

Working Group ID and RFC eBook

Introduction

This book is a collection of RFCs and Internet-Drafts related to
specific working group. The RFC and Internet-Drafts files are normally
stored in plain ascii text format and they are converted to html
suitable for eBook use by automatic scripts. Those scripts try to
detect headers, pictures, lists, references etc and create special
html for each of those. For text paragraphs those scripts remove
indentation and hard linebreaks and makes text paragraphs as normal
text so font size of the eBook can be adjusted at will and features
like text-to-speech work.

As this conversion is completely automatic there might be errors in
the converted files. I have tried to fix the issues when I find them,
but sometimes fixing issue in one RFC cause problems in others, so not
all errors can be easily fixed, this is especially true for very old
RFCs which do not follow the formatting specifications. If you notice
errors in the formatting please send email to the
<kivinen+rfc-ebook@iki.fi> and describle the problem.
Please, remember to include the RFC number and the version number of
the eBook file (found from the cover page).

As the collection of RFCs is quite large there has been some issues
with the conversion to kindle, and some features do not seem to work
properly when full set of RFCs is used. Because of this some
work-arounds have been made to make the eBook still usable. If the
kindle software gets updated some of those work-arounds might be
removed. For more information about those see the Conversion section.

The primary output format of the scripts is the .mobi
format used in the kindle, and I have been using Kindle 3 as my
primary testing device, so if other reader devices are used, there
might be more issues. The automatic tools also create the
.ePub file, which can be used on platforms which do not
support .mobi format. There is program called mobipocket for
reading .mobi files, and that program is available for wide
range of devices including PalmOS, Symbian, PC, Windows Mobile,
Blackberry etc, so also those devices can be used in addition to
normal eBook readers.

How to use this book

In this section I will concentrate mostly on how to use this on
Kindle 3. This eBook contains 5 main parts:

	Cover page

	This introduction

	Index

	RFCs and Internet-Drafts

	Description of the conversion process

The cover page includes the date when this
eBook was created (i.e. eBook version).

The conversion section includes technical information how this
eBook was created and some known issues etc.

Navigation

There are four main ways to navigate through the book in addition
to normal page up and down.

Fastest way to go to specific RFC or Internet-Draft is to press
menu button on the Kindle 3, and then select Index from
the menu. This will give you the automatic index of the contents of
the this file. This allows quick access to the RFC by just typing the
numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y
will jump you to the RFC 5996 and then you can use arrow down to
select RFC and hit enter to go there. For internet draft start typing
the draft name.

Another option is to use the RFC Index in the beginning of the file
(You can get to there by either pressing menu, selecting
Index and then clicking on the Index in the beginning
of the index, or by pressing menu, selecting Go to...
and then selecting Table of Contents).

Third option is to use left and right arrows to navigate the next
and previous RFC/Internet-Drafts.

The fourth way to navigate inside the book is to use the links
inside the files. The RFC Index has direct links to every 100th RFC.
Each file contains links to back 5, forward 5, next and previous rfc.
Also any reference inside the documents pointing to other RFCs gets
you directly there. Some of the links inside RFC moves you inside the
RFC, i.e. clicking link on the table of contents inside the RFC moves
you to that section etc. Also references inside the RFC will move you
to the refences section etc.

tictoc RFC and Internet-Draft Index

Index

Active

	draft-ietf-tictoc-1588v2-yang-10 YANG Data Model for IEEE 1588-2008

	draft-ietf-tictoc-ptp-enterprise-profile-11 Enterprise Profile for the Precision Time Protocol With Mixed Multicast and Unicast Messages

RFC

	RFC7384 Security Requirements of Time Protocols in Packet Switched Networks

	RFC8039 Multipath Time Synchronization

	RFC8173 Precision Time Protocol Version 2 (PTPv2) Management Information Base

Related Active

	draft-alavarez-hamelin-tictoc-sic-02 Synchronizing Internet Clock frequency protocol (sic)

draft-ietf-tictoc-1588v2-yang-10 - YANG Data Model for IEEE 1588-2008

Index
Next
Forward 5

Internet Working Group

Internet-Draft

Intended status: Standards Track

Expires: March 2019

Y. Jiang, Ed.

Huawei

X. Liu

Independent

J. Xu

Huawei

R. Cummings, Ed.

National Instruments

September 10, 2018

YANG Data Model for IEEE 1588-2008

draft-ietf-tictoc-1588v2-yang-10

Abstract

 This document defines a YANG data model for the configuration of
 IEEE 1588-2008 devices and clocks, and also retrieval of the
 configuration information, data set and running states of IEEE
 1588-2008 clocks. The YANG module in this document conforms to the
 Network Management Datastore Architecture (NMDA).

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with
 the provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

Internet‑Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet‑Drafts
as reference material or to cite them other than as "work in
progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

 This Internet-Draft will expire on March 10, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Conventions used in this document

	 1.2. Terminology

	2. IEEE 1588-2008 YANG Model hierarchy
	 2.1. Interpretations from IEEE 1588 Working Group

	 2.2. Configuration and state

	3. IEEE 1588-2008 YANG Module

	4. Security Considerations

	5. IANA Considerations

	6. References
	 6.1. Normative References

	 6.2. Informative References

	7. Acknowledgments

	Appendix A Transferring YANG Work to IEEE 1588 WG
	 A.1. Assumptions for the Transfer

	 A.2. Intellectual Property Considerations

	 A.3. Namespace and Module Name

	 A.4. IEEE 1588 YANG Modules in ASCII Format

1. Introduction

As a synchronization protocol, IEEE 1588‑2008 [IEEE1588] is widely
supported in the carrier networks, industrial networks, automotive
networks, and many other applications. It can provide high
precision time synchronization as fine as nano‑seconds. The
protocol depends on a Precision Time Protocol (PTP) engine to
decide its own state automatically, and a PTP transportation layer
to carry the PTP timing and various quality messages. The

 configuration parameters and state data sets of IEEE 1588-2008 are
 numerous.

According to the concepts described in [RFC3444], IEEE 1588‑2008
itself provides an information model in its normative
specifications for the data sets (in IEEE 1588‑2008 clause 8). Some
standardization organizations including the IETF have specified
data models in MIBs (Management Information Bases) for IEEE 1588‑
2008 data sets (e.g. [RFC8173], [IEEE8021AS]). These MIBs are
typically focused on retrieval of state data using the Simple
Network Management Protocol (SNMP), furthermore, configuration of
PTP data sets is not considered in [RFC8173].

 Some service providers and applications require that the management
 of the IEEE 1588-2008 synchronization network be flexible and more
 Internet-based (typically overlaid on their transport networks).
 Software Defined Network (SDN) is another driving factor, which
 demands an improved configuration capability of synchronization
 networks.

YANG [RFC7950] is a data modeling language used to model
configuration and state data manipulated by network management
protocols like the Network Configuration Protocol (NETCONF)
[RFC6241]. A small set of built‑in data types are defined in
[RFC7950], and a collection of common data types are further
defined in [RFC6991]. Advantages of YANG include Internet based
configuration capability, validation, rollback and so on. All of
these characteristics make it attractive to become another
candidate modeling language for IEEE 1588‑2008.

 This document defines a YANG data model for the configuration of
 IEEE 1588-2008 devices and clocks, and retrieval of the state data
 of IEEE 1588-2008 clocks. The data model is based on the PTP data
 sets as specified in [IEEE1588]. The technology specific IEEE 1588-
 2008 information, e.g., those specifically implemented by a bridge,
 a router or a telecom profile, is out of scope of this document.

 The YANG module in this document conforms to the Network Management
 Datastore Architecture (NMDA) [RFC8342].

 When used in practice, network products in support of
 synchronization typically conform to one or more IEEE 1588-2008
 profiles. Each profile specifies how IEEE 1588-2008 is used in a
 given industry (e.g. telecom, automotive) and application. A
 profile can require features that are optional in IEEE 1588-2008,
 and it can specify new features that use IEEE 1588-2008 as a
 foundation.

 It is expected that the IEEE 1588-2008 YANG module be used as
 follows:

o The IEEE 1588‑2008 YANG module can be used as‑is for products
that conform to one of the default profiles specified in IEEE 1588‑
2008.

o When the IEEE 1588 standard is revised (e.g. the IEEE 1588
revision in progress at the time of writing this document), it will
add some new optional features to its data sets. The YANG module
of this document MAY be revised and extended to support these new
features. Moreover, the YANG "revision" SHOULD be used to indicate
changes to the YANG module under such a circumstance.

o A profile standard based on IEEE 1588‑2008 may create a
dedicated YANG module for its profile. The profile's YANG module
SHOULD use YANG "import" to import the IEEE 1588‑2008 YANG module
as its foundation. Then the profile's YANG module SHOULD use YANG
"augment" to add any profile‑specific enhancements.

o A product that conforms to a profile standard can also create
its own YANG module. The product's YANG module SHOULD "import" the
profile's module, and then use YANG "augment" to add any product‑
specific enhancements.

1.1. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED",
"MAY", and "OPTIONAL" in this document are to be interpreted as
described in BCP 14 [RFC2119] [RFC8174] when, and only when, they
appear in all capitals, as shown here.

1.2. Terminology

 Most terminologies used in this document are extracted from
 [IEEE1588].

BC Boundary Clock, see Section 3.1.3 of [IEEE1588]

DS Data Set

E2E End‑to‑End

EUI Extended Unique Identifier

GPS Global Positioning System

IANA Internet Assigned Numbers Authority

IP Internet Protocol

NIST National Institute of Standards and Technology

NTP Network Time Protocol

OC Ordinary Clock, see Section 3.1.22 of [IEEE1588]

P2P Peer‑to‑Peer

PTP Precision Time Protocol

TAI International Atomic Time

TC Transparent Clock, see Section 3.1.46 of [IEEE1588]

UTC Coordinated Universal Time

 PTP data set

 Structured attributes of clocks (an OC, BC or TC) used for
 PTP protocol decisions and for providing values for PTP
 message fields, see Section 8 of [IEEE1588].

 PTP instance

 A PTP implementation in the device (i.e., an OC or BC)
 represented by a specific PTP data set.

2. IEEE 1588-2008 YANG Model hierarchy

 This section describes the hierarchy of an IEEE 1588-2008 YANG
 module. Query and configuration of device wide or port specific
 configuration information and clock data set are described for this
 version.

 Query and configuration of clock information include:

 (Note: The attribute names are consistent with IEEE 1588-2008, but
 changed to the YANG style, i.e., using all lower-case, with dashes
 between words.)

 - Clock data set attributes in a clock node, including: current-ds,
 parent-ds, default-ds, time-properties-ds, and transparent-clock-
 default-ds.

 - Port-specific data set attributes, including: port-ds and
 transparent-clock-port-ds.

 The readers are assumed to be familiar with IEEE 1588-2008. As all
 PTP terminologies and PTP data set attributes are described in
 details in IEEE 1588-2008 [IEEE1588], this document only outlines
 each of them in the YANG module.

A simplified YANG tree diagram [RFC8340] representing the data
model is typically used by YANG modules. This document uses the
same tree diagram syntax as described in [RFC8340].

module: ietf‑ptp
 +‑‑rw ptp
 +‑‑rw instance‑list* [instance‑number]
 | +‑‑rw instance‑number uint32
 | +‑‑rw default‑ds
 | | +‑‑rw two‑step‑flag? boolean
 | | +‑‑ro clock‑identity? clock‑identity‑type
 | | +‑‑rw number‑ports? uint16
 | | +‑‑rw clock‑quality
 | | | +‑‑rw clock‑class? uint8
 | | | +‑‑rw clock‑accuracy? uint8
 | | | +‑‑rw offset‑scaled‑log‑variance? uint16
 | | +‑‑rw priority1? uint8
 | | +‑‑rw priority2? uint8
 | | +‑‑rw domain‑number? uint8
 | | +‑‑rw slave‑only? boolean
 | +‑‑rw current‑ds
 | | +‑‑rw steps‑removed? uint16
 | | +‑‑rw offset‑from‑master? time‑interval‑type
 | | +‑‑rw mean‑path‑delay? time‑interval‑type
 | +‑‑rw parent‑ds
 | | +‑‑rw parent‑port‑identity
 | | | +‑‑rw clock‑identity? clock‑identity‑type
 | | | +‑‑rw port‑number? uint16
 | | +‑‑rw parent‑stats? boolean
 | | +‑‑rw observed‑parent‑offset‑scaled‑log‑variance? uint16
 | | +‑‑rw observed‑parent‑clock‑phase‑change‑rate? int32
 | | +‑‑rw grandmaster‑identity? clock‑identity‑type
 | | +‑‑rw grandmaster‑clock‑quality
 | | | +‑‑rw clock‑class? uint8
 | | | +‑‑rw clock‑accuracy? uint8
 | | | +‑‑rw offset‑scaled‑log‑variance? uint16
 | | +‑‑rw grandmaster‑priority1? uint8

 | | +‑‑rw grandmaster‑priority2? uint8
 | +‑‑rw time‑properties‑ds
 | | +‑‑rw current‑utc‑offset‑valid? boolean
 | | +‑‑rw current‑utc‑offset? int16
 | | +‑‑rw leap59? boolean
 | | +‑‑rw leap61? boolean
 | | +‑‑rw time‑traceable? boolean
 | | +‑‑rw frequency‑traceable? boolean
 | | +‑‑rw ptp‑timescale? boolean
 | | +‑‑rw time‑source? uint8
 | +‑‑rw port‑ds‑list* [port‑number]
 | +‑‑rw port‑number uint16
 | +‑‑rw port‑state? port‑state‑enumeration
 | +‑‑rw underlying‑interface? if:interface‑ref
 | +‑‑rw log‑min‑delay‑req‑interval? int8
 | +‑‑rw peer‑mean‑path‑delay? time‑interval‑type
 | +‑‑rw log‑announce‑interval? int8
 | +‑‑rw announce‑receipt‑timeout? uint8
 | +‑‑rw log‑sync‑interval? int8
 | +‑‑rw delay‑mechanism? delay‑mechanism‑enumeration
 | +‑‑rw log‑min‑pdelay‑req‑interval? int8
 | +‑‑rw version‑number? uint8
 +‑‑rw transparent‑clock‑default‑ds
 | +‑‑ro clock‑identity? clock‑identity‑type
 | +‑‑rw number‑ports? uint16
 | +‑‑rw delay‑mechanism? delay‑mechanism‑enumeration
 | +‑‑rw primary‑domain? uint8
 +‑‑rw transparent‑clock‑port‑ds‑list* [port‑number]
 +‑‑rw port‑number uint16
 +‑‑rw log‑min‑pdelay‑req‑interval? int8
 +‑‑rw faulty‑flag? boolean
 +‑‑rw peer‑mean‑path‑delay? time‑interval‑type

2.1. Interpretations from IEEE 1588 Working Group

The preceding model and the associated YANG module have some subtle
differences from the data set specifications of IEEE Std 1588‑2008.
These differences are based on interpretation from the IEEE 1588
Working Group, and are intended to provide compatibility with
future revisions of the IEEE 1588 standard.

In IEEE Std 1588‑2008, a physical product can implement multiple
PTP clocks (i.e., ordinary, boundary, or transparent clock). As
specified in 1588‑2008 subclause 7.1, each of the multiple clocks
operates in an independent domain. However, the organization of
multiple PTP domains was not clear in the data sets of IEEE Std
1588‑2008. This document introduces the concept of PTP instance as
described in the new revision of IEEE 1588. The instance concept is
used exclusively to allow for optional support of multiple domains.
The instance number has no usage within PTP messages.

 Based on statements in IEEE 1588-2008 subclauses 8.3.1 and 10.1,
 most transparent clock products have interpreted the transparent
 clock data sets to reside as a singleton at the root level of the
 managed product, and this YANG model reflects that location.

2.2. Configuration and state

 The information model of IEEE Std 1588-2008 classifies each member
 in PTP data sets as one of the following:

 - Configurable: Writable by management.

‑ Dynamic: Read‑only to management, and the value is changed by
1588 protocol operation.

 - Static: Read-only to management, and the value typically does not
 change.

For details on the classification of each PTP data set member,
refer to the IEEE Std 1588‑2008 specification for that member.

Under certain circumstances, the classification of an IEEE 1588
data set member may change for a YANG implementation, for example,
a configurable member needs to be changed to read‑only. In such a
case, an implementation MAY choose to return a warning upon writing
to a read‑only member, or use the deviation mechanism to develop a
new deviation model as described in Section 7.20.3 of [RFC7950].

3. IEEE 1588-2008 YANG Module

 This module imports typedef "interface-ref" from [RFC8343]. Most
 attributes are based on the information model defined in [IEEE1588],
 but their names are adapted to the YANG style of naming.

<CODE BEGINS> file "ietf‑ptp@2018‑09‑10.yang"
//Note to RFC Editor: update the date to date of publication
module ietf‑ptp {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑ptp";
 prefix "ptp";

 import ietf‑interfaces {
 prefix if;
 reference
 "RFC8343: A YANG Data Model for Interface Management";
 }

 organization "IETF TICTOC Working Group";
 contact
 "WG Web: http://tools.ietf.org/wg/tictoc/
 WG List: <mailto:tictoc@ietf.org>
 Editor: Yuanlong Jiang
 <mailto:jiangyuanlong@huawei.com>
 Editor: Rodney Cummings
 mailto:rodney.cummings@ni.com";
 description
 "This YANG module defines a data model for the configuration
 of IEEE 1588‑2008 clocks, and also for retrieval of the state
 data of IEEE 1588‑2008 clocks.";

 revision "2018‑09‑10" {
 //Note to RFC Editor: update the date to date of publication
 description "Initial version";
 reference "RFC XXXX: YANG Data Model for IEEE 1588‑2008";
 //Note to RFC Editor: update RFC XXXX to the actual RFC number

 }

typedef delay‑mechanism‑enumeration {
 type enumeration {
 enum e2e {
 value 1;
 description
 "The port uses the delay request‑response mechanism.";
 }

 enum p2p {
 value 2;
 description
 "The port uses the peer delay mechanism.";
 }
 enum disabled {
 value 254;
 description
 "The port does not implement any delay mechanism.";
 }
 }
 description
 "The propagation delay measuring option used by the
 port. Values for this enumeration are specified
 by the IEEE 1588 standard exclusively.";
 reference
 "IEEE Std 1588‑2008: 8.2.5.4.4";
}

typedef port‑state‑enumeration {
 type enumeration {
 enum initializing {
 value 1;
 description
 "The port is initializing its data sets, hardware, and
 communication facilities.";
 }
 enum faulty {
 value 2;
 description
 "The port is in the fault state.";
 }
 enum disabled {
 value 3;
 description
 "The port is disabled, and is not communicating PTP
 messages (other than possibly PTP management
 messages).";
 }
 enum listening {
 value 4;
 description
 "The port is listening for an Announce message.";
 }
 enum pre‑master {
 value 5;
 description

