node MAY include the EXRS in the newly created loose hop for further
 processing by downstream nodes.

 The A-Flags affect the processing of the Diversity XRO/EXRS subobject
 as follows:

 o When the "Processing node exception" flag is set, the exclusion
 MUST be ignored for the node processing the XRO or EXRS subobject.

 o When the "Destination node exception" flag is set, the exclusion
 MUST be ignored for the destination node in processing the XRO
 subobject. The destination node exception for the EXRS subobject
 applies to the explicit node identified by the ERO subobject that

 identifies the next abstract node. When the "Destination node
 exception" flag is set in the EXRS subobject, exclusion MUST be
 ignored for said node (i.e., the next abstract node).

 o When the "Penultimate node exception" flag is set in the XRO
 subobject, the exclusion MUST be ignored for the penultimate node
 on the path of the LSP being established.

 The penultimate node exception for the EXRS subobject applies to
 the node before the explicit node identified by the ERO subobject
 that identifies the next abstract node. When the "Penultimate
 node exception" flag is set in the EXRS subobject, the exclusion
 MUST be ignored for said node (i.e., the node before the next
 abstract node).

 If the L-flag of the Diversity XRO subobject or Diversity EXRS
 subobject is not set, the processing node proceeds as follows.

 o If the Diversity Identifier Type is set to "Client-Initiated
 Identifier", the processing node MUST ensure that the path
 calculated/expanded for the signaled LSP is diverse from the route
 taken by the LSP identified in the Diversity Identifier Value
 field.

 o If the Diversity Identifier Type is set to "PCE-Allocated
 Identifier", the processing node MUST ensure that any path
 calculated for the signaled LSP is diverse from the route
 identified by the Path Key. The processing node MAY use the PCE
 identified by the Diversity Identifier Source Address in the
 subobject for route computation. The processing node MAY use the
 Path Key resolution mechanisms described in [RFC5553].

 o If the Diversity Identifier Type is set to "Network-Assigned
 Identifier", the processing node MUST ensure that the path
 calculated for the signaled LSP is diverse with respect to the
 values associated with the PAS Identifier and Diversity Identifier
 Source Address fields.

 o Regardless of whether the path computation is performed locally or
 at a remote node (e.g., PCE), the processing node MUST ensure that
 any path calculated for the signaled LSP is diverse from the
 requested Exclusion Flags.

 o If the excluded path referenced in the XRO subobject is unknown to
 the processing node, the processing node SHOULD ignore the
 Diversity XRO subobject and SHOULD proceed with the signaling
 request. After sending the Resv for the signaled LSP, the

 processing node MUST return a PathErr with the error code "Notify
 Error" (25) and error sub-code "Route of XRO LSP identifier
 unknown" (14) for the signaled LSP.

 o If the processing node fails to find a path that meets the
 requested constraint, the processing node MUST return a PathErr
 with the error code "Routing Problem" (24) and error sub-code
 "Route blocked by Exclude Route" (67).

 If the L-flag of the Diversity XRO subobject or Diversity EXRS
 subobject is set, the processing node proceeds as follows:

 o If the Diversity Identifier Type is set to "Client-Initiated
 Identifier", the processing node SHOULD ensure that the path
 calculated/expended for the signaled LSP is diverse from the route
 taken by the LSP identified in the Diversity Identifier Value
 field.

 o If the Diversity Identifier Type is set to "PCE-Allocated
 Identifier", the processing node SHOULD ensure that the path
 calculated for the signaled LSP is diverse from the route
 identified by the Path Key.

 o If the Diversity Identifier Type is set to "Network-Assigned
 Identifier", the processing node SHOULD ensure that the path
 calculated for the signaled LSP is diverse with respect to the
 values associated with the PAS Identifier and Diversity Identifier
 Source Address fields.

 o If the processing node fails to find a path that meets the
 requested constraint, it SHOULD proceed with signaling using a
 suitable path that meets the constraint as far as possible. After
 sending the Resv for the signaled LSP, it MUST return a PathErr
 message with error code "Notify Error" (25) and error sub-code
 "Failed to satisfy Exclude Route" (15) to the source node.

 If, subsequent to the initial signaling of a diverse LSP, an excluded
 path referenced in the XRO subobject becomes known to the processing
 node or a change in the excluded path becomes known to the processing
 node, the processing node MUST re-evaluate the exclusion and
 diversity constraints requested by the diverse LSP to determine
 whether they are still satisfied.

 o In the case where the L-flag was not set in the initial setup
 message, the exclusion and diversity constraints were satisfied at
 the time of the initial setup. If the processing node re-
 evaluating the exclusion and diversity constraints for a diverse
 LSP detects that the exclusion and diversity constraints are no

 longer met, it MUST send a PathErr message for the diverse LSP
 with the error code "Routing Problem" (24) and error sub-code
 "Route blocked by Exclude Route" (67). The Path_State_Removed
 (PSR) flag [RFC3473] MUST NOT be set. A source node receiving a
 PathErr message with this error code and sub-code combination
 SHOULD take appropriate actions and move the diverse LSP to a new
 path that meets the original constraints.

 o In the case where the L-flag was set in the initial setup message,
 the exclusion and diversity constraints may or may not be
 satisfied at any given time. If the exclusion constraints for a
 diverse LSP were satisfied before, and if the processing node re-
 evaluating the exclusion and diversity constraints for a diverse
 LSP detects that exclusion and diversity constraints are no longer
 met, it MUST send a PathErr message for the diverse LSP with the
 error code "Notify Error" (25) and error sub-code "Failed to
 satisfy Exclude Route" (15). The PSR flag MUST NOT be set. The
 source node MAY take no consequent action and keep the LSP along
 the path that does not meet the original constraints. Similarly,
 if the exclusion constraints for a diverse LSP were not satisfied
 before, and if the processing node re-evaluating the exclusion and
 diversity constraints for a diverse LSP detects that the exclusion
 constraints are met, it MUST send a PathErr message for the
 diverse LSP with the error code "Notify Error" (25) and a new
 error sub-code "Compliant path exists" (16). The PSR flag MUST
 NOT be set. A source node receiving a PathErr message with this
 error code and sub-code combination MAY move the diverse LSP to a
 new path that meets the original constraints.

3. Security Considerations

 This document does not introduce any additional security issues in
 addition to those identified in [RFC5920], [RFC2205], [RFC3209],
 [RFC3473], [RFC2747], [RFC4874], [RFC5520], and [RFC5553].

 The diversity mechanisms defined in this document rely on the new
 diversity subobject that is carried in the XRO or EXRS, respectively.
 In Section 7 of [RFC4874], it is noted that some administrative
 boundaries may remove the XRO due to security concerns on explicit
 route information exchange. However, when the diversity subobjects
 specified in this document are used, removing at the administrative
 boundary an XRO containing these diversity subobjects would result in
 the request for diversity being dropped at the boundary, and path
 computation would be unlikely to produce the requested diverse path.
 As such, diversity subobjects MUST be retained in an XRO crossing an
 administrative boundary, even if other subobjects are removed. This
 retention would be based on operator policy. The use of diversity
 subobjects is based on mutual agreement. This avoids the need to
 share the identity of network resources when supporting diversity.

4. IANA Considerations

 IANA has assigned new values defined in this document and summarized
 in this section.

4.1. New XRO Subobject Types

 In the IANA registry for RSVP parameters, under "Class Names, Class
 Numbers, and Class Types", this document defines two new subobjects
 for the EXCLUDE_ROUTE object [RFC4874], C-Type 1 (see "Class Types or
 C-Types - 232 EXCLUDE_ROUTE" on <https://www.iana.org/assignments/
 rsvp-parameters>).

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
| Description | Value |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
| IPv4 Diversity | 38 |
| IPv6 Diversity | 39 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+

4.2. New EXRS Subobject Types

 The Diversity XRO subobjects are also defined as new EXRS subobjects
 (see "Class Types or C-Types - 20 EXPLICIT_ROUTE" on
 <https://www.iana.org/assignments/rsvp-parameters>). The same
 numeric values have been assigned:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
| Description | Value |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
| IPv4 Diversity | 38 |
| IPv6 Diversity | 39 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+

4.3. New RSVP Error Sub-codes

 In the IANA registry for RSVP parameters, under "Error Codes and
 Globally Defined Error Value Sub-Codes", for Error Code "Routing
 Problem" (24) (see [RFC3209]), the following sub-codes are defined
 (see "Sub-Codes - 24 Routing Problem" on
 <https://www.iana.org/assignments/rsvp-parameters>).

+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Value | Description | Reference |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| 36 | Unsupported Diversity Identifier Type | RFC 8390 |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

 For Error Code "Notify Error" (25) (see [RFC3209]), the following
 sub-codes are defined (see "Sub-Codes - 25 Notify Error" on
 <https://www.iana.org/assignments/rsvp-parameters>).

+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Value | Description | Reference |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
14	Route of XRO LSP identifier unknown	RFC 8390
15	Failed to satisfy Exclude Route	RFC 8390
16	Compliant path exists	RFC 8390
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

5. References

5.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2747]
 Baker, F., Lindell, B., and M. Talwar, "RSVP Cryptographic
 Authentication", RFC 2747, DOI 10.17487/RFC2747, January
 2000, <https://www.rfc-editor.org/info/rfc2747>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <https://www.rfc-editor.org/info/rfc3209>.

 [RFC3473]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Resource ReserVation Protocol-
 Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
 DOI 10.17487/RFC3473, January 2003,
 <https://www.rfc-editor.org/info/rfc3473>.

 [RFC4202]
 Kompella, K., Ed. and Y. Rekhter, Ed., "Routing Extensions
 in Support of Generalized Multi-Protocol Label Switching
 (GMPLS)", RFC 4202, DOI 10.17487/RFC4202, October 2005,
 <https://www.rfc-editor.org/info/rfc4202>.

 [RFC4874]
 Lee, CY., Farrel, A., and S. De Cnodder, "Exclude Routes -
 Extension to Resource ReserVation Protocol-Traffic
 Engineering (RSVP-TE)", RFC 4874, DOI 10.17487/RFC4874,
 April 2007, <https://www.rfc-editor.org/info/rfc4874>.

 [RFC4920]
 Farrel, A., Ed., Satyanarayana, A., Iwata, A., Fujita, N.,
 and G. Ash, "Crankback Signaling Extensions for MPLS and
 GMPLS RSVP-TE", RFC 4920, DOI 10.17487/RFC4920, July 2007,
 <https://www.rfc-editor.org/info/rfc4920>.

 [RFC5553]
 Farrel, A., Ed., Bradford, R., and JP. Vasseur, "Resource
 Reservation Protocol (RSVP) Extensions for Path Key
 Support", RFC 5553, DOI 10.17487/RFC5553, May 2009,
 <https://www.rfc-editor.org/info/rfc5553>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

5.2. Informative References

 [RFC2205]
 Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
 September 1997, <https://www.rfc-editor.org/info/rfc2205>.

 [RFC4208]
 Swallow, G., Drake, J., Ishimatsu, H., and Y. Rekhter,
 "Generalized Multiprotocol Label Switching (GMPLS) User-
 Network Interface (UNI): Resource ReserVation Protocol-
 Traffic Engineering (RSVP-TE) Support for the Overlay
 Model", RFC 4208, DOI 10.17487/RFC4208, October 2005,
 <https://www.rfc-editor.org/info/rfc4208>.

 [RFC5251]
 Fedyk, D., Ed., Rekhter, Y., Ed., Papadimitriou, D.,
 Rabbat, R., and L. Berger, "Layer 1 VPN Basic Mode",
 RFC 5251, DOI 10.17487/RFC5251, July 2008,
 <https://www.rfc-editor.org/info/rfc5251>.

 [RFC5520]
 Bradford, R., Ed., Vasseur, JP., and A. Farrel,
 "Preserving Topology Confidentiality in Inter-Domain Path
 Computation Using a Path-Key-Based Mechanism", RFC 5520,
 DOI 10.17487/RFC5520, April 2009,
 <https://www.rfc-editor.org/info/rfc5520>.

 [RFC5920]
 Fang, L., Ed., "Security Framework for MPLS and GMPLS
 Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010,
 <https://www.rfc-editor.org/info/rfc5920>.

 [RFC8001]
 Zhang, F., Ed., Gonzalez de Dios, O., Ed., Margaria, C.,
 Hartley, M., and Z. Ali, "RSVP-TE Extensions for
 Collecting Shared Risk Link Group (SRLG) Information",
 RFC 8001, DOI 10.17487/RFC8001, January 2017,
 <https://www.rfc-editor.org/info/rfc8001>.

Acknowledgements

 The authors would like to thank Xihua Fu for his contributions. The
 authors also would like to thank Luyuan Fang and Walid Wakim for
 their review and comments.

Contributors

Igor Bryskin
Huawei Technologies
Email: Igor.Bryskin@huawei.com

Daniele Ceccarelli
Ericsson
Email: Daniele.Ceccarelli@ericsson.com

Dhruv Dhody
Huawei Technologies
Email: dhruv.ietf@gmail.com

Don Fedyk
Hewlett‑Packard Enterprise
Email: don.fedyk@hpe.com

Clarence Filsfils
Cisco Systems, Inc.
Email: cfilsfil@cisco.com

Gabriele Maria Galimberti
Cisco Systems
Email: ggalimbe@cisco.com

Ori Gerstel
SDN Solutions Ltd.
Email: origerstel@gmail.com

Oscar Gonzalez de Dios
Telefonica I+D
Email: ogondio@tid.es

Matt Hartley
Cisco Systems
Email: mhartley@cisco.com

Kenji Kumaki
KDDI Corporation
Email: ke‑kumaki@kddi.com

Ruediger Kunze
Deutsche Telekom AG
Email: Ruediger.Kunze@telekom.de

Lieven Levrau
Nokia
Email: Lieven.Levrau@nokia.com

Cyril Margaria
Email: cyril.margaria@gmail.com

Julien Meuric
France Telecom Orange
Email: julien.meuric@orange.com

Yuji Tochio
Fujitsu
Email: tochio@jp.fujitsu.com

Xian Zhang
Huawei Technologies
Email: zhang.xian@huawei.com

Authors' Addresses

Zafar Ali (editor)
Cisco Systems.

 Email: zali@cisco.com

George Swallow (editor)
Southend Technical Center

 Email: swallow.ietf@gmail.com

Fatai Zhang (editor)
Huawei Technologies

 Email: zhangfatai@huawei.com

Dieter Beller (editor)
Nokia

 Email: Dieter.Beller@nokia.com

8400 - Extensions to RSVP-TE for Label Switched Path (LSP) Egress Protection

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8400

Category: Standards Track

ISSN: 2070-1721

H. Chen

Huawei Technologies

A. Liu

Ciena

T. Saad

Cisco Systems

F. Xu

Verizon

L. Huang

China Mobile

June 2018

Extensions to RSVP-TE for Label Switched Path (LSP) Egress Protection

Abstract

 This document describes extensions to Resource Reservation Protocol -
 Traffic Engineering (RSVP-TE) for locally protecting the egress
 node(s) of a Point-to-Point (P2P) or Point-to-Multipoint (P2MP)
 Traffic Engineered (TE) Label Switched Path (LSP).

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8400.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

	1. Introduction
	 1.1. Local Protection of Egress Nodes

	2. Conventions Used in This Document

	3. Terminology

	4. Protocol Extensions
	 4.1. Extensions to SERO
	 4.1.1. Primary Egress Subobject

	 4.1.2. P2P LSP ID Subobject

	5. Egress Protection Behaviors
	 5.1. Ingress Behavior

	 5.2. Primary Egress Behavior

	 5.3. Backup Egress Behavior

	 5.4. Transit Node and PLR Behavior
	 5.4.1. Signaling for One-to-One Protection

	 5.4.2. Signaling for Facility Protection

	 5.4.3. Signaling for S2L Sub-LSP Protection

	 5.4.4. PLR Procedures during Local Repair

	6. Application Traffic Considerations
	 6.1. A Typical Application

	 6.2. PLR Procedure for Applications

	 6.3. Egress Procedures for Applications

	7. Security Considerations

	8. IANA Considerations

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Acknowledgements

	Contributors

	Authors' Addresses

1. Introduction

 [RFC4090] describes two methods for locally protecting the transit
 nodes of a P2P LSP: one-to-one and facility protection. [RFC4875]
 specifies how these methods can be used to protect the transit nodes
 of a P2MP LSP. These documents do not discuss the procedures for
 locally protecting the egress node(s) of an LSP.

 This document fills that void and specifies extensions to RSVP-TE for
 local protection of the egress node(s) of an LSP. "Egress node" and
 "egress" are used interchangeably.

1.1. Local Protection of Egress Nodes

 In general, locally protecting an egress node of an LSP means that
 when the egress node fails, the traffic that the LSP carries will be
 delivered to its destination by the direct upstream node of the
 egress node to a backup egress node. Without protecting the egress
 node of the LSP, when the egress node fails, the traffic will be lost
 (i.e., the traffic will not be delivered to its destination).

 Figure 1 shows an example of using backup LSPs to locally protect
 egress nodes L1 and L2 of a primary P2MP LSP starting from ingress
 node R1. La and Lb are the designated backup egress nodes for
 primary egress nodes L1 and L2, respectively. The backup LSP for
 protecting L1 is from its upstream node R3 to backup egress node La,
 and the backup LSP for protecting L2 is from R5 to Lb.

 ******* ******* S Source
 [R2]‑‑‑‑‑[R3]‑‑‑‑‑[L1] CEx Customer Edge
 */ &\ \ Rx Non‑Egress
 */ &\ \ Lx Egress
 */ &\ [CE1] *** Primary LSP
 */ &\ / &&& Backup LSP
 */ &\ /
 */ [La]
 */
 */
 */
 */ ******** ******** *******
[S]‑‑‑[R1]‑‑‑‑‑‑[R4]‑‑‑‑‑‑[R5]‑‑‑‑‑[L2]
 &\ \
 &\ \
 &\ [CE2]
 &\ /
 &\ /
 [Lb]

 Figure 1: Backup LSP for Locally Protecting Egress

 During normal operations, the traffic carried by the P2MP LSP is sent
 through R3 to L1, which delivers the traffic to its destination CE1.
 When R3 detects the failure of L1, R3 switches the traffic to the
 backup LSP to backup egress node La, which delivers the traffic to
 CE1. The time for switching the traffic is within tens of
 milliseconds.

 The exact mechanism by which the failure of the primary egress node
 is detected by the upstream node R3 is out of the scope of this
 document.

 In the beginning, the primary P2MP LSP from ingress node R1 to
 primary egress nodes L1 and L2 is configured. It may be used to
 transport the traffic from source S, which is connected to R1, to
 destinations CE1 and CE2, which are connected to L1 and L2,
 respectively.

 To protect the primary egress nodes L1 and L2, one configures on the
 ingress node R1 a backup egress node for L1, another backup egress
 node for L2, and other options. After the configuration, the ingress
 node sends a Path message for the LSP with information such as the
 Secondary Explicit Route Objects (SEROs), refer to Section 4.1,
 containing the backup egress nodes for protecting the primary egress
 nodes.

 After receiving the Path message with the information, the upstream
 node of a primary egress node sets up a backup LSP to the
 corresponding backup egress node for protecting the primary egress
 node.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Terminology

 The following terminology is used in this document.

LSP: Label Switched Path

TE: Traffic Engineering

P2MP: Point‑to‑Multipoint

P2P: Point‑to‑Point

LSR: Label Switching Router

RSVP: Resource Reservation Protocol

S2L: Source‑to‑Leaf

SERO: Secondary Explicit Route Object

RRO: Record Route Object

BFD: Bidirectional Forwarding Detection

VPN: Virtual Private Network

L3VPN: Layer 3 VPN

VRF: Virtual Routing and Forwarding

LFIB: Label Forwarding Information Base

UA: Upstream Assigned

PLR: Point of Local Repair

BGP: Border Gateway Protocol

CE: Customer Edge

PE: Provider Edge

4. Protocol Extensions

4.1. Extensions to SERO

 The Secondary Explicit Route Object (SERO) is defined in [RFC4873].
 The format of the SERO is reused.

 The SERO used for protecting a primary egress node of a primary LSP
 may be added into the Path messages for the LSP and sent from the
 ingress node of the LSP to the upstream node of the egress node. It
 contains three subobjects.

 The first subobject (refer to Section 4.2 of [RFC4873]) indicates the
 branch node that is to originate the backup LSP (to a backup egress
 node). The branch node is typically the direct upstream node of the
 primary egress node of the primary LSP. If the direct upstream node
 does not support local protection against the failure of the primary
 egress node, the branch node can be any (upstream) node on the
 primary LSP. In this case, the backup LSP from the branch node to
 the backup egress node protects against failures on the segment of
 the primary LSP from the branch node to, and including, the primary
 egress node.

 The second subobject is an Egress Protection subobject, which is a
 PROTECTION object with a new C-Type (3). The format of the Egress
 Protection subobject is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
|L| Type | Length | Reserved | C‑Type (3) |
+‑+
| Reserved |E‑Flags|
+‑+
| Optional Subobjects |
~ ~
+‑+

 E-Flags are defined for local protection of egress nodes.

Bit 31 ("egress local protection" flag): It is the least significant
 bit of the 32‑bit word and is set to 1, which indicates that local
 protection of egress nodes is desired.

Bit 30 ("S2L sub‑LSP backup desired" flag): It is the second least
 significant bit of the 32‑bit word and is set to 1, which
 indicates an S2L sub‑LSP (refer to [RFC4875]) is desired for
 protecting an egress node of a P2MP LSP.

 The Reserved parts MUST be set to zero on transmission and MUST be
 ignored on receipt.

 Four optional subobjects are defined: they are IPv4 and IPv6 primary
 egress node subobjects as well as IPv4 and IPv6 P2P LSP ID
 subobjects. IPv4 and IPv6 primary egress node subobjects indicate
 the IPv4 and IPv6 address of the primary egress node, respectively.
 IPv4 and IPv6 P2P LSP ID subobjects contain the information for
 identifying IPv4 and IPv6 backup P2P LSP tunnels, respectively.
 Their contents are described in Sections 4.1.1 through 4.1.2.2. They
 have the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Reserved (zero) |
+‑+
| Contents / Body of Subobject |
+‑+

 where Type is the type of a subobject and Length is the total size of
 the subobject in bytes, including Type, Length, and Contents fields.
 The Reserved field MUST be set to zero on transmission and MUST be
 ignored on receipt.

 The third (final) subobject (refer to Section 4.2 of [RFC4873]) in
 the SERO contains the egress node of the backup LSP, i.e., the
 address of the backup egress node in the place of the merge node.

 After the upstream node of the primary egress node (a.k.a. the branch
 node) receives the SERO and determines a backup egress node for the
 primary egress node, it computes a path from itself to the backup
 egress node and sets up a backup LSP along the path for protecting
 the primary egress node according to the information in the
 FAST_REROUTE object in the Path message. For example, if facility
 protection is desired, it is provided for the primary egress node.

 The upstream node constructs a new SERO based on the SERO received
 and adds the new SERO into the Path message for the backup LSP. The
 new SERO also contains three subobjects as the SERO for the primary
 LSP. The first subobject in the new SERO indicates the upstream
 node, which may be copied from the first subobject in the SERO
 received. The second subobject in the new SERO includes a primary
 egress node, which indicates the address of the primary egress node.
 The third one contains the backup egress node.

 The upstream node updates the SERO in the Path message for the
 primary LSP. The Egress Protection subobject in the SERO contains a
 subobject called a P2P LSP ID subobject, which contains the
 information for identifying the backup LSP. The final subobject in
 the SERO indicates the address of the backup egress node.

4.1.1. Primary Egress Subobject

 There are two primary egress subobjects: the IPv4 primary egress
 subobject and the IPv6 primary egress subobject.

 The Type of an IPv4 primary egress subobject is 1, and the body of
 the subobject is given below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| IPv4 Address (4 bytes) |
+‑+

 o IPv4 Address: The IPv4 address of the primary egress node.

 The Type of an IPv6 primary egress subobject is 2, and the body of
 the subobject is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| IPv6 Address (16 bytes) |
~ ~
+‑+

 o IPv6 Address: The IPv6 address of the primary egress node.

4.1.2. P2P LSP ID Subobject

 A P2P LSP ID subobject contains the information for identifying a
 backup P2P LSP tunnel.

4.1.2.1. IPv4 P2P LSP ID Subobject

 The Type of an IPv4 P2P LSP ID subobject is 3, and the body of the
 subobject is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| P2P LSP Tunnel Egress IPv4 Address |
+‑+
| Reserved (MUST be zero) | Tunnel ID |
+‑+
| Extended Tunnel ID |
+‑+

 o P2P LSP Tunnel Egress IPv4 Address: The IPv4 address of the egress
 node of the tunnel.

 o Tunnel ID (refer to [RFC4875] and [RFC3209]): A 16-bit identifier
 that remains constant over the life of the tunnel and occupies the
 least significant 16 bits of the 32-bit word.

 o Extended Tunnel ID (refer to [RFC4875] and [RFC3209]): A 4-byte
 identifier that remains constant over the life of the tunnel.

4.1.2.2. IPv6 P2P LSP ID Subobject

 The Type of an IPv6 P2P LSP ID subobject is 4, and the body of the
 subobject is illustrated below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
~ P2P LSP Tunnel Egress IPv6 Address (16 bytes) ~
+‑+
| Reserved (MUST be zero) | Tunnel ID |
+‑+
~ Extended Tunnel ID (16 bytes) ~
+‑+

 o P2P LSP Tunnel Egress IPv6 Address: The IPv6 address of the egress
 node of the tunnel.

 o Tunnel ID (refer to [RFC4875] and [RFC3209]): A 16-bit identifier
 that remains constant over the life of the tunnel and occupies the
 least significant 16 bits of the 32-bit word.

 o Extended Tunnel ID (refer to [RFC4875] and [RFC3209]): A 16-byte
 identifier that remains constant over the life of the tunnel.

5. Egress Protection Behaviors

5.1. Ingress Behavior

 To protect a primary egress node of an LSP, the ingress node MUST set
 the "label recording desired" flag and the "node protection desired"
 flag in the SESSION_ATTRIBUTE object.

 If one-to-one backup or facility backup is desired to protect a
 primary egress node of an LSP, the ingress node MUST include a
 FAST_REROUTE object and set the "one-to-one backup desired" or
 "facility backup desired" flag, respectively.

 If S2L sub-LSP backup is desired to protect a primary egress node of
 a P2MP LSP, the ingress node MUST set the "S2L sub-LSP backup
 desired" flag in an SERO object.

 The decision to instantiate a backup egress node for protecting the
 primary egress node of an LSP can be initiated by either the ingress
 node or the primary egress node of that LSP, but not both.

 A backup egress node MUST be configured on the ingress node of an LSP
 to protect a primary egress node of the LSP if and only if the backup
 egress node is not configured on the primary egress node (refer to
 Section 5.2).

 The ingress node MUST send a Path message for the LSP with the
 objects above and the SEROs for protecting egress nodes of the LSP if
 protection of the egress nodes is desired. For each primary egress
 node of the LSP to be protected, the ingress node MUST add an SERO
 object into the Path message if the backup egress node, or some
 options, are given. If the backup egress node is given, then the
 final subobject in the SERO contains it; otherwise, the address in
 the final subobject is zero.

5.2. Primary Egress Behavior

 To protect a primary egress node of an LSP, a backup egress node MUST
 be configured on the primary egress node of the LSP to protect the
 primary egress node if and only if the backup egress node is not
 configured on the ingress node of the LSP (refer to Section 5.1).

 If the backup egress node is configured on the primary egress node of
 the LSP, the primary egress node MUST send its upstream node a Resv
 message for the LSP with an SERO for protecting the primary egress
 node. It sets the flags in the SERO in the same way as an ingress
 node.

 If the LSP carries the service traffic with a service label, the
 primary egress node sends its corresponding backup egress node the
 information about the service label as a UA label (refer to
 [RFC5331]) and the related forwarding.

5.3. Backup Egress Behavior

 When a backup egress node receives a Path message for an LSP, it
 determines whether the LSP is used for egress local protection by
 checking the SERO with an Egress Protection subobject in the message.
 If there is an Egress Protection subobject in the Path message for
 the LSP and the "egress local protection" flag in the object is set
 to 1, the LSP is the backup LSP for local protection of an egress
 node. The primary egress node to be protected is in the primary
 egress subobject in the SERO.

 When the backup egress node receives the information about a UA label
 and its related forwarding from the primary egress node, it uses the
 backup LSP label as a context label and creates a forwarding entry
 using the information about the UA label and the related forwarding.
 This forwarding entry is in a forwarding table for the primary egress
 node.

 When the primary egress node fails, its upstream node switches the
 traffic from the primary LSP to the backup LSP to the backup egress
 node, which delivers the traffic to its receiver, such as a CE, using
 the backup LSP label as a context label to get the forwarding table
 for the primary egress node and using the service label as a UA label
 to find the forwarding entry in the table to forward the traffic to
 the receiver.

5.4. Transit Node and PLR Behavior

 If a transit node of an LSP receives the Path message with the SEROs
 and it is not an upstream node of any primary egress node of the LSP
 as a branch node, it MUST forward them unchanged.

 If the transit node is the upstream node of a primary egress node to
 be protected as a branch node, it determines the backup egress node,
 obtains a path for the backup LSP, and sets up the backup LSP along
 the path. If the upstream node receives the Resv message with an
 SERO object, it MUST send its upstream node the Resv message without
 the object.

 The PLR (which is the upstream node of the primary egress node a.k.a.
 the branch node) MUST extract the backup egress node from the
 respective SERO object in either a Path or a Resv message. If no
 matching SERO object is found, the PLR tries to find the backup
 egress node, which is not the primary egress node but has the same IP
 address as the destination IP address of the LSP.

 Note that if a backup egress node is not configured explicitly for
 protecting a primary egress node, the primary egress node and the
 backup egress node SHOULD have the same local address configured, and
 the cost to the local address on the backup egress node SHOULD be
 much bigger than the cost to the local address on the primary egress
 node. Thus, the primary egress node and backup egress node are
 considered as a "virtual node". Note that the backup egress node is
 different from this local address (e.g., from the primary egress
 node's point of view). In other words, it is identified by an
 address different from this local address.

 After obtaining the backup egress node, the PLR computes a backup
 path from itself to the backup egress node and sets up a backup LSP
 along the path. It excludes the segment including the primary egress
 node to be protected when computing the path. The PLR sends the
 primary egress node a Path message with an SERO for the primary LSP,
 which indicates the backup egress node by the final subobject in the
 SERO. The PLR puts an SERO into the Path messages for the backup
 LSP, which indicates the primary egress node.

 The PLR MUST provide one-to-one backup protection for the primary
 egress node if the "one-to-one backup desired" flag is set in the
 message; otherwise, it MUST provide facility backup protection if the
 "facility backup desired" flag is set.

 The PLR MUST set the protection flags in the RRO subobject for the
 primary egress node in the Resv message according to the status of
 the primary egress node and the backup LSP protecting the primary
 egress node. For example, it sets the "local protection available"
 flag and the "node protection" flag, which indicate that the primary
 egress node is protected when the backup LSP is up and ready to
 protect the primary egress node.

5.4.1. Signaling for One-to-One Protection

 The behavior of the upstream node of a primary egress node of an LSP
 (as a PLR) is the same as that of a PLR for one-to-one backup
 described in [RFC4090], except that the upstream node (as a PLR)
 creates a backup LSP from itself to a backup egress node in a session
 different from the primary LSP.

 If the LSP is a P2MP LSP and a primary egress node of the LSP is also
 a transit node (i.e., bud node), the upstream node of the primary
 egress node (as a PLR) creates a backup LSP from itself to each of
 the next hops of the primary egress node.

 When the PLR detects the failure of the primary egress node, it
 switches the packets from the primary LSP to the backup LSP to the
 backup egress node. For the failure of the bud node of a P2MP LSP,
 the PLR also switches the packets to the backup LSPs to the bud
 node's next hops, where the packets are merged into the primary LSP.

5.4.2. Signaling for Facility Protection

 Except for backup LSP and downstream label, the behavior of the
 upstream node of the primary egress node of a primary LSP (as a PLR)
 follows the PLR behavior for facility backup, which is described in
 [RFC4090].

 For a number of primary P2P LSPs going through the same PLR to the
 same primary egress node, the primary egress node of these LSPs MAY
 be protected by one backup LSP from the PLR to the backup egress node
 designated for protecting the primary egress node.

 The PLR selects or creates a backup LSP from itself to the backup
 egress node. If there is a backup LSP that satisfies the constraints
 given in the Path message, then this one is selected; otherwise, a
 new backup LSP to the backup egress node is created.

 After getting the backup LSP, the PLR associates the backup LSP with
 a primary LSP for protecting its primary egress node. The PLR
 records that the backup LSP is used to protect the primary LSP
 against its primary egress node failure and MUST include an SERO
 object in the Path message for the primary LSP. The object MUST
 contain the backup LSP ID. It indicates that the primary egress node
 MUST send the backup egress node the service label as a UA label and
 also send the information about forwarding the traffic to its
 destination using the label if there is a service carried by the LSP
 and the primary LSP label as a UA label (if the label is not implicit
 null). How a UA label is sent is out of scope for this document
 (refer to [FRAMEWK]).

 When the PLR detects the failure of the primary egress node, it
 redirects the packets from the primary LSP into the backup LSP to the
 backup egress node and keeps the primary LSP label from the primary
 egress node in the label stack if the label is not implicit null.
 The backup egress node delivers the packets to the same destinations
 as the primary egress node using the backup LSP label as a context
 label and the labels under as UA labels.

5.4.3. Signaling for S2L Sub-LSP Protection

 The S2L sub-LSP protection uses an S2L sub-LSP (refer to [RFC4875])
 as a backup LSP to protect a primary egress node of a P2MP LSP. The
 PLR MUST determine to protect a primary egress node of a P2MP LSP via
 S2L sub-LSP protection when it receives a Path message with the "S2L
 sub-LSP backup desired" flag set.

 The PLR MUST set up the backup S2L sub-LSP to the backup egress node
 and create and maintain its state in the same way as if setting up a
 S2L sub-LSP defined in [RFC4875] from the signaling's point of view.
 It computes a path for the backup LSP from itself to the backup
 egress node, constructs and sends a Path message along the path, and
 receives and processes a Resv message responding to the Path message.

 After receiving the Resv message for the backup LSP, the PLR creates
 a forwarding entry with an inactive state or flag called "inactive
 forwarding entry". This inactive forwarding entry is not used to
 forward any data traffic during normal operations.

 When the PLR detects the failure of the primary egress node, it
 changes the forwarding entry for the backup LSP to "active". Thus,
 the PLR forwards the traffic to the backup egress through the backup
 LSP, which sends the traffic to its destination.

5.4.4. PLR Procedures during Local Repair

 When the upstream node of a primary egress node of an LSP (as a PLR)
 detects the failure of the primary egress node, it follows the
 procedures defined in Section 6.5 of [RFC4090]. It SHOULD notify the
 ingress node about the failure of the primary egress node in the same
 way as a PLR notifies the ingress node about the failure of a transit
 node.

 Moreover, the PLR MUST let the upstream part of the primary LSP stay
 alive after the primary egress node fails by sending the Resv message
 to its upstream node along the primary LSP. The downstream part of
 the primary LSP from the PLR to the primary egress node SHOULD be
 removed. When a bypass LSP from the PLR to a backup egress node
 protects the primary egress node, the PLR MUST NOT send any Path
 message for the primary LSP through the bypass LSP to the backup
 egress node.

 In the local revertive mode, the PLR will re-signal each of the
 primary LSPs that were routed over the restored resource once it
 detects that the resource is restored. Every primary LSP
 successfully re-signaled along the restored resource will be switched
 back.

 Note that the procedure for protecting the primary egress node is
 triggered on the PLR if the primary egress node failure is
 determined. If link (from PLR to primary egress node) failure and
 primary egress node alive are determined, then the link protection
 procedure is triggered on the PLR. How to determine these is out of
 scope for this document.

6. Application Traffic Considerations

 This section focuses on an example with application traffic carried
 by P2P LSPs.

6.1. A Typical Application

 L3VPN is a typical application. Figure 2 below shows a simple VPN
 that consists of two CEs, CE1 and CE2, connected to two PEs, R1 and
 L1, respectively. There is a P2P LSP from R1 to L1, which is
 represented by stars (****). This LSP is called the primary LSP. R1
 is the ingress node of the LSP and L1 is the (primary) egress node of
 the LSP. R1 sends the VPN traffic received from CE1 through the P2P
 LSP to L1, which delivers the traffic to CE2. R1 sends the VPN
 traffic with an LSP label and a VPN label via the LSP. When the
 traffic reaches the egress node L1 of the LSP, L1 pops the LSP label
 and uses the VPN label to deliver the traffic to CE2.

 In previous solutions based on ingress protection to protect the VPN
 traffic against failure of the egress node L1 of the LSP, when the
 egress node fails, the ingress node R1 of the LSP does the reroute
 (refer to Figure 2). This solution entailed:

 1. A multi-hop BFD session between ingress node R1 and egress node
 L1 of the primary LSP. The BFD session is represented by dots
 (....).

 2. A backup LSP from ingress node R1 to backup egress node La, which
 is indicated by ampersands (&&&&).

 3. La sends R1 a VPN backup label and related information via BGP.

 4. R1 has a VRF with two sets of routes for CE2: one set uses the
 primary LSP and L1 as the next hop; the other uses the backup LSP
 and La as the next hop.

 ***** *****
CE1,CE2 in [R2]‑‑‑‑‑[R3]‑‑‑‑‑[L1] **** Primary LSP
one VPN */ : \ &&&& Backup LSP
 */: \ BFD Session
 [CE1]‑‑[R1] ..: [CE2]
 &\ /
 &\ /
 [R4]‑‑‑‑‑[R5]‑‑‑‑‑[La](BGP sends R1 VPN backup label)
 &&&&& &&&&&

 Figure 2: Protect Egress for L3VPN Traffic

 In normal operations, R1 sends the VPN traffic from CE1 through the
 primary LSP with the VPN label received from L1 as the inner label to
 L1, which delivers the traffic to CE2 using the VPN label.

 When R1 detects the failure of L1, R1 sends the traffic from CE1 via
 the backup LSP with the VPN backup label received from La as the
 inner label to La, which delivers the traffic to CE2 using the VPN
 backup label.

 The solution defined in this document that uses egress local
 protection for protecting L3VPN traffic entails (refer to Figure 3):

 1. A BFD session between R3 (i.e., upstream node of L1) and egress
 node L1 of the primary LSP. This is different from the BFD
 session in Figure 2, which is a multi-hop between ingress node R1
 and egress node L1. The PLR R3 is closer to L1 than the ingress
 node R1. It may detect the failure of the egress node L1 faster
 and more reliably. Therefore, this solution can provide faster
 protection for failure of an egress node.

 2. A backup LSP from R3 to backup egress node La. This is different
 from the backup LSP in Figure 2, which is an end-to-end LSP from
 ingress node R1 to backup egress node La.

 3. Primary egress node L1 sends backup egress node La the VPN label
 as a UA label and also sends related information. The backup
 egress node La uses the backup LSP label as a context label and
 creates a forwarding entry using the VPN label in an LFIB for the
 primary egress node L1.

 4. L1 and La are virtualized as one node (or address). R1 has a VRF
 with one set of routes for CE2, using the primary LSP from R1 to
 L1 and a virtualized node as the next hop. This can be achieved
 by configuring the same local address on L1 and La using the
 address as a destination of the LSP and BGP next hop for the VPN
 traffic. The cost to L1 is configured to be less than the cost
 to La.

 ***** *****
CE1,CE2 in [R2]‑‑‑‑‑[R3]‑‑‑‑‑[L1] **** Primary LSP
one VPN */ &\:.....: \ &&&& Backup LSP
 */ &\ \ BFD Session
 [CE1]‑‑[R1] &\ [CE2]
 &\ /
 &\ /
 [La](VPN label from L1 as a UA label)

 Figure 3: Locally Protect Egress for L3VPN Traffic

 In normal operations, R1 sends the VPN traffic from CE1 via the
 primary LSP with the VPN label as an inner label to L1, which
 delivers the traffic to CE2 using the VPN label.

 When the primary egress node L1 fails, its upstream node R3 detects
 it and switches the VPN traffic from the primary LSP to the backup
 LSP to La, which delivers the traffic to CE2 using the backup LSP
 label as a context label to get the LFIB for L1 and the VPN label as
 a UA label to find the forwarding entry in the LFIB to forward the
 traffic to CE2.

6.2. PLR Procedure for Applications

 When the PLR gets a backup LSP from itself to a backup egress node
 for protecting a primary egress node of a primary LSP, it includes an
 SERO object in the Path message for the primary LSP. The object
 contains the ID information of the backup LSP and indicates that the
 primary egress node sends the backup egress node the application
 traffic label (e.g., the VPN label) as a UA label when needed.

6.3. Egress Procedures for Applications

 When a primary egress node of an LSP sends the ingress node of the
 LSP a label for an application such as a VPN label, it sends the
 label (as a UA label) to the backup egress node for protecting the
 primary egress node. Exactly how the label is sent is out of scope
 for this document.

 When the backup egress node receives a UA label from the primary
 egress node, it adds a forwarding entry with the label into the LFIB
 for the primary egress node. When the backup egress node receives a
 packet from the backup LSP, it uses the top label as a context label
 to find the LFIB for the primary egress node and uses the inner label
 to deliver the packet to the same destination as the primary egress
 node according to the LFIB.

7. Security Considerations

 This document builds upon existing work, specifically, the security
 considerations of [RFC4090], [RFC4875], [RFC3209], and [RFC2205]
 continue to apply. Additionally, protecting a primary egress node of
 a P2P LSP carrying service traffic through a backup egress node
 requires out-of-band communication between the primary egress node
 and the backup egress node in order for the primary egress node to
 convey a service label as a UA label and also convey its related
 forwarding information to the backup egress node. It is important to
 confirm that the identifiers used to identify the primary and backup
 egress nodes in the LSP are verified to match with the identifiers
 used in the out-of-band protocol (such as BGP).

8. IANA Considerations

 IANA maintains a registry called "Class Names, Class Numbers, and
 Class Types" under "Resource Reservation Protocol (RSVP) Parameters".
 IANA has assigned a new C-Type under the PROTECTION object class,
 Class Number 37:

Value Description Definition
‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑
3 Egress Protection Section 4.1

 IANA has created and now maintains a registry under the PROTECTION
 object class (Class Number 37) and Egress Protection (C-Type 3).
 Initial values for the registry are given below. Future assignments
 are to be made through IETF Review [RFC8216].

Value Description Definition
‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑
 0 Reserved
 1 IPv4_PRIMARY_EGRESS Section 4.1.1
 2 IPv6_PRIMARY_EGRESS Section 4.1.1
 3 IPv4_P2P_LSP_ID Section 4.1.2
 4 IPv6_P2P_LSP_ID Section 4.1.2
 5‑127 Unassigned
 128‑255 Reserved

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <https://www.rfc-editor.org/info/rfc3209>.

 [RFC4090]
 Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast
 Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090,
 DOI 10.17487/RFC4090, May 2005,
 <https://www.rfc-editor.org/info/rfc4090>.

 [RFC4873]
 Berger, L., Bryskin, I., Papadimitriou, D., and A. Farrel,
 "GMPLS Segment Recovery", RFC 4873, DOI 10.17487/RFC4873,
 May 2007, <https://www.rfc-editor.org/info/rfc4873>.

 [RFC4875]
 Aggarwal, R., Ed., Papadimitriou, D., Ed., and S.
 Yasukawa, Ed., "Extensions to Resource Reservation
 Protocol - Traffic Engineering (RSVP-TE) for Point-to-
 Multipoint TE Label Switched Paths (LSPs)", RFC 4875,
 DOI 10.17487/RFC4875, May 2007,
 <https://www.rfc-editor.org/info/rfc4875>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8216]
 Pantos, R., Ed. and W. May, "HTTP Live Streaming",
 RFC 8216, DOI 10.17487/RFC8216, August 2017,
 <https://www.rfc-editor.org/info/rfc8216>.

9.2. Informative References

 [FRAMEWK]
 Shen, Y., Jeganathan, J., Decraene, B., Gredler, H.,
 Michel, C., Chen, H., and Y. Jiang, "MPLS Egress
 Protection Framework", Work in Progress, draft-ietf-mpls-
 egress-protection-framework-00, January 2018.

 [RFC2205]
 Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
 September 1997, <https://www.rfc-editor.org/info/rfc2205>.

 [RFC5331]
 Aggarwal, R., Rekhter, Y., and E. Rosen, "MPLS Upstream
 Label Assignment and Context-Specific Label Space",
 RFC 5331, DOI 10.17487/RFC5331, August 2008,
 <https://www.rfc-editor.org/info/rfc5331>.

Acknowledgements

 The authors would like to thank Richard Li, Nobo Akiya, Lou Berger,
 Jeffrey Zhang, Lizhong Jin, Ravi Torvi, Eric Gray, Olufemi Komolafe,
 Michael Yue, Daniel King, Rob Rennison, Neil Harrison, Kannan
 Sampath, Yimin Shen, Ronhazli Adam, and Quintin Zhao for their
 valuable comments and suggestions on this document.

Contributors

 The following people contributed significantly to the content of this
 document and should be considered coauthors:

Ning So
Tata
Email: ningso01@gmail.com

Mehmet Toy
Verizon
Email: mehmet.toy@verizon.com

Lei Liu
Fujitsu
Email: lliu@us.fujitsu.com

Zhenbin Li
Huawei Technologies
Email: lizhenbin@huawei.com

 We also acknowledge the contributions of the following individuals:

Boris Zhang
Telus Communications
Email: Boris.Zhang@telus.com

Nan Meng
Huawei Technologies
Email: mengnan@huawei.com

Prejeeth Kaladharan
Huawei Technologies
Email: prejeeth@gmail.com

Vic Liu
China Mobile
Email: liu.cmri@gmail.com

Authors' Addresses

Huaimo Chen
Huawei Technologies
Boston, MA
United States of America

 Email: huaimo.chen@huawei.com

Autumn Liu
Ciena
United States of America

 Email: hliu@ciena.com

Tarek Saad
Cisco Systems

 Email: tsaad@cisco.com

Fengman Xu
Verizon
2400 N. Glenville Dr
Richardson, TX 75082
United States of America

 Email: fengman.xu@verizon.com

Lu Huang
China Mobile
No.32 Xuanwumen West Street, Xicheng District
Beijing 100053
China

 Email: huanglu@chinamobile.com

8413 - Framework for Scheduled Use of Resources

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8413

Category: Informational

ISSN: 2070-1721

Y. Zhuang

Q. Wu

H. Chen

Huawei

A. Farrel

Juniper Networks

July 2018

Framework for Scheduled Use of Resources

Abstract

 Time-Scheduled (TS) reservation of Traffic Engineering (TE) resources
 can be used to provide resource booking for TE Label Switched Paths
 so as to better guarantee services for customers and to improve the
 efficiency of network resource usage at any moment in time, including
 network usage that is planned for the future. This document provides
 a framework that describes and discusses the architecture for
 supporting scheduled reservation of TE resources. This document does
 not describe specific protocols or protocol extensions needed to
 realize this service.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8413.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Problem Statement
	 2.1. Provisioning TE-LSPs and TE Resources

	 2.2. Selecting the Path of an LSP

	 2.3. Planning Future LSPs

	 2.4. Looking at Future Demands on TE Resources
	 2.4.1. Interaction between Time-Scheduled and Ad Hoc Reservations

	 2.5. Requisite State Information

	3. Architectural Concepts
	 3.1. Where is Scheduling State Held?

	 3.2. What State is Held?

	 3.3. Enforcement of Operator Policy

	4. Architecture Overview
	 4.1. Service Request
	 4.1.1. Reoptimization After TED Updates

	 4.2. Initialization and Recovery

	 4.3. Synchronization Between PCEs

	5. Multi-domain Considerations

	6. Security Considerations

	7. IANA Considerations

	8. Informative References

	Acknowledgements

	Contributors

	Authors' Addresses

1. Introduction

 Traffic Engineering Label Switched Paths (TE-LSPs) are connection-
 oriented tunnels in packet and non-packet networks [RFC3209]
 [RFC3945]. TE-LSPs may reserve network resources for use by the
 traffic they carry, thus providing some guarantees of service
 delivery and allowing a network operator to plan the use of the
 resources across the whole network.

 In some technologies (such as wavelength switched optical networks)
 the resource is synonymous with the label that is switched on the
 path of the LSP so that it is not possible to establish an LSP that
 can carry traffic without assigning a physical resource to the LSP.
 In other technologies (such as packet switched networks), the
 resources assigned to an LSP are a measure of the capacity of a link
 that is dedicated for use by the traffic on the LSP.

 In all cases, network planning consists of selecting paths for LSPs
 through the network so that there will be no contention for
 resources. LSP establishment is the act of setting up an LSP and
 reserving resources within the network. Network optimization or
 reoptimization is the process of repositioning LSPs in the network to
 make the unreserved network resources more useful for potential
 future LSPs while ensuring that the established LSPs continue to
 fulfill their objectives.

 It is often the case that it is known that an LSP will be needed at
 some specific time in the future. While a path for that LSP could be
 computed using knowledge of the currently established LSPs and the
 currently available resources, this does not give any degree of
 certainty that the necessary resources will be available when it is
 time to set up the new LSP. Yet, setting up the LSP ahead of the
 time when it is needed (which would guarantee the availability of the
 resources) is wasteful since the network resources could be used for
 some other purpose in the meantime.

 Similarly, it may be known that an LSP will no longer be needed after
 some future time and that it will be torn down, which will release
 the network resources that were assigned to it. This information can
 be helpful in planning how a future LSP is placed in the network.

 Time-Scheduled (TS) reservation of TE resources can be used to
 provide resource booking for TE-LSPs so as to better guarantee
 services for customers and to improve the efficiency of network
 resource usage into the future. This document provides a framework
 that describes the problem and discusses the architecture for the
 scheduled reservation of TE resources. This document does not
 describe specific protocols or protocol extensions needed to realize
 this service.

2. Problem Statement

2.1. Provisioning TE-LSPs and TE Resources

 TE-LSPs in existing networks are provisioned using a variety of
 techniques. They may be set up using RSVP-TE as a signaling protocol
 [RFC3209] [RFC3473]. Alternatively, they could be established by
 direct control of network elements such as in the Software-Defined
 Networking (SDN) paradigm. They could also be provisioned using the
 PCE Communication Protocol (PCEP) [RFC5440] as a control protocol to
 communicate with the network elements.

 TE resources are reserved at the point of use. That is, the
 resources (wavelengths, timeslots, bandwidth, etc.) are reserved for
 use on a specific link and are tracked by the Label Switching Routers
 (LSRs) at the end points of the link. Those LSRs learn which
 resources to reserve during the LSP setup process.

 The use of TE resources can be varied by changing the parameters of
 the LSP that uses them, and the resources can be released by tearing
 down the LSP.

 Resources that have been reserved in the network for use by one LSP
 may be preempted for use by another LSP. If RSVP-TE signaling is in
 use, a holding priority and a preemption priority are used to
 determine which LSPs may preempt the resources that are in use for
 which other LSPs. If direct (central) control is in use, the
 controller is able to make preemption decisions. In either case,
 operator policy forms a key part of preemption since there is a trade
 between disrupting existing LSPs and enabling new LSPs.

2.2. Selecting the Path of an LSP

 Although TE-LSPs can determine their paths hop by hop using the
 shortest path toward the destination to route the signaling protocol
 messages [RFC3209], in practice this option is not applied because it
 does not look far enough ahead into the network to verify that the
 desired resources are available. Instead, the full length of the
 path of an LSP is usually computed ahead of time either by the head-
 end LSR of a signaled LSP or by Path Computation Element (PCE)
 functionality that is in a dedicated server or built into network
 management software [RFC4655].

 Such full-path computation is applied in order that an end-to-end
 view of the available resources in the network can be used to
 determine the best likelihood of establishing a viable LSP that meets
 the service requirements. Even in this situation, however, it is
 possible that two LSPs being set up at the same time will compete for
 scarce network resources, which means that one or both of them will
 fail to be established. This situation is avoided by using a
 centralized PCE that is aware of the LSP setup requests that are in
 progress.

 Path selection may make allowance for preemption as described in
 Section 2.1. That is, when selecting a path, the decision may be
 made to choose a path that will result in the preemption of an
 existing LSP. The trade-off between selecting a less optimal path,
 failing to select any path at all, and preempting an existing LSP
 must be subject to operator policy.

 Path computation is subject to "objective functions" that define what
 criteria are to be met when the LSP is placed [RFC4655]. These can
 be criteria that apply to the LSP itself (such as the shortest path
 to the destination) or to the network state after the LSP is set up
 (such as the maximized residual link bandwidth). The objective
 functions may be requested by the application requesting the LSP and
 may be filtered and enhanced by the computation engine according to
 operator policy.

2.3. Planning Future LSPs

 LSPs may be established "on demand" when the requester determines
 that a new LSP is needed. In this case, the path of the LSP is
 computed as described in Section 2.2.

 However, in many situations, the requester knows in advance that an
 LSP will be needed at a particular time in the future. For example,
 the requester may be aware of a large traffic flow that will start at
 a well-known time, perhaps for a database synchronization or for the
 exchange of content between streaming sites. Furthermore, the
 requester may also know for how long the LSP is required before it
 can be torn down.

 The set of requests for future LSPs could be collected and held in a
 central database (such as at a Network Management System (NMS)): when
 the time comes for each LSP to be set up, the NMS can ask the PCE to
 compute a path and can then request the LSP to be provisioned. This
 approach has a number of drawbacks because it is not possible to
 determine in advance whether it will be possible to deliver the LSP
 since the resources it needs might be used by other LSPs in the
 network. Thus, at the time the requester asks for the future LSP,
 the NMS can only make a best-effort guarantee that the LSP will be
 set up at the desired time.

 A better solution, therefore, is for the requests for future LSPs to
 be serviced at once. The paths of the LSPs can be computed ahead of
 time and converted into reservations of network resources during
 specific windows in the future. That is, while the path of the LSP
 is computed and the network resources are reserved, the LSP is not
 established in the network until the time for which it is scheduled.

 There is a need to take into account items that need to be subject to
 operator policy, such as 1) the amount of capacity available for
 scheduling future reservations, 2) the operator preference for the
 measures that are used with respect to the use of scheduled resources
 during rapid changes in traffic demand events, or 3) a complex
 (multiple nodes/links) failure event so as to protect against network
 destabilization. Operator policy is discussed further in
 Section 3.3.

2.4. Looking at Future Demands on TE Resources

 While path computation, as described in Section 2.2, takes account of
 the currently available network resources and can act to place LSPs
 in the network so that there is the best possibility of future LSPs
 being accommodated, it cannot handle all eventualities. It is simple
 to construct scenarios where LSPs that are placed one at a time lead
 to future LSPs being blocked, but where foreknowledge of all of the
 LSPs would have made it possible for them all to be set up.

 If, therefore, we were able to know in advance what LSPs were going
 to be requested, we could plan for them and ensure resources were
 available. Furthermore, such an approach enables a commitment to be
 made to a service user that an LSP will be set up and available at a
 specific time.

 A reservation service can be achieved by tracking the current use of
 network resources and also having a future view of the resource
 usage. We call this Time-Scheduled TE (TS-TE) resource reservation.

2.4.1. Interaction between Time-Scheduled and Ad Hoc Reservations

 There will, of course, be a mixture of resource uses in a network.
 For example, normal unplanned LSPs may be requested alongside TS-TE
 LSPs. When an unplanned LSP is requested, no prior accommodation can
 be made to arrange resource availability, so the LSP can be placed no
 better than would be the case without TS-TE. However, the new LSP
 can be placed considering the future demands of TS-TE LSPs that have
 already been requested. Of course, the unplanned LSP has no known
 end time and so any network planning must assume that it will consume
 resources forever.

2.5. Requisite State Information

 In order to achieve the TS-TE resource reservation, the use of
 resources on the path needs to be scheduled. The scheduling state is
 used to indicate when resources are reserved and when they are
 available for use.

 A simple information model for one piece of the scheduling state is
 as follows:

{
 link id;
 resource id or reserved capacity;
 reservation start time;
 reservation end time
}

 The resource that is scheduled could be link capacity, physical
 resources on a link, buffers on an interface, etc., and could include
 advanced considerations such as CPU utilization and the availability
 of memory at nodes within the network. The resource-related
 information might also include the maximal unreserved bandwidth of
 the link over a time interval. That is, the intention is to book
 (reserve) a percentage of the residual (unreserved) bandwidth of the
 link. This could be used, for example, to reserve bandwidth for a
 particular class of traffic (such as IP) that doesn't have a
 provisioned LSP.

 For any one resource, there could be multiple pieces of the
 scheduling state, and for any one link, the timing windows might
 overlap.

 There are multiple ways to realize this information model and
 different ways to store the data. The resource state could be
 expressed as a start time and an end time (as shown above), or it
 could be expressed as a start time and a duration. Multiple
 reservation periods, possibly of different lengths, may need to be
 recorded for each resource. Furthermore, the current state of
 network reservation could be kept separate from the scheduled usage,
 or everything could be merged into a single TS database.

 An application may make a reservation request for immediate resource
 usage or to book resources for future use so as to maximize the
 chance of services being delivered and to avoid contention for
 resources in the future. A single reservation request may book
 resources for multiple periods and might request a reservation that
 repeats on a regular cycle.

 A computation engine (that is, a PCE) may use the scheduling state
 information to help optimize the use of resources into the future and
 reduce contention or blocking when the resources are actually needed.

 Note that it is also necessary to store the information about future
 LSPs as distinct from the specific resource scheduling. This
 information is held to allow the LSPs to be instantiated when they
 are due, and use the paths/resources that have been computed for
 them, and also to provide correlation with the TS-TE resource
 reservations so that it is clear why resources were reserved, thus
 allowing preemption and handling the release of reserved resources in
 the event of cancellation of future LSPs. See Section 3.2 for
 further discussion of the distinction between scheduled resource
 state and scheduled LSP state.

 Network performance factors (such as maximum link utilization and the
 residual capacity of the network), with respect to supporting
 scheduled reservations, need to be supported and are subject to
 operator policy.

3. Architectural Concepts

 This section examines several important architectural concepts to
 understand the design decisions reached in this document to achieve
 TS-TE in a scalable and robust manner.

3.1. Where is Scheduling State Held?

 The scheduling state information described in Section 2.5 has to be
 held somewhere. There are two places where this makes sense:

 o in the network nodes where the resources exist; or,

 o in a central scheduling controller where decisions about resource
 allocation are made.

 The first of these makes policing of resource allocation easier. It
 means that many points in the network can request immediate or
 scheduled LSPs with the associated resource reservation, and that all
 such requests can be correlated at the point where the resources are
 allocated. However, this approach has some scaling and technical
 problems:

 o The most obvious issue is that each network node must retain the
 full time-based state for all of its resources. In a busy network
 with a high arrival rate of new LSPs and a low hold time for each
 LSP, this could be a lot of state. Network nodes are normally
 implemented with minimal spare memory.

 o In order that path computation can be performed, the computing
 entity normally known as a Path Computation Element (PCE)
 [RFC4655] needs access to a database of available links and nodes
 in the network (as well as the TE properties of said links). This
 database is known as the Traffic Engineering Database (TED) and is
 usually populated from information advertised in the IGP by each
 of the network nodes or exported using BGP Link State (BGP-LS)
 [RFC7752]. To be able to compute a path for a future LSP, the PCE
 needs to populate the TED with all of the future resource
 availability: if this information is held on the network nodes, it
 must also be advertised in the IGP. This could be a significant
 scaling issue for the IGP and the network nodes, as all of the
 advertised information is held at every network node and must be
 periodically refreshed by the IGP.

 o When a normal node restarts, it can recover the resource
 reservation state from the forwarding hardware, from Non-Volatile
 Random-Access Memory (NVRAM), or from adjacent nodes through the
 signaling protocol [RFC5063]. If the scheduling state is held at
 the network nodes, it must also be recovered after the restart of
 a network node. This cannot be achieved from the forwarding
 hardware because the reservation will not have been made, could
 require additional expensive NVRAM, or might require that all
 adjacent nodes also have the scheduling state in order to
 reinstall it on the restarting node. This is potentially complex
 processing with scaling and cost implications.

 Conversely, if the scheduling state is held centrally, it is easily
 available at the point of use. That is, the PCE can utilize the
 state to plan future LSPs and can update that stored information with
 the scheduled reservation of resources for those future LSPs. This
 approach also has several issues:

 o If there are multiple controllers, then they must synchronize
 their stored scheduling state as they each plan future LSPs and
 they must have a mechanism to resolve resource contention. This
 is relatively simple and is mitigated by the fact that there is
 ample processing time to replan future LSPs in the case of
 resource contention.

 o If other sources of immediate LSPs are allowed (for example, other
 controllers or autonomous action by head-end LSRs), then the
 changes in resource availability caused by the setup or tear down
 of these LSPs must be reflected in the TED (by use of the IGP as
 is already normally done) and may have an impact on planned future
 LSPs. This impact can be mitigated by replanning future LSPs or
 through LSP preemption.

 o If the scheduling state is held centrally at a PCE, the state must
 be held and restored after a system restart. This is relatively
 easy to achieve on a central server that can have access to non-
 volatile storage. The PCE could also synchronize the scheduling
 state with other PCEs after restart. See Section 4.2 for details.

 o Of course, a centralized system must store information about all
 of the resources in the network. In a busy network with a high
 arrival rate of new LSPs and a low hold time for each LSP, this
 could be a lot of state. This is multiplied by the size of the
 network measured both by the number of links and nodes and by the
 number of trackable resources on each link or at each node. This
 challenge may be mitigated by the centralized server being
 dedicated hardware, but there remains the problem of collecting
 the information from the network in a timely way when there is
 potentially a very large amount of information to be collected and
 when the rate of change of that information is high. This latter
 challenge is only solved if the central server has full control of
 the booking of resources and the establishment of new LSPs so that
 the information from the network only serves to confirm what the
 central server expected.

 Thus, considering these trade-offs, the architectural conclusion is
 that the scheduling state should be held centrally at the point of
 use and not in the network devices.

3.2. What State is Held?

 As already described, the PCE needs access to an enhanced, time-based
 TED. It stores the Traffic Engineering (TE) information, such as
 bandwidth, for every link for a series of time intervals. There are
 a few ways to store the TE information in the TED. For example,
 suppose that the amount of the unreserved bandwidth at a priority
 level for a link is Bj in a time interval from time Tj to Tk (k =
 j+1), where j = 0, 1, 2,

Bandwidth
 ^
 | B3
 | B1 ___________
 | __________
 |B0 B4
 |__________ B2 _________
 | ________________
 |
‑+‑‑‑> Time
 |T0 T1 T2 T3 T4

 Figure 1: A Plot of Bandwidth Usage against Time

 The unreserved bandwidth for the link can be represented and stored
 in the TED as [T0, B0], [T1, B1], [T2, B2], [T3, B3], ... as shown in
 Figure 1.

 But it must be noted that service requests for future LSPs are known
 in terms of the LSPs whose paths are computed and for which resources
 are scheduled. For example, if the requester of a future LSP decides
 to cancel the request or to modify the request, the PCE must be able
 to map this to the resources that were reserved. When the LSP (or
 the request for the LSP with a number of time intervals) is canceled,
 the PCE must release the resources that were reserved on each of the
 links along the path of the LSP in every time interval from the TED.
 If the bandwidth that had been reserved for the LSP on a link was B
 from time T2 to T3 and the unreserved bandwidth on the link was B2
 from T2 to T3, then B is added back to the link for the time interval
 from T2 to T3 and the unreserved bandwidth on the link from T2 to T3
 will be seen to be B2 + B.

 This suggests that the PCE needs an LSP Database (LSP-DB) [RFC8231]
 that contains information not only about LSPs that are active in the
 network but also those that are planned. For each time interval that
 applies to the LSP, the information for an LSP stored in the LSP-DB
 includes: the time interval, the paths computed for the LSP
 satisfying the constraints in the time interval, and the resources
 (such as bandwidth) reserved for the LSP in the time interval. See
 also Section 2.3

 It is an implementation choice how the TED and LSP-DB are stored both
 for dynamic use and for recovery after failure or restart, but it may
 be noted that all of the information in the scheduled TED can be
 recovered from the active network state and from the scheduled LSP-
 DB.

3.3. Enforcement of Operator Policy

 Computation requests for LSPs are serviced according to operator
 policy. For example, a PCE may refuse a computation request because
 the application making the request does not have sufficient
 permissions or because servicing the request might take specific
 resource usage over a given threshold.

 Furthermore, the preemption and holding priorities of any particular
 computation request may be subject to the operator's policies. The
 request could be rejected if it does not conform to the operator's
 policies, or (possibly more likely) the priorities could be set/
 overwritten according to the operator's policies.

 Additionally, the Objective Functions (OFs) of computation request
 (such as maximizing residual bandwidth) are also subject to operator
 policies. It is highly likely that the choice of OFs is not
 available to an application and is selected by the PCE or management
 system subject to operator policies and knowledge of the application.

 None of these statements is new to scheduled resources. They apply
 to stateless, stateful, passive, and active PCEs, and they continue
 to apply to scheduling of resources.

 An operator may choose to configure special behavior for a PCE that
 handles resource scheduling. For example, an operator might want
 only a certain percentage of any resource to be bookable. And an
 operator might want the preemption of booked resources to be an
 inverse function of how far in the future the resources are needed
 for the first time.

 It is a general assumption about the architecture described in
 Section 4 that a PCE is under the operational control of the operator
 that owns the resources that the PCE manipulates. Thus, the operator
 may configure any amount of (potentially complex) policy at the PCE.
 This configuration would also include policy points surrounding
 reoptimization of existing and planned LSPs in the event of changes
 in the current and future (planned) resource availability.

 The granularity of the timing window offered to an application will
 depend on an operator's policy as well as the implementation in the
 PCE and goes to define the operator' service offerings. Different
 granularities and different lengths of prebooking may be offered to
 different applications.

4. Architecture Overview

 The architectural considerations and conclusions described in the
 previous section lead to the architecture described in this section
 and illustrated in Figure 2. The interfaces and interactions shown
 in the figure and labeled (a) through (f) are described in
 Section 4.1.

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
| Service Requester |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 ^
 a|
 v
 ‑‑‑‑‑‑‑ b ‑‑‑‑‑‑‑‑
 | |<‑‑‑>| LSP‑DB |
 | | ‑‑‑‑‑‑‑‑
 | PCE |
 | | c ‑‑‑‑‑
 | |<‑‑‑‑>| TED |
 ‑‑‑‑‑‑‑ ‑‑‑‑‑
 ^ ^
 | |
 d| |e
 | |
 ‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | | Network
 | ‑‑‑‑‑‑‑‑
 | | Router |
 v ‑‑‑‑‑‑‑‑
 ‑‑‑‑‑ ‑‑‑‑‑
 | LSR |<‑‑‑‑‑‑>| LSR |
 ‑‑‑‑‑ f ‑‑‑‑‑

 Figure 2: Reference Architecture for Scheduled Use of Resources

4.1. Service Request

 As shown in Figure 2, some component in the network requests a
 service. This may be an application, an NMS, an LSR, or any
 component that qualifies as a Path Computation Client (PCC). We show
 this on the figure as the "Service Requester", and it sends a request
 to the PCE for an LSP to be set up at some time (either now or in the
 future). The request, indicated on Figure 2 by the arrow (a),
 includes all of the parameters of the LSP that the requester wishes
 to supply, such as priority, bandwidth, start time, and end time.
 Note that the requester in this case may be the LSR shown in the
 figure or may be a distinct system.

 The PCE enters the LSP request in its LSP-DB (b) and uses information
 from its TED (c) to compute a path that satisfies the constraints
 (such as bandwidth) for the LSP in the time interval from the start
 time to the end time. It updates the future resource availability in
 the TED so that further path computations can take account of the
 scheduled resource usage. It stores the path for the LSP into the
 LSP-DB (b).

 When it is time (i.e., at the start time) for the LSP to be set up,
 the PCE sends a PCEP Initiate request to the head-end LSR (d), which
 provides the path to be signaled as well as other parameters, such as
 the bandwidth of the LSP.

 As the LSP is signaled between LSRs (f), the use of resources in the
 network is updated and distributed using the IGP. This information
 is shared with the PCE either through the IGP or using BGP-LS (e),
 and the PCE updates the information stored in its TED (c).

 After the LSP is set up, the head-end LSR sends a PCEP LSP State
 Report (PCRpt) message to the PCE (d). The report contains the
 resources, such as bandwidth usage, for the LSP. The PCE updates the
 status of the LSP in the LSP-DB according to the report.

 When an LSP is no longer required (either because the Service
 Requester has canceled the request or because the LSP's scheduled
 lifetime has expired), the PCE can remove it. If the LSP is
 currently active, the PCE instructs the head-end LSR to tear it down
 (d), and the network resource usage will be updated by the IGP and
 advertised back to the PCE through the IGP or BGP-LS (e). Once the
 LSP is no longer active, the PCE can remove it from the LSP-DB (b).

4.1.1. Reoptimization After TED Updates

 When the TED is updated as indicated in Section 4.1, depending on
 operator policy (so as to minimize network perturbations), the PCE
 may perform reoptimization of the LSPs for which it has computed
 paths. These LSPs may be already provisioned, in which case the PCE
 issues PCEP Update request messages for the LSPs that should be
 adjusted. Additionally, the LSPs being reoptimized may be scheduled
 LSPs that have not yet been provisioned, in which case reoptimization
 involves updating the store of scheduled LSPs and resources.

 In all cases, the purpose of reoptimization is to take account of the
 resource usage and availability in the network and to compute paths
 for the current and future LSPs that best satisfy the objectives of
 those LSPs while keeping the network as clear as possible to support
 further LSPs. Since reoptimization may perturb established LSPs, it
 is subject to operator oversight and policy. As the stability of the
 network will be impacted by frequent changes, the extent and impact
 of any reoptimization needs to be subject to operator policy.

 Additionally, the status of the reserved resources (alarms) can
 enhance the computation and planning for future LSPs and may
 influence repair and reoptimization. Control of recalculations based
 on failures and notifications to the operator is also subject to
 policy.

 See Section 3.3 for further discussion of operator policy.

4.2. Initialization and Recovery

 When a PCE in the architecture shown in Figure 2 is initialized, it
 must learn the state from the network, from its stored databases, and
 potentially from other PCEs in the network.

 The first step is to get an accurate view of the topology and
 resource availability in the network. This would normally involve
 reading the state directly from the network via the IGP or BGP-LS
 (e), but it might include receiving a copy of the TED from another
 PCE. Note that a TED stored from a previous instantiation of the PCE
 is unlikely to be valid.