 "The port is in the pre‑master state.";
 }
 enum master {
 value 6;
 description
 "The port is behaving as a master port.";
 }
 enum passive {
 value 7;
 description
 "The port is in the passive state.";
 }
 enum uncalibrated {
 value 8;
 description
 "A master port has been selected, but the port is still
 in the uncalibrated state.";
 }
 enum slave {
 value 9;
 description
 "The port is synchronizing to the selected master port.";
 }
 }

 description
 "The current state of the protocol engine associated
 with the port. Values for this enumeration are specified
 by the IEEE 1588 standard exclusively.";
 reference
 "IEEE Std 1588‑2008: 8.2.5.3.1, 9.2.5";
}

typedef time‑interval‑type {
 type int64;
 description
 "Derived data type for time interval, represented in units of
 nanoseconds and multiplied by 2^16";
 reference
 "IEEE Std 1588‑2008: 5.3.2";
}

typedef clock‑identity‑type {
 type binary {
 length "8";
 }
 description

 "Derived data type to identify a clock";
 reference
 "IEEE Std 1588‑2008: 5.3.4";
}

grouping clock‑quality‑grouping {
 description
 "Derived data type for quality of a clock, which contains
 clockClass, clockAccuracy and offsetScaledLogVariance.";
 reference
 "IEEE Std 1588‑2008: 5.3.7";

 leaf clock‑class {
 type uint8;
 default 248;
 description
 "The clockClass denotes the traceability of the time
 or frequency distributed by the clock.";
 }

 leaf clock‑accuracy {
 type uint8;
 description
 "The clockAccuracy indicates the expected accuracy
 of the clock.";
 }

 leaf offset‑scaled‑log‑variance {
 type uint16;
 description
 "The offsetScaledLogVariance provides an estimate of
 the variations of the clock from a linear timescale
 when it is not synchronized to another clock
 using the protocol.";
 }
}

container ptp {
 description
 "The PTP struct containing all attributes of PTP data set,
 other optional PTP attributes can be augmented as well.";

 list instance-list {

 key "instance-number";

description
 "List of one or more PTP data sets in the device (see IEEE
 Std 1588‑2008 subclause 6.3).
 Each PTP data set represents a distinct instance of
 PTP implementation in the device (i.e., distinct
 Ordinary Clock or Boundary Clock).";

leaf instance‑number {
 type uint32;
 description
 "The instance number of the current PTP instance.
 This instance number is used for management purposes
 only. This instance number does not represent the PTP
 domain number, and is not used in PTP messages.";
}

container default‑ds {
 description
 "The default data set of the clock (see IEEE Std
 1588‑2008 subclause 8.2.1). This data set represents
 the configuration/state required for operation
 of Precision Time Protocol (PTP) state machines.";

 leaf two‑step‑flag {
 type boolean;
 description
 "When set to true, the clock is a two‑step clock;
 otherwise,the clock is a one‑step clock.";
 }

 leaf clock‑identity {
 type clock‑identity‑type;
 config false;
 description
 "The clockIdentity of the local clock";
 }

 leaf number‑ports {
 type uint16;
 description
 "The number of PTP ports on the instance.";
 }

 container clock‑quality {
 description
 "The clockQuality of the local clock.";

 uses clock‑quality‑grouping;
 }

 leaf priority1 {
 type uint8;
 description
 "The priority1 attribute of the local clock.";
 }

 leaf priority2{
 type uint8;
 description
 "The priority2 attribute of the local clock.";
 }

 leaf domain‑number {
 type uint8;
 description
 "The domain number of the current syntonization
 domain.";
 }

 leaf slave‑only {
 type boolean;
 description
 "When set to true, the clock is a slave‑only clock.";
 }

 }

container current‑ds {
 description
 "The current data set of the clock (see IEEE Std
 1588‑2008 subclause 8.2.2). This data set represents
 local states learned from the exchange of
 Precision Time Protocol (PTP) messages.";

 leaf steps‑removed {
 type uint16;
 default 0;
 description
 "The number of communication paths traversed
 between the local clock and the grandmaster clock.";
 }

 leaf offset-from-master {

 type time-interval-type;

 description
 "The current value of the time difference between
 a master and a slave clock as computed by the slave.";
}

leaf mean‑path‑delay {
 type time‑interval‑type;
 description
 "The current value of the mean propagation time between
 a master and a slave clock as computed by the slave.";

 }

 }

container parent‑ds {
 description
 "The parent data set of the clock (see IEEE Std 1588‑2008
 subclause 8.2.3).";

 container parent‑port‑identity {
 description
 "The portIdentity of the port on the master, it
 contains two members: clockIdentity and portNumber.";
 reference
 "IEEE Std 1588‑2008: 5.3.5";

 leaf clock‑identity {
 type clock‑identity‑type;
 description
 "Identity of the clock";
 }

 leaf port‑number {
 type uint16;
 description
 "Port number";
 }
 }

 leaf parent‑stats {
 type boolean;
 default false;
 description
 "When set to true, the values of
 observedParentOffsetScaledLogVariance and
 observedParentClockPhaseChangeRate of parentDS

 have been measured and are valid.";
 }

 leaf observed‑parent‑offset‑scaled‑log‑variance {
 type uint16;
 default 65535;
 description
 "An estimate of the parent clock's PTP variance
 as observed by the slave clock.";
 }

 leaf observed‑parent‑clock‑phase‑change‑rate {
 type int32;
 description
 "An estimate of the parent clock's phase change rate
 as observed by the slave clock.";
 }

 leaf grandmaster‑identity {
 type clock‑identity‑type;
 description
 "The clockIdentity attribute of the grandmaster clock.";
 }

 container grandmaster‑clock‑quality {
 description
 "The clockQuality of the grandmaster clock.";
 uses clock‑quality‑grouping;
 }

 leaf grandmaster‑priority1 {
 type uint8;
 description
 "The priority1 attribute of the grandmaster clock.";
 }

 leaf grandmaster‑priority2 {
 type uint8;
 description
 "The priority2 attribute of the grandmaster clock.";
 }

 }

container time‑properties‑ds {
 description
 "The timeProperties data set of the clock (see

 IEEE Std 1588-2008 subclause 8.2.4).";

 leaf current‑utc‑offset‑valid {
 type boolean;
 description
 "When set to true, the current UTC offset is valid.";
 }
 leaf current‑utc‑offset {
 when "../current‑utc‑offset‑valid='true'";
 type int16;
 description
 "The offset between TAI and UTC when the epoch of the
 PTP system is the PTP epoch in units of seconds, i.e.,
 when ptp‑timescale is TRUE; otherwise, the value has
 no meaning.";
 }

 leaf leap59 {
 type boolean;
 description
 "When set to true, the last minute of the current UTC
 day contains 59 seconds.";
 }

 leaf leap61 {
 type boolean;
 description
 "When set to true, the last minute of the current UTC
 day contains 61 seconds.";
 }

 leaf time‑traceable {
 type boolean;
 description
 "When set to true, the timescale and the
 currentUtcOffset are traceable to a primary
 reference.";
 }

 leaf frequency‑traceable {
 type boolean;
 description
 "When set to true, the frequency determining the
 timescale is traceable to a primary reference.";
 }

 leaf ptp‑timescale {
 type boolean;
 description
 "When set to true, the clock timescale of the
 grandmaster clock is PTP; otherwise, the timescale is
 ARB
 (arbitrary).";
 }

 leaf time‑source {
 type uint8;
 description
 "The source of time used by the grandmaster clock.";
 }
}

list port‑ds‑list {
 key "port‑number";
 description
 "List of port data sets of the clock (see IEEE Std
 1588‑2008 subclause 8.2.5).";

 leaf port-number {

 type uint16;

 description
 "Port number.
 The data sets (i.e., information model) of IEEE Std
 1588‑2008 specify a member portDS.portIdentity, which
 uses a typed struct with members clockIdentity and
 portNumber.

 In this YANG data model, portIdentity is not modeled
 in the port‑ds‑list, however, its members are provided
 as follows:
 portIdentity.portNumber is provided as this port‑
 number leaf in port‑ds‑list; and
 portIdentity.clockIdentity is provided as the clock‑
 identity leaf in default‑ds of the instance
 (i.e., ../../default‑ds/clock‑identity).";
}

leaf port‑state {
 type port‑state‑enumeration;
 default "initializing";
 description
 "Current state associated with the port.";

 }

leaf underlying‑interface {
 type if:interface‑ref;
 description
 "Reference to the configured underlying interface that
 is used by this PTP Port (see RFC 8343).";
}

leaf log‑min‑delay‑req‑interval {
 type int8;
 description
 "The base‑two logarithm of the minDelayReqInterval
 (the minimum permitted mean time interval between
 successive Delay_Req messages).";
}

leaf peer‑mean‑path‑delay {
 type time‑interval‑type;
 default 0;
 description
 "An estimate of the current one‑way propagation delay
 on the link when the delayMechanism is P2P; otherwise,
 it is zero.";
}

leaf log‑announce‑interval {
 type int8;
 description
 "The base‑two logarithm of the mean
 announceInterval (mean time interval between
 successive Announce messages).";
}

leaf announce‑receipt‑timeout {
 type uint8;
 description
 "The number of announceInterval that have to pass
 without receipt of an Announce message before the
 occurrence of the event ANNOUNCE_RECEIPT_TIMEOUT_
 EXPIRES.";
}

leaf log‑sync‑interval {
 type int8;
 description
 "The base‑two logarithm of the mean SyncInterval

 for multicast messages. The rates for unicast
 transmissions are negotiated separately on a per port
 basis and are not constrained by this attribute.";
}

leaf delay‑mechanism {
 type delay‑mechanism‑enumeration;
 description
 "The propagation delay measuring option used by the
 port in computing meanPathDelay.";
}

leaf log‑min‑pdelay‑req‑interval {
 type int8;
 description
 "The base‑two logarithm of the
 minPdelayReqInterval (minimum permitted mean time
 interval between successive Pdelay_Req messages).";

 }

 leaf version‑number {
 type uint8;
 description
 "The PTP version in use on the port.";
 }

 }
}

container transparent‑clock‑default‑ds {
 description
 "The members of the transparentClockDefault data set (see
 IEEE Std 1588‑2008 subclause 8.3.2).";

 leaf clock‑identity {
 type clock‑identity‑type;
 config false;
 description
 "The clockIdentity of the transparent clock.";
 }

 leaf number‑ports {
 type uint16;
 description
 "The number of PTP ports on the transparent clock.";
 }

 leaf delay‑mechanism {
 type delay‑mechanism‑enumeration;
 description
 "The propagation delay measuring option
 used by the transparent clock.";
 }

 leaf primary‑domain {
 type uint8;
 default 0;
 description
 "The domainNumber of the primary syntonization domain (see
 IEEE Std 1588‑2008 subclause 10.1).";
 }
}

list transparent‑clock‑port‑ds‑list {
 key "port‑number";
 description
 "List of transparentClockPort data sets of the transparent
 clock (see IEEE Std 1588‑2008 subclause 8.3.3).";

 leaf port‑number {
 type uint16;
 description
 "Port number.
 The data sets (i.e., information model) of IEEE Std
 1588‑2008 specify a member
 transparentClockPortDS.portIdentity, which uses a typed
 struct with members clockIdentity and portNumber.

 In this YANG data model, portIdentity is not modeled in
 the transparent‑clock‑port‑ds‑list, however, its
 members are provided as follows:
 portIdentity.portNumber is provided as this leaf member
 in transparent‑clock‑port‑ds‑list; and
 portIdentity.clockIdentity is provided as the clock‑
 identity leaf in transparent‑clock‑default‑ds
 (i.e., ../../transparent‑clock‑default‑ds/clock‑
 identity).";

 }

 leaf log-min-pdelay-req-interval {

 type int8;

 description
 "The logarithm to the base 2 of the
 minPdelayReqInterval (minimum permitted mean time
 interval between successive Pdelay_Req messages).";
 }

 leaf faulty‑flag {
 type boolean;
 default false;
 description
 "When set to true, the port is faulty.";
 }

 leaf peer‑mean‑path‑delay {
 type time‑interval‑type;
 default 0;
 description
 "An estimate of the current one‑way propagation delay
 on the link when the delayMechanism is P2P; otherwise,
 it is zero.";
 }

 }
 }
}

 <CODE ENDS>

4. Security Considerations

The YANG module specified in this document defines a schema for
data that is designed to be accessed via network management
protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The
lowest NETCONF layer is the secure transport layer, and the
mandatory‑to‑implement secure transport is Secure Shell (SSH)
[RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory‑
to‑implement secure transport is TLS [RFC8446]. Furthermore,
general security considerations of time protocols are discussed in
[RFC7384].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 There are a number of data nodes defined in this YANG module are
 writable, and the involved subtrees that are sensitive include:
 /ptp/instance-list specifies an instance (i.e., PTP data sets) for
 an OC or BC.

/ptp/transparent‑clock‑default‑ds specifies a default data set for
a TC.

 /ptp/transparent-clock-port-ds-list specifies a list of port data
 sets for a TC.

 Write operations (e.g., edit-config) to these data nodes without
 proper protection can have a negative effect on network operations.
 Specifically, an inappropriate configuration of them may adversely
 impact a PTP synchronization network. For example, loss of
 synchronization on a clock, accuracy degradation on a set of clocks,
 or even break down of a whole synchronization network.

5. IANA Considerations

This document registers the following URI in the "IETF XML
registry" [RFC3688]:
URI: urn:ietf:params:xml:ns:yang:ietf‑ptp
Registrant Contact: The IESG
XML: N/A; the requested URI is an XML namespace

This document registers the following YANG module in the "YANG
Module Names" registry [RFC6020]:
Name: ietf‑ptp
Namespace: urn:ietf:params:xml:ns:yang:ietf‑ptp
Prefix: ptp
Reference: RFC XXXX

6. References

6.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997

 [RFC3688]
 Mealling, M., "The IETF XML Registry", RFC 3688,
 January 2004

 [RFC6020]
 Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF) ", RFC 6020,
 October 2010

 [RFC6241]
 Enns, R., Bjorklund, M., Schoenwaelder, J., and Bierman,
 A., "Network Configuration Protocol (NETCONF)", RFC 6241,
 June 2011

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, June 2011

 [RFC6991]
 Schoenwaelder, J., "Common YANG Data Types", RFC 6991,
 July 2013

 [RFC7950]
 Bjorklund, M., "The YANG 1.1 Data Modeling Language", RFC
 7950, August 2016

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

 Protocol", RFC 8040, January 2017

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, May 2017

 [RFC8341]
 Bierman, A. and Bjorklund, M., "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 8341, March
 2018

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, March 2018

 [RFC8343]
 Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, March 2018

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS)
 Protocol Version 1.3", RFC 8446, August 2018

 [IEEE1588]
 IEEE, "IEEE Standard for a Precision Clock
 Synchronization Protocol for Networked Measurement and
 Control Systems", IEEE Std 1588-2008, July 2008

6.2. Informative References

 [IEEE8021AS]
 IEEE, "Timing and Synchronizations for Time-Sensitive
 Applications in Bridged Local Area Networks", IEEE
 802.1AS-2001, 2011

 [RFC3444]
 Pras, A. and J. Schoenwaelder, "On the Difference between
 Information Models and Data Models", RFC 3444, January
 2003

 [RFC4663]
 Harrington, D., "Transferring MIB Work from IETF Bridge
 MIB WG to IEEE 802.1 WG", RFC 4663, September 2006

 [RFC7384]
 Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, October 2014

 [RFC8340]
 Bjorklund, M., and Berger, L., "YANG Tree Diagrams", RFC
 8340, March 2018

 [RFC8173]
 Shankarkumar, V., Montini, L., Frost, T., and Dowd, G.,
 "Precision Time Protocol Version 2 (PTPv2) Management
 Information Base", RFC 8173, June 2017

7. Acknowledgments

 The authors would like to thank Tom Petch, Mahesh Jethanandani, Tal
 Mizrahi, Opher Ronen, Liang Geng, Alex Campbell, Joe Gwinn, John
 Fletcher, William Zhao and Dave Thaler for their valuable reviews
 and suggestions, thank Benoit Claise and Radek Krejci for their
 validation of the YANG module, and thank Jingfei Lv and Zitao Wang
 for their discussions on IEEE 1588 and YANG respectively.

Appendix A Transferring YANG Work to IEEE 1588 WG

 This Appendix is informational.

 This appendix describes a future plan to transition responsibility
 for IEEE 1588 YANG modules from the IETF TICTOC Working Group (WG)
 to the IEEE 1588 WG, which develops the time synchronization
 technology that the YANG modules are designed to manage.

 This appendix is forward-looking with regard to future
 standardization roadmaps in IETF and IEEE. Since those roadmaps
 cannot be predicted with significant accuracy, this appendix is
 informational, and it does not specify imperatives or normative
 specifications of any kind.

The IEEE 1588‑2008 YANG module of this standard represents a
cooperation between IETF (for YANG) and IEEE (for 1588). For the
initial standardization of IEEE‑1588 YANG modules, the information
model is relatively clear (i.e., IEEE 1588 data sets), but
expertise in YANG is required, making IETF an appropriate location
for the standards. The TICTOC WG has expertise with IEEE 1588,
making it the appropriate location within IETF.

The IEEE 1588 WG anticipates future changes to its standard on an
ongoing basis. As IEEE 1588 WG members gain practical expertise
with YANG, the IEEE 1588 WG will become more appropriate for
standardization of its YANG modules. As the IEEE 1588 standard is
revised and/or amended, IEEE 1588 members can more effectively
synchronize the revision of this YANG module with future versions
of the IEEE 1588 standard.

This appendix is meant to establish some clear expectations between
IETF and IEEE about the future transfer of IEEE 1588 YANG modules
to the IEEE 1588 WG. The goal is to assist in making the future
transfer as smooth as possible. As the transfer takes place, some
case‑by‑case situations are likely to arise, which can be handled
by discussion on the IETF TICTOC WG mailing lists and/or
appropriate liaisons.

This appendix obtained insight from [RFC4663], an informational
memo that described a similar transfer of MIB work from the IETF
Bridge MIB WG to the IEEE 802.1 WG.

A.1. Assumptions for the Transfer

For the purposes of discussion in this appendix, assume that the
IESG has approved the publication of an RFC containing a YANG
module for a published IEEE 1588 standard. As of this writing,
this is IEEE Std 1588‑2008, but it is possible that YANG modules
for subsequent 1588 revisions could be published from the IETF
TICTOC WG. For discussion in this appendix, we use the phrase
"last IETF 1588 YANG" to refer to the most recently published 1588
YANG module from the IETF TICTOC WG.

The IEEE‑SA Standards Board New Standards Committee (NesCom)
handles new Project Authorization Requests (PARs) (see
http://standards.ieee.org/board/nes/). PARs are roughly the
equivalent of IETF Working Group Charters and include information
concerning the scope, purpose, and justification for
standardization projects.

 Assume that IEEE 1588 has an approved PAR that explicitly specifies
 development of a YANG module. The transfer of YANG work will occur
 in the context of this IEEE 1588 PAR. For discussion in this
 appendix, we use the phrase "first IEEE 1588 YANG" to refer to the
 first IEEE 1588 standard for YANG.

Assume that as part of the transfer of YANG work, the IETF TICTOC
WG agrees to cease all work on standard YANG modules for IEEE 1588.

 Assume that the IEEE 1588 WG has participated in the development of
 the last IETF 1588 YANG module, such that the first IEEE 1588 YANG
 module will effectively be a revision of it. In other words, the
 transfer of YANG work will be relatively clean.

The actual conditions for the future transfer can be such that the
preceding assumptions do not hold. Exceptions to the assumptions
will need to be addressed on a case‑by‑case basis at the time of
the transfer. This appendix describes topics that can be addressed
based on the preceding assumptions.

A.2. Intellectual Property Considerations

During review of the legal issues associated with transferring
Bridge MIB WG documents to the IEEE 802.1 WG (Section 3.1 and
Section 9 of [RFC4663]), it was concluded that the IETF does not
have sufficient legal authority to make the transfer to IEEE
without the consent of the document authors.

 If the last IETF 1588 YANG is published as a RFC, the work is
 required to be transferred from the IETF to the IEEE, so that IEEE
 1588 WG can begin working on the first IEEE 1588 YANG.