 Next, the PCE must construct a time-based TED to show scheduled
 resource usage. How it does this is implementation specific, and
 this document does not dictate any particular mechanism: it may
 recover a time-based TED previously saved to non-volatile storage, or
 it may reconstruct the time-based TED from information retrieved from
 the LSP-DB previously saved to non-volatile storage. If there is
 more than one PCE active in the network, the recovering PCE will need
 to synchronize the LSP-DB and time-based TED with other PCEs (see
 Section 4.3).

 Note that the stored LSP-DB needs to include the intended state and
 actual state of the LSPs so that when a PCE recovers, it is able to
 determine what actions are necessary.

4.3. Synchronization Between PCEs

 If there is active in the network more than one PCE that supports
 scheduling, it is important to achieve some consistency between the
 scheduled TED and scheduled LSP-DB held by the PCEs.

 [RFC7399]
 answers various questions around synchronization between
 the PCEs. It should be noted that the time-based "scheduled"
 information adds another dimension to the issue of synchronization
 between PCEs. It should also be noted that a deployment may use a
 primary PCE and then have other PCEs as backup, where a backup PCE
 can take over only in the event of a failure of the primary PCE.
 Alternatively, the PCEs may share the load at all times. The choice
 of the synchronization technique is largely dependent on the
 deployment of PCEs in the network.

 One option for ensuring that multiple PCEs use the same scheduled
 information is simply to have the PCEs driven from the same shared
 database, but it is likely to be inefficient, and interoperation
 between multiple implementations will be harder.

 Another option is for each PCE to be responsible for its own
 scheduled database and to utilize some distributed database
 synchronization mechanism to have consistent information. Depending
 on the implementation, this could be efficient, but interoperation
 between heterogeneous implementations is still hard.

 A further approach is to utilize PCEP messages to synchronize the
 scheduled state between PCEs. This approach would work well if the
 number of PCEs that support scheduling is small, but as the number
 increases, considerable message exchange needs to happen to keep the
 scheduled databases synchronized. Future solutions could also
 utilize some synchronization optimization techniques for efficiency.
 Another variation would be to request information from other PCEs for
 a particular time slice, but this might have an impact on the
 optimization algorithm.

5. Multi-domain Considerations

 Multi-domain path computation usually requires some form of
 cooperation between PCEs, each of which has responsibility for
 determining a segment of the end-to-end path in the domain for which
 it has computational responsibility. When computing a scheduled
 path, resources need to be booked in all of the domains that the path
 will cross so that they are available when the LSP is finally
 signaled.

 Per-domain path computation [RFC5152] is not an appropriate mechanism
 when a scheduled LSP is being computed because the computation
 requests at downstream PCEs are only triggered by signaling.
 However, a similar mechanism could be used where cooperating PCEs
 exchange Path Computation Request (PCReq) messages for a scheduled
 LSP, as shown in Figure 3. In this case, the service requester asks
 for a scheduled LSP that will span two domains (a). PCE1 computes a
 path across Domain 1 and reserves the resources and also asks PCE2 to
 compute and reserve in Domain 2 (b). PCE2 may return a full path or
 could return a path key [RFC5520]. When it is time for LSP setup,
 PCE1 triggers the head-end LSR (c), and the LSP is signaled (d). If
 a path key is used, the entry LSR in Domain 2 will consult PCE2 for
 the path expansion (e) before completing signaling (f).

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | Service Requester |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 ^
 a|
 v
 ‑‑‑‑‑‑ b ‑‑‑‑‑‑
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | PCE1 | | PCE2 |
 | | | |
 ‑‑‑‑‑‑ ‑‑‑‑‑‑
 ^ ^
 | |
 c| e|
 | |
 ‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
| | Domain 1 | | | Domain 2 | | | | |
| v | | v |
| ‑‑‑‑‑ d ‑‑‑‑‑ | | ‑‑‑‑‑ f ‑‑‑‑‑ |
| | LSR |<‑‑‑>| LSR |<‑+‑‑+‑>| LSR |<‑‑‑>| LSR | |
| ‑‑‑‑‑ ‑‑‑‑‑ | | ‑‑‑‑‑ ‑‑‑‑‑ |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

 Figure 3: Per-Domain Path Computation for Scheduled LSPs

 Another mechanism for PCE cooperation in multi-domain LSP setup is
 Backward Recursive PCE-Based Computation (BRPC) [RFC5441]. This
 approach relies on the downstream domain to supply a variety of
 potential paths to the upstream domain. Although BRPC can arrive at
 a more optimal end-to-end path than per-domain path computation, it
 is not well suited to LSP scheduling because the downstream PCE would
 need to reserve resources on all of the potential paths and then
 release those that the upstream PCE announced it did not plan to use.

 Finally, we should consider hierarchical PCE (H-PCE) [RFC6805]. This
 mode of operation is similar to that shown in Figure 3, but a parent
 PCE is used to coordinate the requests to the child PCEs, which then
 results in better visibility of the end-to-end path and better
 coordination of the resource booking. The sequenced flow of control
 is shown in Figure 4.

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | Service Requester |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 ^
 a|
 v
 ‑‑‑‑‑‑‑‑
 | |
 | Parent |
 | PCE |
 | |
 ‑‑‑‑‑‑‑‑
 ^ ^ b
 b| |_______________________
 | |
 v v
 ‑‑‑‑‑‑ ‑‑‑‑‑‑
 | | | |
 | PCE1 | | PCE2 |
 | | | |
 ‑‑‑‑‑‑ ‑‑‑‑‑‑
 ^ ^
 | |
 c| e|
 | |
 ‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
| | Domain 1 | | | Domain 2 | | | | |
| v | | v |
| ‑‑‑‑‑ d ‑‑‑‑‑ | | ‑‑‑‑‑ f ‑‑‑‑‑ |
| | LSR |<‑‑‑>| LSR |<‑+‑‑+‑>| LSR |<‑‑‑>| LSR | |
| ‑‑‑‑‑ ‑‑‑‑‑ | | ‑‑‑‑‑ ‑‑‑‑‑ |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

 Figure 4: Hierarchical PCE for Path Computation for Scheduled LSPs

6. Security Considerations

 The protocol implications of scheduled resources are unchanged from
 "on demand" LSP computation and setup. A discussion of securing PCEP
 is found in [RFC5440], and work to extend that security is provided
 in [RFC8253]. Furthermore, the path key mechanism described in
 [RFC5520] can be used to enhance privacy and security.

 Similarly, there is no change to the security implications for the
 signaling of scheduled LSPs. A discussion of the security of the
 signaling protocols that would be used is found in [RFC5920].
 However, the use of scheduled LSPs extends the attack surface for a
 PCE-enabled TE system by providing a larger (logically infinite)
 window during which an attack can be initiated or planned. That is,
 if bogus scheduled LSPs can be requested and entered into the LSP-DB,
 then a large number of LSPs could be launched and significant network
 resources could be blocked. Control of scheduling requests needs to
 be subject to operator policy, and additional authorization needs to
 be applied for access to LSP scheduling. Diagnostic tools need to be
 provided to inspect the LSP-DB to spot attacks.

7. IANA Considerations

 This document has no IANA actions.

8. Informative References

 [AUTOBW]
 Yong, L. and Y. Lee, "ASON/GMPLS Extension for Reservation
 and Time Based Automatic Bandwidth Service", Work in
 Progress, draft-yong-ccamp-ason-gmpls-autobw-service-00,
 October 2006.

 [DRAGON]
 National Science Foundation, "The DRAGON Project: Dynamic
 Resource Allocation via GMPLS Optical Networks", Overview
 and Status Presentation at ONT3, September 2006,
 <http://www.maxgigapop.net/wp-content/uploads/
 The-DRAGON-Project.pdf>.

 [FRAMEWORK-TTS]

 Chen, H., Toy, M., Liu, L., and K. Pithewan, "Framework
 for Temporal Tunnel Services", Work In Progress, draft-
 chen-teas-frmwk-tts-01, March 2016.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <https://www.rfc-editor.org/info/rfc3209>.

 [RFC3473]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Resource ReserVation Protocol-
 Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
 DOI 10.17487/RFC3473, January 2003,
 <https://www.rfc-editor.org/info/rfc3473>.

 [RFC3945]
 Mannie, E., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Architecture", RFC 3945,
 DOI 10.17487/RFC3945, October 2004,
 <https://www.rfc-editor.org/info/rfc3945>.

 [RFC4655]
 Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
 Element (PCE)-Based Architecture", RFC 4655,
 DOI 10.17487/RFC4655, August 2006,
 <https://www.rfc-editor.org/info/rfc4655>.

 [RFC5063]
 Satyanarayana, A., Ed. and R. Rahman, Ed., "Extensions to
 GMPLS Resource Reservation Protocol (RSVP) Graceful
 Restart", RFC 5063, DOI 10.17487/RFC5063, October 2007,
 <https://www.rfc-editor.org/info/rfc5063>.

 [RFC5152]
 Vasseur, JP., Ed., Ayyangar, A., Ed., and R. Zhang, "A
 Per-Domain Path Computation Method for Establishing Inter-
 Domain Traffic Engineering (TE) Label Switched Paths
 (LSPs)", RFC 5152, DOI 10.17487/RFC5152, February 2008,
 <https://www.rfc-editor.org/info/rfc5152>.

 [RFC5440]
 Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
 Element (PCE) Communication Protocol (PCEP)", RFC 5440,
 DOI 10.17487/RFC5440, March 2009,
 <https://www.rfc-editor.org/info/rfc5440>.

 [RFC5441]
 Vasseur, JP., Ed., Zhang, R., Bitar, N., and JL. Le Roux,
 "A Backward-Recursive PCE-Based Computation (BRPC)
 Procedure to Compute Shortest Constrained Inter-Domain
 Traffic Engineering Label Switched Paths", RFC 5441,
 DOI 10.17487/RFC5441, April 2009,
 <https://www.rfc-editor.org/info/rfc5441>.

 [RFC5520]
 Bradford, R., Ed., Vasseur, JP., and A. Farrel,
 "Preserving Topology Confidentiality in Inter-Domain Path
 Computation Using a Path-Key-Based Mechanism", RFC 5520,
 DOI 10.17487/RFC5520, April 2009,
 <https://www.rfc-editor.org/info/rfc5520>.

 [RFC5920]
 Fang, L., Ed., "Security Framework for MPLS and GMPLS
 Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010,
 <https://www.rfc-editor.org/info/rfc5920>.

 [RFC6805]
 King, D., Ed. and A. Farrel, Ed., "The Application of the
 Path Computation Element Architecture to the Determination
 of a Sequence of Domains in MPLS and GMPLS", RFC 6805,
 DOI 10.17487/RFC6805, November 2012,
 <https://www.rfc-editor.org/info/rfc6805>.

 [RFC7399]
 Farrel, A. and D. King, "Unanswered Questions in the Path
 Computation Element Architecture", RFC 7399,
 DOI 10.17487/RFC7399, October 2014,
 <https://www.rfc-editor.org/info/rfc7399>.

 [RFC7752]
 Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
 S. Ray, "North-Bound Distribution of Link-State and
 Traffic Engineering (TE) Information Using BGP", RFC 7752,
 DOI 10.17487/RFC7752, March 2016,
 <https://www.rfc-editor.org/info/rfc7752>.

 [RFC8231]
 Crabbe, E., Minei, I., Medved, J., and R. Varga, "Path
 Computation Element Communication Protocol (PCEP)
 Extensions for Stateful PCE", RFC 8231,
 DOI 10.17487/RFC8231, September 2017,
 <https://www.rfc-editor.org/info/rfc8231>.

 [RFC8253]
 Lopez, D., Gonzalez de Dios, O., Wu, Q., and D. Dhody,
 "PCEPS: Usage of TLS to Provide a Secure Transport for the
 Path Computation Element Communication Protocol (PCEP)",
 RFC 8253, DOI 10.17487/RFC8253, October 2017,
 <https://www.rfc-editor.org/info/rfc8253>.

Acknowledgements

 This work has benefited from the discussions of resource scheduling
 over the years. In particular, the DRAGON project [DRAGON] and
 [AUTOBW], both of which provide approaches to auto-bandwidth services
 in GMPLS networks.

 Mehmet Toy, Lei Liu, and Khuzema Pithewan contributed to an earlier
 version of [FRAMEWORK-TTS]. We would like to thank the authors of
 that document on Temporal Tunnel Services for material that assisted
 in thinking about this document.

 Thanks to Michael Scharf and Daniele Ceccarelli for useful comments
 on this work.

 Jonathan Hardwick provided a helpful Routing Directorate review.

 Deborah Brungard, Mirja Kuehlewind, and Benjamin Kaduk suggested many
 changes during their Area Director reviews.

Contributors

 The following person contributed to discussions that led to the
 development of this document:

Dhruv Dhody
Email: dhruv.dhody@huawei.com

Authors' Addresses

Yan Zhuang
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China

 Email: zhuangyan.zhuang@huawei.com

Qin Wu
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China

 Email: bill.wu@huawei.com

Huaimo Chen
Huawei
Boston, MA
United States of America

 Email: huaimo.chen@huawei.com

Adrian Farrel
Juniper Networks

 Email: afarrel@juniper.net

8424 - Extensions to RSVP-TE for Label Switched Path (LSP) Ingress Fast Reroute

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8424

Category: Experimental

ISSN: 2070-1721

H. Chen, Ed.

Huawei Technologies

R. Torvi, Ed.

Juniper Networks

August 2018

Extensions to RSVP-TE for Label Switched Path (LSP) Ingress Fast Reroute (FRR) Protection

Abstract

 This document describes extensions to Resource Reservation Protocol -
 Traffic Engineering (RSVP-TE) for locally protecting the ingress node
 of a Point-to-Point (P2P) or Point-to-Multipoint (P2MP) Traffic
 Engineered (TE) Label Switched Path (LSP). It extends the Fast
 Reroute (FRR) protection for transit nodes of an LSP to the ingress
 node of the LSP. The procedures described in this document are
 experimental.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are candidates for any level of
 Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8424.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

	1. Introduction
	 1.1. Ingress Local Protection Example

	 1.2. Ingress Local Protection Overview

	2. Conventions Used in This Document

	3. Ingress Failure Detection
	 3.1. Source Detects Failure

	 3.2. Backup and Source Detect Failure

	4. Backup Forwarding State
	 4.1. Forwarding State for Backup LSP

	5. Protocol Extensions
	 5.1. INGRESS_PROTECTION Object
	 5.1.1. Class Number and Class Type

	 5.1.2. Object Format

	 5.1.3. Subobject: Backup Ingress IPv4 Address

	 5.1.4. Subobject: Backup Ingress IPv6 Address

	 5.1.5. Subobject: Ingress IPv4 Address

	 5.1.6. Subobject: Ingress IPv6 Address

	 5.1.7. Subobject: TRAFFIC_DESCRIPTOR

	 5.1.8. Subobject: Label-Routes

	6. Behavior of Ingress Protection
	 6.1. Overview
	 6.1.1. Relay-Message Method

	 6.1.2. Proxy-Ingress Method

	 6.2. Ingress Behavior
	 6.2.1. Relay-Message Method

	 6.2.2. Proxy-Ingress Method

	 6.3. Backup Ingress Behavior
	 6.3.1. Backup Ingress Behavior in the Off-Path Case

	 6.3.2. Backup Ingress Behavior in the On-Path Case

	 6.3.3. Failure Detection and Refresh PATH Messages

	 6.4. Revertive Behavior
	 6.4.1. Revert to Primary Ingress

	 6.4.2. Global Repair by Backup Ingress

	7. Security Considerations

	8. Compatibility

	9. IANA Considerations

	10. References
	 10.1. Normative References

	 10.2. Informative References

	Acknowledgements

	Contributors

	Authors' Addresses

1. Introduction

 For an MPLS Traffic Engineered (TE) Label Switched Path (LSP),
 protecting the failures of its transit nodes using Fast Reroute (FRR)
 is covered in [RFC4090] for Point-to-Point (P2P) LSPs and [RFC4875]
 for Point-to-Multipoint (P2MP) LSPs. However, protecting the failure
 of its ingress node using FRR is not covered in either [RFC4090] or
 [RFC4875]. The MPLS Transport Profile (MPLS-TP) Linear Protection
 described in [RFC6378] can provide a protection against the failure
 of any transit node of an LSP between the ingress node and the egress
 node of the LSP, but it cannot protect against the failure of the
 ingress node.

 To protect against the failure of the (primary) ingress node of a
 primary end-to-end P2MP (or P2P) TE LSP, a typical existing solution
 is to set up a secondary backup end-to-end P2MP (or P2P) TE LSP. The
 backup LSP is from a backup ingress node to backup egress nodes (or
 node). The backup ingress node is different from the primary ingress
 node. The backup egress nodes (or node) are (or is) different from
 the primary egress nodes (or node) of the primary LSP. For a P2MP TE
 LSP, on each of the primary (and backup) egress nodes, a P2P LSP is
 created from the egress node to its primary (backup) ingress node and
 configured with Bidirectional Forwarding Detection (BFD). This is
 used to detect the failure of the primary (backup) ingress node for
 the receiver to switch to the backup (or primary) egress node to
 receive the traffic after the primary (or backup) ingress node fails
 when both the primary LSP and the secondary LSP carry the traffic.
 In addition, FRR may be used to provide protections against the
 failures of the transit nodes and the links of the primary and
 secondary end-to-end TE LSPs.

 There are a number of issues in this solution:

 o It consumes lots of network resources. Double states need to be
 maintained in the network since two end-to-end TE LSPs are
 created. Double link bandwidth is reserved and used when both the
 primary and the secondary end-to-end TE LSPs carry the traffic at
 the same time.

 o More operations are needed, which include the configuration of two
 end-to-end TE LSPs and BFDs from each of the egress nodes to its
 corresponding ingress node.

 o The detection of the failure of the ingress node may not be
 reliable. Any failure on the path of the BFD from an egress node
 to an ingress node may cause the BFD to indicate the failure of
 the ingress node.

 o The speed of protection against the failure of the ingress node
 may be slow.

 This specification defines a simple extension to RSVP-TE for local
 protection (FRR) of the ingress node of a P2MP or P2P LSP to resolve
 these issues. Ingress local protection and ingress FRR protection
 will be used interchangeably.

 Note that this document is an Experimental RFC. Two different
 approaches are proposed to transfer the information for ingress
 protection. They both use the same new INGRESS_PROTECTION object,
 which is sent in both PATH and RESV messages between a primary
 ingress and a backup ingress. One approach is the Relay-Message
 Method (refer to Sections 6.1.1 and 6.2.1), the other is the Proxy-
 Ingress Method (refer to Sections 6.1.2 and 6.2.2). Each of them has
 advantages and disadvantages. It is hard to decide which one is used
 as a standard approach now. It is expected that the experiment on
 the ingress local protection with these two approaches will provide
 quantities to help choose one. The quantities include the numbers on
 control traffic, states, codes, and operations. After one approach
 is selected, the document will be revised to reflect that selection
 and any other items learned from the experiment. The revised
 document is expected to be submitted for publication on the standards
 track.

1.1. Ingress Local Protection Example

 Figure 1 shows an example of using a backup P2MP LSP to locally
 protect the ingress of a primary P2MP LSP, which is from ingress Ia
 to three egresses: L1, L2, and L3. The backup LSP is from backup
 ingress Ib to the next hops of ingress Ia: R2 and R4.

 ******* ******* S Source
 [R2]‑‑‑‑‑[R3]‑‑‑‑‑[L1] Ix Ingress
 */ & Rx Transit
 */ & Lx Egress
 */ & *** Primary LSP
 */ & &&& Backup LSP across
 */ & Logical Hop
 */ &
 */ ******** ******** *******
[S]‑‑‑[Ia]‑‑‑‑‑‑‑‑[R4]‑‑‑‑‑‑[R5]‑‑‑‑‑[L2]
 \ | & & *\
 \ | & & *\
 \ | & & *\
 \ | & & *\
 \ | & & *\
 \ |& & *\
 [Ib]&&& [L3]

 Figure 1: Ingress Local Protection

 In normal operations, source S sends the traffic to primary ingress
 Ia. Ia imports the traffic into the primary LSP.

 When source S detects the failure of Ia, it switches the traffic to
 backup ingress Ib, which imports the traffic from S into the backup
 LSP to Ia's next hops, R2 and R4, where the traffic is merged into
 the primary LSP and then sent to egresses L1, L2, and L3.

 Note that the backup ingress is one logical hop away from the
 ingress. A logical hop is a direct link or a tunnel (such as a GRE
 tunnel) over which RSVP-TE messages may be exchanged.

1.2. Ingress Local Protection Overview

 There are four parts in ingress local protection:

 o setting up the necessary backup LSP forwarding state based on the
 information received for ingress local protection;

 o detecting the primary ingress failure and providing the fast
 repair (as discussed in Sections 3 and 4);

 o maintaining the RSVP-TE control-plane state until a global repair
 is done; and,

 o performing the global repair (see Section 6.4.2).

 The primary ingress of a primary LSP sends the backup ingress the
 information for ingress protection in a PATH message with a new
 INGRESS_PROTECTION object. The backup ingress sets up the backup
 LSP(s) and forwarding state after receiving the necessary information
 for ingress protection. Then, it sends the primary ingress the
 status of ingress protection in a RESV message with a new
 INGRESS_PROTECTION object.

 When the primary ingress fails, the backup ingress sends or refreshes
 the next hops of the primary ingress the PATH messages without any
 INGRESS_PROTECTION object after verifying the failure. Thus, the
 RSVP-TE control-plane state of the primary LSP is maintained.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Ingress Failure Detection

 Exactly how to detect the failure of the ingress is out of scope.
 However, it is necessary to discuss different modes for detecting the
 failure because they determine what is the required behavior for the
 source and backup ingress.

3.1. Source Detects Failure

 Source Detects Failure, or Source-Detect for short, means that the
 source is responsible for "fast detecting" the failure of the primary
 ingress of an LSP. Fast detecting the failure means detecting the
 failure in a few or tens of milliseconds. The backup ingress is
 ready to import the traffic from the source into the backup LSP(s)
 after the backup LSP(s) is up.

 In normal operations, the source sends the traffic to the primary
 ingress. When the source detects the failure of the primary ingress,
 it switches the traffic to the backup ingress, which delivers the
 traffic to the next hops of the primary ingress through the backup
 LSP(s), where the traffic is merged into the primary LSP.

 For an LSP, after the primary ingress fails, the backup ingress MUST
 use a method to verify the failure of the primary ingress before the
 PATH message for the LSP expires at the next hop of the primary
 ingress. After verifying the failure, the backup ingress sends/
 refreshes the PATH message to the next hop through the backup LSP as
 needed. The method may verify the failure of the primary ingress
 slowly, such as in seconds.

 After the primary ingress fails, it will not be reachable after
 routing convergence. Thus, checking whether the primary ingress
 (address) is reachable is a possible method.

 When the previously failed primary ingress of a primary LSP becomes
 available again and the primary LSP has recovered from its primary
 ingress, the source may switch the traffic to the primary ingress
 from the backup ingress. An operator may control the traffic switch
 through using a command on the source node after seeing that the
 primary LSP has recovered.

3.2. Backup and Source Detect Failure

 Backup and Source Detect Failure, or Backup-Source-Detect for short,
 means that both the backup ingress and the source are concurrently
 responsible for fast detecting the failure of the primary ingress.

 Note that one of the differences between Source-Detect and Backup-
 Source-Detect is the following: in the former, the backup ingress
 verifies the failure of the primary ingress slowly, such as in
 seconds; in the latter, the backup ingress detects the failure fast,
 such as in a few or tens of milliseconds.

 In normal operations, the source sends the traffic to the primary
 ingress. It switches the traffic to the backup ingress when it
 detects the failure of the primary ingress.

 The backup ingress does not import any traffic from the source into
 the backup LSP in normal operations. When it detects the failure of
 the primary ingress, it imports the traffic from the source into the
 backup LSP to the next hops of the primary ingress, where the traffic
 is merged into the primary LSP.

 The Source-Detect is preferred. It is simpler than the Backup-
 Source-Detect, which needs both the source and the backup ingress to
 detect the ingress failure quickly.

4. Backup Forwarding State

 Before the primary ingress fails, the backup ingress is responsible
 for creating the necessary backup LSPs. These LSPs might be multiple
 bypass P2P LSPs that avoid the ingress. Alternately, the backup
 ingress could choose to use a single backup P2MP LSP as a bypass or
 detour to protect the primary ingress of a primary P2MP LSP.

 The backup ingress may be "off path" or "on path" of an LSP. If a
 backup ingress is not any node of the LSP, it is off path. If a
 backup ingress is a next hop of the primary ingress of the LSP, it is
 on path. When a backup ingress for protecting the primary ingress is
 configured, the backup ingress MUST not be on the LSP except for if
 it is the next hop of the primary ingress. If it is on path, the
 primary forwarding state associated with the primary LSP SHOULD be
 clearly separated from the backup LSP(s) state.

4.1. Forwarding State for Backup LSP

 A forwarding entry for a backup LSP is created on the backup ingress
 after the LSP is set up. Depending on the failure-detection mode
 (e.g., Source-Detect), it may be used to forward received traffic or
 simply be inactive (e.g., Backup-Source-Detect) until required. In
 either case, when the primary ingress fails, this entry is used to
 import the traffic into the backup LSP to the next hops of the
 primary ingress, where the traffic is merged into the primary LSP.

 The forwarding entry for a backup LSP is a local implementation
 issue. In one device, it may have an inactive flag. This inactive
 forwarding entry is not used to forward any traffic normally. When
 the primary ingress fails, it is changed to active; thus, the traffic
 from the source is imported into the backup LSP.

5. Protocol Extensions

 A new object, INGRESS_PROTECTION, is defined for signaling ingress
 local protection. The primary ingress of a primary LSP sends the
 backup ingress this object in a PATH message. In this case, the
 object contains the information needed to set up ingress protection.
 The information includes:

 o the Backup Ingress IP Address, which indicates the backup ingress;

 o the TRAFFIC_DESCRIPTOR, which describes the traffic that the
 primary LSP transports (this traffic is imported into the backup
 LSP(s) on the backup ingress when the primary ingress fails);

 o the Labels and Routes, which indicate the first hops of the
 primary LSP, each of which is paired with its label; and,

 o the Desire options on ingress protection, such as a P2MP option,
 which indicates a desire to use a backup P2MP LSP to protect the
 primary ingress of a primary P2MP LSP.

 The backup ingress sends the primary ingress this object in a RESV
 message. In this case, the object contains the information about the
 status on the ingress protection.

5.1. INGRESS_PROTECTION Object

5.1.1. Class Number and Class Type

 The Class Number for the INGRESS_PROTECTION object MUST be of the
 form 0bbbbbbb to enable implementations that do not recognize the
 object to reject the entire message and return an "Unknown Object
 Class" error [RFC2205]. It is suggested that a Class Number value
 from the Private Use range (124-127) [RFC3936] specified for the
 0bbbbbbb octet be chosen for this experiment. It is also suggested
 that a Class Type value of 1 be used for this object in this
 experiment.

 The INGRESS_PROTECTION object with the FAST_REROUTE object in a PATH
 message is used to control the backup for protecting the primary
 ingress of a primary LSP. The primary ingress MUST insert this
 object into the PATH message to be sent to the backup ingress for
 protecting the primary ingress.

5.1.2. Object Format

 The INGRESS_PROTECTION object has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Length (bytes) | Class‑Num | C‑Type |
+‑+
| Reserved (zero) | NUB | Flags | Options |
+‑+
~ (Subobjects) ~
+‑+

 Flags
 0x01 Ingress local protection available
 0x02 Ingress local protection in use
 0x04 Bandwidth protection

 Options
 0x01 Revert to Ingress
 0x02 P2MP Backup

 For protecting the ingress of a P2MP LSP, if the backup ingress
 doesn't have a backup LSP to each of the next hops of the primary
 ingress, it SHOULD clear "Ingress local protection available" and set
 the Number of Unprotected Branches (NUB) to the number of the next
 hops to which there is no backup LSP.

 The flags are used to communicate status information from the backup
 ingress to the primary ingress.

o Ingress local protection available: The backup ingress MUST set
 this flag after backup LSPs are up and ready for locally protecting
 the primary ingress. The backup ingress sends this to the primary
 ingress to indicate that the primary ingress is locally protected.

o Ingress local protection in use: The backup ingress MUST set this
 flag when it detects a failure in the primary ingress and actively
 redirects the traffic into the backup LSPs. The backup ingress
 records this flag and does not send any RESV messages with this
 flag to the primary ingress since the primary ingress is down.

o Bandwidth protection: The backup ingress MUST set this flag if the
 backup LSPs guarantee to provide the desired bandwidth for the
 protected LSP against the primary ingress failure.

 The options are used by the primary ingress to specify the desired
 behavior to the backup ingress.

o Revert to Ingress: The primary ingress sets this option, which
 indicates that the traffic for the primary LSP, if successfully
 resignaled, will be switched back to the primary ingress from the
 backup ingress when the primary ingress is restored.

o P2MP Backup: This option is set to ask for the backup ingress to
 use backup P2MP LSP to protect the primary ingress.

 The INGRESS_PROTECTION object may contain some subobjects of
 following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length |Reserved (zero)|
+‑+
| Contents / Body of Subobject |
+‑+

 where Type is the type of a subobject and Length is the total size of
 the subobject in bytes, including Type, Length, and Contents fields.

5.1.3. Subobject: Backup Ingress IPv4 Address

 When the primary ingress of a protected LSP sends a PATH message with
 an INGRESS_PROTECTION object to the backup ingress, the object MUST
 have a Backup Ingress IPv4 Address subobject containing an IPv4
 address belonging to the backup ingress if IPv4 is used. The Type of
 the subobject is 1, and the body of the subobject is given below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Backup Ingress IPv4 Address (4 bytes) |
+‑+

 Backup Ingress IPv4 Address: An IPv4 host address of backup ingress

5.1.4. Subobject: Backup Ingress IPv6 Address

 When the primary ingress of a protected LSP sends a PATH message with
 an INGRESS_PROTECTION object to the backup ingress, the object MUST
 have a Backup Ingress IPv6 Address subobject containing an IPv6
 address belonging to the backup ingress if IPv6 is used. The Type of
 the subobject is 2, the body of the subobject is given below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Backup Ingress IPv6 Address (16 bytes) |
~ ~
+‑+

 Backup Ingress IPv6 Address: An IPv6 host address of backup ingress

5.1.5. Subobject: Ingress IPv4 Address

 The INGRESS_PROTECTION object may have an Ingress IPv4 Address
 subobject containing an IPv4 address belonging to the primary ingress
 if IPv4 is used. The Type of the subobject is 3. The subobject has
 the following body:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Ingress IPv4 Address (4 bytes) |
+‑+

 Ingress IPv4 Address: An IPv4 host address of ingress

5.1.6. Subobject: Ingress IPv6 Address

 The INGRESS_PROTECTION object may have an Ingress IPv6 Address
 subobject containing an IPv6 address belonging to the primary ingress
 if IPv6 is used. The Type of the subobject is 4. The subobject has
 the following body:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Ingress IPv6 Address (16 bytes) |
~ ~
+‑+

 Ingress IPv6 Address: An IPv6 host address of ingress

5.1.7. Subobject: TRAFFIC_DESCRIPTOR

 The INGRESS_PROTECTION object may have a TRAFFIC_DESCRIPTOR subobject
 describing the traffic to be mapped to the backup LSP on the backup
 ingress for locally protecting the primary ingress. The subobject
 types for Interface, IPv4 Prefix, IPv6 Prefix, and Application
 Identifier are 5, 6, 7, and 8, respectively. The subobject has the
 following body:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Traffic Element 1 |
~ ~
| Traffic Element n |
+‑+

 The TRAFFIC_DESCRIPTOR subobject may contain multiple Traffic
 Elements of the same type as follows:

o Interface Traffic: Each of the Traffic Elements is a 32‑bit index
 of an interface from which the traffic is imported into the backup
 LSP.

o IPv4 Prefix Traffic: Each of the Traffic Elements is an IPv4
 prefix that contains an 8‑bit prefix length followed by an IPv4
 address prefix (whose length, in bits, is specified by the prefix
 length) that is padded to a byte boundary.

o IPv6 Prefix Traffic Each of the Traffic Elements is an IPv6
 prefix, containing an 8‑bit prefix length followed by an IPv6
 address prefix (whose length, in bits, is specified by the prefix
 length) that is padded to a byte boundary.

o Application Traffic: Each of the Traffic Elements is a 32‑bit
 identifier of an application from which the traffic is imported
 into the backup LSP.

5.1.8. Subobject: Label-Routes

 The INGRESS_PROTECTION object in a PATH message from the primary
 ingress to the backup ingress may have a Label-Routes subobject
 containing the labels and routes that the next hops of the ingress
 use. The Type of the subobject is 9. The subobject has the
 following body:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
~ Subobjects ~
+‑+

 The Subobjects in Label-Routes are copied from those in the
 RECORD_ROUTE objects in the RESV messages that the primary ingress
 receives from its next hops for the primary LSP. They MUST contain
 the first hops of the LSP, each of which is paired with its label.

6. Behavior of Ingress Protection

6.1. Overview

 There are two different proposed signaling approaches to transfer the
 information for ingress protection. They both use the same new
 INGRESS_PROTECTION object. The object is sent in both PATH and RESV
 messages.

6.1.1. Relay-Message Method

 The primary ingress relays the information for ingress protection of
 an LSP to the backup ingress via PATH messages. Once the LSP is
 created, the ingress of the LSP sends the backup ingress a PATH
 message with an INGRESS_PROTECTION object with a Label-Routes
 subobject, which is populated with the next hops and labels. This
 provides sufficient information for the backup ingress to create the
 appropriate forwarding state and backup LSP(s).

 The ingress also sends the backup ingress all the other PATH messages
 for the LSP with an empty INGRESS_PROTECTION object. An
 INGRESS_PROTECTION object without any TRAFFIC_DESCRIPTOR subobject is
 called an empty INGRESS_PROTECTION object. Thus, the backup ingress
 has access to all the PATH messages needed for modification to
 refresh the control-plane state after a failure.

 The empty INGRESS_PROTECTION object is for efficient processing of
 ingress protection for a P2MP LSP. A P2MP LSP's primary ingress may
 have more than one PATH message, each of which is sent to a next hop
 along a branch of the P2MP LSP. The PATH message along a branch will
 be selected and sent to the backup ingress with an INGRESS_PROTECTION
 object containing the TRAFFIC_DESCRIPTOR subobject; all the PATH
 messages along the other branches will be sent to the backup ingress
 containing an INGRESS_PROTECTION object without any
 TRAFFIC_DESCRIPTOR subobject (empty INGRESS_PROTECTION object). For
 a P2MP LSP, the backup ingress only needs one TRAFFIC_DESCRIPTOR.

6.1.2. Proxy-Ingress Method

 Conceptually, a proxy ingress is created that starts the RSVP
 signaling. The explicit path of the LSP goes from the proxy ingress
 to the backup ingress and then to the real ingress. The behavior and
 signaling for the proxy ingress is done by the real ingress; the use
 of a proxy-ingress address avoids problems with loop detection. Note
 that the proxy ingress MUST reside within the same router as the real
 ingress.

 [Traffic Source] *** Primary LSP
 $ $ ‑‑‑ Backup LSP
 $ $ $$ Link
 $ $
[Proxy Ingress] [Backup]
[& Ingress] |
 * |
 *****[MP]‑‑‑‑|

 Figure 2: Example of a Protected LSP with a Proxy-Ingress Node

 The backup ingress MUST know the merge points or next hops and their
 associated labels. This is accomplished by having the RSVP PATH and
 RESV messages go through the backup ingress, although the forwarding
 path need not go through the backup ingress. If the backup ingress
 fails, the ingress simply removes the INGRESS_PROTECTION object and
 forwards the PATH messages to the LSP's next hop(s). If the ingress
 has its LSP configured for ingress protection, then the ingress can
 add the backup ingress and itself to the Explicit Route Object (ERO)
 and start forwarding the PATH messages to the backup ingress.

 Slightly different behavior can apply for the on-path and off-path
 cases. In the on-path case, the backup ingress is a next-hop node
 after the ingress for the LSP. In the off-path case, the backup
 ingress is not any next-hop node after the ingress for all associated
 sub-LSPs.

 The key advantage of this approach is that it minimizes the special
 handling code required. Because the backup ingress is on the
 signaling path, it can receive various notifications. It easily has
 access to all the PATH messages needed for a modification to be sent
 to refresh the control-plane state after a failure.

6.2. Ingress Behavior

 The primary ingress MUST be configured with a couple of pieces of
 information for ingress protection.

o Backup Ingress Address: The primary ingress MUST know the IP
 address of the backup ingress it wants to be used before it can use
 the INGRESS_PROTECTION object.

o Proxy‑Ingress‑Id (only needed for Proxy‑Ingress Method): The
 Proxy‑Ingress‑Id is only used in the RECORD_ROUTE object for
 recording the proxy ingress. If no Proxy‑Ingress‑Id is specified,
 then a local interface address that will not otherwise be included
 in the RECORD_ROUTE object can be used. A similar technique is
 used in Section 6.1.1. of [RFC4090].

o Application Traffic Identifier: The primary ingress and backup
 ingress MUST both know what application traffic should be directed
 into the LSP. If a list of prefixes in the TRAFFIC_DESCRIPTOR
 subobject will not suffice, then a commonly understood Application
 Traffic Identifier can be sent between the primary ingress and
 backup ingress. The exact meaning of the identifier should be
 configured similarly at both the primary ingress and backup
 ingress. The Application Traffic Identifier is understood within
 the unique context of the primary ingress and backup ingress.

o A Connection between Backup Ingress and Primary Ingress: If there
 is not any direct link between the primary ingress and the backup
 ingress, a tunnel MUST be configured between them.

 With this additional information, the primary ingress can create and
 signal the necessary RSVP extensions to support ingress protection.

6.2.1. Relay-Message Method

 To protect the primary ingress of an LSP, the primary ingress MUST do
 the following after the LSP is up.

 1. Select a PATH message P0 for the LSP.

 2. If the backup ingress is off path (the backup ingress is not the
 next hop of the primary ingress for P0), then send it a PATH
 message P0' with the content from P0 and an INGRESS_PROTECTION
 object; else (the backup ingress is a next hop, i.e., on-path
 case) add an INGRESS_PROTECTION object into the existing PATH
 message to the backup ingress (i.e., the next hop). The object
 contains the TRAFFIC_DESCRIPTOR subobject, the Backup Ingress
 Address subobject and the Label-Routes subobject. The options
 field is set to indicate whether a backup P2MP LSP is desired.
 The Label-Routes subobject contains the next hops of the primary
 ingress and their labels. Note that for the on-path case, there
 is an existing PATH message to the backup ingress (i.e., the next
 hop), and we just add an INGRESS_PROTECTION object into the
 existing PATH message to be sent to the backup ingress. We do
 not send a separate PATH message to the backup ingress for this
 existing PATH message.

 3. For each Pi of the other PATH messages for the LSP, send the
 backup ingress a PATH message Pi' with the content copied from Pi
 and an empty INGRESS_PROTECTION object.

 For every PATH message Pj' (i.e., P0'/Pi') to be sent to the backup
 ingress, it has the same SESSION as Pj (i.e., P0/Pi). If the backup
 ingress is off path, the primary ingress updates Pj' according to the
 backup ingress as its next hop before sending it. It adds the backup
 ingress to the beginning of the ERO and sets RSVP_HOP based on the
 interface to the backup ingress. The primary ingress MUST NOT set up
 any forwarding state to the backup ingress if the backup ingress is
 off path.

6.2.2. Proxy-Ingress Method

 The primary ingress is responsible for starting the RSVP signaling
 for the proxy-ingress node. To do this, the following MUST be done
 for the RSVP PATH message.

 1. Compute the EROs for the LSP as normal for the ingress.

 2. If the selected backup ingress node is not the first node on the
 path (for all sub-LSPs), then insert it at the beginning of the
 ERO first, then the backup ingress node, and then the ingress
 node.

 3. In the PATH RECORD_ROUTE Object (RRO), instead of recording the
 ingress node's address, replace it with the Proxy-Ingress-Id.

 4. Leave the hop (HOP) object populated as usual with information
 for the ingress node.

 5. Add the INGRESS_PROTECTION object to the PATH message. Include
 the Backup Ingress Address (IPv4 or IPv6) subobject and the
 TRAFFIC_DESCRIPTOR subobject. Set or clear the options
 indicating that a backup P2MP LSP is desired.

 6. Optionally, add the FAST-REROUTE object [RFC4090] to the Path
 message. Indicate whether one-to-one backup is desired.
 Indicate whether facility backup is desired.

 7. The RSVP PATH message is sent to the backup node as normal.

 If the ingress detects that it can't communicate with the backup
 ingress, then the ingress SHOULD instead send the PATH message to the
 next hop indicated in the ERO computed in step 1. Once the ingress
 detects that it can communicate with the backup ingress, the ingress
 SHOULD follow steps 1-7 to obtain ingress failure protection.

 When the ingress node receives an RSVP PATH message with an
 INGRESS_PROTECTION object and the object specifies that node as the
 ingress node and the Previous Hop (PHOP) as the backup ingress node,
 the ingress node SHOULD remove the INGRESS_PROTECTION object from the
 PATH message before sending it out. Additionally, the ingress node
 MUST store that it will install ingress forwarding state for the LSP
 rather than midpoint forwarding.

 When an RSVP RESV message is received by the ingress, it uses the
 Next Hop (NHOP) to determine whether the message is received from the
 backup ingress or from a different node. The stored associated PATH
 message contains an INGRESS_PROTECTION object that identifies the
 backup ingress node. If the RESV message is not from the backup
 node, then the ingress forwarding state SHOULD be set up, and the
 INGRESS_PROTECTION object MUST be added to the RESV before it is sent
 to the NHOP, which SHOULD be the backup node. If the RESV message is
 from the backup node, then the LSP SHOULD be considered available for
 use.

 If the backup ingress node is on the forwarding path, then a RESV is
 received with an INGRESS_PROTECTION object and an NHOP that matches
 the backup ingress. In this case, the ingress node's address will
 not appear after the backup ingress in the RRO. The ingress node
 SHOULD set up the ingress forwarding state, just as is done if the
 ingress node of the LSP weren't protected.

6.3. Backup Ingress Behavior

 A Label Edge Router (LER) determines that the ingress local
 protection is requested for an LSP if the INGRESS_PROTECTION object
 is included in the PATH message it receives for the LSP. The LER can
 further determine that it is the backup ingress if one of its
 addresses is in the Backup Ingress Address subobject of the
 INGRESS_PROTECTION object. The LER as the backup ingress will assume
 full responsibility of the ingress after the primary ingress fails.
 In addition, the LER determines that it is off path if it is not any
 node of the LSP. The LER determines whether it uses the Relay-
 Message Method or the Proxy-Ingress Method according to
 configurations.

6.3.1. Backup Ingress Behavior in the Off-Path Case

 The backup ingress considers itself a Point of Local Repair (PLR) and
 the primary ingress its next hop, and it provides a local protection
 for the primary ingress. It behaves very similarly to a PLR
 providing fast reroute where the primary ingress is considered to be
 the failure point to protect. Where not otherwise specified, the
 behavior given in [RFC4090] for a PLR applies.

 The backup ingress MUST follow the control options specified in the
 INGRESS_PROTECTION object and the flags and specifications in the
 FAST-REROUTE object. This applies to providing a P2MP backup if the
 "P2MP backup" is set, a one-to-one backup if "one-to-one desired" is
 set, a facility backup if the "facility backup desired" is set, and
 backup paths that support both the desired bandwidth and
 administrative groups that are requested.

 If multiple non-empty INGRESS_PROTECTION objects have been received
 via multiple PATH messages for the same LSP, then the most recent one
 MUST be the one used.

 The backup ingress creates the appropriate forwarding state for the
 backup LSP tunnel(s) to the merge point(s).

 When the backup ingress sends a RESV message to the primary ingress,
 it MUST add an INGRESS_PROTECTION object into the message. It MUST
 set or clear the flags in the object to report "Ingress local
 protection available", "Ingress local protection in use", and
 "bandwidth protection".

 If the backup ingress doesn't have a backup LSP tunnel to each of the
 merge points, it SHOULD clear "Ingress local protection available"
 and set NUB to the number of the merge points to which there is no
 backup LSP.

 When the primary ingress fails, the backup ingress redirects the
 traffic from a source into the backup P2P LSPs or the backup P2MP LSP
 transmitting the traffic to the next hops of the primary ingress,
 where the traffic is merged into the protected LSP.

 In this case, the backup ingress MUST keep the PATH message with the
 INGRESS_PROTECTION object received from the primary ingress and the
 RESV message with the INGRESS_PROTECTION object to be sent to the
 primary ingress. The backup ingress MUST set the "local protection
 in use" flag in the RESV message, which indicates that the backup
 ingress is actively redirecting the traffic into the backup P2P LSPs
 or the backup P2MP LSP for locally protecting the primary ingress
 failure.

 Note that the RESV message with this piece of information will not be
 sent to the primary ingress because the primary ingress has failed.

 If the backup ingress has not received any PATH messages from the
 primary ingress for an extended period of time (e.g., a cleanup
 timeout interval) and a confirmed primary ingress failure did not
 occur, then the standard RSVP soft-state removal SHOULD occur. The
 backup ingress SHALL remove the state for the PATH message from the
 primary ingress and either tear down the one-to-one backup LSPs for
 protecting the primary ingress if one-to-one backup is used or unbind
 the facility backup LSPs if facility backup is used.

 When the backup ingress receives a PATH message from the primary
 ingress for locally protecting the primary ingress of a protected
 LSP, it MUST check to see if any critical information has been
 changed. If the next hops of the primary ingress are changed, the
 backup ingress SHALL update its backup LSP(s) accordingly.

6.3.1.1. Relay-Message Method

 When the backup ingress receives a PATH message with a non-empty
 INGRESS_PROTECTION object, it examines the object to learn what
 traffic associated with the LSP. It determines the next hops to be
 merged to by examining the Label-Routes subobject in the object.

 The backup ingress MUST store the PATH message received from the
 primary ingress but NOT forward it.

 The backup ingress responds with a RESV message to the PATH message
 received from the primary ingress. If the backup ingress is off
 path, the LABEL object in the RESV message contains IMPLICIT-NULL.
 If the INGRESS_PROTECTION object is not "empty", the backup ingress
 SHALL send the RESV message with the state indicating protection is
 available after the backup LSP(s) are successfully established.

6.3.1.2. Proxy-Ingress Method

 When receiving a RESV message for an LSP from a router that is not
 primary ingress, the backup ingress collects the pair of (IPv4/IPv6
 subobject, Label subobject) in the second place to the top pair in
 the RECORD_ROUTE object of the message. It determines the next hops
 to be merged according to the set of the pairs collected. If a
 Label-Routes subobject is included in the INGRESS_PROTECTION object,
 the included IPv4/IPv6 subobjects are used to filter the set down to
 the specific next hops where protection is desired. An RESV message
 MUST have been received before the backup ingress can create or
 select the appropriate backup LSP.

 When the backup ingress receives a PATH message with the
 INGRESS_PROTECTION object, the backup ingress examines the object to
 learn what traffic associated with the LSP. The backup ingress
 forwards the PATH message to the ingress node with the normal RSVP
 changes.

 When the backup ingress receives a RESV message with the
 INGRESS_PROTECTION object, the backup ingress records an IMPLICIT-
 NULL label in the RRO. Then, the backup ingress forwards the RESV
 message to the ingress node, which is acting for the proxy ingress.

6.3.2. Backup Ingress Behavior in the On-Path Case

 An LER as the backup ingress determines that it is on path if one of
 its addresses is a next hop of the primary ingress; for the Proxy-
 Ingress Method, the primary ingress is determined as not its next hop
 by checking the PATH message with the INGRESS_PROTECTION object
 received from the primary ingress. The LER on path MUST send the
 corresponding PATH messages without any INGRESS_PROTECTION object to
 its next hops. It creates a number of backup P2P LSPs or a backup
 P2MP LSP from itself to the other next hops (i.e., the next hops
 other than the backup ingress) of the primary ingress. The other
 next hops are from the Label-Routes subobject.

 It also creates a forwarding entry, which sends/multicasts the
 traffic from the source to the next hops of the backup ingress along
 the protected LSP when the primary ingress fails. The traffic is
 described by the TRAFFIC_DESCRIPTOR.

 After setting up all the backup P2P LSPs or the backup P2MP LSP, the
 backup ingress creates forwarding entry(s) for importing the traffic
 into the backup LSP(s) from the source when the primary ingress
 fails. Then, it MUST send the primary ingress a RESV message with an
 INGRESS_PROTECTION object. The object contains the state of the
 local protection, such as having the "local protection available"
 flag set to one, which indicates that the primary ingress is locally
 protected.

 When the primary ingress fails, the backup ingress sends/multicasts
 the traffic from the source to its next hops along the protected LSP
 and imports the traffic into each of the backup P2P LSPs or to the
 backup P2MP LSP transmitting the traffic to the other next hops of
 the primary ingress, where the traffic is merged into a protected
 LSP.

 During the local repair, the backup ingress MUST continue to send the
 PATH messages to its next hops as before and keep the PATH message
 with the INGRESS_PROTECTION object received from the primary ingress
 and the RESV message with the INGRESS_PROTECTION object to be sent to
 the primary ingress. It MUST set the "local protection in use" flag
 in the RESV message.

6.3.3. Failure Detection and Refresh PATH Messages

 As described in [RFC4090], it is necessary to refresh the PATH
 messages via the backup LSP(s). The backup ingress MUST wait to
 refresh the PATH messages until it can accurately detect that the
 ingress node has failed. An example of such an accurate detection
 would be that the IGP has no bidirectional links to the ingress node,
 or a BFD session to the primary ingress' loopback address has failed
 and stayed failed after the network has reconverged.

 As described in Section 6.4.3 of [RFC4090], the backup ingress,
 acting as PLR, MUST modify and send any saved PATH messages
 associated with the primary LSP to the corresponding next hops
 through backup LSP(s). Any PATH message sent will not contain any
 INGRESS_PROTECTION objects. The RSVP_HOP object in the message
 contains an IP source address belonging to the backup ingress. The
 SENDER_TEMPLATE object has the Backup Ingress Address as its tunnel
 sender address.

6.4. Revertive Behavior

 Upon a failure event in the (primary) ingress of a protected LSP, the
 protected LSP is locally repaired by the backup ingress. There are a
 couple of basic strategies for restoring the LSP to a full working
 path.

o Revert to Primary Ingress: When the primary ingress is restored,
 it resignals each of the LSPs that start from the primary ingress.
 The traffic for every LSP successfully resignaled is switched back
 to the primary ingress from the backup ingress.

o Global Repair by Backup Ingress: After determining that the
 primary ingress of an LSP has failed, the backup ingress computes a
 new optimal path, signals a new LSP along the new path, and
 switches the traffic to the new LSP.

6.4.1. Revert to Primary Ingress

 If "Revert to Primary Ingress" is desired for a protected LSP, the
 (primary) ingress of the LSP SHOULD resignal the LSP that starts from
 the primary ingress after the primary ingress restores. After the
 LSP is resignaled successfully, the traffic SHOULD be switched back
 to the primary ingress from the backup ingress on the source node and
 redirected into the LSP starting from the primary ingress.

 The primary ingress can specify the "Revert to Ingress" control
 option in the INGRESS_PROTECTION object in the PATH messages to the
 backup ingress. After receiving the "Revert to Ingress" control
 option, the backup ingress MUST stop sending/refreshing PATH messages
 for the protected LSP.

6.4.2. Global Repair by Backup Ingress

 When the backup ingress has determined that the primary ingress of
 the protected LSP has failed (e.g., via the IGP), it can compute a
 new path and signal a new LSP along the new path so that it no longer
 relies upon local repair. To do this, the backup ingress MUST use
 the same tunnel sender address in the SENDER_TEMPLATE object and
 allocate an LSP ID different from the one of the old LSP as the LSP
 ID of the new LSP. This allows the new LSP to share resources with
 the old LSP. Alternately, the backup ingress can create a new LSP
 with no bandwidth reservation that duplicates the path(s) of the
 protected LSP, move traffic to the new LSP, delete the protected LSP,
 and then resignal the new LSP with bandwidth.

7. Security Considerations

 In principle, this document does not introduce new security issues.
 The security considerations pertaining to [RFC4090], [RFC4875],
 [RFC2205], and [RFC3209] remain relevant.

8. Compatibility

 This extension reuses and extends semantics and procedures defined in
 [RFC2205], [RFC3209], [RFC4090], and [RFC4875] to support ingress
 protection. The new object defined to indicate ingress protection
 has a Class Number of the form 0bbbbbbb. Per [RFC2205], a node not
 supporting this extension will not recognize the new Class Number and
 should respond with an "Unknown Object Class" error. The error
 message will propagate to the ingress, which can then take action to
 avoid the incompatible node as a backup ingress or may simply
 terminate the session.

9. IANA Considerations

 This document has no IANA actions.

10. References

10.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2205]
 Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
 September 1997, <https://www.rfc-editor.org/info/rfc2205>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <https://www.rfc-editor.org/info/rfc3209>.

 [RFC3936]
 Kompella, K. and J. Lang, "Procedures for Modifying the
 Resource reSerVation Protocol (RSVP)", BCP 96, RFC 3936,
 DOI 10.17487/RFC3936, October 2004,
 <https://www.rfc-editor.org/info/rfc3936>.

 [RFC4090]
 Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast
 Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090,
 DOI 10.17487/RFC4090, May 2005,
 <https://www.rfc-editor.org/info/rfc4090>.

 [RFC4875]
 Aggarwal, R., Ed., Papadimitriou, D., Ed., and S.
 Yasukawa, Ed., "Extensions to Resource Reservation
 Protocol - Traffic Engineering (RSVP-TE) for Point-to-
 Multipoint TE Label Switched Paths (LSPs)", RFC 4875,
 DOI 10.17487/RFC4875, May 2007,
 <https://www.rfc-editor.org/info/rfc4875>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

 [RFC6378]
 Weingarten, Y., Ed., Bryant, S., Osborne, E., Sprecher,
 N., and A. Fulignoli, Ed., "MPLS Transport Profile (MPLS-
 TP) Linear Protection", RFC 6378, DOI 10.17487/RFC6378,
 October 2011, <https://www.rfc-editor.org/info/rfc6378>.

Acknowledgements

 The authors would like to thank Nobo Akiya, Rahul Aggarwal, Eric
 Osborne, Ross Callon, Loa Andersson, Daniel King, Michael Yue, Alia
 Atlas, Olufemi Komolafe, Rob Rennison, Neil Harrison, Kannan Sampath,
 Gregory Mirsky, and Ronhazli Adam for their valuable comments and
 suggestions on this document.

Contributors

 The following people contributed significantly to the content of this
 document and should be considered coauthors:

Autumn Liu
Ciena
United States of America
Email: hliu@ciena.com

Zhenbin Li
Huawei Technologies
Email: zhenbin.li@huawei.com

Yimin Shen
Juniper Networks
10 Technology Park Drive
Westford, MA 01886
United States of America
Email: yshen@juniper.net

Tarek Saad
Cisco Systems
Email: tsaad@cisco.com

Fengman Xu
Verizon
2400 N. Glenville Dr
Richardson, TX 75082
United States of America
Email: fengman.xu@verizon.com

 The following people also contributed to the content of this
 document:

Ning So
Tata Communications
2613 Fairbourne Cir.
Plano, TX 75082
United States of America
Email: ningso01@gmail.com

Mehmet Toy
Verizon
United States of America
Email: mehmet.toy@verizon.com

Lei Liu
United States of America
Email: liulei.kddi@gmail.com

Renwei Li
Huawei Technologies
2330 Central Expressway
Santa Clara, CA 95050
United States of America
Email: renwei.li@huawei.com

Quintin Zhao
Huawei Technologies
Boston, MA
United States of America
Email: quintin.zhao@huawei.com

Boris Zhang
Telus Communications
200 Consilium Pl Floor 15
Toronto, ON M1H 3J3
Canada
Email: Boris.Zhang@telus.com

Markus Jork
Juniper Networks
10 Technology Park Drive
Westford, MA 01886
United States of America
Email: mjork@juniper.net

Authors' Addresses

Huaimo Chen (editor)
Huawei Technologies
Boston, MA
United States of America

 Email: huaimo.chen@huawei.com

Raveendra Torvi (editor)
Juniper Networks
10 Technology Park Drive
Westford, MA 01886
United States of America

 Email: rtorvi@juniper.net

8426 - Recommendations for RSVP-TE and Segment Routing (SR) Label Switched Path

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8426

Category: Informational

ISSN: 2070-1721

H. Sitaraman, Ed.

V. Beeram

Juniper Networks

I. Minei

Google, Inc.

S. Sivabalan

Cisco Systems, Inc.

July 2018

Recommendations for RSVP-TE and Segment Routing (SR) Label Switched Path (LSP) Coexistence

Abstract

 Operators are looking to introduce services over Segment Routing (SR)
 Label Switched Paths (LSPs) in networks running Resource Reservation
 Protocol - Traffic Engineering (RSVP-TE) LSPs. In some instances,
 operators are also migrating existing services from RSVP-TE to SR
 LSPs. For example, there might be certain services that are well
 suited for SR and need to coexist with RSVP-TE in the same network.
 Such introduction or migration of traffic to SR might require
 coexistence with RSVP-TE in the same network for an extended period
 of time, depending on the operator's intent. The following document
 provides solution options for keeping the traffic engineering
 database consistent across the network, accounting for the different
 bandwidth utilization between SR and RSVP-TE.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8426.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions Used in This Document

	3. Solution Options
	 3.1. Static Partitioning of Bandwidth

	 3.2. Centralized Management of Available Capacity

	 3.3. Flooding SR Utilization in IGP

	 3.4. Running SR over RSVP-TE

	 3.5. TED Consistency by Reflecting SR Traffic

	4. IANA Considerations

	5. Security Considerations

	6. References
	 6.1. Normative References

	 6.2. Informative References

	Appendix A. Multiplier Value Range

	Acknowledgements

	Contributors

	Authors' Addresses

1. Introduction

 Introduction of SR [RFC8402] in the same network domain as RSVP-TE
 [RFC3209] presents the problem of accounting for SR traffic and
 making RSVP-TE aware of the actual available bandwidth on the network
 links. RSVP-TE is not aware of how much bandwidth is being consumed
 by SR services on the network links; hence, both at computation time
 (for a distributed computation) and at signaling time, RSVP-TE LSPs
 will incorrectly place loads. This is true where RSVP-TE paths are
 distributed or centrally computed without a common entity managing
 both SR and RSVP-TE computation for the entire network domain.

 The problem space can be generalized as a dark bandwidth problem to
 cases where any other service exists in the network that runs in
 parallel across common links and whose bandwidth is not reflected in
 the available and reserved values in the Traffic Engineering Database
 (TED). In most practical instances, given the static nature of the
 traffic demands, limiting the reservable bandwidth available to RSVP-
 TE has been an acceptable solution. However, in the case of SR
 traffic, there is assumed to be very dynamic traffic demands, and
 there is considerable risk associated with stranding capacity or
 overbooking service traffic resulting in traffic drops.

 The high-level requirements to consider are:

 1. Placement of SR LSPs in the same domain as RSVP-TE LSPs must not
 introduce inaccuracies in the TED used by distributed or
 centralized path computation engines.

 2. Engines that compute RSVP-TE paths may have no knowledge of the
 existence of the SR paths in the same domain.

 3. Engines that compute RSVP-TE paths should not require a software
 upgrade or change to their path-computation logic.

 4. Protocol extensions should be avoided or be minimal as, in many
 cases, this coexistence of RSVP-TE and SR may be needed only
 during a transition phase.

 5. Placement of SR LSPs in the same domain as RSVP-TE LSPs that are
 computed in a distributed fashion must not require migration to a
 central controller architecture for the RSVP-TE LSPs.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Solution Options

 The following section lists SR and RSVP coexistence solution options.
 A specific solution is not recommended as all solutions are valid,
 even though some may not satisfy all the requirements. If a solution
 is acceptable for an operator based on their deployment model, then
 such a solution can be chosen.

3.1. Static Partitioning of Bandwidth

 In this model, the static reservable bandwidth of an interface can be
 statically partitioned between SR and RSVP-TE; each one can operate
 within that bandwidth allocation and SHOULD NOT preempt the other.

 While it is possible to configure RSVP-TE to only reserve up to a
 certain maximum link bandwidth and manage the remaining link
 bandwidth for other services, this is a deployment where SR and RSVP-
 TE are separated in the same network (ships in the night) and can
 lead to suboptimal link bandwidth utilization not allowing each to
 consume more, if required and constraining the respective
 deployments.

 The downside of this approach is the inability to use the reservable
 bandwidth effectively and the inability to use bandwidth left unused
 by the other protocol.

3.2. Centralized Management of Available Capacity

 In this model, a central controller performs path placement for both
 RSVP-TE and SR LSPs. The controller manages and updates its own view
 of the in-use and available capacity. As the controller is a single
 common entity managing the network it can have a unified and
 consistent view of the available capacity at all times.

 A practical drawback of this model is that it requires the
 introduction of a central controller managing the RSVP-TE LSPs as a
 prerequisite to the deployment of any SR LSPs. Therefore, this
 approach is not practical for networks where distributed TE with
 RSVP-TE LSPs is already deployed, as it requires a redesign of the
 network and is not backwards compatible. This does not satisfy
 requirement 5.

 Note that it is not enough for the controller to just maintain the
 unified view of the available capacity, it must also perform the path
 computation for the RSVP-TE LSPs, as the reservations for the SR LSPs
 are not reflected in the TED.

3.3. Flooding SR Utilization in IGP

 Using techniques in [RFC7810], [RFC7471], and [RFC7823], the SR
 utilization information can be flooded in IGP-TE, and the RSVP-TE
 path computation engine (Constrained Shortest Path First (CSPF)) can
 be changed to consider this information. This requires changes to
 the RSVP-TE path computation logic and would require upgrades in
 deployments where distributed computation is done across the network.

 This does not fit with requirements 3 and 4 mentioned earlier.

3.4. Running SR over RSVP-TE

 SR can run over dedicated RSVP-TE LSPs that carry only SR traffic.
 In this model, the LSPs can be one-hop or multi-hop and can provide
 bandwidth reservation for the SR traffic based on functionality such
 as auto-bandwidth. The model of deployment would be similar in
 nature to running LDP over RSVP-TE. This would allow the TED to stay
 consistent across the network and any other RSVP-TE LSPs will also be
 aware of the SR traffic reservations. In this approach, non-SR
 traffic MUST NOT take the SR-dedicated RSVP-TE LSPs, unless required
 by policy.

 The drawback of this solution is that it requires SR to rely on RSVP-
 TE for deployment. Furthermore, the accounting accuracy/frequency of
 this method is dependent on performance of auto-bandwidth for RSVP-
 TE. Note that, for this method to work, the SR-dedicated RSVP-TE
 LSPs must be set up with the best setup and hold priorities in the
 network.

3.5. TED Consistency by Reflecting SR Traffic

 The solution relies on dynamically measuring SR traffic utilization
 on each TE interface and reducing the bandwidth allowed for use by
 RSVP-TE. It is assumed that SR traffic receives precedence in terms
 of the placement on the path over RSVP traffic (that is, RSVP traffic
 can be preempted from the path in case of insufficient resources).
 This is logically equivalent to SR traffic having the best preemption
 priority in the network. Note that this does not necessarily mean
 that SR traffic has higher QoS priority; in fact, SR and RSVP traffic
 may be in the same QoS class.

 Reducing the bandwidth allowed for use by RSVP-TE can be explored
 using the three parameters available in IGP-TE ([RFC5305] [RFC3630]),
 namely Maximum-Link-Bandwidth, Maximum-Reservable-Bandwidth, and
 Unreserved-Bandwidth.

 o Maximum-Link-Bandwidth: This parameter can be adjusted to
 accommodate the bandwidth required for SR traffic with cascading
 impacts on Maximum-Reservable-Bandwidth and Unreserved-Bandwidth.
 However, changing the maximum bandwidth for the TE link will
 prevent any compute engine for SR or RSVP from determining the
 real static bandwidth of the TE link. Further, when the Maximum-
 Reservable-Bandwidth is derived from the Maximum-Link-Bandwidth,
 its definition changes since Maximum-Link-Bandwidth will account
 for the SR traffic.

 o Unreserved-Bandwidth: SR traffic could directly adjust the
 Unreserved-Bandwidth, without impacting Maximum-Link-Bandwidth or
 Maximum-Reservable-Bandwidth. This model is equivalent to the
 option described in Section 3.4. Furthermore this would result in
 overloading IGP-TE advertisements to directly reflect both RSVP-TE
 bandwidth bookings and SR bandwidth measurements.

 o Maximum-Reservable-Bandwidth: As the preferred option, SR traffic
 could adjust the Maximum-Reservable-Bandwidth, with cascading
 impact on the Unreserved-Bandwidth.

 The following methodology can be used at every TE node for this
 solution, using the following parameters:

 o T: Traffic statistics collection time interval.

 o k: The number of traffic statistics samples that can provide a
 smoothing function to the statistics collection. The value of k
 is a constant integer multiplier greater or equal to 1.

 o N: Traffic averaging calculation (adjustment) interval such that N
 = k * T.

 o Maximum-Reservable-Bandwidth: The maximum available bandwidth for
 RSVP-TE.

 o If Diffserv-aware MPLS Traffic Engineering (DS-TE) [RFC4124] is
 enabled, the Maximum-Reservable-Bandwidth SHOULD be interpreted as
 the aggregate bandwidth constraint across all Class-Types
 independent of the Bandwidth Constraints model.

 o Initial Maximum-Reservable-Bandwidth: The Maximum-reservable-
 bandwidth for TE when no SR traffic or RSVP-TE reservations exist
 on the interface.

 o RSVP-unreserved-bandwidth-at-priority-X: Maximum-Reservable-
 Bandwidth - sum of (existing reservations at priority X and all
 priorities better than X).

 o SR traffic threshold percentage: The percentage difference of
 traffic demand that, when exceeded, can result in a change to the
 RSVP-TE Maximum-Reservable-Bandwidth.

 o IGP-TE update threshold: Specifies the frequency at which IGP-TE
 updates should be triggered based on TE bandwidth updates on a
 link.

 o M: An optional multiplier that can be applied to the SR traffic
 average. This multiplier provides the ability to grow or shrink
 the bandwidth used by SR. Appendix A offers further guidance on
 M.

 At every interval T, each node SHOULD collect the SR traffic
 statistics for each of its TE interfaces. The measured SR traffic
 includes all labeled SR traffic and any traffic entering the SR
 network over that TE interface. Further, at every interval N, given
 a configured SR traffic threshold percentage and a set of collected
 SR traffic statistics samples across the interval N, the SR traffic
 average (or any other traffic metric depending on the algorithm used)
 over this period is calculated. This method of sampling traffic
 statistics and adjusting bandwidth reservation accordingly is similar
 to how bandwidth gets adjusted for auto-bandwidth RSVP-TE LSPs.

 If the difference between the new calculated SR traffic average and
 the current SR traffic average (that was computed in the prior
 adjustment) is at least SR traffic threshold percentage, then two
 values MUST be updated:

 o New Maximum-Reservable-Bandwidth = Initial Maximum-Reservable-
 Bandwidth - (new SR traffic average * M)

 o New RSVP-unreserved-bandwidth-at-priority-X = New Maximum-
 Reservable-Bandwidth - sum of (existing reservations at priority X
 and all priorities better than X)

 A DS-TE LSR that advertises a Bandwidth Constraints TLV should update
 the bandwidth constraints for class-types based on operator policy.
 For example, when Russian Dolls Model (RDM) [RFC4127] is in use, then
 only BC0 may be updated. Whereas, when Maximum Allocation Model
 (MAM) [RFC4125] is in use, then all Bandwidth Constraints (BCs) may
 be updated equally such that the total value updated is equal to the
 newly calculated SR traffic average.

 Note that the computation of the new RSVP-unreserved-bandwidth-at-
 priority-X MAY result in RSVP-TE LSPs being hard or soft preempted.
 Such preemption will be based on relative priority (e.g., low to
 high) between RSVP-TE LSPs. The IGP-TE update threshold SHOULD allow
 for more frequent flooding of unreserved bandwidth. From an
 operational point of view, an implementation SHOULD be able to expose
 both the configured and the actual values of the Maximum-Reservable-
 Bandwidth.

 If LSP preemption is not acceptable, then the RSVP-TE Maximum-
 Reservable-Bandwidth cannot be reduced below what is currently
 reserved by RSVP-TE on that interface. This may result in bandwidth
 not being available for SR traffic. Thus, it is required that any
 external controller managing SR LSPs SHOULD be able to detect this
 situation (for example, by subscribing to TED updates [RFC7752]) and
 SHOULD take action to reroute existing SR paths.

 Generically, SR traffic (or any non-RSVP-TE traffic) should have its
 own priority allocated from the available priorities. This would
 allow SR to preempt other traffic according to the preemption
 priority order.

 In this solution, the logic to retrieve the statistics, calculating
 averages and taking action to change the Maximum-Reservable-Bandwidth
 is an implementation choice, and all changes are local in nature.
 However, note that this is a new network trigger for RSVP-TE
 preemption and thus is a consideration for the operator.

 The above solution offers the advantage of not introducing new
 network-wide mechanisms especially during scenarios of migrating to
 SR in an existing RSVP-TE network and reusing existing protocol
 mechanisms.

4. IANA Considerations

 This document has no IANA actions.

5. Security Considerations

 This document describes solution options for the coexistence of RSVP-
 TE and SR LSPs in the same administrative domain. The security
 considerations for SR are described in [RFC8402]. The security
 considerations pertaining to RSVP-TE are described in [RFC5920]. The
 security considerations of each architecture are typically unaffected
 by the presence of the other. However, when RSVP-TE and SR LSPs
 coexist, it is possible for a hijacked SR traffic stream to
 maliciously consume sufficient bandwidth and cause disruption to
 RSVP-TE LSPs. With the solution option specified in Section 3.5, the
 impact to RSVP-TE traffic can be controlled and paths re-routed.
 Some latent risk of disruption still remains because this solution
 option relies on taking statistics samples and adopting to new
 traffic flows only after the adjustment period. The defensive
 mechanisms described in the base SR security framework should be
 employed to guard against situations that result in SR traffic
 hijacking or denial of service.

6. References

6.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <https://www.rfc-editor.org/info/rfc3209>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8402]
 Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
 Decraene, B., Litkowski, S., and R. Shakir, "Segment
 Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
 July 2018, <https://www.rfc-editor.org/info/rfc8402>.

6.2. Informative References

 [RFC3630]
 Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
 (TE) Extensions to OSPF Version 2", RFC 3630,
 DOI 10.17487/RFC3630, September 2003,
 <https://www.rfc-editor.org/info/rfc3630>.

 [RFC4124]
 Le Faucheur, F., Ed., "Protocol Extensions for Support of
 Diffserv-aware MPLS Traffic Engineering", RFC 4124,
 DOI 10.17487/RFC4124, June 2005,
 <https://www.rfc-editor.org/info/rfc4124>.

 [RFC4125]
 Le Faucheur, F. and W. Lai, "Maximum Allocation Bandwidth
 Constraints Model for Diffserv-aware MPLS Traffic
 Engineering", RFC 4125, DOI 10.17487/RFC4125, June 2005,
 <https://www.rfc-editor.org/info/rfc4125>.

 [RFC4127]
 Le Faucheur, F., Ed., "Russian Dolls Bandwidth Constraints
 Model for Diffserv-aware MPLS Traffic Engineering",
 RFC 4127, DOI 10.17487/RFC4127, June 2005,
 <https://www.rfc-editor.org/info/rfc4127>.

 [RFC5305]
 Li, T. and H. Smit, "IS-IS Extensions for Traffic
 Engineering", RFC 5305, DOI 10.17487/RFC5305, October
 2008, <https://www.rfc-editor.org/info/rfc5305>.

 [RFC5920]
 Fang, L., Ed., "Security Framework for MPLS and GMPLS
 Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010,
 <https://www.rfc-editor.org/info/rfc5920>.

 [RFC7471]
 Giacalone, S., Ward, D., Drake, J., Atlas, A., and S.
 Previdi, "OSPF Traffic Engineering (TE) Metric
 Extensions", RFC 7471, DOI 10.17487/RFC7471, March 2015,
 <https://www.rfc-editor.org/info/rfc7471>.

 [RFC7752]
 Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
 S. Ray, "North-Bound Distribution of Link-State and
 Traffic Engineering (TE) Information Using BGP", RFC 7752,
 DOI 10.17487/RFC7752, March 2016,
 <https://www.rfc-editor.org/info/rfc7752>.

 [RFC7810]
 Previdi, S., Ed., Giacalone, S., Ward, D., Drake, J., and
 Q. Wu, "IS-IS Traffic Engineering (TE) Metric Extensions",
 RFC 7810, DOI 10.17487/RFC7810, May 2016,
 <https://www.rfc-editor.org/info/rfc7810>.

 [RFC7823]
 Atlas, A., Drake, J., Giacalone, S., and S. Previdi,
 "Performance-Based Path Selection for Explicitly Routed
 Label Switched Paths (LSPs) Using TE Metric Extensions",
 RFC 7823, DOI 10.17487/RFC7823, May 2016,
 <https://www.rfc-editor.org/info/rfc7823>.

Appendix A. Multiplier Value Range

 The following is a suggestion for the range of values for M:

 M is a per-node positive real number that ranges from 0 to 2 with a
 default of 1 and may be expressed as a percentage.

 o If M < 1, then the SR traffic average is being understated, which
 can result in the link getting full even though Maximum-
 Reservable-Bandwidth does not reach zero.

 o If M > 1, then the SR traffic average is overstated, thereby
 resulting in the Maximum-Reservable-Bandwidth reaching zero before
 the link gets full. If the reduction of Maximum-Reservable-
 Bandwidth becomes a negative value, then a value of zero SHOULD be
 used and advertised.

Acknowledgements

 The authors would like to thank Steve Ulrich for his detailed review
 and comments.

Contributors

Chandra Ramachandran
Juniper Networks
Email: csekar@juniper.net

Raveendra Torvi
Juniper Networks
Email: rtorvi@juniper.net

Sudharsana Venkataraman
Juniper Networks
Email: sudharsana@juniper.net

Martin Vigoureux
Nokia
Email: martin.vigoureux@nokia.com

Authors' Addresses

Harish Sitaraman (editor)
Juniper Networks
1133 Innovation Way
Sunnyvale, CA 94089
United States of America

 Email: hsitaraman@juniper.net

Vishnu Pavan Beeram
Juniper Networks
10 Technology Park Drive
Westford, MA 01886
United States of America

 Email: vbeeram@juniper.net

Ina Minei
Google, Inc.
1600 Amphitheatre Parkway
Mountain View, CA 94043
United States of America

 Email: inaminei@google.com

Siva Sivabalan
Cisco Systems, Inc.
2000 Innovation Drive
Kanata, Ontario K2K 3E8
Canada

 Email: msiva@cisco.com

8453 - Framework for Abstraction and Control of TE Networks (ACTN)

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8453

Category: Informational

ISSN: 2070-1721

D. Ceccarelli, Ed.

Ericsson

Y. Lee, Ed.

Huawei

August 2018

Framework for Abstraction and Control of TE Networks (ACTN)

Abstract

 Traffic Engineered (TE) networks have a variety of mechanisms to
 facilitate the separation of the data plane and control plane. They
 also have a range of management and provisioning protocols to
 configure and activate network resources. These mechanisms represent
 key technologies for enabling flexible and dynamic networking. The
 term "Traffic Engineered network" refers to a network that uses any
 connection-oriented technology under the control of a distributed or
 centralized control plane to support dynamic provisioning of end-to-
 end connectivity.

 Abstraction of network resources is a technique that can be applied
 to a single network domain or across multiple domains to create a
 single virtualized network that is under the control of a network
 operator or the customer of the operator that actually owns the
 network resources.

 This document provides a framework for Abstraction and Control of TE
 Networks (ACTN) to support virtual network services and connectivity
 services.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8453.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

				 1. Introduction

	 2. Overview
		 2.1. Terminology

	 2.2. VNS Model of ACTN
		 2.2.1. Customers

	 2.2.2. Service Providers

	 2.2.3. Network Operators

	 3. ACTN Base Architecture
		 3.1. Customer Network Controller

	 3.2. Multi-Domain Service Coordinator

	 3.3. Provisioning Network Controller

	 3.4. ACTN Interfaces

	 4. Advanced ACTN Architectures
		 4.1. MDSC Hierarchy

	 4.2. Functional Split of MDSC Functions in Orchestrators

	 5. Topology Abstraction Methods
		 5.1. Abstraction Factors

	 5.2. Abstraction Types
		 5.2.1. Native/White Topology

	 5.2.2. Black Topology

	 5.2.3. Grey Topology

	 5.3. Methods of Building Grey Topologies
		 5.3.1. Automatic Generation of Abstract Topology by Configuration

	 5.3.2. On-Demand Generation of Supplementary Topology via Path Compute Request/Reply

	 5.4. Hierarchical Topology Abstraction Example

	 5.5. VN Recursion with Network Layers

	 6. Access Points and Virtual Network Access Points
		 6.1. Dual-Homing Scenario

	7. Advanced ACTN Application: Multi-Destination Service
					 7.1. Preplanned Endpoint Migration

	 7.2. On-the-Fly Endpoint Migration

	 8. Manageability Considerations
		 8.1. Policy

	 8.2. Policy Applied to the Customer Network Controller

	 8.3. Policy Applied to the Multi-Domain Service Coordinator

	 8.4. Policy Applied to the Provisioning Network Controller

	 9. Security Considerations
		 9.1. CNC-MDSC Interface (CMI)

	 9.2. MDSC-PNC Interface (MPI)

	 10. IANA Considerations

	 11. Informative References

	 Appendix A. Example of MDSC and PNC Functions Integrated in a Service/Network Orchestrator

	 Contributors

	 Authors' Addresses

1. Introduction

 The term "Traffic Engineered network" refers to a network that uses
 any connection-oriented technology under the control of a distributed
 or centralized control plane to support dynamic provisioning of end-
 to-end connectivity. TE networks have a variety of mechanisms to
 facilitate the separation of data planes and control planes including
 distributed signaling for path setup and protection, centralized path
 computation for planning and traffic engineering, and a range of
 management and provisioning protocols to configure and activate
 network resources. These mechanisms represent key technologies for
 enabling flexible and dynamic networking. Some examples of networks
 that are in scope of this definition are optical, MPLS Transport
 Profile (MPLS-TP) [RFC5654], and MPLS-TE networks [RFC2702].

 One of the main drivers for Software-Defined Networking (SDN)
 [RFC7149] is a decoupling of the network control plane from the data
 plane. This separation has been achieved for TE networks with the
 development of MPLS/GMPLS [RFC3945] and the Path Computation Element
 (PCE) [RFC4655]. One of the advantages of SDN is its logically
 centralized control regime that allows a global view of the
 underlying networks. Centralized control in SDN helps improve
 network resource utilization compared with distributed network
 control. For TE-based networks, a PCE may serve as a logically
 centralized path computation function.

 This document describes a set of management and control functions
 used to operate one or more TE networks to construct virtual networks
 that can be presented to customers and that are built from
 abstractions of the underlying TE networks. For example, a link in
 the customer's network is constructed from a path or collection of
 paths in the underlying networks. We call this set of functions
 "Abstraction and Control of TE Networks" or "ACTN".

2. Overview

 Three key aspects that need to be solved by SDN are:

 o Separation of service requests from service delivery so that the
 configuration and operation of a network is transparent from the
 point of view of the customer but it remains responsive to the
 customer's services and business needs.

 o Network abstraction: As described in [RFC7926], abstraction is the
 process of applying policy to a set of information about a TE
 network to produce selective information that represents the
 potential ability to connect across the network. The process of
 abstraction presents the connectivity graph in a way that is
 independent of the underlying network technologies, capabilities,
 and topology so that the graph can be used to plan and deliver
 network services in a uniform way

 o Coordination of resources across multiple independent networks and
 multiple technology layers to provide end-to-end services
 regardless of whether or not the networks use SDN.

 As networks evolve, the need to provide support for distinct
 services, separated service orchestration, and resource abstraction
 have emerged as key requirements for operators. In order to support
 multiple customers each with its own view of and control of the
 server network, a network operator needs to partition (or "slice") or
 manage sharing of the network resources. Network slices can be
 assigned to each customer for guaranteed usage, which is a step
 further than shared use of common network resources.

 Furthermore, each network represented to a customer can be built from
 virtualization of the underlying networks so that, for example, a
 link in the customer's network is constructed from a path or
 collection of paths in the underlying network.

 ACTN can facilitate virtual network operation via the creation of a
 single virtualized network or a seamless service. This supports
 operators in viewing and controlling different domains (at any
 dimension: applied technology, administrative zones, or vendor-
 specific technology islands) and presenting virtualized networks to
 their customers.

 The ACTN framework described in this document facilitates:

 o Abstraction of the underlying network resources to higher-layer
 applications and customers [RFC7926].

 o Virtualization of particular underlying resources, whose selection
 criterion is the allocation of those resources to a particular
 customer, application, or service [ONF-ARCH].

 o TE Network slicing of infrastructure to meet specific customers'
 service requirements.

 o Creation of an abstract environment allowing operators to view and
 control multi-domain networks as a single abstract network.

 o The presentation to customers of networks as a virtual network via
 open and programmable interfaces.

2.1. Terminology

 The following terms are used in this document. Some of them are
 newly defined, some others reference existing definitions:

Domain: A domain as defined by [RFC4655] is "any collection of
 network elements within a common sphere of address management or
 path computation responsibility". Specifically, within this
 document we mean a part of an operator's network that is under
 common management (i.e., under shared operational management using
 the same instances of a tool and the same policies). Network
 elements will often be grouped into domains based on technology
 types, vendor profiles, and geographic proximity.

Abstraction: This process is defined in [RFC7926].

TE Network Slicing: In the context of ACTN, a TE network slice is a
 collection of resources that is used to establish a logically
 dedicated virtual network over one or more TE networks. TE
 network slicing allows a network operator to provide dedicated
 virtual networks for applications/customers over a common network
 infrastructure. The logically dedicated resources are a part of
 the larger common network infrastructures that are shared among
 various TE network slice instances, which are the end‑to‑end
 realization of TE network slicing, consisting of the combination
 of physically or logically dedicated resources.

Node: A node is a vertex on the graph representation of a TE
 topology. In a physical network topology, a node corresponds to a
 physical network element (NE) such as a router. In an abstract
 network topology, a node (sometimes called an "abstract node") is
 a representation as a single vertex of one or more physical NEs
 and their connecting physical connections. The concept of a node
 represents the ability to connect from any access to the node (a
 link end) to any other access to that node, although "limited
 cross‑connect capabilities" may also be defined to restrict this
 functionality. Network abstraction may be applied recursively, so
 a node in one topology may be created by applying abstraction to
 the nodes in the underlying topology.

Link: A link is an edge on the graph representation of a TE
 topology. Two nodes connected by a link are said to be "adjacent"
 in the TE topology. In a physical network topology, a link
 corresponds to a physical connection. In an abstract network
 topology, a link (sometimes called an "abstract link") is a
 representation of the potential to connect a pair of points with
 certain TE parameters (see [RFC7926] for details). Network
 abstraction may be applied recursively, so a link in one topology
 may be created by applying abstraction to the links in the
 underlying topology.

Abstract Topology: The topology of abstract nodes and abstract links
 presented through the process of abstraction by a lower‑layer
 network for use by a higher‑layer network.

Virtual Network (VN): A VN is a network provided by a service
 provider to a customer for the customer to use in any way it wants
 as though it was a physical network. There are two views of a VN
 as follows:

 o The VN can be abstracted as a set of edge-to-edge links (a Type
 1 VN). Each link is referred as a "VN member" and is formed as
 an end-to-end tunnel across the underlying networks. Such
 tunnels may be constructed by recursive slicing or abstraction
 of paths in the underlying networks and can encompass edge
 points of the customer's network, access links, intra-domain
 paths, and inter-domain links.

 o The VN can also be abstracted as a topology of virtual nodes
 and virtual links (a Type 2 VN). The operator needs to map the
 VN to actual resource assignment, which is known as "virtual
 network embedding". The nodes in this case include physical
 endpoints, border nodes, and internal nodes as well as

 abstracted nodes. Similarly, the links include physical access
 links, inter-domain links, and intra-domain links as well as
 abstract links.

 Clearly, a Type 1 VN is a special case of a Type 2 VN.

Access link: A link between a customer node and an operator node.

Inter‑domain link: A link between domains under distinct management
 administration.

Access Point (AP): An AP is a logical identifier shared between the
 customer and the operator used to identify an access link. The AP
 is used by the customer when requesting a Virtual Network Service
 (VNS). Note that the term "TE Link Termination Point" defined in
 [TE‑TOPO] describes the endpoints of links, while an AP is a
 common identifier for the link itself.

VN Access Point (VNAP): A VNAP is the binding between an AP and a
 given VN.

Server Network: As defined in [RFC7926], a server network is a
 network that provides connectivity for another network (the Client
 Network) in a client‑server relationship.

2.2. VNS Model of ACTN

 A Virtual Network Service (VNS) is the service agreement between a
 customer and operator to provide a VN. When a VN is a simple
 connectivity between two points, the difference between VNS and
 connectivity service becomes blurred. There are three types of VNSs
 defined in this document.

 o Type 1 VNS refers to a VNS in which the customer is allowed to
 create and operate a Type 1 VN.

 o Type 2a and 2b VNS refer to VNSs in which the customer is allowed
 to create and operates a Type 2 VN. With a Type 2a VNS, the VN is
 statically created at service configuration time, and the customer
 is not allowed to change the topology (e.g., by adding or deleting
 abstract nodes and links). A Type 2b VNS is the same as a Type 2a
 VNS except that the customer is allowed to make dynamic changes to
 the initial topology created at service configuration time.

 VN Operations are functions that a customer can exercise on a VN
 depending on the agreement between the customer and the operator.

 o VN Creation allows a customer to request the instantiation of a
 VN. This could be through offline preconfiguration or through
 dynamic requests specifying attributes to a Service Level
 Agreement (SLA) to satisfy the customer's objectives.

 o Dynamic Operations allow a customer to modify or delete the VN.
 The customer can further act upon the virtual network to
 create/modify/delete virtual links and nodes. These changes will
 result in subsequent tunnel management in the operator's networks.

 There are three key entities in the ACTN VNS model:

o Customers
o Service Providers
o Network Operators

These entities are related in a three tier model as shown in
Figure 1.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Customer |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 VNS || | /\ VNS
 Request || | || Reply
 \/ | ||
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Service Provider |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 / | \
 / | \
 / | \
 / | \
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |Network Operator 1| |Network Operator 2| |Network Operator 3|
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: The Three-Tier Model

 The commercial roles of these entities are described in the following
 sections.

2.2.1. Customers

 Basic customers include fixed residential users, mobile users, and
 small enterprises. Each requires a small amount of resources and is
 characterized by steady requests (relatively time invariant). Basic
 customers do not modify their services themselves: if a service
 change is needed, it is performed by the provider as a proxy.

 Advanced customers include enterprises and governments. Such
 customers ask for both point-to point and multipoint connectivity
 with high resource demands varying significantly in time. This is
 one of the reasons why a bundled service offering is not enough, and
 it is desirable to provide each advanced customer with a customized
 VNS. Advanced customers may also have the ability to modify their
 service parameters within the scope of their virtualized
 environments. The primary focus of ACTN is Advanced Customers.

 As customers are geographically spread over multiple network operator
 domains, they have to interface to multiple operators and may have to
 support multiple virtual network services with different underlying
 objectives set by the network operators. To enable these customers
 to support flexible and dynamic applications, they need to control
 their allocated virtual network resources in a dynamic fashion; that
 means that they need a view of the topology that spans all of the
 network operators. Customers of a given service provider can, in
 turn, offer a service to other customers in a recursive way.

2.2.2. Service Providers

 In the scope of ACTN, service providers deliver VNSs to their
 customers. Service providers may or may not own physical network
 resources (i.e., may or may not be network operators as described in
 Section 2.2.3). When a service provider is the same as the network
 operator, the case is similar to existing VPN models applied to a
 single operator (although it may be hard to use this approach when
 the customer spans multiple independent network operator domains).

 When network operators supply only infrastructure, while distinct
 service providers interface with the customers, the service providers
 are themselves customers of the network infrastructure operators.
 One service provider may need to keep multiple independent network
 operators because its end users span geographically across multiple
 network operator domains. In some cases, a service provider is also
 a network operator when it owns network infrastructure on which
 service is provided.

2.2.3. Network Operators

 Network operators are the infrastructure operators that provision the
 network resources and provide network resources to their customers.
 The layered model described in this architecture separates the
 concerns of network operators and customers, with service providers
 acting as aggregators of customer requests.

3. ACTN Base Architecture

 This section provides a high-level model of ACTN, showing the
 interfaces and the flow of control between components.

 The ACTN architecture is based on a three-tier reference model and
 allows for hierarchy and recursion. The main functionalities within
 an ACTN system are:

 o Multi-domain coordination: This function oversees the specific
 aspects of different domains and builds a single abstracted end-
 to-end network topology in order to coordinate end-to-end path
 computation and path/service provisioning. Domain sequence path
 calculation/determination is also a part of this function.

 o Abstraction: This function provides an abstracted view of the
 underlying network resources for use by the customer -- a customer
 may be the client or a higher-level controller entity. This
 function includes network path computation based on customer-
 service-connectivity request constraints, path computation based
 on the global network-wide abstracted topology, and the creation
 of an abstracted view of network resources allocated to each
 customer. These operations depend on customer-specific network
 objective functions and customer traffic profiles.

 o Customer mapping/translation: This function is to map customer
 requests/commands into network provisioning requests that can be
 sent from the Multi-Domain Service Coordinator (MDSC) to the
 Provisioning Network Controller (PNC) according to business
 policies provisioned statically or dynamically at the Operations
 Support System (OSS) / Network Management System (NMS).
 Specifically, it provides mapping and translation of a customer's
 service request into a set of parameters that are specific to a
 network type and technology such that network configuration
 process is made possible.

 o Virtual service coordination: This function translates information
 that is customer service related into virtual network service
 operations in order to seamlessly operate virtual networks while
 meeting a customer's service requirements. In the context of

 ACTN, service/virtual service coordination includes a number of
 service orchestration functions such as multi-destination load-
 balancing and guarantees of service quality. It also includes
 notifications for service fault and performance degradation and so
 forth.

 The base ACTN architecture defines three controller types and the
 corresponding interfaces between these controllers. The following
 types of controller are shown in Figure 2:

o CNC ‑ Customer Network Controller
o MDSC ‑ Multi‑Domain Service Coordinator
o PNC ‑ Provisioning Network Controller

 Figure 2 also shows the following interfaces

o CMI ‑ CNC‑MDSC Interface
o MPI ‑ MDSC‑PNC Interface
o SBI ‑ Southbound Interface

 +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
 | CNC | | CNC | | CNC |
 +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
 \ | /
 \ | /
Boundary ========\==================|=====================/=======
between \ | /
Customer & ‑‑‑‑‑‑‑‑‑‑‑ | CMI ‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Network Operator \ | /
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | MDSC |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 / | \
 ‑‑‑‑‑‑‑‑‑‑‑‑ | MPI ‑‑‑‑‑‑‑‑‑‑‑‑‑
 / | \
 +‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+
 | PNC | | PNC | | PNC |
 +‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+
 | SBI / | / \
 | / | SBI SBI / \
 ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑ | / \
 () () | / \
 ‑ Control ‑ (Phys.) | / ‑‑‑‑‑
 (Plane) (Net) | / ()
 (Physical) ‑‑‑‑‑ | / (Phys.)
 (Network) ‑‑‑‑‑ ‑‑‑‑‑ (Net)
 ‑ ‑ () () ‑‑‑‑‑
 () (Phys.) (Phys.)
 ‑‑‑‑‑‑‑‑‑ (Net) (Net)
 ‑‑‑‑‑ ‑‑‑‑‑

 Figure 2: ACTN Base Architecture

 Note that this is a functional architecture: an implementation and
 deployment might collocate one or more of the functional components.
 Figure 2 shows a case where the service provider is also a network
 operator.

3.1. Customer Network Controller

 A Customer Network Controller (CNC) is responsible for communicating
 a customer's VNS requirements to the network operator over the CNC-
 MDSC Interface (CMI). It has knowledge of the endpoints associated
 with the VNS (expressed as APs), the service policy, and other QoS
 information related to the service.

 As the CNC directly interfaces with the applications, it understands
 multiple application requirements and their service needs. The
 capability of a CNC beyond its CMI role is outside the scope of ACTN
 and may be implemented in different ways. For example, the CNC may,
 in fact, be a controller or part of a controller in the customer's
 domain, or the CNC functionality could also be implemented as part of
 a service provider's portal.

3.2. Multi-Domain Service Coordinator

 A Multi-Domain Service Coordinator (MDSC) is a functional block that
 implements all of the ACTN functions listed in Section 3 and
 described further in Section 4.2. Two functions of the MDSC, namely,
 multi-domain coordination and virtualization/abstraction are referred
 to as network-related functions; whereas the other two functions,
 namely, customer mapping/translation and virtual service
 coordination, are referred to as service-related functions. The MDSC
 sits at the center of the ACTN model between the CNC that issues
 connectivity requests and the Provisioning Network Controllers (PNCs)
 that manage the network resources. The key point of the MDSC (and of
 the whole ACTN framework) is detaching the network and service
 control from underlying technology to help the customer express the
 network as desired by business needs. The MDSC envelopes the
 instantiation of the right technology and network control to meet
 business criteria. In essence, it controls and manages the
 primitives to achieve functionalities as desired by the CNC.

 In order to allow for multi-domain coordination, a 1:N relationship
 must be allowed between MDSCs and PNCs.

 In addition to that, it could also be possible to have an M:1
 relationship between MDSCs and PNCs to allow for network-resource
 partitioning/sharing among different customers that are not
 necessarily connected to the same MDSC (e.g., different service
 providers) but that are all using the resources of a common network
 infrastructure operator.

3.3. Provisioning Network Controller

 The Provisioning Network Controller (PNC) oversees configuring the
 network elements, monitoring the topology (physical or virtual) of
 the network, and collecting information about the topology (either
 raw or abstracted).

 The PNC functions can be implemented as part of an SDN domain
 controller, a Network Management System (NMS), an Element Management
 System (EMS), an active PCE-based controller [RFC8283], or any other
 means to dynamically control a set of nodes that implements a
 northbound interface from the standpoint of the nodes (which is out
 of the scope of this document). A PNC domain includes all the
 resources under the control of a single PNC. It can be composed of
 different routing domains and administrative domains, and the
 resources may come from different layers. The interconnection
 between PNC domains is illustrated in Figure 3.

 _______ _______
 () _()_
 () _()_
 () Border ()
 (PNC ‑‑‑‑‑‑ Link ‑‑‑‑‑‑ PNC)
(Domain X |Border|========|Border| Domain Y)
(| Node | | Node |)
 (‑‑‑‑‑‑ ‑‑‑‑‑‑)
 (_ _) (_ _)
 (_ _) (_ _)
 (_______) (_______)

 Figure 3: PNC Domain Borders

3.4. ACTN Interfaces

 Direct customer control of transport network elements and virtualized
 services is not a viable proposition for network operators due to
 security and policy concerns. Therefore, the network has to provide
 open, programmable interfaces, through which customer applications
 can create, replace, and modify virtual network resources and
 services in an interactive, flexible, and dynamic fashion.

 Three interfaces exist in the ACTN architecture as shown in Figure 2.

 o CMI: The CNC-MDSC Interface (CMI) is an interface between a CNC
 and an MDSC. The CMI is a business boundary between customer and
 network operator. It is used to request a VNS for an application.
 All service-related information is conveyed over this interface
 (such as the VNS type, topology, bandwidth, and service
 constraints). Most of the information over this interface is
 agnostic of the technology used by network operators, but there
 are some cases (e.g., access link configuration) where it is
 necessary to specify technology-specific details.

 o MPI: The MDSC-PNC Interface (MPI) is an interface between an MDSC
 and a PNC. It communicates requests for new connectivity or for
 bandwidth changes in the physical network. In multi-domain
 environments, the MDSC needs to communicate with multiple PNCs,

 each responsible for control of a domain. The MPI presents an
 abstracted topology to the MDSC hiding technology-specific aspects
 of the network and hiding topology according to policy.

 o SBI: The Southbound Interface (SBI) is out of scope of ACTN. Many
 different SBIs have been defined for different environments,
 technologies, standards organizations, and vendors. It is shown
 in Figure 3 for reference reason only.

4. Advanced ACTN Architectures

 This section describes advanced configurations of the ACTN
 architecture.

4.1. MDSC Hierarchy

 A hierarchy of MDSCs can be foreseen for many reasons, among which
 are scalability, administrative choices, or putting together
 different layers and technologies in the network. In the case where
 there is a hierarchy of MDSCs, we introduce the terms "higher-level
 MDSC" (MDSC-H) and "lower-level MDSC" (MDSC-L). The interface
 between them is a recursion of the MPI. An implementation of an
 MDSC-H makes provisioning requests as normal using the MPI, but an
 MDSC-L must be able to receive requests as normal at the CMI and also
 at the MPI. The hierarchy of MDSCs can be seen in Figure 4.

 Another implementation choice could foresee the usage of an MDSC-L
 for all the PNCs related to a given technology (e.g., Internet
 Protocol (IP) / Multiprotocol Label Switching (MPLS)) and a different
 MDSC-L for the PNCs related to another technology (e.g., Optical
 Transport Network (OTN) / Wavelength Division Multiplexing (WDM)) and
 an MDSC-H to coordinate them.

 +‑‑‑‑‑‑‑‑+
 | CNC |
 +‑‑‑‑‑‑‑‑+
 | +‑‑‑‑‑+
 | CMI | CNC |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑+
 ‑‑‑‑‑‑‑| MDSC‑H |‑‑‑‑ |
 | +‑‑‑‑‑‑‑‑‑‑+ | | CMI
 MPI | MPI | |
 | | |
 +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
 | MDSC‑L | | MDSC‑L |
 +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
MPI | | | |
 | | | |
 ‑‑‑‑‑ ‑‑‑‑‑ ‑‑‑‑‑ ‑‑‑‑‑
| PNC | | PNC | | PNC | | PNC |
 ‑‑‑‑‑ ‑‑‑‑‑ ‑‑‑‑‑ ‑‑‑‑‑

 Figure 4: MDSC Hierarchy

 The hierarchy of MDSC can be recursive, where an MDSC-H is, in turn,
 an MDSC-L to a higher-level MDSC-H.

4.2. Functional Split of MDSC Functions in Orchestrators

 An implementation choice could separate the MDSC functions into two
 groups: one group for service-related functions and the other for
 network-related functions. This enables the implementation of a
 service orchestrator that provides the service-related functions of
 the MDSC and a network orchestrator that provides the network-related
 functions of the MDSC. This split is consistent with the YANG
 service model architecture described in [RFC8309]. Figure 5 depicts
 this and shows how the ACTN interfaces may map to YANG data models.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Customer |
 | +‑‑‑‑‑+ |
 | | CNC | |
 | +‑‑‑‑‑+ |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 CMI | Customer Service Model
 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Service |
********|*********************** Orchestrator |
* MDSC | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ * |
* | | Service‑related | * |
* | | Functions | * |
* | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ * |
* +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑*‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
* * | Service Delivery
* * | Model
* +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑*‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
* | * Network |
* | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ * Orchestrator |
* | | Network‑related | * |
* | | Functions | * |
* | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ * |
********|*********************** |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 MPI | Network Configuration
 | Model
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Domain |
 | +‑‑‑‑‑‑+ Controller |
 | | PNC | |
 | +‑‑‑‑‑‑+ |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 SBI | Device Configuration
 | Model
 +‑‑‑‑‑‑‑‑+
 | Device |
 +‑‑‑‑‑‑‑‑+

 Figure 5: ACTN Architecture in the Context of the YANG Service Models

5. Topology Abstraction Methods

 Topology abstraction is described in [RFC7926]. This section
 discusses topology abstraction factors, types, and their context in
 the ACTN architecture.

 Abstraction in ACTN is performed by the PNC when presenting available
 topology to the MDSC, or by an MDSC-L when presenting topology to an
 MDSC-H. This function is different from the creation of a VN (and
 particularly a Type 2 VN) that is not abstraction but construction of
 virtual resources.

5.1. Abstraction Factors

 As discussed in [RFC7926], abstraction is tied with the policy of the
 networks. For instance, per an operational policy, the PNC would not
 provide any technology-specific details (e.g., optical parameters for
 Wavelength Switched Optical Network (WSON) in the abstract topology
 it provides to the MDSC. Similarly, the policy of the networks may
 determine the abstraction type as described in Section 5.2.

 There are many factors that may impact the choice of abstraction:

 o Abstraction depends on the nature of the underlying domain
 networks. For instance, packet networks may be abstracted with
 fine granularity while abstraction of optical networks depends on
 the switching units (such as wavelengths) and the end-to-end
 continuity and cross-connect limitations within the network.

 o Abstraction also depends on the capability of the PNCs. As
 abstraction requires hiding details of the underlying network
 resources, the PNC's capability to run algorithms impacts the
 feasibility of abstraction. Some PNCs may not have the ability to
 abstract native topology while other PNCs may have the ability to
 use sophisticated algorithms.

 o Abstraction is a tool that can improve scalability. Where the
 native network resource information is of a large size, there is a
 specific scaling benefit to abstraction.

 o The proper abstraction level may depend on the frequency of
 topology updates and vice versa.

 o The nature of the MDSC's support for technology-specific
 parameters impacts the degree/level of abstraction. If the MDSC
 is not capable of handling such parameters, then a higher level of
 abstraction is needed.

 o In some cases, the PNC is required to hide key internal
 topological data from the MDSC. Such confidentiality can be
 achieved through abstraction.

5.2. Abstraction Types

 This section defines the following three types of topology
 abstraction:

o Native/White Topology (Section 5.2.1)
o Black Topology (Section 5.2.2)
o Grey Topology (Section 5.2.3)

5.2.1. Native/White Topology

 This is a case where the PNC provides the actual network topology to
 the MDSC without any hiding or filtering of information, i.e., no
 abstraction is performed. In this case, the MDSC has the full
 knowledge of the underlying network topology and can operate on it
 directly.

5.2.2. Black Topology

 A black topology replaces a full network with a minimal
 representation of the edge-to-edge topology without disclosing any
 node internal connectivity information. The entire domain network
 may be abstracted as a single abstract node with the network's
 access/egress links appearing as the ports to the abstract node and
 the implication that any port can be "cross-connected" to any other.
 Figure 6 depicts a native topology with the corresponding black
 topology with one virtual node and inter-domain links. In this case,
 the MDSC has to make a provisioning request to the PNCs to establish
 the port-to-port connection. If there is a large number of
 interconnected domains, this abstraction method may impose a heavy
 coordination load at the MDSC level in order to find an optimal end-
 to-end path since the abstraction hides so much information that it
 is not possible to determine whether an end-to-end path is feasible
 without asking each PNC to set up each path fragment. For this
 reason, the MPI might need to be enhanced to allow the PNCs to be
 queried for the practicality and characteristics of paths across the
 abstract node.

 : PNC Domain :
 : +‑‑+ +‑‑+ +‑‑+ +‑‑+ :
 ‑‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑‑
 : ++‑+ ++‑+ +‑++ +‑++ :
 : | | | | :
 : | | | | :
 : | | | | :
 : | | | | :
 : ++‑+ ++‑+ +‑++ +‑++ :
 ‑‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑‑
 : +‑‑+ +‑‑+ +‑‑+ +‑‑+ :
 :....................................

 +‑‑‑‑‑‑‑‑‑‑+
 ‑‑‑+ +‑‑‑
 | Abstract |
 | Node |
 ‑‑‑+ +‑‑‑
 +‑‑‑‑‑‑‑‑‑‑+

Figure 6: Native Topology with Corresponding
Black Topology Expressed as an Abstract Node

5.2.3. Grey Topology

 A grey topology represents a compromise between black and white
 topologies from a granularity point of view. In this case, the PNC
 exposes an abstract topology containing all PNC domain border nodes
 and an abstraction of the connectivity between those border nodes.
 This abstraction may contain either physical or abstract nodes/links.

 Two types of grey topology are identified:

 o In a type A grey topology, border nodes are connected by a full
 mesh of TE links (see Figure 7).

 o In a type B grey topology, border nodes are connected over a more-
 detailed network comprising internal abstract nodes and abstracted
 links. This mode of abstraction supplies the MDSC with more
 information about the internals of the PNC domain and allows it to
 make more informed choices about how to route connectivity over
 the underlying network.

 : PNC Domain :
 : +‑‑+ +‑‑+ +‑‑+ +‑‑+ :
‑‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑‑
 : ++‑+ ++‑+ +‑++ +‑++ :
 : | | | | :
 : | | | | :
 : | | | | :
 : | | | | :
 : ++‑+ ++‑+ +‑++ +‑++ :
‑‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑‑
 : +‑‑+ +‑‑+ +‑‑+ +‑‑+ :
 :....................................

 : Abstract Network :
 : :
 : +‑‑+ +‑‑+ :
 ‑‑‑‑‑‑‑+ +‑‑‑‑+ +‑‑‑‑‑‑‑
 : ++‑+ +‑++ :
 : | \ / | :
 : | \/ | :
 : | /\ | :

 : | / \ | :
 : ++‑+ +‑++ :
 ‑‑‑‑‑‑‑+ +‑‑‑‑+ +‑‑‑‑‑‑‑
 : +‑‑+ +‑‑+ :
 :..................:

 Figure 7: Native Topology with Corresponding Grey Topology

5.3. Methods of Building Grey Topologies

 This section discusses two different methods of building a grey
 topology:

 o Automatic generation of abstract topology by configuration
 (Section 5.3.1)

 o On-demand generation of supplementary topology via path
 computation request/reply (Section 5.3.2)

5.3.1. Automatic Generation of Abstract Topology by Configuration

 Automatic generation is based on the abstraction/summarization of the
 whole domain by the PNC and its advertisement on the MPI. The level
 of abstraction can be decided based on PNC configuration parameters
 (e.g., "provide the potential connectivity between any PE and any
 ASBR in an MPLS-TE network").

 Note that the configuration parameters for this abstract topology can
 include available bandwidth, latency, or any combination of defined
 parameters. How to generate such information is beyond the scope of
 this document.

 This abstract topology may need to be periodically or incrementally
 updated when there is a change in the underlying network or the use
 of the network resources that make connectivity more or less
 available.

5.3.2. On-Demand Generation of Supplementary Topology via Path Compute
 Request/Reply

 While abstract topology is generated and updated automatically by
 configuration as explained in Section 5.3.1, additional supplementary
 topology may be obtained by the MDSC via a path compute request/reply
 mechanism.

 The abstract topology advertisements from PNCs give the MDSC the
 border node/link information for each domain. Under this scenario,
 when the MDSC needs to create a new VN, the MDSC can issue path
 computation requests to PNCs with constraints matching the VN request
 as described in [ACTN-YANG]. An example is provided in Figure 8,
 where the MDSC is creating a P2P VN between AP1 and AP2. The MDSC
 could use two different inter-domain links to get from domain X to
 domain Y, but in order to choose the best end-to-end path, it needs
 to know what domain X and Y can offer in terms of connectivity and
 constraints between the PE nodes and the border nodes.

 ‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑
 () ()
 ‑ BrdrX.1‑‑‑‑‑‑‑ BrdrY.1 ‑
 (+‑‑‑+) (+‑‑‑+)
‑+‑‑‑(|PE1| Dom.X) (Dom.Y |PE2|)‑‑‑+‑
 | (+‑‑‑+) (+‑‑‑+) |
AP1 ‑ BrdrX.2‑‑‑‑‑‑‑ BrdrY.2 ‑ AP2
 () ()
 ‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑

 Figure 8: A Multi-Domain Example

 The MDSC issues a path computation request to PNC.X asking for
 potential connectivity between PE1 and border node BrdrX.1 and
 between PE1 and BrdrX.2 with related objective functions and TE
 metric constraints. A similar request for connectivity from the
 border nodes in domain Y to PE2 will be issued to PNC.Y. The MDSC
 merges the results to compute the optimal end-to-end path including
 the inter-domain links. The MDSC can use the result of this
 computation to request the PNCs to provision the underlying networks,
 and the MDSC can then use the end-to-end path as a virtual link in
 the VN it delivers to the customer.

5.4. Hierarchical Topology Abstraction Example

 This section illustrates how topology abstraction operates in
 different levels of a hierarchy of MDSCs as shown in Figure 9.

 +‑‑‑‑‑+
 | CNC | CNC wants to create a VN
 +‑‑‑‑‑+ between CE A and CE B
 |
 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | MDSC‑H |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 / \
 / \
 +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
 | MDSC‑L1 | | MDSC‑L2 |
 +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
 / \ / \
 / \ / \
 +‑‑‑‑+ +‑‑‑‑+ +‑‑‑‑+ +‑‑‑‑+
CE A o‑‑‑‑|PNC1| |PNC2| |PNC3| |PNC4|‑‑‑‑o CE B
 +‑‑‑‑+ +‑‑‑‑+ +‑‑‑‑+ +‑‑‑‑+

 Virtual Network Delivered to CNC

CE A o==============o CE B

 Topology operated on by MDSC-H

 CE A o----o==o==o===o----o CE B

 Topology operated on by MDSC‑L1 Topology operated on by MDSC‑L2
 _ _ _ _
 () () () ()
 () () () ()
 CE A o‑‑(o‑‑‑o)==(o‑‑‑o)==Dom.3 Dom.2==(o‑‑‑o)==(o‑‑‑o)‑‑o CE B
 () () () ()
 (_) (_) (_) (_)

 Actual Topology
 ___ ___ ___ ___
 () () () ()
 (o) (o) (o‑‑o) (o)
 (/ \) (|\) (| |) (/ \)
CE A o‑‑‑(o‑o‑‑‑o‑o)==(o‑o‑o‑o‑o)==(o‑‑o‑‑o‑o)==(o‑o‑o‑o‑o)‑‑‑o CE B
 (\ /) (| |/) (| |) (\ /)
 (o) (o‑o) (o‑‑o) (o)
 (___) (___) (___) (___)

 Domain 1 Domain 2 Domain 3 Domain 4

Where
 o is a node
 ‑‑‑ is a link
 === is a border link

 Figure 9: Illustration of Hierarchical Topology Abstraction

 In the example depicted in Figure 9, there are four domains under
 control of PNCs: PNC1, PNC2, PNC3, and PNC4. MDSC-L1 controls PNC1
 and PNC2, while MDSC-L2 controls PNC3 and PNC4. Each of the PNCs
 provides a grey topology abstraction that presents only border nodes
 and links across and outside the domain. The abstract topology
 MDSC-L1 that operates is a combination of the two topologies from
 PNC1 and PNC2. Likewise, the abstract topology that MDSC-L2 operates
 is shown in Figure 9. Both MDSC-L1 and MDSC-L2 provide a black
 topology abstraction to MDSC-H in which each PNC domain is presented
 as a single virtual node. MDSC-H combines these two topologies to
 create the abstraction topology on which it operates. MDSC-H sees
 the whole four domain networks as four virtual nodes connected via
 virtual links.

5.5. VN Recursion with Network Layers

 In some cases, the VN supplied to a customer may be built using
 resources from different technology layers operated by different
 operators. For example, one operator may run a packet TE network and
 use optical connectivity provided by another operator.

 As shown in Figure 10, a customer asks for end-to-end connectivity
 between CE A and CE B, a virtual network. The customer's CNC makes a
 request to Operator 1's MDSC. The MDSC works out which network
 resources need to be configured and sends instructions to the
 appropriate PNCs. However, the link between Q and R is a virtual
 link supplied by Operator 2: Operator 1 is a customer of Operator 2.
 To support this, Operator 1 has a CNC that communicates with Operator
 2's MDSC. Note that Operator 1's CNC in Figure 10 is a functional
 component that does not dictate implementation: it may be embedded in
 a PNC.

Virtual CE A o===============================o CE B
Network

 ‑‑‑‑‑ CNC wants to create a VN
Customer | CNC | between CE A and CE B
 ‑‑‑‑‑
 :

 :
Operator 1 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | MDSC |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 : : :
 : : :
 ‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑
 | PNC | | PNC | | PNC |
 ‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑
 : : : : :
Higher v v : v v
Layer CE A o‑‑‑P‑‑‑‑‑Q===========R‑‑‑‑‑S‑‑‑o CE B
Network | : |
 | : |
 | ‑‑‑‑‑ |
 | | CNC | |
 | ‑‑‑‑‑ |
 | : |

 | : |
Operator 2 | ‑‑‑‑‑‑ |
 | | MDSC | |
 | ‑‑‑‑‑‑ |
 | : |
 | ‑‑‑‑‑‑‑ |
 | | PNC | |
 | ‑‑‑‑‑‑‑ |
 \ : : : /
Lower \v v v/
Layer X‑‑Y‑‑Z
Network

 Where

‑‑‑ is a link
=== is a virtual link

 Figure 10: VN Recursion with Network Layers

6. Access Points and Virtual Network Access Points

 In order to map identification of connections between the customer's
 sites and the TE networks and to scope the connectivity requested in
 the VNS, the CNC and the MDSC refer to the connections using the
 Access Point (AP) construct as shown in Figure 11.

 ‑‑‑‑‑‑‑‑‑‑‑‑‑
 ()
 ‑ ‑
+‑‑‑+ X () Z +‑‑‑+
|CE1|‑‑‑+‑‑‑‑()‑‑‑+‑‑‑|CE2|
+‑‑‑+ | () | +‑‑‑+
 AP1 ‑ ‑ AP2
 ()
 ‑‑‑‑‑‑‑‑‑‑‑‑‑

 Figure 11: Customer View of APs

 Let's take as an example a scenario shown in Figure 11. CE1 is
 connected to the network via a 10 Gbps link and CE2 via a 40 Gbps
 link. Before the creation of any VN between AP1 and AP2, the
 customer view can be summarized as shown in Figure 12.

 +‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Endpoint | Access Link Bandwidth |
+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
|AP id| CE,port | MaxResBw | AvailableBw |
+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AP1 |CE1,portX | 10 Gbps | 10 Gbps |
+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AP2 |CE2,portZ | 40 Gbps | 40 Gbps |
+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 12: AP - Customer View

 On the other hand, what the operator sees is shown in Figure 13

 ‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑
 () ()
 ‑ ‑ ‑ ‑
 W (+‑‑‑+) (+‑‑‑+) Y
‑+‑‑‑(|PE1| Dom.X)‑‑‑‑(Dom.Y |PE2|)‑‑‑+‑
 | (+‑‑‑+) (+‑‑‑+) |
 AP1 ‑ ‑ ‑ ‑ AP2
 () ()
 ‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑

 Figure 13: Operator View of the AP

 which results in a summarization as shown in Figure 14.

 +‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Endpoint | Access Link Bandwidth |
+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
|AP id| PE,port | MaxResBw | AvailableBw |
+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AP1 |PE1,portW | 10 Gbps | 10 Gbps |
+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AP2 |PE2,portY | 40 Gbps | 40 Gbps |
+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 14: AP - Operator View

 A Virtual Network Access Point (VNAP) needs to be defined as binding
 between an AP and a VN. It is used to allow different VNs to start
 from the same AP. It also allows for traffic engineering on the
 access and/or inter-domain links (e.g., keeping track of bandwidth
 allocation). A different VNAP is created on an AP for each VN.

 In this simple scenario, we suppose we want to create two virtual
 networks: the first with VN identifier 9 between AP1 and AP2 with
 bandwidth of 1 Gbps and the second with VN identifier 5, again
 between AP1 and AP2 and with bandwidth 2 Gbps.

 The operator view would evolve as shown in Figure 15.

 +‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Endpoint | Access Link/VNAP Bw |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
|AP/VNAPid| PE,port | MaxResBw | AvailableBw |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
AP1	PE1,portW	10 Gbps	7 Gbps
‑VNAP1.9		1 Gbps	N.A.
‑VNAP1.5		2 Gbps	N.A
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+			
AP2	PE2,portY	4 0Gbps	37 Gbps
‑VNAP2.9		1 Gbps	N.A.
‑VNAP2.5		2 Gbps	N.A
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 15: AP and VNAP - Operator View after VNS Creation

6.1. Dual-Homing Scenario

 Often there is a dual-homing relationship between a CE and a pair of
 PEs. This case needs to be supported by the definition of VN, APs,
 and VNAPs. Suppose CE1 connected to two different PEs in the
 operator domain via AP1 and AP2 and that the customer needs 5 Gbps of
 bandwidth between CE1 and CE2. This is shown in Figure 16.

 AP1 () AP3
 ‑‑‑‑‑‑‑(PE1) (PE3)‑‑‑‑‑‑‑
 W / () \ X
+‑‑‑+/ () \+‑‑‑+
|CE1| () |CE2|
+‑‑‑+\ () /+‑‑‑+
 Y \ () / Z
 ‑‑‑‑‑‑‑(PE2) (PE4)‑‑‑‑‑‑‑
 AP2 (____________)

 Figure 16: Dual-Homing Scenario

 In this case, the customer will request a VN between AP1, AP2, and
 AP3 specifying a dual-homing relationship between AP1 and AP2. As a
 consequence, no traffic will flow between AP1 and AP2. The dual-
 homing relationship would then be mapped against the VNAPs (since
 other independent VNs might have AP1 and AP2 as endpoints).

 The customer view would be shown in Figure 17.

 +‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Endpoint | Access Link/VNAP Bw |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
|AP/VNAPid| CE,port | MaxResBw | AvailableBw |Dual Homing|
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
|AP1 |CE1,portW | 10 Gbps | 5 Gbps | |
| ‑VNAP1.9| | 5 Gbps | N.A. | VNAP2.9 |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
|AP2 |CE1,portY | 40 Gbps | 35 Gbps | |
| ‑VNAP2.9| | 5 Gbps | N.A. | VNAP1.9 |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
|AP3 |CE2,portX | 50 Gbps | 45 Gbps | |
| ‑VNAP3.9| | 5 Gbps | N.A. | NONE |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

 Figure 17: Dual-Homing -- Customer View after VN Creation

7. Advanced ACTN Application: Multi-Destination Service

 A more-advanced application of ACTN is the case of data center (DC)
 selection, where the customer requires the DC selection to be based
 on the network status; this is referred to as "Multi-Destination
 Service" in [ACTN-REQ]. In terms of ACTN, a CNC could request a VNS
 between a set of source APs and destination APs and leave it up to
 the network (MDSC) to decide which source and destination APs to be
 used to set up the VNS. The candidate list of source and destination
 APs is decided by a CNC (or an entity outside of ACTN) based on
 certain factors that are outside the scope of ACTN.

 Based on the AP selection as determined and returned by the network
 (MDSC), the CNC (or an entity outside of ACTN) should further take
 care of any subsequent actions such as orchestration or service setup
 requirements. These further actions are outside the scope of ACTN.

 Consider a case as shown in Figure 18, where three DCs are available,
 but the customer requires the DC selection to be based on the network
 status and the connectivity service setup between the AP1 (CE1) and
 one of the destination APs (AP2 (DC-A), AP3 (DC-B), and AP4 (DC-C)).
 The MDSC (in coordination with PNCs) would select the best
 destination AP based on the constraints, optimization criteria,
 policies, etc., and set up the connectivity service (virtual
 network).

 ‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑
 () ()
 ‑ ‑ ‑ ‑
+‑‑‑+ () () +‑‑‑‑+
|CE1|‑‑‑+‑‑‑(Domain X)‑‑‑‑(Domain Y)‑‑‑+‑‑‑|DC‑A|
+‑‑‑+ | () () | +‑‑‑‑+
 AP1 ‑ ‑ ‑ ‑ AP2
 () ()
 ‑‑‑+‑‑‑ ‑‑‑+‑‑‑
 | |
 AP3‑+ AP4‑+
 | |
 +‑‑‑‑+ +‑‑‑‑+
 |DC‑B| |DC‑C|
 +‑‑‑‑+ +‑‑‑‑+

 Figure 18: Endpoint Selection Based on Network Status

7.1. Preplanned Endpoint Migration

 Furthermore, in the case of DC selection, a customer could request a
 backup DC to be selected, such that in case of failure, another DC
 site could provide hot stand-by protection. As shown in Figure 19,
 DC-C is selected as a backup for DC-A. Thus, the VN should be set up
 by the MDSC to include primary connectivity between AP1 (CE1) and AP2
 (DC-A) as well as protection connectivity between AP1 (CE1) and AP4
 (DC-C).

 ‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑
 () ()
 ‑ ‑ __ ‑ ‑
+‑‑‑+ () () +‑‑‑‑+
|CE1|‑‑‑+‑‑‑‑(Domain X)‑‑‑‑(Domain Y)‑‑‑+‑‑‑|DC‑A|
+‑‑‑+ | () () | +‑‑‑‑+
 AP1 ‑ ‑ ‑ ‑ AP2 |
 () () |
 ‑‑‑+‑‑‑ ‑‑‑+‑‑‑ |
 | | |
 AP3‑| AP4‑| HOT STANDBY
 | | |
 +‑‑‑‑+ +‑‑‑‑+ |
 |DC‑D| |DC‑C|<‑‑‑‑‑‑‑‑‑‑‑‑‑
 +‑‑‑‑+ +‑‑‑‑+

 Figure 19: Preplanned Endpoint Migration

7.2. On-the-Fly Endpoint Migration

 Compared to preplanned endpoint migration, on-the-fly endpoint
 selection is dynamic in that the migration is not preplanned but
 decided based on network condition. Under this scenario, the MDSC
 would monitor the network (based on the VN SLA) and notify the CNC in
 the case where some other destination AP would be a better choice
 based on the network parameters. The CNC should instruct the MDSC
 when it is suitable to update the VN with the new AP if it is
 required.

8. Manageability Considerations

 The objective of ACTN is to manage traffic engineered resources and
 provide a set of mechanisms to allow customers to request virtual
 connectivity across server-network resources. ACTN supports multiple
 customers, each with its own view of and control of a virtual network
 built on the server network; the network operator will need to
 partition (or "slice") their network resources, and manage the
 resources accordingly.

 The ACTN platform will, itself, need to support the request,
 response, and reservations of client- and network-layer connectivity.
 It will also need to provide performance monitoring and control of TE
 resources. The management requirements may be categorized as
 follows:

o Management of external ACTN protocols
o Management of internal ACTN interfaces/protocols
o Management and monitoring of ACTN components
o Configuration of policy to be applied across the ACTN system

 The ACTN framework and interfaces are defined to enable traffic
 engineering for virtual network services and connectivity services.
 Network operators may have other Operations, Administration, and
 Maintenance (OAM) tasks for service fulfillment, optimization, and
 assurance beyond traffic engineering. The realization of OAM beyond
 abstraction and control of TE networks is not discussed in this
 document.

8.1. Policy

 Policy is an important aspect of ACTN control and management.
 Policies are used via the components and interfaces, during
 deployment of the service, to ensure that the service is compliant
 with agreed-upon policy factors and variations (often described in
 SLAs); these include, but are not limited to connectivity, bandwidth,
 geographical transit, technology selection, security, resilience, and
 economic cost.

 Depending on the deployment of the ACTN architecture, some policies
 may have local or global significance. That is, certain policies may
 be ACTN component specific in scope, while others may have broader
 scope and interact with multiple ACTN components. Two examples are
 provided below:

 o A local policy might limit the number, type, size, and scheduling
 of virtual network services a customer may request via its CNC.
 This type of policy would be implemented locally on the MDSC.

 o A global policy might constrain certain customer types (or
 specific customer applications) only to use certain MDSCs and be
 restricted to physical network types managed by the PNCs. A
 global policy agent would govern these types of policies.

 The objective of this section is to discuss the applicability of ACTN
 policy: requirements, components, interfaces, and examples. This
 section provides an analysis and does not mandate a specific method
 for enforcing policy, or the type of policy agent that would be
 responsible for propagating policies across the ACTN components. It
 does highlight examples of how policy may be applied in the context
 of ACTN, but it is expected further discussion in an applicability or
 solution-specific document, will be required.

8.2. Policy Applied to the Customer Network Controller

 A virtual network service for a customer application will be
 requested by the CNC. The request will reflect the application
 requirements and specific service needs, including bandwidth, traffic
 type and survivability. Furthermore, application access and type of
 virtual network service requested by the CNC, will be need adhere to
 specific access control policies.

8.3. Policy Applied to the Multi-Domain Service Coordinator

 A key objective of the MDSC is to support the customer's expression
 of the application connectivity request via its CNC as a set of
 desired business needs; therefore, policy will play an important
 role.

 Once authorized, the virtual network service will be instantiated via
 the CNC-MDSC Interface (CMI); it will reflect the customer
 application and connectivity requirements and specific service-
 transport needs. The CNC and the MDSC components will have agreed-
 upon connectivity endpoints; use of these endpoints should be defined
 as a policy expression when setting up or augmenting virtual network
 services. Ensuring that permissible endpoints are defined for CNCs
 and applications will require the MDSC to maintain a registry of
 permissible connection points for CNCs and application types.

 Conflicts may occur when virtual network service optimization
 criteria are in competition. For example, to meet objectives for
 service reachability, a request may require an interconnection point
 between multiple physical networks; however, this might break a
 confidentially policy requirement of a specific type of end-to-end
 service. Thus, an MDSC may have to balance a number of the
 constraints on a service request and between different requested
 services. It may also have to balance requested services with
 operational norms for the underlying physical networks. This
 balancing may be resolved using configured policy and using hard and
 soft policy constraints.

8.4. Policy Applied to the Provisioning Network Controller

 The PNC is responsible for configuring the network elements,
 monitoring physical network resources, and exposing connectivity
 (direct or abstracted) to the MDSC. Therefore, it is expected that
 policy will dictate what connectivity information will be exchanged
 on the MPI.

 Policy interactions may arise when a PNC determines that it cannot
 compute a requested path from the MDSC, or notices that (per a
 locally configured policy) the network is low on resources (for
 example, the capacity on key links became exhausted). In either
 case, the PNC will be required to notify the MDSC, which may (again
 per policy) act to construct a virtual network service across another
 physical network topology.

 Furthermore, additional forms of policy-based resource management
 will be required to provide VNS performance, security, and resilience
 guarantees. This will likely be implemented via a local policy agent
 and additional protocol methods.

9. Security Considerations

 The ACTN framework described in this document defines key components
 and interfaces for managed TE networks. Securing the request and
 control of resources, confidentiality of the information, and
 availability of function should all be critical security
 considerations when deploying and operating ACTN platforms.

 Several distributed ACTN functional components are required, and
 implementations should consider encrypting data that flows between
 components, especially when they are implemented at remote nodes,
 regardless of whether these data flows are on external or internal
 network interfaces.

 The ACTN security discussion is further split into two specific
 categories described in the following subsections:

 o Interface between the Customer Network Controller and Multi-Domain
 Service Coordinator (MDSC), CNC-MDSC Interface (CMI)

 o Interface between the Multi-Domain Service Coordinator and
 Provisioning Network Controller (PNC), MDSC-PNC Interface (MPI)

 From a security and reliability perspective, ACTN may encounter many
 risks such as malicious attack and rogue elements attempting to
 connect to various ACTN components. Furthermore, some ACTN
 components represent a single point of failure and threat vector and
 must also manage policy conflicts and eavesdropping of communication
 between different ACTN components.

 The conclusion is that all protocols used to realize the ACTN
 framework should have rich security features, and customer,
 application and network data should be stored in encrypted data
 stores. Additional security risks may still exist. Therefore,
 discussion and applicability of specific security functions and
 protocols will be better described in documents that are use case and
 environment specific.

9.1. CNC-MDSC Interface (CMI)

 Data stored by the MDSC will reveal details of the virtual network
 services and which CNC and customer/application is consuming the
 resource. Therefore, the data stored must be considered a candidate
 for encryption.

 CNC Access rights to an MDSC must be managed. The MDSC must allocate
 resources properly, and methods to prevent policy conflicts, resource
 waste, and denial-of-service attacks on the MDSC by rogue CNCs should
 also be considered.

 The CMI will likely be an external protocol interface. Suitable
 authentication and authorization of each CNC connecting to the MDSC
 will be required; especially, as these are likely to be implemented
 by different organizations and on separate functional nodes. Use of
 the AAA-based mechanisms would also provide role-based authorization
 methods so that only authorized CNC's may access the different
 functions of the MDSC.

9.2. MDSC-PNC Interface (MPI)

 Where the MDSC must interact with multiple (distributed) PNCs, a PKI-
 based mechanism is suggested, such as building a TLS or HTTPS
 connection between the MDSC and PNCs, to ensure trust between the
 physical network layer control components and the MDSC. Trust
 anchors for the PKI can be configured to use a smaller (and
 potentially non-intersecting) set of trusted Certificate Authorities
 (CAs) than in the Web PKI.

 Which MDSC the PNC exports topology information to, and the level of
 detail (full or abstracted), should also be authenticated, and
 specific access restrictions and topology views should be
 configurable and/or policy based.

10. IANA Considerations

 This document has no IANA actions.

11. Informative References

 [ACTN-REQ]

 Lee, Y., Ceccarelli, D., Miyasaka, T., Shin, J., and K.
 Lee, "Requirements for Abstraction and Control of TE
 Networks", Work in Progress,
 draft-ietf-teas-actn-requirements-09, March 2018.

 [ACTN-YANG]

 Lee, Y., Dhody, D., Ceccarelli, D., Bryskin, I., Yoon, B.,
 Wu, Q., and P. Park, "A Yang Data Model for ACTN VN
 Operation", Work in Progress,
 draft-ietf-teas-actn-vn-yang-01, June 2018.

 [ONF-ARCH]

 Open Networking Foundation, "SDN Architecture", Issue
 1.1, ONF TR-521, June 2016.

 [RFC2702]
 Awduche, D., Malcolm, J., Agogbua, J., O'Dell, M., and J.
 McManus, "Requirements for Traffic Engineering Over MPLS",
 RFC 2702, DOI 10.17487/RFC2702, September 1999,
 <https://www.rfc-editor.org/info/rfc2702>.

 [RFC3945]
 Mannie, E., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Architecture", RFC 3945,
 DOI 10.17487/RFC3945, October 2004,
 <https://www.rfc-editor.org/info/rfc3945>.

 [RFC4655]
 Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
 Element (PCE)-Based Architecture", RFC 4655,
 DOI 10.17487/RFC4655, August 2006,
 <https://www.rfc-editor.org/info/rfc4655>.

 [RFC5654]
 Niven-Jenkins, B., Ed., Brungard, D., Ed., Betts, M., Ed.,
 Sprecher, N., and S. Ueno, "Requirements of an MPLS
 Transport Profile", RFC 5654, DOI 10.17487/RFC5654,
 September 2009, <https://www.rfc-editor.org/info/rfc5654>.

 [RFC7149]
 Boucadair, M. and C. Jacquenet, "Software-Defined
 Networking: A Perspective from within a Service Provider
 Environment", RFC 7149, DOI 10.17487/RFC7149, March 2014,
 <https://www.rfc-editor.org/info/rfc7149>.

 [RFC7926]
 Farrel, A., Ed., Drake, J., Bitar, N., Swallow, G.,
 Ceccarelli, D., and X. Zhang, "Problem Statement and
 Architecture for Information Exchange between
 Interconnected Traffic-Engineered Networks", BCP 206,
 RFC 7926, DOI 10.17487/RFC7926, July 2016,
 <https://www.rfc-editor.org/info/rfc7926>.

 [RFC8283]
 Farrel, A., Ed., Zhao, Q., Ed., Li, Z., and C. Zhou, "An
 Architecture for Use of PCE and the PCE Communication
 Protocol (PCEP) in a Network with Central Control",
 RFC 8283, DOI 10.17487/RFC8283, December 2017,
 <https://www.rfc-editor.org/info/rfc8283>.

 [RFC8309]
 Wu, Q., Liu, W., and A. Farrel, "Service Models
 Explained", RFC 8309, DOI 10.17487/RFC8309, January 2018,
 <https://www.rfc-editor.org/info/rfc8309>.

 [TE-TOPO]
 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
 O. Dios, "YANG Data Model for Traffic Engineering (TE)
 Topologies", Work in Progress,
 draft-ietf-teas-yang-te-topo-18, June 2018.

Appendix A. Example of MDSC and PNC Functions Integrated in a Service/
 Network Orchestrator

 This section provides an example of a possible deployment scenario,
 in which Service/Network Orchestrator can include the PNC
 functionalities for domain 2 and the MDSC functionalities.

Customer
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | +‑‑‑‑‑+ |
 | | CNC | |
 | +‑‑‑‑‑+ |
 +‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
Service/Network | CMI
Orchestrator |
 +‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | +‑‑‑‑‑‑+ MPI +‑‑‑‑‑‑+ |
 | | MDSC |‑‑‑‑‑‑‑‑‑| PNC2 | |
 | +‑‑‑‑‑‑+ +‑‑‑‑‑‑+ |
 +‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑+
 | MPI |
Domain Controller | |
 +‑‑‑‑‑‑‑|‑‑‑‑‑+ |
 | +‑‑‑‑‑+ | | SBI
 | |PNC1 | | |
 | +‑‑‑‑‑+ | |
 +‑‑‑‑‑‑‑|‑‑‑‑‑+ |
 v SBI v
 ‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑
 () ()
 ‑ ‑ ‑ ‑
 () ()
 (Domain 1)‑‑‑‑(Domain 2)
 () ()
 ‑ ‑ ‑ ‑
 () ()
 ‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑

Contributors

Adrian Farrel
Old Dog Consulting
Email: adrian@olddog.co.uk

Italo Busi
Huawei
Email: Italo.Busi@huawei.com

Khuzema Pithewan
Peloton Technology
Email: khuzemap@gmail.com

Michael Scharf
Nokia
Email: michael.scharf@nokia.com

Luyuan Fang
eBay
Email: luyuanf@gmail.com

Diego Lopez
Telefonica I+D
Don Ramon de la Cruz, 82
28006 Madrid
Spain
Email: diego@tid.es

Sergio Belotti
Nokia
Via Trento, 30
Vimercate
Italy
Email: sergio.belotti@nokia.com

Daniel King
Lancaster University
Email: d.king@lancaster.ac.uk

Dhruv Dhody
Huawei Technologies
Divyashree Techno Park, Whitefield
Bangalore, Karnataka 560066
India
Email: dhruv.ietf@gmail.com

Gert Grammel
Juniper Networks
Email: ggrammel@juniper.net

Authors' Addresses

Daniele Ceccarelli (editor)
Ericsson
Torshamnsgatan, 48
Stockholm
Sweden

 Email: daniele.ceccarelli@ericsson.com

Young Lee (editor)
Huawei Technologies
5340 Legacy Drive
Plano, TX 75023
United States of America

 Email: leeyoung@huawei.com

8454 - Information Model for Abstraction and Control of TE Networks (ACTN)

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8454

Category: Informational

ISSN: 2070-1721

Y. Lee

Huawei

S. Belotti

Nokia

D. Dhody

Huawei

D. Ceccarelli

Ericsson

B. Yoon

ETRI

September 2018

Information Model for Abstraction and Control of TE Networks (ACTN)

Abstract

 This document provides an information model for Abstraction and
 Control of TE Networks (ACTN).

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8454.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. ACTN Common Interfaces Information Model

	3. Virtual Network Primitives
	 3.1. VN Instantiate

	 3.2. VN Modify

	 3.3. VN Delete

	 3.4. VN Update

	 3.5. VN Compute

	 3.6. VN Query

	4. TE Primitives
	 4.1. TE Instantiate

	 4.2. TE Modify

	 4.3. TE Delete

	 4.4. TE Topology Update (for TE Resources)

	 4.5. Path Compute

	5. VN Objects
	 5.1. VN Identifier

	 5.2. VN Service Characteristics

	 5.3. VN Endpoint

	 5.4. VN Objective Function

	 5.5. VN Action Status

	 5.6. VN Topology

	 5.7. VN Member
	 5.7.1. VN Computed Path

	 5.7.2. VN Service Preference

	6. TE Objects
	 6.1. TE Tunnel Characteristics

	7. Mapping of VN Primitives with VN Objects

	8. Mapping of TE Primitives with TE Objects

	9. Security Considerations

	10. IANA Considerations

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Contributors

	Authors' Addresses

1. Introduction

 This document provides an information model for Abstraction and
 Control of TE Networks (ACTN). The information model described in
 this document covers the interface requirements identified in the
 ACTN Framework document [RFC8453].

 The ACTN reference architecture [RFC8453] identifies a three-tier
 control hierarchy comprising the following as depicted in Figure 1:

 o Customer Network Controllers (CNCs)
 o Multi‑Domain Service Coordinator (MDSC)
 o Provisioning Network Controllers (PNCs)

+‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+
| CNC‑A | | CNC‑B | | CNC‑C |
+‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+
 \ | /
 ‑‑‑‑‑‑‑‑‑‑‑‑ | CMI ‑‑‑‑‑‑‑‑‑‑‑‑‑
 \ | /
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | MDSC |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 / | \
 ‑‑‑‑‑‑‑‑‑‑‑‑ | MPI ‑‑‑‑‑‑‑‑‑‑‑‑‑
 / | \
+‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+
| PNC | | PNC | | PNC |
+‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+

 Figure 1: A Three-Tier ACTN Control Hierarchy

 The two interfaces with respect to the MDSC, one north of the MDSC
 and the other south of the MDSC, are referred to as "CMI" (CNC-MDSC
 Interface) and "MPI" (MDSC-PNC Interface), respectively. This
 document models these two interfaces and derivative interfaces
 thereof (e.g., MDSC-to-MDSC in a hierarchy of MDSCs) as a single
 common interface.

1.1. Terminology

 The terms "Virtual Network (VN)" and "Virtual Network Service (VNS)"
 are defined in [RFC8453]. Other key terms and concepts, for example,
 "abstraction", can be found in [RFC7926].

2. ACTN Common Interfaces Information Model

 This section provides an ACTN common interface information model to
 describe primitives, objects, their properties (represented as
 attributes), their relationships, and the resources for the service
 applications needed in the ACTN context.

 The standard interface is described between a client controller and a
 server controller. A client-server relationship is recursive between
 a CNC and an MDSC and between an MDSC and a PNC. In the CMI, the
 client is a CNC while the server is an MDSC. In the MPI, the client
 is an MDSC and the server is a PNC. There may also be MDSC-MDSC
 interfaces that need to be supported. This may arise in a hierarchy
 of MDSCs in which workloads may need to be partitioned to multiple
 MDSCs.

 Basic primitives (messages) are required between the CNC-MDSC and
 MDSC-PNC controllers. These primitives can then be used to support
 different ACTN network control functions like network topology
 requests/queries, VN service requests, path computation and
 connection control, VN service policy negotiation, enforcement,
 routing options, etc.

 There are two different types of primitives depending on the type of
 interface:

o Virtual Network primitives at CMI
o Traffic Engineering primitives at MPI

 As well described in [RFC8453], at the CMI level, there is no need
 for detailed TE information since the basic functionality is to
 translate customer service information into VNS operation.

 At the MPI level, MDSC has the main scope for multi-domain
 coordination and creation of a single end-to-end (E2E) abstracted
 network view that is strictly related to TE information.

 As for topology, this document employs two types of topology.

 o The first type is referred to as "virtual network topology" and is
 associated with a VN. Virtual network topology is a customized
 topology for view and control by the customer. See Section 3.1
 for details.

 o The second type is referred to as "TE topology" and is associated
 with provider network operation on which we can apply policy to
 obtain the required level of abstraction to represent the
 underlying physical network topology.

3. Virtual Network Primitives

 This section provides a list of main VN primitives related to VNs and
 that are necessary to satisfy the ACTN requirements specified in
 [ACTN-REQ].

 The following VN Action primitives are supported:

 o VN Instantiate

 o VN Modify

 o VN Delete

 o VN Update

 o VN Path Compute

 o VN Query

 VN Action is an object describing the main VN primitives.

 VN Action can assume one of the mentioned above primitives values.

 <VN Action> ::= <VN Instantiate> |

 <VN Modify> |

 <VN Delete> |

 <VN Update> |

 <VN Path Compute> |

 <VN Query>

 All these actions will solely happen at CMI level between CNC and
 MDSC.

3.1. VN Instantiate

 VN Instantiate refers to an action from customers/applications to
 request the creation of VNs. VN Instantiate is for CNC-to-MDSC
 communication. Depending on the agreement between client and
 provider, VN instantiate can imply different VN operations. There
 are two types of VN instantiation:

VN Type 1: VN is viewed as a set of edge‑to‑edge links (VN members).

VN Type 2: VN is viewed as a VN‑topology comprising virtual nodes
 and virtual links.

 Please see [RFC8453] for full details regarding the types of VN.

3.2. VN Modify

 VN Modify refers to an action issued from customers/applications to
 modify an existing VN (i.e., an instantiated VN). VN Modify is for
 CNC-to-MDSC communication.

 VN Modify, depending of the type of VN instantiated, can be:

 1. a modification of the characteristics of VN members (edge-to-edge
 links) in the case of VN Type 1, or

 2. a modification of an existing virtual topology (e.g., adding/
 deleting virtual nodes/links) in the case of VN Type 2.