When work on the first IEEE YANG module begins in the IEEE 1588 WG,
that work derives from the last IETF YANG module of this RFC,
requiring a transfer of that work from the IETF to the IEEE. In
order to avoid having the transfer of that work be dependent on the
availability of this RFC's authors at the time of its publication,
the IEEE Standards Association department of Risk Management and
Licensing provided the appropriate forms and mechanisms for this
document's authors to assign a non‑exclusive license for IEEE to
create derivative works from this document. Those IEEE forms and
mechanisms will be updated as needed for any future IETF YANG
modules for IEEE 1588 (The signed forms are held by the IEEE
Standards Association department of Risk Management and Licensing.).
This will help to make the future transfer of work from IETF to
IEEE occur as smoothly as possible.

 As stated in the initial "Status of this Memo", the YANG module in
 this document conforms to the provisions of BCP 78. The IETF will
 retain all the rights granted at the time of publication in the
 published RFCs.

A.3. Namespace and Module Name

 As specified in Section 5 "IANA Considerations", the YANG module in
 this document uses IETF as the root of its URN namespace and YANG
 module name.

Use of IETF as the root of these names implies that the YANG module
is standardized in a Working Group of IETF, using the IETF
processes. If the IEEE 1588 Working Group were to continue using
these names rooted in IETF, the IEEE 1588 YANG standardization
would need to continue in the IETF. The goal of transferring the
YANG work is to avoid this sort of dependency between standards
organizations.

IEEE 802 has an active PAR (IEEE P802d) for creating a URN
namespace for IEEE use (see
http://standards.ieee.org/develop/project/802d.html). It is likely
that this IEEE 802 PAR will be approved and published prior to the
transfer of YANG work to the IEEE 1588 WG. If so, the IEEE 1588 WG
can use the IEEE URN namespace for the first IEEE 1588 YANG module,
such as:

 urn:ieee:Std:1588:yang:ieee1588-ptp

 where "ieee1588-ptp" is the registered YANG module name in the IEEE.

 Under the assumptions of section A.1, the first IEEE 1588 YANG
 module prefix can be the same as the last IETF 1588 YANG module
 prefix (i.e. "ptp"), since the nodes within both YANG modules are
 compatible.

 The result of these name changes are that for complete
 compatibility, a server (i.e., IEEE 1588 node) can choose to
 implement a YANG module for the last IETF 1588 YANG module (with
 IETF root) as well as the first IEEE 1588 YANG module (with IEEE
 root). Since the content of the YANG module transferred are the
 same, the server implementation is effectively common for both.

 From a client's perspective, a client of the last IETF 1588 YANG
 module (or earlier) looks for the IETF-rooted module name; and a
 client of the first IEEE 1588 YANG module (or later) looks for the
 IEEE-rooted module name.

A.4. IEEE 1588 YANG Modules in ASCII Format

Although IEEE 1588 can certainly decide to publish YANG modules
only in the PDF format that they use for their standard documents,
without publishing an ASCII version, most network management
systems cannot import the YANG module directly from the PDF. Thus,
not publishing an ASCII version of the YANG module would negatively
impact implementers and deployers of YANG modules and would make
potential IETF reviews of YANG modules more difficult.

This appendix recommends that the IEEE 1588 WG consider future
plans for:

 o Public availability of the ASCII YANG modules during project
 development. These ASCII files allow IETF participants to access
 these documents for pre-standard review purposes.

o Public availability of the YANG portion of published IEEE 1588
 standards, provided as an ASCII file for each YANG module.
 These ASCII files are intended for use of the published IEEE
 1588 standard.

 As an example of public availability during project development,
 IEEE 802 uses the same repository that IETF uses for YANG module
 development (see https://github.com/YangModels/yang). IEEE branches
 are provided for experimental work (i.e. pre-PAR) as well as
 standard work (post-PAR drafts). IEEE-SA has approved use of this
 repository for project development, but not for published standards.
 As an example of public availability of YANG modules for published
 standards, IEEE 802.1 provides a public list of ASCII files for MIB
 (see http://www.ieee802.org/1/files/public/MIBs/ and
 http://www.ieee802.org/1/pages/MIBS.html), and analogous lists are
 planned for IEEE 802.1 YANG files.

Authors' Addresses

Yuanlong Jiang (Editor)
Huawei Technologies Co., Ltd.
Bantian, Longgang district
Shenzhen 518129, China
Email: jiangyuanlong@huawei.com

Xian Liu
Independent
Shenzhen 518129, China
lene.liuxian@foxmail.com

Jinchun Xu
Huawei Technologies Co., Ltd.
Bantian, Longgang district
Shenzhen 518129, China
xujinchun@huawei.com

Rodney Cummings (Editor)
National Instruments
11500 N. Mopac Expwy
Bldg. C
Austin, TX 78759‑3504
Email: Rodney.Cummings@ni.com

draft-ietf-tictoc-ptp-enterprise-profile-11 - TICTOC Working Group Doug Arnold I

Index
Prev
Next
Forward 5

INTERNET-DRAFT

Enterprise Profile for PTP July 2018

TICTOC Working Group Doug Arnold Internet Draft Meinberg-USA Intended status: Standards Track Heiko Gerstung Meinberg Expires: January 31, 2019

 Enterprise Profile for the Precision Time Protocol

 With Mixed Multicast and Unicast Messages

 draft-ietf-tictoc-ptp-enterprise-profile-11.txt

Status of this Memo
 This Internet‑Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. This document may not be
 modified, and derivative works of it may not be created, except to
 publish it as an RFC and to translate it into languages other than
 English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

 This Internet-Draft will expire on January 31, 2019.

Copyright Notice
 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

Abstract

This document describes a profile for the use of the Precision
Time Protocol in an IPV4 or IPv6 Enterprise information system
environment. The profile uses the End to End Delay Measurement
Mechanism, allows both multicast and unicast Delay Request and Delay
Response Messages.

Table of Contents

	1. Introduction

	2. Conventions used in this document

	3. Technical Terms

	4. Problem Statement

	5. Network Technology

	6. Time Transfer and Delay Measurement

	7. Default Message Rates

	8. Requirements for Master Clocks

	9. Requirements for Slave Clocks

	10. Requirements for Transparent Clocks

	11. Requirements for Boundary Clocks

	12. Management and Signaling Messages

	13. Forbidden PTP Options

	14. Interoperation with Other PTP Profiles

	15. Profile Identification

	16. Security Considerations

	17. IANA Considerations

	18. References
					 18.1. Normative References

	 18.2. Informative References

	19. Acknowledgments

	20. Authors addresses

1. Introduction

 The Precision Time Protocol ("PTP"), standardized in IEEE 1588,
 has been designed in its first version (IEEE 1588-2002) with the
 goal to minimize configuration on the participating nodes. Network
 communication was based solely on multicast messages, which unlike
 NTP did not require that a receiving node ("slave clock") in
 [IEEE1588] needs to know the identity of the time sources in the
 network (the Master Clocks).

 The "Best Master Clock Algorithm" ([IEEE1588] Subclause 9.3), a

 mechanism that all participating PTP nodes must follow, set up
 strict rules for all members of a PTP domain to determine which
 node shall be the active sending time source (Master Clock).
 Although the multicast communication model has advantages in
 smaller networks, it complicated the application of PTP in larger
 networks, for example in environments like IP based
 telecommunication networks or financial data centers. It is
 considered inefficient that, even if the content of a message
 applies only to one receiver, it is forwarded by the underlying
 network (IP) to all nodes, requiring them to spend network
 bandwidth and other resources, such as CPU cycles, to drop the
 message.

 The second revision of the standard (IEEE 1588-2008) is the
 current version (also known as PTPv2) and introduced the
 possibility to use unicast communication between the PTP nodes in
 order to overcome the limitation of using multicast messages for
 the bi-directional information exchange between PTP nodes. The
 unicast approach avoided that, in PTP domains with a lot of nodes,
 devices had to throw away more than 99% of the received multicast
 messages because they carried information for some other node.
 PTPv2 also introduced PTP profiles ([IEEE1588] subclause 19.3).
 This construct allows organizations to specify selections of
 attribute values and optional features, simplifying the
 configuration of PTP nodes for a specific application. Instead of
 having to go through all possible parameters and configuration
 options and individually set them up, selecting a profile on a PTP
 node will set all the parameters that are specified in the profile
 to a defined value. If a PTP profile definition allows multiple
 values for a parameter, selection of the profile will set the
 profile-specific default value for this parameter. Parameters not
 allowing multiple values are set to the value defined in the PTP
 profile. Many PTP features and functions are optional, and a
 profile should also define which optional features of PTP are
 required, permitted, or prohibited. It is possible to extend the
 PTP standard with a PTP profile by using the TLV mechanism of PTP
 (see [IEEE1588] subclause 13.4), defining an optional Best Master
 Clock Algorithm and a few other ways. PTP has its own management
 protocol (defined in [IEEE1588] subclause 15.2) but allows a PTP
 profile specify an alternative management mechanism, for example
 SNMP.

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL"
 in this document are to be interpreted as described in RFC-2119
 [RFC2119].

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to
 be interpreted as carrying RFC-2119 significance.

3. Technical Terms

 Acceptable Master Table: A PTP Slave Clock may maintain a list of
 masters which it is willing to synchronize to.

 Alternate Master: A PTP Master Clock, which is not the Best
 Master, may act as a master with the Alternate Master flag set on
 the messages it sends.

 Announce message: Contains the Master Clock properties of a Master
 Clock. Used to determine the Best Master.

Best Master: A clock with a port in the master state, operating
consistently with the Best Master Clock Algorithm.

 Best Master Clock Algorithm: A method for determining which state
 a port of a PTP clock should be in. The algorithm works by
 identifying which of several PTP Master capable clocks is the best
 master. Clocks have priority to become the acting Grandmaster,
 based on the properties each Master Clock sends in its Announce
 Message.

 Boundary Clock: A device with more than one PTP port. Generally
 boundary Clocks will have one port in slave state to receive
 timing and then other ports in master state to re-distribute the
 timing.

Clock Identity: In IEEE 1588‑2008 this is a 64‑bit number
assigned to each PTP clock which must be unique. Often it is
 derived from the Ethernet MAC address, since there is already an
international infrastructure for assigning unique numbers to each
device manufactured.

 Domain: Every PTP message contains a domain number. Domains are
 treated as separate PTP systems in the network. Clocks, however,
 can combine the timing information derived from multiple domains.

 End to End Delay Measurement Mechanism: A network delay
 measurement mechanism in PTP facilitated by an exchange of
 messages between a Master Clock and Slave Clock.

 Grandmaster: the primary Master Clock within a domain of a PTP
 system

 IEEE 1588: The timing and synchronization standard which defines
 PTP, and describes the node, system, and communication properties
 necessary to support PTP.

 Master Clock: a clock with at least one port in the master state.

 NTP: Network Time Protocol, defined by RFC 5905, see [NTP].

 Ordinary Clock: A clock that has a single Precision Time Protocol
 (PTP) port in a domain and maintains the timescale used in the
 domain. It may serve as a Master Clock, or be a slave clock.

 Peer to Peer Delay Measurement Mechanism: A network delay
 measurement mechanism in PTP facilitated by an exchange of
 messages between adjacent devices in a network.

 Preferred Master: A device intended to act primarily as the
 Grandmaster of a PTP system, or as a back up to a Grandmaster.
 PTP: The Precision Time Protocol, the timing and synchronization
 protocol defined by IEEE 1588.

 PTP port: An interface of a PTP clock with the network. Note that
 there may be multiple PTP ports running on one physical interface,
 for example, a unicast slave which talks to several Grandmaster
 clocks in parallel.

 PTPv2: Refers specifically to the second version of PTP defined by
 IEEE 1588-2008.

 Rogue Master: A clock with a port in the master state, even though
 it should not be in the master state according to the Best Master
 Clock Algorithm, and does not set the alternate master flag.

 Slave clock: a clock with at least one port in the slave state,
 and no ports in the master state.

 Slave Only Clock: An Ordinary Clock which cannot become a Master
 Clock.

 TLV: Type Length Value, a mechanism for extending messages in
 networked communications.

 Transparent Clock. A device that measures the time taken for a
 PTP event message to transit the device and then updates the
 message with a correction for this transit time.

 Unicast Discovery: A mechanism for PTP slaves to establish a
 unicast communication with PTP masters using a configures table of
 master IP addresses and Unicast Message Negotiation.

 Unicast Negotiation: A mechanism in PTP for Slave Clocks to
 negotiate unicast Sync, announce and Delay Request Message Rates
 from a Master Clock.

4. Problem Statement

This document describes a version of PTP intended to work in large
enterprise networks. Such networks are deployed, for example, in
financial corporations. It is becoming increasingly common in such
networks to perform distributed time tagged measurements, such as
one‑way packet latencies and cumulative delays on software
systems spread across multiple computers. Furthermore, there is
often a desire to check the age of information time tagged by a
different machine. To perform these measurements, it is necessary
to deliver a common precise time to multiple devices on a network.
Accuracy currently required in the Financial Industry range from
100 microseconds to 100 nanoseconds to the Grandmaster. This
profile does not specify timing performance requirements, but such
requirements explain why the needs cannot always be met by NTP, as
commonly implemented. Such accuracy cannot usually be achieved with
a traditional time transfer such as NTP, without adding

 non-standard customizations such as hardware time stamping, and on
 path support. These features are currently part of PTP, or are
 allowed by it. Because PTP has a complex range of features and
 options it is necessary to create a profile for enterprise
 networks to achieve interoperability between equipment
 manufactured by different vendors.

 Although enterprise networks can be large, it is becoming
 increasingly common to deploy multicast protocols, even across
 multiple subnets. For this reason, it is desired to make use of
 multicast whenever the information going to many destinations is
 the same. It is also advantageous to send information which is
 unique to one device as a unicast message. The latter can be
 essential as the number of PTP slaves becomes hundreds or
 thousands.

 PTP devices operating in these networks need to be robust. This
 includes the ability to ignore PTP messages which can be
 identified as improper, and to have redundant sources of time.

 Interoperability among independent implementations of this PTP
 profile has been demonstrated at the ISPCS Plugfest [ISPCS].

5. Network Technology

 This PTP profile SHALL operate only in networks characterized by
 UDP [RFC768] over either IPv4 [RFC791] or IPv6 [RFC2460], as
 described by Annexes D and E in [IEEE1588] respectively. If a
 network contains both IPv4 and IPv6, then they SHALL be treated as
 separate communication paths. Clocks which communicate using IPv4
 can interact with clocks using IPv6 if there is an intermediary
 device which simultaneously communicates with both IP versions. A
 Boundary Clock might perform this function, for example. A PTP
 domain SHALL use either IPv4 or IPv6 over a communication path,
 but not both. The PTP system MAY include switches and routers.
 These devices MAY be Transparent Clocks, boundary Clocks, or
 neither, in any combination. PTP Clocks MAY be Preferred Masters,
 Ordinary Clocks, or Boundary Clocks. The Ordinary Clocks may be
 Slave Only Clocks, or be master capable.

 Note that clocks SHOULD always be identified by their clock ID and
 not the IP or Layer 2 address. This is important in IPv6 networks
 since Transparent Clocks are required to change the source address
 of any packet which they alter. In IPv4 networks some clocks
 might be hidden behind a NAT, which hides their IP addresses from
 the rest of the network. Note also that the use of NATs may place
 limitations on the topology of PTP networks, depending on the port
 forwarding scheme employed. Details of implementing PTP with NATs
 are out of scope of this document.

 PTP, like NTP, assumes that the one-way network delay for Sync
 Messages and Delay Response Messages are the same. When this is
 not true it can cause errors in the transfer of time from the
 Master to the Slave. It is up to the system integrator to design
 the network so that such effects do not prevent the PTP system
 from meeting the timing requirements. The details of

 network asymmetry are outside the scope of this document. See for
 example, [G8271].

6. Time Transfer and Delay Measurement

 Master Clocks, Transparent Clocks and Boundary Clocks MAY be
 either one-step clocks or two-step clocks. Slave clocks MUST
 support both behaviors. The End to End Delay Measurement Method
 MUST be used.

 Note that, in IP networks, Sync messages and Delay Request
 messages exchanged between a master and slave do not necessarily
 traverse the same physical path. Thus, wherever possible, the
 network SHOULD be traffic engineered so that the forward and
 reverse routes traverse the same physical path. Traffic
 engineering techniques for path consistency are out of scope of
 this document.

 Sync messages MUST be sent as PTP event multicast messages (UDP
 port 319) to the PTP primary IP address. Two step clocks SHALL
 send Follow-up messages as PTP general messages (UDP port 320).
 Announce messages MUST be sent as multicast messages (UDP port 320)
 to the PTP primary address. The PTP primary IP address is
 224.0.1.129 for IPv4 and FF0X:0:0:0:0:0:0:181 for Ipv6, where X can
 be a value between 0x0 and 0xF, see [IEEE1588] Annex E, Section
 E.3.

 Delay Request Messages MAY be sent as either multicast or unicast
 PTP event messages. Master Clocks SHALL respond to multicast Delay
 Request messages with multicast Delay Response PTP general
 messages. Master Clocks SHALL respond to unicast Delay Request PTP
 event messages with unicast Delay Response PTP general messages.
 This allow for the use of Ordinary Clocks which do not support the
 Enterprise Profile, if they are slave Only Clocks.

 Clocks SHOULD include support for multiple domains. The purpose is
 to support multiple simultaneous masters for redundancy. Leaf
 devices (non-forwarding devices) can use timing information from
 multiple masters by combining information from multiple
 instantiations of a PTP stack, each operating in a different
 domain. Redundant sources of timing can be ensembled, and/or
 compared to check for faulty Master Clocks. The use of multiple
 simultaneous masters will help mitigate faulty masters reporting as
 healthy, network delay asymmetry, and security problems. Security
 problems include man-in-the-middle attacks such as delay attacks,
 packet interception / manipulation attacks. Assuming the path to
 each master is different, failures malicious or otherwise would
 have to happen at more than one path simultaneously. Whenever
 feasible, the underlying network transport technology SHOULD be
 configured so that timing messages in different domains traverse
 different network paths.

7. Default Message Rates

 The Sync, Announce and Delay Request default message rates SHALL
 each be once per second. The Sync and Delay Request message rates
 MAY be set to other values, but not less than once every 128
 seconds, and not more than 128 messages per second. The Announce
 message rate SHALL NOT be changed from the default value. The
 Announce Receipt Timeout Interval SHALL be three Announce
 Intervals for Preferred Masters, and four Announce Intervals for
 all other masters.

 The logMessageInterval carried in the unicast Delay Response

 message MAY be set to correspond to the master ports preferred
 message period, rather than 7F, which indicates message periods
 are to be negotiated. Note that negotiated message periods are not
 allowed, see section 13.

8. Requirements for Master Clocks

 Master Clocks SHALL obey the standard Best Master Clock Algorithm
 from [IEEE1588]. PTP systems using this profile MAY support
 multiple simultaneous Grandmasters if each active Grandmaster is
 operating in a different PTP domain.

A port of a clock SHALL NOT be in the master state unless the
clock has a current value for the number of UTC leap
seconds.

 If a unicast negotiation signaling message is received it SHALL
 be ignored.

9. Requirements for Slave Clocks

 Slave clocks MUST be able to operate properly in a network which
 contains multiple Masters in multiple domains. Slaves SHOULD make
 use of information from the all Masters in their clock control
 subsystems. Slave Clocks MUST be able to operate properly in the
 presence of a Rogue Master. Slaves SHOULD NOT Synchronize to a
 Master which is not the Best Master in its domain. Slaves will
 continue to recognize a Best Master for the duration of the
 Announce Time Out Interval. Slaves MAY use an Acceptable Master
 Table. If a Master is not an Acceptable Master, then the Slave
 MUST NOT synchronize to it. Note that IEEE 1588-2008 requires
 slave clocks to support both two-step or one-step Master clocks.
 See [IEEE1588], subClause 11.2.