3.3. VN Delete

 VN Delete refers to an action issued from customers/applications to
 delete an existing VN. VN Delete is for CNC-to-MDSC communication.

3.4. VN Update

 "VN Update" refers to any update to the VN that needs to be updated
 to the customers. VN Update is MDSC-to-CNC communication. VN Update
 fulfills a push model at the CMI level, making customers aware of any
 specific changes in the topology details related to the instantiated
 VN.

 VN Update, depending of the type of VN instantiated, can be:

 1. an update of VN members (edge-to-edge links) in case of VN Type
 1, or

 2. an update of virtual topology in case of VN Type 2.

 The connection-related information (e.g., Label Switched Paths
 (LSPs)) update association with VNs will be part of the "translation"
 function that happens in MDSC to map/translate VN request into TE
 semantics. This information will be provided in case the customer
 optionally wants to have more-detailed TE information associated with
 the instantiated VN.

3.5. VN Compute

 VN Compute consists of a Request and Reply. "VN Compute Request"
 refers to an action from customers/applications to request a VN
 computation.

 "VN Compute Reply" refers to the reply in response to VN Compute
 Request.

 A VN Compute Request/Reply is to be differentiated from a VN
 Instantiate. The purpose of VN Compute is a priori exploration to
 compute network resources availability and getting a possible VN view
 in which path details can be specified matching customer/applications
 constraints. This a priori exploration may not guarantee the
 availability of the computed network resources at the time of
 instantiation.

3.6. VN Query

 "VN Query" refers to an inquiry pertaining to a VN that has already
 been instantiated. VN Query fulfills a pull model that permits
 getting a topology view.

 "VN Query Reply" refers to the reply in response to a VN Query. The
 topology view returned by a VN Query Reply would be consistent with
 the topology type instantiated for any specific VN.

4. TE Primitives

 This section provides a list of the main TE primitives necessary to
 satisfy ACTN requirements specified in [ACTN-REQ] related to typical
 TE operations supported at the MPI level.

 The TE action primitives defined in this section should be supported
 at the MPI consistently with the type of topology defined at the CMI.
 The following TE action primitives are supported:

 o TE Instantiate/Modify/Delete

 o TE Topology Update (see Section 4.4. for the description)

 o Path Compute

 TE Action is an object describing the main TE primitives.

 TE Action can assume one of the mentioned above primitives values.

 <TE Action> ::= <TE Instantiate> |

 <TE Modify> |

 <TE Delete> |

<TE Topology Update> |
<Path Compute> |

 All these actions will solely happen at MPI level between MDSC and
 PNC.

4.1. TE Instantiate

 "TE Instantiate" refers to an action issued from MDSC to PNC to
 instantiate new TE tunnels.

4.2. TE Modify

 "TE Modify" refers to an action issued from MDSC to PNC to modify
 existing TE tunnels.

4.3. TE Delete

 "TE Delete" refers to an action issued from MDSC to PNC to delete
 existing TE tunnels.

4.4. TE Topology Update (for TE Resources)

 TE Topology Update is a primitive specifically related to MPI used to
 provide a TE resource update between any domain controller and MDSC
 regarding the entire content of any actual TE topology of a domain
 controller or an abstracted filtered view of TE topology depending on
 negotiated policy.

 See [TE-TOPO] for detailed YANG implementation of TE topology update.

 <TE Topology Update> ::= <TE-topology-list>

 <TE-topology-list> ::= <TE-topology> [<TE-topology-list>]

<TE‑topology> ::= [<Abstraction>] <TE‑Topology‑identifier> <Node‑
list> <Link‑list>
<Node‑list> ::= <Node>[<Node‑list>]

 <Node> ::= <Node> <TE Termination Point-list>

 <TE Termination Point-list> ::= <TE Termination Point> [<TE-
 Termination Point-list>]

 <Link-list> ::= <Link>[<Link-list>]

 Where

 Abstraction provides information on the level of abstraction (as
 determined a priori).

 TE-topology-identifier is an identifier that identifies a specific
 te-topology, e.g., te-types:te-topology-id [TE-TOPO].

 Node-list is detailed information related to a specific node
 belonging to a te-topology, e.g., te-node-attributes [TE-TOPO].

 Link-list is information related to the specific link related
 belonging to a te-topology, e.g., te-link-attributes [TE-TOPO].

 TE Termination Point-list is detailed information associated with the
 termination points of a te-link related to a specific node, e.g.,
 interface-switching-capability [TE-TOPO].

4.5. Path Compute

 Path Compute consists of Request and Reply. "Path Compute Request"
 refers to an action from MDSC to PNC to request a path computation.

 "Path Compute Reply" refers to the reply in response to the Path
 Compute Request.

 The context of Path Compute is described in [Path-Compute].

5. VN Objects

 This section provides a list of objects associated to VN action
 primitives.

5.1. VN Identifier

 A VN Identifier is a unique identifier of the VN.

5.2. VN Service Characteristics

 VN Service Characteristics describes the customer/application
 requirements against the VNs to be instantiated.

 <VN Service Characteristics> ::= <VN Connectivity Type>

 <VN Directionality>

 (<VN Traffic Matrix>...)

 <VN Survivability>

 Where

 <VN Connectivity Type> ::= <P2P>|<P2MP>|<MP2MP>|<MP2P>|<Multi-
 destination>

 The Connectivity Type identifies the type of required VN Service. In
 addition to the classical types of services (e.g., P2P/P2MP, etc.),
 ACTN defines the "multi-destination" service that is a new P2P
 service where the endpoints are not fixed. They can be chosen among
 a list of preconfigured endpoints or dynamically provided by the CNC.

 VN Directionality indicates if a VN is unidirectional or
 bidirectional. This implies that each VN member that belongs to the
 VN has the same directionality as the VN.

 <VN Traffic Matrix> ::= <Bandwidth>

 [<VN Constraints>]

 The VN Traffic Matrix represents the traffic matrix parameters for
 the required service connectivity. Bandwidth is a mandatory
 parameter, and a number of optional constraints can be specified in
 the VN Constraints (e.g., diversity, cost). They can include
 objective functions and TE metric bounds as specified in [RFC5541].

 Further details on the VN constraints are specified below:

 <VN Constraints> ::= [<Layer Protocol>]

 [<Diversity>]

 (<Metric> | <VN Objective Function>)

 Where:

 Layer Protocol identifies the layer topology at which the VN
 service is requested. It could be, for example, MPLS, Optical
 Data Unit (ODU), and Optical Channel (OCh).

 Diversity allows asking for diversity constraints for a VN
 Instantiate/Modify or a VN Path Compute. For example, a new VN or
 a path is requested in total diversity from an existing one (e.g.,
 diversity exclusion).

 <Diversity> ::= (<VN-exclusion> (<VN-id>...)) |

 (<VN-Member-exclusion> (<VN-Member-id>...))

 Metric can include all the Metrics (cost, delay, delay variation,
 latency) and bandwidth utilization parameters defined and
 referenced by [RFC3630] and [RFC7471].

 As for VN Objective Function, see Section 5.4.

 VN Survivability describes all attributes related to the VN recovery
 level and its survivability policy enforced by the customers/
 applications.

 <VN Survivability> ::= <VN Recovery Level>

 [<VN Tunnel Recovery Level>]

 [<VN Survivability Policy>]
Where:

 VN Recovery Level is a value representing the requested level
 of resiliency required against the VN. The following values
 are defined:

 o Unprotected VN

 o VN with per tunnel recovery: The recovery level is defined
 against the tunnels composing the VN, and it is specified in
 the VN Tunnel Recovery Level.

 <VN Tunnel Recovery Level> ::= <0:1>|<1+1>|<1:1>|<1:N>|<M:N>|

 <On the fly restoration>

 The VN Tunnel Recovery Level indicates the type of protection
 or restoration mechanism applied to the VN. It augments the
 recovery types defined in [RFC4427].

 <VN Survivability Policy> ::= [<Local Reroute Allowed>]

 [<Domain Preference>]

 [<Push Allowed>]

 [<Incremental Update>]

 Where:

 Local Reroute Allowed is a delegation policy to the Server on
 whether or not to allow a local reroute fix upon a failure of
 the primary LSP.

 Domain Preference is only applied on the MPI where the MDSC
 (client) provides a domain preference to each PNC (server),
 e.g., when an inter-domain link fails, then PNC can choose the
 alternative peering with this info.

 Push Allowed is a policy that allows a server to trigger an
 updated VN topology upon failure without an explicit request
 from the client. Push action can be set as default unless
 otherwise specified.

 Incremental Update is another policy that triggers an
 incremental update from the server since the last period of
 update. Incremental update can be set as default unless
 otherwise specified.

5.3. VN Endpoint

 VN End-Point Object describes the VN's customer endpoint
 characteristics.

 <VN End-Point> ::= (<Access Point Identifier>

[<Access Link Capability>]
[<Source Indicator>])...

 Where:

 Access Point Identifier represents a unique identifier of the
 client endpoint. They are used by the customer to ask for the
 setup of a virtual network instantiation. A VN End-Point is
 defined against each AP in the network and is shared between
 customer and provider. Both the customer and the provider will map
 it against their own physical resources.

 Access Link Capability identifies the capabilities of the access
 link related to the given access point (e.g., max-bandwidth,
 bandwidth availability, etc.).

 Source Indicator indicates whether or not an endpoint is the
 source.

5.4. VN Objective Function

 The VN Objective Function applies to each VN member (i.e., each E2E
 tunnel) of a VN.

 The VN Objective Function can reuse objective functions defined in
 Section 4 of [RFC5541].

 For a single path computation, the following objective functions are
 defined:

 o MCP is the Minimum Cost Path with respect to a specific metric
 (e.g., shortest path).

 o MLP is the Minimum Load Path, meaning find a path composted by te-
 link least loaded.

 o MBP is the Maximum residual Bandwidth Path.

 For a concurrent path computation, the following objective functions
 are defined:

 o MBC is to Minimize aggregate Bandwidth Consumption.

 o MLL is to Minimize the Load of the most loaded Link.

 o MCC is to Minimize the Cumulative Cost of a set of paths.

5.5. VN Action Status

 VN Action Status is the status indicator whether or not the VN has
 been successfully instantiated, modified, or deleted in the server
 network in response to a particular VN action.

 Note that this action status object can be implicitly indicated and,
 thus, not included in any of the VN primitives discussed in
 Section 3.

5.6. VN Topology

 When a VN is seen by the customer as a topology, it is referred to as
 "VN topology". This is associated with VN Type 2, which is composed
 of virtual nodes and virtual links.

 <VN Topology> ::= <Virtual node list> <Virtual link list>

 <Virtual node list> ::= <Virtual node> [<Virtual node list>]

<Virtual link list> :: = <Virtual link> [<Virtual link list>]

5.7. VN Member

 VN Member describes details of a VN Member that is a list of a set of
 VN Members represented as VN_Member_List.

 <VN_Member_List> ::= <VN Member> [<VN_Member_List>]

 Where <VN Member> ::= <Ingress VN End-Point>

 [<VN Associated LSP>]

 <Egress VN End-Point>

 Ingress VN End-Point is the VN End-Point information for the ingress
 portion of the AP. See Section 5.3 for VN End-Point details.

 Egress VN End-Point is the VN End-Point information for the egress
 portion of the AP. See Section 5.3 for VN End-Point details.

 VN Associated LSP describes the instantiated LSPs in the Provider's
 network for the VN Type 1. It describes the instantiated LSPs over
 the VN topology for VN Type 2.

5.7.1. VN Computed Path

 The VN Computed Path is the list of paths obtained after the VN path
 computation request from a higher controller. Note that the computed
 path is to be distinguished from the LSP. When the computed path is
 signaled in the network (and thus the resource is reserved for that
 path), it becomes an LSP.

 <VN Computed Path> ::= (<Path>...)

5.7.2. VN Service Preference

 This section provides the VN Service preference. VN Service is
 defined in Section 2.

 <VN Service Preference> ::= [<Location Service Preference >]

 [<Client-specific Preference >]

 [<End-Point Dynamic Selection Preference >]

 Where

 Location Service Preference describes the End-Point Location's
 (e.g., data centers (DCs)) support for certain Virtual Network
 Functions (VNFs) (e.g., security function, firewall capability,
 etc.) and is used to find the path that satisfies the VNF
 constraint.

 Client-specific Preference describes any preference related to VNS
 that an application/client can enforce via CNC towards lower-level
 controllers. For example, CNC can enforce client-specific
 preferences, e.g., selection of a destination DC from the set of
 candidate DCs based on some criteria in the context of Virtual
 Machine (VM) migration. MSDC/PNC should then provide the DC
 interconnection that supports the Client-specific Preference.

 End-Point Dynamic Selection Preference describes if the endpoint
 (e.g., DC) can support load-balancing, disaster recovery, or VM
 migration and so can be part of the selection by MDSC following
 service Preference enforcement by CNC.

6. TE Objects

6.1. TE Tunnel Characteristics

 Tunnel Characteristics describes the parameters needed to configure
 TE tunnel.

 <TE Tunnel Characteristics> ::= [<Tunnel Type>]

 <Tunnel Id>

 [<Tunnel Layer>]

 [<Tunnel end-point>]

 [<Tunnel protection-restoration>]

 <Tunnel Constraints>

 [<Tunnel Optimization>]

 Where

 <Tunnel Type> ::= <P2P>|<P2MP>|<MP2MP>|<MP2P>

 The Tunnel Type identifies the type of required tunnel. In this
 document, only the P2P model is provided.

 Tunnel Id is the TE tunnel identifier

 Tunnel Layer represents the layer technology of the LSPs supporting
 the tunnel

 <Tunnel End Points> ::= <Source> <Destination>

<Tunnel protection‑restoration> ::= <prot 0:1>|<prot 1+1>|<prot
1:1>|<prot 1:N>|prot <M:N>|<restoration>
Tunnel Constraints are the base tunnel configuration constraints
parameters.

 Where <Tunnel Constraints> ::= [<Topology Id>]

 [<Bandwidth>]

 [<Disjointness>]

 [<SRLG>]

 [<Priority>]

 [<Affinities>]

 [<Tunnel Optimization>]

 [<Objective Function>]

 Topology Id references the topology used to compute the tunnel path.

 Bandwidth is the bandwidth used as a parameter in path computation.

 <Disjointness> ::= <node> | <link> | <srlg>

 Disjointness provides the type of resources from which the tunnel has
 to be disjointed.

 Shared Risk Link Group (SRLG) is a group of physical resources
 impacted by the same risk from which an E2E tunnel is required to be
 disjointed.

 <Priority> ::= <Holding Priority> <Setup Priority>

 where

 Setup Priority indicates the level of priority for taking resources
 from another tunnel [RFC3209].

 Holding Priority indicates the level of priority to hold resources
 avoiding preemption from another tunnel [RFC3209].

 Affinities represents the structure to validate a link belonging to
 the path of the tunnel [RFC3209].

 <Tunnel Optimization> ::= <Metric> | <Objective Function>

 Metric can include all the Metrics (cost, delay, delay variation,
 latency) and bandwidth utilization parameters defined and referenced
 by [RFC3630] and [RFC7471].

 <Objective Function> ::= <objective function type>

 <objective function type> ::= <MCP> | <MLP> | <MBP> | <MBC> | <MLL>
 | <MCC>

 See Section 5.4 for a description of objective function type.

7. Mapping of VN Primitives with VN Objects

 This section describes the mapping of VN primitives with VN Objects
 based on Section 5.

 <VN Instantiate> ::= <VN Service Characteristics>

 <VN Member-List>

 [<VN Service Preference>]

 [<VN Topology>]

 <VN Modify> ::= <VN identifier>

 <VN Service Characteristics>

 <VN Member-List>

 [<VN Service Preference>]

 [<VN Topology>]

 <VN Delete> ::= <VN Identifier>

 <VN Update> :: = <VN Identifier>

 [<VN Member-List>]

 [<VN Topology>]

 <VN Path Compute Request> ::= <VN Service Characteristics>

 <VN Member-List>

 [<VN Service Preference>]

 <VN Path Compute Reply> ::= <VN Computed Path>

 <VN Query> ::= <VN Identifier>

 <VN Query Reply> ::= <VN Identifier>

 <VN Associated LSP>

 [<TE Topology Reference>]

8. Mapping of TE Primitives with TE Objects

 This section describes the mapping of TE primitives with TE Objects
 based on Section 6.

 <TE Instantiate> ::= <TE Tunnel Characteristics>

<TE Modify> ::= <TE Tunnel Characteristics>

<TE Delete> ::= <Tunnel Id>
<TE Topology Update> ::= <TE‑topology‑list>

 <Path Compute Request> ::= <TE Tunnel Characteristics>

 <Path Compute Reply> ::= <TE Computed Path>

 <TE Tunnel Characteristics>

9. Security Considerations

 The ACTN information model is not directly relevant when considering
 potential security issues. Rather, it defines a set of interfaces
 for TE networks. The underlying protocols, procedures, and
 implementations used to exchange the information model described in
 this document will need to secure the request and control of
 resources with proper authentication and authorization mechanisms.
 In addition, the data exchanged over the ACTN interfaces discussed in
 this document requires verification of data integrity. Backup or
 redundancies should also be available to restore the affected data to
 its correct state.

 Implementations of the ACTN framework will have distributed
 functional components that will exchange an instantiation that
 adheres to this information model. Implementations should encrypt
 data that flows between them, especially when they are implemented at
 remote nodes and irrespective of whether these data flows are on
 external or internal network interfaces. The information model may
 contain customer, application, and network data that, for business or
 privacy reasons, may be considered sensitive. It should be stored
 only in an encrypted data store.

 The ACTN security discussion is further split into two specific
 interfaces:

 o Interface between the CNC and MDSC, CNC-MDSC Interface (CMI)

 o Interface between the MDSC and PNC, MDSC-PNC Interface (MPI).

 See the detailed discussion of the CMI and MPI in Sections 9.1 and
 9.2 (respectively) in [RFC8453].

 The conclusion is that all data models and protocols used to realize
 the ACTN information model should have rich security features, as
 discussed in this section. Additional security risks may still
 exist. Therefore, discussion and applicability of specific security
 functions and protocols will be better described in documents that
 are use case and environment specific.

10. IANA Considerations

 This document has no IANA actions.

11. References

11.1. Normative References

 [RFC8453]
 Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for
 Abstraction and Control of TE Networks (ACTN)", RFC 8453,
 DOI 10.17487/RFC8453, August 2018,
 <https://www.rfc-editor.org/info/rfc8453>.

11.2. Informative References

 [ACTN-REQ]

 Lee, Y., Ceccarelli, D., Miyasaka, T., Shin, J., and K.
 Lee, "Requirements for Abstraction and Control of TE
 Networks", Work in Progress,
 draft-ietf-teas-actn-requirements-09, March 2018.

 [Path-Compute]

 Busi, I., Belotti, S., Lopezalvarez, V., Dios, O., Sharma,
 A., Shi, Y., Vilata, R., and K. Sethuraman, "Yang model
 for requesting Path Computation", Work in Progress,
 draft-ietf-teas-yang-path-computation-02, June 2018.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <https://www.rfc-editor.org/info/rfc3209>.

 [RFC3630]
 Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
 (TE) Extensions to OSPF Version 2", RFC 3630,
 DOI 10.17487/RFC3630, September 2003,
 <https://www.rfc-editor.org/info/rfc3630>.

 [RFC4427]
 Mannie, E., Ed. and D. Papadimitriou, Ed., "Recovery
 (Protection and Restoration) Terminology for Generalized
 Multi-Protocol Label Switching (GMPLS)", RFC 4427,
 DOI 10.17487/RFC4427, March 2006,
 <https://www.rfc-editor.org/info/rfc4427>.

 [RFC5541]
 Le Roux, JL., Vasseur, JP., and Y. Lee, "Encoding of
 Objective Functions in the Path Computation Element
 Communication Protocol (PCEP)", RFC 5541,
 DOI 10.17487/RFC5541, June 2009,
 <https://www.rfc-editor.org/info/rfc5541>.

 [RFC7471]
 Giacalone, S., Ward, D., Drake, J., Atlas, A., and S.
 Previdi, "OSPF Traffic Engineering (TE) Metric
 Extensions", RFC 7471, DOI 10.17487/RFC7471, March 2015,
 <https://www.rfc-editor.org/info/rfc7471>.

 [RFC7926]
 Farrel, A., Ed., Drake, J., Bitar, N., Swallow, G.,
 Ceccarelli, D., and X. Zhang, "Problem Statement and
 Architecture for Information Exchange between
 Interconnected Traffic-Engineered Networks", BCP 206,
 RFC 7926, DOI 10.17487/RFC7926, July 2016,
 <https://www.rfc-editor.org/info/rfc7926>.

 [TE-TOPO]
 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
 O. Dios, "YANG Data Model for Traffic Engineering (TE)
 Topologies", Work in Progress,
 draft-ietf-teas-yang-te-topo-18, June 2018.

Contributors

Haomian Zheng
Huawei Technologies
Email: zhenghaomian@huawei.com

Xian Zhang
Huawei Technologies
Email: zhang.xian@huawei.com

Authors' Addresses

Young Lee (Editor)
Huawei Technologies
5340 Legacy Drive
Plano, TX 75023, USA

Phone: (469)277‑5838
Email: leeyoung@huawei.com

Sergio Belotti (Editor)
Nokia
Via Trento, 30
Vimercate, Italy

 Email: sergio.belotti@nokia.com

Dhruv Dhody
Huawei Technologies,
Divyashree Technopark, Whitefield
Bangalore, India

 Email: dhruv.ietf@gmail.com

Daniele Ceccarelli
Ericsson
Torshamnsgatan,48
Stockholm, Sweden

 Email: daniele.ceccarelli@ericsson.com

Bin Yeong Yoon
ETRI

 Email: byyun@etri.re.kr

draft-bryskin-teas-service-tunnel-steering-model-01 - Basic YANG Model for Steer

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Informational

Expires: May 9, 2019

I. Bryskin

Huawei Technologies

V. Beeram

Juniper Networks

T. Saad

Cisco Systems Inc

X. Liu

Volta Networks

Y. Lee

Huawei Technologies

November 5, 2018

Basic YANG Model for Steering Client Services To Server Tunnels

draft-bryskin-teas-service-tunnel-steering-model-01

Abstract

 This document describes a YANG data model for managing pools of
 transport tunnels and steering client services on them.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 9, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Tree Diagrams

	 1.3. Prefixes in Data Node Names

	2. Explicit vs. Implicit Service2tunnel Mapping. Steering Services to Transport Tunnel Pools

	3. The purpose of the model

	4. Model Design

	5. Tree Structure

	6. YANG Modules

	7. IANA Considerations

	8. Security Considerations

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Authors' Addresses

1. Introduction

 Client layer services/signals are normally mapped onto carrying them
 across the network transport tunnels via client/server layer
 adaptation relationships. Such relationships are usually modeled as
 multi-layer topologies, whereas tunnels set up in underlay (server)
 topologies support links in respective overlay (client) topologies.
 In this respect having a link in a client topology means that the
 client layer traffic could be forwarded between link termination
 points (LTPs) terminating the link on opposite sides by the
 supporting tunnel(s) configured in the server layer topology.

 This said there are numerous use cases in which describing the client
 service to server tunnel bindings via the topology formalism is
 impractical. Below are some examples of such use cases:

 o Mapping client services onto tunnels within the same network
 layer, for example, mapping L3 VPNs or MPLS-SR services onto IP
 MPLS tunnels;

 o Mapping client services onto tunnels provisioned in the highest
 layer topology supported by the network. For example, mapping
 L2VPNs or E(V)PL services onto IP MPLS tunnels provisioned in IP
 network;

 o Mapping client services to tunnels configured in separate network
 layers at the network's access points. Consider, for example, an
 OTN/ODUk network that is used to carry client signals of, say, 20
 different types (e.g. Ethernet, SDH, FKON, etc.) entering and
 exiting the network over client facing interfaces. Although it is
 possible to describe such a network as a 21-layer TE topology with
 the OTN/ODUk topology serving each of the 20 client layer
 topologies, such a description would be verbose, cumbersome,
 difficult to expand to accommodate additional client signals and
 unnecessary, because the client layer topologies would have zero
 switching flexibility inside the network (i.e. contain only
 unrelated links connecting access points across respective layer
 networks), and all what is required to know from the point of view
 of a management application is what ODUk tunnels are established
 or required, which client signals the tunnels could carry and at
 which network border nodes and how the client signals could be
 bound (adopted) to the tunnels.

 It is worth noting that such non-topological client-service-to-
 server-tunnel mapping almost always happens on network border nodes.
 However, there are also important use cases where such a mapping is
 required in the middle of the network. One such use case is
 controlling on IP/MPLS FRR PLRs which LSPs are mapped onto which
 backup tunnels.

 Service2tunnel mappings could be very complex: large number of
 instances of services of the same or different types (possibly
 governed by different models) could be mapped on the same set of
 tunnels, which could be set in different network layers and could be
 either TE or non-TE, P2P or P2MP or MP2MP. Furthermore, the mappings
 could be hierarchical: tunnels carrying services could be clients of
 other tunnels.

 Despite of the differences of transport tunnels and of services they
 carry the srvice2tunnel mappings could be described in a simple
 uniform way. Access to a data store of such mappings could be
 beneficial to network management applications. It would be possible,
 for example, to discover which services depend on which tunnels,
 which services will be affected if a given tunnel goes out of
 service, how many more services could be placed onto a given TE
 tunnel without the latter violating its TE commitments (e.g.
 bandwidth, delay). It would be also possible to demand in a single
 request moving numerous (ranges of) service instances from one set of
 tunnels to another.

 This document defines a YANG data model for such mappings.

1.1. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14, [RFC2119].

 The following terms are defined in [RFC7950] and are not redefined
 here:

 o augment

 o data model

 o data node

1.2. Tree Diagrams

 A simplified graphical representation of the data model is presented
 in this document, by using the tree format defined in [RFC8340].

1.3. Prefixes in Data Node Names

 In this document, names of data nodes, actions, and other data model
 objects are often used without a prefix, as long as it is clear from
 the context in which YANG module each name is defined. Otherwise,
 names are prefixed using the standard prefix associated with the
 corresponding YANG module, as shown in Table 1.

+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Prefix | YANG module | Reference |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| inet | ietf‑inet‑types | [RFC6991] |
| te‑types | ietf‑te‑types | [I‑D.ietf‑teas‑yang‑te] |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1: Prefixes and Corresponding YANG Modules

2. Explicit vs. Implicit Service2tunnel Mapping. Steering Services to
 Transport Tunnel Pools

 There are use cases in which client services require hard separation
 of the transport carrying them from the transport carrying other
 services. However, the environment in which the services may share
 the same transport tunnels is far more common. For this reason the
 model defined in this document suggests replacing (or at least
 augmenting) the explicit service2tunnel mapping configuration (in
 which the tunnels are referred to by their IDs/names) with implicit
 mapping. Specifically, the model introduces the notion of tunnel
 pool. A tunnel pool could be referred to by its network unique color
 and requires service2tunnel mapping configuration to specify tunnel
 pool color(s) instead of tunnel IDs/names. The model governs tunnel
 pool data store independently from the services steered on them. It
 is presumed (although not required) that the tunnels - components of
 a tunnel pool - are of the same type, provisioned using a common
 template and could be dynamically added to/removed from the pool
 without necessitating service2tunnel mapping re-configuration. Such
 a service to tunnel pool steering approach has the following
 advantages:

 o Scalability and efficiency: pool component bandwidth utilization
 could be monitored, tunnels could be added to/removed from the
 pool if/when it is detected that current component bandwidth
 utilization has crossed certain thresholds. This allows for a
 very efficient network resource utilization and obviates the
 network management application from a very difficult task of
 service to tunnel mapping planning;

 o Automation and elasticity: pool component attributes could be
 modified - bandwidth auto-adjusted, protection added, delay
 constrained, etc.. The tunnels could be completely or partially
 replaced with tunnels of different types (e.g. TE vs. non-TE, P2P
 vs. P2MP, etc.) or even provisioned in different network layers
 (OTN/ODUk tunnels replacing IP TE tunnels). All such
 modifications do not require service2tunell mapping re-
 configurations as long as the modified or new tunnels remain
 within the same tunnel pool(s);

 o Transparency: new service sites supported by additional PEs could
 be added without service2tunnel mapping re-configuration.

3. The purpose of the model

 To facilitate for network management applications, such as service
 orchestrators, managing pools of transport tunnels and steering on
 them client services independently of network technology/layer
 specifics of the services and the tunnels. The model could be
 applied to/implemented on physical devices, such as IP routers, as
 well as on abstract topology nodes. Furthermore, the model could be
 supported by a network (domain) controller, such as ACTN PNC, to act
 as a proxy server on behalf of any network element/node (physical or
 abstract) under its control.

4. Model Design

 The data store described/governed by the model is comprised of a
 single top level list - TunnelPools. A TunnelPool, list element, is
 a container describing a set of transport tunnels (presumably with
 similar characteristics) identified by a network unique ID (color).

 The TunnelPool container has the following fields:

 o Color [uint32 list key];

 o Tunnels list;

 o Services list.

 The Tunnels list describes the pool constituents - active transport
 tunnels. The list members - Tunnel containers - include the
 following infoemation:

 o tunnel type [e.g. P2P-TE, P2MP-TE, SR-TE, SR P2P, LDP P2P, LDP
 MP2MP, GRE, PBB, etc]

 o tunnel type specific tunnel ID [provided that a data store of the
 tunnel type, e.g. TE tunnels, is supported, the tunnelID allows
 for the management application to look up the tunnel in question
 to obtain detailed information about the tunnel];

 o topology ID [identifies the topology over which the tunnel's
 connection paths are defined];

 o tunnel source topology node ID;

 o tunnel destination topology node ID;

 o tunnel layer ID;

 o maximal and available/resolvable bandwidth;

 o e2e cost;

 o e2e one way and round trip delay metrics;

 o tunnel protection/restoration capabilities;

 o tunnel encapsulation [e.g. MPLS label stack, Ethernet STAGs, GRE
 header, PBB header, etc].

 The Services list describes services currently steered on the tunnel
 pool. The list members - Service containers - have the following
 attributes:

 o service type [e.g. fixed/transparent, L3VPN, L2VPN, EVPN, ELINE,
 EPL, EVPL, L1VPN, ACTN VN, etc.];

 o service type specific service ID [provided that a data store of
 the service type, e.g. L2VPN, is supported, the service ID allows
 for the management application to look up the service in question
 to obtain detailed information about the service];

 o client ports (source/destination node LTPs over which the service
 enters/exits the node/network, relevant only for fixed/transparent
 services);

 o service layer ID;

 o minimal bandwidth expectations;

 o maximal delay expectations;

 o minimal protection requirements;

 o service encapsulation [e.g. MPLS label stack, Ethernet CTAGs,
 etc.] - for service multiplexing/de-multiplexing on/from a
 statistically shared tunnel].

5. Tree Structure

module: ietf‑tunnel‑steering
 +‑‑rw tunnel‑pools
 +‑‑rw tunnel‑pool* [color]
 +‑‑rw color uint32
 +‑‑rw description? string
 +‑‑rw service* [service‑type id]
 | +‑‑rw service‑type identityref
 | +‑‑rw id string
 | +‑‑ro access‑point* [node‑address link‑termination‑point]
 | | +‑‑ro node‑address inet:ip‑address
 | | +‑‑ro link‑termination‑point string
 | | +‑‑ro direction? enumeration
 | +‑‑ro switching‑type? identityref
 | +‑‑ro protection‑type? identityref
 | +‑‑ro encapsulation? identityref
 | +‑‑ro performance‑metric‑one‑way
 | | +‑‑ro one‑way‑delay? uint32

 | | +‑‑ro one‑way‑min‑delay? uint32
 | | +‑‑ro one‑way‑max‑delay? uint32
 | | +‑‑ro one‑way‑delay‑variation? uint32
 | | +‑‑ro one‑way‑packet‑loss? decimal64
 | | +‑‑ro one‑way‑residual‑bandwidth?
 | | | rt‑types:bandwidth‑ieee‑float32
 | | +‑‑ro one‑way‑available‑bandwidth?
 | | | rt‑types:bandwidth‑ieee‑float32
 | | +‑‑ro one‑way‑utilized‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro performance‑metric‑two‑way
 | +‑‑ro two‑way‑delay? uint32
 | +‑‑ro two‑way‑min‑delay? uint32
 | +‑‑ro two‑way‑max‑delay? uint32
 | +‑‑ro two‑way‑delay‑variation? uint32
 | +‑‑ro two‑way‑packet‑loss? decimal64
 +‑‑rw tunnel*
 [provider‑id client‑id topology‑id source destination
 tunnel‑id]
 +‑‑rw provider‑id te‑types:te‑global‑id
 +‑‑rw client‑id te‑types:te‑global‑id
 +‑‑rw topology‑id
 | te‑types:te‑topology‑id
 +‑‑rw source inet:ip‑address
 +‑‑rw destination inet:ip‑address
 +‑‑rw tunnel‑id binary
 +‑‑ro tunnel‑type? identityref
 +‑‑ro switching‑type? identityref
 +‑‑ro protection‑type? identityref
 +‑‑ro encapsulation? identityref
 +‑‑ro performance‑metric‑one‑way
 | +‑‑ro one‑way‑delay? uint32
 | +‑‑ro one‑way‑min‑delay? uint32
 | +‑‑ro one‑way‑max‑delay? uint32
 | +‑‑ro one‑way‑delay‑variation? uint32
 | +‑‑ro one‑way‑packet‑loss? decimal64
 | +‑‑ro one‑way‑residual‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro one‑way‑available‑bandwidth?
 | | rt‑types:bandwidth‑ieee‑float32
 | +‑‑ro one‑way‑utilized‑bandwidth?
 | rt‑types:bandwidth‑ieee‑float32
 +‑‑ro performance‑metric‑two‑way
 +‑‑ro two‑way‑delay? uint32
 +‑‑ro two‑way‑min‑delay? uint32
 +‑‑ro two‑way‑max‑delay? uint32
 +‑‑ro two‑way‑delay‑variation? uint32
 +‑‑ro two‑way‑packet‑loss? decimal64

6. YANG Modules

<CODE BEGINS> file "ietf‑tunnel‑steering@2018‑11‑03.yang"
module ietf‑tunnel‑steering {
 yang‑version 1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑tunnel‑steering";

 prefix "tnl-steer";

import ietf‑inet‑types {
 prefix inet;
}

import ietf‑te‑types {
 prefix "te‑types";
}

 organization

 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 Editors: Igor Bryskin
 <mailto:Igor.Bryskin@huawei.com>

 Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

 Editor: Tarek Saad
 <mailto:tsaad@cisco.com>

 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>";

 description

 "This data model is for steering client service to server
 tunnels.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).";

 revision 2018‑11‑03 {
 description "Initial revision";
 reference "TBD";
 }

 /*
 * Typedefs
 */

 /*
 * Identities
 */
 identity service‑type {
 description "Base identity for client service type.";
 }
 identity service‑type‑l3vpn {
 base service‑type;
 description
 "L3VPN service.";
 }
 identity service‑type‑l2vpn {
 base service‑type;
 description
 "L2VPN service.";
 }
 identity service‑type‑evpn {
 base service‑type;
 description
 "EVPN service.";
 }
 identity service‑type‑eline {
 base service‑type;
 description
 "ELINE service.";
 }
 identity service‑type‑epl {
 base service‑type;
 description
 "EPL service.";
 }
 identity service‑type‑evpl {
 base service‑type;
 description
 "EVPL service.";

 }
 identity service‑type‑l1vpn {
 base service‑type;
 description
 "L1VPN service.";
 }
 identity service‑type‑actn‑vn {
 base service‑type;
 description
 "ACTN VN service.";
 }
 identity service‑type‑transparent {
 base service‑type;
 description
 "Transparent LAN service.";
 }

 identity encapsulation‑type {
 description "Base identity for tunnel encapsulation.";
 }
 identity encapsulation‑type‑mpls‑label {
 base encapsulation‑type;
 description
 "Encapsulated by MPLS label stack.";
 }
 identity encapsulation‑type‑ethernet‑s‑tag {
 base encapsulation‑type;
 description
 "Encapsulated by Ethernet S‑TAG.";
 }
 identity encapsulation‑type‑pbb {
 base encapsulation‑type;
 description
 "Encapsulated by PBB header.";
 }
 identity encapsulation‑type‑gre {
 base encapsulation‑type;
 description
 "Encapsulated by GRE header.";
 }

 /*
 * Groupings
 */

 /*
 * Configuration data and operational state data nodes
 */

 container tunnel‑pools {
 description
 "A list of mappings that steer client services to transport
 tunnel pools. The tunnel pools are managed independently from
 the services steered on them.";

 list tunnel‑pool {
 key "color";
 description
 "A set of transport tunnels (presumably with similar
 characteristics) identified by a network unique ID, named
 'color'.";
 leaf color {
 type uint32;
 description
 "Unique ID of a tunnel pool.";
 }
 leaf description {
 type string;
 description
 "Client provided description of the tunnel pool.";
 }
 list service {
 key "service‑type id";
 description
 "A list of client services that are steered on this tunnel
 pool.";
 leaf service‑type {
 type identityref {
 base service‑type;
 }
 description
 "Service type required by the client.";
 }
 leaf id {
 type string;
 description
 "Unique ID of a client service for the specified
 service type.";
 }
 list access‑point {
 key "node‑address link‑termination‑point";
 config false;
 description
 "A list of client ports (Link Termination Points) for the
 service to enter or exist.";
 leaf node‑address {
 type inet:ip‑address;

 description
 "Node over which the service enters or exists.";
 }
 leaf link‑termination‑point {
 type string;
 description
 "Client port (Link Termination Point) over which the
 service enters or exits.";
 }
 leaf direction {
 type enumeration {
 enum "in" {
 description "The service enters to the network.";
 }
 enum "out" {
 description "The service exists from the network.";
 }
 enum "in‑out" {
 description
 "The service enters to and exists from the
 network.";
 }
 }
 description
 "Whether the service enters to or exits from the
 network.";
 }
 }
 leaf switching‑type {
 type identityref {
 base te‑types:switching‑capabilities;
 }
 config false;
 description
 "Tunnel switching type required by the client.";
 reference "RFC3945";
 }
 leaf protection‑type {
 type identityref {
 base te‑types:lsp‑protection‑type;
 }
 config false;
 description
 "The protection type required by the client.";
 }
 leaf encapsulation {
 type identityref {
 base encapsulation‑type;

 }
 config false;
 description
 "The encapsulation type used by the tunnel.";
 }
 uses te‑types:performance‑metric‑container {
 refine performance‑metric‑one‑way {
 config false;
 }
 refine performance‑metric‑two‑way {
 config false;
 }
 }
 }
 list tunnel {
 key "provider‑id client‑id topology‑id source destination "
 + "tunnel‑id";
 description
 "A list of tunnels in the tunnel pool.";

 leaf provider‑id {
 type te‑types:te‑global‑id;
 description
 "An identifier to uniquely identify a provider.";
 }
 leaf client‑id {
 type te‑types:te‑global‑id;
 description
 "An identifier to uniquely identify a client.";
 }
 leaf topology‑id {
 type te‑types:te‑topology‑id;
 description
 "It is presumed that a datastore will contain many
 topologies. To distinguish between topologies it is
 vital to have UNIQUE topology identifiers.";
 }
 leaf source {
 type inet:ip‑address;
 description
 "For a p2p or p2mp tunnel, this is the source address;
 for a mp2mp tunnel, this is the root address.";
 reference "RFC3209, RFC4875, RFC6388, RFC7582.";
 }
 leaf destination {
 type inet:ip‑address;
 description
 "For a p2p tunnel, this is the tunnel endpoint address

 extracted from SESSION object;
 for a p2mp tunnel, this identifies the destination
 group, or p2mp‑id;
 for a mp2mp tunnel identified by root and opaque‑value,
 this value is set to '0'.";
 reference "RFC3209, RFC4875, RFC6388, RFC7582.";
 }
 leaf tunnel‑id {
 type binary;
 description
 "For a p2p or p2mp tunnel, this is the tunnel identifier
 used in the SESSION that remains constant over the life
 of the tunnel;
 for a mp2mp tunnel, this is the opaque‑value in the
 FEC element.";
 reference "RFC3209, RFC4875, RFC6388, RFC7582.";
 }
 leaf tunnel‑type {
 type identityref {
 base te‑types:te‑tunnel‑type;
 }
 config false;
 description
 "Tunnel type based on constructing technologies and
 multipoint types, including P2P‑TE, P2MP‑TE, SR‑TE,
 SR P2P, LDP P2P, LDP MP2MP, GRE, PBB, etc";
 }
 leaf switching‑type {
 type identityref {
 base te‑types:switching‑capabilities;
 }
 config false;
 description "Tunnel switching type";
 reference "RFC3945";
 }
 leaf protection‑type {
 type identityref {
 base te‑types:lsp‑protection‑type;
 }
 config false;
 description
 "The protection type provided by this tunnel.";
 }
 leaf encapsulation {
 type identityref {
 base encapsulation‑type;
 }
 config false;

 description
 "The encapsulation type used by the tunnel.";
 }
 uses te‑types:performance‑metric‑container {
 refine performance‑metric‑one‑way {
 config false;
 }
 refine performance‑metric‑two‑way {
 config false;
 }
 }
 }
 }
 }
}
<CODE ENDS>

7. IANA Considerations

 RFC Ed.: In this section, replace all occurrences of 'XXXX' with the
 actual RFC number (and remove this note).

 This document registers the following namespace URIs in the IETF XML
 registry [RFC3688]:

‑‑
URI: urn:ietf:params:xml:ns:yang:ietf‑tunnel‑steering
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
‑‑

 This document registers the following YANG modules in the YANG Module
 Names registry [RFC7950]:

‑‑
name: ietf‑tunnel‑steering
namespace: urn:ietf:params:xml:ns:yang:ietf‑tunnel‑steering
prefix: tnl‑steer
reference: RFC XXXX
‑‑

8. Security Considerations

 The configuration, state, action and notification data defined in
 this document are designed to be accessed via the NETCONF protocol
 [RFC6241]. The data-model by itself does not create any security
 implications. The security considerations for the NETCONF protocol
 are applicable. The NETCONF protocol used for sending the data
 supports authentication and encryption.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [I-D.ietf-teas-yang-te-topo]

 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
 O. Dios, "YANG Data Model for Traffic Engineering (TE)
 Topologies", draft-ietf-teas-yang-te-topo-18 (work in
 progress), June 2018.

 [I-D.ietf-teas-yang-te]

 Saad, T., Gandhi, R., Liu, X., Beeram, V., Shah, H., and
 I. Bryskin, "A YANG Data Model for Traffic Engineering
 Tunnels and Interfaces", draft-ietf-teas-yang-te-17 (work
 in progress), October 2018.

9.2. Informative References

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8345]
 Clemm, A., Medved, J., Varga, R., Bahadur, N.,
 Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
 Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
 2018, <https://www.rfc-editor.org/info/rfc8345>.

Authors' Addresses

Igor Bryskin
Huawei Technologies

 EMail: Igor.Bryskin@huawei.com

Vishnu Pavan Beeram
Juniper Networks

 EMail: vbeeram@juniper.net

Tarek Saad
Cisco Systems Inc

 EMail: tsaad@cisco.com

Xufeng Liu
Volta Networks

 EMail: xufeng.liu.ietf@gmail.com

Young Lee
Huawei Technologies

 EMail: leeyoung@huawei.com

draft-dong-teas-enhanced-vpn-03 - A Framework for Enhanced Virtual Private Netwo

Index
Back 5
Prev
Next
Forward 5

TEAS Working Group

Internet-Draft

Intended status: Informational

Expires: May 19, 2019

J. Dong

S. Bryant

Huawei

Z. Li

China Mobile

T. Miyasaka

KDDI Corporation

Y. Lee

Huawei

November 15, 2018

A Framework for Enhanced Virtual Private Networks (VPN+) Service

draft-dong-teas-enhanced-vpn-03

Abstract

 This document specifies a framework for using existing, modified and
 potential new networking technologies as components to provide an
 Enhanced Virtual Private Networks (VPN+) service. The purpose is to
 enable VPNs to support the needs of new applications, particularly
 applications that are associated with 5G services. Typically, VPN+
 can be used to form the underpinning of network slicing, but will
 also be of use in its own right.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 19, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Overview of the Requirements
	 2.1. Isolation between Virtual Networks
	 2.1.1. A Pragmatic Approach to Isolation

	 2.2. Performance Guarantee

	 2.3. Integration
	 2.3.1. Abstraction

	 2.4. Dynamic Configuration

	 2.5. Customized Control

	 2.6. Applicability

	3. Architecture of Enhanced VPN
	 3.1. Layered Architecture

	 3.2. Multi-Point to Multi-Point

	 3.3. Application Specific Network Types

	4. Candidate Technologies
	 4.1. Underlay Packet and Frame-Based Data Planes
	 4.1.1. FlexE

	 4.1.2. Dedicated Queues

	 4.1.3. Time Sensitive Networking

	 4.2. Packet and Frame-Based Network Layer
	 4.2.1. Deterministic Networking

	 4.2.2. MPLS Traffic Engineering (MPLS-TE)

	 4.2.3. Segment Routing

	 4.3. Non-Packet Technologies

	 4.4. Control Plane

	 4.5. Management Plane

	 4.6. Applicability of ACTN to Enhanced VPN
	 4.6.1. ACTN Used for VPN+ Delivery

	 4.6.2. Enhanced VPN Features with ACTN

	5. Scalability Considerations
	 5.1. Maximum Stack Depth of SR

	 5.2. RSVP Scalability

	6. OAM Considerations

	7. Enhanced Resiliency

	8. Security Considerations

	9. IANA Considerations

	10. Contributors

	11. Acknowledgements

	12. References
	 12.1. Normative References

	 12.2. Informative References

	Authors' Addresses

1. Introduction

 Virtual private networks (VPNs) have served the industry well as a
 means of providing different groups of users with logically isolated
 access to a common network. The common or base network that is used
 to provide the VPNs is often referred to as the underlay, and the VPN
 is often called an overlay.

 Customers of a network operator may request enhanced VPN services
 with additional characteristics such as complete isolation from other
 VPNs so that changes in network load have no effect on the throughput
 or latency of the service provided to the customer.

 Driven largely by needs surfacing from 5G, the concept of network
 slicing has gained traction [NGMN-NS-Concept] [TS23501] [TS28530]
 [BBF-SD406]. Network slicing requires the underlying network to
 support partitioning the network resources to provide the client with
 dedicated (private) networking, computing, and storage resources
 drawn from a shared pool. The slices may be seen as (and operated
 as) virtual networks.

 Network abstraction is a technique that can be applied to a network
 domain to select network resources by policy to obtain a view of
 potential connectivity and a set of service functions.

 Network slicing is an approach to network operations that builds on
 the concept of network abstraction to provide programmability,
 flexibility, and modularity. It may use techniques such as Software
 Defined Networking (SDN) [RFC7149] and Network Function
 Virtualization (NFV) to create multiple logical (virtual) networks,
 each tailored for a set of services or a particular tenant that share
 the same set of requirements, on top of a common network. How the
 network slices are engineered can be deployment-specific.

 Thus, there is a need to create virtual networks with enhanced
 characteristics. The tenant of such a virtual network can require a
 degree of isolation and performance that previously could only be
 satisfied by dedicated networks. Additionally, the tenant may ask
 for some level of control to their virtual networks, e.g., to
 customize the service forwarding paths in a network slice.

 These enhanced properties cannot be met with pure overlay networks,
 as they require tighter coordination and integration between the
 underlay and the overlay network. This document introduces a new
 network service called Enhanced VPN: VPN+. VPN+ refers to a virtual
 network which has dedicated network resources, including invoked
 service functions, allocated from the underlay network. Unlike a
 traditional VPN, an enhanced VPN can achieve greater isolation with
 strict guaranteed performance. These new properties, which have
 general applicability, may also be of interest as part of a network
 slicing solution.

 This document specifies a framework for using existing, modified and
 potential new networking technologies as components to provide a VPN+
 service. Specifically we are concerned with:

 o The design of the enhanced data plane.

 o The necessary protocols in both underlay and the overlay of
 enhanced VPN.

 o The mechanisms to achieve integration between overlay and
 underlay.

 o The necessary Operation, Administration and Management (OAM)
 methods to instrument an enhanced VPN to make sure that the
 required Service Level Agreement (SLA) are met, and to take any
 corrective action to avoid SLA violation, such as switching to an
 alternate path.

 The required network layered structure to achieve this is shown in
 Section 3.1.

 Note that, in this document, the four terms "VPN", "Enhanced VPN" (or
 "VPN+"), "Virtual Network (VN)", and "Network Slice" may be
 considered as describing similar concepts dependent on the viewpoint
 from which they are used.

 o An enhanced VPN is clearly a form of VPN, but with additional
 service-specific commitments.

 o A VN is a type of service that connects customer edge points with
 the additional possibility of requesting further service
 characteristics in the manner of an enhanced VPN.

 o An enhanced VPN or VN is made by creating a slice through the
 resources of the underlay network.

 o The general concept of network slicing in a TE network is a larger
 problem space than is addressed by VPN+ or VN, but those concepts
 are tools to address some aspects or realizations of network
 slicing.

2. Overview of the Requirements

 In this section we provide an overview of the requirements of an
 enhanced VPN.

2.1. Isolation between Virtual Networks

 Isolation is a feature requested by some particular customers in the
 network. Such feature is offered by a network operator where the
 traffic from one service instance is isolated from the traffic of
 other services. There are different grades of isolation that range
 from simple separation of traffic on delivery (ensuring that traffic
 is not delivered to the wrong customer) all the way to complete
 separation within the underlay so that the traffic from different
 services use distinct network resources.

 The terms hard and soft isolation are introduced to give example of
 different isolation cases. A VPN has soft isolation if the traffic
 of one VPN cannot be received by the customers of another VPN. Both
 IP and MPLS VPNs are examples of soft isolated VPNs because the
 network delivers the traffic only to the required VPN endpoints.
 However, the traffic from one or more VPNs and regular network
 traffic may congest the network resulting in packet loss and delay
 for other VPNs operating normally. The ability for a VPN to be
 sheltered from this effect is called hard isolation, and this
 property is required by some critical applications.

 The requirement is for an operator to provide both hard and soft
 isolation between the tenants/applications using one enhanced VPN and
 the tenants/applications using another enhanced VPN. Hard isolation
 is needed so that applications with exacting requirements can
 function correctly, despite other demands (perhaps a burst on another
 VPN) competing for the underlying resources. In practice isolation
 may be offered as a spectrum between soft and hard.

 An example of hard isolation is a network supporting both emergency
 services and public broadband multi-media services. During a major
 incident the VPNs supporting these services would both be expected to
 experience high data volumes, and it is important that both make
 progress in the transmission of their data. In these circumstances
 the VPNs would require an appropriate degree of isolation to be able
 to continue to operate acceptably.

 In order to provide the required isolation, resources may have to be
 reserved in the data plane of the underlay network and dedicated to
 traffic from a specific VPN. This may introduce scalability
 concerns, thus some trade-off needs to be considered to provide the
 required isolation between network slices while still allowing
 reasonable sharing inside each network slice.

 An optical layer can offer a high degree of isolation, at the cost of
 allocating resources on a long term and end-to-end basis. Such an
 arrangement means that the full cost of the resources must be borne
 by the service that is allocated with the resources. On the other
 hand, where adequate isolation can be achieved at the packet layer,
 this permits the resources to be shared amongst many services and
 only dedicated to a service on a temporary basis. This in turn,
 allows greater statistical multiplexing of network resources and thus
 amortizes the cost over many services, leading to better economy.
 However, the degree of isolation required by network slicing cannot
 be entirely met with existing mechanisms such as Traffic Engineered
 Label Switched Paths (TE-LSPs). This is because most implementations
 enforce the bandwidth in the data-plane only at the PEs, but at the P
 routers the bandwidth is only reserved in the control plane, thus
 bursts of data can accidentally occur at a P router with higher than
 committed data rate.

 There are several new technologies that provide some assistance with
 these data plane issues. Firstly there is the IEEE project on Time
 Sensitive Networking [TSN] which introduces the concept of packet
 scheduling of delay and loss sensitive packets. Then there is
 [FLEXE] which provides the ability to multiplex multiple channels
 over one or more Ethernet links in a way that provides hard
 isolation. Finally there are advanced queueing approaches which
 allow the construction of virtual sub-interfaces, each of which is
 provided with dedicated resource in a shared physical interface.
 These approaches are described in more detail later in this document.

 In the remainder of this section we explore how isolation may be
 achieved in packet networks.

2.1.1. A Pragmatic Approach to Isolation

 A key question is whether it is possible to achieve hard isolation in
 packet networks, which were never designed to support hard isolation.
 On the contrary, they were designed to provide statistical
 multiplexing, a significant economic advantage when compared to a
 dedicated, or a Time Division Multiplexing (TDM) network. However
 there is no need to provide any harder isolation than is required by
 the application. Pseudowires [RFC3985] emulate services that would
 have had hard isolation in their native form. An approximation to
 this requirement is sufficient in most cases.

 Thus, for example, using FlexE or a channelized sub-interface
 together with packet scheduling as interface slicing, optionally
 along with the slicing of node resources, a type of hard isolation
 can be provided that is adequate for many VPN+ applications. Other
 applications may be either satisfied with a classical VPN with or
 without reserved bandwidth, or may need dedicated point to point
 fiber. The needs of each application must be quantified in order to
 provide an economic solution that satisfies those needs without over-
 engineering.

 This spectrum of isolation is shown in Figure 1:

 O===O
 | \‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑v‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/
 Statistical Pragmatic Absolute
 Multiplexing Isolation Isolation
(Traditional VPNs) (Enhanced VPN) (Dedicated Network)

 Figure 1: The Spectrum of Isolation

 At one end of the above figure, we have traditional statistical
 multiplexing technologies that support VPNs. This is a service type
 that has served the industry well and will continue to do so. At the
 opposite end of the spectrum we have the absolute isolation provided
 by traditional transport networks. The goal of enhanced VPN is
 pragmatic isolation. This is isolation that is better than is
 obtainable from pure statistical multiplexing, more cost effective
 and flexible than a dedicated network, but which is a practical
 solution that is good enough for the majority of applications.

2.2. Performance Guarantee

 There are several kinds of performance guarantees, including
 guaranteed maximum packet loss, guaranteed maximum delay and
 guaranteed delay variation. Note that these guarantees apply to the
 conformance traffic, the out-of-profile traffic will be handled
 following other requirements.

 Guaranteed maximum packet loss is a common parameter, and is usually
 addressed by setting the packet priorities, queue size and discard
 policy. However this becomes more difficult when the requirement is
 combined with the latency requirement. The limiting case is zero
 congestion loss, and that is the goal of the Deterministic Networking
 work that the IETF [DETNET] and IEEE [TSN] are pursuing. In modern
 optical networks, loss due to transmission errors is already
 approaches zero, but there are the possibilities of failure of the
 interface or the fiber itself. This can only be addressed by some
 form of signal duplication and transmission over diverse paths.

 Guaranteed maximum latency is required in a number of applications
 particularly real-time control applications and some types of virtual
 reality applications. The work of the IETF Deterministic Networking
 (DetNet) Working Group [DETNET] is relevant; however the scope needs
 to be extended to methods of enhancing the underlay to better support
 the delay guarantee, and to integrate these enhancements with the
 overall service provision.

 Guaranteed maximum delay variation is a service that may also be
 needed. [I-D.ietf-detnet-use-cases] calls up a number of cases where
 this is needed, for example electrical utilities have an operational
 need for this. Time transfer is one example of a service that needs
 this, although it is in the nature of time that the service might be
 delivered by the underlay as a shared service and not provided
 through different virtual networks. Alternatively a dedicated
 virtual network may be used to provide this as a shared service.

 This suggests that a spectrum of service guarantee be considered when
 deploying an enhanced VPN. As a guide to understanding the design
 requirements we can consider four types:

 o Best effort

 o Assured bandwidth

 o Guaranteed latency

 o Enhanced delivery

 Best effort service is the basic service that current VPNs can
 provide.

 An assured bandwidth service is one in which the bandwidth over some
 period of time is assured, this can be achieved either simply based
 on best effort with over-capacity provisioning, or it can be based on
 TE-LSPs with bandwidth reservation. The instantaneous bandwidth is
 however, not necessarily assured, depending on the technique used.
 Providing assured bandwidth to VPNs, for example by using TE-LSPs, is
 not widely deployed at least partially due to scalability concerns.
 Guaranteed latency and enhanced delivery are not yet integrated with
 VPNs.

 A guaranteed latency service has a latency upper bound provided by
 the network. Assuring the upper bound is more important than
 achieving the minimum latency.

 In Section 2.1 we considered the work of the IEEE Time Sensitive
 Networking (TSN) project [TSN] and the work of the IETF DetNet
 Working group [DETNET] in the context of isolation. The TSN and
 DetNet work is of greater relevance in assuring end-to-end packet
 latency. It is also of importance in considering enhanced delivery.

 An enhanced delivery service is one in which the underlay network (at
 layer 3) attempts to deliver the packet through multiple paths in the
 hope of eliminating packet loss due to equipment or media failures.

 It is these last two characteristics that an enhanced VPN adds to a
 VPN service.

 Flex Ethernet [FLEXE] is a useful underlay to provide these
 guarantees. This is a method of providing time-slot based
 channelization over an Ethernet bearer. Such channels are fully
 isolated from other channels running over the same Ethernet bearer.
 As noted elsewhere this produces hard isolation but makes the
 reclamation of unused bandwidth more difficult.

 These approaches can be used in tandem. It is possible to use FlexE
 to provide tenant isolation, and then to use the TSN/Detnet approach
 to provide a performance guarantee inside the a slice or tenant VPN.

2.3. Integration

 A solution to the enhanced VPN problem has to provide close
 integration of both overlay VPN and the underlay network resource.
 This needs be done in a flexible and scalable way so that it can be
 widely deployed in operator networks to support a reasonable number
 of enhanced VPN customers.

 Taking mobile networks and in particular 5G into consideration, the
 integration of network and the service functions is a likely
 requirement. The work in IETF SFC working group [SFC] provides a
 foundation for this integration.

2.3.1. Abstraction

 Integration of the overlay VPN and the underlay network resources
 does not need to be a tight mapping. As described in [RFC7926],
 abstraction is the process of applying policy to a set of information
 about a TE network to produce selective information that represents
 the potential ability to connect across the network. The process of
 abstraction presents the connectivity graph in a way that is
 independent of the underlying network technologies, capabilities, and
 topology so that the graph can be used to plan and deliver network
 services in a uniform way.

 Virtual networks can be built on top of an abstracted topology that
 represents the connectivity capabilities of the underlay network as
 described in the framework for Abstraction and Control of TE Networks
 (ACTN) described in [RFC8453] as discussed further in Section 4.5.

2.4. Dynamic Configuration

 Enhanced VPNs need to be created, modified, and removed from the
 network according to service demand. An enhanced VPN that requires
 hard isolation must not be disrupted by the instantiation or
 modification of another enhanced VPN. Determining whether
 modification of an enhanced VPN can be disruptive to that VPN, and in
 particular the traffic in flight will be disrupted can be a difficult
 problem.

 The data plane aspects of this problem are discussed further in
 Section 4.

 The control plane aspects of this problem are discussed further in
 Section 4.4.

 The management plane aspects of this problem are discussed further in
 Section 4.5

 Dynamic changes both to the VPN and to the underlay transport network
 need to be managed to avoid disruption to sensitive services.

 In addition to non-disruptively managing the network as a result of
 gross change such as the inclusion of a new VPN endpoint or a change
 to a link, VPN traffic might need to be moved as a result of traffic
 volume changes.

2.5. Customized Control

 In some cases it is desirable that an enhanced VPN has a customized
 control plane, so that the tenant of the enhanced VPN can have some
 control to the resources and functions allocated to this enhanced
 VPN. For example, the tenant may be able to specify the service
 paths in his own enhanced VPN. Depending on the requirement, an
 enhanced VPN may have its own dedicated controller, or it may be
 provided with an interface to a control system which is shared with a
 set of other tenants, or it may be provided with an interface to the
 control system provided by the network operator.

 Further detail on this requirement will be provided in a future
 version of the draft. A description of the management plane aspects
 of this feature can be found in Section 4.5.

2.6. Applicability

 The technologies described in this document should be applicable to a
 number types of VPN services such as:

 o Layer 2 point to point services such as pseudowires [RFC3985]

 o Layer 2 VPNs [RFC4664]

 o Ethernet VPNs [RFC7209]

 o Layer 3 VPNs [RFC4364], [RFC2764]

 o Virtual Networks (VNs) [RFC8453]

 Where such VPN or VN types need enhanced isolation and delivery
 characteristics, the technology described here can be used to provide
 an underlay with the required enhanced performance.

3. Architecture of Enhanced VPN

 A number of enhanced VPN services will typically be provided by a
 common network infrastructure. Each enhanced VPN consists of both
 the overlay and a specific set of dedicated network resources and
 functions allocated in the underlay to satisfy the needs of the VPN
 tenant. The integration between overlay and various underlay
 resources ensures the isolation between different enhanced VPNs, and
 achieves the guaranteed performance for different services.

 An enhanced VPN needs to be designed with consideration given to:

 o A enhanced data plane

 o A control plane to create enhanced VPN, making use of the data
 plane isolation and guarantee techniques

 o A management plane for enhanced VPN service life-cycle management

 These required characteristics are expanded below:

 o Enhanced data plane

 * Provides the required resource isolation capability, e.g.
 bandwidth guarantee.

 * Provides the required packet latency and jitter characteristics

 * Provides the required packet loss characteristics

 * Provides the mechanism to identify network slice and the
 associated resources

 o Control plane

 * Collect the underlying network topology and resources available
 and export this to other nodes and/or the centralized
 controller as required.

 * Create the required virtual networks with the resource and
 properties needed by the enhanced VPN services that are
 assigned to it.

 * Determine the risk of SLA violation and take appropriate
 avoiding action

 * Determine the right balance of per-packet and per-node state
 according to the needs of enhanced VPN service to scale to the
 required size

 o Management plane

 * Provides the life-cycle management (creation, modification,
 decommissioning) of enhanced VPN

 * Provides an interface between the enhanced VPN provider and the
 enhanced VPN clients such that some of the operation requests
 can be met without interfering with the enhanced VPN of other
 clients.

3.1. Layered Architecture

 The layered architecture of enhanced VPN is shown in Figure 2.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ }
 | Network Controller| } Centralized
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ } Control

 . N‑‑‑‑N‑‑‑‑N . }
 . / / . }
 N‑‑‑‑‑N‑‑‑‑‑N‑‑‑‑N‑‑‑‑‑N }
 N‑‑‑‑N }
 / / \ } Virtual
 N‑‑‑‑‑N‑‑‑‑N‑‑‑‑N‑‑‑‑‑N } Networks
 N‑‑‑‑N }
 / / }
 N‑‑‑‑‑N‑‑‑‑‑N‑‑‑‑N‑‑‑‑‑N }

+‑‑‑‑+ ===== +‑‑‑‑+ ===== +‑‑‑‑+ ===== +‑‑‑‑+ }
+‑‑‑‑+ ===== +‑‑‑‑+ ===== +‑‑‑‑+ ===== +‑‑‑‑+ } Physical
+‑‑‑‑+ ===== +‑‑‑‑+ ===== +‑‑‑‑+ ===== +‑‑‑‑+ } Network
+‑‑‑‑+ +‑‑‑‑+ +‑‑‑‑+ +‑‑‑‑+ }
 N L N L N L N

N = Partitioned node
L = Partitioned link

+‑‑‑‑+ = Partition within a node
+‑‑‑‑+

====== = Partition within a link

 Figure 2: The Layered Architecture

 Underpinning everything is the physical infrastructure layer
 consisting of partitioned links and nodes which provide the
 underlying resources used to provision the separated virtual
 networks. Various components and techniques as discussed in
 Section 4 can be used to provide the resource partition, such as
 FlexE, Time Sensitive Networking, Deterministic Networking, etc.
 These partitions may be physical, or virtual so long as the SLA
 required by the higher layers is met.

 These techniques can be used to provision the virtual networks with
 dedicated resources that they need. To get the required
 functionality there needs to be integration between these overlays
 and the underlay providing the physical resources.

 The centralized controller is used to create the virtual networks, to
 allocate the resources to each virtual network and to provision the
 enhanced VPN services within the virtual networks. A distributed
 control plane may also be used for the distribution of the topology
 and attribute information of the virtual networks.

 The creation and allocation process needs to take a holistic view of
 the needs of all of its tenants, and to partition the resources
 accordingly. However within a virtual network these resources can if
 required be managed via a dynamic control plane. This provides the
 required scalability and isolation.

3.2. Multi-Point to Multi-Point

 At the VPN service level, the connectivity are usually mesh or
 partial-mesh. To support such kind of VPN service, the corresponding
 underlay is also an abstract MP2MP medium. However when service
 guarantees are provided, the point-to-point path through the underlay
 of the enhanced VPN needs to be specifically engineered to meet the
 required performance guarantees.

3.3. Application Specific Network Types

 Although a lot of the traffic that will be carried over the enhanced
 VPN will likely be IPv4 or IPv6, the design has to be capable of
 carrying other traffic types, in particular Ethernet traffic. This
 is easily accomplished through the various pseudowire (PW) techniques
 [RFC3985]. Where the underlay is MPLS, Ethernet can be carried over
 the enhanced VPN encapsulated according to the method specified in
 [RFC4448]. Where the underlay is IP, Layer Two Tunneling Protocol -
 Version 3 (L2TPv3) [RFC3931] can be used with Ethernet traffic
 carried according to [RFC4719]. Encapsulations have been defined for
 most of the common layer two type for both PW over MPLS and for
 L2TPv3.

4. Candidate Technologies

 A VPN is a network created by applying a multiplexing technique to
 the underlying network (the underlay) in order to distinguish the
 traffic of one VPN from that of another. A VPN path that travels by
 other than the shortest path through the underlay normally requires
 state in the underlay to specify that path. State is normally
 applied to the underlay through the use of the RSVP Signaling
 protocol, or directly through the use of an SDN controller, although
 other techniques may emerge as this problem is studied. This state
 gets harder to manage as the number of VPN paths increases.
 Furthermore, as we increase the coupling between the underlay and the
 overlay to support the enhanced VPN service, this state will increase
 further.

 In an enhanced VPN different subsets of the underlay resources are
 dedicated to different enhanced VPNs. Any enhanced VPN solution thus
 needs tighter coupling with underlay than is the case with existing
 VPNs. We cannot for example share the tunnel between enhanced VPNs
 which require hard isolation.

4.1. Underlay Packet and Frame-Based Data Planes

 A number of candidate underlay packet or frame-based data plane
 solutions which can be used provide the required isolation and
 guarantee are described in following sections.

 o FlexE

 o Time Sensitive Networking

 o Dedicated Queues

4.1.1. FlexE

 FlexE [FLEXE] is a method of creating a point-to-point Ethernet with
 a specific fixed bandwidth. FlexE provides the ability to multiplex
 multiple channels over an Ethernet link in a way that provides hard
 isolation. FlexE also supports the bonding of multiple links, which
 can be used to create larger links out of multiple slower links in a
 more efficient way that traditional link aggregation. FlexE also
 supports the sub-rating of links, which allows an operator to only
 use a portion of a link. However it is a only a link level
 technology. When packets are received by the downstream node, they
 need to be processed in a way that preserves that isolation in the
 downstream node. This in turn requires a queuing and forwarding
 implementation that preserves the end-to-end isolation.

 If different FlexE channels are used for different services, then no
 sharing is possible between the FlexE channels. This in turn means
 that it may be difficult to dynamically redistribute unused bandwidth
 to lower priority services. This may increase the cost of providing
 services on the network. On the other hand, FlexE can be used to
 provide hard isolation between different tenants on a shared
 interface. The tenant can then use other methods to manage the
 relative priority of their own traffic in each FlexE channel.

 Methods of dynamically re-sizing FlexE channels and the implication
 for enhanced VPN is for further study.

4.1.2. Dedicated Queues

 In order to provide multiple isolated virtual networks for enhanced
 VPN, the conventional Diff-Serv based queuing system [RFC2475]
 [RFC4594] is insufficient, due to the limited number of queues which
 cannot differentiate between traffic of different enhanced VPNs, and
 the range of service classes that each need to provide to their
 tenants. This problem is particularly acute with an MPLS underlay
 due to the small number of traffic class services available. In
 order to address this problem and reduce the interference between
 enhanced VPNs, it is necessary to steer traffic of VPNs to dedicated
 input and output queues. Routers usually have large amount of queues
 and sophisticated queuing systems, which could be used or enhanced to
 provide the levels of isolation required by the applications of
 enhanced VPN. For example, on one physical interface, the queuing
 system can provide a set of virtual sub-interfaces, each allocated
 with dedicated queueing and buffer resources. Sophisticated queuing
 systems of this type may be used to provide end-to-end virtual
 isolation between traffic of different enhanced VPNs.

4.1.3. Time Sensitive Networking

 Time Sensitive Networking (TSN) [TSN] is an IEEE project that is
 designing a method of carrying time sensitive information over
 Ethernet. It introduces the concept of packet scheduling where a
 high priority packet stream may be given a scheduled time slot
 thereby guaranteeing that it experiences no queuing delay and hence a
 reduced latency. However, when no scheduled packet arrives, its
 reserved time-slot is handed over to best effort traffic, thereby
 improving the economics of the network. The mechanisms defined in
 TSN can be used to meet the requirements of time sensitive services
 of an enhanced VPN.

 Ethernet can be emulated over a Layer 3 network using a pseudowire.
 However the TSN payload would be opaque to the underlay and thus not
 treated specifically as time sensitive data. The preferred method of
 carrying TSN over a layer 3 network is through the use of
 deterministic networking as explained in the following section of
 this document.

4.2. Packet and Frame-Based Network Layer

 We now consider the problem of slice differentiation and resource
 representation in the overlay network. The candidate technologies
 are:

 o Deterministic Networking

 o MPLS-TE

 o Segment Routing

4.2.1. Deterministic Networking

 Deterministic Networking (DetNet) [I-D.ietf-detnet-architecture] is a
 technique being developed in the IETF to enhance the ability of layer
 3 networks to deliver packets more reliably and with greater control
 over the delay. The design cannot use re-transmission techniques
 such as TCP since that can exceed the delay tolerated by the
 applications. Even the delay improvements that are achieved with
 Stream Control Transmission Protocol Partial Reliability Extenstion
 (SCTP-PR) [RFC3758] do not meet the bounds set by application
 demands. DetNet pre-emptively sends copies of the packet over
 various paths to minimize the chance of all packets being lost, and
 trims duplicate packets to prevent excessive flooding of the network
 and to prevent multiple packets being delivered to the destination.
 It also seeks to set an upper bound on latency. The goal is not to
 minimize latency; the optimum upper bound paths may not be the
 minimum latency paths.