 Since Announce messages are sent as multicast messages slaves can
 obtain the IP addresses of a master from the Announce messages.
 Note that the IP source addresses of Sync and Follow-up messages
 may have been replaced by the source addresses of a Transparent
 Clock, so, slaves MUST send Delay Request messages to the IP
 address in the Announce message. Sync and Follow-up messages can
 be correlated with the Announce message using the clock ID, which
 is never altered by Transparent Clocks in this profile.

10. Requirements for Transparent Clocks

 Transparent Clocks SHALL NOT change the transmission mode of an
 Enterprise Profile PTP message. For example, a Transparent Clock
 SHALL NOT change a unicast message to a multicast message.
 Transparent Clocks SHOULD support multiple domains. Transparent
 Clocks which syntonize to the master clock will need to maintain
 separate clock rate offsets for each of the supported domains.

11. Requirements for Boundary Clocks

 Boundary Clocks SHOULD support multiple simultaneous PTP domains.
 This will require them to maintain servo loops for each of the
 domains supported, at least in software. Boundary Clocks MUST NOT
 combine timing information from different domains.

12. Management and Signaling Messages

PTP Management messages MAY be used. Management
messages intended for a specific clock, i.e. the [IEEE1588] defined
 attribute targetPortIdentity.clockIdentity is not set to All 1's,
MUST be sent as a unicast message. Similarly, if any signaling
 messages are used they MUST also be sent as unicast messages
 whenever the message is intended for a specific clock.

13. Forbidden PTP Options

 Clocks operating in the Enterprise Profile SHALL NOT use peer to
 peer timing for delay measurement. Grandmaster Clusters are NOT
 ALLOWED. The Alternate Master option is also NOT ALLOWED. Clocks
 operating in the Enterprise Profile SHALL NOT use Alternate
 Timescales. Unicast discovery and unicast negotiation SHALL NOT be
 used.

14. Interoperation with IEEE 1588 Default Profile

 Clocks operating in the Enterprise Profile will interoperate with
 clocks operating in the Default Profile described in [IEEE1588]
 Annex J.3. This variant of the Default Profile uses the End to End
 Delay Measurement Mechanism. In addition, the Default Profile
 would have to operate over IPv4 or IPv6 networks, and use
 management messages in unicast when those messages are directed at
 a specific clock. If either of these requirements are not met than
 Enterprise Profile clocks will not interoperate with Annex J.3
 Default Profile Clocks. The Enterprise Profile will not
 interoperate with the Annex J.4 variant of the Default Profile
 which requires use of the Peer to Peer Delay Measurement Mechanism.

 Enterprise Profile Clocks will interoperate with clocks operating
 in other profiles if the clocks in the other profiles obey the
 rules of the Enterprise Profile. These rules MUST NOT be changed
 to achieve interoperability with other profiles.

15. Profile Identification

 The IEEE 1588 standard requires that all profiles provide the

 following identifying information.

PTP Profile:
Enterprise Profile
Version: 1.0
Profile identifier: 00‑00‑5E‑00‑01‑00

 This profile was specified by the IETF

 A copy may be obtained at
 https://datatracker.ietf.org/wg/tictoc/documents

16. Security Considerations

Protocols used to transfer time, such as PTP and NTP can be
important to security mechanisms which use time windows for keys
and authorization. Passing time through the networks poses a
security risk since time can potentially be manipulated.
The use of multiple simultaneous masters, using multiple PTP
domains can mitigate problems from rogue masters and
man‑in‑the‑middle attacks. See sections 9 and 10. Additional
security mechanisms are outside the scope of this document.

 PTP native management messages SHOULD not be used, due to the lack
 of a security mechanism for this option. Secure management can be
 obtained using standard management mechanisms which include
 security, for example NETCONF [NETCONF].

 General security considerations of time protocols are discussed in
 [RFC7384].

17. IANA Considerations

 There are no IANA requirements in this specification.

18. References

18.1. Normative References

 [IEEE1588]
 IEEE std. 1588-2008, "IEEE Standard for a
 Precision Clock Synchronization for Networked
 Measurement and Control Systems." July, 2008.
 [RFC768] Postel, J., "User Datagram Protocol," RFC 768,
 August, 980.

 [RFC791]
 "Internet Protocol DARPA Internet Program Protocol
 Specification," RFC 791, September, 1981.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to
 Indicate Requirement Levels", BCP 14, RFC 2119,
 March 1997.

 [RFC2460]
 Deering, S., Hinden, R., "Internet Protocol,
 Version 6 (IPv6) Specification," RFC 2460,
 December, 1998.

18.2. Informative References

 [G8271]
 ITU-T G.8271/Y.1366, "Time and Phase
 Synchronization Aspects of Packet Networks"
 February, 2012.

 [ISPCS]
 Arnold, D., et. al. "Plugfest Report,"
 International Symposium on Precision Clock
 Synchronization for Measurement, Control and
 Communications, Monterey, CA, October, 2017.

 [NETCONF]
 Ens, R., et. al., "Network Configuration Protocol
 (NETCONF)," RFC 6241, June, 2011.

 [NTP]
 Mills, D., Martin, J., Burbank, J., Kasch, W.,
 "Network Time Protocol Version 4: Protocol and
 Algorithms Specification," RFC 5905, June 2010.

 [RFC7384]
 Mizrahi, T., "Security Requirements of Time
 Protocols in Packet Switched Networks," RFC 7384,
 October, 2014.

19. Acknowledgments

 The authors would like to thank members of IETF for reviewing and
 providing feedback on this draft.

 This document was initially prepared using
 2-Word-v2.0.template.dot.

20. Authors' Addresses

Doug Arnold
Meinberg USA
929 Salem End Road
Framingham, MA 01702
USA

Email: doug.arnold@meinberg‑usa.com

Heiko Gerstung
Meinberg Funkuhren GmbH & Co. KG
Lange Wand 9
D‑31812 Bad Pyrmont
Germany

Email: Heiko.gerstung@meinberg.de

7384 - Security Requirements of Time Protocols in Packet Switched Networks

Index
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 7384

Category: Informational

ISSN: 2070-1721

T. Mizrahi

Marvell

October 2014

Security Requirements of Time Protocols in Packet Switched Networks

Abstract

 As time and frequency distribution protocols are becoming
 increasingly common and widely deployed, concern about their exposure
 to various security threats is increasing. This document defines a
 set of security requirements for time protocols, focusing on the
 Precision Time Protocol (PTP) and the Network Time Protocol (NTP).
 This document also discusses the security impacts of time protocol
 practices, the performance implications of external security
 practices on time protocols, and the dependencies between other
 security services and time synchronization.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7384.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology
	 2.1. Requirements Language

	 2.2. Abbreviations

	 2.3. Common Terminology for PTP and NTP

	 2.4. Terms Used in This Document

	3. Security Threats
	 3.1. Threat Model
	 3.1.1. Internal vs. External Attackers

	 3.1.2. Man in the Middle (MITM) vs. Packet Injector

	 3.2. Threat Analysis
	 3.2.1. Packet Manipulation

	 3.2.2. Spoofing

	 3.2.3. Replay Attack

	 3.2.4. Rogue Master Attack

	 3.2.5. Packet Interception and Removal

	 3.2.6. Packet Delay Manipulation

	 3.2.7. L2/L3 DoS Attacks

	 3.2.8. Cryptographic Performance Attacks

	 3.2.9. DoS Attacks against the Time Protocol

	 3.2.10. Grandmaster Time Source Attack (e.g., GPS Fraud)

	 3.2.11. Exploiting Vulnerabilities in the Time Protocol

	 3.2.12. Network Reconnaissance

	 3.3. Threat Analysis Summary

	4. Requirement Levels

	5. Security Requirements
	 5.1. Clock Identity Authentication and Authorization
	 5.1.1. Authentication and Authorization of Masters

	 5.1.2. Recursive Authentication and Authorization of Masters (Chain of Trust)

	 5.1.3. Authentication and Authorization of Slaves

	 5.1.4. PTP: Authentication and Authorization of P2P TCs by the Master

	 5.1.5. PTP: Authentication and Authorization of Control Messages

	 5.2. Protocol Packet Integrity
	 5.2.1. PTP: Hop-by-Hop vs. End-to-End Integrity Protection
	 5.2.1.1. Hop-by-Hop Integrity Protection

	 5.2.1.2. End-to-End Integrity Protection

	 5.3. Spoofing Prevention

	 5.4. Availability

	 5.5. Replay Protection

	 5.6. Cryptographic Keys and Security Associations
	 5.6.1. Key Freshness

	 5.6.2. Security Association

	 5.6.3. Unicast and Multicast Associations

	 5.7. Performance

	 5.8. Confidentiality

	 5.9. Protection against Packet Delay and Interception Attacks

	 5.10. Combining Secured with Unsecured Nodes
	 5.10.1. Secure Mode

	 5.10.2. Hybrid Mode

	6. Summary of Requirements

	7. Additional Security Implications
	 7.1. Security and On-the-Fly Timestamping

	 7.2. PTP: Security and Two-Step Timestamping

	 7.3. Intermediate Clocks

	 7.4. External Security Protocols and Time Protocols

	 7.5. External Security Services Requiring Time
	 7.5.1. Timestamped Certificates

	 7.5.2. Time Changes and Replay Attacks

	8. Issues for Further Discussion

	9. Security Considerations

	10. References
	 10.1. Normative References

	 10.2. Informative References

	Acknowledgments

	Contributors

	Author's Address

1. Introduction

 As time protocols are becoming increasingly common and widely
 deployed, concern about the resulting exposure to various security
 threats is increasing. If a time protocol is compromised, the
 applications it serves are prone to a range of possible attacks
 including Denial of Service (DoS) or incorrect behavior.

 This document discusses the security aspects of time distribution
 protocols in packet networks and focuses on the two most common
 protocols: the Network Time Protocol [NTPv4] and the Precision Time
 Protocol (PTP) [IEEE1588]. Note that although PTP was not defined by
 the IETF, it is one of the two most common time protocols; hence, it
 is included in the discussion.

 The Network Time Protocol was defined with an inherent security
 protocol; [NTPv4] defines a security protocol that is based on a
 symmetric key authentication scheme, and [AutoKey] presents an
 alternative security protocol, based on a public key authentication
 scheme. [IEEE1588] includes an experimental security protocol,
 defined in Annex K of the standard, but this Annex was never
 formalized into a fully defined security protocol.

 While NTP includes an inherent security protocol, the absence of a
 standard security solution for PTP undoubtedly contributed to the
 wide deployment of unsecured time synchronization solutions.
 However, in some cases, security mechanisms may not be strictly
 necessary, e.g., due to other security practices in place or due to
 the architecture of the network. A time synchronization security
 solution, much like any security solution, is comprised of various
 building blocks and must be carefully tailored for the specific
 system in which it is deployed. Based on a system-specific threat
 assessment, the benefits of a security solution must be weighed
 against the potential risks, and based on this trade-off an optimal
 security solution can be selected.

 The target audience of this document includes:

 o Timing and networking equipment vendors - can benefit from this
 document by deriving the security features that should be
 supported in the time/networking equipment.

 o Standards development organizations - can use the requirements
 defined in this document when specifying security mechanisms for a
 time protocol.

 o Network operators - can use this document as a reference when
 designing a network and its security architecture. As stated
 above, the requirements in this document may be deployed
 selectively based on a careful per-system threat analysis.

 This document attempts to add clarity to the time protocol security
 requirements discussion by addressing a series of questions:

 (1) What are the threats that need to be addressed for the time

 protocol and what security services need to be provided (e.g., a
 malicious NTP server or PTP master)?

 (2) What external security practices impact the security and

 performance of time keeping and what can be done to mitigate
 these impacts (e.g., an IPsec tunnel in the time protocol traffic
 path)?

 (3) What are the security impacts of time protocol practices (e.g.,

 on-the-fly modification of timestamps)?

 (4) What are the dependencies between other security services and

 time protocols? (For example, which comes first - the
 certificate or the timestamp?)

 In light of the questions above, this document defines a set of
 requirements for security solutions for time protocols, focusing on
 PTP and NTP.

2. Terminology

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [KEYWORDS].

 This document describes security requirements; thus, requirements are
 phrased in the document in the form "the security mechanism
 MUST/SHOULD/...". Note that the phrasing does not imply that this
 document defines a specific security mechanism, but that it defines
 the requirements with which every security mechanism should comply.

2.2. Abbreviations

BC Boundary Clock [IEEE1588]

BMCA Best Master Clock Algorithm [IEEE1588]

DoS Denial of Service

MITM Man in the Middle

NTP Network Time Protocol [NTPv4]

OC Ordinary Clock [IEEE1588]

P2P TC Peer‑to‑Peer Transparent Clock [IEEE1588]

PTP Precision Time Protocol [IEEE1588]

TC Transparent Clock [IEEE1588]

2.3. Common Terminology for PTP and NTP

 This document refers to both PTP and NTP. For the sake of
 consistency, throughout the document the term "master" applies to
 both a PTP master and an NTP server. Similarly, the term "slave"
 applies to both PTP slaves and NTP clients. The term "protocol
 packets" refers generically to PTP and NTP messages.

2.4. Terms Used in This Document

 o Clock - A node participating in the protocol (either PTP or NTP).
 A clock can be a master, a slave, or an intermediate clock (see
 corresponding definitions below).

 o Control packets - Packets used by the protocol to exchange
 information between clocks that is not strictly related to the
 time. NTP uses NTP Control Messages. PTP uses Announce,
 Signaling, and Management messages.

 o End-to-end security - A security approach where secured packets
 sent from a source to a destination are not modified by
 intermediate nodes, allowing the destination to authenticate the
 source of the packets and to verify their integrity. In the
 context of confidentiality, end-to-end encryption guarantees that
 intermediate nodes cannot eavesdrop to en route packets. However,
 as discussed in Section 5, confidentiality is not a strict
 requirement in this document.

 o Grandmaster - A master that receives time information from a
 locally attached clock device and not through the network. A
 grandmaster distributes its time to other clocks in the network.

 o Hop-by-hop security - A security approach where secured packets
 sent from a source to a destination may be modified by
 intermediate nodes. In this approach intermediate nodes share the
 encryption key with the source and destination, allowing them to
 re-encrypt or re-authenticate modified packets before relaying
 them to the destination.

 o Intermediate clock - A clock that receives timing information from
 a master and sends timing information to other clocks. In NTP,
 this term refers to an NTP server that is not a Stratum 1 server.
 In PTP, this term refers to a BC or a TC.

 o Master - A clock that generates timing information to other clocks
 in the network. In NTP, 'master' refers to an NTP server. In
 PTP, 'master' refers to a master OC (aka grandmaster) or to a port
 of a BC that is in the master state.

 o Protocol packets - Packets used by the time protocol. The
 terminology used in this document distinguishes between time
 packets and control packets.

 o Secured clock - A clock that supports a security mechanism that
 complies to the requirements in this document.

 o Slave - A clock that receives timing information from a master.
 In NTP, 'slave' refers to an NTP client. In PTP, 'slave' refers
 to a slave OC or to a port of a BC that is in the slave state.

 o Time packets - Protocol packets carrying time information.

 o Unsecured clock - A clock that does not support a security
 mechanism according to the requirements in this document.

3. Security Threats

 This section discusses the possible attacker types and analyzes
 various attacks against time protocols.

 The literature is rich with security threats of time protocols, e.g.,
 [Traps], [AutoKey], [TimeSec], [SecPTP], and [SecSen]. The threat
 analysis in this document is mostly based on [TimeSec].

3.1. Threat Model

 A time protocol can be attacked by various types of attackers.

 The analysis in this document classifies attackers according to two
 criteria, as described in Sections 3.1.1 and 3.1.2.

3.1.1. Internal vs. External Attackers

 In the context of internal and external attackers, the underlying
 assumption is that the time protocol is secured by either an
 encryption mechanism, an authentication mechanism, or both.

 Internal attackers either have access to a trusted segment of the
 network or possess the encryption or authentication keys. An
 internal attack can also be performed by exploiting vulnerabilities
 in devices; for example, by installing malware or obtaining
 credentials to reconfigure the device. Thus, an internal attacker
 can maliciously tamper with legitimate traffic in the network as well
 as generate its own traffic and make it appear legitimate to its
 attacked nodes.

 Note that internal attacks are a special case of Byzantine failures,
 where a node in the system may fail in arbitrary ways; by crashing,
 by omitting messages, or by malicious behavior. This document
 focuses on nodes that demonstrate malicious behavior.

 External attackers, on the other hand, do not have the keys and have
 access only to the encrypted or authenticated traffic.

 Obviously, in the absence of a security mechanism, there is no
 distinction between internal and external attackers, since all
 attackers are internal in practice.

3.1.2. Man in the Middle (MITM) vs. Packet Injector

 MITM attackers are located in a position that allows interception and
 modification of in-flight protocol packets. It is assumed that an
 MITM attacker has physical access to a segment of the network or has
 gained control of one of the nodes in the network.

 A traffic injector is not located in an MITM position, but can attack
 by generating protocol packets. An injector can reside either within
 the attacked network or on an external network that is connected to
 the attacked network. An injector can also potentially eavesdrop on
 protocol packets sent as multicast, record them, and replay them
 later.

3.2. Threat Analysis

3.2.1. Packet Manipulation

 A packet manipulation attack results when an MITM attacker receives
 timing protocol packets, alters them, and relays them to their
 destination, allowing the attacker to maliciously tamper with the
 protocol. This can result in a situation where the time protocol is
 apparently operational but providing intentionally inaccurate
 information.

3.2.2. Spoofing

 In spoofing, an injector masquerades as a legitimate node in the
 network by generating and transmitting protocol packets or control
 packets. Two typical examples of spoofing attacks:

 o An attacker can impersonate the master, allowing malicious
 distribution of false timing information.

 o An attacker can impersonate a legitimate clock, a slave, or an
 intermediate clock, by sending malicious messages to the master,
 causing the master to respond to the legitimate clock with
 protocol packets that are based on the spoofed messages.
 Consequently, the delay computations of the legitimate clock are
 based on false information.

 As with packet manipulation, this attack can result in a situation
 where the time protocol is apparently operational but providing
 intentionally inaccurate information.

3.2.3. Replay Attack

 In a replay attack, an attacker records protocol packets and replays
 them at a later time without any modification. This can also result
 in a situation where the time protocol is apparently operational but
 providing intentionally inaccurate information.

3.2.4. Rogue Master Attack

 In a rogue master attack, an attacker causes other nodes in the
 network to believe it is a legitimate master. As opposed to the
 spoofing attack, in the rogue master attack the attacker does not
 fake its identity, but rather manipulates the master election process
 using malicious control packets. For example, in PTP, an attacker
 can manipulate the Best Master Clock Algorithm (BMCA) and cause other
 nodes in the network to believe it is the most eligible candidate to
 be a grandmaster.

 In PTP, a possible variant of this attack is the rogue TC/BC attack.
 Similar to the rogue master attack, an attacker can cause victims to
 believe it is a legitimate TC or BC, allowing the attacker to
 manipulate the time information forwarded to the victims.

3.2.5. Packet Interception and Removal

 A packet interception and removal attack results when an MITM
 attacker intercepts and drops protocol packets, preventing the
 destination node from receiving some or all of the protocol packets.

3.2.6. Packet Delay Manipulation

 In a packet delay manipulation scenario, an MITM attacker receives
 protocol packets and relays them to their destination after adding a
 maliciously computed delay. The attacker can use various delay
 attack strategies; the added delay can be constant, jittered, or
 slowly wandering. Each of these strategies has a different impact,
 but they all effectively manipulate the attacked clock.

 Note that the victim still receives one copy of each packet, contrary
 to the replay attack, where some or all of the packets may be
 received by the victim more than once.