 DetNet is based on flows. It currently does not specify the use of
 underlay topology other than the base topology. To be of use for
 enhanced VPN, DetNet needs to be integrated with different virtual
 topologies of enhanced VPNs.

 The detailed design that allows the use DetNet in a multi-tenant
 network, and how to improve the scalability of DetNet in a multi-
 tenant network are topics for further study.

4.2.2. MPLS Traffic Engineering (MPLS-TE)

 MPLS-TE introduces the concept of reserving end-to-end bandwidth for
 a TE-LSP, which can be used as the underlay of VPNs. It also
 introduces the concept of non-shortest path routing through the use
 of the Explicit Route Object [RFC3209]. VPN traffic can be run over
 dedicated TE-LSPs to provide reserved bandwidth for each specific
 connection in a VPN. Some network operators have concerns about the
 scalability and management overhead of RSVP-TE system, and this has
 lead them to consider other solutions for their networks.

4.2.3. Segment Routing

 Segment Routing [RFC8402] is a method that prepends instructions to
 packets at the head-end node and optionally at various points as it
 passes though the network. These instructions allow the packets to
 be routed on paths other than the shortest path for various traffic
 engineering reasons. These paths can be strict or loose paths,
 depending on the compactness required of the instruction list and the
 degree of autonomy granted to the network, for example to support
 Equal Cost Multipath load-balancing (ECMP) [RFC2992].

 With SR, a path needs to be dynamically created through a set of
 segments by simply specifying the Segment Identifiers (SIDs), i.e.
 instructions rooted at a particular point in the network. Thus if a
 path is to be provisioned from some ingress point A to some egress
 point B in the underlay, A is provided with a SID list from A to B
 and instructions on how to identify the packets to which the SID list
 is to be prepended.

 By encoding the state in the packet, as is done in Segment Routing,
 per-path state is transitioned out of the network.

 However, there are a number of limitations in current SR, which limit
 its applicability to enhanced VPNs:

 o Segments are shared between different VPNs paths

 o There is no reservation of bandwidth

 o There is limited differentiation in the data plane.

 Thus some extensions to SR are needed to provide isolation between
 different enhanced VPNs. This can be achieved by including a finer
 granularity of state in the network in anticipation of its future use
 by authorized services. We therefore need to evaluate the balance
 between this additional state and the performance delivered by the
 network.

 With current segment routing, the instructions are used to specify
 the nodes and links to be traversed. However, in order to achieve
 the required isolation between different services, new instructions
 can be created which can be prepended to a packet to steer it through
 specific network resources and functions.

 Traditionally an SR traffic engineered path operates with a
 granularity of a link with hints about priority provided through the
 use of the traffic class (TC) field in the header. However to
 achieve the latency and isolation characteristics that are sought by
 the enhanced VPN users, steering packets through specific queues and
 resources will likely be required. The extent to which these needs
 can be satisfied through existing QoS mechanisms is to be determined.
 What is clear is that a fine control of which services wait for
 which, with a fine granularity of queue management policy is needed.
 Note that the concept of a queue is a useful abstraction for many
 types of underlay mechanism that may be used to provide enhanced
 isolation and latency support.

 From the perspective of the control plane, and from the perspective
 of the segment routing, the method of steering a packet to a queue
 that provides the required properties is an abstraction that hides
 the details of the underlying implementation. How the queue
 satisfies the requirement is implementation specific and is
 transparent to the control plane and data plane mechanisms used.
 Thus, for example, a FlexE channel, or a time sensitive networking
 packet scheduling slot are abstracted to the same concept and bound
 to the data plane in a common manner.

 We can also introduce such fine grained packet steering by specifying
 the queues through an SR instruction list. Thus new SR instructions
 may be created to specify not only which resources are traversed, but
 in some cases how they are traversed. For example, it may be
 possible to specify not only the queue to be used but the policy to
 be applied when enqueuing and dequeuing.

 This concept could be further generalized, since as well as queuing
 to the output port of a router, it is possible to consider queuing
 data to any resource, for example:

 o A network processor unit (NPU)

 o A central processing unit (CPU) Core

 o A Look-up engine

 Both SR-MPLS and SRv6 are candidate network layer technologies for
 enhanced VPN. In some cases they can be supported by DetNet to meet
 the packet loss, delay and jitter requirement of particular service.
 However, currently the "pure" IP variant of DetNet
 [I-D.ietf-detnet-dp-sol-ip] does not support the Packet Replication,
 Elimination, and Re-ordering (PREOF) [I-D.ietf-detnet-architecture]
 functions. How to provide the DetNet enhanced delivery in an SRv6
 environment needs further study.

4.3. Non-Packet Technologies

 Non-packet underlay data plane technologies often have TE properties
 and behaviors, and meet many of the key requirements in particular
 for bandwidth guarantees, traffic isolation (with physical isolation
 often being an integral part of the technology), highly predictable
 latency and jitter characteristics, measurable loss characteristics,
 and ease of identification of flows (and hence slices).

 The control and management planes for non-packet data plane
 technologies have most in common with MPLS-TE (Section 4.2.2) and
 offer the same set of advanced features [RFC3945]. Furthermore,
 management techniques such as ACTN ([RFC8453] and Section 4.4) can be
 used to aid in the reporting of underlying network topologies, and
 the creation of virtual networks with the resource and properties
 needed by the enhanced VPN services.

4.4. Control Plane

 Enhanced VPN would likely be based on a hybrid control mechanism,
 which takes advantage of the logically centralized controller for on-
 demand provisioning and global optimization, whilst still relies on
 distributed control plane to provide scalability, high reliability,
 fast reaction, automatic failure recovery etc. Extension and
 optimization to the distributed control plane is needed to support
 the enhanced properties of VPN+.

 RSVP-TE provides the signaling mechanism of establishing a TE-LSP
 with end-to-end resource reservation. It can be used to bind the VPN
 to specific network resource allocated within the underlay, but there
 are the above mentioned scalability concerns.

 SR does not have the capability of signaling the resource reservation
 along the path, nor do its currently specified distributed link state
 routing protocols. On the other hand, the SR approach provides a way
 of efficiently binding the network underlay and the enhanced VPN
 overlay, as it reduces the amount of state to be maintained in the
 network. An SR-based approach with per-slice resource reservation
 can easily create dedicated SR network slices, and the VPN services
 can be bound to a particular SR network slice. A centralized
 controller can perform resource planning and reservation from the
 controller's point of view, but this does not ensure resource
 reservation is actually done in the network nodes. Thus, if a
 distributed control plane is needed, either in place of an SDN
 controller or as an assistant to it, the design of the control system
 needs to ensure that resources are uniquely allocated in the network
 nodes for the correct service, and not allocated to multiple services
 causing unintended resource conflict.

4.5. Management Plane

 The management plane mechanisms for enhanced VPN can be based on the
 VPN service models as defined in [RFC8299] and [RFC8466], possible
 augmentations and extensions to these models may be needed, which is
 out of the scope of this document.

 Abstraction and Control of Traffic Engineered Networks (ACTN)
 [RFC8453] specifies the SDN based architecture for the control of TE
 networks. The ACTN related data models such as
 [I-D.ietf-teas-actn-vn-yang] and
 [I-D.lee-teas-te-service-mapping-yang] can be applicable in the
 provisioning of enhanced VPN service. The details are described in
 Section 4.6.

4.6. Applicability of ACTN to Enhanced VPN

 ACTN facilitates end-to-end connections and provides them to the
 user. The ACTN framework [RFC8453] highlights how:

 o Abstraction of the underlying network resources are provided to
 higher-layer applications and customers.

 o Virtualization of underlying resources, whose selection criterion
 is the allocation of those resources for the customer,
 application, or service.

 o Creation of a virtualized environment allowing operators to view
 and control multi-domain networks as a single virtualized network.

 o The presentation to customers of networks as a virtual network via
 open and programmable interfaces.

 The infrastructure managed through ACTN comprises traffic engineered
 network resources, which may include:

 o Statistical packet bandwidth.

 o Physical forwarding plane sources, such as: wavelengths and time
 slots.

 o Forwarding and cross-connect capabilities.

 The type of network virtualization enabled by ACTN provides customers
 and applications (tenants) with the capability to utilize and
 independently control allocated virtual network resources as if they
 were physically their own resources.

 An ACTN Virtual Network (VN) is a client view of the ACTN managed
 infrastructure, and is presented by the ACTN provider as a set of
 abstracted resources.

 Depending on the agreement between client and provider various VN
 operations and VN views are possible.

 o Virtual Network Creation: A VN could be pre-configured and created
 via static or dynamic request and negotiation between customer and
 provider. It must meet the specified SLA attributes which satisfy
 the customer's objectives.

 o Virtual Network Operations: The virtual network may be further
 modified and deleted based on customer request to request changes
 in the network resources reserved for the customer, and used to
 construct the network slice. The customer can further act upon
 the virtual network to manage traffic flow across the virtual
 network.

 o Virtual Network View: The VN topology from a customer point of
 view. These may be a variety of tunnels, or an entire VN
 topology. Such connections may comprise of customer end points,
 access links, intra-domain paths, and inter-domain links.

 Dynamic VN Operations allow a customer to modify or delete the VN.
 The customer can further act upon the virtual network to
 create/modify/delete virtual links and nodes. These changes will
 result in subsequent tunnel management in the operator's networks.

4.6.1. ACTN Used for VPN+ Delivery

 ACTN provides VPN connections between multiple sites as requested via
 a VPN requestor enabled by the Customer Network Controller (CNC).
 The CNC is managed by the customer themselves, and interacts with the
 network provider's Multi-Domain Service Controller (MDSC). The
 Provisioning Network Controllers (PNC) remain entirely under the
 management of the network provider and are not visible to the
 customer.

 The benefits of this model include:

 o Provision of edge-to-edge VPN multi-access connectivity.

 o Management is mostly performed by the network provider, with some
 flexibility delegated to the customer-managed CNC.

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | Site‑A Users |‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑| Site‑B Users |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ | | ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 ‑‑‑‑‑‑‑
 | CNC |
 ‑‑‑‑‑‑‑
Boundary |
Between ==========================|==========================
Customer & |
Network Operator |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | MDSC |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 _________/ | __________
 / | \
 / | \
 ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
 | PNC | | PNC | | PNC |
 ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
 | | /
 | | /
 ‑‑‑‑‑ ‑‑‑‑‑ ‑‑‑‑‑
 () () ()
<Site A>‑‑‑(Phys.)‑‑‑‑‑‑‑‑‑‑‑‑(Phys.)‑‑‑‑‑‑‑(Phys.)‑‑‑<Site B>
 (Net) (Net) (Net)
 ‑‑‑‑‑ ‑‑‑‑‑ ‑‑‑‑‑

 Figure 3: VPN Delivery in the ACTN Architecture

 Figure 4 presents a more general representation of how multiple
 enhanced VPNs may be created from the resources of multiple physical
 networks using the CNC, MDSC, and PNC components of the ACTN
 architecture. Each enhanced VPN is controlled by its own CNC. The
 CNCs send requests to the provider's MDSC. The provider manages two
 physical networks each under the control of PNC. The MDSC asks the
 PNCs to allocate and provision resources to achieve the enhanced
 VPNs. In this figure, one enhanced VPN is constructed solely from
 the resources of one of the physical networks, while the the VPN uses
 resources from both physical networks.

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ()
 | CNC |‑‑‑‑‑‑‑‑‑‑>(VPN+)
 ‑‑‑‑‑‑‑‑^‑‑‑‑‑‑ ()
 | _(_________ _)
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ () ^
 | CNC |‑‑‑‑‑‑‑‑‑‑‑>(VPN+) :
 ‑‑‑‑‑‑^‑‑‑‑‑‑‑‑ () :
 | | (___________) :
 | | ^ ^ :
Boundary | | : : :
Between ==========|====|===================:====:====:========
Customer & | | : : :
Network Provider | | : : :
 v v : : :
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ : :....:
 | MDSC | : :
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ : :
 ^ ‑‑‑^‑‑‑‑‑‑ ...
 | () .
 v (Physical) .
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ (Network) .
 | PNC |<‑‑‑‑‑‑‑‑>() ‑‑‑^‑‑‑‑‑‑
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ | ‑‑‑‑‑‑‑‑ ()
 | |‑‑ (Physical)
 | PNC |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>(Network)
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ()
 ‑‑‑‑‑‑‑‑

 Figure 4: Generic VPN+ Delivery in the ACTN Architecture

4.6.2. Enhanced VPN Features with ACTN

 This section discusses how the features of ACTN can fulfill the
 enhanced VPN requirements described earlier in this document. As
 previously noted, key requirements of the enhanced VPN include:

 1. Isolation between VPNs

 2. Guaranteed Performance

 3. Integration

 4. Dynamic Configuration

 5. Customized Control Plane

 The subsections that follow outline how each requirement is met using
 ACTN.

4.6.2.1. Isolation Between VPNs

 The ACTN VN YANG model [I-D.ietf-teas-actn-vn-yang] and the TE-
 service mapping model [I-D.lee-teas-te-service-mapping-yang] fulfill
 the VPN isolation requirement by providing the following features for
 the VNs:

 o Each VN is identified with a unique identifier (vn-id and vn-name)
 and so is each VN member that belongs to the VN (vn-member-id).

 o Each instantiated VN is managed and controlled independent of
 other VNs in the network with proper protection level
 (protection).

 o Each VN is instantiated with an isolation requirement described by
 the TE-service mapping model
 [I-D.lee-teas-te-service-mapping-yang]. This mapping supports:

 * Hard isolation with deterministic characteristics (e.g., this
 case may need an optical bypass tunnel or a DetNet/TSN tunnel
 to guarantee latency with no jitter)

 * Hard isolation (i.e., dedicated TE resources in all underlays)

 * Soft isolation (i.e., resource in some layer may be shared
 while in some other layers is dedicated).

 * No isolation (i.e., sharing with other VN).

4.6.2.2. Guaranteed Performance

 Performance objectives of a VN need first to be expressed in order to
 assure the performance guarantee. [I-D.ietf-teas-actn-vn-yang] and
 [I-D.ietf-teas-yang-te-topo] allow configuration of several
 parameters that may affect the VN performance objectives as follows:

 o Bandwidth

 o Objective function (e.g., min cost path, min load path, etc.)

 o Metric Types and their threshold:

 * TE cost, IGP cost, Hop count, or Unidirectional Delay (e.g.,
 can set all path delay <= threshold)

 Once these requests are instantiated, the resources are committed and
 guaranteed through the life cycle of the VN.

4.6.2.3. Integration

 ACTN provides mechanisms to correlate customer's VN and the actual TE
 tunnels instantiated in the provider's network. Specifically:

 o Link each VN member to actual TE tunnel.

 o Each VN can be monitored on a various level such as VN level, VN
 member level, TE-tunnel level, and link/node level.

 Service function integration with network topology (L3 and TE
 topology) is in progress in [I-D.ietf-teas-sf-aware-topo-model].
 Specifically, [I-D.ietf-teas-sf-aware-topo-model] addresses a number
 of use-cases that show how TE topology supports various service
 functions.

4.6.2.4. Dynamic Configuration

 ACTN provides an architecture that allows the CNC to interact with
 the MDSC which is network provider's SDN controller. This gives the
 customer control of their VNs.

 Specifically, the ACTN VN model [I-D.ietf-teas-actn-vn-yang] allows
 the VN to create, modify, and delete VNs.

4.6.2.5. Customized Control

 ACTN provides a YANG model that allows the CNC to control a VN as a
 "Type 2 VN" that allows the customer to provision tunnels that
 connect their endpoints over the customized VN topology.

 For some VN members, the customers are allowed to configure the path
 (i.e., the sequence of virtual nodes and virtual links) over the VN/
 abstract topology.

5. Scalability Considerations

 Enhanced VPN provides the performance guaranteed services in packet
 networks, with the cost of introducing necessary additional states
 into the network. There are at least three ways of adding the state
 needed for VPN+:

 o Introduce the complete state into the packet, as is done in SR.
 This allows the controller to specify the detailed series of
 forwarding and processing instructions for the packet as it
 transits the network. The cost of this is an increase in the
 packet header size. The cost is also that systems will have
 capabilities enabled in case they are called upon by a service.

 This is a type of latent state, and increases as we more precisely
 specify the path and resources that need to be exclusively
 available to a VPN.

 o Introduce the state to the network. This is normally done by
 creating a path using RSVP-TE, which can be extended to introduce
 any element that needs to be specified along the path, for example
 explicitly specifying queuing policy. It is of course possible to
 use other methods to introduce path state, such as via a Software
 Defined Network (SDN) controller, or possibly by modifying a
 routing protocol. With this approach there is state per path per
 path characteristic that needs to be maintained over its life-
 cycle. This is more state than is needed using SR, but the packet
 are shorter.

 o Provide a hybrid approach based on using binding SIDs to create
 path fragments, and bind them together with SR.

 Dynamic creation of a VPN path using SR requires less state
 maintenance in the network core at the expense of larger VPN headers
 on the packet. The packet size can be lower if a form of loose
 source routing is used (using a few nodal SIDs), and it will be lower
 if no specific functions or resource on the routers are specified.
 Reducing the state in the network is important to enhanced VPN, as it
 requires the overlay to be more closely integrated with the underlay
 than with traditional VPNs. This tighter coupling would normally
 mean that more state needed to be created and maintained in the
 network, as the state about fine granularity processing would need to
 be loaded and maintained in the routers. However, a segment routed
 approach allows much of this state to be spread amongst the network
 ingress nodes, and transiently carried in the packets as SIDs.

 These approaches are for further study.

5.1. Maximum Stack Depth of SR

 One of the challenges with SR is the stack depth that nodes are able
 to impose on packets [I-D.ietf-isis-segment-routing-msd]. This leads
 to a difficult balance between adding state to the network and
 minimizing stack depth, or minimizing state and increasing the stack
 depth.

5.2. RSVP Scalability

 The traditional method of creating a resource allocated path through
 an MPLS network is to use the RSVP protocol. However there have been
 concerns that this requires significant continuous state maintenance
 in the network. There are ongoing works to improve the scalability
 of RSVP-TE LSPs in the control plane [RFC8370].

 There is also concern at the scalability of the forwarder footprint
 of RSVP as the number of paths through an LSR grows
 [I-D.sitaraman-mpls-rsvp-shared-labels] proposes to address this by
 employing SR within a tunnel established by RSVP-TE.

6. OAM Considerations

 A study of OAM in SR networks has been documented in [RFC8403].

 The enhanced VPN OAM design needs to consider the following
 requirements:

 o Instrumentation of the underlay so that the network operator can
 be sure that the resources committed to a tenant are operating
 correctly and delivering the required performance.

 o Instrumentation of the overlay by the tenant. This is likely to
 be transparent to the network operator and to use existing
 methods. Particular consideration needs to be given to the need
 to verify the isolation and the various committed performance
 characteristics.

 o Instrumentation of the overlay by the network provider to
 proactively demonstrate that the committed performance is being
 delivered. This needs to be done in a non-intrusive manner,
 particularly when the tenant is deploying a performance sensitive
 application

 o Verification of the conformity of the path to the service
 requirement. This may need to be done as part of a commissioning
 test.

 These issues will be discussed in a future version of this document.

7. Enhanced Resiliency

 Each enhanced VPN has a life-cycle, and needs modification during
 deployment as the needs of its tenant change. Additionally, as the
 network as a whole evolves, there will need to be garbage collection
 performed to consolidate resources into usable quanta.

 Systems in which the path is imposed such as SR, or some form of
 explicit routing tend to do well in these applications, because it is
 possible to perform an atomic transition from one path to another.
 This is a single action by the head-end changes the path without the
 need for coordinated action by the routers along the path. However,
 implementations and the monitoring protocols need to make sure that
 the new path is up and meet the required SLA before traffic is
 transitioned to it. It is possible for deadlocks arise as a result
 of the network becoming fragmented over time, such that it is
 impossible to create a new path or modify a existing path without
 impacting the SLA of other paths. Resolution of this situation is as
 much a commercial issue as it is a technical issue and is outside the
 scope of this document.

 There are however two manifestations of the latency problem that are
 for further study in any of these approaches:

 o The problem of packets overtaking one and other if a path latency
 reduces during a transition.

 o The problem of the latency transient in either direction as a path
 migrates.

 There is also the matter of what happens during failure in the
 underlay infrastructure. Fast reroute is one approach, but that
 still produces a transient loss with a normal goal of rectifying this
 within 50ms [RFC5654] . An alternative is some form of N+1 delivery
 such as has been used for many years to support protection from
 service disruption. This may be taken to a different level using the
 techniques proposed by the IETF deterministic network work with
 multiple in-network replication and the culling of later packets
 [I-D.ietf-detnet-architecture].

 In addition to the approach used to protect high priority packets,
 consideration has to be given to the impact of best effort traffic on
 the high priority packets during a transient. Specifically if a
 conventional re-convergence process is used there will inevitably be
 micro-loops and whilst some form of explicit routing will protect the
 high priority traffic, lower priority traffic on best effort shortest
 paths will micro-loop without the use of a loop prevention
 technology. To provide the highest quality of service to high
 priority traffic, either this traffic must be shielded from the
 micro-loops, or micro-loops must be prevented.

8. Security Considerations

 All types of virtual network require special consideration to be
 given to the isolation between the tenants. In this regard enhanced
 VPNs neither introduce, no experience a greater security risk than
 another VPN of the same base type. However, in an enhanced virtual
 network service the isolation requirement needs to be considered. If
 a service requires a specific latency then it can be damaged by
 simply delaying the packet through the activities of another tenant.
 In a network with virtual functions, depriving a function used by
 another tenant of compute resources can be just as damaging as
 delaying transmission of a packet in the network. The measures to
 address these dynamic security risks must be specified as part to the
 specific solution.

9. IANA Considerations

 There are no requested IANA actions.

10. Contributors

Daniel King
Email: daniel@olddog.co.uk

Adrian Farrel
Email: adrian@olddog.co.uk

Jeff Tansura
Email: jefftant.ietf@gmail.com

Qin Wu
Email: bill.wu@huawei.com

Daniele Ceccarelli
Email: daniele.ceccarelli@ericsson.com

Mohamed Boucadair
Email: mohamed.boucadair@orange.com

Sergio Belotti
Email: sergio.belotti@nokia.com

Haomian Zheng
Email: zhenghaomian@huawei.com

11. Acknowledgements

 The authors would like to thank Charlie Perkins and James N Guichard
 for their review and valuable comments.

 This work was supported in part by the European Commission funded
 H2020-ICT-2016-2 METRO-HAUL project (G.A. 761727).

12. References

12.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

12.2. Informative References

 [BBF-SD406]

 "BBF SD-406: End-to-End Network Slicing", 2016,
 <https://wiki.broadband-forum.org/display/BBF/
 SD-406+End-to-End+Network+Slicing>.

 [DETNET]
 "Deterministic Networking", March ,
 <https://datatracker.ietf.org/wg/detnet/about/>.

 [FLEXE]
 "Flex Ethernet Implementation Agreement", March 2016,
 <http://www.oiforum.com/wp-content/uploads/
 OIF-FLEXE-01.0.pdf>.

 [I-D.ietf-detnet-architecture]

 Finn, N., Thubert, P., Varga, B., and J. Farkas,
 "Deterministic Networking Architecture", draft-ietf-
 detnet-architecture-09 (work in progress), October 2018.

 [I-D.ietf-detnet-dp-sol-ip]

 Korhonen, J. and B. Varga, "DetNet IP Data Plane
 Encapsulation", draft-ietf-detnet-dp-sol-ip-01 (work in
 progress), October 2018.

 [I-D.ietf-detnet-use-cases]

 Grossman, E., "Deterministic Networking Use Cases", draft-
 ietf-detnet-use-cases-19 (work in progress), October 2018.

 [I-D.ietf-isis-segment-routing-msd]

 Tantsura, J., Chunduri, U., Aldrin, S., and L. Ginsberg,
 "Signaling MSD (Maximum SID Depth) using IS-IS", draft-
 ietf-isis-segment-routing-msd-19 (work in progress),
 October 2018.

 [I-D.ietf-teas-actn-vn-yang]

 Lee, Y., Dhody, D., Ceccarelli, D., Bryskin, I., Yoon, B.,
 Wu, Q., and P. Park, "A Yang Data Model for ACTN VN
 Operation", draft-ietf-teas-actn-vn-yang-02 (work in
 progress), September 2018.

 [I-D.ietf-teas-sf-aware-topo-model]

 Bryskin, I., Liu, X., Lee, Y., Guichard, J., Contreras,
 L., Ceccarelli, D., and J. Tantsura, "SF Aware TE Topology
 YANG Model", draft-ietf-teas-sf-aware-topo-model-02 (work
 in progress), September 2018.

 [I-D.ietf-teas-yang-te-topo]

 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
 O. Dios, "YANG Data Model for Traffic Engineering (TE)
 Topologies", draft-ietf-teas-yang-te-topo-18 (work in
 progress), June 2018.

 [I-D.lee-teas-te-service-mapping-yang]

 Lee, Y., Dhody, D., Ceccarelli, D., Tantsura, J.,
 Fioccola, G., and Q. Wu, "Traffic Engineering and Service
 Mapping Yang Model", draft-lee-teas-te-service-mapping-
 yang-12 (work in progress), October 2018.

 [I-D.sitaraman-mpls-rsvp-shared-labels]

 Sitaraman, H., Beeram, V., Parikh, T., and T. Saad,
 "Signaling RSVP-TE tunnels on a shared MPLS forwarding
 plane", draft-sitaraman-mpls-rsvp-shared-labels-03 (work
 in progress), December 2017.

 [NGMN-NS-Concept]

 "NGMN NS Concept", 2016, <https://www.ngmn.org/fileadmin/u
 ser_upload/161010_NGMN_Network_Slicing_framework_v1.0.8.pd
 f>.

 [RFC2475]
 Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,
 <https://www.rfc-editor.org/info/rfc2475>.

 [RFC2764]
 Gleeson, B., Lin, A., Heinanen, J., Armitage, G., and A.
 Malis, "A Framework for IP Based Virtual Private
 Networks", RFC 2764, DOI 10.17487/RFC2764, February 2000,
 <https://www.rfc-editor.org/info/rfc2764>.

 [RFC2992]
 Hopps, C., "Analysis of an Equal-Cost Multi-Path
 Algorithm", RFC 2992, DOI 10.17487/RFC2992, November 2000,
 <https://www.rfc-editor.org/info/rfc2992>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <https://www.rfc-editor.org/info/rfc3209>.

 [RFC3758]
 Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
 Conrad, "Stream Control Transmission Protocol (SCTP)
 Partial Reliability Extension", RFC 3758,
 DOI 10.17487/RFC3758, May 2004,
 <https://www.rfc-editor.org/info/rfc3758>.

 [RFC3931]
 Lau, J., Ed., Townsley, M., Ed., and I. Goyret, Ed.,
 "Layer Two Tunneling Protocol - Version 3 (L2TPv3)",
 RFC 3931, DOI 10.17487/RFC3931, March 2005,
 <https://www.rfc-editor.org/info/rfc3931>.

 [RFC3945]
 Mannie, E., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Architecture", RFC 3945,
 DOI 10.17487/RFC3945, October 2004,
 <https://www.rfc-editor.org/info/rfc3945>.

 [RFC3985]
 Bryant, S., Ed. and P. Pate, Ed., "Pseudo Wire Emulation
 Edge-to-Edge (PWE3) Architecture", RFC 3985,
 DOI 10.17487/RFC3985, March 2005,
 <https://www.rfc-editor.org/info/rfc3985>.

 [RFC4364]
 Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
 Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
 2006, <https://www.rfc-editor.org/info/rfc4364>.

 [RFC4448]
 Martini, L., Ed., Rosen, E., El-Aawar, N., and G. Heron,
 "Encapsulation Methods for Transport of Ethernet over MPLS
 Networks", RFC 4448, DOI 10.17487/RFC4448, April 2006,
 <https://www.rfc-editor.org/info/rfc4448>.

 [RFC4594]
 Babiarz, J., Chan, K., and F. Baker, "Configuration
 Guidelines for DiffServ Service Classes", RFC 4594,
 DOI 10.17487/RFC4594, August 2006,
 <https://www.rfc-editor.org/info/rfc4594>.

 [RFC4664]
 Andersson, L., Ed. and E. Rosen, Ed., "Framework for Layer
 2 Virtual Private Networks (L2VPNs)", RFC 4664,
 DOI 10.17487/RFC4664, September 2006,
 <https://www.rfc-editor.org/info/rfc4664>.

 [RFC4719]
 Aggarwal, R., Ed., Townsley, M., Ed., and M. Dos Santos,
 Ed., "Transport of Ethernet Frames over Layer 2 Tunneling
 Protocol Version 3 (L2TPv3)", RFC 4719,
 DOI 10.17487/RFC4719, November 2006,
 <https://www.rfc-editor.org/info/rfc4719>.

 [RFC5654]
 Niven-Jenkins, B., Ed., Brungard, D., Ed., Betts, M., Ed.,
 Sprecher, N., and S. Ueno, "Requirements of an MPLS
 Transport Profile", RFC 5654, DOI 10.17487/RFC5654,
 September 2009, <https://www.rfc-editor.org/info/rfc5654>.

 [RFC7149]
 Boucadair, M. and C. Jacquenet, "Software-Defined
 Networking: A Perspective from within a Service Provider
 Environment", RFC 7149, DOI 10.17487/RFC7149, March 2014,
 <https://www.rfc-editor.org/info/rfc7149>.

 [RFC7209]
 Sajassi, A., Aggarwal, R., Uttaro, J., Bitar, N.,
 Henderickx, W., and A. Isaac, "Requirements for Ethernet
 VPN (EVPN)", RFC 7209, DOI 10.17487/RFC7209, May 2014,
 <https://www.rfc-editor.org/info/rfc7209>.

 [RFC7926]
 Farrel, A., Ed., Drake, J., Bitar, N., Swallow, G.,
 Ceccarelli, D., and X. Zhang, "Problem Statement and
 Architecture for Information Exchange between
 Interconnected Traffic-Engineered Networks", BCP 206,
 RFC 7926, DOI 10.17487/RFC7926, July 2016,
 <https://www.rfc-editor.org/info/rfc7926>.

 [RFC8299]
 Wu, Q., Ed., Litkowski, S., Tomotaki, L., and K. Ogaki,
 "YANG Data Model for L3VPN Service Delivery", RFC 8299,
 DOI 10.17487/RFC8299, January 2018,
 <https://www.rfc-editor.org/info/rfc8299>.

 [RFC8370]
 Beeram, V., Ed., Minei, I., Shakir, R., Pacella, D., and
 T. Saad, "Techniques to Improve the Scalability of RSVP-TE
 Deployments", RFC 8370, DOI 10.17487/RFC8370, May 2018,
 <https://www.rfc-editor.org/info/rfc8370>.

 [RFC8402]
 Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
 Decraene, B., Litkowski, S., and R. Shakir, "Segment
 Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
 July 2018, <https://www.rfc-editor.org/info/rfc8402>.

 [RFC8403]
 Geib, R., Ed., Filsfils, C., Pignataro, C., Ed., and N.
 Kumar, "A Scalable and Topology-Aware MPLS Data-Plane
 Monitoring System", RFC 8403, DOI 10.17487/RFC8403, July
 2018, <https://www.rfc-editor.org/info/rfc8403>.

 [RFC8453]
 Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for
 Abstraction and Control of TE Networks (ACTN)", RFC 8453,
 DOI 10.17487/RFC8453, August 2018,
 <https://www.rfc-editor.org/info/rfc8453>.

 [RFC8466]
 Wen, B., Fioccola, G., Ed., Xie, C., and L. Jalil, "A YANG
 Data Model for Layer 2 Virtual Private Network (L2VPN)
 Service Delivery", RFC 8466, DOI 10.17487/RFC8466, October
 2018, <https://www.rfc-editor.org/info/rfc8466>.

 [SFC]
 "Service Function Chaining", March ,
 <https://datatracker.ietf.org/wg/sfc/about>.

 [TS23501]
 "3GPP TS23.501", 2016,
 <https://portal.3gpp.org/desktopmodules/Specifications/
 SpecificationDetails.aspx?specificationId=3144>.

 [TS28530]
 "3GPP TS28.530", 2016,
 <https://portal.3gpp.org/desktopmodules/Specifications/
 SpecificationDetails.aspx?specificationId=3273>.

 [TSN]
 "Time-Sensitive Networking", March ,
 <https://1.ieee802.org/tsn/>.

Authors' Addresses

Jie Dong
Huawei

 Email: jie.dong@huawei.com

Stewart Bryant
Huawei

 Email: stewart.bryant@gmail.com

Zhenqiang Li
China Mobile

 Email: lizhenqiang@chinamobile.com

Takuya Miyasaka
KDDI Corporation

 Email: ta-miyasaka@kddi.com

Young Lee
Huawei

 Email: leeyoung@huawei.com

draft-he-teas-gmpls-signaling-smp-00 - Expires: April 20, 2019 October 22, 2018

Index
Back 5
Prev
Next
Forward 5

TEAS Working Group

Internet Draft

Updates (if published): RFC 4872

Intended status: Standards Track

J. He

I. Busi

Huawei

Expires: April 20, 2019 October 22, 2018

 GMPLS Signaling Extensions for Shared Mesh Protection

 draft-he-teas-gmpls-signaling-smp-00.txt

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

Internet‑Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet‑Drafts. The list of current
Internet‑Drafts is at
https://datatracker.ietf.org/drafts/current/.

Internet‑Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet‑Drafts
as reference material or to cite them other than as "work in
progress."

 This Internet-Draft will expire on April 20, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

<He, et al.> Expires April 20, 2019 [Page 1]
Internet‑Draft GMPLS Extension for SMP October 2018

Abstract

ITU‑T Recommendation G.808.3 [G808.3] defines the generic aspects
of a shared mesh protection (SMP) mechanism, where the difference
between SMP and shared mesh restoration (SMR) is also identified.
ITU‑T Recommendation G.873.3 [G873.3] defines the protection
switching operation and associated protocol for shared mesh
protection (SMP) at the optical data unit (ODU) layer. RFC 7412
provides requirements for any mechanism that would be used to
implement SMP in an MPLS‑TP network.

 This document updates RFC 4872 to provide the extensions to the
 Generalized Multi-Protocol Label Switching (GMPLS) signaling to
 support the control of the shared mesh protection.

Table of Contents

	1. Introduction

	2. Conventions used in this document

	3. SMP Definition

	4. GMPLS Signaling Extension for SMP
	 4.1. Identifiers

	 4.2. Signaling Primary LSPs

	 4.3. Signaling Secondary LSPs

	5. Updates to PROTECTION Object
	 5.1. New Protection Type

	 5.2. Other Updates

	6. Security Considerations

	7. IANA Considerations

	8. References
	 8.1. Normative References

	 8.2. Informative References

1. Introduction

 RFC 4872 [RFC4872] defines extension of RSVP‑TE to support shared
 mesh restoration (SMR) mechanism. Shared mesh restoration can be
 seen as a particular case of pre‑planned LSP rerouting that
 reduces the recovery resource requirements by allowing multiple
 protecting LSPs to share common link and node resources. The
 recovery resources for the protecting LSPs are pre‑reserved during
 the provisioning phase, and an explicit restoration signaling is
 required to activate (i.e., commit resource allocation at the data
 plane) a specific protecting LSP instantiated during the
 provisioning phase.

<He, et al.> Expires April 22, 2019 [Page 2]
Internet‑Draft GMPLS Extension for SMP October 2018

 ITU‑T Recommendation G.808.3 [G808.3] defines the generic aspects
 of a shared mesh protection (SMP) mechanism. ITU‑T Recommendation
 G.873.3 [G873.3] defines the protection switching operation and
 associated protocol for shared mesh protection (SMP) at the optical
 data unit (ODU) layer. RFC 7412 provides requirements for any
 mechanism that would be used to implement SMP in an MPLS‑TP network.

 SMP differs from SMR in the activation/protection switching
 operation. The former activates a protecting LSP via the automatic
 protection switching (APS) protocol in the data plane when the
 working LSP fails, while the latter via the control plane
 signaling. It is therefore necessary to distinguish SMP from SMR
 during provisioning so that each node involved behaves
 appropriately in the recovery phase when activation of a
 protecting LSP is done.

 This document updates RFC 4872 to provide the extensions to the
 Generalized Multi-Protocol Label Switching (GMPLS) signaling to
 support the control of the shared mesh protection mechanism. Only
 the generic aspects for signaling SMP are addressed by this
 document. The technology-specific aspects are expected to be
 addressed by other drafts.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED",
"MAY", and "OPTIONAL" in this document are to be interpreted as
described in BCP 14 [RFC2119] [RFC8174] when, and only when, they
appear in all capitals, as shown here.

 In addition, the reader is assumed to be familiar with the
 terminology used in [RFC4872] and [RFC4426].

3. SMP Definition

ITU‑T Recommendation G.808.3 [G808.3] defines the generic aspects
of a shared mesh protection (SMP) mechanism. ITU‑T Recommendation
G.873.3 [G873.3] defines the protection switching operation and
associated protocol for shared mesh protection (SMP) at the optical
data unit (ODU) layer. RFC 7412 provides requirements for any
mechanism that would be used to implement SMP in an MPLS‑TP network.

 The SMP mechanism is based on pre-computed protection transport
 entities that are pre-configured into the network elements. Pre-

<He, et al.> Expires April 22, 2019 [Page 3]
Internet‑Draft GMPLS Extension for SMP October 2018

 configuration here means pre‑reserving resources for the
 protecting LSPs without activating a particular protecting LSP
 (e.g. in circuit networks, the cross‑connects in the intermediate
 nodes of the protecting LSP are not pre‑established). Pre‑
 configuring but not activating the protecting LSP allows the
 common link and node resources in a protecting LSP to be shared by
 multiple working LSPs that are physically (i.e., link, node, SRLG,
 etc.) disjoint. Protecting LSPs are activated in response to
 failures of working LSPs or operator's commands by means of the
 APS protocol that operates in the data plane. SMP is always
 revertive.

 SMP has a lot of similarity to SMR except that the activation in
 case of SMR is achieved by control plan signaling during the
 recovery operation while SMP is done by APS protocol in the data
 plane. SMP has advantages with regard to the recovery speed
 compared with SMR.

4. GMPLS Signaling Extension for SMP

 Consider the following network topology:

 A‑‑‑B‑‑‑C‑‑‑D
 \ /
 E‑‑‑F‑‑‑G
 / \
 H‑‑‑I‑‑‑J‑‑‑K

The working LSPs [A,B,C,D] and [H,I,J,K] could be protected by
[A,E,F,G,D] and [H,E,F,G,K], respectively. Per [RFC3209], in order
to achieve resource sharing during the signaling of these
protecting LSPs, they must have the same Tunnel Endpoint Address
(as part of their SESSION object). However, these addresses are
not the same in this example. Similar to SMR, a new LSP Protection
Type of the secondary LSP is defined as "Shared Mesh Protection"
(see PROTECTION object defined in [RFC4872]) to allow resource
sharing along nodes E, F, and G. In this case, the protecting LSPs
are not merged (which is useful since the paths diverge at G), but
the resources along E, F, G can be shared.

 When a failure is detected on one of the working LSPs (say working
 LSP [A,B,C,D]), the switching operation for the egress node (say
 node A) will be triggered by an Signal Degrade (SD) or Signal Fail
 (SF) on the working LSP. The egress node A will send a protection

<He, et al.> Expires April 22, 2019 [Page 4]
Internet‑Draft GMPLS Extension for SMP October 2018

 switching request APS message (for example SF) to its adjacent
 (downstream) intermediate node (say node E) to activate setting up
 the corresponding protecting LSP. If the protection resource is
 available, Node E will send a confirmation message to the egress node
 A and forward the switching request APS message to its adjacent
 (downstream) node (say node F). When the confirmation message is
 received by node A and the protection resource is available, the
 cross-connection on node A is established. At this time the traffic
 is bridged to and selected from the protecting LSP at node A. The
 node E will wait for the confirmation message from node F, which
 triggers node E to set up the cross-connection for the protection
 transport entity being activated. If the protection resource is not
 available (due to failure or being used by higher priority
 connections), the switching will not be successful; the intermediate
 node may send a message to notify the end node, or keep trying until
 the resource is available or the switching request is cancelled. If
 the resource is in use by a lower priority protection entity, the
 lower priority service will be removed and then the intermediate node
 will follow the procedure as described for the case when the resource
 is available.

 The following subsections detail how shared mesh protection can be
 implemented in an interoperable fashion using GMPLS RSVP-TE
 extensions (see [RFC3473]). This includes:

(1) the ability to identify a "secondary protecting LSP" (hereby
called the "secondary LSP") used to recover another primary
working LSP (hereby called the "protected LSP")

 (2) the ability to associate the secondary LSP with the protected
 LSP

(3) the capability to include information about the resources
used by the protected LSP while instantiating the secondary LSP.

 (4) the capability to instantiate during the provisioning phase
 several secondary LSPs in an efficient manner.

 (5) the capability to support activation of a secondary LSP after
 failure occurrence via APS protocol in the data plane.

4.1. Identifiers

 To simplify association operations, both LSPs (i.e., the protected
 and the secondary LSPs) belong to the same session. Thus, the
 SESSION object MUST be the same for both LSPs. The LSP ID,

<He, et al.> Expires April 22, 2019 [Page 5]
Internet‑Draft GMPLS Extension for SMP October 2018

 however, MUST be different to distinguish between the protected
 LSP carrying working traffic and the secondary LSP.

 A new LSP Protection Type "Shared Mesh Protection" is introduced
 to the LSP Flags of PROTECTION object (see [RFC4872]) to set up
 the two LSPs. This LSP Protection Type value is applicable to
 both uni‑ and bidirectional LSPs.

4.2. Signaling Primary LSPs

 The PROTECTION object (see [RFC4872]) is included in the Path
 message during signaling of the primary working LSPs, with the LSP
 Protection Type value set to "Shared Mesh Protection".

Primary working LSPs are signaled by setting in the POTECTION
object the S bit to 0, the P bit to 0, the N bit to 1 and in the
ASSOCIATION object, the Association ID to the associated secondary
protecting LSP_ID.

 Note: N bit is set to indicate that the protection switching
 signaling is done via data plane.

4.3. Signaling Secondary LSPs

The PROTECTION object (see [RFC4872]) is included in the Path
message during signaling of the secondary protecting LSPs, with
the LSP Protection Type value set to "Shared Mesh Protection".

Secondary protecting LSPs are signaled by setting in the
PROTECTION object the S bit and the P bit to 1, the N bit to 1 and
in the ASSOCIATION object, the Association ID to the associated
primary working LSP_ID, which MUST be known before signaling of
the secondary LSP. Moreover, the Path message used to instantiate
the secondary LSP SHOULD include at least one PRIMARY_PATH_ROUTE
object (see [RFC4872]) that further allows for recovery resource
sharing at each intermediate node along the secondary path.

 With this setting, the resources for the secondary LSP SHOULD be
 pre-reserved, but not committed at the data plane level, meaning
 that the internals of the switch need not be established until
 explicit action is taken to activate this LSP. Activation of a

<He, et al.> Expires April 22, 2019 [Page 6]
Internet‑Draft GMPLS Extension for SMP October 2018

 secondary LSP and protection switching to the activated protecting
 LSP is done using APS protocol in the data plane.

After protection switching completes the protecting LSP SHOULD be
signaled with the S bit set to 0 and O bit set to 1 in the
PROTECTION object. At this point, the link and node resources must
be allocated for this LSP that becomes a primary LSP (ready to
carry normal traffic). The formerly working LSP MAY be signaled
with the A bit set in the ADMIN_STATUS object (see [RFC3473]).

5. Updates to PROTECTION Object

 GMPLS extension requirements for SMP introduce several updates to
 the Protection Object (see [RFC4872]).

5.1. New Protection Type

 A new LSP protection type "Shared Mesh Protection" is added in the
 protection object. This LSP Protection Type value is applicable to
 both uni- and bidirectional LSPs.

 LSP (Protection Type) Flags

0x11 Shared Mesh Protection

5.2. Other Updates

N bit and O bit in the Protection object as defined in [RFC4872]
are also updated to include applicability to SMP.

 Notification (N): 1 bit

When set to 1, this bit indicates that the control plane message
exchange is only used for notification during protection
switching. When set to 0 (default), it indicates that the control
plane message exchanges are used for protection‑switching
purposes. The N bit is only applicable when the LSP Protection
Type Flag is set to either 0x04 (1:N Protection with Extra‑
Traffic), or 0x08 (1+1 Unidirectional Protection), or 0x10 (1+1
Bidirectional Protection), or 0x11 (Shared Mesh Protection). The
N bit MUST be set to 0 in any other case.

 Operational (O): 1 bit

<He, et al.> Expires April 22, 2019 [Page 7]
Internet‑Draft GMPLS Extension for SMP October 2018

 When set to 1, this bit indicates that the protecting LSP is
 carrying the normal traffic after protection switching. The O bit
 is only applicable when the P bit is set to 1, and the LSP
 Protection Type Flag is set to either 0x04 (1:N Protection with
 Extra-Traffic), or 0x08 (1+1 Unidirectional Protection), or 0x10
 (1+1 Bidirectional Protection), or 0x11 (Shared Mesh Protection).
 The O bit MUST be set to 0 in any other case.

6. Security Considerations

 No further security considerations than [RFC4872].

7. IANA Considerations

 There are no IANA actions required.

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan,
 V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, December 2001.

 [RFC3473]
 Berger, L., "Generalized Multi-Protocol Label Switching
 (GMPLS) Signaling Resource ReserVation Protocol-Traffic
 Engineering (RSVP-TE) Extensions", RFC 3473, January
 2003.

 [RFC4426]
 Lang, J., Rajagopalan, B., and D. Papadimitriou,
 "Generalized Multi-Protocol Label Switching (GMPLS)
 Recovery Functional Specification", RFC 4426, March
 2006.

 [RFC4872]
 Lang, J.P., Ed., Rekhter, Y., Ed., and D. Papadimitriou,
 Ed., "RSVP-TE Extensions in support of End-to-End
 Generalized Multi-Protocol Label Switching (GMPLS)
 Recovery", RFC 4872, May 2007.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017.

<He, et al.> Expires April 22, 2019 [Page 8]
Internet‑Draft GMPLS Extension for SMP October 2018

 [G808.3]
 ITU-T, "Generic protection switching - Shared mesh
 protection", G.808.3, October 2012.

8.2. Informative References

 [G873.3]
 ITU-T, "Optical transport network - Shared mesh
 protection", G.873.3, September 2017.

 [RFC7412]
 Weingarten, Y., Aldrin, S., Pan, P., Ryoo, J., Mirsky,
 G., "Requirements for MPLS Transport Profile (MPLS-TP)
 Shared Mesh Protection", RFC 7412, December 2014.

Authors' Addresses

Jia He
Huawei Technologies Co.,Ltd.
F3‑1B, R&D Center, Huawei Industrial Base, Bantian, Longgang
District, Shenzhen, China

 Email: hejia@huawei.com

Italo Busi
Huawei

 Email: italo.busi@huawei.com

draft-king-teas-applicability-actn-slicing-04 - October 22, 2018

Index
Back 5
Prev
Next
Forward 5

TEAS Working Group

Internet-Draft

Intended status: Informational

Expires: April 23, 2018

D. King (Ed.)

Old Dog Consulting

Y. Lee (Ed.)

Huawei

October 22, 2018

 Applicability of Abstraction and Control
of Traffic Engineered Networks (ACTN) to Network Slicing
 draft‑king‑teas‑applicability‑actn‑slicing‑04

Abstract

 Network abstraction is a technique that can be applied to a network
 domain to select network resources by policy to obtain a view of
 potential connectivity

 Network slicing is an approach to network operations that builds on
 the concept of network abstraction to provide programmability,
 flexibility, and modularity. It may use techniques such as Software
 Defined Networking (SDN) and Network Function Virtualization (NFV)
 to create multiple logical (virtual) networks, each tailored for a
 set of services that are sharing the same set of requirements, on
 top of a common network.

 These logical networks are referred to as transport network slices.
 A transport network slice does not necessarily represent dedicated
 resources in the network, but does constitute a commitment by the
 network provider to provide a specific level of service.

 The Abstraction and Control of Traffic Engineered Networks (ACTN)
 defines an SDN-based architecture that relies on the concepts of
 network and service abstraction to detach network and service
 control from the underlying data plane.

 This document outlines the applicability of ACTN to transport
 network slicing in an IETF technology network. It also identifies
 the features of network slicing not currently within the scope of
 ACTN, and indicates where ACTN might be extended.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 26 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. Requirements for Network Slicing
	 2.1. Resource Slicing

	 2.2. Network and Function Virtualization

	 2.3. Resource Isolation

	 2.4. Control and Orchestration

	3. Abstraction and Control of Traffic Engineered (TE) Networks (ACTN)
	 3.1. ACTN Virtual Network as a "Network Slice"

	 3.2. Examples of ACTN Delivering Types of Network Slices
	 3.2.1. ACTN Used for Virtual Private Line Model

	 3.2.2. ACTN Used for VPN Delivery Model

	 3.2.3. ACTN Used to Deliver a Virtual Customer Network

	 3.3. Network Slice Service Mapping from TE to ACTN VN Models

	 3.4. ACTN VN KPI Telemetry Models

	4. IANA Considerations

	5. Security Considerations

	6. Acknowledgements

	7. References

	8. Contributors

	Authors' Addresses

1. Introduction

 The principles of network resource separation are not new. For
 years, separated overlay and logical (virtual) networking have
 existed, allowing multiple connectivity services to be deployed over
 a single physical network comprised of single or multiple layers.
 However, several key differences exist that differentiate overlay and
 virtual networking from network slicing.

 A transport network slice construct provides an end-to-end logical
 network, often with compute functions and utilising shared underlying
 (physical or virtual) network resources. This logical network is
 separated from other, often concurrent, logical networks each with
 independent control and management, and each of which can be created
 or modified on demand.

 At one end of the spectrum, a virtual private wire or a virtual
 private network (VPN) may be used to build a network slice. In these
 cases, the network slices do not require the service provider to
 isolate network resources for the provision of the service - the
 service is "virtual".

 At the other end of the spectrum there may be a detailed description
 of a complex service that will meet the needs of a set of
 applications with connectivity and service function requirements that
 may include compute resource, storage capability, and access to
 content. Such a service may be requested dynamically (that is,
 instantiated when an application needs it, and released when the
 application no longer needs it), and modified as the needs of the
 application change.

 Each example represents a self-contained network that must be
 flexible enough to simultaneously accommodate diverse business-driven
 use cases from multiple players on a common network infrastructure.

This document outlines the application of the ACTN architecture
[RFC8353] and enabling technologies to provide transport
network slicing in an IETF technology network. It describes how the
ACTN functional components can be used to support model‑driven
partitioning of variable‑sized bandwidth to facilitate network
sharing and virtualization. Furthermore, the use of model‑based
interfaces to dynamically request the instantiation of virtual
networks could be extended to encompass requesting and instantiation
of specific service functions (which may be both physical and/or
virtual), and to partition network resources such as compute
resource, storage capability, and access to content.

 In an IETF context, there are works in progress that have some
 bearing with network slicing such as Enhanced VPN (VPN+) and DetNet.
 Both works are an independent work in their own scope while

 This document highlights how the ACTN approach might be extended to
 address these other requirements of network slicing where TE is
 required.

1.1. Terminology

 Resource: Any features that can be delivered, including connectivity,
 compute, storage, and content delivery.

 Service Functions (SFs): Components that provide specific function
 within a network. SFs are often combined in a specific sequence,
 service function chain, to deliver services.

 Infrastructure Resources: The hardware and necessary software for
 hosting and connecting SFs. These resources may include computing
 hardware, storage capacity, network resources (e.g. links and
 switching/routing devices enabling network connectivity), and
 physical assets for radio access.

Service Provider: A server network or collection of server
networks.

 Consumer: Any application, client network, or customer of a network
 provider.

Service Level Agreement (SLA): An agreement between a consumer and
network provider that describes the quality with which features
and functions are to be delivered. It may include measures of
bandwidth, latency, and jitter; the types of service (such as the
network service functions or billing) to be executed; the location,
nature, and quantities of services (such as the amount and location
of compute resources and the accelerators require).

 Network Slice: An agreement between a consumer and a service
 provider to deliver network resources according to a specific service
 level agreement. A slice could span multiple technology (e.g., radio,
 transport and cloud) and administrative domains.

 IETF Technology: A TE network slice or transport network slice.

2. Requirements for Network Slicing

 The concept of network slicing is considered a key capability for
 future networks and, to serve customers with a wide variety of
 different service needs, in term of latency, reliability, capacity,
 and service function specific capabilities.

 This section outlines the key capabilities required, and further
 discussed in [ngmn-network-slicing], [network-slice-5g],
 [3gpp.28.801] and [onf-tr526], to realise network slicing in an IETF
 technology network.

2.1. Resource Slicing

 For network slicing, it is important to consider both infrastructure
 resources and servic functions. This allows a flexible approach to
 deliver a range of services both by partitioning (slicing) the
 available network resources to present them for use by a consumer,
 but also by providing instances of SFs at the right locations and in
 the correct chaining logic, with access to the necessary hardware,
 including specific compute and storage resources.

 Mapping of resources to slices may 1-to-1, or resources may be shared
 among multiple slices.

2.2. Network and Function Virtualization

 Virtualization is the abstraction of resources where the abstraction
 is made available for use by an operations entity, for example, by
 the Network Management Station (NMS) of a consumer network. The
 resources to be virtualized can be physical or already virtualized,
 supporting a recursive pattern with different abstraction layers.
 Therefore, Virtualization is critical for network slicing as it
 enables effective resource sharing between network slices.

 Just as server virtualization makes virtual machines (VMs)
 independent of the underlying physical hardware, network
 Virtualization enables the creation of multiple isolated virtual
 networks that are completely decoupled from the underlying physical
 network, and can safely run on top of it.

2.3. Resource Isolation

 Isolation of data and traffic is a major requirement that must be
 satisfied for certain applications to operate in concurrent network
 slices on a common shared underlying infrastructure. Therefore,
 isolation must be understood in terms of:

 o Performance: Each slice is defined to meet specific service
 requirements, usually expressed in the form of Key Performance
 Indicators (KPIs). Performance isolation requires that service
 delivery on one network slice is not adversely impacted by
 congestion and performance levels of other slices;

 o Security: Attacks or faults occurring in one slice must not have an
 impact on other slices, or customer flows are not only isolated on
 network edge, but multiple customer traffic is not mixed across the
 core of the network. Moreover, each slice must have independent
 security functions that prevent unauthorised entities to have read
 or write access to slice-specific configuration, management,
 accounting information, and able to record any of these attempts,
 whether authorised or not;

 o Management: Each slice must be independently viewed, utilised and
 managed as a separate network.

2.4. Control and Orchestration

 Orchestration is the overriding control method for network slicing.
 We may define orchestration as combining and coordinating multiple
 control methods to provide an operational mechanism that can deliver
 services and control underlying resources. In a network slicing
 environment, an orchestrator is needed to coordinate disparate
 processes and resources for creating, managing, and deploying the
 end-to-end service. Two scenarios are outlined below where
 orchestration would be required:

 1. Multi-domain Orchestration: Managing connectivity setup of the
 transport service, across multiple administrative domains;

 2. End-to-end Orchestration: Combining resources for an "end-to-end
 service (e.g., transport connectivity with firewalling and
 guaranteed bandwidth and minimum delay for premium radio users
 (spanning multiple domains).

In addition, 3GPP has also developed Release 14 "Study on
management and orchestration of network slicing for next generation
network" [3gpp.28.801], which defines an information model where the
network slice as well as physical and virtualized network functions
belong to the network operator domain, while the virtualized
resources belong to another domain operated by a Virtualization
infrastructure service provider.

3. Abstraction and Control of Traffic Engineered (TE) Networks (ACTN)

The framework for ACTN [RFC8453] includes a reference
architecture that has been adapted for Figure 1 in this document, it
describes the functional entities and methods for the coordination of
resources across multiple domains, to provide end‑to‑end services,
components include:

 o Customer Network Controller (CNC);

 o Multi-domain Service Coordinator (MDSC);

 o Provisioning Network Controller (PNC).

 ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
 | CNC‑A | | CNC‑B | | CNC‑C |
 ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
 \ | /
 __________ |‑CMI I/F __________/
 \ | /
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | MDSC |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 / / | \
 / / |‑MPI I/F \
 / / | \
 ‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑
 | PNC | | PNC | | PNC | | PNC |
 ‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑

CMI ‑ (CNC‑MDSC Interface)
MPI ‑ (MDSC‑PNC Interface)

 Figure 1: ACTN Hierarchy

 ACTN facilitates end-to-end connections and provides them to the
 user. The ACTN framework [RFC8453] highlights how:

 o Abstraction of the underlying network resources are provided to
 higher-layer applications and customers;

 o Virtualization of underlying resources, whose selection criterion
 is the allocation of those resources for the customer, application,
 or service;

 o Creation of a virtualized environment allowing operators to view
 and control multi-domain networks as a single virtualized network;

 o The presentation to customers of networks as a virtual network via
 open and programmable interfaces.

 The ACTN managed infrastructure are traffic engineered network
 resources, which may include:

 o Statistical packet bandwidth;

 o Physical forwarding plane sources, such as: wavelengths and

 time slots;

 o Forwarding and cross connect capabilities.

 The ACTN type of network virtualization provides customers and
 applications (tenants) to utilise and independently control

allocated virtual network resources as if resources as if they
were physically their own resource. The ACTN network is "sliced",
with tenants being given a different partial and abstracted
topology view of the physical underlying network. The capabilities
that ACTN provides to enable slicing are outlined in Section 2
(Requirements for Network Slicing).

3.1. ACTN Virtual Network as a "Network Slice"

To support multiple clients each with its own view of and control
of the server network, a network operator needs to partition (or
"slice") the network resources. The resulting slices can be
assigned to each client for guaranteed usage which is a step
further than shared use of common network resources. See
[actn‑vn] for detailed ACTN VN and VNS.

 An ACTN Virtual Network (VN) is a client view that may be considered
 a "network slice" of the ACTN managed infrastructure, and is
 presented by the ACTN provider as a set of abstracted resources.

 Depending on the agreement between client and provider various VN
 operations and VN views are possible.

 o Network Slice Creation: A VN could be pre-configured and created
 via static or dynamic request and negotiation between customer and
 provider. It must meet the specified SLA attributes which satisfy
 the customer's objectives.

 o Network Slice Operations: The network slice may be further modified
 and deleted based on customer request to request changes in the
 network resources reserved for the customer, and used to construct
 the network slice. The customer can further act upon the network
 slice to manage traffic flow across the network slice.

 o Network Slice View: The VN topology from a customer point of view.
 These may be a variety of tunnels, or an entire VN topology. Such
 connections may comprise of customer end points, access links,
 intra domain paths and inter-domain links.

 Primitives (capabilities and messages) have been provided to support
 the different ACTN network control functions that will enable network
 slicing. These include: topology request/query, VN service request,
 path computation and connection control, VN service policy
 negotiation, enforcement, routing options. [RFC8454]

3.2. Examples of ACTN Delivering Types of Network Slices

 In examples below the ACTN framework is used to provide

 control, management and orchestration for the network slice
 life-cycle, the connectivity . These dynamic and highly flexible,
 end-to-end and dedicated network slices utilising common physical
 infrastructure, and according to vertical-specific requirements.

 The rest of this section provides three examples of using ACTN to
 achieve different scenarios of ACTN for network slicing. All three
 scenarios can be scaled up in capacity or be subject to topology
 changes as well as changes from customer requirements perspective.

3.2.1. ACTN Used for Virtual Private Line Model

 ACTN Provides virtual connections between multiple customer
 locations, requested via Virtual Private Line (VPL) requester
 (CNC-A). Benefits of this model include:

 o Automated: the service set-up and operation is network provider
 managed;

 o Virtual: the private line is seamlessly extended from customers
 Site A (vCE1 to vCE2) and Site B (vCE2 to vCE3) across the
 ACTN-managed WAN to Site C;

 o Agile: on-demand where the customer needs connectivity and

 fully adjustable bandwidth.

 (Customer VPL Request)
 |
 ‑‑‑‑‑‑‑‑‑
 | CNC‑A |
Boundary ‑‑‑‑‑‑‑‑‑
Between ====================|====================
Customer & |
Network Provider ‑‑‑‑‑‑‑‑
 | MDSC |
 ‑‑‑‑‑‑‑‑
 __|__
 Site A (PNC) Site B
 ‑‑‑‑‑‑ () ‑‑‑‑‑‑
 |vCE1|=============(Phys.)=============|vCE2|
 ‑‑‑‑‑‑ (Net) ‑‑‑‑‑‑
 \ ‑‑‑‑‑ /
 \ || /
 \ || /
 VPL 1 __ || __/ VPL 2
 \ || /
 \ || /
 \ ‑‑‑‑‑‑ /
 ‑‑‑‑‑‑|vCE3|‑‑‑‑‑
 ‑‑‑‑‑‑
 Site C

 Figure 2: Virtual Private Line Model

3.2.2. ACTN Used for VPN Delivery Model

 ACTN Provides VPN connections between multiple sites, requested via
 a VPN requestor (CNC-A), which is managed by the customer
 themselves. The CNC will then interact with the network providers
 MDSC. Benefits of this model include:

 o Provides edge‑to‑edge VPN multi‑access connection;
 o Mostly network provider managed, with some flexibility delegated to
 the customer managed CNC.

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | Site‑A Users |___________ ____________| Site‑B Users |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ | | ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 ‑‑‑‑‑‑‑
 |CNC‑A|
 Boundary ‑‑‑‑‑‑‑
 Between ==========================|==========================
 Customer & |
 Network Provider |
 |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | MDSC |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 _________/ | __________
 / | \
 / | \
 ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
 | PNC | | PNC | | PNC |
 ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
 | | /
 | | /
 ‑‑‑‑‑ ‑‑‑‑‑ ‑‑‑‑‑
 () () ()
<Site A>‑‑‑‑(Phys.)‑‑‑‑‑‑‑‑‑‑‑‑(Phys.)‑‑‑‑‑‑‑(Phys.)‑‑‑‑<Site B>
 (Net) (Net) (Net)
 ‑‑‑‑‑ ‑‑‑‑‑ ‑‑‑‑‑

 Figure 3: VPN Model

3.2.3. ACTN Used to Deliver a Virtual Customer Network

 In this example ACTN provides a virtual network resource to the

customer. This resource is customer managed. Empowering the tenant
to control allocated slice (recursively). Benefits of this model
include:

 o The MDSC provides the topology as part of the customer view so
 that the customer can control their network slice to fit their
 needs;

 o Resource isolation, each customer network slice is fixed and will
 not be affected by changes to other customer network slices;

 o Applications can interact with their assigned network slice
 directly, the customer may implement their own network control
 method and traffic prioritization, manage their own addressing
 scheme, and further slice their assigned network resource;

o The network slice may also include specific capability nodes,
 delivered as Physical Network Functions (PNFs) or Virtual Network
 Functions (VNFs).

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ (Network)
 | CNC |‑‑‑‑‑‑‑‑‑‑>(Slice 2)
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ _(_________)
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ (Network)_)
 | CNC |‑‑‑‑‑‑‑‑‑‑‑>(Slice 1) ^
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ () :
 ^ (___________) :
 | ^ ^ :
Boundary | : : :
Between ==========|========================:====:====:========
Customer & | : : :
Network Provider | : : :
 v : : :
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ : :....:
 | MDSC | : :
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ : :
 ^ ‑‑‑^‑‑‑‑‑‑ ...
 | () .
 v (Physical) .
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ (Network) .
 | PNC |<‑‑‑‑‑‑> () ‑‑‑^‑‑‑‑‑‑
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ | ‑‑‑‑‑‑‑‑ ()
 | |‑‑ (Physical)
 | PNC |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>(Network)
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ()
 ‑‑‑‑‑‑‑‑
 Figure 4: Network Slicing

3.3. Network Slice Service Mapping from TE to ACTN VN Models

 The role of TE-service mapping model [te-service-mapping] is to
 create a binding relationship across a Layer-3 Service Model [l3sm],
 Layer-2 Service Model and TE Tunnel model, via a generic ACTN Virtual
 Network (VN) model [actn-vn].

The ACTN VN YANG model is a generic virtual network service
model that allows customers (internal or external) to create a VN
that meets the customer's service objective with various
constraints.

The TE‑service mapping model is needed to bind L3VPN specific
service model with TE‑specific parameters. This binding
will facilitate a seamless service operation with underlay‑TE
network visibility. The TE‑service model developed in this document
can also be extended to support other services including L2SM, and
L1CSM network service models.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
| LxSM |o‑‑‑‑‑‑‑| | | ACTN VN |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ augment| | +‑‑‑‑‑‑‑‑‑‑+
 | | +‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | Augmented LxSM | | TE‑topo |
| TE & Service |‑‑‑‑‑‑‑>| Model | +‑‑‑‑‑‑‑‑‑‑+
| Mapping Types| import | | +‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | | TE‑tunnel|
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ reference+‑‑‑‑‑‑‑‑‑‑+

 Figure 5: TE-Service Mapping ([te-service-mapping])

 Editors note - We plan to provide a list of models available and
 their relationships/dependencies. We will also provide a vertical
 hierarchy of how these models may be used between functional
 components in ACTN.

3.4. ACTN VN KPI telemetry Models

The role of ACTN VN KPI telemetry model [actn‑pm‑telemetry] is
to provide YANG models so that customer can define key
performance monitoring data relevant for its VN/network slicing
via the YANG subscription model.

 Key characteristics of [actn-pm-telemetry] include:

 o an ability to provide scalable VN-level telemetry aggregation
 based on customer-subscription model for key performance
 parameters defined by the customer;

o an ability to facilitate proactive re‑optimization and
 reconfiguration of VNs/Netork Slices based on network
 autonomic traffic engineering scaling configuration
 mechanism.

5. IANA Considerations

 This document makes no requests for action by IANA.

6. Security Considerations

Network slicing involves the control of network resources in order
to meet the service requirements of consumers. In some deployment
models, the consumer is able to directly request modification in
the behaviour of resources owned and operated by a service provider.
Such changes could significantly affect the service provider's
ability to provide services to other consumers. Furthermore, the
resources allocated for or consumed by a consumer will normally be
billable by the service provider.

 Therefore, it is crucial that the mechanisms used in any network
 slicing system allow for authentication of requests, security of
 those requests, and tracking of resource allocations.

It should also be noted that while the partitioning or slicing of
resources is virtual, the consumers expect and require that there
is no risk of leakage of data from one slice to another, no
transfer of knowledge of the structure or even existence of other
slices, and that changes to one slice (under the control of one
consumer) should not have detrimental effects on the operation of
other slices (whether under control of different or the same
consumers) beyond the limits allowed within the SLA. Thus, slices
are assumed to be private and to provide the appearance of genuine
physical connectivity.

ACTN operates using the [netconf] or [restconf] protocols and
assumes the security characteristics of those protocols.
Deployment models for ACTN should fully explore the authentication
and other security aspects before networks start to carry live
traffic.

7. Acknowledgements

 Thanks to Qin Wu, Andy Jones, Ramon Casellas, and Gert Grammel for
 their insight and useful discussions about network slicing.

8. References

8.1. Normative References

8.2. Informative References

 [ngmn-network-slicing]

 NGMN, "Description of Network Slicing Concept", 1 2016,
 <https://www.ngmn.org/uploads/
 media/160113_Network_Slicing_v1_0.pdf>.

 [3gpp.28.801]

 3GPP, "Study on management and orchestration of network
 slicing for next generation network", 3GPP TR 28.801
 0.4.0, 1 2017,
 <http://www.3gpp.org/ftp/Specs/html-info/28801.htm>.

 [network-slice-5g]

 "Network Slicing for 5G with SDN/NFV: Concepts,
 Architectures and Challenges", Jose Ordonez-Lucena,
 Pablo Ameigeiras, Diego Lopez, Juan J. Ramos-Munoz,
 Javier Lorca, Jesus Folgueira, IEEE Communications
 Magazine 55, March 2017

 [onf-tr526]

 ONF TR-526, "Applying SDN Architecture to 5G Slicing",
 April 2016.

 [RFC8453]
 Ceccarelli, D. and Y. Lee, "Framework for Abstraction and
 Control of Traffic Engineered Networks", draft-ietf-teas-
 actn-framework, RFC 8453, September 2018.

 [te-service-mapping]

 Y. Lee, D. Dhody, and D. Ceccarelli, "Traffic Engineering
 and Service Mapping Yang Model",
 draft-lee-teas-te-service-mapping-yang, work in progress.

 [actn-vn]
 Y. Lee (Editor), "A Yang Data Model for ACTN VN
 Operation", draft-lee-teas-actn-vn-yang, work in progress.

 [RFC8454]
 Y. Lee, S. Belotti (Editors), "Information Model for
 Abstraction and Control of TE Networks (ACTN)", RFC 8454,
 September 2018.

 [actn-pm-elemetry]
 Y. Lee, et al, "YANG models for ACTN TE
 Performance Monitoring Telemetry and Network Autonomics",
 draft-lee- teas-actn-pm-telemetry-autonomics, work in
 progress.

 [l3sm]
 Litkowski, S., Tomotaki, L., and K. Ogaki, "YANG Data
 Model for L3VPN Service Delivery", RFC 8049, February 2017

 [netconf]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241.

 [restconf]
 A. Bierman, M. Bjorklund, and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf, work in progress.

 [sf-topology]
 I. Bryskin, et al, "Use Cases for SF Aware Topology
 Models", draft-ietf-teas-use-cases-sf-aware-topo-model, work
 in progress.

[vpn+] S. Bryant and J. Dong, "Enhanced Virtual Private Networks
 (VPN+)", draft‑bryant‑rtgwg‑enhanced‑vpn, work in progress.

9. Contributors

 The following people contributed text to this document.

Adrian Farrel
Email: afarrel@juniper.net

Mohamed Boucadair
Email: mohamed.boucadair@orange.com

Sergio Belotti
Email: sergio.belotti@nokia.com

Daniele Ceccarelli
Email: daniele.ceccarelli@ericsson.com

Haomian Zheng
Email: zhenghaomian@huawei.com

Authors' Addresses

 Daniel King
 Email: daniel@olddog.co.uk

 Young Lee
 Email: leeyoung@huawei.com

King & Lee Expires April 23, 2018 [Page 15]

draft-lee-teas-actn-pm-telemetry-autonomics-08 - October 5, 2018

Index
Back 5
Prev
Next
Forward 5

TEAS Working Group

Internet Draft

Intended Status: Standard Track

Expires: April 6, 2019

Y. Lee (Editor)

Dhruv Dhody

Satish Karunanithi

Huawei

Ricard Vilalta

CTTC

Daniel King

Lancaster University

Daniele Ceccarelli

Ericsson

October 5, 2018

 YANG models for ACTN TE Performance Monitoring Telemetry and Network

 Autonomics

 draft-lee-teas-actn-pm-telemetry-autonomics-08

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with
 the provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 6, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

Abstract

 Abstraction and Control of TE Networks (ACTN) refers to the set of
 virtual network operations needed to operate, control and manage
 large-scale multi-domain, multi-layer and multi-vendor TE networks,
 so as to facilitate network programmability, automation, efficient
 resource sharing.

 This document provides YANG data models that describe Key
 Performance Indicator (KPI) telemetry and network autonomics for TE-
 tunnels and ACTN VNs.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Tree Structure - Legend

	2. Use-Cases

	3. Design of the Data Models
	 3.1. TE KPI Telemetry Model

	 3.2. ACTN TE KPI Telemetry Model

	4. Notification
	 4.1. YANG Push Subscription Examples

	5. YANG Data Tree

	6. Yang Data Model
	 6.1. ietf-te-kpi-telemetry model

	 6.2. ietf-actn-te-kpi-telemetry model

	7. Security Considerations

	8. IANA Considerations

	9. Acknowledgements

	10. References
	 10.1. Informative References

	 10.2. Normative References

	11. Contributors

	Authors' Addresses

1. Introduction

 Abstraction and Control of TE Networks (ACTN) describes a method for
 operating a Traffic Engineered (TE) network (such as an MPLS-TE
 network or a layer 1/0 transport network) to provide connectivity
 and virtual network services for customers of the TE network [ACTN-
 Frame]. The services provided can be optimized to meet the
 requirements (such as traffic patterns, quality, and reliability) of
 the applications hosted by the customers. Data models are a
 representation of objects that can be configured or monitored within
 a system. Within the IETF, YANG [RFC6020] is the language of choice
 for documenting data models, and YANG models have been produced to
 allow configuration or modeling of a variety of network devices,
 protocol instances, and network services. YANG data models have been
 classified in [Netmod-Yang-Model-Classification] and [Service-YANG].

 [ACTN-VN] describes how customers or end to end orchestrators can
 request and/or instantiate a generic virtual network service. [ACTN-
 Applicability] describes a connection between IETF YANG model
 classifications to ACTN interfaces. In particular, it describes the
 customer service model can be mapped into the CMI (CNC-MDSC
 Interface) of the ACTN architecture.

 The YANG model on the ACTN CMI is known as customer service model in
 [Service-YANG]. [PCEP-Service-Aware] describes key network
 performance data to be considered for end-to-end path computation in
 TE networks. Key performance indicator is a term that describes
 critical performance data that may affect VN/TE service.

1.1. Terminology

1.2. Tree Structure - Legend

 A simplified graphical representation of the data model is used in
 Section 5 of this this document. The meaning of the symbols in
 these diagrams is defined in [RFC8342].

 1.3. Prefixes in Data Node Names

 In this document, names of data nodes and other data model objects
 are prefixed using the standard prefix associated with the
 corresponding YANG imported modules, as shown in Table 1.

+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Prefix | YANG module | Reference |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
rt	ietf‑routing‑types	[Routing‑Types]
te	ietf‑te	[TE‑tunnel]
te‑types	ietf‑te‑types	[TE‑Types]
te‑kpi	ietf‑te‑kpi‑telemetry	[This I‑D]
vn	ietf‑actn‑vn	[ACTN‑VN]
actn‑tel	ietf‑actn‑te‑kpi‑telemetry	{This I‑D]
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1: Prefixes and corresponding YANG modules

2. Use-Cases

 [ACTN-PERF] describes use-cases relevant to this draft. It
 introduces the dynamic creation, modification and optimization of
 services based on the performance monitoring in the Abstraction and
 Control of Transport Networks (ACTN) architecture. Figure 1 shows a
 high-level workflows for dynamic service control based on traffic
 monitoring.

 Some of the key points from [ACTN-PERF] are as follows:

. Network traffic monitoring is important to facilitate automatic
 discovery of the imbalance of network traffic, and initiate the
 network optimization, thus helping the network operator or the
 virtual network service provider to use the network more
 efficiently and save CAPEX/OPEX.
. Customer services have various SLA requirements, such as
 service availability, latency, latency jitter, packet loss
 rate, BER, etc. The transport network can satisfy service
 availability and BER requirements by providing different
 protection and restoration mechanisms. However, for other
 performance parameters, there are no such mechanisms. In order
 to provide high quality services according to customer SLA, one
 possible solution is to measure the service SLA related
 performance parameters, and dynamically provision and optimize
 services based on the performance monitoring results.
. Performance monitoring in a large scale network could generate
 a huge amount of performance information. Therefore, the
 appropriate way to deliver the information in CMI and MPI
 interfaces should be carefully considered.

 +‑‑‑+
 | CNC +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | | Dynamic Service Control APP | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 +‑‑‑+
 1.Traffic| /|\4.Traffic | /|\
 Monitor& | | Monitor | | 8.Traffic
 Optimize | | Result 5.Service | | modify &
 Policy | | modify& | | optimize
 \|/ | optimize Req.\|/ | result
 +‑‑+
 | MDSC +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | |Dynamic Service Control Agent | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | | Flow Optimize | | vConnection Agent | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 +‑‑+
 2. Path | /|\3.Traffic | |
 Monitor | | Monitor | |7.Path
 Request | | Result 6.Path | | modify &
 | | modify& | | optimize
 \|/ | optimize Req.\|/ | result
 +‑‑‑+
 | PNC +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | | Network Provisioning | |Abstract Topology Gen.| |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | |Network Monitoring| |Physical Topology DB| |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 +‑‑‑+

 Figure 1 Workflows for dynamic service control based on traffic

 monitoring

3. Design of the Data Models

 The YANG models developed in this document describe two models:

 (i) TE KPI Telemetry Model which provides the TE-Tunnel level of

 performance monitoring mechanism (See Section 4 for details)

 (ii) ACTN TE KPI Telemetry Model which provides the VN level of the

 aggregated performance monitoring mechanism (See Section 5
 for details)

 The models include -

 (i) Performance Telemetry details as measured during the last

 interval, ex delay.

 (ii) Scaling Intent based on with TE/VN could be scaled in/out.

 [Editor's Note - Need to decide if scaling and telemetry can be in
 the same model as per the current draft.]

3.1. TE KPI Telemetry Model

 This module describes performance telemetry for TE-tunnel model. The
 telemetry data is augmented to tunnel state. This module also
 allows autonomic traffic engineering scaling intent configuration
 mechanism on the TE-tunnel level. Various conditions can be set for
 auto-scaling based on the telemetry data.

 The TE KPI Telemetry Model augments the TE-Tunnel Model to enhance
 TE performance monitoring capability. This monitoring capability
 will facilitate proactive re-optimization and reconfiguration of TEs
 based on the performance monitoring data collected via the TE KPI
 Telemetry YANG model.

+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| TE‑Tunnel | | TE KPI |
| Model |<‑‑‑‑‑‑‑‑‑| Telemetry |
+‑‑‑‑‑‑‑‑‑‑‑‑+ augments | Model |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

3.2. ACTN TE KPI Telemetry Model

 This module describes performance telemetry for ACTN VN model. The
 telemetry data is augmented both at the VN Level as well as
 individual VN member level. This module also allows autonomic
 traffic engineering scaling intent configuration mechanism on the VN
 level. Scale in/out criteria might be used for network autonomics in
 order the controller to react to a certain set of variations in
 monitored parameters.

 Moreover, this module also provides mechanism to define aggregated
 telemetry parameters as a grouping of underlying VN level telemetry
 parameters. Grouping operation (such as maximum, mean) could be set
 at the time of configuration. For example, if maximum grouping
 operation is used for delay at the VN level, the VN telemetry data
 is reported as the maximum {delay_vn_member_1, delay_vn_member_2,..
 delay_vn_member_N}. Thus, this telemetry abstraction mechanism
 allows the grouping of a certain common set of telemetry values
 under a grouping operation. This can be done at the VN-member level
 to suggest how the E2E telemetry be inferred from the per domain
 tunnel created and monitored by PNCs. One proposed example is the
 following:

 +‑‑+
 | CNC |
 | |
 +‑‑+

1.CNC sets the | /|\ 2. MDSC gets VN Telemetry
grouping op, and | |
subscribes to the | | VN KPI TELEMETRY (VN Level)
VN level telemetry for | | VN Utilized‑bw‑percentage:
Delay and | | Minimum across VN Members
Utilized‑bw‑pecentage | | VN Delay: Maximum across VN
 \|/ | Members
 +‑‑+
 | MDSC |
 | |
 +‑‑+

 The ACTN VN TE-Telemetry Model augments the basic ACTN VN model to
 enhance VN monitoring capability. This monitoring capability will
 facilitate proactive re-optimization and reconfiguration of VNs
 based on the performance monitoring data collected via the ACTN VN
 Telemetry YANG model.

+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ACTN VN | augments | ACTN |
| Model |<‑‑‑‑‑‑‑‑‑| TE‑Telemetry |
+‑‑‑‑‑‑‑‑‑‑+ | Model |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

4. Notification

 This model does not define specific notifications. To enable
 notifications, the mechanism defined in [I-D.ietf-netconf-yang-push]
 and [I-D.ietf-netconf-rfc5277bis] can be used. This mechanism
 currently allows the user to:

 . Subscribe notifications on a per client basis.

 . Specify subtree filters or xpath filters so that only interested

 contents will be sent.

 . Specify either periodic or on-demand notifications.

4.1. YANG Push Subscription Examples

 Below example shows the way for a client to subscribe for the
 telemetry information for a particular tunnel (Tunnel1). The
 telemetry parameter that the client is interested in is the utilized
 bandwidth percentage.

<netconf:rpc netconf:message‑id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish‑subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑yang‑push:1.0">
 <filter netconf:type="subtree">
 <te xmlns="urn:ietf:params:xml:ns:yang:ietf‑te">
 <tunnels>
 <tunnel>
 <name>Tunnel1</name>
 <identifier/>
 <state>
 <te‑telemetry
xmlns="urn:ietf:params:xml:ns:yang:ietf‑te‑kpi‑telemetry">
 <utilized‑
percentage/>

 </te‑telemetry>
 </state>
 </tunnel>

 </tunnels>
 </te>
 </filter>
 <period>500</period>
 <encoding>encode‑xml</encoding>
 </establish‑subscription>
 </netconf:rpc>

 This example shows the way for a client to subscribe for the
 telemetry information for all VNs. The telemetry parameter that the
 client is interested in is one-way delay and utilized bandwidth
 percentage.

<netconf:rpc netconf:message‑id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish‑subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑yang‑push:1.0">
 <filter netconf:type="subtree">
 <actn‑state xmlns="urn:ietf:params:xml:ns:yang:ietf‑actn‑
vn">
 <vn>
 <vn‑list>
 <vn‑id/>
 <vn‑name/>
 <vn‑
telemetry xmlns="urn:ietf:params:xml:ns:yang:ietf‑actn‑te‑kpi‑
telemetry">
 <one‑way‑delay/>
 <utilized‑
percentage/>

 </vn‑telemetry >
 </vn‑list>
 </vn>
 </actn‑state>
 </filter>
 <period>500</period>
 </establish‑subscription>
 </netconf:rpc>

5. YANG Data Tree

module: ietf‑te‑kpi‑telemetry
 augment /te:te/te:tunnels/te:tunnel:
 +‑rw te‑scaling‑intent
 | +‑rw scale‑in‑intent
 | | +‑rw threshold‑time? uint32
 | | +‑rw cooldown‑time? uint32
 | | +‑rw scale‑in‑operation‑type? scaling‑criteria‑operation
 | | +‑rw scale‑out‑operation‑type? scaling‑criteria‑operation
 | | +‑rw scaling‑condition* [performance‑type]
 | | +‑rw performance‑type identityref
 | | +‑rw te‑telemetry‑tunnel‑ref? ‑> /te:te/tunnels/tunnel/name
 | +‑rw scale‑out‑intent
 | +‑rw threshold‑time? uint32
 | +‑rw cooldown‑time? uint32
 | +‑rw scale‑in‑operation‑type? scaling‑criteria‑operation
 | +‑rw scale‑out‑operation‑type? scaling‑criteria‑operation
 | +‑rw scaling‑condition* [performance‑type]
 | +‑rw performance‑type identityref
 | +‑rw te‑telemetry‑tunnel‑ref? ‑> /te:te/tunnels/tunnel/name
 +‑ro te‑telemetry
 +‑ro id? string
 +‑ro performance‑metric‑one‑way
 | +‑ro one‑way‑delay? uint32
 | +‑ro one‑way‑min‑delay? uint32
 | +‑ro one‑way‑max‑delay? uint32
 | +‑ro one‑way‑delay‑variation? uint32
 | +‑ro one‑way‑packet‑loss? decimal64
 | +‑ro one‑way‑residual‑bandwidth? rt‑types:bandwidth‑ieee‑float32
 | +‑ro one‑way‑available‑bandwidth? rt‑types:bandwidth‑ieee‑float32
 | +‑ro one‑way‑utilized‑bandwidth? rt‑types:bandwidth‑ieee‑float32
 +‑ro performance‑metric‑two‑way
 | +‑ro two‑way‑delay? uint32
 | +‑ro two‑way‑min‑delay? uint32
 | +‑ro two‑way‑max‑delay? uint32
 | +‑ro two‑way‑delay‑variation? uint32
 | +‑ro two‑way‑packet‑loss? decimal64
 +‑ro te‑ref? ‑> /te:te/tunnels/tunnel/name

module: ietf‑actn‑te‑kpi‑telemetry
 augment /vn:actn/vn:vn/vn:vn‑list:
 +‑rw vn‑scaling‑intent
 | +‑rw scale‑in‑intent
 | | +‑rw threshold‑time? uint32
 | | +‑rw cooldown‑time? uint32
 | | +‑rw scale‑in‑operation‑type? scaling‑criteria‑operation
 | | +‑rw scale‑out‑operation‑type? scaling‑criteria‑operation
 | | +‑rw scaling‑condition* [performance‑type]
 | | +‑rw performance‑type identityref
 | | +‑rw te‑telemetry‑tunnel‑ref? ‑> /te:te/tunnels/tunnel/name
 | +‑rw scale‑out‑intent
 | +‑rw threshold‑time? uint32
 | +‑rw cooldown‑time? uint32
 | +‑rw scale‑in‑operation‑type? scaling‑criteria‑operation

 | +‑rw scale‑out‑operation‑type? scaling‑criteria‑operation
 | +‑rw scaling‑condition* [performance‑type]
 | +‑rw performance‑type identityref
 | +‑rw te‑telemetry‑tunnel‑ref? ‑> /te:te/tunnels/tunnel/name
 +‑ro vn‑telemetry
 +‑ro performance‑metric‑one‑way
 | +‑ro one‑way‑delay? uint32
 | +‑ro one‑way‑min‑delay? uint32
 | +‑ro one‑way‑max‑delay? uint32
 | +‑ro one‑way‑delay‑variation? uint32
 | +‑ro one‑way‑packet‑loss? decimal64
 | +‑ro one‑way‑residual‑bandwidth? rt‑types:bandwidth‑ieee‑float32
 | +‑ro one‑way‑available‑bandwidth? rt‑types:bandwidth‑ieee‑float32
 | +‑ro one‑way‑utilized‑bandwidth? rt‑types:bandwidth‑ieee‑float32
 +‑ro performance‑metric‑two‑way
 | +‑ro two‑way‑delay? uint32
 | +‑ro two‑way‑min‑delay? uint32
 | +‑ro two‑way‑max‑delay? uint32
 | +‑ro two‑way‑delay‑variation? uint32
 | +‑ro two‑way‑packet‑loss? decimal64
 +‑ro grouping‑operation? grouping‑operation
 augment /vn:actn/vn:vn/vn:vn‑list/vn:vn‑member‑list:
 +‑ro vn‑member‑telemetry
 +‑ro performance‑metric‑one‑way
 | +‑ro one‑way‑delay? uint32
 | +‑ro one‑way‑min‑delay? uint32
 | +‑ro one‑way‑max‑delay? uint32
 | +‑ro one‑way‑delay‑variation? uint32
 | +‑ro one‑way‑packet‑loss? decimal64
 | +‑ro one‑way‑residual‑bandwidth? rt‑types:bandwidth‑ieee‑float32
 | +‑ro one‑way‑available‑bandwidth? rt‑types:bandwidth‑ieee‑float32
 | +‑ro one‑way‑utilized‑bandwidth? rt‑types:bandwidth‑ieee‑float32
 +‑ro performance‑metric‑two‑way
 | +‑ro two‑way‑delay? uint32
 | +‑ro two‑way‑min‑delay? uint32
 | +‑ro two‑way‑max‑delay? uint32
 | +‑ro two‑way‑delay‑variation? uint32
 | +‑ro two‑way‑packet‑loss? decimal64
 +‑ro te‑grouped‑params* ‑> /te:te/tunnels/tunnel/te‑kpi:te‑telemetry/id
 +‑ro grouping‑operation? grouping‑operation

6. Yang Data Model

6.1. ietf-te-kpi-telemetry model

 The YANG code is as follows:

<CODE BEGINS> file "ietf-te-kpi-telemetry@2018-10-05.yang"

module ietf-te-kpi-telemetry {

 namespace "urn:ietf:params:xml:ns:yang:ietf-te-kpi-telemetry";

 prefix "te-tel";

import ietf‑te {
 prefix "te";
}

import ietf‑te‑types {
 prefix "te‑types";
}

import ietf‑routing‑types {
 prefix "rt‑types";
}

 organization

 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "Editor: Young Lee <leeyoung@huawei.com>
 Editor: Dhruv Dhody <dhruv.ietf@gmail.com>
 Editor: Ricard Vilalta <ricard.vilalta@cttc.es>
 Editor: Satish Karunanithi <satish.karunanithi@gmail.com>";

 description

 "This module describes telemetry for teas tunnel model";

revision 2018‑10‑05 {
 description
 "Initial revision. This YANG file defines
 the reusable base types for TE telemetry.";
 reference
 "Derived from earlier versions of base YANG files";
}

/*
 * Identities
 */

identity telemetry‑param‑type {
 description
 "Base identity for telemetry param types";

 }

identity one‑way‑delay {
 base telemetry‑param‑type;
 description
 "To specify average Delay in one (forward)
 direction";
}

identity two‑way‑delay {
 base telemetry‑param‑type;
 description
 "To specify average Delay in both (forward and reverse)
 directions";
}

identity one‑way‑delay‑variation {
 base telemetry‑param‑type;
 description
 "To specify average Delay Variation in one (forward) direction";
}

identity two‑way‑delay‑variation {
 base telemetry‑param‑type;
 description
 "To specify average Delay Variation in both (forward and reverse)
 directions";
}

identity one‑way‑packet‑loss {
 base telemetry‑param‑type;
 description
 "To specify packet loss in one (forward) direction.";
}

identity two‑way‑packet‑loss {
 base telemetry‑param‑type;
 description
 "To specify packet loss in in both (forward and reverse)
 directions";
}

 identity utilized-bandwidth {

 base telemetry-param-type;

 description
 "To specify utilized bandwidth over the specified source
 and destination.";
}

identity utilized‑percentage {
 base telemetry‑param‑type;
 description
 "To specify utilization percentage of the entity
 (e.g., tunnel, link, etc.)";
}
/*
 * Enums
 */
typedef scaling‑criteria‑operation {
 type enumeration {
 enum AND {
 description
 "AND operation";
 }
 enum OR {
 description
 "OR operation";
 }
 }
 description
 "Operations to analize list of scaling criterias";
}

/*
 * Groupings
 */

grouping scaling‑duration {
 description
 "Base scaling criteria durations";
 leaf threshold‑time {
 type uint32;
 units "seconds";
 description
 "The duration for which the criteria must hold true";
 }

 leaf cooldown‑time {
 type uint32;
 units "seconds";
 description
 "The duration after a scaling‑in/scaling‑out action has been
 triggered, for which there will be no further operation";
 }
}

grouping scaling‑criteria {
 description
 "Grouping for scaling criteria";
 leaf performance‑type {
 type identityref {
 base telemetry‑param‑type;
 }
 description
 "Reference to the tunnel level telemetry type";
 }

 leaf te‑telemetry‑tunnel‑ref {
 type leafref {
 path "/te:te/te:tunnels/te:tunnel/te:name";
 }
 description
 "Reference to tunnel";
 }
}

grouping scaling‑intent {
 description
 "Basic sclaing intent";

 uses scaling-duration;

 leaf scale‑in‑operation‑type {
 type scaling‑criteria‑operation;
 default AND;
 description
 "Operation to be applied to check between scaling criterias to
 check if the scale in threshold condition has been met.
 Defaults to AND";
 }

 leaf scale‑out‑operation‑type {
 type scaling‑criteria‑operation;
 default OR;
 description
 "Operation to be applied to check between scaling criterias to
 check if the scale out threshold condition has been met.
 Defauls to OR";
 }

list scaling‑condition {
 key "performance‑type";
 description
 "Scaling conditions";
 uses scaling‑criteria;
}

 }

/*
 * Augments
 */

 augment "/te:te/te:tunnels/te:tunnel" {

description
 "Augmentation parameters for config scaling‑criteria
 TE tunnel topologies. Scale in/out criteria might be used
 for network autonomics in order the controller
 to react to a certain set of monitored params.";

container te‑scaling‑intent {
 description
 "scaling intent";

 container scale‑in‑intent{
 description
 "scale‑in";
 uses scaling‑intent;
 }
 container scale‑out‑intent{
 description
 "scale‑out";
 uses scaling‑intent;
 }
 }

container te‑telemetry {
 config false;
 description
 "telemetry params";
 leaf id {
 type string;
 description "Id of telemetry param";
 }

 uses te-types:performance-metric-container;

 leaf te‑ref{
 type leafref{ path
'/te:te/te:tunnels/te:tunnel/te:name'; }
 description "Reference to measured te tunnel";
 }
 }

 }

}

<CODE ENDS>

6.2. ietf-actn-te-kpi-telemetry model

 The YANG code is as follows:

<CODE BEGINS> file "ietf-actn-te-kpi-telemetry@2018-10-05.yang"

module ietf-actn-te-kpi-telemetry {

 namespace "urn:ietf:params:xml:ns:yang:ietf-actn-te-kpi-telemetry";

 prefix "actn-tel";

import ietf‑actn‑vn {
 prefix "vn";
}

 import ietf-te {

 prefix "te";
}

import ietf‑te‑types {
 prefix "te‑types";
}

import ietf‑te‑kpi‑telemetry {
 prefix "te‑kpi";
}

 organization

 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "Editor: Young Lee <leeyoung@huawei.com>
 Editor: Dhruv Dhody <dhruv.ietf@gmail.com>
 Editor: Ricard Vilalta <ricard.vilalta@cttc.es>
 Editor: Satish Karunanithi <satish.karunanithi@gmail.com>";

 description

 "This module describes telemetry for actn vn model";

revision 2018‑10‑05 {
 description
 "Initial revision. This YANG file defines
 the ACTN VN telemetry.";
 reference
 "Derived from earlier versions of base YANG files";
}

/*
 * Typedefs
 */

 typedef grouping-operation {

 type enumeration {
 enum MINIMUM {
 description "Select the minimum param";
 }
 enum MAXIMUM {
 description "Select the maximum param";
 }
 enum MEAN {
 description "Select the MEAN of the params";
 }

 enum STD_DEV {
 description "Select the standard deviation
 of the monitored params";
 }
 enum AND {
 description "Select the AND of the params";
 }
 enum OR {
 description "Select the OR of the params";
 }
 }
 description
 "Operations to analyze list of monitored params";
}

/*
 * Groupings
 */

 grouping vn-telemetry-param {

 description "augment of te-kpi:telemetry-param for VN specific params";

leaf‑list te‑grouped‑params {
 type leafref{
 path '/te:te/te:tunnels/te:tunnel/'+
 'te‑kpi:te‑telemetry/te‑kpi:id';
 }
 description
 "Allows the definition of a vn‑telemetry param
 as a grouping of underlying TE params";
}

leaf grouping‑operation {
 type grouping‑operation;
 description
 "describes the operation to apply to
 te‑grouped‑params";
}

 }

/*
 * Augments
 */

 augment "/vn:actn/vn:vn/vn:vn-list" {

 description

 "Augmentation parameters for state TE VN topologies.";

container vn‑scaling‑intent {
 description
 "scaling intent";

 container scale‑in‑intent{
 description
 "VN scale‑in";
 uses te‑kpi:scaling‑intent;
 }
 container scale‑out‑intent{
 description
 "VN scale‑out";
 uses te‑kpi:scaling‑intent;
 }
}
container vn‑telemetry {
 config false;
 description
 "VN telemetry params";

 uses te-types:performance-metric-container;

 leaf grouping‑operation {
 type grouping‑operation;
 description "describes the operation to apply to the VN‑members";
 }
 }
}

/*
 * VN‑member augment
 */
augment "/vn:actn/vn:vn/vn:vn‑list/vn:vn‑member‑list" {
 description
 "Augmentation parameters for state TE vn member topologies.";
 container vn‑member‑telemetry {
 config false;
 description
 "VN member telemetry params";

 uses te-types:performance-metric-container;

 uses vn-telemetry-param;

 }
 }
}
<CODE ENDS>

7. Security Considerations

 The configuration, state, and action data defined in this document
 are designed to be accessed via a management protocol with a secure
 transport layer, such as NETCONF [RFC6241]. The NETCONF access
 control model [RFC6536] provides the means to restrict access for
 particular NETCONF users to a preconfigured subset of all available
 NETCONF protocol operations and content.

 A number of configuration data nodes defined in this document are
 writable/deletable (i.e., "config true") These data nodes may be
 considered sensitive or vulnerable in some network environments.

8. IANA Considerations

 TDB

9. Acknowledgements

10. References

10.1. Informative References

 [RFC4110]
 R. Callon and M. Suzuki, "A Framework for Layer 3
 Provider-Provisioned Virtual Private Networks (PPVPNs)",
 RFC 4110, July 2005.

 [RFC6020]
 M. Bjorklund, Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [Service-YANG]
 Q. Wu, W. Liu and A. Farrel, "Service Models
 Explained", draft-wu-opsawg-service-model-explained, work
 in progress.

 [Netmod-Yang-Model-Classification]
 D. Bogdanovic, B. Claise, and C.
 Moberg, "YANG Module Classification", draft-ietf-netmod-
 yang-model-classification, work in progress.

 [Netconf]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241.

 [Restconf]
 A. Bierman, M. Bjorklund, and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf, work in progress.

 [Routing-Types]
 X. Liu, et al, "Routing Area Common YANG Data
 Types", draft-ietf-rtgwg-routing-types, work in progress.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, March 2018,

10.2. Normative References

 [ACTN-Frame]
 D. Cecarelli and Y. Lee, "Framework for Abstraction and
 Control of Traffic Engineered Networks", draft-ietf-teas-
 actn-framework, work in progress.

 [TE-Topology]
 X. Liu, et al., "YANG Data Model for TE Topologies",
 draft-ietf-teas-yang-te-topo, work in progress.

 [TE-Tunnel]
 T. Saad (Editor), "A YANG Data Model for Traffic
 Engineering Tunnels and Interfaces", draft-ietf-teas-yang-
 te, work in progress.

 [ACTN-VN]
 Y. Lee (Editor), "A Yang Data Model for ACTN VN
 Operation", draft-lee-teas-actn-vn-yang, work in progress.

 [L3SM-YANG]
 S. Litkowski, L.Tomotaki, and K. Ogaki, "YANG Data Model
 for L3VPN service delivery", draft-ietf-l3sm-l3vpn-
 service-model, work in progress.

 [PCEP-Service-Aware]
 D. Dhody, et al., "Extensions to the Path
 Computation Element Communication Protocol (PCEP) to
 compute service aware Label Switched Path (LSP)", draft-
 ietf-pce-pcep-service-aware, work in progress.

 [ACTN-PERF]
 Y. XU, et al., "Use Cases and Requirements of Dynamic
 Service Control based on Performance Monitoring in ACTN
 Architecture", draft-xu-actn-perf-dynamic-service-control-
 03, work in progress.

11. Contributors

Authors' Addresses

Young Lee
Huawei Technologies
5340 Legacy Drive Suite 173
Plano, TX 75024, USA

 Email: leeyoung@huawei.com

Dhruv Dhody
Huawei Technology
Leela Palace
Bangalore, Karnataka 560008
India

 Email: dhruv.dhody@huawei.com

Satish Karunanithi
Huawei Technology
Leela Palace
Bangalore, Karnataka 560008
India

 Email: satish.karunanithi@gmail.com

Ricard Vilalta
Centre Tecnologic de Telecomunicacions de Catalunya (CTTC/CERCA)
Av. Carl Friedrich Gauss 7
08860 ‑ Castelldefels
Barcelona (Spain)
Email: ricard.vilalta@cttc.es

Daniel King
Lancaster University

 Email: d.king@lancaster.ac.uk

Daniele Ceccarelli
Ericsson
Torshamnsgatan,48
Stockholm, Sweden

 Email: daniele.ceccarelli@ericsson.com

draft-lee-teas-actn-vpn-poi-00 - D. Cecarreli Ericsson

Index
Back 5
Prev
Next
Forward 5

TEAS Working Group

Internet Draft

Intended status: Informational

Expires: April 20, 2019

Y. Lee

Q. Wu

I. Busi

Huawei

D. Cecarreli Ericsson

 J. Tantsura

 Apstra

 October 19, 2018

Applicability of Abstraction and Control of Traffic Engineered Networks
 (ACTN) to VPN with the Integration of Packet and Optical Networks

 draft‑lee‑teas‑actn‑vpn‑poi‑00
Abstract

 This document outlines the applicability of Abstraction and
 Control of Traffic Engineered Networks (ACTN) to VPN with the
 integration of Packet and Optical Networks (POI). It also
 identifies a number of scenarios where the integration of packet
 and optical networks is necessary to support VPN service
 requirements. The role of optical underlay tunnels in the POI is
 to support certain applications that require a hard isolation with
 strict deterministic latency and guaranteed constant bandwidth.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with
 the provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 20, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	2. Background and Scope

	3. POI with L2/L3VPN Service Under Single Network Operator Control
	 3.1. POI with single packet and single optical domain

	 3.2. POI with multiple packet domains and single optical domain

	 3.3. POI with multiple packet domains and multiple optical domains

	 3.4. Transport of Tunnel and VPN information

	 3.5. Virtual Switching Instance (VSI) Provisioning for L2VPN

	 3.6. Inter-domain Links Update

	 3.7. End-to-end Tunnel Management

	4. POI with VN Recursion Under Multiple Network Operators Control
	 4.1. Service Request Process between Multiple Operators

	 4.2. Service/Network Orchestration of Operator 2

	5. Security Considerations

	6. IANA Considerations

	7. References
	 7.1. Normative References

	 7.2. Informative References

	8. Contributors

	Authors' Addresses

1. Introduction

 Abstraction and Control of Traffic Engineered Networks (ACTN)
 describes a set of management and control functions used to
 operate one or more TE networks to construct virtual networks that
 can be represented to customers and that are built from
 abstractions of the underlying TE networks so that, for example, a
 link in the customer's network is constructed from a path or
 collection of paths in the underlying networks [RFC8453].

 This document outlines the applicability of ACTN to VPN with the
 integration of packet and optical networks which is known as the
 Packet and Optical Integration (POI).

 It also identifies a number of scenarios where the integration of
 packet and optical networks is necessary to support VPN service
 requirements. The role of optical underlay tunnels in the POI is
 to support certain applications that require a hard isolation with
 strict deterministic latency and guaranteed constant bandwidth.

 Note that there may be other transport technologies that can
 support the aforementioned service requirements such as TSN or
 Detnet to name a few. In this particular document, we are focusing
 on the currently available network settings where packet networks
 are a client layer to optical transport networks as a server
 layer. The principle discussed in this document can be applied to
 other transport technologies when they are available.

 As ACTN [RFC8453] introduces the role of controllers that
 facilitate network operations, the scope of this document is how
 controllers can facilitate L2/3VPN service provisioning in the
 packet and optical transport networks.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED",
 "MAY", and "OPTIONAL" in this document are to be interpreted as
 described in BCP 14 [RFC2119] [RFC8174] when, and only when, they
 appear in all capitals, as shown here.

2. Background and Scope

 One of the important functions the MDSC performs is to identify
 which TE Tunnels should carry the L3VPN traffic and to relay this
 information to the domain-level controllers to ensure proper
 Virtual routing and forwarding (VRF) table be populated according
 to the TE binding requirement for the L3VPN. This function is
 referred to as TE & service mapping function. The YANG model to
 provide TE & service mapping function is provided in [TSM]. The
 role of the TE-service Mapping model [TSM] is to expose the
 mapping relationship between service models and TE models so that
 VN/VPN service instantiations provided by the underlying TE
 networks can be viewed outside of the MDSC.

 The TE-Service Mapping model also provides service-TE binding
 information for each service instance so that proper TE tunnel
 should be created.

 The TE binding requirement types defined in [TSM] are:

 a) New VN/Tunnel Binding - A customer could request a VPN

 service based on VN/Tunnels that are not shared with other
 existing or future services. This might be to meet VPN
 isolation requirements.

 Under this mode, the following sub-categories can be
 supported:

 i. Hard Isolation with deterministic characteristics: A
 customer could request a VPN service using a set of TE
 Tunnels with deterministic characteristics requirements
 (e.g., no latency variation) and where that set of TE
 Tunnels must not be shared with other VPN services and
 must not compete for bandwidth or other network
 resources with other TE Tunnels.

 ii. Hard Isolation: This is similar to the above case but

 without the deterministic characteristics requirements.

 iii. Soft Isolation: The customer requests a VPN service

 using a set of TE tunnels which can be shared with other
 VPN services.

 b) VN/Tunnel Sharing - A customer could request a VPN service

 where new tunnels (or a VN) do not need to be created for
 each VPN and can be shared across multiple VPNs.

 c) VN/Tunnel Modify - This mode allows the modification of the

 properties of the existing VN/tunnel (e.g., bandwidth).

 This document addresses cases a)-i (hard isolation with
 deterministic latency) and a)-ii (hard isolation with non-
 deterministic latency). Both cases warrant consideration of
 optical undelay bypass tunnels to meet the service requirement.

 The optical bypass tunnel could be setup via RSVP-TE signaling and
 thus tunnel label allocation could be done during signaling. It is
 also possible that PNC and MDSC coordinates to exchange the TE
 tunnel label information to setup this optical bypass tunnel. This
 document focuses on the latter case.

 The multi-hop e-BGP session between ingress and egress for multi-
 domain case would be setup to exchange VPN routes. The rest of the
 forwarding action is as per the usual BGP L3VPN handling including
 the use of TE tunnel.

3. POI with L2/L3VPN Service Under Single Network Operator Control

 This section provides a set of specific deployment scenarios for
 POI under single network operator control. Specifically, the
 following deployment scenarios are discussed in this section:

‑ One optical transport domain overarched by one packet domain
 (see Section 3.1);
‑ One optical transport domain overarched by multiple packet
 domains (see Section 3.2);
‑ multiple optical transport domains overarched by multiple packet
 domains (see Section 3.3).

 All scenarios are taking place in the context of an upper layer
 service configuration (e.g., L3VPN) in the packet and optical
 transport network.

 Since this document only addresses the procedure for creating
 optical underlay bypass tunnels, it does not affect MP-BGP MPLS
 operations for inter-AS scenarios as specified in [RFC4364].

3.1. POI with single packet and single optical domain

 This section provides a specific deployment scenario for POI.
 Specifically, it provides a deployment scenario in which
 hierarchical controllers (an MDSC and two PNCs, one for packet and
 one for optical) facilitate optical bypass tunnel across the
 packet domain and the optical domain.

 Figure 1 shows this scenario.

 +‑‑‑‑‑‑‑‑‑‑+
 | MDSC |
 +‑‑‑‑‑‑‑‑‑‑+
 |
 ‑‑‑‑‑‑‑‑‑
 | |
 +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
 | P‑PNC | | O‑PNC |
 +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
 | |
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
CE / PE PE \ CE
o‑‑/‑‑‑o o‑‑‑\‑‑‑o
 \ : : /
 \ : AS Domain : /
 +‑:‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑:‑+
 : | :
 : | :
 +‑:‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑:‑+
 / : : \
 / o..................o \
 \ Optical Domain /
 \ /
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1. One Packet Domain and One Optical Domain

 The following control sequence describes the scenario depicted in
 Figure 1.

a) The MDSC translates the service instance and its requirement
 (hard isolation with deterministic latency).
b) The MDSC computes the path if there is any feasible path to
 meet the requirement based on the abstracted topology at
 hand. Note that there would not be any tunnel in the packet
 domain to meet this requirement (hard isolation with
 deterministic latency).
c) The MDSC finds a feasible path in the optical domain.
d) The MDSC asks the optical PNC to create a tunnel for this VPN
 instance whose endpoints are the ingress PE and the egress PE

 of the packet domain, respectively. The MDSC and Optical PNC
 need to maintain an instance ID for this VPN instance.
e) The MDSC asks the Packet PNC to bind a TE‑tunnel label (to be
 allocated by the egress PE to identify the underlay optical
 tunnel) with the VPN ID and the Ingress and Egress interfaces
 of the underlay optical tunnel.
f) The PNC in turn asks the Egress PE to allocate a TE‑tunnel
 label. The Egress PE allocates a TE‑tunnel label, populates
 the VRF for this VPN instance, and updates the Packet PNC
 with the allocated TE‑tunnel label. Please refer to the note
 below on the details of this procedure in regard to VPN
 binding.

 Note: There are two cases for binding network instance with
 the TE tunnel label:

1. VRF instance does not exist.
2. VRF instance has already been created.

 For case 1, the Egress PE needs to bind the TE-tunnel label
 and the VPN information (e.g., VPN instance name, VPN label,
 RD, RT, Destination IP address, etc.) and inform this binding
 information to the packet PNC.

g) The packet PNC informs the MDSC the allocated TE‑tunnel label
 for the VPN instance.
h) The MDSC informs the optical PNC to bind the TE‑tunnel label
 with the VPN instance, which has been created previously in
 step d).
i) The optical PNC informs this binding information (i.e.,
 ingress/egress interfaces from packet domain and the TE‑
 tunnel label) to the optical ingress switch.
j) The packet PNC informs the ingress PE to use the TE‑label for
 this VPN instance. The Ingress PE populates the VRF for the
 VPN with the TE‑label. (Note that the TE‑label would need to
 be PUSHed over the VPN traffic).
k) When the packet arrives at the ingress PE, it recognizes the
 VPN instance and PUSHes the VPN label and the TE‑tunnel label
 and forward the traffic to optical ingress switch.
l) The optical ingress switch recognizes the TE‑tunnel label and
 encapsulate the whole data packet including TE‑tunnel label
 into the OTN payload.
m) The optical egress switch POPs the ODU label and forwards the
 data packet to the packet egress PE.
n) The packet egress PE POPs the TE‑tunnel label and forwards
 the VPN packets to the destination CE.

 Note: in steps k) - l), the assumption made was that the packet
 ingress PE is not OTN-capable router. If the packet ingress PE
 support channelized OTN interfaces, the data plane behavior in
 steps k) and l) would change as the following:

 k') When the packets arrives at the ingress PE, it recognizes
 the VPN instance and PUSHes the VPN label and the TE-tunnel
 label and the ODU label and forward the traffic to optical
 ingress switch.

 l') The optical ingress switch recognizes the incoming ODU
 label and swap it to outgoing ODU label.

3.2. POI with multiple packet domains and single optical domain

 This section provides a specific deployment scenario for POI.
 Specifically, it provides a deployment scenario in which
 hierarchical controllers (an MDSC and two packet PNCs and one
 optical PNC) facilitate optical bypass tunnel across the two
 packet domains and the optical domain.

 Figure 2 shows this scenario.

 +‑‑‑‑‑‑‑‑‑‑+
 | MDSC |
 +‑‑‑‑‑‑‑‑‑‑+
 |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | | |
 +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
 | P‑PNC 1| | O‑PNC | | P‑PNC 2|
 +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
 | | |
 | | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
CE / PE ASBR \ | / ASBR PE \ CE
o‑‑/‑‑‑o o‑‑‑\‑‑‑‑‑|‑‑‑‑‑/‑‑‑o o‑‑‑‑\‑‑o
 \ : / | \ : /
 \ : AS Domain 1 / | \ AS Domain 2 : /
 +‑:‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑:‑‑+
 : | :
 : | :
 +‑:‑‑:‑‑+
 / : : \
 / o..o \
 \ Optical Domain /
 \ /
 +‑‑‑+

 Figure 2. Two Packet Domains and One Optical Domain

 The control sequence depicted in Figure 2 is same as the control
 sequence a)-d) in Section 3.1 with the following differences:

e) The MDSC asks the Packet PNC 2 to bind a TE‑tunnel label (to
 be allocated by the egress PE to identify the underlay
 optical tunnel) with the VPN ID and the Ingress and Egress
 interfaces of the underlay optical tunnel.
f) The packet PNC 2 in turn asks the Egress PE to allocate a TE‑
 tunnel label. The Egress PE allocates a TE‑tunnel label,
 populates the VRF for this VPN instance, and updates the
 packet PNC 2 with the allocated TE‑tunnel label. Please refer
 to the note below on the details of this procedure in regard
 to VPN binding.

 Note: There are two cases for binding network instance with
 the TE tunnel label:

1. VRF instance does not exist.
2. VRF instance has already been created.

 For case 1, the Egress PE needs to bind the TE-tunnel label
 and the VPN information (e.g., VPN instance name, VPN label,
 RD, RT, Destination IP address, etc.) and inform this binding
 information to the packet PNC 2.

g) The packet PNC 2 informs the MDSC the allocated TE‑tunnel
 label for the VPN instance.
h) The MDSC informs the packet PNC 1 the allocated TE‑tunnel
 label for the VPN instance.
i) The MDSC informs the optical PNC to bind the TE‑tunnel label
 with the VPN instance, which has been created previously in
 step d).
j) The optical PNC informs this binding information (i.e.,
 ingress/egress interfaces from packet domain and the TE‑
 tunnel label) to the optical ingress switch.
k) The packet PNC 1 informs the ingress PE in Domain 1 to use
 the TE‑tunnel label for this VPN instance. The Ingress PE in
 Domain 2 populates the VRF for the VPN and bind with the TE‑
 tunnel label. (Note that the TE‑tunnel label would need to be
 PUSHed over the VPN traffic).
l) When the packets arrives at the ingress PE in Domain 1, it
 recognizes the VPN instance and PUSHes the VPN label and the
 TE‑tunnel label and forward the traffic to optical ingress
 switch.

m) The optical ingress switch recognizes the TE‑tunnel label and
 encapsulate the whole data packet including TE‑tunnel label
 into the OTN payload.
n) The optical egress switch POPs the ODU label and forwards the
 data packet to the packet egress PE.
o) The packet egress PE in Domain 2 POPs the TE‑tunnel label and
 forwards the VPN packets to the destination CE.

 Note: in steps l) - m), the assumption made was that the packet
 ingress PE is not OTN-capable router. If the packet ingress PE
 supports channelized OTN interfaces, the data plane behavior in
 steps l) and m) would change as the following:

 l') When the packets arrives at the ingress PE, it recognizes
 the VPN instance and PUSHes the VPN label and the TE-tunnel
 label and the ODU label and forward the traffic to optical
 ingress switch.

 m') The optical ingress switch recognizes the incoming ODU
 label and swap it to outgoing ODU label.

3.3. POI with multiple packet domains and multiple optical domains

 This section provides a specific deployment scenario for POI.
 Specifically, it provides a deployment scenario in which
 hierarchical controllers (an MDSC and two packet PNCs and two
 optical PNCs) facilitate optical bypass tunnel across two packet
 domains and two optical domains.

 Figure 3 shows this scenario.

 +‑‑‑‑‑‑‑‑‑‑+
 | MDSC |
 +‑‑‑‑‑‑‑‑‑‑+
 |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | +‑‑‑‑‑‑‑‑+ |
 +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ 2| +‑‑‑‑‑‑‑‑+
 | P‑PNC 1| | O‑PNC 1|‑‑+ | P‑PNC 2|
 +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+| +‑‑‑‑‑‑‑‑+
 | | | |
 | | | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ | | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
CE / PE ASBR \ | | / ASBR PE \ CE
o‑‑/‑‑‑o o‑‑‑\‑|‑‑‑‑‑‑‑|‑‑/‑‑‑o o‑‑‑‑\‑‑o
 \ : / | | \ : /

 \ : AS Domain 1 / | | \ AS Domain 2 : /
 +‑:‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑:‑‑+
 : | | :
 : | | :
 +‑:‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑:‑‑+
 / : \ / : \
 / o.......................o...\./...o......................o \
 \ Optical Domain 1 / \ Optical Domain 2 /
 \ / \ /
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 3. Two Packet Domains and One Optical Domain

 The control sequence depicted in Figure 3 is same as the control
 sequence a)-c) in Section 3.1 with the following differences:

d) The MDSC asks the optical PNC 1 to create a tunnel for this
 VPN instance whose endpoints are the ingress PE of the packet
 domain 1 and the optical inter‑domain interface toward
 optical domain 2; and the optical PNC 2 to create a tunnel
 for this VPN instance whose endpoints are the optical inter‑
 domain interface from optical domain 1 and the egress PE of
 the packet domain 2. The MDSC and Optical PNC 1 and PNC 2
 need to maintain an instance ID for this VPN instance.
e) The MDSC asks the Packet PNC 2 to bind a TE‑tunnel label with
 the VPN ID and the Ingress and Egress interfaces of the
 underlay optical tunnel.
f) The packet PNC 2 in turn asks the Egress PE to allocate a TE‑
 tunnel label. The Egress PE allocates a TE‑tunnel label,
 populates the VRF for this VPN instance, and updates the
 packet PNC 2 with the allocated TE‑tunnel label. Please refer
 to the note below on the details of this procedure in regard
 to VPN binding.

 Note: There are two cases for binding network instance with
 the TE tunnel label:

1. VRF instance does not exist.
2. VRF instance has already been created.

 For case 1, the Egress PE needs to bind the TE-tunnel label
 and the VPN information (e.g., VPN instance name, VPN label,
 RD, RT, Destination IP address, etc.) and inform this binding
 information to the packet PNC 2.

 g) The packet PNC 2 informs the MDSC the allocated TE-tunnel
 label for the VPN instance.

h) The MDSC informs the packet PNC 1 the allocated TE‑tunnel
 label for the VPN instance.
i) The MDSC informs the optical PNC 1 and PNC 2 to bind the TE‑
 tunnel label with the instance, which has been created
 previously in step d).
j) The optical PNC 1 informs this binding information (i.e.,
 ingress/egress interfaces from packet domain and the TE‑
 tunnel label) to the optical ingress switch in Domain 1.
 Likewise, the optical PNC 2 to the optical egress switch in
 Domain 2. (Note we assume that the optical border switches in
 Domains 1 and 2 would do the normal OTN switching).
k) The packet PNC 1 informs the ingress PE in Domain 1 to use
 the TE‑tunnel label for this VPN instance. The Ingress PE in
 Domain 2 populates the VRF for the VPN with the TE‑label.
 (Note that the TE‑tunnel label would need to be PUSHed over
 the VPN traffic).
l) When the VPN packet arrives at the ingress PE in Domain 1, it
 recognizes the VPN label and PUSHes the TE‑tunnel label and
 forward the traffic to optical ingress switch in optical
 domain 1.
m) The optical ingress switch in optical domain 1 recognizes the
 TE‑tunnel label and encapsulate the whole data packets
 including TE‑tunnel label into the OTN payload.
n) The optical egress switch in optical domain 2 POPs the OTN
 label and forwards the data packet to the packet egress PE.
o) The packet egress PE in Domain 2 POPs the TE‑tunnel label and
 forwards the VPN packet to the destination CE.

 Note: in steps l) - m), the assumption made was that the packet
 ingress PE is not OTN-capable router. If the packet ingress PE
 supports channelized OTN interfaces, the data plane behavior in
 steps l) and m) would change as the following:

 l') When the packets arrives at the ingress PE, it recognizes
 the VPN instance and PUSHes the VPN label and the TE-tunnel
 label and the ODU label and forward the traffic to optical
 ingress switch in Domain 1.

 m') The optical ingress switch in Domain 1 recognizes the
 incoming ODU label and swap it to outgoing ODU label.

3.4. Transport of Tunnel and VPN information

 The discussions in Section 3 as to the transport mechanism of the
 TE-tunnel label used for the underlay bypass tunnel with the VPN
 instance information has the undertone of making use of the
 controllers. Note that other mechanisms may also be possible and
 that such mechanisms are not precluded when solutions are sought
 out.

3.5. Virtual Switching Instance (VSI) Provisioning for L2VPN

 The VSI provisioning for L2VPN is similar to the VPN/VRF provision
 for L3VPN. L2VPN service types include:

 . Point-to-point Virtual Private Wire Services (VPWSs) that use

 LDP-signaled Pseudowires or L2TP-signaled Pseudowires [RFC6074];

 . Multipoint Virtual Private LAN Services (VPLSs) that use LDP-

 signaled Pseudowires or L2TP-signaled Pseudowires [RFC6074];

 . Multipoint Virtual Private LAN Services (VPLSs) that use a

 Border Gateway Protocol (BGP) control plane as described in
 [RFC4761] and [RFC6624];

 . IP-Only LAN-Like Services (IPLSs) that are a functional subset

 of VPLS services [RFC7436];

 . BGP MPLS-based Ethernet VPN Services as described in [RFC7432]

 and [RFC7209];

 . Ethernet VPN VPWS specified in [RFC8214] and [RFC7432].

3.6. Inter-domain Links Update

 In order to facilitate inter-domain links for the VPN, we assume
 that the service/network orchestrator would know the inter-domain
 link status and its resource information (e.g., bandwidth
 available, protection/restoration policy, etc.) via some
 mechanisms (which are beyond the scope of this document). We also
 assume that the inter-domain links are pre-configured prior to
 service instantiation.

3.7. End-to-end Tunnel Management

 It is foreseen that the MDSC should control and manage end-to-end
 tunnels for VPNs per VPN policy.

 As discussed in [ACTN-Telemetry], the MDSC is responsible to
 collect domain LSP-level performance monitoring data from domain
 controllers and to derive and report end-to-end tunnel performance
 monitoring information to the customer.

4. POI with VN Recursion Under Multiple Network Operators Control

 [RFC8453] briefly introduces a case for the VN supplied to a
 customer may be built using resources from different technology
 layers operated by different operators. For example, one operator
 may run a packet TE network and use optical connectivity provided
 by another operator.

 Figure 4, extracted from [RFC8453], shows the case where a
 customer asks for end-to-end connectivity between CE A and CE B, a
 virtual network. The customer's CNC makes a request to Operator
 1's MDSC. The MDSC works out which network resources need to be
 configured and sends instructions to the appropriate PNCs.
 However, the link between Q and R is a virtual link supplied by
 Operator 2: Operator 1 is a customer of Operator 2.

 To support this, Operator 1 has a CNC that communicates with
 Operator 2's MDSC. Note that Operator 1's CNC in Figure 10 is a
 functional component that does not dictate implementation: it may
 be embedded in a PNC.

 Virtual CE A o===============================o CE B
 Network

 ‑‑‑‑‑ CNC wants to create a VN
Customer | CNC | between CE A and CE B
 ‑‑‑‑‑
 :
 *** CMI
 :
Operator 1 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | MDSC |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 : : :
 : : :
 ‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑
 | PNC | | PNC | | PNC |
 ‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑
 : : : : :
Higher v v : v v
Layer CE A o‑‑‑P‑‑‑‑‑Q===========R‑‑‑‑‑S‑‑‑o CE B
Network | : |
 | : |
 | ‑‑‑‑‑ |
 | | CNC | | CNC wants to create a VN
 | ‑‑‑‑‑ | between Q and R

 | : |
 *** CMI
 | : |
Operator 2 | ‑‑‑‑‑‑ |
 | | MDSC | |
 | ‑‑‑‑‑‑ |
 | : |
 | ‑‑‑‑‑‑‑ |
 | | PNC | |
 | ‑‑‑‑‑‑‑ |
 \ : : : /
Lower \v v v/
Layer X‑‑Y‑‑Z
Network

 Where

‑‑‑ is a link
=== is a virtual link

 Figure 4: VN Recursion with Network Layers

 The CMI in Figure 4 interfaces Operator 1's CNC with Operator 2's
 MDSC. The functions to perform and the information carried over
 the inter-operator CMI are identical to those of the Customer's
 CNC and Operator 1's MDSC. In other words, the two CMIs depicted
 in Figure 4 are recursive in nature.

 From a data plane perspective, the interaction between operator 1
 and operator 2 is similar to the POI case discussed in section 3.2
 (See Figure 2) with an exception that the packet domains belong to
 operator 1 while optical domain to operator 2.

 The control interface depicted in Figure 4 (i.e., the CNC of
 operator 1 and the MDSC of operator 2) should behave similarly to

4.1. Service Request Process between Multiple Operators

 As discussed previously, the reclusiveness principle applies
 seamlessly over the two CMIs. This implies that Operator 1's MDSC
 needs to pass all customer service requirements transparently to
 Operator 2's MDSC so that Operator 2 should provision its underlay
 network tunnels to meet the service requirements of the original
 customer. The MDSC of Operator 1 should translate/map the original
 customer's intent and service requirements and pass down to the
 corresponding PNC(s) which is(are) responsible for interfacing
 another operator (in this example, Operator 2) that provides
 transport services for the segment of the customer's VN. The PNC
 in turn performs as a CNC when interfacing its southbound with
 Operator 2's MDSC.

 It is possible that additional recursive relationships may also
 exist between Operator 2 and other operators.

4.2. Service/Network Orchestration of Operator 2

 Operator 2 that provides transport service for Operator 1 may also
 need to perform service/network orchestration function just as the
 case for Operator 1.

 From a data plane perspective, the interaction between operator 1
 and operator 2 is similar to the POI case discussed in section 3.2
 (See Figure 2) with an exception that the packet domains belong to
 operator 1 while optical domain to operator 2.

 The control interface depicted in Figure 4 (i.e., the CNC of
 operator 1 and the MDSC of operator 2) should behave similarly to
 that of the MDSC and the PNCs discussed in Section 3.

5. Security Considerations

 This document defines key components and interfaces for managed
 traffic engineered networks. Securing the request and control of
 resources, confidentially of the information, and availability of
 function, should all be critical security considerations when
 deploying and operating ACTN POI platforms.

 Several distributed ACTN functional components are required, and
 implementations should consider encrypting data that flows between
 components, especially when they are implemented at remote nodes,
 regardless these data flows are on external or internal network
 interfaces.

 From a security and reliability perspective, ACTN POI may
 encounter many risks such as malicious attack and rogue elements
 attempting to connect to various ACTN POI components.
 Furthermore, some ACTN POI components represent a single point of
 failure and threat vector, and must also manage policy conflicts,
 and eavesdropping of communication between different ACTN POI
 components.

 The conclusion is that all protocols used to realize the ACTN POI
 should have rich security features, and customer, application and
 network data should be stored in encrypted data stores. Additional
 security risks may still exist. Therefore, discussion and
 applicability of specific security functions and protocols will be
 better described in documents that are use case and environment
 specific.

6. IANA Considerations

 This document has no actions for IANA.

7. References

7.1. Normative References

 [RFC8453]
 D. Ceccarelli and Y. Lee, "Framework for Abstraction and
 Control of Transport Networks", RFC 8453, August 2018.

7.2. Informative References

 [DHODY]
 D. Dhody, et al., "Packet Optical Integration (POI) Use
 Cases for Abstraction and Control of Transport Networks
 (ACTN)", draft-dhody-actn-poi-use-case, work in progress.

 [bgp-l3vpn]
 D. Jain, et al. "Yang Data Model for BGP/MPLS L3 VPNs",
 draft-ietf-bess-l3vpn-yang, work in progress.

 [RFC4364]
 E. Rosen and Y. Rekhter, "BGP/MPLS IP Virtual Private
 Networks (VPNs)", RFC 4364, February 2006.

 [ACTN-VN]
 Y. Lee, et al., "A Yang Data Model for ACTN VN Operation",
 draft-lee-teas-actn-vn-yang, work in progress.

 [TSM]
 Y. Lee, et al., "Traffic Engineering and Service Mapping Yang
 Model", draft-lee-teas-te-service-mapping-yang, work in
 progress.

 [TE-Topo]
 X. Liu, et al., "YANG Data Model for Traffic Engineering
 (TE) Topologies", draft-ietf-teas-yang-te-topo, work in
 progress.

 [RFC8309]
 Q. Wu, W. Liu, and A. Farrel, "Service Models Explained",
 RFC 8309, January 2018.

 [L3SM]
 Q. Wu, S. Litkowski, L. Tomotaki, and K. Ogaki, "YANG Data
 Model for L3VPN Service Delivery", RFC 8299, January 2018.

 [L2SM]
 G. Fioccola (Ed), "A YANG Data Model for L2VPN Service
 Delivery", draft-ietf-l2sm-l2vpn-service-model, work in
 progress.

 [ACTN-Telemetry]
 Y. Lee, et al.," YANG models for ACTN TE
 Performance Monitoring Telemetry and Network Autonomics",
 draft-lee-teas-actn-pm-telemetry-autonomics, work in
 progress.

8. Contributors

Adrian Farrel
Old Dog Consulting
Email: adrian@olddog.co.uk

Dhruv Dhody
Huawei
Email: dhruv.dhody@huawei.com

Haomian Zheng
Huawei
Email: haomianzheng@hauwei.com

Authors' Addresses

Young Lee
Huawei Technologies
Email: leeyoung@huawei.com

Qin Wu
Huawei Technologies
Email: bill.wu@huawei.com

Italo Busi
Huawei Technologies
Email: Italo.Busi@huawei.com

Daniele Ceccarelli
Ericsson
Email: daniele.ceccarelli@ericsson.com

Jeff Tantsura
Nuage
Email: jefftant.ietf@gmail.com

draft-lee-teas-te-service-mapping-yang-12 - Jeff Tantsura Nuage

Index
Back 5
Prev
Next
Forward 5

TEAS WG

Internet Draft

Intended status: standard track

Expires: April 6, 2019

Young Lee

Dhruv Dhody

Huawei

Daniele Ceccarelli

Ericsson

Jeff Tantsura Nuage

 Giuseppe Fioccola

 Telecom Italia

 Qin Wu
 Huawei

 October 5, 2018

 Traffic Engineering and Service Mapping Yang Model

 draft-lee-teas-te-service-mapping-yang-12

Abstract

 This document provides a YANG data model to map customer service
 models (e.g., the L3VPM Service Model) to Traffic Engineering (TE)
 models (e.g., the TE Tunnel or the Abstraction and Control of
 Traffic Engineered Networks Virtual Network model). This model is
 referred to as TE Service Mapping Model and is applicable to the
 operator's need for seamless control and management of their VPN
 services with TE tunnel support.

 The model is principally used to allow monitoring and diagnostics of
 the management systems to show how the service requests are mapped
 onto underlying network resource and TE models.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with
 the provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 6, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Tree diagram

	 1.3. Prefixes in Data Node Names

	2. TE & Service Related Parameters
	 2.1. VN/Tunnel Selection Requirements

	 2.2. Availability Requirement

	3. YANG Modeling Approach
	 3.1. Forward Compatibility

	4. L3VPN Architecture in the ACTN Context
	 4.1. Service Mapping

	 4.2. Site Mapping

	5. YANG Data Trees

	6. YANG Data Models

	7. Security

	8. IANA Considerations

	9. Acknowledgements

	10. References
	 10.1. Informative References

	11. Contributors

	Authors' Addresses

1. Introduction

 Data models are a representation of objects that can be configured
 or monitored within a system. Within the IETF, YANG [RFC6020] is the
 language of choice for documenting data models, and YANG models have
 been produced to allow configuration or modeling of a variety of
 network devices, protocol instances, and network services. YANG data
 models have been classified in [RFC8199] and [RFC8309].

 Framework for Abstraction and Control of Traffic Engineered Networks
 (ACTN) [RFC8453] introduces an architecture to support virtual
 network services and connectivity services. [ACTN-VN-YANG] defines a
 YANG model and describes how customers or end-to-end orchestrators
 can request and/or instantiate a generic virtual network service.
 [ACTN-Applicability] describes the way IETF YANG models of different
 classifications can be applied to the ACTN interfaces. In
 particular, it describes how customer service models can be mapped
 into the CNC-MDSC Interface (CMI) of the ACTN architecture.

 [RFC8299] provides a L3VPN service delivery YANG model for PE-based
 VPNs. The scope of that draft is limited to a set of domains under
 control of the same network operator to deliver services requiring
 TE tunnels.

 [L2SM] provides a L2VPN service delivery YANG model for PE-based
 VPNs. The scope of that draft is limited to a set of domains under
 control of the same network operator to deliver services requiring
 TE tunnels.

 [L1CSM] provides a L1 connectivity service delivery YANG model for
 PE-based VPNs. The scope of that draft is limited to a set of
 domains under control of the same network operator to deliver
 services requiring TE tunnels.

 While the IP/MPLS Provisioning Network Controller (PNC) is
 responsible for provisioning the VPN service on the Provider Edge
 (PE) nodes, the Multi-Domain Service Coordinator (MDSC) can
 coordinate how to map the VPN services onto Traffic Engineering (TE)
 tunnels. This is consistent with the two of the core functions of
 the MDSC specified in [RFC8453]:

 . Customer mapping/translation function: This function is to map

 customer requests/commands into network provisioning requests
 that can be sent to the PNC according to the business policies
 that have been provisioned statically or dynamically.
 Specifically, it provides mapping and translation of a
 customer's service request into a set of parameters that are
 specific to a network type and technology such that the network
 configuration process is made possible.

 . Virtual service coordination function: This function translates

 customer service-related information into virtual network
 service operations in order to seamlessly operate virtual
 networks while meeting a customer's service requirements. In
 the context of ACTN, service/virtual service coordination
 includes a number of service orchestration functions such as
 multi-destination load balancing, guarantees of service
 quality, bandwidth and throughput. It also includes
 notifications for service fault and performance degradation and
 so forth.

 Section 2 describes a set of TE & service related parameters that
 this document addresses as new and advanced parameters that are not
 included in generic service models. Section 3 discusses YANG
 modeling approach.

1.1. Terminology

 Refer to [RFC8453], [RFC7926], and [RFC8309] for the key terms used
 in this document.

1.2. Tree diagram

 A simplified graphical representation of the data model is used in
 Section 5 of this this document. The meaning of the symbols in
 these diagrams is defined in [RFC8340].

1.3. Prefixes in Data Node Names

 In this document, names of data nodes and other data model objects
 are prefixed using the standard prefix associated with the
 corresponding YANG imported modules, as shown in Table 1.

+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Prefix | YANG module | Reference |

+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
tsm‑types	ietf‑te‑service‑mapping‑types	[RFCXXXX}
l1	ietf‑l1csm	[L1CSM]
l2vpn‑svc	ietf‑l2vpn‑svc	[L2SM]
l3vpn‑svc	ietf‑l3vpn‑svc	[RFC8299]
l1‑tsm	ietf‑l1csm‑te‑service‑mapping	[RFCXXXX]
l2‑tsm	ietf‑l2sm‑te‑service‑mapping	[RFCXXXX]
l3‑tsm	ietf‑l3sm‑te‑service‑mapping	[RFCXXXX]
vn	ietf‑actn‑vn	[ACTN‑VN]
nw	ietf‑network	[RFC8345]
te‑types	ietf‑te‑types	[TE‑Types]
te‑topo	ietf‑te‑topology	[TE‑Topo]
te	ietf‑te	[TE‑Tunnel]
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1: Prefixes and corresponding YANG modules

 Note: The RFC Editor will replace XXXX with the number assigned to
 the RFC once this draft becomes an RFC.

2. TE & Service Related Parameters

 While L1/2/3 service models [L1CSM, L2SM, L3SM] are intended to
 provide service-specific parameters for VPN service instances, there
 are a number of TE & Service related parameters that are not
 included in the generic service models.

 Additional service parameters and policies that are not included in
 the aforementioned service models are addressed in the YANG models
 defined in this document.

2.1. VN/Tunnel Selection Requirements

 In some cases, the service requirements may need addition TE tunnels
 to be established. This may occur when there are no suitable
 existing TE tunnels that can support the service requirements, or
 when the operator would like to dynamically create and bind tunnels
 to the VPN such that they are not shared by other VPNs, for example,
 for network slicing. The establishment of TE tunnels is subject to
 the network operator's policies.

 To summarize, there are three modes of VN/Tunnel selection
 operations to be supported as follows. Additional modes may be
 defined in the future.

 o New VN/Tunnel Binding - A customer could request a VPN
 service based on VN/Tunnels that are not shared with other
 existing or future services. This might be to meet VPN
 isolation requirements. Further, the YANG model described in
 Section 5 of this document can be used to describe the
 mapping between the VPN service and the ACTN VN. The VN (and
 TE tunnels) could be bound to the VPN and not used for any
 other VPN.

 Under this mode, the following sub-categories can be
 supported:

 1. Hard Isolation with deterministic characteristics: A
 customer could request a VPN service using a set of TE
 Tunnels with deterministic characteristics requirements
 (e.g., no latency variation) and where that set of TE
 Tunnels must not be shared with other VPN services and
 must not compete for bandwidth or other network resources
 with other TE Tunnels.

 2. Hard Isolation: This is similar to the above case but
 without the deterministic characteristics requirements.

 3. Soft Isolation: The customer requests a VPN service using
 a set of TE tunnels which can be shared with other VPN
 services.

 o VN/Tunnel Sharing - A customer could request a VPN service
 where new tunnels (or a VN) do not need to be created for
 each VPN and can be shared across multiple VPNs. Further, the
 mapping YANG model described in Section 5 of this document
 can be used to describe the mapping between the VPN service
 and the tunnels in use. No modification of the properties of
 a tunnel (or VN) is allowed in this mode: an existing tunnel
 can only be selected.

 o VN/Tunnel Modify - This mode allows the modification of the
 properties of the existing VN/tunnel (e.g., bandwidth).

2.2. Availability Requirement

 Availability is another service requirement or intent that may
 influence the selection or provisioning of TE tunnels or a VN to
 support the requested service. Availability is a probabilistic
 measure of the length of time that a VPN/VN instance functions
 without a network failure.

 The availability level will need to be translated into network
 specific policies such as the protection/reroute policy associated
 with a VN or Tunnel. The means by which this is achieved is not in
 the scope of this draft.

3. YANG Modeling Approach

 This section provides how the TE & Service mapping parameters are
 supported using augmentation of the existing service models (i.e.,
 [L1CSM], [L2SM], and [L3SM]). Figure 1 shows the scope of the
 Augmented LxSM Model.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
| LxSM |o‑‑‑‑‑‑‑| | | ACTN VN |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ augment| | +‑‑‑‑‑‑‑‑‑‑+
 | | +‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | Augmented LxSM Model | | TE‑topo |
| TE & Service |‑‑‑‑‑‑‑>| | +‑‑‑‑‑‑‑‑‑‑+
| Mapping Types| import | | +‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | | TE‑tunnel|
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ reference +‑‑‑‑‑‑‑‑‑‑+

 Figure 1. Augmented LxSM Model

 The Augmented LxSM model (where x=1,2,3) augments the basic LxSM
 model while importing the common TE & Service related parameters
 (defined in Section 2) grouping information from TE & Service
 Mapping Types. The TE & Service Mapping Types (ietf-te-service-
 mapping-types) module is the repository of all common groupings
 imported by each augmented LxSM model. Any future service models
 would import this grouping file.

 The role of the augmented LxSm service model is to expose the
 mapping relationship between service models and TE models so that
 VN/VPN service instantiations provided by the underlying TE networks
 can be viewed outside of the MDSC, for example by an operator who is
 diagnosing the behavior of the network. It also allows for the
 customers to access operational state information about how their
 services are instantiated with the underlying VN, TE topology or TE
 tunnels provided that the MDSC operator is willing to share that
 information. This mapping will facilitate a seamless service
 management operation with underlay-TE network visibility.

 As seen in Figure 1, the augmented LxSM service model records a
 mapping between the customer service models and the ACTN VN YANG
 model. Thus, when the MDSC receives a service request it creates a
 VN that meets the customer's service objectives with various
 constraints via TE-topology model [TE-topo], and this relationship
 is recorded by the Augmented LxSM Model. The model also supports a
 mapping between a service model and TE-topology or a TE-tunnel.

3.1. Forward Compatibility

 The YANG module defined in this document supports three existing
 service models via augmenting while sharing the common TE & Service
 Mapping Types.

 It is possible that new service models will be defined at some
 future time and that it will be desirable to map them to underlying
 TE constructs in the same way as the three existing models are
 augmented.

4. L3VPN Architecture in the ACTN Context

 Figure 2 shows the architectural context of this document
 referencing the ACTN components and interfaces.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Customer Service Manager |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | | CNC + |
 | +‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑+ |
 +‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑+
 | |
 |CMI(Augmented L3SM)|CMI(VN)
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑+
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | | |
 | | MDSC | | | |
 | | | | | |
 | | +‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | |
TE‑Svc‑Map<‑‑‑‑‑‑+ Service Mapping Function | | | |
 | | +‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | | |
 | | | | | |
 | +‑‑‑‑‑‑‑+‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | |
 | | | | |

 | | |CMI(VN) | | | |
 | | | | |
 | | +‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑+ |
 | | | | MDSC | | |
 | | | ++‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑++ | |
 | | | + Service Mapping +‑‑‑‑>TE‑Svc‑Map
 | | | ++‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+ | |
 | | +‑‑|‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑+ |
 +‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | |
 | +‑‑‑‑+‑‑‑‑‑‑‑‑+ |
 | | | |
 MPI(VPN / TE models)| | | |MPI(TE / L1 models)
 | | | |
 +‑‑‑‑‑|‑|‑‑‑+ +‑‑‑‑‑|‑|‑‑‑‑+
 IP/MPLS | +‑‑+‑+‑+ | | +‑‑+‑+‑+ | Optical Domain
 Domain | | PNC1 | | | | PNC2 | | Controller
 Controller | +‑‑+‑‑‑+ | | +‑‑+‑‑‑+ |
 +‑‑‑‑‑|‑‑‑‑‑+ +‑‑‑‑‑|‑‑‑‑‑‑+
 | |
 V | SBI
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 / IP/MPLS Network \ |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 V
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 / Optical Network \
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 2: L3VPN Architecture from the IP+Optical Network Perspective

 There are three main entities in the ACTN architecture and shown in
 Figure 2.