3.2.7. L2/L3 DoS Attacks

 There are many possible Layer 2 and Layer 3 DoS attacks, e.g., IP
 spoofing, ARP spoofing [Hack], MAC flooding [Anatomy], and many
 others. As the target's availability is compromised, the timing
 protocol is affected accordingly.

3.2.8. Cryptographic Performance Attacks

 In cryptographic performance attacks, an attacker transmits fake
 protocol packets, causing high utilization of the cryptographic
 engine at the receiver, which attempts to verify the integrity of
 these fake packets.

 This DoS attack is applicable to all encryption and authentication
 protocols. However, when the time protocol uses a dedicated security
 mechanism implemented in a dedicated cryptographic engine, this
 attack can be applied to cause DoS specifically to the time protocol.

3.2.9. DoS Attacks against the Time Protocol

 An attacker can attack a clock by sending an excessive number of time
 protocol packets, thus degrading the victim's performance. This
 attack can be implemented, for example, using the attacks described
 in Sections 3.2.2 and 3.2.4.

3.2.10. Grandmaster Time Source Attack (e.g., GPS Fraud)

 Grandmasters receive their time from an external accurate time
 source, such as an atomic clock or a GPS clock, and then distribute
 this time to the slaves using the time protocol.

 Time source attacks are aimed at the accurate time source of the
 grandmaster. For example, if the grandmaster uses a GPS-based clock
 as its reference source, an attacker can jam the reception of the GPS
 signal, or transmit a signal similar to one from a GPS satellite,
 causing the grandmaster to use a false reference time.

 Note that this attack is outside the scope of the time protocol.
 While various security measures can be taken to mitigate this attack,
 these measures are outside the scope of the security requirements
 defined in this document.

3.2.11. Exploiting Vulnerabilities in the Time Protocol

 Time protocols can be attacked by exploiting vulnerabilities in the
 protocol, implementation bugs, or misconfigurations (e.g.,
 [NTPDDoS]). It should be noted that such attacks cannot typically be
 mitigated by security mechanisms. However, when a new vulnerability
 is discovered, operators should react as soon as possible, and take
 the necessary measures to address it.

3.2.12. Network Reconnaissance

 An attacker can exploit the time protocol to collect information such
 as addresses and locations of nodes that take part in the protocol.
 Reconnaissance can be applied by either passively eavesdropping on
 protocol packets or sending malicious packets and gathering
 information from the responses. By eavesdropping on a time protocol,
 an attacker can learn the network latencies, which provide
 information about the network topology and node locations.

 Moreover, properties such as the frequency of the protocol packets,
 or the exact times at which they are sent, can allow fingerprinting
 of specific nodes; thus, protocol packets from a node can be
 identified even if network addresses are hidden or encrypted.

3.3. Threat Analysis Summary

 The two key factors to a threat analysis are the impact and the
 likelihood of each of the analyzed attacks.

 Table 1 summarizes the security attacks presented in Section 3.2.
 For each attack, the table specifies its impact, and its
 applicability to each of the attacker types presented in Section 3.1.

 Table 1 clearly shows the distinction between external and internal
 attackers, and motivates the usage of authentication and integrity
 protection, significantly reducing the impact of external attackers.

 The Impact column provides an intuitive measure of the severity of
 each attack, and the relevant Attacker Type column provides an
 intuition about how difficult each attack is to implement and, hence,
 about the likelihood of each attack.

 The Impact column in Table 1 can have one of three values:

 o DoS - the attack causes denial of service to the attacked node,
 the impact of which is not restricted to the time protocol.

 o Accuracy degradation - the attack yields a degradation in the
 slave accuracy, but does not completely compromise the slaves'
 time and frequency.

 o False time - slaves align to a false time or frequency value due
 to the attack. Note that if the time protocol aligns to a false
 time, it may cause DoS to other applications that rely on accurate
 time. However, for the purpose of the analysis in this section,
 we distinguish this implication from 'DoS', which refers to a DoS
 attack that is not necessarily aimed at the time protocol. All
 attacks that have a '+' for 'False Time' implicitly have a '+' for
 'Accuracy Degradation'. Note that 'False Time' necessarily
 implies 'Accuracy Degradation'. However, two different terms are
 used, indicating two levels of severity.

 The Attacker Type column refers to the four possible combinations of
 the attacker types defined in Section 3.1.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑++‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Attack | Impact || Attacker Type |
| +‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑++‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
| |False|Accuracy| ||Internal |External |
| |Time |Degrad. |DoS ||MITM|Inj.|MITM|Inj.|
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑++‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
|Manipulation | + | | || + | | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑++‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
|Spoofing | + | | || + | + | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑++‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
|Replay attack | + | | || + | + | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑++‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
|Rogue master attack | + | | || + | + | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑++‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
|Interception and removal | | + | + || + | | + | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑++‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
|Packet delay manipulation | + | | || + | | + | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑++‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
|L2/L3 DoS attacks | | | + || + | + | + | + |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑++‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
|Crypt. performance attacks | | | + || + | + | + | + |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑++‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
|Time protocol DoS attacks | | | + || + | + | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑++‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
|Master time source attack | + | | || + | + | + | + |
|(e.g., GPS spoofing) | | | || | | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑++‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+

 Table 1: Threat Analysis - Summary

 The threats discussed in this section provide the background for the
 security requirements presented in Section 5.

4. Requirement Levels

 The security requirements are presented in Section 5. Each
 requirement is defined with a requirement level, in accordance with
 the requirement levels defined in Section 2.1.

 The requirement levels in this document are affected by the following
 factors:

o Impact:
 The possible impact of not implementing the requirement, as
 illustrated in the Impact column of Table 1. For example, a
 requirement that addresses a threat that can be implemented by an
 external injector is typically a 'MUST', since the threat can be
 implemented by all the attacker types analyzed in Section 3.1.

o Difficulty of the corresponding attack:
 The level of difficulty of the possible attacks that become
 possible by not implementing the requirement. The level of
 difficulty is reflected in the Attacker Type column of Table 1.
 For example, a requirement that addresses a threat that only
 compromises the availability of the protocol is typically no more
 than a 'SHOULD'.

o Practical considerations:
 Various practical factors that may affect the requirement. For
 example, if a requirement is very difficult to implement, or is
 applicable to very specific scenarios, these factors may reduce
 the requirement level.

 Section 5 lists the requirements. For each requirement, there is a
 short explanation detailing the reason for its requirement level.

5. Security Requirements

 This section defines a set of security requirements. These
 requirements are phrased in the form "the security mechanism
 MUST/SHOULD/MAY...". However, this document does not specify how
 these requirements can be met. While these requirements can be
 satisfied by defining explicit security mechanisms for time
 protocols, at least a subset of the requirements can be met by
 applying common security practices to the network or by using
 existing security protocols, such as [IPsec] or [MACsec]. Thus,
 security solutions that address these requirements are outside the
 scope of this document.

5.1. Clock Identity Authentication and Authorization

 Requirement

 The security mechanism MUST support authentication.

 Requirement

 The security mechanism MUST support authorization.

 Requirement Level

 The requirements in this subsection address the spoofing attack
 (Section 3.2.2) and the rogue master attack (Section 3.2.4).

 The requirement level of these requirements is 'MUST' since, in
 the absence of these requirements, the protocol is exposed to
 attacks that are easy to implement and have a high impact.

 Discussion

 Authentication refers to verifying the identity of the peer clock.
 Authorization, on the other hand, refers to verifying that the
 peer clock is permitted to play the role that it plays in the
 protocol. For example, some nodes may be permitted to be masters,
 while other nodes are only permitted to be slaves or TCs.

 Authentication is typically implemented by means of a
 cryptographic signature, allowing the verification of the identity
 of the sender. Authorization requires clocks to maintain a list
 of authorized clocks, or a "black list" of clocks that should be
 denied service or revoked.

 It is noted that while the security mechanism is required to
 provide an authorization mechanism, the deployment of such a
 mechanism depends on the nature of the network. For example, a
 network that deploys PTP may consist of a set of identical OCs,
 where all clocks are equally permitted to be a master. In such a
 network, an authorization mechanism may not be necessary.

 The following subsections describe five distinct cases of clock
 authentication.

5.1.1. Authentication and Authorization of Masters

 Requirement

 The security mechanism MUST support an authentication mechanism,
 allowing slaves to authenticate the identity of masters.

 Requirement

 The authentication mechanism MUST allow slaves to verify that the
 authenticated master is authorized to be a master.

 Requirement Level

 The requirements in this subsection address the spoofing attack
 (Section 3.2.2) and the rogue master attack (Section 3.2.4).

 The requirement level of these requirements is 'MUST' since, in
 the absence of these requirements, the protocol is exposed to
 attacks that are easy to implement and have a high impact.

 Discussion

 Clocks authenticate masters in order to ensure the authenticity of
 the time source. It is important for a slave to verify the
 identity of the master, as well as to verify that the master is
 indeed authorized to be a master.

5.1.2. Recursive Authentication and Authorization of Masters (Chain of
 Trust)

 Requirement

 The security mechanism MUST support recursive authentication and
 authorization of the master, to be used in cases where time
 information is conveyed through intermediate clocks.

 Requirement Level

 The requirement in this subsection addresses the spoofing attack
 (Section 3.2.2) and the rogue master attack (Section 3.2.4).

 The requirement level of this requirement is 'MUST' since, in the
 absence of this requirement, the protocol is exposed to attacks
 that are easy to implement and have a high impact.

 Discussion

 In some cases, a slave is connected to an intermediate clock that
 is not the primary time source. For example, in PTP, a slave can
 be connected to a Boundary Clock (BC) or a Transparent Clock (TC),
 which in turn is connected to a grandmaster. A similar example in
 NTP is when a client is connected to a Stratum 2 server, which is
 connected to a Stratum 1 server. In both the PTP and the NTP
 cases, the slave authenticates the intermediate clock, and the
 intermediate clock authenticates the grandmaster. This recursive
 authentication process is referred to in [AutoKey] as
 proventication.

 Specifically in PTP, this requirement implies that if a slave
 receives time information through a TC, it must authenticate the
 TC to which it is attached, as well as authenticate the master
 from which it receives the time information, as per Section 5.1.1.
 Similarly, if a TC receives time information through an attached
 TC, it must authenticate the attached TC.

5.1.3. Authentication and Authorization of Slaves

 Requirement

 The security mechanism MAY provide a means for a master to
 authenticate its slaves.

 Requirement

 The security mechanism MAY provide a means for a master to verify
 that the sender of a protocol packet is authorized to send a
 packet of this type.

 Requirement Level

 The requirement in this subsection prevents DoS attacks against
 the master (Section 3.2.9).

 The requirement level of this requirement is 'MAY' since:

 o Its impact is low, i.e., in the absence of this requirement the
 protocol is only exposed to DoS.

 o Practical considerations: requiring an NTP server to
 authenticate its clients may significantly impose on the
 server's performance.

 Note that while the requirement level of this requirement is
 'MAY', the requirement in Section 5.1.1 is 'MUST'; the security
 mechanism must provide a means for authentication and
 authorization, with an emphasis on the master. Authentication and
 authorization of slaves are specified in this subsection as 'MAY'.

 Discussion

 Slaves and intermediate clocks are authenticated by masters in
 order to verify that they are authorized to receive timing
 services from the master.

 Authentication of slaves prevents unauthorized clocks from
 receiving time services. Preventing the master from serving
 unauthorized clocks can help in mitigating DoS attacks against the
 master. Note that the authentication of slaves might put a higher
 load on the master than serving the unauthorized clock; hence,
 this requirement is 'MAY'.

5.1.4. PTP: Authentication and Authorization of P2P TCs by the Master

 Requirement

 The security mechanism for PTP MAY provide a means for a master to
 authenticate the identity of the P2P TCs directly connected to it.

 Requirement

 The security mechanism for PTP MAY provide a means for a master to
 verify that P2P TCs directly connected to it are authorized to be
 TCs.

 Requirement Level

 The requirement in this subsection prevents DoS attacks against
 the master (Section 3.2.9).

 The requirement level of this requirement is 'MAY' for the same
 reasons specified in Section 5.1.3.

 Discussion

 P2P TCs that are one hop from the master use the PDelay_Req and
 PDelay_Resp handshake to compute the link delay between the master
 and TC. These TCs are authenticated by the master.

 Authentication of TCs, much like authentication of slaves, reduces
 unnecessary load on the master and peer TCs, by preventing the
 master from serving unauthorized clocks.

5.1.5. PTP: Authentication and Authorization of Control Messages

 Requirement

 The security mechanism for PTP MUST support authentication of
 Announce messages. The authentication mechanism MUST also verify
 that the sender is authorized to be a master.

 Requirement

 The security mechanism for PTP MUST support authentication and
 authorization of Management messages.

 Requirement

 The security mechanism MAY support authentication and
 authorization of Signaling messages.

 Requirement Level

 The requirements in this subsection address the spoofing attack
 (Section 3.2.2) and the rogue master attack (Section 3.2.4).

 The requirement level of the first two requirements is 'MUST'
 since, in the absence of these requirements, the protocol is
 exposed to attacks that are easy to implement and have a high
 impact.

 The requirement level of the third requirement is 'MAY' since its
 impact greatly depends on the application for which the Signaling
 messages are used.

 Discussion

 Master election is performed in PTP using the Best Master Clock
 Algorithm (BMCA). Each Ordinary Clock (OC) announces its clock
 attributes using Announce messages, and the best master is elected
 based on the information gathered from all the candidates.
 Announce messages must be authenticated in order to prevent rogue
 master attacks (Section 3.2.4). Note that this subsection
 specifies a requirement that is not necessarily included in
 Sections 5.1.1 or 5.1.3, since the BMCA is initiated before clocks
 have been defined as masters or slaves.

 Management messages are used to monitor or configure PTP clocks.
 Malicious usage of Management messages enables various attacks,
 such as the rogue master attack or DoS attack.

 Signaling messages are used by PTP clocks to exchange information
 that is not strictly related to time information or to master
 selection, such as unicast negotiation. Authentication and
 authorization of Signaling messages may be required in some
 systems, depending on the application for which these messages are
 used.

5.2. Protocol Packet Integrity

 Requirement

 The security mechanism MUST protect the integrity of protocol
 packets.

 Requirement Level

 The requirement in this subsection addresses the packet
 manipulation attack (Section 3.2.1).

 The requirement level of this requirement is 'MUST' since, in the
 absence of this requirement, the protocol is exposed to attacks
 that are easy to implement and have high impact.

 Discussion

 While Section 5.1 refers to ensuring the identity an authorization
 of the source of a protocol packet, this subsection refers to
 ensuring that the packet arrived intact. The integrity protection
 mechanism ensures the authenticity and completeness of data from
 the data originator.

 Integrity protection is typically implemented by means of an
 Integrity Check Value (ICV) that is included in protocol packets
 and is verified by the receiver.

5.2.1. PTP: Hop-by-Hop vs. End-to-End Integrity Protection

 Specifically in PTP, when protocol packets are subject to
 modification by TCs, the integrity protection can be enforced in one
 of two approaches: end-to-end or hop-by-hop.

5.2.1.1. Hop-by-Hop Integrity Protection

 Each hop that needs to modify a protocol packet:

 o Verifies its integrity.

 o Modifies the packet, i.e., modifies the correctionField. Note:
 TCs improve the end-to-end accuracy by updating a correctionField
 (Clause 6.5 in [IEEE1588]) in the PTP packet by adding the latency
 caused by the current TC.

 o Re-generates the integrity protection, e.g., re-computes a Message
 Authentication Code (MAC).

 In the hop-by-hop approach, the integrity of protocol packets is
 protected by induction on the path from the originator to the
 receiver.

 This approach is simple, but allows rogue TCs to modify protocol
 packets.

5.2.1.2. End-to-End Integrity Protection

 In this approach, the integrity protection is maintained on the path
 from the originator of a protocol packet to the receiver. This
 allows the receiver to directly validate the protocol packet without
 the ability of intermediate TCs to manipulate the packet.

 Since TCs need to modify the correctionField, a separate integrity
 protection mechanism is used specifically for the correctionField.

 The end-to-end approach limits the TC's impact to the correctionField
 alone, while the rest of the protocol packet is protected on an end-
 to-end basis. It should be noted that this approach is more
 difficult to implement than the hop-by-hop approach, as it requires
 the correctionField to be protected separately from the other fields
 of the packet, possibly using different cryptographic mechanisms and
 keys.

5.3. Spoofing Prevention

 Requirement

 The security mechanism MUST provide a means to prevent master
 spoofing.

 Requirement

 The security mechanism MUST provide a means to prevent slave
 spoofing.

 Requirement

 PTP: The security mechanism MUST provide a means to prevent P2P TC
 spoofing.

 Requirement Level

 The requirements in this subsection address spoofing attacks. As
 described in Section 3.2.2, when these requirements are not met,
 the attack may have a high impact, causing slaves to rely on false
 time information. Thus, the requirement level is 'MUST'.

 Discussion

 Spoofing attacks may take various forms, and they can potentially
 cause significant impact. In a master spoofing attack, the
 attacker causes slaves to receive false information about the
 current time by masquerading as the master.

 By spoofing a slave or an intermediate node (the second example of
 Section 3.2.2), an attacker can tamper with the slaves' delay
 computations. These attacks can be mitigated by an authentication
 mechanism (Sections 5.1.3 and 5.1.4) or by other means, for
 example, a PTP Delay_Req can include a MAC that is included in the
 corresponding Delay_Resp message, allowing the slave to verify
 that the Delay_Resp was not sent in response to a spoofed message.

5.4. Availability

 Requirement

 The security mechanism SHOULD include measures to mitigate DoS
 attacks against the time protocol.

 Requirement Level

 The requirement in this subsection prevents DoS attacks against
 the protocol (Section 3.2.9).

 The requirement level of this requirement is 'SHOULD' due to its
 low impact, i.e., in the absence of this requirement the protocol
 is only exposed to DoS.

 Discussion

 The protocol availability can be compromised by several different
 attacks. An attacker can inject protocol packets to implement the
 spoofing attack (Section 3.2.2) or the rogue master attack
 (Section 3.2.4), causing DoS to the victim (Section 3.2.9).

 An authentication mechanism (Section 5.1) limits these attacks
 strictly to internal attackers; thus, it prevents external
 attackers from performing them. Hence, the requirements of
 Section 5.1 can be used to mitigate this attack. Note that
 Section 5.1 addresses a wider range of threats, whereas the
 current section is focused on availability.

 The DoS attacks described in Section 3.2.7 are performed at lower
 layers than the time protocol layer, and they are thus outside the
 scope of the security requirements defined in this document.

5.5. Replay Protection

 Requirement

 The security mechanism MUST include a replay prevention mechanism.

 Requirement Level

 The requirement in this subsection prevents replay attacks
 (Section 3.2.3).

 The requirement level of this requirement is 'MUST' since, in the
 absence of this requirement, the protocol is exposed to attacks
 that are easy to implement and have a high impact.

 Discussion

 The replay attack (Section 3.2.3) can compromise both the
 integrity and availability of the protocol. Common encryption and
 authentication mechanisms include replay prevention mechanisms
 that typically use a monotonously increasing packet sequence
 number.

5.6. Cryptographic Keys and Security Associations

5.6.1. Key Freshness

 Requirement

 The security mechanism MUST provide a means to refresh the
 cryptographic keys.

 The cryptographic keys MUST be refreshed frequently.

 Requirement Level

 The requirement level of this requirement is 'MUST' since key
 freshness is an essential property for cryptographic algorithms,
 as discussed below.

 Discussion

 Key freshness guarantees that both sides share a common updated
 secret key. It also helps in preventing replay attacks. Thus, it
 is important for keys to be refreshed frequently. Note that the
 term 'frequently' is used without a quantitative requirement, as
 the precise frequency requirement should be considered on a per-
 system basis, based on the threats and system requirements.

5.6.2. Security Association

 Requirement

 The security protocol SHOULD support a security association
 protocol where:

 o Two or more clocks authenticate each other.

 o The clocks generate and agree on a cryptographic session
 key.

 Requirement

 Each instance of the association protocol SHOULD produce a
 different session key.

 Requirement Level

 The requirement level of this requirement is 'SHOULD' since it may
 be expensive in terms of performance, especially in low-cost
 clocks.

 Discussion

 The security requirements in Sections 5.1 and 5.2 require usage of
 cryptographic mechanisms, deploying cryptographic keys. A
 security association (e.g., [IPsec]) is an important building
 block in these mechanisms.

 It should be noted that in some cases, different security
 association mechanisms may be used at different levels of clock
 hierarchies. For example, the association between a Stratum 2
 clock and a Stratum 3 clock in NTP may have different
 characteristics than an association between two clocks at the same
 stratum level. On a related note, in some cases, a hybrid
 solution may be used, where a subset of the network is not secured
 at all (see Section 5.10.2).

5.6.3. Unicast and Multicast Associations

 Requirement

 The security mechanism SHOULD support security association
 protocols for unicast and for multicast associations.

 Requirement Level

 The requirement level of this requirement is 'SHOULD' since it may
 be expensive in terms of performance, especially for low-cost
 clocks.

 Discussion

 A unicast protocol requires an association protocol between two
 clocks, whereas a multicast protocol requires an association
 protocol among two or more clocks, where one of the clocks is a
 master.

5.7. Performance

 Requirement

 The security mechanism MUST be designed in such a way that it does
 not significantly degrade the quality of the time transfer.

 Requirement

 The mechanism SHOULD minimize computational load.

 Requirement

 The mechanism SHOULD minimize storage requirements of client state
 in the master.

 Requirement

 The mechanism SHOULD minimize the bandwidth overhead required by
 the security protocol.

 Requirement Level

 While the quality of the time transfer is clearly a 'MUST', the
 other three performance requirements are 'SHOULD', since some
 systems may be more sensitive to resource consumption than others;
 hence, these requirements should be considered on a per-system
 basis.

 Discussion

 Performance efficiency is important since client restrictions
 often dictate a low processing and memory footprint and because
 the server may have extensive fan-out.

 Note that the performance requirements refer to a time-protocol-
 specific security mechanism. In systems where a security protocol
 is used for other types of traffic as well, this document does not
 place any performance requirements on the security protocol
 performance. For example, if IPsec encryption is used for
 securing all information between the master and slave node,
 including information that is not part of the time protocol, the
 requirements in this subsection are not necessarily applicable.

5.8. Confidentiality

 Requirement

 The security mechanism MAY provide confidentiality protection of
 the protocol packets.

 Requirement Level

 The requirement level of this requirement is 'MAY' since the
 absence of this requirement does not expose the protocol to severe
 threats, as discussed below.

 Discussion

 In the context of time protocols, confidentiality is typically of
 low importance, since timing information is usually not considered
 secret information.

 Confidentiality can play an important role when service providers
 charge their customers for time synchronization services; thus, an
 encryption mechanism can prevent eavesdroppers from obtaining the
 service without payment. Note that these cases are, for now,
 rather esoteric.

 Confidentiality can also prevent an MITM attacker from identifying
 protocol packets. Thus, confidentiality can assist in protecting
 the timing protocol against MITM attacks such as packet delay
 (Section 3.2.6), manipulation and interception, and removal
 attacks. Note that time protocols have predictable behavior even
 after encryption, such as packet transmission rates and packet
 lengths. Additional measures can be taken to mitigate encrypted
 traffic analysis by random padding of encrypted packets and by
 adding random dummy packets. Nevertheless, encryption does not
 prevent such MITM attacks, but rather makes these attacks more
 difficult to implement.

5.9. Protection against Packet Delay and Interception Attacks

 Requirement

 The security mechanism MUST include means to protect the protocol
 from MITM attacks that degrade the clock accuracy.

 Requirement Level

 The requirements in this subsection address MITM attacks such as
 the packet delay attack (Section 3.2.6) and packet interception
 attacks (Sections 3.2.5 and 3.2.1).

 The requirement level of this requirement is 'MUST'. In the
 absence of this requirement, the protocol is exposed to attacks
 that are easy to implement and have a high impact. Note that in
 the absence of this requirement, the impact is similar to packet
 manipulation attacks (Section 3.2.1); thus, this requirement has
 the same requirement level as integrity protection (Section 5.2).

 It is noted that the implementation of this requirement depends on
 the topology and properties of the system.

 Discussion

 While this document does not define specific security solutions,
 we note that common practices for protection against MITM attacks
 use redundant masters (e.g., [NTPv4]) or redundant paths between
 the master and slave (e.g., [DelayAtt]). If one of the time
 sources indicates a time value that is significantly different
 than the other sources, it is assumed to be erroneous or under
 attack and is therefore ignored.

 Thus, MITM attack prevention derives a requirement from the
 security mechanism and a requirement from the network topology.
 While the security mechanism should support the ability to detect
 delay attacks, it is noted that in some networks it is not
 possible to provide the redundancy needed for such a detection
 mechanism.

5.10. Combining Secured with Unsecured Nodes

 Integrating a security mechanism into a time-synchronized system is a
 complex and expensive process, and hence in some cases may require
 incremental deployment, where new equipment supports the security
 mechanism, and is required to interoperate with legacy equipment
 without the security features.

5.10.1. Secure Mode

 Requirement

 The security mechanism MUST support a secure mode, where only
 secured clocks are permitted to take part in the time protocol.
 In this mode every protocol packet received from an unsecured
 clock MUST be discarded.

 Requirement Level

 The requirement level of this requirement is 'MUST' since the full
 capacity of the security requirements defined in this document can
 only be achieved in secure mode.

 Discussion

 While the requirement in this subsection is similar to the one in
 Section 5.1, it refers to the secure mode, as opposed to the
 hybrid mode presented in the next subsection.

5.10.2. Hybrid Mode

 Requirement

 The security protocol SHOULD support a hybrid mode, where both
 secured and unsecured clocks are permitted to take part in the
 protocol.

 Requirement Level

 The requirement level of this requirement is 'SHOULD'; on one
 hand, hybrid mode enables a gradual transition from unsecured to
 secured mode, which is especially important in large-scaled
 deployments. On the other hand, hybrid mode is not required in
 all systems; this document recommends deployment of the 'secure
 mode' described in Section 5.10.1, where possible.

 Discussion

 The hybrid mode allows both secured and unsecured clocks to take
 part in the time protocol. NTP, for example, allows a mixture of
 secured and unsecured nodes.

 Requirement

 A master in the hybrid mode SHOULD be a secured clock.

 A secured slave in the hybrid mode SHOULD discard all protocol
 packets received from unsecured clocks.

 Requirement Level

 The requirement level of this requirement is 'SHOULD' since it may
 not be applicable to all deployments. For example, a hybrid
 network may require the usage of unsecured masters or TCs.

 Discussion

 This requirement ensures that the existence of unsecured clocks
 does not compromise the security provided to secured clocks.
 Hence, secured slaves only "trust" protocol packets received from
 a secured clock.

 An unsecured slave can receive protocol packets from either
 unsecured clocks or secured clocks. Note that the latter does not
 apply when encryption is used. When integrity protection is used,
 the unsecured slave can receive secured packets ignoring the
 integrity protection.

 Note that the security scheme in [NTPv4] with [AutoKey] does not
 satisfy this requirement, since nodes prefer the server with the
 most accurate clock, which is not necessarily the server that
 supports authentication. For example, a Stratum 2 server is
 connected to two Stratum 1 servers: Server A, supporting
 authentication, and Server B, without authentication. If Server B
 has a more accurate clock than A, the Stratum 2 server chooses
 Server B, in spite of the fact it does not support authentication.

6. Summary of Requirements

+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑+
| Section | Requirement | Type |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑+
| 5.1 | Authentication & authorization of sender | MUST |
| +‑‑‑+‑‑‑‑‑‑‑‑+
| | Authentication & authorization of master | MUST |
| +‑‑‑+‑‑‑‑‑‑‑‑+
| | Recursive authentication & authorization | MUST |
| +‑‑‑+‑‑‑‑‑‑‑‑+
| | Authentication & authorization of slaves | MAY |
| +‑‑‑+‑‑‑‑‑‑‑‑+
| | PTP: Authentication & authorization of | MAY |
| | P2P TCs by master | |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑+

+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑+
|5.1 (cont) | PTP: Authentication & authorization of | MUST |
| | Announce messages | |
| +‑‑‑+‑‑‑‑‑‑‑‑+
| | PTP: Authentication & authorization of | MUST |
| | Management messages | |
| +‑‑‑+‑‑‑‑‑‑‑‑+
| | PTP: Authentication & authorization of | MAY |
| | Signaling messages | |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑+
| 5.2 | Integrity protection | MUST |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑+
| 5.3 | Spoofing prevention | MUST |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑+
| 5.4 | Protection from DoS attacks against the | SHOULD |
| | time protocol | |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑+
| 5.5 | Replay protection | MUST |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑+
| 5.6 | Key freshness | MUST |
| +‑‑‑+‑‑‑‑‑‑‑‑+
| | Security association | SHOULD |
| +‑‑‑+‑‑‑‑‑‑‑‑+
| | Unicast and multicast associations | SHOULD |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑+
| 5.7 | Performance: no degradation in quality of | MUST |
| | time transfer | |
| +‑‑‑+‑‑‑‑‑‑‑‑+
| | Performance: computation load | SHOULD |
| +‑‑‑+‑‑‑‑‑‑‑‑+
| | Performance: storage | SHOULD |
| +‑‑‑+‑‑‑‑‑‑‑‑+
| | Performance: bandwidth | SHOULD |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑+
| 5.8 | Confidentiality protection | MAY |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑+
| 5.9 | Protection against delay and interception | MUST |
| | attacks | |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑+
| 5.10 | Secure mode | MUST |
| +‑‑‑+‑‑‑‑‑‑‑‑+
| | Hybrid mode | SHOULD |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑‑‑‑+

 Table 2: Summary of Security Requirements

7. Additional Security Implications

 This section discusses additional implications of the interaction
 between time protocols and security mechanisms.

 This section refers to time protocol security mechanisms, as well as
 to "external" security mechanisms, i.e., security mechanisms that are
 not strictly related to the time protocol.

7.1. Security and On-the-Fly Timestamping

 Time protocols often require that protocol packets be modified during
 transmission. Both NTP and PTP in one-step mode require clocks to
 modify protocol packets based on the time of transmission and/or
 reception.

 In the presence of a security mechanism, whether encryption or
 integrity protection:

 o During transmission the encryption and/or integrity protection
 MUST be applied after integrating the timestamp into the packet.

 To allow high accuracy, timestamping is typically performed as close
 to the transmission or reception time as possible. However, since
 the security engine must be placed between the timestamping function
 and the physical interface, it may introduce non-deterministic
 latency that causes accuracy degradation. These performance aspects
 have been analyzed in literature, e.g., [1588IPsec] and [Tunnel].

7.2. PTP: Security and Two-Step Timestamping

 PTP supports a two-step mode of operation, where the time of
 transmission of protocol packets is communicated without modifying
 the packets. As opposed to one-step mode, two-step timestamping can
 be performed without the requirement to encrypt after timestamping.

 Note that if an encryption mechanism such as IPsec is used, it
 presents a challenge to the timestamping mechanism, since time
 protocol packets are encrypted when traversing the physical
 interface, and are thus impossible to identify. A possible solution
 to this problem [IPsecSync] is to include an indication in the
 encryption header that identifies time protocol packets.

7.3. Intermediate Clocks

 A time protocol allows slaves to receive time information from an
 accurate time source. Time information is sent over a path that
 often traverses one or more intermediate clocks.

 o In NTP, time information originated from a Stratum 1 server can be
 distributed to Stratum 2 servers and, in turn, distributed from
 the Stratum 2 servers to NTP clients. In this case, the Stratum 2
 servers are a layer of intermediate clocks. These intermediate
 clocks are referred to as "secondary servers" in [NTPv4].

 o In PTP, BCs and TCs are intermediate nodes used to improve the
 accuracy of time information conveyed between the grandmaster and
 the slaves.

 A common rule of thumb in network security is that end-to-end
 security is the best policy, as it secures the entire path between
 the data originator and its receiver. The usage of intermediate
 nodes implies that if a security mechanism is deployed in the
 network, a hop-by-hop security scheme must be used, since
 intermediate nodes must be able to send time information to the
 slaves, or to modify time information sent through them.

 This inherent property of using intermediate clocks increases the
 system's exposure to internal threats, as a large number of nodes
 possess the security keys.

 Thus, there is a trade-off between the achievable clock accuracy of a
 system, and the robustness of its security solution. On one hand,
 high clock accuracy calls for hop-by-hop involvement in the protocol,
 also known as on-path support. On the other hand, a robust security
 solution calls for end-to-end data protection.

7.4. External Security Protocols and Time Protocols

 Time protocols are often deployed in systems that use security
 mechanisms and protocols.

 A typical example is the 3GPP Femtocell network [3GPP], where IPsec
 is used for securing traffic between a Femtocell and the Femto
 Gateway. In some cases, all traffic between these two nodes may be
 secured by IPsec, including the time protocol traffic. This use-case
 is thoroughly discussed in [IPsecSync].

 Another typical example is the usage of MACsec encryption ([MACsec])
 in L2 networks that deploy time synchronization [AvbAssum].

 The usage of external security mechanisms may affect time protocols
 as follows:

 o Timestamping accuracy can be affected, as described in Section
 7.1.

 o If traffic is secured between two nodes in the network, no
 intermediate clocks can be used between these two nodes. In the
 [3GPP] example, if traffic between the Femtocell and the Femto
 Gateway is encrypted, then time protocol packets are necessarily
 transported over the underlying network without modification and,
 thus, cannot enjoy the improved accuracy provided by intermediate
 clock nodes.

7.5. External Security Services Requiring Time

 Cryptographic protocols often use time as an important factor in the
 cryptographic algorithm. If a time protocol is compromised, it may
 consequently expose the security protocols that rely on it to various
 attacks. Two examples are presented in this section.

7.5.1. Timestamped Certificates

 Certificate validation requires the sender and receiver to be roughly
 time synchronized. Thus, synchronization is required for
 establishing security protocols such as Internet Key Exchange
 Protocol version 2 (IKEv2) and Transport Layer Security (TLS). Other
 authentication and key exchange mechanisms, such as Kerberos, also
 require the parties involved to be synchronized [Kerb].

 An even stronger interdependence between a time protocol and a
 security mechanism is defined in [AutoKey], which defines mutual
 dependence between the acquired time information, and the
 authentication protocol that secures it. This bootstrapping behavior
 results from the fact that trusting the received time information
 requires a valid certificate, and validating a certificate requires
 knowledge of the time.

7.5.2. Time Changes and Replay Attacks

 A successful attack on a time protocol may cause the attacked clocks
 to go back in time. The erroneous time may expose cryptographic
 algorithms that rely on time, as a node may use a key that was
 already used in the past and has expired.

8. Issues for Further Discussion

 The Key distribution is outside the scope of this document. Although
 this is an essential element of any security system, it is outside
 the scope of this document.

9. Security Considerations

 The security considerations of network timing protocols are presented
 throughout this document.

10. References

10.1. Normative References

 [IEEE1588]
 IEEE, "1588-2008 - IEEE Standard for a Precision Clock
 Synchronization Protocol for Networked Measurement and
 Control Systems", IEEE Standard 1588-2008, July 2008.

 [KEYWORDS]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [NTPv4]
 Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and
 Algorithms Specification", RFC 5905, June 2010,
 <http://www.rfc-editor.org/info/rfc5905>.

10.2. Informative References

 [1588IPsec]
 Treytl, A. and B. Hirschler, "Securing IEEE 1588 by
 IPsec tunnels - An analysis", in Proceedings of 2010
 International Symposium for Precision Clock
 Synchronization for Measurement, Control and
 Communication, ISPCS 2010, pp. 83-90, September 2010.

 [3GPP]
 3GPP, "Security of Home Node B (HNB) / Home evolved
 Node B (HeNB)", 3GPP TS 33.320 11.6.0, November 2012.

 [Anatomy]
 Nachreiner, C., "Anatomy of an ARP Poisoning Attack",
 2003.

 [AutoKey]
 Haberman, B., Ed., and D. Mills, "Network Time Protocol
 Version 4: Autokey Specification", RFC 5906, June 2010,
 <http://www.rfc-editor.org/info/rfc5906>.

 [AvbAssum]
 Pannell, D., "Audio Video Bridging Gen 2 Assumptions",
 IEEE 802.1 AVB Plenary, Work in Progress, May 2012.

 [DelayAtt]
 Mizrahi, T., "A game theoretic analysis of delay
 attacks against time synchronization protocols",
 accepted, to appear in Proceedings of the International
 IEEE Symposium on Precision Clock Synchronization for
 Measurement, Control and Communication, ISPCS,
 September 2012.

 [Hack]
 McClure, S., Scambray, J., and G. Kurtz, "Hacking
 Exposed: Network Security Secrets and Solutions",
 McGraw-Hill, 2009.

 [IPsec]
 Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005,
 <http://www.rfc-editor.org/info/rfc4301>.

 [IPsecSync]
 Xu, Y., "IPsec security for packet based
 synchronization", Work in Progress, draft-xu-tictoc-
 ipsec-security-for-synchronization-02, September 2011.

 [Kerb]
 Sakane, S., Kamada, K., Thomas, M., and J. Vilhuber,
 "Kerberized Internet Negotiation of Keys (KINK)",
 RFC 4430, March 2006,
 <http://www.rfc-editor.org/info/rfc4430>.

 [MACsec]
 IEEE, "IEEE Standard for Local and metropolitan area
 networks - Media Access Control (MAC) Security", IEEE
 Standard 802.1AE, August 2006.

 [NTPDDoS]
 "Attackers use NTP reflection in huge DDoS attack",
 TICTOC mail archive, 2014.

 [SecPTP]
 Tsang, J. and K. Beznosov, "A Security Analysis of the
 Precise Time Protocol (Short Paper)," 8th International
 Conference on Information and Communication Security
 (ICICS) Lecture Notes in Computer Science Volume 4307,
 pp. 50-59, 2006.

 [SecSen]
 Ganeriwal, S., Popper, C., Capkun, S., and M. B.
 Srivastava, "Secure Time Synchronization in Sensor
 Networks", ACM Trans. Inf. Syst. Secur., Volume 11,
 Issue 4, Article 23, July 2008.

 [TimeSec]
 Mizrahi, T., "Time synchronization security using IPsec
 and MACsec", ISPCS 2011, pp. 38-43, September 2011.

 [Traps]
 Treytl, A., Gaderer, G., Hirschler, B., and R. Cohen,
 "Traps and pitfalls in secure clock synchronization" in
 Proceedings of 2007 International Symposium for
 Precision Clock Synchronization for Measurement,
 Control and Communication, ISPCS 2007, pp. 18-24,
 October 2007.

 [Tunnel]
 Treytl, A., Hirschler, B., and T. Sauter, "Secure
 tunneling of high-precision clock synchronisation
 protocols and other time-stamped data", in Proceedings
 of the 8th IEEE International Workshop on Factory
 Communication Systems (WFCS), pp. 303-313, May 2010.

Acknowledgments

 The author gratefully acknowledges Stefano Ruffini, Doug Arnold,
 Kevin Gross, Dieter Sibold, Dan Grossman, Laurent Montini, Russell
 Smiley, Shawn Emery, Dan Romascanu, Stephen Farrell, Kathleen
 Moriarty, and Joel Jaeggli for their thorough review and helpful
 comments. The author would also like to thank members of the TICTOC
 WG for providing feedback on the TICTOC mailing list.