 . CNC: The Customer Network Controller is responsible for generating

 service requests. In the context of an L3VPN, the CNC uses the
 Augmented L3SM to express the service request and communicate it
 to the network operator.

 . MDSC: This entity is responsible for coordinating a L3VPN service

 request (expressed via the Augmented L3SM) with the IP/MPLS PNC
 and the Transport PNC. For TE services, one of the key
 responsibilities of the MDSC is to coordinate with both the IP PNC
 and the Transport PNC for the mapping of the Augmented L3VPN
 Service Model to the ACTN VN model. In the VN/TE-tunnel binding
 case, the MDSC will need to coordinate with the Transport PNC to
 dynamically create the TE-tunnels in the transport network as

 needed. These tunnels are added as links in the IP/MPLS Layer
 topology. The MDSC coordinates with IP/MPLS PNC to create the TE‑
 tunnels in the IP/MPLS layer, as part of the ACTN VN creation.
. PNC: The Provisioning Network Controller is responsible for
 configuring and operating the network devices. Figure 2 shows two
 distinct PNCs.
 o IP/MPLS PNC (PNC1): This entity is responsible for device
 configuration to create PE‑PE L3VPN tunnels for the VPN
 customer and for the configuration of the L3VPN VRF on the PE
 nodes. Each network element would select a tunnel based on
 the configuration.
 o Transport PNC (PNC2): This entity is responsible for device
 configuration for TE tunnels in the transport networks.

 There are four main interfaces shown in Figure 2.

. CMI: The CNC‑MDSC Interface is used to communicate service
 requests from the customer to the operator. The requests may be
 expressed as Augmented VPN service requests (L2SM, L3SM), as
 connectivity requests (L1CSM), or as virtual network requests
 (ACTN VN).
. MPI: The MDSC‑PNC Interface is used by the MDSC to orchestrate
 networks under the control of PNCs. The requests on this interface
 may use TE tunnel models, TE topology models, VPN network
 configuration models or layer one connectivity models.
. SBI: The Southbound Interface is used by the PNC to control
 network devices and is out of scope for this document.
. The TE Service Mapping Model as described in this document can be
 used to see the mapping between service models and VN models and
 TE Tunnel/Topology models. That mapping may occur in the CNC if a
 service request is mapped to a VN request. Or it may occur in the
 MDSC where a service request is mapped to a TE tunnel, TE
 topology, or VPN network configuration model. The TE Service
 Mapping Model may be read from the CNC or MDSC to understand how
 the mapping has been made and to see the purpose for which network
 resources are used.

 As shown in Figure 2, the MDSC may be used recursively. For example,
 the CNC might map a L3SM request to a VN request that it sends to a
 recursive MDSC.

 The high-level control flows for one example are as follows:

 1. A customer asks for an L3VPN between CE1 and CE2 using the

 Augmented L3SM model.

 2. The MDSC considers the service request and local policy to

 determine if it needs to create a new VN or any TE Topology, and
 if that is the case, ACTN VN YANG [ACTN-VN-YANG] is used to
 configure a new VN based on this VPN and map the VPN service to
 the ACTN VN. In case an existing tunnel is to be used, each device
 will select which tunnel to use and populate this mapping
 information.

 3. The MDSC interacts with both the IP/MPLS PNC and the Transport PNC

 to create a PE-PE tunnel in the IP network mapped to a TE tunnel
 in the transport network by providing the inter-layer access
 points and tunnel requirements. The specific service information
 is passed to the IP/MPLS PNC for the actual VPN configuration and
 activation.

a. The Transport PNC creates the corresponding TE tunnel
 matching with the access point and egress point.
b. The IP/MPLS PNC maps the VPN ID with the corresponding TE
 tunnel ID to bind these two IDs.

 4. The IP/MPLS PNC creates/updates a VRF instance for this VPN

 customer. This is not in the scope of this document.

4.1. Service Mapping

 Augmented L3SM and L2SM can be used to request VPN service creation
 including the creation of sites and corresponding site network
 access connection between CE and PE. A VPN-ID is used to identify
 each VPN service ordered by the customer. The ACTN VN can be used
 further to establish PE-to-PE connectivity between VPN sites
 belonging to the same VPN service. A VN-ID is used to identify each
 virtual network established between VPN sites.

 Once the ACTN VN has been established over the TE network (maybe a
 new VN, maybe modification of an existing VN, or maybe the use of an
 unmodified existing VN), the mapping between the VPN service and the
 ACTN VN service can be created.

4.2. Site Mapping

 The elements in Augmented L3SM and L2SM define site location
 parameters and constraints such as distance and access diversity
 that can influence the placement of network attachment points (i.e,
 virtual network access points (VNAP)). To achieve this, a central
 directory can be set up to establish the mapping between location
 parameters and constraints and network attachment point location.
 Suppose multiple attachment points are matched, the management
 system can use constraints or other local policy to select the best
 candidate network attachment points.

 After a network attachment point is selected, the mapping between
 VPN site and VNAP can be established as shown in Table 1.

+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
		Location	Access Diversity	PE
	Site			
Site	Network	(Address, Postal	(Constraint‑Type,	
	Access	Code, State,	Group‑id,Target	
		City,Country	Group‑id)	
		Code)		
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+				
SITE1	ACCESS1	(,,US,NewYork,)	(10,PE‑Diverse,10)	PE1
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+				
SITE2	ACCESS2	(,,CN,Beijing,)	(10,PE‑Diverse,10)	PE2
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+				
SITE3	ACCESS3	(,,UK,London,)	(12,same‑PE,12)	PE4
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+				
SITE4	ACCESS4	(,,FR,Paris,)	(20,Bearer‑Diverse,20)	PE7
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+

 Table 1 : Mapping Between VPN Site and VNAP

5. YANG Data Trees

module: ietf‑l1csm‑te‑service‑mapping
 augment /l1:l1‑connectivity/l1:services/l1:service:
 +‑rw te‑service‑mapping!
 augment /l1:l1‑connectivity/l1:services/l1:service:
 +‑rw te‑mapping
 +‑rw map‑type? identityref
 +‑rw availability‑type? identityref
 +‑rw (te)?
 +‑:(actn‑vn)
 | +‑rw actn‑vn‑ref? ‑> /vn:actn/vn/vn‑list/vn‑id
 +‑:(te‑topo)
 | +‑rw vn‑topology‑id? te‑types:te‑topology‑id
 | +‑rw abstract‑node? ‑> /nw:networks/network/node/node‑id
 +‑:(te‑tunnel)
 +‑rw te‑tunnel‑list* te:tunnel‑ref
 augment /l1:l1‑connectivity/l1:services/l1:service/l1:endpoint‑1:
 +‑rw (te)?
 +‑:(actn‑vn)

 | +‑rw actn‑vn‑ref? ‑> /vn:actn/ap/access‑point‑list/access‑point‑id
 +‑:(te)
 +‑rw ltp? te‑types:te‑tp‑id
 augment /l1:l1‑connectivity/l1:services/l1:service/l1:endpoint‑2:
 +‑rw (te)?
 +‑:(actn‑vn)
 | +‑rw actn‑vn‑ref? ‑> /vn:actn/ap/access‑point‑list/access‑point‑id
 +‑:(te)
 +‑rw ltp? te‑types:te‑tp‑id

module: ietf‑l2sm‑te‑service‑mapping
 augment /l2vpn‑svc:l2vpn‑svc/l2vpn‑svc:vpn‑services/l2vpn‑svc:vpn‑service:
 +‑rw te‑service‑mapping!
 augment /l2vpn‑svc:l2vpn‑svc/l2vpn‑svc:vpn‑services/l2vpn‑svc:vpn‑service:
 +‑rw te‑mapping
 +‑rw map‑type? identityref
 +‑rw availability‑type? identityref
 +‑rw (te)?
 +‑:(actn‑vn)
 | +‑rw actn‑vn‑ref? ‑> /vn:actn/vn/vn‑list/vn‑id
 +‑:(te‑topo)
 | +‑rw vn‑topology‑id? te‑types:te‑topology‑id
 | +‑rw abstract‑node? ‑> /nw:networks/network/node/node‑id
 +‑:(te‑tunnel)
 +‑rw te‑tunnel‑list* te:tunnel‑ref
 augment /l2vpn‑svc:l2vpn‑svc/l2vpn‑svc:sites/l2vpn‑svc:site/l2vpn‑svc:site‑network‑
accesses/l2vpn‑svc:site‑network‑access:
 +‑rw (te)?
 +‑:(actn‑vn)
 | +‑rw actn‑vn‑ref? ‑> /vn:actn/ap/access‑point‑list/access‑point‑id
 +‑:(te)
 +‑rw ltp? te‑types:te‑tp‑id

 module: ietf‑l3sm‑te‑service‑mapping
 augment /l3vpn‑svc:l3vpn‑svc/l3vpn‑svc:vpn‑services/l3vpn‑svc:vpn‑service:
 +‑rw te‑service‑mapping!
 augment /l3vpn‑svc:l3vpn‑svc/l3vpn‑svc:vpn‑services/l3vpn‑svc:vpn‑service:
 +‑rw te‑mapping
 +‑rw map‑type? identityref
 +‑rw availability‑type? identityref
 +‑rw (te)?
 +‑:(actn‑vn)
 | +‑rw actn‑vn‑ref? ‑> /vn:actn/vn/vn‑list/vn‑id
 +‑:(te‑topo)
 | +‑rw vn‑topology‑id? te‑types:te‑topology‑id

 | +‑rw abstract‑node? ‑> /nw:networks/network/node/node‑id
 +‑:(te‑tunnel)
 +‑rw te‑tunnel‑list* te:tunnel‑ref
 augment /l3vpn‑svc:l3vpn‑svc/l3vpn‑svc:sites/l3vpn‑svc:site/l3vpn‑svc:site‑
 network‑accesses/l3vpn‑svc:site‑network‑access:
 +‑rw (te)?
 +‑:(actn‑vn)
 | +‑rw actn‑vn‑ref? ‑> /vn:actn/ap/access‑point‑list/access‑point‑id
 +‑:(te)
 +‑rw ltp? te‑types:te‑tp‑id

6. YANG Data Models

 The YANG codes are as follows:

 <CODE BEGINS> file "ietf-te-service-mapping-types@2018-10-05.yang"

 module ietf-te-service-mapping-types {

 namespace "urn:ietf:params:xml:ns:yang:ietf-te-service-mapping-types";

 prefix "tsm";

import ietf‑te‑types {
 prefix "te‑types";
}

import ietf‑network {
 prefix "nw";
}

import ietf‑te {
 prefix "te";
}

import ietf‑actn‑vn {
 prefix "vn";
}

 organization

 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "Editor: Young Lee <leeyoung@huawei.com>
 Dhruv Dhody <dhruv.ietf@gmail.com>
 Qin Wu <bill.wu@huawei.com>";

 description

 "This module contains a YANG module for TE & Service mapping
 parameters and policies as a common grouping applicable to
 variuous service models (e.g., L1CSM, L2SM, L3SM, etc.)";

 revision 2018‑10‑05 {
 description
 "initial version.";
 reference
 "TBD";
 }

 /*
 * Identity for map‑type
 */
identity map‑type {
 description
 "Base identity from which specific map types are
 derived.";
}

identity new {
 base map‑type;
 description
 "The new VN/tunnels are binded to the service.";
}

identity detnet‑hard‑isolation {
 base new;
 description
 "Hard isolation with deterministic characteristics.";
}

identity hard‑isolation {
 base new;
 description
 "Hard isolation.";
}

identity soft‑isolation {
 base new;
 description
 "Soft‑isolation.";
}

identity select {
 base map‑type;
 description

 "The VPN service selects an existing tunnel with no
 modification.";
}

identity modify {
 base map‑type;
 description
 "The VPN service selects an existing tunnel and allows
 to modify the properties of the tunnel (e.g., b/w)";
}

 /*
 * Identity for availability‑type
 */
identity availability‑type {
 description
 "Base identity from which specific map types are
 derived.";
}

identity level‑1 {
 base availability‑type;
 description
 "level 1: 99.9999%";
}

identity level‑2 {
 base availability‑type;
 description
 "level 2: 99.999%";
}

identity level‑3 {
 base availability‑type;
 description
 "level 3: 99.99%";
}

identity level‑4 {
 base availability‑type;
 description
 "level 4: 99.9%";
}

identity level‑5 {
 base availability‑type;
 description
 "level 5: 99%";
}

 /*
 * Groupings
 */

grouping te‑ref {
 description
 "The reference to TE.";
 choice te {
 description
 "The TE";
 case actn‑vn {
 leaf actn‑vn‑ref {
 type leafref {
 path "/vn:actn/vn:vn/vn:vn‑list/vn:vn‑id";
 }
 description
 "The reference to ACTN VN";
 }
 }
 case te‑topo {
 leaf vn‑topology‑id{
 type te‑types:te‑topology‑id;
 description
 "An identifier to the TE Topology Model
 where the abstract nodes and links of
 the Topology can be found for Type 2
 VNS";
 }
 leaf abstract‑node {
 type leafref {
 path "/nw:networks/nw:network/nw:node/"
 + "nw:node‑id";
 }
 description
 "a reference to the abstract node in TE
 Topology";
 }
 }
 case te‑tunnel {
 leaf‑list te‑tunnel‑list {
 type te:tunnel‑ref;
 description
 "Reference to TE Tunnels";
 }

 }

 }

 }

grouping te‑endpoint‑ref {
 description
 "The reference to TE endpoints.";
 choice te {
 description
 "The TE";
 case actn‑vn {
 leaf actn‑vn‑ref {
 type leafref {
 path "/vn:actn/vn:ap/vn:access‑point‑list"
 + "/vn:access‑point‑id";
 }
 description
 "The reference to ACTN VN";
 }
 }
 case te {
 leaf ltp {
 type te‑types:te‑tp‑id;
 description
 "Reference LTP in the TE‑topology";
 }
 }
 }

 }

 grouping te‑mapping {
 description
 "Mapping between Services and TE";
 container te‑mapping {
 description
 "Mapping between Services and TE";
 leaf map‑type {
 type identityref {
 base map‑type;
 }
 description
 "Isolation Requirements, Tunnel Bind or
 Tunnel Selection";
 }
 leaf availability‑type {
 type identityref {
 base availability‑type;
 }
 description

 "Availability Requirement for the Service";
 }
 uses te‑ref;
 }
 }

}
<CODE ENDS>

 <CODE BEGINS> file "ietf-l1csm-te-service-mapping@2018-10-05.yang"

 module ietf-l1csm-te-service-mapping {

 namespace "urn:ietf:params:xml:ns:yang:ietf-l1csm-te-service-mapping";

 prefix "tm";

 import ietf‑te‑service‑mapping‑types {
 prefix "tsm‑types";
}

import ietf‑l1csm {
 prefix "l1";
 }

 organization

 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "Editor: Young Lee <leeyoung@huawei.com>
 Dhruv Dhody <dhruv.ietf@gmail.com>
 Qin Wu <bill.wu@huawei.com>";
description
 "This module contains a YANG module for the mapping of
 Layer 1 Connectivity Service Module (L1CSM) to the TE and VN ";

revision 2018‑10‑05 {
 description
 "initial version.";
 reference
 "TBD";
}

 /*

 * Configuration data nodes

 */
 augment "/l1:l1‑connectivity/l1:services/l1:service" {
 description
 "l1csm augmented to include TE parameters and mapping";
 container te‑service‑mapping {
 presence "indicates l1 service to te mapping";
 description
 "Container to augment l1csm to TE parameters and mapping";
 }
 }

 augment "/l1:l1‑connectivity/l1:services/l1:service" {
 description
 "This augment is only valid for TE mapping ‑‑
 te mapping is added";
 uses tsm‑types:te‑mapping;
 }

 augment "/l1:l1‑connectivity/l1:services/l1:service/l1:endpoint‑1" {
 description
 "This augment is only valid for TE mapping ‑‑
 endpoint‑1 te‑reference is added";
 uses tsm‑types:te‑endpoint‑ref;
 }

 augment "/l1:l1‑connectivity/l1:services/l1:service/l1:endpoint‑2" {
 description
 "This augment is only valid for TE mapping ‑‑
 endpoint‑2 te‑reference is added";
 uses tsm‑types:te‑endpoint‑ref;
 }
}

 <CODE ENDS>

 <CODE BEGINS> file "ietf-l2sm-te-service-mapping@2018-10-05.yang"

 module ietf-l2sm-te-service-mapping {

 namespace "urn:ietf:params:xml:ns:yang:ietf-l2sm-te-service-mapping";

 prefix "tm";

 import ietf-te-service-mapping-types {

 prefix "tsm‑types";
}

import ietf‑l2vpn‑svc {
 prefix "l2vpn‑svc";
}

 organization

 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

 contact
 "Editor: Young Lee <leeyoung@huawei.com>
 Dhruv Dhody <dhruv.ietf@gmail.com>
 Qin Wu <bill.wu@huawei.com>";
 description
 "This module contains a YANG module for the mapping of
 Layer 2 Service Model (L1CSM) to the TE and VN ";

 revision 2018‑10‑05 {
 description
 "initial version.";
 reference
 "TBD";
 }

 /*
 * Configuration data nodes
 */
augment "/l2vpn‑svc:l2vpn‑svc/l2vpn‑svc:vpn‑services/l2vpn‑svc:vpn‑service" {
 description
 "l2sm augmented to include TE parameters and mapping";
 container te‑service‑mapping {
 presence "indicates l2 service to te mapping";
 description
 "Container to augment l2sm to TE parameters and mapping";
 }
}

augment "/l2vpn‑svc:l2vpn‑svc/l2vpn‑svc:vpn‑services/l2vpn‑svc:vpn‑service" {
 description
 "This augment is only valid for TE mapping ‑‑
 te mapping is added";
 uses tsm‑types:te‑mapping;
}

 augment "/l2vpn-svc:l2vpn-svc/l2vpn-svc:sites/l2vpn-svc:site"

 +"/l2vpn‑svc:site‑network‑accesses/l2vpn‑svc:site‑network‑access" {
 description
 "This augment is only valid for TE mapping ‑‑
 network‑access te‑reference is added";
 uses tsm‑types:te‑endpoint‑ref;
 }
}

 <CODE ENDS>

 <CODE BEGINS> file "ietf-l3sm-te-service-mapping@2018-10-05.yang"

 module ietf-l3sm-te-service-mapping {

 namespace "urn:ietf:params:xml:ns:yang:ietf-l3sm-te-service-mapping";

 prefix "tm";

import ietf‑te‑service‑mapping‑types {
 prefix "tsm‑types";
}

import ietf‑l3vpn‑svc {
 prefix "l3vpn‑svc";
}

 organization

 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

 contact
 "Editor: Young Lee <leeyoung@huawei.com>
 Dhruv Dhody <dhruv.ietf@gmail.com>
 Qin Wu <bill.wu@huawei.com>";
 description
 "This module contains a YANG module for the mapping of
 Layer 3 Service Model (L3SM) to the TE and VN ";

 revision 2018‑10‑05 {
 description
 "initial version.";

 reference
 "TBD";
 }

 /*
 * Configuration data nodes
 */
 augment "/l3vpn‑svc:l3vpn‑svc/l3vpn‑svc:vpn‑services/l3vpn‑svc:vpn‑service" {
 description
 "l3sm augmented to include TE parameters and mapping";
 container te‑service‑mapping {
 presence "indicates l3 service to te mapping";
 description
 "Container to augment l3sm to TE parameters and mapping";
 }
 }

 augment "/l3vpn‑svc:l3vpn‑svc/l3vpn‑svc:vpn‑services/l3vpn‑svc:vpn‑service" {
 description
 "This augment is only valid for TE mapping ‑‑
 te mapping is added";
 uses tsm‑types:te‑mapping;
 }

 augment "/l3vpn‑svc:l3vpn‑svc/l3vpn‑svc:sites/l3vpn‑svc:site"
 +"/l3vpn‑svc:site‑network‑accesses/l3vpn‑svc:site‑network‑access" {
 description
 "This augment is only valid for TE mapping ‑‑
 network‑access te‑reference is added";
 uses tsm‑types:te‑endpoint‑ref;
 }
}

 <CODE ENDS>

7. Security

 The configuration, state, and action data defined in this document
 are designed to be accessed via a management protocol with a secure
 transport layer, such as NETCONF [RFC6241]. The NETCONF access
 control model [RFC6536] provides the means to restrict access for
 particular NETCONF users to a preconfigured subset of all available
 NETCONF protocol operations and content.

 A number of configuration data nodes defined in this document are
 writable/deletable (i.e., "config true") These data nodes may be
 considered sensitive or vulnerable in some network environments.

8. IANA Considerations

 This document registers the following namespace URIs in the IETF XML
 registry [RFC3688]:

‑‑
URI: urn:ietf:params:xml:ns:yang:ietf‑te‑service‑mapping‑types
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
‑‑

‑‑
URI: urn:ietf:params:xml:ns:yang:ietf‑l1csm‑te‑service‑mapping
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
‑‑

‑‑
URI: urn:ietf:params:xml:ns:yang:ietf‑l2sm‑te‑service‑mapping
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
‑‑

‑‑
URI: urn:ietf:params:xml:ns:yang:ietf‑l3sm‑te‑service‑mapping
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
‑‑

 This document registers the following YANG modules in the YANG
 Module.

 Names registry [RFC7950]:

‑‑
name: ietf‑te‑service‑mapping‑types

namespace: urn:ietf:params:xml:ns:yang:ietf‑te‑service‑mapping‑
types
reference: RFC XXXX (TDB)
‑‑

‑‑
name: ietf‑l1csm‑te‑service‑mapping
namespace: urn:ietf:params:xml:ns:yang:ietf‑l1cms‑te‑service‑
mapping
reference: RFC XXXX (TDB)
‑‑

‑‑
name: ietf‑l2sm‑te‑service‑mapping
namespace: urn:ietf:params:xml:ns:yang:ietf‑l2sm‑te‑service‑
mapping
reference: RFC XXXX (TDB)
‑‑

‑‑
name: ietf‑l3sm‑te‑service‑mapping
namespace: urn:ietf:params:xml:ns:yang:ietf‑l3sm‑te‑service‑
mapping
reference: RFC XXXX (TDB)
‑‑

9. Acknowledgements

 We thank Diego Caviglia and Igor Bryskin for useful discussions and
 motivation for this work.

10. References

10.1. Informative References

 [RFC4110]
 R. Callon and M. Suzuki, "A Framework for Layer 3
 Provider-Provisioned Virtual Private Networks (PPVPNs)",
 RFC 4110, July 2005.

 [RFC6020]
 M. Bjorklund, Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC8309]
 Q. Wu, W. Liu and A. Farrel, "Service Models Explained",
 RFC 8309, January 2018.

 [RFC8199]
 D. Bogdanovic, B. Claise, and C. Moberg, "YANG Module
 Classification", RFC 8199, July 2017.

 [Netconf]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241.

 [RFC8453]
 D. Cecarelli and Y. Lee, "Framework for Abstraction and
 Control of Traffic Engineered Networks", RFC 8453, August
 2018.

 [TE-Topo]
 X. Liu, et. al., "YANG Data Model for TE Topologies",
 draft-ietf-teas-yang-te-topo, work in progress.

 [TE-Tunnel]
 T. Saad (Editor), "A YANG Data Model for Traffic
 Engineering Tunnels and Interfaces", draft-ietf-teas-yang-
 te, work in progress.

 [TE-Types]
 T. Saad (Editor), "Traffic Engineering Common YANG
 Types", draft-ietf-teas-yang-te-types, work in progress.

 [ACTN-VN-YANG]
 Y. Lee (Editor), "A Yang Data Model for ACTN VN
 Operation", draft-lee-teas-actn-vn-yang, work in progress.

 [ACTN-Applicability] Y. Lee, et al, "Applicability of YANG models

 for Abstraction and Control of Traffic Engineered
 Networks, draft-ietf-teas-actn-yang, work in progress.

 [RFC8299]
 Q. Wu, S. Litkowski, L.Tomotaki, and K. Ogaki, "YANG Data
 Model for L3VPN service delivery", RFC 8299, January 2018.

 [L2SM]
 B. Wen, et al, "A YANG Data Model for L2VPN Service
 Delivery", draft-ietf-l2sm-l2vpn-service-model, work in
 progress.

 [L1CSM]
 G. Fioccola, et al, "A Yang Data Model for L1 Connectivity
 Service Model (L1CSM)", draft-ietf-ccamp-l1csm-yang, work
 in progress.

11. Contributors

Adrian Farrel
Old Dog Consulting

 Email: adrian@olddog.co.uk

Italo Busi
Huawei Technologies

 Email: Italo.Busi@huawei.com

Authors' Addresses

Young Lee
Huawei Technologies
5340 Legacy Drive
Plano, TX 75023, USA
Phone: (469)277‑5838

 Email: leeyoung@huawei.com

Dhruv Dhody
Huawei Technologies

 Email: dhruv.ietf@gmail.com

Daniele Ceccarelli
Ericsson
Torshamnsgatan,48
Stockholm, Sweden

 Email: daniele.ceccarelli@ericsson.com

Jeff Tantsura
Nuage

 EMail: jefftant@gmail.com

Giuseppe Fioccola
Telecom Italia
Email: giuseppe.fioccola@telecomitalia.it

Qin Wu
Huawei
Email: bill.wu@huawei.com

draft-li-teas-hierarchy-ip-controllers-01 - Hierarchy of IP Controllers (HIC)

Index
Back 5
Prev
Next

TEAS Working Group

Internet-Draft

Intended status: Informational

Expires: March 7, 2019

Z. Li

D. Dhody

H. Chen

Huawei Technologies

September 3, 2018

Hierarchy of IP Controllers (HIC)

draft-li-teas-hierarchy-ip-controllers-01

Abstract

 This document describes the interactions between various IP
 controllers in a hierarchical fashion to provide various IP services.
 It describes how the Abstraction and Control of Traffic Engineered
 Networks (ACTN) framework is applied to the Hierarchy of IP
 controllers (HIC) as well as document the interactions with other
 protocols like BGP, Path Computation Element Communication Protocol
 (PCEP) to provide end to end dynamic services spanning multiple
 domains and controllers (e.g. Layer 3 Virtual Private Network
 (L3VPN), Seamless MPLS etc).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 7, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Overview
	 2.1. Mapping to ACTN

	 2.2. Interface between Super Controller and Domain Controller in HIC

	3. Key Concepts
	 3.1. Topology

	 3.2. Path Computation/Path instantiation

	 3.3. BGP considerations

	4. VPN Service
	 4.1. Seamless MPLS

	 4.2. L3VPN

	 4.3. L2VPN and EVPN service

	5. Possible Features/Extensions

	6. Other Considerations
	 6.1. Control Plane
	 6.1.1. PCE / PCEP

	 6.1.2. BGP

	 6.2. Management Plane
	 6.2.1. YANG Models

	 6.2.2. Protocol Considerations

	7. IANA Considerations

	8. Security Considerations

	9. Acknowledgments

	10. Contributing Authors

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Authors' Addresses

1. Introduction

 Software-Defined Networking (SDN) refers to a separation between the
 control elements and the forwarding components so that software
 running in a centralized system called a controller, can act to
 program the devices in the network to behave in specific ways. A
 required element in an SDN architecture is a component that plans how
 the network resources will be used and how the devices will be
 programmed. It is possible to view this component as performing
 specific computations to place flows within the network given
 knowledge of the availability of network resources, how other
 forwarding devices are programmed, and the way that other flows are
 routed. The Application-Based Network Operation (ABNO) [RFC7491]
 describes how various components and technologies fit together.

 A domain [RFC4655] is any collection of network elements within a
 common sphere of address management or path computation
 responsibility. Specifically within this document we mean a part of
 an operator's network that is under common management. Network
 elements will often be grouped into domains based on technology
 types, vendor profiles, and geographic proximity and under a domain
 controller.

 Multiple such domains in the network are interconnected, and a path
 is established through a series of connected domains to form an end-
 to-end path over which various services are offered. Each domain is
 under the control of the domain controller (or lower-level
 controller), and a "super controller" (or high-level controller)
 takes responsibility for a high-level view of the network before
 distributing tasks to domain controllers (or lower-level
 controllers). It is possible for each of the domain to use a
 different tunneling mechanism (eg RSVP-TE, Segment Routing (SR) etc).

 [RFC8453] describes the framework for Abstraction and Control of
 Traffic Engineered Networks (ACTN) as well as a set of management and
 control functions used to operate multiple TE networks. This
 documents would apply the ACTN principles to Hierarchy of IP
 controllers (HIC) and focus on the applicability and interactions
 with other protocol and technologies (specific to IP packet domains).

 Sometimes, service (such as Layer 3 Virtual Private Network (L3VPN),
 Layer 2 Virtual Private Network (L2VPN), Ethernet VPN (EVPN),
 Seamless MPLS) require sites attached to different domains (under the
 control of different domain controller) to be interconnected as part
 of the VPN service. This require multi-domain coordination between
 domain controllers to compute and setup E2E path for the VPN service.

 This document describes the interactions between various IP
 controllers in a hierarchical fashion to provide various IP services.
 It describes how the Abstraction and Control of Traffic Engineered
 Networks (ACTN) framework is applied to the Hierarchy of IP
 controllers (HIC) as well as document the interactions with control
 plane protocols (like BGP, Path Computation Element Communication
 Protocol (PCEP)) and management plane aspects (Yang models) to
 provide end to end dynamic services spanning multiple domains and
 controllers (e.g. L3VPN, Seamless MPLS etc).

2. Overview

 Figure 1 show examples of multi-domain IP domains under hierarchy of
 IP controllers.

 |
 +‑‑‑‑‑‑‑‑‑‑‑‑+
 | SuperCo |
 +‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | | |
+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
| DoCo#1 | | DoCo#2 | | DoCo#3 |
+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+

+‑‑Domain#1‑‑+ +‑‑Domain#2‑‑+ +‑‑Domain#3‑‑+
| | | | | |
| B‑‑‑‑‑‑+‑‑‑+‑‑‑D‑‑‑‑‑E‑‑+‑‑‑+‑‑‑‑‑‑J |
/		\ /		\
/		\ /		\
A		H		L
\		/ \		/
\		/ \		/
C‑‑‑‑‑‑+‑‑‑+‑‑‑F‑‑‑‑‑G‑‑+‑‑‑+‑‑‑‑‑‑K				
+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: Example: Hierarchy of IP controllers (HIC)

 The IP "Super Controller" receives request from the network/service
 orchestrator to setup dynamic services spanning multiple domains.
 The IP "Super Controller" breaks down and assigns tasks to the domain
 controllers, responsible for communicating to network devices in the
 domain. It further coordinates between the controller to provide a
 unified view of the multi-domain network.

2.1. Mapping to ACTN

 As per [RFC8453], ACTN has following main functions -

 o Multi-domain coordination

 o Virtualization/Abstraction

 o Customer mapping/translation

 o Virtual service coordination

 These functions are part of Multi Domain Service Coordinator (MDSC)
 and/or Provisioning Network Controller (PNC). Further these
 functions are part of the controller / orchestrator.

 The HIC is an instantiation of ACTN framework for IP packet network.
 The IP domain (lower-level) controllers implements the PNC
 functionalities for configuring, controlling and monitoring the IP
 domain. The "super controller" (high-level controller) implements
 the MDSC functionalities for coordination between multiple domains as
 well as maintaining an abstracted view of multiple domains. It also
 takes care of the service related functionalities of customer
 mapping/translation and virtual service coordination.

 The ACTN functions are part of the IP controllers and responsible for
 the TE topology and E2E path computation/setup. There are other
 functions along with ACTN that are needed to manage multiple IP
 domain networks.

2.2. Interface between Super Controller and Domain Controller in HIC

 The interaction between super controller and domain controller in HIC
 is a combination of Control Plane and Management Plane interface as
 shown in Figure 2. BGP [RFC4271] and PCEP [RFC5440] are example of
 the control plane interface; where as NETCONF [RFC6241] and RESTCONF
 [RFC8040] are example of management plane interface.

+‑‑+
| Super Controller |
| |
| |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑*‑‑‑‑‑‑#‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 * #
 * #

 * # *
 ######*############### *
 # * # *
+‑‑‑‑‑‑‑‑‑#‑‑‑‑‑*‑‑+ +‑‑#‑‑‑‑‑‑‑‑*‑‑‑‑‑‑+
| Domain | | Domain |
| Controller | | Controller |
+‑‑#‑‑‑‑‑‑‑‑‑‑‑‑*‑‑+ +‑‑#‑‑‑‑‑‑‑‑‑‑‑‑*‑‑+
 # * # *
 # * # *

 * ‑> Control Plane Interface
 # ‑> Management Plane Interface

 Figure 2: Interface between Super Controller and Domain Controller

 Note that ACTN's MDSC-PNC Interface (MPI) could be implemented via
 management plane interface using Yang models
 [I-D.ietf-teas-actn-yang] or via PCEP control plane interface
 [I-D.ietf-pce-applicability-actn].

3. Key Concepts

3.1. Topology

 The Domain Controller is expected to be aware of the topology of the
 network devices in its domain. The domain controller could
 participate in the IGP ([RFC3630] and [RFC5305]) or use BGP-LS
 [RFC7752] by which link-state and TE information is collected and
 shared with domain controller using the BGP routing protocol.

 An alternate approach would be to rely on the management plane
 interface which uses the YANG model for network/TE Topology as per
 [RFC8345] and [I-D.ietf-teas-yang-te-topo].

 The domain controller is expected to share the domain topology to the
 Super Controller as aligned to ACTN (where PNC abstract the topology
 towards MDSC). A level of abstraction is usually applied while
 presenting the topology to a higher level controller. Topology
 abstraction is described in [RFC7926] as well as [RFC8453]. BGP-LS,
 PCEP-LS [I-D.dhodylee-pce-pcep-ls] or management plane interface
 based on the abstracted network/TE Topology could be used to carry
 the abstract topology to the super-controller. At minimum the border
 nodes and inter-domain links are exposed to the super-controller.

 Further [RFC8453] defines three types of topology abstraction - (1)
 Native/White Topology; (2) Black Topology; and (3) Grey Topology.
 Based on the local policy, the domain controller would share the
 domain topology to the Super Controller based on the abstraction
 type. Note that any of the control plane or management plane
 mechanism could be used to carry abstracted domain topology. The
 Super Controller's MDSC function is expected to manage a E2E topology
 by coordinating the abstracted domain topology received from the
 domain controllers.

3.2. Path Computation/Path instantiation

 The Domain Controller is responsible for computing and setup of path
 when the source and destination is in the same domain, otherwise the
 Super Controller coordinates the multi-domain path computation and
 setup with the help of the domain controller. This is aligned to
 ACTN.

 PCEP [RFC5440] provides mechanisms for Path Computation Elements
 (PCEs) [RFC4655] to perform path computations in response to Path
 Computation Clients (PCCs) requests. Since then, the role and
 function of the PCE has grown to allow delegated control [RFC8231]
 and PCE-initiated use of network resources [RFC8281].

 Further, [RFC6805] and [I-D.ietf-pce-stateful-hpce] describes a
 hierarchy of PCE with Parent PCE coordinating multi-domain path
 computation function between Child PCE(s). This fits well with HIC
 as described in this document.

 Note that a management plane interface which uses the YANG model for
 path computation/setup ([I-D.ietf-teas-yang-path-computation] and
 [I-D.ietf-teas-yang-te]) could be used in place of PCEP.

 In case there is a need to stitch per domain tunnels into an E2E
 tunnel, mechanism are described in [I-D.lee-pce-lsp-stitching-hpce]
 and [I-D.dugeon-pce-stateful-interdomain].

3.3. BGP considerations

 [RFC4456]
 describes the concept of route-reflection where a "route
 reflector" (RR) reflects the routes to avoid full mesh connection
 between Internal BGP (IBGP) peers. The IP domain controller can play
 the role of RR in its domain. The super controller can further act
 as RR to towards the domain controller.

 BGP can provide routing policies for the traffic management, like
 route preference, AS-path filter policy, IP-prefix filter policy and
 route aggregation. The controller can distribute these BGP Policy
 into the routers in a single IP domain. For the scenario of multiple
 domains, the super controller can distribute per BGP Policy into each
 IP domain controller. Then the IP domain controller trickles down
 the BGP Policy to the network devices.

 [RFC5575] describes the concept of BGP Flowspec that can be used to
 distribute traffic flow specifications. A flow specification is an
 n-tuple consisting of several matching criteria that can be applied
 to IP traffic. The controller can originate the flow specifications
 and disseminate to the routers. The flow action includes the
 redirection to a specific TE tunnel. Also, the IP domain controller
 could be responsible for collecting the flow sample in its domain and
 the super controller can act as the Flow Analysis Server.

 [RFC7854] describes the BGP Monitoring Protocol (BMP) to monitor BGP
 sessions. BMP is used to obtain the route views with a flexible way.
 In the fashion of hierarchical architecture, the IP domain controller
 can be used as the domain Monitoring Station. Meanwhile, the super
 controller is responsible for a high-level view of the global network
 state.

4. VPN Service

4.1. Seamless MPLS

 Seamless MPLS [I-D.ietf-mpls-seamless-mpls] describes an architecture
 which can be used to extend MPLS networks to integrate access and
 core/aggregation networks into a single MPLS domain.In the seamless
 MPLS for mobile backhaul, since there are multiple domains including
 the core network and multiple mobile backhaul networks, for each
 domain there is a domain controller. In order to implement the end-
 to-end network service provision, there should be coordination among
 multiple domain controllers.

 |
 |
 |
 +‑‑‑‑‑‑‑‑‑‑+
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑|Super |‑‑‑‑‑‑‑‑‑|
 | |Controller| |
 | +‑‑‑‑‑‑‑‑‑‑+ |
 | | |
 | | |
 | | |
 +‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑‑+
‑‑‑‑	DoCo	‑‑‑‑		‑‑‑	DoCo	‑‑		‑‑‑‑	DoCo	‑‑‑
	#X1				#Y				#X2	
+‑‑‑‑‑‑+		+‑‑‑‑‑‑+		+‑‑‑‑‑‑+						
+‑‑‑‑+ +‑‑‑‑+										
....	ABR1	ABR3						
+‑‑‑‑+ +‑‑‑‑+ +‑‑‑‑+ +‑‑‑‑+										
PE	PE								
+‑‑‑‑+ +‑‑‑‑+
 +‑‑‑‑+ +‑‑‑‑+
 |ABR2|...........|ABR4|....
 +‑‑‑‑+ +‑‑‑‑+

IGP‑X1	IGP‑Y	IGP‑X2
(MBH)	(Core)	(MBH)
‑‑‑‑‑BGP LSP‑‑‑‑‑	‑‑‑‑‑BGP LSP‑‑‑‑	‑‑‑‑‑‑BGP LSP‑‑‑‑‑
‑‑‑LDP/TE LSP‑‑‑‑	‑‑‑‑LDP/TE LSP‑‑	‑‑‑‑‑LDP/TE LSP‑‑‑

 Figure 3: Seamless MPLS

 Super Controller is responsible for setting the seamless MPLS
 service. It should break down the service model to network
 configuration model [RFC8309] and the domain controller further break
 it to the device configuration model to the PE/ASBR to make the E2E
 seamless MPLS service. The selection of appropriate ASBRs and
 handling of intra-domain tunnels is coordinated by the Super
 Controller in the similar fashion as shown in Section 4.2.

 By enabling BGP sessions between Domain Controller and Super
 Controller, BGP labeled routes can also be learned at Super
 Controller. As Super Controller is aware of the (abstract) topology,
 it could make intelligent decisions regarding E2E BGP LSP to optimize
 based on the overall traffic information.

4.2. L3VPN

 A Layer 3 IP VPN service is a collection of sites that are authorized
 to exchange traffic between each other over a shared IP
 infrastructure. [RFC4110] provides a framework for Layer 3 Provider-
 Provisioned Virtual Private Networks (PPVPNs). [RFC8299] provides a
 L3VPN service delivery YANG model for PE-based VPNs. The Super
 controller is expected to implement the L3SM model and translate it
 to network models towards the domain controller, which in turn
 translate it to the device model. See [RFC8309] for more details.

 | L3SM
 V
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Super Controller |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | |
 V V
 +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
 | DoCo#1 | | DoCo#2 |
 | | | |
 +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+

 CE CE
 \ AS 100 AS 200 /
 \ /
 A‑‑‑‑B‑‑‑‑C‑‑‑‑ASBR1‑‑‑‑‑‑ASBR2‑‑‑‑D‑‑‑‑E‑‑‑‑F
 / / / / / / / /
 / / / / / / / /
CE‑‑‑‑G‑‑‑‑H‑‑‑‑I‑‑‑‑ASBR3‑‑‑‑‑‑ASBR4‑‑‑‑J‑‑‑‑K‑‑‑‑L‑‑‑‑‑‑CE

 Figure 4: L3VPN

 Based on the user data in L3SM model, the network configurations need
 to be trickle down to the network device to setup the L3VPN.

 Based on the QoS or Policy requirement for the L3VPN service, the
 Super Controller may -

 o Set the tunnel selection policy at the PE/ASBR routers so that
 they could select the existing tunnels

 o Select an existing tunnels at the controller level and bind it to
 the VPN service

 o Initiate the process of creating a new tunnel based on the QoS
 requirement and bind it the VPN service

 o Initiate the process of creating a new tunnel based on the the
 policy

 Refer [I-D.lee-teas-te-service-mapping-yang] for more details from
 ACTN perspective.

 Apart from the Management plane interface based on respective YANG
 models, the control plane interface PCEP could be used for path
 computation and setup.

4.3. L2VPN and EVPN service

 There are two fundamentally different kinds of Layer 2 VPN service
 that a service provider could offer to a customer: Virtual Private
 Wire Service (VPWS) and Virtual Private LAN Service (VPLS) [RFC4664].
 A VPWS is a VPN service that supplies an L2 point-to-point service.
 A VPLS is an L2 service that emulates LAN service across a Wide Area
 Network (WAN). A BGP MPLS-based Ethernet VPN (EVPN) [RFC7432]
 addresses some of the limitations when it comes to multihoming and
 redundancy, multicast optimization, provisioning simplicity, flow-
 based load balancing, and multipathing etc.

 The handling of L2VPN/EVPN service is done in a similar fashion as
 shown in Section 4.2.

5. Possible Features/Extensions

 This sections list some of the possible features or protocol
 extensions that could be worked on to deploy HIC in a multi-domain
 packet network.

 1. Simplify the initial configurations needed to setup the
 relationship between the super controller and the domain
 controllers. Note that this could be done via exchanges during
 initial session establishment, discovery via other protocols,
 service discovery (such as DNS) etc.

 2. The (higher-level controller, lower-level controller)
 relationship or the the role of the controller.

 3. The learning and handling of various capabilities of the Super
 Controller and Domain Controller.

 4. Handling of multiple instances of controller at each level for
 high availability.

 [Editor's Note - This list is expected to be updated in next version
 with more details]

6. Other Considerations

6.1. Control Plane

6.1.1. PCE / PCEP

 The Path Computation Element communication Protocol (PCEP) [RFC5440]
 provides mechanisms for Path Computation Elements (PCEs) [RFC4655] to
 perform path computations in response to Path Computation Clients
 (PCCs) requests.

 The ability to compute shortest constrained TE LSPs in Multiprotocol
 Label Switching (MPLS) and Generalized MPLS (GMPLS) networks across
 multiple domains has been identified as a key motivation for PCE
 development.

 A stateful PCE [RFC8231] is capable of considering, for the purposes
 of path computation, not only the network state in terms of links and
 nodes (referred to as the Traffic Engineering Database or TED) but
 also the status of active services (previously computed paths, and
 currently reserved resources, stored in the Label Switched Paths
 Database (LSPDB).

 [RFC8051] describes general considerations for a stateful PCE
 deployment and examines its applicability and benefits, as well as
 its challenges and limitations through a number of use cases.

 [RFC8231] describes a set of extensions to PCEP to provide stateful
 control. A stateful PCE has access to not only the information
 carried by the network's Interior Gateway Protocol (IGP), but also
 the set of active paths and their reserved resources for its
 computations. The additional state allows the PCE to compute
 constrained paths while considering individual LSPs and their
 interactions. [RFC8281] describes the setup, maintenance and
 teardown of PCE-initiated LSPs under the stateful PCE model.

 [RFC8231] also describes the active stateful PCE. The active PCE
 functionality allows a PCE to reroute an existing LSP or make changes
 to the attributes of an existing LSP, or a PCC to delegate control of
 specific LSPs to a new PCE.

 Computing paths across large multi-domain environments require
 special computational components and cooperation between entities in
 different domains capable of complex path computation. The PCE
 provides an architecture and a set of functional components to
 address this problem space. A PCE may be used to compute end-to-end
 paths across multi-domain environments using a per-domain path
 computation technique [RFC5152]. The Backward recursive PCE based
 path computation (BRPC) mechanism [RFC5441] defines a PCE-based path
 computation procedure to compute inter-domain constrained MPLS and
 GMPLS TE networks. However, both per-domain and BRPC techniques
 assume that the sequence of domains to be crossed from source to
 destination is known, either fixed by the network operator or
 obtained by other means.

 [RFC6805] describes a Hierarchical PCE (H-PCE) architecture which can
 be used for computing end-to-end paths for inter-domain MPLS Traffic
 Engineering (TE) and GMPLS Label Switched Paths (LSPs) when the
 domain sequence is not known. Within the Hierarchical PCE (H-PCE)
 architecture, the Parent PCE (P-PCE) is used to compute a multi-
 domain path based on the domain connectivity information. A Child
 PCE (C-PCE) may be responsible for a single domain or multiple
 domains, it is used to compute the intra-domain path based on its
 domain topology information.

 [I-D.ietf-pce-stateful-hpce] state the considerations for stateful
 PCE(s) in hierarchical PCE architecture. In particular, the behavior
 changes and additions to the existing stateful PCE mechanisms
 (including PCE- initiated LSP setup and active PCE usage) in the
 context of networks using the H-PCE architecture.

 [I-D.ietf-pce-applicability-actn] examines the applicability of PCE/
 PCEP to the ACTN framework in detail.

6.1.2. BGP

 [RFC7752] describes a mechanism by which link-state and TE
 information can be collected from networks and shared with external
 components using the BGP routing protocol. This is achieved using a
 new BGP Network Layer Reachability Information (NLRI) encoding format
 and a new BGP path attribute (BGP-LS attribute) that carries link,
 node, and prefix parameters and attributes.

 BGP-LS is a new approach to collect the network topology information.
 It is an extension to BGP for distribution the network's link-state
 (LS) topology to external entities, such as the SDN controller.
 Network's link-state topology consists of nodes and links and a set
 of attributes. The link-state topology is distributed among the IGP
 domain. The specific protocol used in an IGP domain could be OSPF
 [RFC2238] or IS-IS [ISO10589]. Note that, the detailed link-state
 models of these two protocols are not identical. Therefore, BGP-LS
 can provide a more abstract topology model which can map the IGP
 models.

 The domain controller acts as a consumer to collect the domain's
 link-state and TE information via BGP-LS. The domain controller
 would usually abstract the domain information towards the super-
 controller and further send it via BGP-LS.

 BGP-Flowspec is a solution devised for preventing distributed Denial-
 of-service (DDoS) attack. BGP-Flowspec distributes specification
 rules into neighbors. [RFC5575] defines a new BGP NLRI encoding
 format that can be used to distribute traffic flow specifications.
 Additionally, it defines two applications of that encoding format:
 one that can be used to automate inter-domain coordination of traffic
 filtering, such as what is required in order to mitigate DDoS
 attacks; and a second application to provide traffic filtering in the
 context of BGP/MPLS VPN service.

 The IP domain controller can act as the traffic sampling node. The
 super controller can act as the traffic analysis server. When the
 super controller finds the attack happened, the super controller
 should distribute the flow rules to associated IP domain controllers.
 And each IP domain controller should distribute the flow rules into
 the ingress routers. Additionally one of the actions taken could be
 "redirect" where flow could be redirected to the TE tunnels created
 by the controller.

 [I-D.luo-grow-bgp-controller-based-ts] describes the traffic steering
 based on BGP controller. The traditional method for traffic steering
 depends on static configuration which is time consuming and
 inefficient. With the hierarchical IP controller, the IP domain
 controller can have the domain network topology view and routing
 information while the super controller can have the global network
 topology view and routing information. The super controller can
 compute the end-to-end paths to satisfy the differentiated service
 requirement. The IP domain controller may be used to distribute the
 routing policy into the routers. BGP policy varies in many aspects.
 Its goal is to meet the customer application and connectivity
 requirement, and specific service transport needs. So the super BGP
 controller is responsible for the coordination of multiple domain BGP
 Policy. And then distribute Policy to related IP domain controller.
 The IP domain controller is responsible for distributing the policy
 to its network nodes.

 [I-D.ietf-idr-rtc-hierarchical-rr] describes the route target (RT)
 constrain mechanism in the hierarchical route reflection (RR)
 scenario. [RFC4684] describes the route target constrain mechanism
 to build a route distribution graph in order to restrict the
 propagation of Virtual Private Network (VPN) routes.
 [I-D.ietf-idr-rtc-hierarchical-rr] proposes a solution to address the
 RT constrain issue in the hierarchical RR scenarios. The super
 controller corresponding to higher level RR can receive the RT-
 constrain routes from the lower level RR, which is acted by the IP
 domain controller. The higher level RR will select one of the
 received routes as the best route. then it should advertise the best
 route to all the lower level RR to build the route distribution
 graph. This fits well with the HIC as described in this document.

6.2. Management Plane

6.2.1. YANG Models

 This is an non-exhaustive list of possible yang models developed or
 in-development that could be used for HIC.

 Topology: [RFC8345] defines a generic YANG data model for network
 topology. [I-D.ietf-teas-yang-te-topo] defines a YANG data model
 for representing, retrieving and manipulating Traffic Engineering
 (TE) Topologies.

 Tunnel: [I-D.ietf-teas-yang-te] defines a YANG data model for the
 configuration and management of Traffic Engineering (TE)
 interfaces, tunnels and Label Switched Paths (LSPs).

 L3VPN: The Layer 3 service model (L3SM) is defined in [RFC8299],
 which is a YANG data model that can be used for communication
 between customers and network operators and to deliver a Layer 3
 provider-provisioned VPN service. [I-D.ietf-bess-l3vpn-yang]
 defines a YANG data model that can be used to configure and manage
 BGP Layer 3 VPNs at the device. Note that a network configuration
 model at the Domain Controller level needs to be developed.

 L2VPN/EVPN: [I-D.ietf-l2sm-l2vpn-service-model] defines a YANG
 data model that can be used to configure a Layer 2 Provider
 Provisioned VPN service. This model is intended to be
 instantiated at management system to deliver the overall service.
 [I-D.ietf-bess-l2vpn-yang] and [I-D.ietf-bess-evpn-yang] defines a
 YANG data model to configure and manage L2VPN and EVPN service
 respectively. Note that a network configuration model at the
 Domain Controller level needs to be developed.

 OAM: TBD

 BGP Policy: [I-D.ietf-idr-bgp-model] defines a YANG data model
 that can be used to configure BGP Policy based on data center,
 carrier and content provider operational requirements. The model
 is intended to be vendor-neutral, in order to allow operators to
 manage BGP configuration in heterogeneous environments with
 routers supplied by multiple vendors. Note that a network
 configuration model at the Domain Controller level needs to be
 developed.

 BGP Flowspec: [I-D.wu-idr-flowspec-yang-cfg] defines a YANG data
 model for Flow Specification implementations. The configuration
 data is described as flow specification rules that can be
 distributed as BGP NLRI to a network element. The rules can be
 used to filter Distributed Denial of Service attacks (DDoS)
 besides other use cases. Note that a network configuration model
 at the Domain Controller level needs to be developed.

 [Editor's Note - the above list should be extended.]

6.2.2. Protocol Considerations

 The Network Configuration Protocol (NETCONF) [RFC6241] provides
 mechanisms to install, manipulate, and delete the configuration of
 network devices. The RESTCONF [RFC8040] describes an HTTP-based
 protocol that provides a programmatic interface for accessing data
 defined in YANG, using the data-store concepts defined in NETCONF.

 Some other mechanism like gRPC/gNMI could also be used between
 controllers using the same YANG data models.

7. IANA Considerations

 There are no IANA concerns in this document.

8. Security Considerations

 There are no new security concerns in this document.

9. Acknowledgments

10. Contributing Authors

Dailongfei (Larry)
Huawei Technologies,
Beijing, China

 Email: larry.dai@huawei.com

11. References

11.1. Normative References

 [RFC8453]
 Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for
 Abstraction and Control of TE Networks (ACTN)", RFC 8453,
 DOI 10.17487/RFC8453, August 2018,
 <https://www.rfc-editor.org/info/rfc8453>.

11.2. Informative References

 [RFC2238]
 Clouston, B., Ed. and B. Moore, Ed., "Definitions of
 Managed Objects for HPR using SMIv2", RFC 2238,
 DOI 10.17487/RFC2238, November 1997,
 <https://www.rfc-editor.org/info/rfc2238>.

 [RFC3630]
 Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
 (TE) Extensions to OSPF Version 2", RFC 3630,
 DOI 10.17487/RFC3630, September 2003,
 <https://www.rfc-editor.org/info/rfc3630>.

 [RFC4110]
 Callon, R. and M. Suzuki, "A Framework for Layer 3
 Provider-Provisioned Virtual Private Networks (PPVPNs)",
 RFC 4110, DOI 10.17487/RFC4110, July 2005,
 <https://www.rfc-editor.org/info/rfc4110>.

 [RFC4271]
 Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271,
 DOI 10.17487/RFC4271, January 2006,
 <https://www.rfc-editor.org/info/rfc4271>.

 [RFC4456]
 Bates, T., Chen, E., and R. Chandra, "BGP Route
 Reflection: An Alternative to Full Mesh Internal BGP
 (IBGP)", RFC 4456, DOI 10.17487/RFC4456, April 2006,
 <https://www.rfc-editor.org/info/rfc4456>.

 [RFC4655]
 Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
 Element (PCE)-Based Architecture", RFC 4655,
 DOI 10.17487/RFC4655, August 2006,
 <https://www.rfc-editor.org/info/rfc4655>.

 [RFC4664]
 Andersson, L., Ed. and E. Rosen, Ed., "Framework for Layer
 2 Virtual Private Networks (L2VPNs)", RFC 4664,
 DOI 10.17487/RFC4664, September 2006,
 <https://www.rfc-editor.org/info/rfc4664>.

 [RFC4684]
 Marques, P., Bonica, R., Fang, L., Martini, L., Raszuk,
 R., Patel, K., and J. Guichard, "Constrained Route
 Distribution for Border Gateway Protocol/MultiProtocol
 Label Switching (BGP/MPLS) Internet Protocol (IP) Virtual
 Private Networks (VPNs)", RFC 4684, DOI 10.17487/RFC4684,
 November 2006, <https://www.rfc-editor.org/info/rfc4684>.

 [RFC5152]
 Vasseur, JP., Ed., Ayyangar, A., Ed., and R. Zhang, "A
 Per-Domain Path Computation Method for Establishing Inter-
 Domain Traffic Engineering (TE) Label Switched Paths
 (LSPs)", RFC 5152, DOI 10.17487/RFC5152, February 2008,
 <https://www.rfc-editor.org/info/rfc5152>.

 [RFC5305]
 Li, T. and H. Smit, "IS-IS Extensions for Traffic
 Engineering", RFC 5305, DOI 10.17487/RFC5305, October
 2008, <https://www.rfc-editor.org/info/rfc5305>.

 [RFC5440]
 Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
 Element (PCE) Communication Protocol (PCEP)", RFC 5440,
 DOI 10.17487/RFC5440, March 2009,
 <https://www.rfc-editor.org/info/rfc5440>.

 [RFC5441]
 Vasseur, JP., Ed., Zhang, R., Bitar, N., and JL. Le Roux,
 "A Backward-Recursive PCE-Based Computation (BRPC)
 Procedure to Compute Shortest Constrained Inter-Domain
 Traffic Engineering Label Switched Paths", RFC 5441,
 DOI 10.17487/RFC5441, April 2009,
 <https://www.rfc-editor.org/info/rfc5441>.

 [RFC5575]
 Marques, P., Sheth, N., Raszuk, R., Greene, B., Mauch, J.,
 and D. McPherson, "Dissemination of Flow Specification
 Rules", RFC 5575, DOI 10.17487/RFC5575, August 2009,
 <https://www.rfc-editor.org/info/rfc5575>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6805]
 King, D., Ed. and A. Farrel, Ed., "The Application of the
 Path Computation Element Architecture to the Determination
 of a Sequence of Domains in MPLS and GMPLS", RFC 6805,
 DOI 10.17487/RFC6805, November 2012,
 <https://www.rfc-editor.org/info/rfc6805>.

 [RFC7432]
 Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A.,
 Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based
 Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February
 2015, <https://www.rfc-editor.org/info/rfc7432>.

 [RFC7491]
 King, D. and A. Farrel, "A PCE-Based Architecture for
 Application-Based Network Operations", RFC 7491,
 DOI 10.17487/RFC7491, March 2015,
 <https://www.rfc-editor.org/info/rfc7491>.

 [RFC7752]
 Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
 S. Ray, "North-Bound Distribution of Link-State and
 Traffic Engineering (TE) Information Using BGP", RFC 7752,
 DOI 10.17487/RFC7752, March 2016,
 <https://www.rfc-editor.org/info/rfc7752>.

 [RFC7854]
 Scudder, J., Ed., Fernando, R., and S. Stuart, "BGP
 Monitoring Protocol (BMP)", RFC 7854,
 DOI 10.17487/RFC7854, June 2016,
 <https://www.rfc-editor.org/info/rfc7854>.

 [RFC7926]
 Farrel, A., Ed., Drake, J., Bitar, N., Swallow, G.,
 Ceccarelli, D., and X. Zhang, "Problem Statement and
 Architecture for Information Exchange between
 Interconnected Traffic-Engineered Networks", BCP 206,
 RFC 7926, DOI 10.17487/RFC7926, July 2016,
 <https://www.rfc-editor.org/info/rfc7926>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8051]
 Zhang, X., Ed. and I. Minei, Ed., "Applicability of a
 Stateful Path Computation Element (PCE)", RFC 8051,
 DOI 10.17487/RFC8051, January 2017,
 <https://www.rfc-editor.org/info/rfc8051>.

 [RFC8231]
 Crabbe, E., Minei, I., Medved, J., and R. Varga, "Path
 Computation Element Communication Protocol (PCEP)
 Extensions for Stateful PCE", RFC 8231,
 DOI 10.17487/RFC8231, September 2017,
 <https://www.rfc-editor.org/info/rfc8231>.

 [RFC8281]
 Crabbe, E., Minei, I., Sivabalan, S., and R. Varga, "Path
 Computation Element Communication Protocol (PCEP)
 Extensions for PCE-Initiated LSP Setup in a Stateful PCE
 Model", RFC 8281, DOI 10.17487/RFC8281, December 2017,
 <https://www.rfc-editor.org/info/rfc8281>.

 [RFC8299]
 Wu, Q., Ed., Litkowski, S., Tomotaki, L., and K. Ogaki,
 "YANG Data Model for L3VPN Service Delivery", RFC 8299,
 DOI 10.17487/RFC8299, January 2018,
 <https://www.rfc-editor.org/info/rfc8299>.

 [RFC8309]
 Wu, Q., Liu, W., and A. Farrel, "Service Models
 Explained", RFC 8309, DOI 10.17487/RFC8309, January 2018,
 <https://www.rfc-editor.org/info/rfc8309>.

 [RFC8345]
 Clemm, A., Medved, J., Varga, R., Bahadur, N.,
 Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
 Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
 2018, <https://www.rfc-editor.org/info/rfc8345>.

 [I-D.ietf-teas-actn-yang]

 Lee, Y., zhenghaomian@huawei.com, z., Ceccarelli, D.,
 Yoon, B., Dios, O., Shin, J., and S. Belotti,
 "Applicability of YANG models for Abstraction and Control
 of Traffic Engineered Networks", draft-ietf-teas-actn-
 yang-02 (work in progress), August 2018.

 [I-D.ietf-pce-applicability-actn]

 Dhody, D., Lee, Y., and D. Ceccarelli, "Applicability of
 Path Computation Element (PCE) for Abstraction and Control
 of TE Networks (ACTN)", draft-ietf-pce-applicability-
 actn-06 (work in progress), June 2018.

 [I-D.ietf-teas-yang-te]

 Saad, T., Gandhi, R., Liu, X., Beeram, V., Shah, H., and
 I. Bryskin, "A YANG Data Model for Traffic Engineering
 Tunnels and Interfaces", draft-ietf-teas-yang-te-16 (work
 in progress), July 2018.

 [I-D.ietf-teas-yang-te-topo]

 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
 O. Dios, "YANG Data Model for Traffic Engineering (TE)
 Topologies", draft-ietf-teas-yang-te-topo-18 (work in
 progress), June 2018.

 [I-D.ietf-pce-stateful-hpce]

 Dhody, D., Lee, Y., Ceccarelli, D., Shin, J., King, D.,
 and O. Dios, "Hierarchical Stateful Path Computation
 Element (PCE).", draft-ietf-pce-stateful-hpce-05 (work in
 progress), June 2018.

 [I-D.ietf-teas-yang-path-computation]

 Busi, I., Belotti, S., Lopezalvarez, V., Dios, O., Sharma,
 A., Shi, Y., Vilata, R., and K. Sethuraman, "Yang model
 for requesting Path Computation", draft-ietf-teas-yang-
 path-computation-02 (work in progress), June 2018.

 [I-D.ietf-mpls-seamless-mpls]

 Leymann, N., Decraene, B., Filsfils, C., Konstantynowicz,
 M., and D. Steinberg, "Seamless MPLS Architecture", draft-
 ietf-mpls-seamless-mpls-07 (work in progress), June 2014.

 [I-D.ietf-bess-evpn-yang]

 Brissette, P., Shah, H., Hussain, I., Tiruveedhula, K.,
 and J. Rabadan, "Yang Data Model for EVPN", draft-ietf-
 bess-evpn-yang-05 (work in progress), February 2018.

 [I-D.ietf-bess-l2vpn-yang]

 Shah, H., Brissette, P., Chen, I., Hussain, I., Wen, B.,
 and K. Tiruveedhula, "YANG Data Model for MPLS-based
 L2VPN", draft-ietf-bess-l2vpn-yang-08 (work in progress),
 February 2018.

 [I-D.ietf-bess-l3vpn-yang]

 Jain, D., Patel, K., Brissette, P., Li, Z., Zhuang, S.,
 Liu, X., Haas, J., Esale, S., and B. Wen, "Yang Data Model
 for BGP/MPLS L3 VPNs", draft-ietf-bess-l3vpn-yang-03 (work
 in progress), April 2018.

 [I-D.ietf-l2sm-l2vpn-service-model]

 Wen, B., Fioccola, G., Xie, C., and L. Jalil, "A YANG Data
 Model for L2VPN Service Delivery", draft-ietf-l2sm-l2vpn-
 service-model-10 (work in progress), April 2018.

 [I-D.dhodylee-pce-pcep-ls]

 Dhody, D., Lee, Y., and D. Ceccarelli, "PCEP Extension for
 Distribution of Link-State and TE Information.", draft-
 dhodylee-pce-pcep-ls-11 (work in progress), June 2018.

 [I-D.lee-teas-te-service-mapping-yang]

 Lee, Y., Dhody, D., Ceccarelli, D., Tantsura, J.,
 Fioccola, G., and Q. Wu, "Traffic Engineering and Service
 Mapping Yang Model", draft-lee-teas-te-service-mapping-
 yang-10 (work in progress), August 2018.

 [I-D.lee-pce-lsp-stitching-hpce]

 Lee, Y., Dhody, D., and D. Ceccarelli, "PCEP Extensions
 for Stitching LSPs in Hierarchical Stateful PCE Model",
 draft-lee-pce-lsp-stitching-hpce-01 (work in progress),
 December 2017.

 [I-D.dugeon-pce-stateful-interdomain]

 Dugeon, O., Meuric, J., Lee, Y., Dhody, D., and D.
 Ceccarelli, "PCEP Extension for Stateful Inter-Domain
 Tunnels", draft-dugeon-pce-stateful-interdomain-01 (work
 in progress), July 2018.

 [I-D.luo-grow-bgp-controller-based-ts]

 Luo, Y., Ou, L., Huang, X., Zhuang, S., and Z. Li,
 "Traffic Steering Based on BGP Controller", draft-luo-
 grow-bgp-controller-based-ts-00 (work in progress), March
 2018.

 [I-D.ietf-idr-rtc-hierarchical-rr]

 Dong, J., Chen, M., and R. Raszuk, "Extensions to RT-
 Constrain in Hierarchical Route Reflection Scenarios",
 draft-ietf-idr-rtc-hierarchical-rr-03 (work in progress),
 July 2017.

 [I-D.ietf-idr-bgp-model]

 Patel, K., Jethanandani, M., and S. Hares, "BGP Model for
 Service Provider Networks", draft-ietf-idr-bgp-model-03
 (work in progress), May 2018.

 [I-D.wu-idr-flowspec-yang-cfg]

 Wu, N., Zhuang, S., and A. Choudhary, "A YANG Data Model
 for Flow Specification", draft-wu-idr-flowspec-yang-cfg-02
 (work in progress), October 2015.

 [ISO10589]

 ISO, "Intermediate system to Intermediate system routing
 information exchange protocol for use in conjunction with
 the Protocol for providing the Connectionless-mode Network
 Service (ISO 8473)", ISO/IEC 10589:2002, 1992.

Authors' Addresses

Zhenbin Li
Huawei Technologies
Huawei Bld., No.156 Beiqing Rd.
Beijing 100095
China

 EMail: lizhenbin@huawei.com

Dhruv Dhody
Huawei Technologies
Divyashree Techno Park, Whitefield
Bangalore, Karnataka 560066
India

 EMail: dhruv.ietf@gmail.com

Huaimo Chen
Huawei Technologies
Boston, MA
USA

 EMail: huaimo.chen@huawei.com

draft-vandesompel-citeas-03 - cite-as: A Link Relation to Convey a Preferred URI

Index
Back 5
Prev
Next

Network Working Group

Internet-Draft

Intended status: Informational

Expires: December 27, 2018

H. Van de Sompel

Los Alamos National Laboratory

M. Nelson

Old Dominion University

G. Bilder

Crossref

J. Kunze

California Digital Library

S. Warner

Cornell University

June 25, 2018

cite-as: A Link Relation to Convey a Preferred URI for Referencing

draft-vandesompel-citeas-03

Abstract

 A web resource is routinely referenced by means of the URI with which
 it is directly accessed. But cases exist where referencing a
 resource by means of a URI, different than that access URI, is
 preferred. This specification defines a link relation type that can
 be used to convey such a preference.

Note to Readers

 Please discuss this draft on the ART mailing list
 (<https://www.ietf.org/mailman/listinfo/art>).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 27, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Scenarios
	 3.1. Persistent Identifiers

	 3.2. Version Identifiers

	 3.3. Preferred Social Identifier

	 3.4. Multi-Resource Publications

	4. The "cite-as" Relation Type for Expressing a Preferred URI for the Purpose of Referencing

	5. Distinction with Other Relation Types
	 5.1. bookmark

	 5.2. canonical

	6. Examples
	 6.1. Persistent HTTP URI

	 6.2. Version URIs

	 6.3. Preferred Profile URI

	 6.4. Multi-Resource Publication

	7. IANA Considerations
	 7.1. Link Relation Type: cite-as

	8. Security Considerations

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Appendix A. Acknowledgements

	Authors' Addresses

1. Introduction

 A web resource is routinely referenced (e.g. linked, bookmarked) by
 means of the URI with which it is directly accessed. But cases exist
 where referencing a resource by means of a different URI is
 preferred, for example because the latter URI is intended to be more
 persistent over time. Currently, there is no link relation type to
 convey such alternative referencing preference; this specification
 addresses this deficit by introducing a link relation type intended
 for that purpose.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This specification uses the terms "link context" and "link target" as
 defined in [RFC8288]. These terms respectively correspond with
 "Context IRI" and "Target IRI" as used in [RFC5988]. Although
 defined as IRIs, in common scenarios they are also URIs.

 Additionally, this specification uses the following terms:

 o "access URI": A URI at which a user agent accesses a web resource.

 o "reference URI": A URI, other than the access URI, that should
 preferentially be used for referencing.

 By interacting with the access URI, the user agent may discover typed
 links. For such links, the access URI is the link context.

3. Scenarios

3.1. Persistent Identifiers

 Despite sound advice regarding the design of Cool URIs [CoolURIs],
 link rot ("HTTP 404 Not Found") is a common phenomena when following
 links on the web. Certain communities of practice have introduced
 solutions to combat this problem that typically consist of:

 o Accepting the reality that the web location of a resource - the
 access URI - may change over time.

 o Minting an additional URI for the resource - the reference URI -
 that is specifically intended to remain persistent over time.

 o Redirecting (typically "HTTP 301 Moved Permanently", "HTTP 302
 Found", or "HTTP 303 See Other") from the reference URI to the
 access URI.

 o As a community, committing to adjust that redirection whenever the
 access URI changes over time.

 This approach is, for example, used by:

 o Scholarly publishers that use DOIs [DOIs] to identify articles and
 DOI URLs [DOI-URLs] as a means to keep cross-publisher article-to-
 article links operational, even when the journals in which the
 articles are published change hands from one publisher to another,
 for example, as a result of an acquisition.

 o Authors of controlled vocabularies that use PURLs [PURLs] for
 vocabulary terms to ensure that the term URIs remain stable even
 if management of the vocabulary is transfered to a new custodian.

 o A variety of organizations, including libraries, archives, and
 museums that assign ARK URLs [draft-kunze-ark-18] to information
 objects in order to support long-term access.

 In order for the investments in infrastructure involved in these
 approaches to pay off, and hence for links to effectively remain
 operational as intended, it is crucial that a resource be referenced
 by means of its reference URI. However, the access URI is where a
 user agent actually accesses the resource (e.g., it is the URI in the
 browser's address bar). As such, there is a considerable risk that
 the access URI instead of the reference URI is used for referencing
 [PIDs-must-be-used].

 The link relation type defined in this specification allows to convey
 to user agents that the reference URI is the preferred URI for
 referencing.

3.2. Version Identifiers

 Resource versioning systems often use a naming approach whereby:

 o The most recent version of a resource is at any time available at
 the same, generic URI.

 o Each version of the resource - including the most recent one - has
 a distinct version URI.