Contributors

Karen O'Donoghue
ISOC

 EMail: odonoghue@isoc.org

Author's Address

Tal Mizrahi
Marvell
6 Hamada St.
Yokneam, 20692 Israel

 EMail: talmi@marvell.com

8039 - Multipath Time Synchronization

Index
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 8039

Category: Experimental

ISSN: 2070-1721

A. Shpiner

Mellanox

R. Tse

Microsemi

C. Schelp

Oracle

T. Mizrahi

Marvell

December 2016

Multipath Time Synchronization

Abstract

 Clock synchronization protocols are very widely used in IP-based
 networks. The Network Time Protocol (NTP) has been commonly deployed
 for many years, and the last few years have seen an increasingly
 rapid deployment of the Precision Time Protocol (PTP). As time-
 sensitive applications evolve, clock accuracy requirements are
 becoming increasingly stringent, requiring the time synchronization
 protocols to provide high accuracy. This memo describes a multipath
 approach to PTP and NTP over IP networks, allowing the protocols to
 run concurrently over multiple communication paths between the master
 and slave clocks, without modifying these protocols. The multipath
 approach can significantly contribute to clock accuracy, security,
 and fault tolerance. The multipath approach that is presented in
 this document enables backward compatibility with nodes that do not
 support the multipath functionality.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8039.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions Used in This Document
	 2.1. Abbreviations

	 2.2. Terminology

	3. Multiple Paths in IP Networks
	 3.1. Load Balancing

	 3.2. Using Multiple Paths Concurrently

	 3.3. Two-Way Paths

	4. Solution Overview
	 4.1. Path Configuration and Identification

	 4.2. Combining

	5. Multipath Time Synchronization over IP Networks
	 5.1. Overview

	 5.2. Single-Ended Multipath Synchronization
	 5.2.1. Single-Ended MPPTP Synchronization Message Exchange

	 5.2.2. Single-Ended MPNTP Synchronization Message Exchange

	 5.3. Dual-Ended Multipath Synchronization
	 5.3.1. Dual-Ended MPPTP Synchronization Message Exchange

	 5.3.2. Dual-Ended MPNTP Synchronization Message Exchange

	 5.4. Using Traceroute for Path Discovery

	 5.5. Using Unicast Discovery for MPPTP

	6. Combining Algorithm

	7. Security Considerations

	8. Scope of the Experiment

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Acknowledgments

	Authors' Addresses

1. Introduction

 The two most common time synchronization protocols in IP networks are
 (1) the Network Time Protocol [NTP] and (2) the Precision Time
 Protocol (PTP) as defined in the IEEE 1588 standard [IEEE1588].

 The accuracy of the time synchronization protocols directly depends
 on the stability and the symmetry of propagation delays in both
 directions between the master and slave clocks. Depending on the
 nature of the underlying network, time synchronization protocol
 packets can be subject to variable network latency or path asymmetry
 (e.g., [ASYMMETRY] [ASYMMETRY2]). As time-sensitive applications
 evolve, accuracy requirements are becoming increasingly stringent.
 Using a single network path in a clock synchronization protocol
 closely ties the slave clock accuracy to the behavior of the specific
 path, which may suffer from temporal congestion, faults, or malicious
 attacks. Relying on multiple clock servers, as in NTP, solves these
 problems but requires active maintenance of multiple accurate sources
 in the network, which is not always possible. The usage of
 Transparent Clocks (TCs) in PTP solves the congestion problem by
 eliminating the queuing time from the delay calculations but does not
 address security or fault-tolerance aspects.

 ______/ _____
 ___/ ____
 ____/ \
 ____ / path 1 / ___
 / \ / ________________________ \ / \
/Master_______/ ____________/Slave\
\Clock / / ________ _______________/ \ \Clock/
 ____/ \ / __ /
 ____ path 2 __/
 _______ ______/
 _________/

 Figure 1: Multipath Connection

 Since master and slave clocks are often connected through more than
 one path in the network, as shown in Figure 1, [SLAVEDIV] suggested
 that a time synchronization protocol can be run over multiple paths,
 providing several advantages. First, it can significantly increase
 the clock accuracy as shown in [SLAVEDIV]. Second, this approach
 provides additional security, allowing the mitigation of
 man-in-the-middle attacks against the time synchronization protocol
 [DELAY-ATT]. Third, using multiple paths concurrently provides an
 inherent failure protection mechanism.

 This document introduces Multipath PTP (MPPTP) and Multipath NTP
 (MPNTP). The functionality of the multipath approach is defined at
 the network layer and does not require any changes in PTP or NTP.

 MPPTP and MPNTP are defined over IP networks. As IP networks
 typically combine ECMP routing, this property is leveraged for the
 multiple paths used in MPPTP and MPNTP. The key property of the
 multipath approach is that clocks in the network can use more than
 one IP address. Each {master IP, slave IP} address pair defines a
 path. Depending on the network topology and configuration, the IP
 combination pairs can form multiple diverse paths used by the
 multipath synchronization protocols. It has been shown [MULTI] that
 using multiple IP addresses over the wide Internet indeed allows two
 endpoints to attain multiple diverse paths.

This document introduces two variants of the multipath approach:
(1) a variant that requires both master and slave nodes to support
the multipath functionality, referred to as the dual‑ended variant,
and (2) a backward‑compatible variant that allows a multipath clock
to connect to a conventional single‑path clock, referred to as the
single‑ended variant.

2. Conventions Used in This Document

2.1. Abbreviations

BMC Best Master Clock [IEEE1588]

ECMP Equal‑Cost Multipath

LAN Local Area Network

MPNTP Multipath Network Time Protocol

MPPTP Multipath Precision Time Protocol

NTP Network Time Protocol [NTP]

PTP Precision Time Protocol [IEEE1588]

2.2. Terminology

 In the NTP terminology, a time synchronization protocol is run
 between a client and a server, while PTP uses the terms 'master' and
 'slave'. Throughout this document, the sections that refer to both
 PTP and NTP generically use the terms 'master' and 'slave'.

3. Multiple Paths in IP Networks

3.1. Load Balancing

 Traffic sent across IP networks is often load-balanced across
 multiple paths. The load-balancing decisions are typically based on
 packet header fields: source and destination addresses, Layer 4
 ports, the Flow Label field in IPv6, etc.

 Three common load-balancing criteria are per-destination, per-flow,
 and per-packet. The per-destination load balancers take a
 load-balancing decision based on the destination IP address.
 Per-flow load balancers use various fields in the packet header,
 e.g., IP addresses and Layer 4 ports, for the load-balancing
 decision. Per-packet load balancers use flow-blind techniques such
 as round-robin without basing the choice on the packet content.

3.2. Using Multiple Paths Concurrently

To utilize the diverse paths that traverse per‑destination
load balancers or per‑flow load balancers, the packet transmitter can
vary the IP addresses in the packet header. The analysis in [PARIS2]
shows that a significant majority of the flows on the Internet
traverse per‑destination or per‑flow load balancing. It presents
statistics that 72% of the flows traverse per‑destination
load balancing and 39% of the flows traverse per‑flow load balancing,
while only a negligible part of the flows traverse per‑packet
load balancing. These statistics show that the vast majority of the
traffic on the Internet is load‑balanced based on packet header
fields.

 The approaches in this document are based on varying the source and
 destination IP addresses in the packet header. Possible extensions
 have been considered that also vary the UDP ports. However, some of
 the existing implementations of PTP and NTP use fixed UDP port values
 in both the source and destination UDP port fields and thus do not
 allow this approach.

3.3. Two-Way Paths

 A key property of IP networks is that packets forwarded from A to B
 do not necessarily traverse the same path as packets from B to A.
 Thus, we define a two-way path for a master-slave connection as a
 pair of one-way paths: the first from master to slave and the second
 from slave to master.

 If possible, a traffic engineering approach can be used to verify
 that time synchronization traffic is always forwarded through
 bidirectional two-way paths, i.e., that each two-way path uses the
 same route in the forward and reverse directions, thus allowing
 propagation time symmetry. However, in the general case, two-way
 paths do not necessarily use the same path for the forward and
 reverse directions.

4. Solution Overview

 The multipath time synchronization protocols we present here are
 comprised of two building blocks: one is the path configuration and
 identification, and the other is the algorithm used by the slave to
 combine the information received from the various paths.

4.1. Path Configuration and Identification

 The master and slave clocks must be able to determine the path of
 transmitted protocol packets and to identify the path of incoming
 protocol packets. A path is determined by a {master IP, slave IP}
 address pair. The synchronization protocol message exchange is run
 independently through each path.

 Each IP address pair defines a two-way path and thus allows the
 clocks to bind a transmitted packet to a specific path or to identify
 the path of an incoming packet.

 If possible, the routing tables across the network should be
 configured with multiple traffic-engineered paths between the pair of
 clocks. By carefully configuring the routers in such networks, it is
 possible to create diverse paths for each of the IP address pairs
 between two clocks in the network. However, in public and provider
 networks, the load-balancing behavior is hidden from the end users.
 In this case, the actual number of paths may be less than the number
 of IP address pairs, since some of the address pairs may share common
 paths.

4.2. Combining

 Various methods can be used for combining the time information
 received from the different paths. The output of the combining
 algorithm is the accurate time offset. Combining methods are further
 discussed in Section 6.

5. Multipath Time Synchronization over IP Networks

5.1. Overview

 This section presents two variants of MPPTP and MPNTP: single-ended
 multipath time synchronization and dual-ended multipath time
 synchronization. In the first variant, the multipath approach is
 only implemented by the slave, and the master is not aware of its
 usage. In the second variant, all clocks use multiple paths.

 The dual-ended variant provides higher path diversity by using
 multiple IP addresses at both ends, the master and slave, while the
 single-ended variant only uses multiple addresses at the slave.
 Consequently, the single-ended approach can interoperate with
 existing implementations that do not use multiple paths. The
 dual-ended and single-ended approaches can coexist in the same
 network; each slave selects the connection(s) it wants to make with
 the available masters. A dual-ended slave could switch to
 single-ended mode if it does not see any dual-ended masters
 available. A single-ended slave could connect to a single IP address
 of a dual-ended master.

 Multipath time synchronization, in both variants, requires clocks to
 use multiple IP addresses. Using multiple IP addresses introduces a
 trade-off. A large number of IP addresses allows a large number of
 diverse paths, providing the advantages of slave diversity discussed
 in Section 1. On the other hand, a large number of IP addresses is
 more costly, requires the network topology to be more redundant, and
 exacts extra management overhead.

 If possible, the set of IP addresses for each clock should be chosen
 in a way that enables the establishment of paths that are the most
 different. If the load-balancing rules in the network are known, it
 is possible to choose the IP addresses in a way that enforces path
 diversity. However, even if the load-balancing scheme is not known,
 a careful choice of the IP addresses can increase the probability of
 path diversity. For example, choosing multiple addresses with
 different prefixes is likely to produce higher path diversity, as BGP
 routers are more likely to route these different prefixes through
 different routes.

 The use of Network Address Translation (NAT) may significantly reduce
 the effectiveness of multipath synchronization in some cases. For
 example, if a master uses multiple IP addresses that are translated
 to a single IP address, the path diversity can be dramatically
 reduced compared to a network that does not use NAT. Thus, path
 discovery should be used to identify the possible paths between the
 master and slave. Path discovery is further discussed in
 Section 5.4.

 The concept of using multiple IP addresses or multiple interfaces is
 well established and is being used today by various applications and
 protocols, e.g., [MPTCP]. Using multiple interfaces introduces some
 challenges and issues, which were presented and discussed in [MIF].

 The descriptions in this section refer to the end-to-end scheme of
 PTP but are similarly applicable to the peer-to-peer scheme. MPNTP,
 as described in this document, refers to the NTP client-server mode,
 although the concepts described here can be extended to include the
 symmetric variant as well.

 Multipath synchronization by nature requires protocol messages to be
 sent as unicast. Specifically in PTP, the following messages must be
 sent as unicast in MPPTP: Sync, Delay_Req, Delay_Resp, PDelay_Req,
 PDelay_Resp, Follow_Up, and PDelay_Resp_Follow_Up. Note that
 [IEEE1588] allows these messages to be sent either as multicast or as
 unicast.

5.2. Single-Ended Multipath Synchronization

 In the single-ended approach, only the slave is aware of the fact
 that multiple paths are used, while the master is agnostic to the
 usage of multiple paths. This approach allows a hybrid network,
 where some of the clocks are multipath clocks and others are
 conventional one-path clocks. A single-ended multipath clock
 presents itself to the network as N independent clocks, using N IP
 addresses, as well as N clockIdentity [IEEE1588] values (in PTP).
 Thus, the usage of multiple slave identities by a slave clock is
 transparent from the master's point of view, such that it treats each
 of the identities as a separate slave clock.

5.2.1. Single-Ended MPPTP Synchronization Message Exchange

 The single-ended MPPTP message exchange procedure is as follows.

 o Each single-ended MPPTP clock has a fixed set of N IP addresses
 and N corresponding clockIdentities. Each clock arbitrarily
 defines one of its IP addresses and clockIdentity values as the
 clock primary identity.

 o A single-ended MPPTP port sends Announce messages only from its
 primary identity, according to the BMC algorithm.

 o The BMC algorithm at each clock determines the master, based on
 the received Announce messages.

 o A single-ended MPPTP port that is in the 'slave' state uses
 unicast negotiation to request the master to transmit unicast
 messages to each of the N slave clockIdentity values. The slave
 port periodically sends N Signaling messages to the master, using
 each of its N identities. The Signaling message includes the
 REQUEST_UNICAST_TRANSMISSION TLV [IEEE1588].

 o The master periodically sends unicast Sync messages from its
 primary identity, identified by the sourcePortIdentity [IEEE1588]
 and IP address, to each of the slave identities.

 o The slave, upon receiving a Sync message, identifies its path
 according to the destination IP address. The slave sends a
 Delay_Req unicast message to the primary identity of the master.
 The Delay_Req is sent using the slave identity corresponding to
 the path through which the Sync was received. Note that the rate
 of Delay_Req messages may be lower than the Sync message rate, and
 thus a Sync message is not necessarily followed by a Delay_Req.

 o The master, in response to a Delay_Req message from the slave,
 responds with a Delay_Resp message using the IP address and
 sourcePortIdentity from the Delay_Req message.

 o Upon receiving the Delay_Resp message, the slave identifies the
 path using the destination IP address and the
 requestingPortIdentity [IEEE1588]. The slave can then compute the
 corresponding path delay and the offset from the master.

 o The slave combines the information from all negotiated paths.

5.2.2. Single-Ended MPNTP Synchronization Message Exchange

 The single-ended MPNTP message exchange procedure is as follows.

 o A single-ended MPNTP client has N separate identities, i.e., N IP
 addresses. The assumption is that the server information,
 including its IP address, is known to the NTP clients. This is a
 fair assumption, as typically the address(es) of the NTP server(s)
 is provided to the NTP client by configuration.

o A single‑ended MPNTP client initiates NTP with an NTP server
 N times, using each of its N identities.

 o NTP is maintained between the server and each of the N client
 identities.

o The client sends NTP messages to the master using each of its
 N identities.

 o The server responds to the client's NTP messages using the IP
 address from the received NTP packet.

 o The client, upon receiving an NTP packet, uses the IP destination
 address to identify the path through which it came, and it uses
 the time information accordingly.

 o The client combines the information from all paths.

5.3. Dual-Ended Multipath Synchronization

 In dual-ended multipath synchronization, each clock has N IP
 addresses. Time synchronization messages are exchanged between some
 of the combinations of {master IP, slave IP} addresses, allowing
 multiple paths between the master and slave. Note that the actual
 number of paths between the master and slave may be less than the
 number of chosen {master IP, slave IP} address pairs.

Once the multiple two‑way connections are established, a separate
synchronization protocol exchange instance is run through each
of them.

5.3.1. Dual-Ended MPPTP Synchronization Message Exchange

 The dual-ended MPPTP message exchange procedure is as follows.

 o Every clock has N IP addresses but uses a single clockIdentity.

 o The BMC algorithm at each clock determines the master. The master
 is identified by its clockIdentity, allowing other clocks to know
 the multiple IP addresses it uses.

 o When a clock sends an Announce message, it sends it from each of
 its IP addresses with its clockIdentity.

 o A dual-ended MPPTP port that is in the 'slave' state uses unicast
 negotiation to request the master to transmit unicast messages to
 some or all of its N_s IP addresses. This negotiation is done
 individually between a slave IP address and the corresponding
 master IP address with which the slave desires a connection. The
 slave port periodically sends Signaling messages to the master,
 using some or all of its N_s IP addresses as the source, to the
 corresponding master's N_m IP addresses. The Signaling message
 includes the REQUEST_UNICAST_TRANSMISSION TLV [IEEE1588].

 ('N_s' and 'N_m' indicate the number of IP addresses of the slave
 and master, respectively.)

 o The master periodically sends unicast Sync messages from each of
 its IP addresses to the corresponding slave IP addresses for which
 a unicast connection was negotiated.

 o The slave, upon receiving a Sync message, identifies its path
 according to the {source IP, destination IP} addresses. The slave
 sends a Delay_Req unicast message, swapping the source and
 destination IP addresses from the Sync message. Note that the
 rate of Delay_Req messages may be lower than the Sync message
 rate, and thus a Sync message is not necessarily followed by a
 Delay_Req.

 o The master, in response to a Delay_Req message from the slave,
 responds with a Delay_Resp message using the sourcePortIdentity
 from the Delay_Req message and swapping the IP addresses from the
 Delay_Req.

 o Upon receiving the Delay_Resp message, the slave identifies the
 path using the {source IP, destination IP} address pair. The
 slave can then compute the corresponding path delay and the offset
 from the master.

 o The slave combines the information from all negotiated paths.

5.3.2. Dual-Ended MPNTP Synchronization Message Exchange

 The MPNTP message exchange procedure is as follows.

 o Each NTP clock has a set of N IP addresses. The assumption is
 that the server information, including its multiple IP addresses,
 is known to the NTP clients.

 o The MPNTP client chooses N_svr server IP addresses and N_c client
 IP addresses and initiates the N_svr*N_c instances of the
 protocol, one for each {server IP, client IP} address pair,
 allowing the client to combine the information from the N_s*N_c
 paths.

 ('N_svr' and 'N_c' indicate the number of IP addresses of the
 server and client, respectively, with which a client chooses to
 connect.)

 o The client sends NTP messages to the master using each of the
 source-destination address combinations.

 o The server responds to the client's NTP messages using the IP
 address combination from the received NTP packet.

 o Using the {source IP, destination IP} address pair in the received
 packets, the client identifies the path and performs its
 computations for each of the paths accordingly.

 o The client combines the information from all paths.

5.4. Using Traceroute for Path Discovery

 The approach described thus far uses multiple IP addresses in a
 single clock to create multiple paths. However, although each
 two-way path is defined by a different {master IP, slave IP} address
 pair, some of the IP address pairs may traverse exactly the same
 network path, making them redundant.

 Traceroute-based path discovery can be used for filtering only the IP
 addresses that obtain diverse paths. 'Paris traceroute' [PARIS] and
 'TraceFlow' [TRACEFLOW] are examples of tools that discover the paths
 between two points in the network. It should be noted that this
 filtering approach is effective only if the Traceroute implementation
 uses the same IP addresses and UDP ports as the synchronization
 protocol packets. Since some Traceroute implementations vary the UDP
 ports, they may not be effective in identifying and filtering
 redundant paths in synchronization protocols.

 Traceroute-based filtering can be implemented by both master and
 slave nodes, or it can be restricted to run only on slave nodes to
 reduce the overhead on the master. For networks that guarantee that
 the path of the timing packets in the forward and reverse directions
 are the same, path discovery should only be performed at the slave.