 For example, Wikipedia uses generic URIs of the form
 http://en.wikipedia.org/wiki/John_Doe and version URIs of the form
 https://en.wikipedia.org/w/index.php?title=John_Doe&oldid=776253882.

 While the current version of a resource is accessed at the generic
 URI, some versioning systems adhere to a policy that favors linking
 and referencing a specific version URI. To express this using the
 terminology of Section 2, these policies intend that the generic URI
 is the access URI, and that the version URI is the reference URI.
 These policies are informed by the understanding that the content at
 the generic URI is likely to evolve over time, and that accurate
 links or references should lead to the content as it was at the time
 of referencing. To that end, Wikipedia's "Permanent link" and "Cite
 this page" functionalities promote the version URI, not the generic
 URI.

 The link relation type defined in this specification allows to convey
 to user agents that the version URI is preferred over the generic URI
 for referencing.

3.3. Preferred Social Identifier

 A web user commonly has multiple profiles on the web, for example,
 one per social network, a personal homepage, a professional homepage,
 a FOAF profile [FOAF], etc. Each of these profiles is accessible at
 a distinct URI. But the user may have a preference for one of those
 profiles, for example, because it is most complete, kept up-to-date,
 or expected to be long-lived. As an example, the first author of
 this document has, among others, the following profile URIs:

 o https://hvdsomp.info

 o http://public.lanl.gov/herbertv/

 o https://www.linkedin.com/in/herbertvandesompel/

 o https://orcid.org/0000-0002-0715-6126

 Of these, from the perspective of the person described by these
 profiles, the first URI may be the preferred profile URI for the
 purpose of referencing because the domain is not under the
 custodianship of a third party. When an agent accesses another
 profile URI, such as http://public.lanl.gov/herbertv/, this
 preference for referencing by means of the first URI could be
 expressed.

 The link relation type defined in this specification allows to convey
 to user agents that a profile URI - the reference URI - other than
 the one the agent is accessing - the access URI - is preferred for
 referencing.

3.4. Multi-Resource Publications

 When publishing on the web, it is not uncommon to make distinct
 components of a publication available as different web resources,
 each with their own URI. For example:

 o Contemporary scholarly publications routinely consists of a
 traditional article as well as additional materials that are
 considered an integral part of the publication such as
 supplementary information, high-resolution images, a video
 recording of an experiment.

 o Scientific or governmental open data sets frequently consist of
 multiple files.

 o Online books typically consist of multiple chapters.

 While each of these components are accessible at their distinct URI -
 the access URI - they often also share a URI assigned to the
 intellectual publication of which they are components - the reference
 URI.

 The link relation type defined in this specification allows to convey
 to user agents that, for the purpose of referencing, the reference
 URI of the intellectual publication is preferred over an access URI
 of a component of the publication.

4. The "cite-as" Relation Type for Expressing a Preferred URI for the
 Purpose of Referencing

 A link with the "cite-as" relation type indicates that, for
 referencing the link context, use of the URI of the link target is
 preferred over use of the URI of the link context. It allows the
 resource identified by the access URI (link context) to unambiguously
 link to its corresponding reference URI (link target), thereby
 expressing that the link target is preferred over the link context
 for the purpose of permanent citation.

 The link target of a "cite-as" link SHOULD support protocol-based
 access as a means to ensure that applications that store them can
 effectively re-use them for access.

 The link target of a "cite-as" link SHOULD provide the ability for a
 user agent to follow its nose back to the context of the link, e.g.
 by following redirects and/or links. This helps a user agent to
 establish trust in the target URI.

 Because a link with the "cite-as" relation type expresses a preferred
 URI for the purpose of referencing, the access URI SHOULD only
 provide one link with that relation type. If more than one "cite-as"
 link is provided, the user agent may decide to select one (e.g. an
 HTTP URI over a mailto URI), for example, based on the purpose that
 the reference URI will serve.

 Providing a link with the "cite-as" relation type does not prevent
 using the access URI for the purpose of referencing if such
 specificity is needed for the application at hand. For example, in
 the case of scenario Section 3.4 the access URI is likely required
 for the purpose of annotating a specific component of an intellectual
 publication. Yet, the annotation application may also want to
 appropriately include the reference URI in the annotation.

 Applications can leverage the information provided by a "cite-as"
 link in a variety of ways, for example:

 o Bookmarking tools and citation managers can take this preference
 into account when recording a URI.

 o Webometrics applications that trace URIs can trace both the access
 URI and the reference URI.

 o Discovery tools can support look-up by means of both the access
 and the reference URI. This includes web archives that typically
 make archived versions of web resources discoverable by means of
 the original access URI of the archived resource; they can
 additionally make these archived resources discoverable by means
 of the associated reference URI.

5. Distinction with Other Relation Types

 Some existing IANA-registered relationships intuitively resemble the
 relationship that "cite-as" is intended to convey. But a closer
 inspection of these candidates provided in the blog posts
 [identifier-blog], [canonical-blog], and [bookmark-blog] shows that
 they are not appropriate for various reasons and that a new relation
 type is required. The remainder of this section provides a summary
 of the detailed explanations provided in the referenced blog posts.

 It can readily be seen that the following relation types are not fit
 for purpose:

 o "alternate" [RFC4287]: The link target provides an alternate
 version of the content at the link context. These are typically
 variants according to dimensions that are subject to content
 negotiation, for example the same content with varying Content-
 Type (e.g., application/pdf vs. text/html) and/or Content-Language
 (e.g., en vs. fr). The representations provided by the context
 URIs and target URIs in the scenarios of Section 3.1 through
 Section 3.4 are not variants in the sense intended by [RFC4287],
 and, as such, the use of "alternate" is not appropriate.

 o "duplicate" [RFC6249]: The link target is a resource whose
 available representations are byte-for-byte identical with the
 corresponding representations of the link context, for example, an
 identical file on a mirror site. In none of the above scenarios
 do the link context and the link target provide identical content.
 As such, the use of "duplicate" is not appropriate.

 o "related" [RFC4287]: The link target is a resource that is related
 to the link context. While "related" could be used in all of the
 above scenarios, its semantics are too vague to convey the
 specific semantics intended by "cite-as".

 Two existing IANA-registered relationships deserve closer attention
 and are discussed in the remainder of this section.

5.1. bookmark

 "bookmark" [W3C.REC-html5-20151028]: The link target provides a URI
 for the purpose of bookmarking the link context.

 The intent of "bookmark" is closest to that of "cite-as" in that the
 link target is intended to be a permalink for the link context, for
 bookmarking purposes. The relation type dates back to the earliest
 days of news syndication, before blogs and news feeds had permalinks
 to identify individual resources that were aggregated into a single
 page. As such, its intent is to provide permalinks for different
 sections of an HTML document. It was originally used with HTML
 elements such as <div>, <h1>, <h2>, etc. and, more recently, HTML5
 revised it to be exclusively used with the <article> element.
 Moreover, it is explictly excluded from use in the <link> element in
 HTML <head>, and, as a consequence, in the HTTP Link header that is
 semantically equivalent. For these technical and semantic reasons,
 the use of "bookmark" to convey the relationship intented by "cite-
 as" is not appropriate.

 A more detailed justification regarding the inappropriatenss of
 "bookmark", including a thorough overview of its turbulent history,
 is provided in [bookmark-blog].

5.2. canonical

 "canonical" [RFC6596]: The meaning of "canonical" is commonly
 misunderstood on the basis of its brief definition as being "the
 preferred version of a resource." The description in the abstract of
 [RFC6596] is more helpful and states that "canonical" is intended to
 link to a resource that is preferred over resources with duplicative
 content. A more detailed reading of [RFC6596] clarifies that the
 intended meaning is preferred for the purpose of content indexing. A
 typical use case is linking from each page in a multi-page magazine
 article to a single page version of the article provided for indexing
 by search engines: the former pages provide content that is
 duplicative to the superset content that is available at the latter
 page.

 The semantics intended by "canonical" as preferred for the purpose of
 content indexing differ from the semantics intended by "cite-as" as
 preferred for the purpose of referencing. A further exploration of
 the various scenarios shows that the use of "canonical" is not
 appropriate to convey the semantics intended by "cite-as":

 o Scenario of Section 3.1: The reference URI that is intended to be
 persistent over time does not serve content that needs to be
 indexed, it merely redirects to the access URI. Since the meaning
 intended by "canonical" is "preferred for the purpose of content
 indexing", it is not appropriate to point at the reference URI
 (persistent identifier) using the "canonical" relation type.
 Moreover, Section 6.1 shows that scholarly publishers that assign
 persistent identifiers, already use the "canonical" relation type
 for search engine optimization, and how that use contrasts with
 the intended use of "cite-as".

 o Scenario of Section 3.2: In most common cases, custodians of
 resource versioning systems want search engines to index the most
 recent version of a page and hence would use a "canonical" link to
 point from version URIs of a resource to the associated generic
 URI. Wikipedia effectively does this. However, for some resource
 versioning systems, including Wikipedia, for the purpose of
 referencing, version URIs are preferred. As such, a "cite-as"
 link would point from the generic URI to the most recent version
 URI. That is, in the opposite direction of the "canonical" link.

 o Scenario of Section 3.3: The content at the link target and the
 link context are different profiles for a same person. Each
 profile, not just a preferred one, should be indexed. But a
 single one could be preferred for referencing.

 o Scenario of Section 3.4: The content at the link target, if any,
 would typically be a landing page that includes descriptive
 metadata pertaining to the multi-resource publication and links to
 its component resources. Each component resource provides content
 that is different, not duplicative, to the landing page.

 A more detailed justification regarding the inappropriatenss of
 "canonical", including examples, is provided in [canonical-blog].

6. Examples

 Sections Section 6.1 through Section 6.4 show examples of the use of
 links with the "cite-as" relation type. They illustrate how the
 typed links can be used in a response header and/or response body.

6.1. Persistent HTTP URI

 PLOS ONE is one of many scholarly publishers that assigns DOIs to the
 articles it publishes. For example, https://doi.org/10.1371/
 journal.pone.0171057 is the persistent identifier for such an
 article. Via the DOI resolver, this persistent identifier redirects
 to http://journals.plos.org/plosone/doi?id=10.1371/
 journal.pone.0171057 in the plos.org domain. This URI itself
 redirects to http://journals.plos.org/plosone/article?id=10.1371/
 journal.pone.0171057, which delivers the actual article in HTML.

 The HTML article contains a <link> element with the "canonical"
 relation type pointing at itself,
 http://journals.plos.org/plosone/article?id=10.1371/
 journal.pone.0167475. As per Section 5.2, this indicates that the
 article content at that URI should be indexed by search engines.

 PLOS ONE can additionally provide a link with the "cite-as" relation
 type pointing at the persistent identifier to indicate it is the
 preferred URI for permanent citation of the article. Figure 1 shows
 the addition of the "cite-as" link both in the HTTP header and the
 HTML that results from an HTTP GET on the article URI
 http://journals.plos.org/plosone/article?id=10.1371/
 journal.pone.0167475.

HTTP/1.1 200 OK
Link: <https://doi.org/10.1371/journal.pone.0171057> ; rel="cite‑as"
Content‑Type: text/html;charset=utf‑8

<html>
 <head>
 ...
 <link rel="cite‑as" href="https://doi.org/10.1371/journal.pone.0171057" />
 <link rel="canonical"
 href="http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167475" />
 ...
 </head>
 <body>
 ...
 </body>
</html>

 Figure 1: Response to HTTP GET on the URI of a scholarly article

6.2. Version URIs

 The preprint server arXiv.org has a versioning approach like the one
 described in Section 3.2:

 o The most recent version of a preprint is at any time available at
 the same, generic URI. Consider the preprint with generic URI
 https://arxiv.org/abs/1711.03787.

 o Each version of the preprint - including the most recent one - has
 a distinct version URI. The considered preprint has two versions
 with respective version URIs https://arxiv.org/abs/1711.03787v1
 (published 10 November 2017) and https://arxiv.org/
 abs/1711.03787v2 (published 24 January 2018).

 A reader who accessed https://arxiv.org/abs/1711.03787 between 10
 November 2017 and 23 January 2018, obtained the first version of the
 preprint. Starting 24 January 2018, the second version was served at
 that URI. In order to support accurate referencing, arXiv.org could
 implement the "cite-as" link to point from the generic URI to the
 most recent version URI. In doing so, assuming the existence of
 reference manager tools that consume "cite-as" links:

 o The reader who accesses https://arxiv.org/abs/1711.03787 between
 10 November 2017 and 23 January 2018 would reference
 https://arxiv.org/abs/1711.03787v1.

 o The reader who accesses https://arxiv.org/abs/1711.03787 starting
 24 January 2018 would reference https://arxiv.org/
 abs/1711.03787v2.

 Figure 2 shows the header that arXiv.org would have returned in the
 first case, in response to a HTTP HEAD on the generic URI
 https://arxiv.org/abs/1711.03787.

HTTP/1.1 200 OK
Date: Sun, 24 Dec 2017 16:12:43 GMT
Content‑Type: text/html; charset=utf‑8
Link: <https://arxiv.org/abs/1711.03787v1> ; rel="cite‑as"
Vary: Accept‑Encoding,User‑Agent

 Figure 2: Response to HTTP HEAD on the generic URI of the landing

 page of an arXiv.org preprint

6.3. Preferred Profile URI

 If the access URI is the home page of John Doe, John can add a link
 with the "cite-as" relation type to it, as a means to convey that he
 would preferably be referenced by means of the URI of his FOAF
 profile. Figure 3 shows the response to an HTTP GET on the URI of
 John's home page.

HTTP/1.1 200 OK
Content‑Type: text/html;charset=utf‑8

<html>
 <head>
 ...
 <link rel="cite‑as" href="http://johndoe.example.com/foaf"
 type="text/ttl"/>
 ...
 </head>
 <body>
 ...
 </body>
</html>

 Figure 3: Response to HTTP GET on the URI of John Doe's home page

6.4. Multi-Resource Publication

 The Dryad Digital Repository at datadryad.org specializes in hosting
 and preserving scientific datasets. Each dataset typically consists
 of multiple resources. For example, the dataset "Data from: Climate,
 demography, and lek stability in an Amazonian bird" consists of an
 Excel spreadsheet, a csv file, and a zip file. Each of these
 resources have different content and are accessible at their
 respective URIs. In addition, the dataset has a landing page at
 https://datadryad.org/resource/doi:10.5061/dryad.5d23f.

 Each of these resources should be permanently cited by means of the
 persistent identifier that was assigned to the entire dataset as an
 intellectual publication, i.e. https://doi.org/10.5061/dryad.5d23f.
 To that end, the Dryad Digital Repository can add "cite-as" links
 pointing from the URIs of each of these resources to
 https://doi.org/10.5061/dryad.5d23f. This is shown in Figure 4 for
 the csv file that is a component resource of the dataset, through use
 of the HTTP Link header.

HTTP/1.1 200 OK
Date: Tue, 12 Jun 2018 19:19:22 GMT
Last‑Modified: Wed, 17 Feb 2016 18:37:02 GMT
Content‑Type: text/csv;charset=ISO‑8859‑1
Content‑Length: 25414
Link: <https://doi.org/10.5061/dryad.5d23f> ; rel="cite‑as"

DATE,Year,PLOT/TRAIL,LOCATION,SPECIES CODE,BAND NUM,COLOR,SEX,AGE,TAIL,WING,
 TARSUS,NARES,DEPTH,WIDTH,WEIGHT
6/26/02,2002,DANTA,325,PIPFIL,969,B/O,M,AHY,80,63,16,7.3,3.9,4.1,14.4
...
2/3/13,2013,LAGO,,PIPFIL,BR-5095,O/YPI,M,SCB,78,65.5,14.2,7.5,3.8,3.7,14.3

 Figure 4: Response to HTTP GET on the URI of a csv file that is a

 component of a scientfic dataset

7. IANA Considerations

7.1. Link Relation Type: cite-as

 The link relation type below has been registered by IANA per
 Section 2.1.1 of [RFC8288]:

 Relation Name: cite-as

 Description: A link with the "cite-as" relation type indicates
 that the link target is preferred over the link context for the
 purpose of permanent citation.

 Reference: [[This document]]

8. Security Considerations

 In cases where there is no way for the agent to automatically verify
 the correctness of the reference URI (cf. Section 4), out-of-band
 mechanisms might be required to establish trust.

 If a trusted site is compromised, the "cite-as" link relation could
 be used with malicious intent to supply misleading URIs for
 referencing. Use of these links might direct user agents to an
 attacker's site, break the referencing record they are intended to
 support, or corrupt algorithmic interpretation of referencing data.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4287]
 Nottingham, M., Ed. and R. Sayre, Ed., "The Atom
 Syndication Format", RFC 4287, DOI 10.17487/RFC4287,
 December 2005, <https://www.rfc-editor.org/info/rfc4287>.

 [RFC5988]
 Nottingham, M., "Web Linking", RFC 5988,
 DOI 10.17487/RFC5988, October 2010,
 <https://www.rfc-editor.org/info/rfc5988>.

 [RFC6249]
 Bryan, A., McNab, N., Tsujikawa, T., Poeml, P., and H.
 Nordstrom, "Metalink/HTTP: Mirrors and Hashes", RFC 6249,
 DOI 10.17487/RFC6249, June 2011,
 <https://www.rfc-editor.org/info/rfc6249>.

 [RFC6596]
 Ohye, M. and J. Kupke, "The Canonical Link Relation",
 RFC 6596, DOI 10.17487/RFC6596, April 2012,
 <https://www.rfc-editor.org/info/rfc6596>.

 [RFC8288]
 Nottingham, M., "Web Linking", RFC 8288,
 DOI 10.17487/RFC8288, October 2017,
 <https://www.rfc-editor.org/info/rfc8288>.

 [W3C.REC-html5-20151028]

 Hickson, I., Berjon, R., Faulkner, S., Leithead, T., Doyle
 Navara, E., O'Connor, E., and S. Pfeiffer, "HTML5", World
 Wide Web Consortium Recommendation REC-HTML5-20141028,
 October 2014,
 <https://www.w3.org/TR/2014/REC-html5-20141028/>.

9.2. Informative References

 [bookmark-blog]

 Nelson, M. and H. Van de Sompel, "rel=bookmark also does
 not mean what you think it means", August 2017,
 <http://ws-dl.blogspot.com/2017/08/2017-08-26-relbookmark-
 also-does-not.html>.

 [canonical-blog]

 Nelson, M. and H. Van de Sompel, "rel=canonical does not
 mean what you think it means", August 2017, <http://ws-
 dl.blogspot.nl/2017/08/2017-08-07-relcanonical-does-not-
 mean.html>.

 [CoolURIs]

 Berners-Lee, T., "Cool URIs don't change", World Wide Web
 Consortium Style, 1998,
 <https://www.w3.org/Provider/Style/URI.html>.

 [DOI-URLs]

 Hendricks, G., "Display guidelines for Crossref DOIs",
 June 2017,
 <https://blog.crossref.org/display-guidelines/>.

 [DOIs]
 "Information and documentation - Digital object identifier
 system", ISO 26324:2012(en), 2012,
 <https://www.iso.org/obp/
 ui/#iso:std:iso:26324:ed-1:v1:en>.

 [draft-kunze-ark-18]

 Kunze, J. and R. Rodgers, "The ARK Identifier Scheme",
 Internet Draft draft-kunze-ark-18, April 2013,
 <https://datatracker.ietf.org/doc/html/draft-kunze-ark>.

 [FOAF]
 Brickley, D. and L. Miller, "FOAF Vocabulary Specification
 0.99", January 2014, <http://xmlns.com/foaf/spec/>.

 [identifier-blog]

 Nelson, M. and H. Van de Sompel, "Linking to Persistent
 Identifiers with rel=identifier", July 2016, <http://ws-
 dl.blogspot.com/2016/11/2016-11-07-linking-to-
 persistent.html>.

 [PIDs-must-be-used]

 Van de Sompel, H., Klein, M., and S. Jones, "Persistent
 URIs Must Be Used To Be Persistent", February 2016,
 <https://arxiv.org/abs/1602.09102>.

 [PURLs]
 "Persistent uniform resource locator", April 2017,
 <https://en.wikipedia.org/wiki/
 Persistent_uniform_resource_locator>.

Appendix A. Acknowledgements

 Thanks for comments and suggestions provided by Martin Klein, Harihar
 Shankar, Peter Williams, John Howard, Mark Nottingham, Graham Klyne.

Authors' Addresses

Herbert Van de Sompel
Los Alamos National Laboratory

Email: herbertv@lanl.gov
URI: https://orcid.org/0000‑0002‑0715‑6126

Michael Nelson
Old Dominion University

Email: mln@cs.odu.edu
URI: http://www.cs.odu.edu/~mln/

Geoffrey Bilder
Crossref

Email: gbilder@crossref.org
URI: https://www.crossref.org/authors/geoffrey‑bilder/

John Kunze
California Digital Library

Email: jak@ucop.edu
URI: https://orcid.org/0000‑0001‑7604‑8041

Simeon Warner
Cornell University

Email: simeon.warner@cornell.edu
URI: https://orcid.org/0000‑0002‑7970‑7855

draft-zheng-teas-gmpls-controller-inter-work-02 - Interworking of GMPLS Control

Index
Back 5
Prev
Next

TEAS Working Group

Internet Draft

Category: Informational

Expires: June 6, 2019

Haomian Zheng

Xianlong Luo

Huawei Technologies

Yang Zhao

China Mobile

Yunbin Xu

CAICT

Sergio Belotti

Dieter Beller

Nokia

December 6, 2018

Interworking of GMPLS Control and Centralized Controller System

 draft-zheng-teas-gmpls-controller-inter-work-02

Abstract

 Generalized Multi-Protocol Label Switching (GMPLS) control allows
 each network element (NE) to perform local resource discovery,
 routing and signaling in a distributed manner.

 On the other hand, with the development of software-defined
 transport networking technology, a set of NEs can be controlled via
 centralized controller hierarchies to address the issue from multi-
 domain, multi-vendor and multi-technology. An example of such
 centralized architecture is ACTN controller hierarchy described in
 RFC 8453.

 Instead of competing with each other, both the distributed and the
 centralized control plane have their own advantages, and should be
 complementary in the system. This document describes how the GMPLS
 distributed control plane can interwork with a centralized
 controller system in a transport network.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with
 the provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents

Internet‑Draft GMPLS and Controller Interwork December 2018

 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on June 6, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

Conventions used in this document

Table of Contents

				 1. Introduction

	 2. Overview

	 2.1. Overview of GMPLS Control Plane

	 2.2. Overview of Centralized Controller System

	 2.3. GMPLS Control Interwork with Centralized Controller System

	 3. Link Management Protocol

	 4. Routing Options
			 4.1. OSPF-TE

	 4.2. ISIS-TE

	 4.3. Netconf/RESTconf

	 5. Path Computation
			 5.1. Constraint-based Path Computing in GMPLS Control

	 5.2. Path Computation Element (PCE)

	 6. Signaling Options
			 6.1. RSVP-TE

	 7. Interworking Scenarios

	Internet-Draft GMPLS and Controller Interwork December
						 7.1. Topology Collection & Synchronization

	 7.2. Multi-domain/layer Service Provisioning

	 7.3. Recovery

	 7.4. Controller Reliability

	 8. Manageability Considerations

	 9. Security Considerations

	 10. IANA Considerations

	 11. References
			 11.1. Normative References

	 11.2. Informative References

	 12. Authors' Addresses

1. Introduction

 Generalized Multi-Protocol Label Switching (GMPLS) [RFC3945] extends
 MPLS to support different classes of interfaces and switching
 capabilities such as Time-Division Multiplex Capable (TDM), Lambda
 Switch Capable (LSC), and Fiber-Switch Capable (FSC). Each network
 element (NE) running a GMPLS control plane collects network
 information from other NEs and supports service provisioning through
 signaling in a distributed manner. More generic description for
 Traffic-engineering networking information exchange can be found in
 [RFC7926].

 On the other hand, Software-Defined Networking (SDN) technologies
 have been introduced to control the transport network in a
 centralized manner. Central controllers can collect network
 information from each node and provision services to corresponding
 nodes. One of the examples is the Abstraction and Control of Traffic
 Engineered Networks (ACTN) [RFC8453], which defines a hierarchical
 architecture with Provisioning Network Controller(PNC), Multi-domain
 Service Coordinator(MDSC) and Customer Network Controller(CNC) as
 central controllers for different network abstraction levels. A Path
 Computation Element (PCE) based approach has been proposed as
 Application-Based Network Operations (ABNO) in [RFC7491].

 In such centralized controller architectures, GMPLS can be applied
 for the NE-level control. A central controller may support GMPLS
 enabled domains and may interact with a GMPLS enabled domain where
 the GMPLS control plane does the service provisioning from ingress
 to egress. In this case the centralized controller sends the request
 to the ingress node and does not have to configure all NEs along the
 path through the domain from ingress to egress thus leveraging the
 GMPLS control plane. This document describes how GMPLS control
 interworks with centralized controller system in transport network.

Internet‑Draft GMPLS and Controller Interwork December 2018

2. Overview

 In this section, overviews of GMPLS control plane and centralized
 controller system are discussed as well as the interactions between
 the GMPLS control plane and centralized controllers.

2.1. Overview of GMPLS Control Plane

 GMPLS separates the control plane and the data plane to support
 time-division, wavelength, and spatial switching, which are
 significant in transport networks. For the NE level control in
 GMPLS, each node runs a GMPLS control plane instance.
 Functionalities such as service provisioning, protection, and
 restoration can be performed via GMPLS communication among multiple
 NEs. At the same time, the controller can also collect node and
 link resources in the network to construct the network topology and
 compute routing paths for serving service requests.

 Several protocols have been designed for GMPLS control [RFC3945]
 including link management [RFC4204], signaling [RFC3471], and
 routing [RFC4202] protocols. The controllers applying these
 protocols communicate with each other to exchange resource
 information and establish Label Switched Paths (LSPs). In this way,
 controllers in different nodes in the network have the same view of
 the network topology and provision services based on local policies.

2.2. Overview of Centralized Controller System

 With the development of SDN technologies, a centralized controller
 architecture has been introduced to transport networks such as ACTN
 [RFC8453]. In centralized controller systems, a controller is aware
 of the network topology and is responsible for provisioning incoming
 service requests. In ACTN, multiple abstraction levels are designed
 and controllers at different levels implement different functions.
 This kind of abstraction enables multi-vendor, multi-domain, and
 multi-technology control.

 For example in ACTN, an MDSC coordinates several PNCs controlling
 different domains. Each PNC provides a topological view of the
 domain it controls, which can be abstracted, to the MDSC, so that
 the MDSC learns the topology of the network encompassing multiple
 domains. When a multi-domain service request arrives at the MDSC,
 the MDSC first computes an end-to-end path based on the abstracted
 topology view provided by the PNCs. Then, the MDSC splits this path
 to multiple segment according to domain boundaries and allocate each
 segment to corresponding PNC for detailed path computation and LSP
 segment setup. When each PNC has reported the establishment of its
 LSP segment, the multi-domain service is established.

Internet‑Draft GMPLS and Controller Interwork December 2018

2.3. GMPLS Control Interwork with Centralized Controller System

 The ACTN framework [RFC8453] defines a hierarchical controller
 architecture and describes how these controllers communicate with
 each other in order to control a multi-domain transport network. The
 controllers at the different levels in the hierarchy typically
 perform network abstraction of the domain they control and provide
 an abstracted view of their domain to the controller at the next
 level in the hierarchy. The controllers at the different
 hierarchical levels also interact with each other during end-to-end
 service establishment, which can span multiple domains. Within each
 domain, GMPLS control can be applied to each NE. The bottom-level
 central controller like PNC can act as a NE to collect network
 information and initiate LSP. Figure 1 shows an example of GMPLS
 interworking with ACTN.

 +‑‑‑‑‑‑‑‑‑‑+
 | MDSC |
 +‑‑‑‑‑‑‑‑‑‑+
 ^ ^
 | |
 +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
 | RESTConf / YANG models |
 V V
 +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
 | PNC | | PNC |
 +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
 ^ ^ ^ ^
 | | | |
 OSPF‑TE| |PCEP OSPF‑TE| |PCEP
 Netconf| | Netconf| |
 V V V V
 .‑‑‑‑‑‑‑‑‑‑‑‑‑. Inter‑ .‑‑‑‑‑‑‑‑‑‑‑‑‑.
 / \ domain / \
 | LMP | link | LMP |
| OSPF‑TE ========== OSPF‑TE |
 | RSVP‑TE | | RSVP‑TE |
 \ / \ /
 `‑‑‑‑‑‑‑‑‑‑‑‑` `‑‑‑‑‑‑‑‑‑‑‑‑`
 GMPLS domain GMPLS domain

 Figure 1: Example of GMPLS interworks with ACTN

 In Figure 1, each domain has the GMPLS control plane enabled at the
 physical network level. The PNC can listen to the IGP routing
 protocol messages (OSPF LSAs for example) that the GMPLS control

Internet‑Draft GMPLS and Controller Interwork December 2018

 plane instances are disseminating into the network and thus learn
 the network topology. For path computation in the domain with PNC
 implementing a PCE, PCCs (e.g. NEs, other controller/PCE) use PCEP
 to ask the PNC for a path and get replies. The MDSC communicates
 with PNCs using for example REST/RESTConf based on YANG data models.
 As a PNC has learned its domain topology, it can report the topology
 to the MDSC. When a service arrives, the MDSC computes the path and
 coordinates PNCs to establish the corresponding LSP segment.

 Alternatively, the NETCONF protocol can be used to retrieve topology
 information utilizing the [TE-topo] Yang model and the technology-
 specific YANG model augmentations required for the specific network
 technology. The PNC can retrieve topology information from any NE
 (the GMPLS control plane instance of each NE in the domain has the
 same topological view), construct the topology of the domain and
 export an abstracted view to the MDSC. Based on the topology
 retrieved from multiple PNCs, the MDSC can create topology graph of
 the multi-domain network, and can use it for path computation. To
 setup a service, the MDSC can exploit Yang tunnel model together
 with the technology-specific YANG model augmentations.

3. Link Management Protocol

 Link management protocol (LMP) [RFC4204] runs between a pair of
 nodes and is used to manage TE links. In addition to the setup and
 maintenance of control channels, LMP can be used to verify the data
 link connectivity and correlate the link property. In this way, link
 resources, which are fundamental resources in the network, are
 discovered by both ends of the link.

4. Routing Options

 In GMPLS control, link state information is flooded within the
 network as defined in [RFC4202]. Each node in the network can build
 the network topology according to the flooded link state
 information. Routing protocols such as OSPF-TE [RFC4203] and ISIS-TE
 [RFC5307] have been extended to support different interfaces in
 GMPLS.

 In centralized controller system, central controller can be placed
 at the GMPLS network and passively receive the information flooded
 in the network. In this way, the central controller can construct
 and update the network topology.

4.1. OSPF-TE

 OSPF-TE is introduced for TE networks in [RFC3630]. OSPF extensions
 have been defined in [RFC4203] to enable the capability of link
 state information for GMPLS network. Based on this work, OSPF
 protocol has been extended to support technology-specific routing.

Internet‑Draft GMPLS and Controller Interwork December 2018

 The routing protocol for OTN, WSON and optical flexi-grid network
 are defined in [RFC7138], [RFC7688] and [RFC8363], respectively.

4.2. ISIS-TE

 ISIS-TE is introduced for TE networks in [RFC5305] and is extended
 to support GMPLS routing functions [RFC5307], and has been updated
 to [RFC7074] to support the latest GMPLS switching capability and
 Types fields.

4.3. Netconf/RESTconf

 Netconf [RFC6241] and RESTconf [RFC8040] protocols are originally
 used for network configuration. Besides, these protocols can also be
 used for topology retrieval by using topology-related YANG models,
 such as [RFC8345] and [TE-topo]. These protocols provide a powerful
 mechanism for notification that permits to notify the client about
 topology changes.

5. Path Computation

 Once a controller learns the network topology, it can utilize the
 available resources to serve service requests by performing path
 computation. Due to abstraction, the MDSC may not have sufficient
 information to compute the optimal path. In this case, the MDSC can
 interact with different domain controllers by sending Yang Path
 Computation requests [PAT-COMP] to compute a set of potential
 optimal paths and then, based on its own constraints, policy and
 specific knowledge (e.g. cost of access link) can choose the more
 feasible path for service e2e path setup.

 Path computation is one of the key objectives in various types of
 controllers. In the given architecture, it is possible for different
 components that have the capability to compute the path.

5.1. Constraint-based Path Computing in GMPLS Control

 In GMPLS control, a routing path is computed by the ingress node
 [RFC3473] and is based on the ingress node TED. Constraint-based
 path computation is performed according to the local policy of the
 ingress node.

5.2. Path Computation Element (PCE)

 PCE has been introduced in [RFC4655] as a functional component that
 provides services to compute path in a network. In [RFC5440], the
 path computation is accomplished by using the Traffic Engineering
 Database (TED), which maintains the link resources in the network.
 The emergence of PCE efficiently improve the quality of network
 planning and offline computation, but there is a risk that the

Internet‑Draft GMPLS and Controller Interwork December 2018

 computed path may be infeasible if there is a diversity requirement,
 because stateless PCE has no knowledge about the former computed
 paths.

 To address this issue, stateful PCE has been proposed in [RFC8231].
 Besides the TED, an additional LSP Database (LSP-DB) is introduced
 to archive each LSP computed by the PCE. In this way, PCE can easily
 figure out the relationship between the computing path and former
 computed paths. In this approach, PCE provides computed paths to
 PCC, and then PCC decides which path is deployed and when to be
 established.

 In PCE Initiation [RFC8281], PCE is allowed to trigger the PCC to
 setup, maintenance, and teardown of the PCE-initiated LSP under the
 stateful PCE model. This would allow a dynamic network that is
 centrally controlled and deployed.

 In centralized controller system, the PCE can be implement in a
 central controller, and the central controller performs path
 computation according to its local policies. On the other hand, the
 PCE can also be placed outside of the central controller. In this
 case, the central controller acts as a PCC to request path
 computation to the PCE through PCEP.

6. Signaling Options

 Signaling mechanisms are used to setup LSPs in GMPLS control.
 Messages are sent hop by hop between the ingress node and the egress
 node of the LSP to allocate labels. Once the labels are allocated
 along the path, the LSP setup is accomplished. Signaling protocols
 such as RSVP-TE [RFC3473] have been extended to support different
 interfaces in GMPLS.

6.1. RSVP-TE

 RSVP-TE is introduced in [RFC3209] and extended to support GMPLS
 signaling in [RFC3473]. Several label formats are defined for a
 generalized label request, a generalized label, suggested label and
 label sets. Based on [RFC3473], RSVP-TE has been extended to support
 technology-specific signaling. The RSVP-TE extensions for OTN, WSON,
 optical flexi-grid network are defined in [RFC7139], [RFC7689], and
 [RFC7792], respectively.

7. Interworking Scenarios

7.1. Topology Collection & Synchronization

 Topology information is necessary on both network elements and
 controllers. The topology on network element is usually raw
 information, while the topology on the controller can be either raw

Internet‑Draft GMPLS and Controller Interwork December 2018

 or abstracted. Three different abstraction methods have been
 described in [RFC8453], and different controllers can select the
 corresponding method depending on application.

 When there are changes in the network topology, the impacted network
 element(s) need to report changes to all the other network elements,
 together with the controller, to sync up the topology information.
 The inter-NE synchronization can be achieved via protocols mentioned
 in section 3 and 4. The topology synchronization between NEs and
 controllers can either be achieved by routing protocols OSPF-
 TE/PCEP-LS in [PCEP-LS] or Netconf protocol with YANG model.

7.2. Multi-domain/layer Service Provisioning

 Based on the topology information on controllers and network
 elements, service provisioning can be deployed. Plenty of methods
 have been specified for single domain service provisioning, such as
 using PCEP and RSVP-TE.

 Multi-domain/layer service provisioning would request coordination
 among the controller hierarchies. Given the service request, the
 end-to-end delivery procedure may include interactions on MPI and
 SBI. The computation for a cross-domain/layer path is usually
 completed by MDSC, who has a global view of the topologies. Then the
 configuration is decomposed into lower layer controllers, including
 both MDSC and PNCs, to configure the network elements to set up the
 path.

 A combination of the centralized and distributed protocols may be
 necessary for the interaction between network elements and
 controller. A typical example would be the PCE Initiation scenario,
 in which a PCE message (PCInitiate) is sent from the controller to
 the first-end node, and then trigger a RSVP procedure along the
 path. Similarly, the interaction between the controller and the
 ingress node of a domain can be achieved by Netconf protocol with
 corresponding YANG models, and then completed by running RSVP among
 the network elements.

7.3. Recovery

 The GMPLS recovery functions are described in [RFC4426]. Two models,
 span protection and end-to-end protection and restoration, are
 discussed with different protection schemes and message exchange
 requirements. Related RSVP-TE extensions to support end-to-end
 recovery is described in [RFC4872]. The extensions in [RFC4872]
 include protection, restoration, preemption, and rerouting
 mechanisms for an end-to-end LSP. Besides end-to-end recovery, a
 GMPLS segment recovery mechanism is defined in [RFC4873]. By
 introducing secondary record route objects, LSP segment can be
 switched to another path like fast reroute [RFC4090].

Internet‑Draft GMPLS and Controller Interwork December 2018

 For the recovery with controllers, timely interaction between
 controller and network elements are required. Usually the re-routing
 can be decomposed into path computation and delivery, the controller
 can take some advantage in the path computation due to the global
 topology view. And the delivery can be achieved by the procedure
 described in section 7.2.

7.4. Controller Reliability

 Given the important role in the network, the reliability of
 controller is critical. Once a controller is shut down, the network
 should operate as well. It can be either achieved by controller back
 up or functionality back up. There are several of controller backup
 or federation mechanisms in the literature. It is also more reliable
 to have some function back up in the network element, to guarantee
 the performance in the network.

8. Manageability Considerations

 Each entity in the network, including both controllers and network
 elements, should be managed properly as it will interact with other
 entities. The manageability considerations in controller hierarchies
 and network elements still apply respectively. For the protocols
 applied in the network, manageability is also requested.

 The responsibility of each entity should be clarified. The control
 of function and policy among different controllers should be
 consistent via proper negotiation process.

9. Security Considerations

 This document provides the interwork between the GMPLS and
 controller hierarchies. The security requirements in both system
 still applies respectively. Protocols referenced in this document
 also have various security considerations, which is also expected to
 be satisfied.

 Other considerations on the interface between the controller and the
 network element are also important. Such security includes the
 functions to authenticate and authorize the control access to the
 controller from multiple network elements. Security mechanisms on
 the controller are also required to safeguard the underlying network
 elements against attacks on the control plane and/or unauthorized
 usage of data transport resources.

10. IANA Considerations

 This document requires no IANA actions.

Internet‑Draft GMPLS and Controller Interwork December 2018

11. References

11.1. Normative References

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, December 2001.

 [RFC3473]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Resource ReserVation Protocol-
 Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
 January 2003.

 [RFC3630]
 Katz, D., Kompella, K., and D. Yeung, "Traffic
 Engineering (TE) Extensions to OSPF Version 2", RFC 3630,
 September 2003.

 [RFC3945]
 Mannie, E., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Architecture", RFC 3945, October 2004.

 [RFC4203]
 Kompella, K., Ed. and Y. Rekhter, Ed., "OSPF Extensions
 in Support of Generalized Multi-Protocol Label Switching
 (GMPLS)", RFC 4203, October 2005.

 [RFC4655]
 Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
 Element (PCE)-Based Architecture", RFC 4655, August 2006.

 [RFC4872]
 Lang, J., Ed., Rekhter, Y., Ed., and D. Papadimitriou,
 Ed., "RSVP-TE Extensions in Support of End-to-End
 Generalized Multi-Protocol Label Switching (GMPLS)
 Recovery", RFC 4872, May 2007.

 [RFC4873]
 Berger, L., Bryskin, I., Papadimitriou, D., and A.
 Farrel, "GMPLS Segment Recovery", RFC 4873, May 2007.

 [RFC5305]
 Li, T. and H. Smit, "IS-IS Extensions for Traffic
 Engineering", RFC 5305, October 2008.

 [RFC5307]
 Kompella, K., Ed. and Y. Rekhter, Ed., "IS-IS Extensions
 in Support of Generalized Multi-Protocol Label Switching
 (GMPLS)", RFC 5307, October 2008.

 [RFC5440]
 Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
 Element (PCE) Communication Protocol (PCEP)", RFC 5440,
 March 2009.

 [RFC6241]
 Enns, R., Bjorklund, M., Schoenwaelder J., Bierman A.,
 "Network Configuration Protocol (NETCONF)", RFC 6241, June
 2011.

Internet‑Draft GMPLS and Controller Interwork December 2018

 [RFC7074]
 Berger, L. and J. Meuric, "Revised Definition of the
 GMPLS Switching Capability and Type Fields", RFC 7074,
 November 2013.

 [RFC7491]
 King, D., Farrel, A., "A PCE-Based Architecture for
 Application-Based Network Operations", RFC7491, March
 2015.

 [RFC7926]
 Farrel, A., Drake, J., Bitar, N., Swallow, G., Ceccarelli,
 D. and Zhang, X., "Problem Statement and Architecture for
 Information Exchange between Interconnected Traffic-
 Engineered Networks", RFC7926, July 2016.

 [RFC8040]
 Bierman, A., Bjorklund, M., Watsen, K., "RESTCONF
 Protocol", RFC 8040, January 2017.

 [RFC8453]
 Ceccarelli, D. and Y. Lee, "Framework for Abstraction and
 Control of Traffic Engineered Networks", RFC 8453, August
 2018.

11.2. Informative References

 [RFC3471]
 Berger, L., Ed., "Generalized Multi-Protocol Label
 Switching (GMPLS) Signaling Functional Description", RFC
 3471, January 2003.

 [RFC4090]
 Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast
 Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090,
 May 2005.

 [RFC4202]
 Kompella, K., Ed. and Y. Rekhter, Ed., "Routing Extensions
 in Support of Generalized Multi-Protocol Label Switching
 (GMPLS)", RFC 4202, October 2005.

 [RFC4204]
 Lang, J., Ed., "Link Management Protocol (LMP)", RFC
 4204, October 2005.

 [RFC4426]
 Lang, J., Ed., Rajagopalan, B., Ed., and D.
 Papadimitriou, Ed., "Generalized Multi-Protocol Label
 witching (GMPLS) Recovery Functional Specification", RFC
 4426, March 2006.

 [RFC7138]
 Ceccarelli, D., Ed., Zhang, F., Belotti, S., Rao, R., and
 J. Drake, "Traffic Engineering Extensions to OSPF for
 GMPLS Control of Evolving G.709 Optical Transport
 Networks", RFC 7138, March 2014.

Internet‑Draft GMPLS and Controller Interwork December 2018

 [RFC7139]
 Zhang, F., Ed., Zhang, G., Belotti, S., Ceccarelli, D.,
 and K. Pithewan, "GMPLS Signaling Extensions for Control
 of Evolving G.709 Optical Transport Networks", RFC 7139,
 March 2014.

 [RFC7688]
 Lee, Y., Ed. and G. Bernstein, Ed., "GMPLS OSPF
 Enhancement for Signal and Network Element Compatibility
 for Wavelength Switched Optical Networks", RFC 7688,
 November 2015.

 [RFC7689]
 Bernstein, G., Ed., Xu, S., Lee, Y., Ed., Martinelli, G.,
 and H. Harai, "Signaling Extensions for Wavelength
 Switched Optical Networks", RFC 7689, November 2015.

 [RFC7792]
 Zhang, F., Zhang, X., Farrel, A., Gonzalez de Dios, O.,
 and D. Ceccarelli, "RSVP-TE Signaling Extensions in
 Support of Flexi-Grid Dense Wavelength Division
 Multiplexing (DWDM) Networks", RFC 7792, March 2016.

 [RFC8231]
 Crabbe, E., Minei, I., Medved, J., and R. Varga, "Path
 Computation Element Communication Protocol (PCEP)
 Extensions for Stateful PCE", RFC 8231, September 2017.

 [RFC8281]
 Crabbe, E., Minei, I., Sivabalan, S., and R. Varga, "PCEP
 Extensions for PCE-initiated LSP Setup in a Stateful PCE
 Model", RFC 8281, October 2017.

 [RFC8345]
 Clemm, A., Medved, J., Varga, R., Bahadur, N.,
 Ananthakrishnan, H., Liu, X., "A YANG Data Model for
 Network Topologies", RFC 8345, March 2018.

 [RFC8363]
 Zhang, X., Zheng, H., Casellas, R., Dios, O., and D.
 Ceccarelli, "GMPLS OSPF-TE Extensions in support of Flexi-
 grid DWDM networks", RFC8363, February 2017.

 [TE-topo]
 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H.,
 Gonzalez De Dios, O., "YANG Data Model for Traffic
 Engineering (TE) Topologies", draft-ietf-teas-yang-te-
 topo-18, work in progress.

 [PAT-COMP]
 Busi, I., Belotti, S., Lopez, V., Gonzalez de Dios, O.,
 Sharma, A., Shi, Y., Vilalta, R., Setheraman, K., "Yang
 model for requesting Path Computation", draft-ietf-teas-
 yang-path-computation-04, work in progress.

 [PCEP-LS]
 Dhody, D., Lee, Y., Ceccarelli, D., "PCEP Extensions for
 Distribution of Link-State and TE Information", draft-
 dhodylee-pce-pcep-ls, work in progress.

Internet‑Draft GMPLS and Controller Interwork December 2018

12. Authors' Addresses

 Haomian Zheng
 Huawei Technologies
 F3 R&D Center, Huawei Industrial Base,
 Bantian, Longgang District,
 Shenzhen 518129 P.R.China
 Email: zhenghaomian@huawei.com

 Xianlong Luo
 Huawei Technologies
 F3 R&D Center, Huawei Industrial Base,
 Bantian, Longgang District,
 Shenzhen 518129 P.R.China
 Email: luoxianlong@huawei.com

 Yunbin Xu
 CAICT
 Email: xuyunbin@ritt.cn

 Yang Zhao
 China Mobile
 Email: zhaoyangyjy@chinamobile.com

 Sergio Belotti
 Nokia
 Email: sergio.belotti@nokia.com

 Dieter Beller
 Nokia
 Email: Dieter.Beller@nokia.com

Zheng et. al Expires April 2019 [Page 14]

draft-zzhang-teas-rmr-rsvp-p2mp-00 - RSVP-TE P2MP Tunnels on RMR

Index
Back 5
Prev
Next

TEAS WG

Internet-Draft

Intended status: Standards Track

Expires: January 25, 2019

Z. Zhang

A. Deshmukh

R. Singh

Juniper Networks

July 24, 2018

RSVP-TE P2MP Tunnels on RMR

draft-zzhang-teas-rmr-rsvp-p2mp-00

Abstract

 This document specifies the optimization in RSVP-TE P2MP tunnel
 signaling over Resilient MPLS Rings (RMR).

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Specification
	 2.1. RMR Object

	 2.2. Procedures
	 2.2.1. PATH Message/State

	 2.2.2. RESV Message/State

	3. Security Considerations

	4. Acknowledgements

	5. Normative References

	Authors' Addresses

1. Introduction

 Traditional RSVP-TE P2MP tunnel signaling could be quite involving.
 With RMR, this could be significantly simplifed:

 There is no need for ERO/RRO/SERO/SRRO or hop by hop rouing. The
 tunnel ingress simply sends PATH messages in one or both directions
 of the ring, depending on how leaves are best reached. The <S2L Sub-
 LSP Descriptor List> only needs to list the tunnel leaves, and a
 transit router does not need to "branch" a PATH message into multiple
 ones Therefore, unless there are many tunnel leaves on a huge ring, a
 single PATH message is enough. In the rare situation of a large
 tunnel with many leaves to list, a small number of PATH messages
 should suffice. Additionally, there is no need to signal and
 maintain individual sub-LSPs (one for each leaf) any more. As a
 result, corresponding PATH/RESV state is also reduced. Each node
 only needs to maintain a single PATH state and a single RESV state
 for each P2MP tunnel, and the RESV state does not need to track
 individual leaves - it just need to track if a RESV is received from
 downstream and/or if this node itself is a leaf.

 A RESV message is triggered to the PHOP when the RESV state is first
 created (either because the node is a leaf or because a RESV message
 is received from downstream) and it is refreshed periodically. A
 RESV Tear is sent when the RESV state is deleted (when the node is no
 longer a Leaf and the RESV from downstream has timed out or a RESV
 Tear is received).

 Optionally, the tunnel ingress may not need to list any/all leaves.
 It could simply send the PATH message around the ring, with the <S2L
 Sub-LSP Descriptor List> listing the root itself. Through methods
 outside the scope of this document, a node determines if it is a leaf
 of the tunnel, and if yes, it will send back a RESV message. With
 this, a single PATH message is surely enough.

 In this document, leaves in <S2L Sub-LSP Descriptor List> are
 referred to as explicit leaves, and leaves not listed there but self-
 determined by ring nodes are referred to as implicit leaves. There
 could be both explicit and implicit leaves for a tunnel. The ingress
 allows implicit leaves by including itself as the last one in the
 <S2L Sub-LSP Descriptor List>.

 Optionally, the RESV message could also include a <S2L Sub-LSP
 Descriptor List> to list all the leaves on the established tunnel so
 that the each node knows its downstream leaves. In that case, when
 the set of downstream leaves changes, a RESV message with the new
 <S2L Sub-LSP Descriptor List> is triggered.

 Adding/removing explicit leaves is straighforward. The ingress
 simply sends a triggered PATH message with new <S2L Sub-LSP
 Descriptor List>. As it passes around the ring, each node determines
 if it is an explicit leaf and updates its state accordingly. The
 triggered PATH message does not have to go all the way to the last
 leaf - if on a node the <S2L Sub-LSP Descriptor List> in the to-be-
 sent PATH message is the same as what was sent before, the triggered
 PATH message will not be sent further.

 To indicate that the tunnel signaling is with above mentioned RMR
 optimizations, a new object is included in the PATH message to
 specify the Ring ID and direction.

 Link/Node protection is achieved by tunneling packets to the next
 node using the Ring LSP to that node in the other direction. This
 does not need any additional signaling but is based on a reasonable
 premise that unicast Ring LSPs are always in place. Once the ingress
 learns the failure (through IGP discovery or through other error
 detection/notification mechanisms), global repair kicks in to reach
 some leaves via PATH message sent in the other direction. Before
 global repair is finished, traffic continues to flow in the original
 path except that at the failure point it is tunneled to the next
 node.

 If an RMR is just part of a general RSVP network the optimization can
 also be applied on the ring nodes. If the tunnel ingress knows the
 leaves that are on the ring, it could put all those leaves in the
 single PATH message and construct the ERO/SERO only towards the entry
 points on the ring. The entry points then includes the RMR object in
 the PATH messages that they send. For leaves beyond the ring, the
 ingress may include the exit points on the ring as loose hops in the
 ERO/SERO, and when a ring node needs to send the PATH message off the
 ring, it removes the RMR object. Details will be provided in future
 revisions of this document.

2. Specification

2.1. RMR Object

 The RMR object is a new object of the following:

 o Class Name: RMR

 o Class-Num: TBA1 (to be assigned by IANA)

 o C-Type: TBA2 (to be assigned by IANA)

 The format of the object content following the common object header
 is the folowing:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Ring ID (4 octets) |
+‑+
|D| Flags | Reserved |
+‑+

 Following the 4-octect Ring ID, there is an 8-bit Flags field. The
 first bit of the Flags field indicates the direction. If it is set,
 it is clockwise direction. Otherwise, it is anti-clockwise.

2.2. Procedures

 This section describes the differces in the procedures for ring nodes
 to set up RSVP-TE P2MP tunnels across the ring, compared to the
 conventional non-RMR-aware case. For now it is assumed that all
 nodes (ingress, tranist, and leaves) on the tunnel are on the ring.

 More details will be provided in future revisions.

2.2.1. PATH Message/State

 The tunnel ingress includes the RMR object with the Ring ID and the
 direction flag bit set accordingly. The explicit tunnel leaves are
 encoded in the <S2L Sub-LSP Descriptor List>, and no ERO/SERO is
 included. If the tunnel allows implicit leaves, the descriptor list
 encodes the ingress itself as the last element. The message is sent
 to the next node on the ring in the direction specified in the RMR
 object, w/o using ERO/SERO or hop-by-hop routing.

 When a node recevies a PATH message with the RMR object, it checks if
 itself is listed in the <S2L Sub-LSP Descriptor List>, or if the <S2L
 Sub-LSP Descriptor List> encodes the tunnel ingress as the last
 element and this node itself is an implicit leaf. If yes, it creates
 corresponding RESV state and sends a RESV message to the PHOP.

 The receiving node removes itself from the <S2L Sub-LSP Descriptor
 List> in the PATH message, and saves the list locally. The PATH
 message is sent to the next node on the ring in the specified
 direction if one of the following conditions is met:

 o The <S2L Sub-LSP Descriptor List> encodes the tunnel ingress
 itself as the last element.

 o The <S2L Sub-LSP Descriptor List> is not empty and either the PATH
 state is newly created or the <S2L Sub-LSP Descriptor List> is
 different from the previously saved one.

 If <S2L Sub-LSP Descriptor List> is empty and different from the
 previously saved one, a PATH Teardown is sent instead with the saved
 <S2L Sub-LSP Descriptor List>.

2.2.2. RESV Message/State

 A ring node may know that it is a leaf when the PATH message is first
 processed as described in the previous section. In case of implicit
 leaves, it may become a leaf after the PATH messages has been
 processed. A non-leaf node may also receive a RESV message from its
 NHOP. In all cases, the node creates RESV state and sends a RESV
 message to the PHOP, w/o encoding RRO/SRRO.

 If a ring node was a leaf but stops being a leaf, either because it
 is no longer listed in the <S2L Sub-LSP Descriptor List> or it is no
 longer an implicit leaf, it removes/updates corresponding local
 state. A RESV Teardown is sent to the PHOP if there is no RESV
 received from its downstream.

3. Security Considerations

 This document does not introduce new security risks?

4. Acknowledgements

5. Normative References

 [I-D.ietf-mpls-rmr]

 Kompella, K. and L. Contreras, "Resilient MPLS Rings",
 draft-ietf-mpls-rmr-07 (work in progress), March 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4875]
 Aggarwal, R., Ed., Papadimitriou, D., Ed., and S.
 Yasukawa, Ed., "Extensions to Resource Reservation
 Protocol - Traffic Engineering (RSVP-TE) for Point-to-
 Multipoint TE Label Switched Paths (LSPs)", RFC 4875,
 DOI 10.17487/RFC4875, May 2007,
 <https://www.rfc-editor.org/info/rfc4875>.

Authors' Addresses

Zhaohui Zhang
Juniper Networks

 EMail: zzhang@juniper.net

Abhishek Deshmukh
Juniper Networks

 EMail: adeshmukh@juniper.net

Ravi Singh
Juniper Networks

 EMail: ravis@juniper.net

RFC eBook Conversion

This text describes the conversion process used to create this
ebook.

Conversion process for rfc.mobi/rfc.epub

The conversion process goes like follows:

	Update rfc index from the www.ietf.org

	Create the cover jpg from the postscript file and scale it
down

	Create list of files to be included to the book

	Create ncx file based on the list created before

	Go through RFCs and convert them from text to html

	Create opf file for the book

	Convert the rfc-index.txt to index.html file

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.

Conversion process for working group internet-drafts

The conversion process goes like follows:

	Update rfc and internet-draft reposotiries from the
www.ietf.org

	Create the directory structure where we have one directory for
each area, and inside that directory we have directory for each
working group in that area. Also create the .htaccess file containing
full names for working groups.

	Create ebooks, by looping through all working groups in all areas
and do following:

	Fetch list of working group drafts, RFCs and related from the
http://datatracker.ietf.org/wg/wgname/documents/txt.

	Create the cover jpg from the postscript file and scale it
down

	Create ncx file based on the list created before

	Go through documents and convert them from text to html

	Create opf file for the book

	Create index.html file based on the files and titles fetched in
the beginning from datatracker.

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

	 Copy .epub and .mobi files to the correct place in the directory
structure.

Creating Cover page

make-cover.sh "\nRFC Index\n$date" "$time" \
 "ietf-logo.eps" > rfc.jpg

This program takes the title, time and logo postscript, and creates
a postscript file which it then runs through ghostscript and converts
it file suitable for the Kindle 3. The title can have three lines
separated with "\n". Normally the top two lines contain the
actual title, and third line contains the date of conversion. The time
is added to the end of the page with small font, so it can be used
during development phase to see which version of ebook this is (during
development I did have multiple versions loaded to my Kindle and it
was painful to find out which one of them is newest before this was
added). The logo is ietf-logo.eps directly from the IETF web page.

The page is initially created at 2400x3200 pixel resolution and
then scaled down to 25% of size meaning the final page is 600x800
pixels in size.

Creating NCX file

For RFC ebook:

make-ncx.pl --title "RFC Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file $ncxtocentries \
 --out \
 --class book \
 --include-regexp '^rfc[0-9][0-9][0-9]1' \
 --split-regexp '^rfc[0-9][0-9]01' \
 --input-file $ncxrfcentries

For the Internet-Draft ebooks:

make-ncx.pl --title "$wg Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --class book \
 --input-file $ncxentries

NCX file contains list all files and the navigation information.
That is used when you press left or right arrows on the kindle to see
where to move next. See make-ncx manual
page for information about options.

Creating OPF file

For RFC ebook:

files=`ls -1 "$dir"/rfc*.html | sed 's/.*\///g'`
make-opf.pl --title "RFC Index $date" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 --output rfc.opf \
 intro.html \
 $files \
 conversion.html \
 $manpages

For the Internet-Draft ebooks:

make-opf.pl --title "$wg ID and RFC Docs $date" \
 --language en \
 --cover wg.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "$wg RFCs and Internet-Drafts" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc wg-"$wg".ncx \
 --output "$opf" \
 $files \
 conversion.html \
 $manpages

Open package format file describes what files are in the ebook. It
also contains information where to start reading and in which order
entries are appearing in the book. See make-opf manual page for information about
options.

Converting text RFC to html

For RFCs the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -r $rfcnum \
 -o rfc$rfcnum.html \
 $rfctxtfile

For Internet-Drafts the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -t $draft-name \
 -o $draft-name.html \
 $draft-name.txt

This program takes the text formatted RFC or Internet-Draft and
formats it to html suitable for ebooks. The first step is to remove
page formatting (page breaks, page numbers, page headers and footers).
In that phase it also tries to see if one textual paragraph is
continuing from the previous page to the next, and if so then it will
glue them together. The second phase is to go through all paragraphs
and try to find out what type of paragraph it is (text, picture,
header, table of contents, authors address section, terminology
defination, bulleted or numbered list, references section). After this
it goes through the actual text paragraphs and converts them to html
suitable for their type. See rfc2html manual page for information about
options.

Converting rfc-index.txt to index.html

TBF

Creating .mobi file

kindlegen rfc.opf -c1 -verbose

TBF

Converting files to .epub format

makeepub.sh current

TBF

Kindle 3 issues

Issues I have found when converting this to kindle 3

Ncx file size

It seems there is maximum number of items the ncx file can have, or
some other limitation in the ncx file parsing. When I included all the
rfcs to the ncx file then the next and previous arrows in the kindle 3
does not work anymore. If the number if items is reduced then they
start working.

Kindle -c2 compression

When I tried to use the best compression of kindlegen, the program
did create a eBook file but all the links inside the file pointed in
wrong place, i.e. when you used link to go rfc5996 you ended up in the
middle of rfc6020 or so.

No support for multiple indexes

The mobipockect supports multiple indexes and the eBook originally
included titleword and full title text indexes, but those were removed
as kindle 3 does not support them.

Last item in might be missing in index

The automatic index (using the menu and selecting index) sometimes
misses the last item in it. Thats why I added this conversion
description to the end, so if something is missing it will be this
text.

Kindle 3 and pictures

Kindle 3 does support monospace font and the screen is wide enough
for 67 charactes if screen is rotated. This allows the normal 32 bit
packet frame description pictures to be shown properly using the
normal pre-tag. The Kindle 3 will still wrap words to the next line,
and this was problematic when combined with hyphens used in pictures.
To fix this all the hyphens in the text are converted to the
no-breaking hyphens.

No-breaking hyphen not shown properly on Kindle for PC

Because of the previous issue with word wrap we needed to use
non-breaking hyphens, but unfortunately they do not show properly on
the kindle for PC, but instead of unknown character box is shown
instead.

Searching does not work

For some reason the searching from the RFC eBook does not work on
the Kindle 3.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-ncx - Create NCX file

[bookmark: synopsis]SYNOPSIS

make-ncx [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--depth|-d depth-of-toc]
 [--total-page-count|-T total-page-count]
 [--max-page-number|-m max-page-number]
 [--separator|-s separator-regexp]
 --author|-a author
 --title|-t title
 entry ...
 [--class|-c class] entry ...
 [--in] entry ... [--out]
 [--autosplit|-A split-count] entry ...
 [--include-regexp include-regexp] entry ...
 [--exclude-regexp exclude-regexp] entry ...
 [--split-regexp split-regexp] entry ...
 [--input-file|-i input-file] entry ...
 entry ...

make-ncx --help

[bookmark: description]DESCRIPTION

make-ncx takes list of ncx entries and creates NCX (Navigation
Control for for XML applications Format) file out of them.

NCX is hierarchical structure, and the make-ncx supports this so
that the list of entries can include --in and --out options to
in and out in the hierarchy. Note, that the first item is always on
level 1 and you can go in only one level per entry, i.e. adding two
--in options right after each other is an error. Multiple --out
options is allowed, but going out from level 1 is not allowed.

Each entry contain 4 fields separated from each other by separator
regexp. The first field is the class of the entry. This can be
something like "book", "toc", "entry" etc. Second field is the id of
the entry. This should be something unique. Third field is the actual
link inside the mobibook, i.e. "index.html", "index.html#s1000" or
"rfc1234.html". Last field is the text of the entry.

If only 3 fields are given then they are assumed to be id, link and
text, and the class is the one given with --class option.

If only 2 fields are given then they are assumed to be link and text,
and the class is processed as with 3 fields, and id is autogenerated
from the link, by removing path, prefixes and special chars.

If only one field is given then it is assumed to be link, and class
and id is generated as previously, and link is converted to text by
removing prefixes and removing some special charactes and replacing
'/', '-', '_' to spaces.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: depth_d_depth_of_toc]--depth -d depth-of-toc

	
Max depth of the NCX file. If not given this is autodetected from the
options.

	[bookmark: total_page_count_t_total_page_count]--total-page-count -T total-page-count

	
Sets total page count. If not given this is set to 0.

	[bookmark: max_page_number_m_max_page_number]--max-page-number -m max-page-number

	
Sets max page number. If not given this is set to 0.

	[bookmark: separator_s_separator_regexp]--separator -s separator-regexp

	
Separator regexp used to split entries to class, id, link and text.
Defaults to ':'

	[bookmark: author_a_author]--author -a author

	
Author of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: in]--in

	
Go one level into the hierarchy. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: out]--out

	
Go one level out in the hierarchy. This option is used inside the
entry list and it affects the entries coming after it.

	[bookmark: class_c]--class -c

	
Set the class of the entries coming after this if no class given in
the entry. This option is used inside the entry list and it affects
the entries coming after it.

	[bookmark: autosplit_a_split_count]--autosplit -A split-count

	
Starts autosplitting long list of entries, so that split-count
entries are combined so that the first entry stays at current level,
and all other entries are moved in one level inside the first entry.
This process is repeated until --in, --out, or new
--autosplit option is found. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: include_regexp_include_regexp]--include-regexp include-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which are matching this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: exclude_regexp_exclude_regexp]--exclude-regexp exclude-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which do not match this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: split_regexp_split_regexp]--split-regexp split-regexp

	
Automatically split entries to sublevels based on the regexp. This
will match entries against the regexp and when first match is found it
will put this entry on current level and then go down one level, and
then put all further entries not matching this regexp to that level.
Further matching entries are moved to the same level as the first one.
This can be used in combination with --autosplit option in which
case --autosplit entries will be below this, meaning the hierarchy
will have 3 levels. Top level contains the entries matching this
regexp. The next level contains every Nth entry and lowest level
contains all other entries. Every time matching entry is found the
--autosplit counter is reset.

	[bookmark: input_file_i_input_file]--input-file -i input-file

	
Reads the list of options from the input-file instead of reading
them from command line. The options are in the file one option at
line, and are processed exactly as they would be on the command line.
This means that you can give --class, --in, --autosplit etc options
first and then just get the list of filenames from the file.

[bookmark: examples]EXAMPLES

make-ncx --title foo \
 --author bar \
 toc:toc:index.html:Index \
 book:rfc0001:rfc0001.html:RFC0001

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 0000:index.html#s0000:RFC0000 \
 1000:index.html#s1000:RFC1000 \
 2000:index.html#s2000:RFC2000 \
 3000:index.html#s3000:RFC3000 \
 4000:index.html#s4000:RFC4000 \
 5000:index.html#s5000:RFC5000 \
 6000:index.html#s6000:RFC6000 \
 --out \
 --class book \
 --autosplit 5 \
 rfc0001.html rfc0002.html rfc0003.html rfc0004.html rfc0005.html \
 rfc0006.html rfc0007.html rfc0008.html rfc0009.html rfc0010.html \
 rfc6001.html rfc6002.html rfc6003.html rfc6004.html rfc6005.html \
 rfc6006.html rfc6007.html

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file toc-entries.txt \
 --out \
 --class book \
 --autosplit 5 \
 --input-file rfc-list.txt

[bookmark: files]FILES

	[bookmark: makencxrc]~/.makencxrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-opf - Create OPF file

[bookmark: synopsis]SYNOPSIS

make-opf [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--beginning|-b first-page-filename]
 [--cover|-c cover-jpg-file-name]
 [--creator|-C creator]
 [--date|-D date]
 [--description|-d description]
 --id|-i id
 [--index|-I index-html-file-name]
 --language|-l language
 [--publisher|-p publisher]
 [--role|-r creator-role]
 [--stylesheet|-S stylesheet-css-file-name]
 [--subject|-s subject]
 --title|-t title
 [--toc|-T toc-ncs-file-name]
 filename ...

make-opf --help

[bookmark: description]DESCRIPTION

make-opf takes list of html files inside the mobibook and creates a
OPF (Open Packaging Format) file out of them.

Files are added to the spine in the order they appear in the command
line. Note, that before any files there is --cover, --beginning
and ---index pages, which always come in that order in the
beginning of the book.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: beginning_b_first_page_filen_file_name]--beginning -b first-page-filen-file-name

	
File name inside the mobibook which is used as a beginning of the
book, i.e. when book is opened it comes to this page.

	[bookmark: cover_c_cover_jpg_file_name]--cover -c cover-jpg-file-name

	
File name inside the mobibook which is used as a cover page for the
publication. Must be jpg file. This is mandatory for Kindle books.

	[bookmark: creator_c_creator]--creator -C creator

	
Creator of the publication. Usually the name of the author.

	[bookmark: date_d_date]--date -D date

	
Date of the publication.

	[bookmark: description_d_description]--description -d description

	
Short description of the publication.

	[bookmark: id_i_id]--id -i id

	
Unique ID for the publication.

	[bookmark: index_i_index_html_file_name]--index -I index-html-file-name

	
File name inside the mobibook which is used as index. If included this
is also used as table of contents.

	[bookmark: language_l_language]--language -l language

	
Language tag of the publication. Typically "en".

	[bookmark: publisher_p_publisher]--publisher -p publisher

	
Publisher name.

	[bookmark: role_r_creator_role]--role -r creator-role

	
Role of the creator, i.e. author (aut), collaborator (clb), editor
(edt) etc.

	[bookmark: stylesheet_s_stylesheet_css_filename]--stylesheet -S stylesheet-css-filename

	
File name inside the mobibook which used as css stylesheet.

	[bookmark: subject_s_subject]--subject -S subject

	
Subject of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: toc_t_toc_ncs_file_name]--toc -T toc-ncs-file-name

	
File name inside the mobibook which is used as NCS table of contents
file name.

[bookmark: examples]EXAMPLES

make-opf.pl --title "${partial}RFC Index $d" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$d" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 rfc*.html

[bookmark: files]FILES

	[bookmark: makeopfrc]~/.makeopfrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

rfc2html - Convert RFC to simple html

[bookmark: synopsis]SYNOPSIS

rfc2html [--help|-h] [--version|-V] [--verbose|-v]
 [--key-index]
 [--navigation|-n navigation-links]
 [--filelist|-f filelist-file]
 [--rfc|-r rfc-number]
 [--title|-t title-prefix]
 [--output|-o output-file]
 [--config config-file]
 filename ...

rfc2html --help

[bookmark: description]DESCRIPTION

rfc2html takes RFC txt file and converts it to simple html file.

filename is read in and new file is created so that .txt extension
is removed from the filename (if it exists) and .html extesion is
added.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to <inputfile>.txt.

	[bookmark: rfc_r_rfc_number]--rfc -r rfc-number

	
Gives the RFC number of the current file. Used to make title
information correct.

	[bookmark: title_t_title_prefix]--title -t title-prefix

	
Gives text added to the beginning of the title, for example the file
name.

	[bookmark: filelist_f_file_list_filename]--filelist -f file-list-filename

	
Filename of the file containing list of files in the book. If given
only those links pointing to files listed in this file are converted
to links.

	[bookmark: navigation_n_navigation_links]--navigation -n navigation-links

	
Creates navigation links at the top of the file. The navigation links
text is semicolon separated list of navigation links. Each link
consists of file name inside the book, and the link title. The
filename can either be full filename like "index.html", or it can be
relative filename like "-1" or "+100". Using this option requires that
the filelist option is also used and all links given here are found
from the filelist. The filelist is also used to find the current file
name and then calculate relative filenames from there, i.e. "-1" means
the filename in the filename list just before this file.

The filename used for searching this entry from the filelist is the
output filename, and if exact match is not found then the path
components are removed and file is searched again.

	[bookmark: key_index]--key-index

	
Create key index entries. Those are only useful for mobipacket reader,
they do not work on kindle.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

[bookmark: examples]EXAMPLES

 rfc2html rfc5996.txt
 rfc2html *.txt

[bookmark: files]FILES

	[bookmark: rfc2htmlrc]~/.rfc2htmlrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created based on the rfcmarkup version 1.90 to
convert RFCs to simple html suitable for kindle ebook conversion. The
rfcmarkup tries to keep formatting intact, while this actually removes
things which are not needed in ebooks, i.e page breaks and page
numbers, and makes text paragraphs as html paragraphs, instead of
using <pre> around the whole file.

OPS/wg.jpg
teas
Documents
2018-12-09

SO ¢

1 E T F

Kindle transformation by Tero Kivinen
024435