 Since network routes change over time, path discovery and redundant
 path filtering should be performed periodically. Two {master IP,
 slave IP} address pairs that produce two diverse paths may be
 rerouted to use the same paths. Thus, the set of addresses that are
 used by each clock should be reassessed regularly.

5.5. Using Unicast Discovery for MPPTP

 As presented above, MPPTP uses Announce messages and the BMC
 algorithm to discover the master. The unicast discovery option of
 PTP can be used as an alternative.

 When using unicast discovery, the MPPTP slave ports maintain a list
 of the IP addresses of the master. The slave port uses unicast
 negotiation to request unicast service from the master as follows:

 o In single-ended MPPTP, the slave uses unicast negotiation from
 each of its identities to the master's (only) identity.

 o In dual-ended MPPTP, the slave uses unicast negotiation from its
 IP addresses, each to a corresponding master IP address, to
 request unicast synchronization messages.

Afterwards, the message exchange continues as described in
Sections 5.2.1 and 5.3.1.

 The unicast discovery option can be used in networks that do not
 support multicast or in networks in which the master clocks are known
 in advance. In particular, unicast discovery avoids multicasting
 Announce messages.

6. Combining Algorithm

 Previous sections discussed the methods of creating the multiple
 paths and obtaining the time information required by the slave
 algorithm. Once the time information is received through each of the
 paths, the slave should use a combining algorithm, which consolidates
 the information from the different paths into a single clock.
 Various methods have been suggested for combining information from
 different paths or from different clocks, e.g., [NTP] [SLAVEDIV]
 [HIGH-AVAI] [KALMAN]. The choice of the combining algorithm is local
 to the slave and does not affect interoperability. Hence, this
 document does not define a specific method to be used by the slave.
 The combining algorithm should be chosen carefully based on the
 system properties, as different combining algorithms provide
 different advantages. For example, some combining algorithms (e.g.,
 [NTP] [DELAY-ATT]) are intended to be robust in the face of security
 attacks, while other combining algorithms (e.g., [KALMAN]) are more
 resilient to random delay variation.

7. Security Considerations

 The security aspects of time synchronization protocols are discussed
 in detail in [RFC7384]. The methods described in this document
 propose to run a time synchronization protocol through redundant
 paths and thus allow the detection and mitigation of
 man-in-the-middle attacks, as described in [DELAY-ATT].
 Specifically, multipath synchronization can mitigate the following
 threats (as per [RFC7384]):

 o Packet manipulation (Section 3.2.1 of [RFC7384]).

 o Packet interception and removal (Section 3.2.5 of [RFC7384]).

 o Packet delay manipulation (Section 3.2.6 of [RFC7384]).

 It should be noted that when using multiple paths, these paths may
 partially overlap, and thus an attack that takes place in a common
 segment of these paths is not mitigated by the redundancy. Moreover,
 an on-path attacker may in some cases have access to more than one
 router or may be able to migrate from one router to another.
 Therefore, when using multiple paths, it is important for the paths
 to be as diverse and as independent as possible, making the
 redundancy scheme more tolerant to on-path attacks.

 It should be noted that the multipath approach requires the master
 (or NTP server) to dedicate more resources to each slave (client)
 than the conventional single-path approach. Hence, well-known
 Distributed Denial-of-Service (DDoS) attacks may potentially be
 amplified when the multipath approach is enabled.

8. Scope of the Experiment

 This memo is published as an Experimental RFC. The purpose of the
 experimental period is to allow the community to analyze and to
 verify the methods defined in this document. An experimental
 evaluation of some of these methods has been published in [MULTI].
 It is expected that the experimental period will allow the methods to
 be further investigated and verified by the community. The duration
 of the experiment is expected to be no less than two years from the
 publication of this document.

9. References

9.1. Normative References

 [IEEE1588]
 IEEE Instrumentation and Measurement Society, "IEEE
 Standard for a Precision Clock Synchronization Protocol
 for Networked Measurement and Control Systems", IEEE
 Std 1588-2008, DOI 10.1109/IEEESTD.2008.4579760.

 [NTP]
 Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <http://www.rfc-editor.org/info/rfc5905>.

9.2. Informative References

 [ASYMMETRY]

 He, Y., Faloutsos, M., Krishnamurthy, S., and B. Huffaker,
 "On routing asymmetry in the Internet", IEEE GLOBECOM,
 DOI 10.1109/GLOCOM.2005.1577769, December 2005.

 [ASYMMETRY2]

 Pathak, A., Pucha, H., Zhang, Y., Hu, C., and Z. Mao, "A
 measurement study of internet delay asymmetry",
 International Conference on Passive and Active Network
 Measurement 2008, DOI 10.1007/978-3-540-79232-1_19,
 April 2008.

 [DELAY-ATT]

 Mizrahi, T., "A Game Theoretic Analysis of Delay Attacks
 against Time Synchronization Protocols", IEEE
 International Symposium on Precision Clock Synchronization
 for Measurement, Control and Communication (ISPCS),
 DOI 10.1109/ISPCS.2012.6336612, September 2012.

 [HIGH-AVAI]

 Ferrari, P., Flammini, A., Rinaldi, S., and G. Prytz,
 "High availability IEEE 1588 nodes over IEEE 802.1 aq
 Shortest Path Bridging networks", IEEE International
 Symposium on Precision Clock Synchronization for
 Measurement, Control and Communication (ISPCS),
 DOI 10.1109/ISPCS.2013.6644760, September 2013.

 [KALMAN]
 Giorgi, G. and C. Narduzzi, "Kalman filtering for
 multi-path network synchronization", IEEE International
 Symposium on Precision Clock Synchronization for
 Measurement, Control and Communication (ISPCS),
 DOI 10.1109/ISPCS.2014.6948693, September 2014.

 [MIF]
 Blanchet, M. and P. Seite, "Multiple Interfaces and
 Provisioning Domains Problem Statement", RFC 6418,
 DOI 10.17487/RFC6418, November 2011,
 <http://www.rfc-editor.org/info/rfc6418>.

 [MPTCP]
 Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

 [MULTI]
 Shpiner, A., Revah, Y., and T. Mizrahi, "Multi-path Time
 Protocols", IEEE International Symposium on Precision
 Clock Synchronization for Measurement, Control and
 Communication (ISPCS), DOI 10.1109/ISPCS.2013.6644754,
 September 2013.

 [PARIS]
 Augustin, B., Friedman, T., and R. Teixeira, "Measuring
 Load-balanced Paths in the Internet", 7th ACM SIGCOMM
 conference on Internet measurement (IMC '07),
 DOI 10.1145/1298306.1298329, October 2007.

 [PARIS2]
 Augustin, B., Friedman, T., and R. Teixeira, "Measuring
 Multipath Routing in the Internet", IEEE/ACM Transactions
 on Networking, 19(3), pp. 830-840,
 DOI 10.1109/TNET.2010.2096232, June 2011.

 [RFC7384]
 Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <http://www.rfc-editor.org/info/rfc7384>.

 [SLAVEDIV]
 Mizrahi, T., "Slave Diversity: Using Multiple Paths to
 Improve the Accuracy of Clock Synchronization Protocols",
 IEEE International Symposium on Precision Clock
 Synchronization for Measurement, Control and Communication
 (ISPCS), DOI 10.1109/ISPCS.2012.6336621, September 2012.

 [TRACEFLOW]

 Narasimhan, J., Venkataswami, B., Groves, R., and P.
 Hoose, "Traceflow", Work in Progress,
 draft-janapath-intarea-traceflow-00, January 2012.

Acknowledgments

 The authors would like to thank Yoram Revah for his contribution to
 this work. The authors also gratefully acknowledge the useful
 comments provided by Peter Meyer, Doug Arnold, Joe Abley, Zhen Cao,
 Watson Ladd, and Mirja Kuehlewind, as well as other comments received
 from the TICTOC working group participants.

Authors' Addresses

Alex Shpiner
Mellanox Technologies, Ltd.
Hakidma 26
Ofer Industrial Park
Yokneam, 2069200
Israel

 Email: alexshp@mellanox.com

Richard Tse
Microsemi
8555 Baxter Place
Burnaby, BC V5A 4V7
Canada

 Email: Richard.Tse@microsemi.com

Craig Schelp
Oracle

 Email: craig.schelp@oracle.com

Tal Mizrahi
Marvell
6 Hamada St.
Yokneam, 2066721
Israel

 Email: talmi@marvell.com

8173 - Precision Time Protocol Version 2 (PTPv2) Management Information Base

Index
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 8173

Category: Standards Track

ISSN: 2070-1721

V. Shankarkumar

L. Montini

Cisco Systems

T. Frost

Calnex Solutions Ltd.

G. Dowd

Microsemi

June 2017

Precision Time Protocol Version 2 (PTPv2) Management Information Base

Abstract

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in internets based on TCP
 or IP. In particular, it defines objects for managing networks using
 the Precision Time Protocol (PTP), specified in IEEE Std. 1588-2008.

 This memo specifies a MIB module in a manner that is both compliant
 to the Structure of Management Information version 2 (SMIv2) and
 semantically identical to the peer SMIv1 definitions.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8173.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Relationship to Other Profiles and MIBs

	2. The SNMP Management Framework

	3. Overview

	4. PTP MIB Definition

	5. Security Considerations

	6. IANA Considerations

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Acknowledgements

	Author's Addresses

1. Introduction

 This memo defines a portion of the Management Information Base (MIB)
 module for use with network management protocols in the Internet
 community. In particular, it describes managed objects used for
 managing PTP devices including ordinary clocks, transparent clocks,
 and boundary clocks.

 This MIB module is restricted to reading standard PTP data elements,
 as described in [IEEE-1588-2008]. This enables it to monitor the
 operation of PTP clocks within the network. It is envisioned that
 this MIB module will complement other managed objects to be defined
 that will provide more detailed information on the performance of PTP
 clocks supporting the Telecom Profile defined in [G.8265.1] and any
 future profiles that may be defined. Those objects are considered
 out of scope for the current document.

 Similarly, this MIB module is read-only and not intended to provide
 the ability to configure PTP clocks. Since PTP clocks are often
 embedded in other network elements such as routers, switches, and
 gateways, this ability is generally provided via the configuration
 interface for the network element.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.1. Relationship to Other Profiles and MIBs

 This MIB module is intended to be used with the default PTP profile
 described in [IEEE-1588-2008] when running over the IP network layer.
 As stated above, it is envisioned that this MIB module will
 complement other managed objects to be defined to monitor and measure
 the performance of PTP clocks supporting specific PTP profiles, e.g.,
 the Telecom Profile defined in [G.8265.1].

 Some other PTP profiles have their own MIB modules defined as part of
 the profile, and this MIB module is not intended to replace those MIB
 modules.

2. The Internet-Standard Management Framework

 For a detailed overview of the documents that describe the current
 Internet-Standard Management Framework, please refer to section 7 of
 RFC 3410 [RFC3410].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. MIB objects are generally
 accessed through the Simple Network Management Protocol (SNMP).
 Objects in the MIB are defined using the mechanisms defined in the
 Structure of Management Information (SMI). This memo specifies a MIB
 module that is compliant to the SMIv2, which is described in STD 58,
 RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
 [RFC2580].

3. Overview

 The objects defined in this MIB module are to be used when describing
 the Precision Time Protocol (PTP), as defined in [IEEE-1588-2008].

 Section 6 of [IEEE-1588-2008] provides an overview of synchronization
 networks using PTP.

 Terms used in this document have meanings as defined in Section 3.1
 of [IEEE-1588-2008].

4. PTP MIB Definition

PTPBASE-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE‑IDENTITY,
 OBJECT‑TYPE,
 OBJECT‑IDENTITY,
 Gauge32,
 Unsigned32,
 Counter32,
 Counter64,
 mib‑2,
 Integer32
 FROM SNMPv2‑SMI
 OBJECT‑GROUP,
 MODULE‑COMPLIANCE
 FROM SNMPv2‑CONF
 TEXTUAL‑CONVENTION,
 TruthValue,
 DisplayString,
 AutonomousType
 FROM SNMPv2‑TC
 InterfaceIndexOrZero
 FROM IF‑MIB;

ptpbaseMIB MODULE‑IDENTITY
 LAST‑UPDATED "201705300000Z"
 ORGANIZATION "TICTOC Working Group"
 CONTACT‑INFO
 "WG Email: tictoc@ietf.org

 Vinay Shankarkumar
 Cisco Systems
 Email: vinays@cisco.com

 Laurent Montini
 Cisco Systems
 Email: lmontini@cisco.com

 Tim Frost
 Calnex Solutions Ltd.
 Email: tim.frost@calnexsol.com

 Greg Dowd
 Microsemi Inc.
 Email: greg.dowd@microsemi.com"

 DESCRIPTION

 "The MIB module for PTP version 2

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 Overview of PTP version 2 (IEEE Std. 1588-2008)

[IEEE‑1588‑2008] defines a protocol enabling precise
synchronization of clocks in measurement and control systems
implemented with packet‑based networks, the Precision Time
Protocol version 2 (PTPv2). This MIB module does not address
PTPv1, the earlier version defined in IEEE Std. 1588‑2002.
The protocol is applicable to network elements communicating
using IP. The protocol enables heterogeneous systems that
include clocks of various inherent precision, resolution, and
stability to synchronize to a grandmaster clock.

The protocol supports system‑wide synchronization accuracy in
the sub‑microsecond range with minimal network and local clock
computing resources. [IEEE‑1588‑2008] uses UDP/IP or
Ethernet and can be adapted to other mappings. It includes
formal mechanisms for message extensions, higher sampling rates,
correction for asymmetry, a clock type to reduce error
accumulation in large topologies, and specifications on how to
incorporate the resulting additional data into the
synchronization protocol. [IEEE‑1588‑2008] also defines
conformance and management capability.

 MIB description

 This MIB module supports the Precision Time Protocol version 2
 (PTPv2, hereafter designated as PTP) features of network element
 system devices, when using the default PTP profile described in
 [IEEE-1588-2008] when running over the IP network layer.

 It is envisioned that this MIB module will complement other
 managed objects to be defined to monitor and measure the
 performance of the PTP devices and telecom clocks supporting
 specific PTP profiles.

 Some other PTP profiles have their own MIB modules defined as
 part of the profile, and this MIB module is not intended to
 replace those MIB modules.

 Technical terms used in this module are defined in
 [IEEE-1588-2008].

 The MIB module refers to sections of [IEEE-1588-2008].

Abbreviations:
 E2E End‑to‑End
 EUI Extended Unique Identifier
 GPS Global Positioning System
 IANA Internet Assigned Numbers Authority
 IP Internet Protocol
 NTP Network Time Protocol (see [RFC5905])
 P2P Peer‑to‑Peer
 PTP Precision Time Protocol
 TAI International Atomic Time
 UDP User Datagram Protocol
 UTC Coordinated Universal Time

 References:

 [IEEE-1588-2008] IEEE Standard for A Precision Clock

 Synchronization Protocol for Networked Measurement and
 Control Systems, IEEE Std. 1588-2008, July 2008.

 The below table specifies the object formats of the various
 textual conventions used.

 Data type mapping Textual Convention SYNTAX
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 5.3.2 TimeInterval PtpClockTimeInterval OCTET
 STRING(SIZE(1..255))
 5.3.3 Timestamp PtpClockTimestamp OCTET STRING(SIZE(6))
 5.3.4 ClockIdentity PtpClockIdentity OCTET STRING(SIZE(8))
 5.3.5 PortIdentity PtpClockPortNumber INTEGER(1..65535)
 5.3.7 ClockQuality PtpClockQualityClassType
"

REVISION "201705300000Z"
DESCRIPTION "Initial version of this MIB module, published
 as RFC 8173."

 ::= { mib-2 241 }

-- Textual Conventions

PtpClockDomainType ::= TEXTUAL‑CONVENTION
 DISPLAY‑HINT "d"
 STATUS current
 DESCRIPTION
 "The Domain is identified by an integer, the domainNumber, in
 the range of 0 to 255. An integer value that is used to assign
 each PTP device to a particular domain."

 REFERENCE "Section 7.1 ('Domains') and Table 2 ('domainNumber')
 of [IEEE‑1588‑2008]"
 SYNTAX Unsigned32 (0..255)

PtpClockIdentity ::= TEXTUAL‑CONVENTION
 DISPLAY‑HINT "255a"
 STATUS current
 DESCRIPTION
 "The clock identity is an 8‑octet array and will be presented in
 the form of a character array. Network byte order is assumed.

 The value of the PtpClockIdentity should be taken from the
 IEEE EUI‑64 individual assigned numbers as indicated in
 Section 7.5.2.2.2 of [IEEE‑1588‑2008]. It can also be a
 non‑EUI‑64 address as defined in Section 7.5.2.2.3 of
 [IEEE‑1588‑2008].

 The clock identifier can be constructed from existing EUI-48
 assignments."

 REFERENCE "Section 7.5.2.2.1 ('General') of [IEEE‑1588‑2008]"
 SYNTAX OCTET STRING (SIZE (8))

PtpClockInstanceType ::= TEXTUAL‑CONVENTION
 DISPLAY‑HINT "d"
 STATUS current
 DESCRIPTION
 "The instance of the clock of a given clock type in a given
 domain."
 SYNTAX Unsigned32 (0..255)

PtpClockIntervalBase2 ::= TEXTUAL‑CONVENTION
 DISPLAY‑HINT "d"
 STATUS current
 DESCRIPTION
 "The interval included in message types Announce, Sync,
 Delay_Req, and Pdelay_Req as indicated in Section 7.7.2.1 of
 [IEEE‑1588‑2008]."

 REFERENCE "Section 7.7.2.1 ('General interval specification') of
 [IEEE‑1588‑2008]"
 SYNTAX Integer32 (‑128..127)

PtpClockMechanismType ::= TEXTUAL‑CONVENTION
 STATUS current
 DESCRIPTION
 "The clock type based on whether end‑to‑end or peer‑to‑peer
 mechanisms are used. The mechanism used to calculate the Mean
 Path Delay as indicated in Table 9 of [IEEE‑1588‑2008]."

 REFERENCE
 "Sections 8.2.5.4.4 ('portDS.delayMechanism'),
 6.6.4 ('Measuring link propagation delay in clocks supporting
 peer‑to‑peer path correction'), and
 7.4.2 ('communication Path asymmetry') of [IEEE‑1588‑2008]."
 SYNTAX INTEGER {
 e2e(1),
 p2p(2),
 disabled(254)
 }

PtpClockPortNumber ::= TEXTUAL‑CONVENTION
 DISPLAY‑HINT "d"
 STATUS current
 DESCRIPTION
 "An index identifying a specific PTP port on a PTP node."

 REFERENCE
 "Sections 7.5.2.3 ('portNumber') and 5.3.5 ('PortIdentity') of
 [IEEE‑1588‑2008]"
 SYNTAX Unsigned32 (0..65535)

PtpClockPortState ::= TEXTUAL‑CONVENTION
 STATUS current
 DESCRIPTION
 "This is the value of the current state of the protocol engine
 associated with this port."

 REFERENCE
 "Sections 8.2.5.3.1 ('portState') and 9.2.5 ('State machines')
 of [IEEE‑1588‑2008]"
 SYNTAX INTEGER {
 initializing(1),
 faulty(2),
 disabled(3),
 listening(4),
 preMaster(5),

 master(6),
 passive(7),
 uncalibrated(8),
 slave(9)
 }

PtpClockPortTransportTypeAddress ::= TEXTUAL‑CONVENTION
 DISPLAY‑HINT "255a"
 STATUS current
 DESCRIPTION
 "The clock port transport protocol address used for this
 communication between the clock nodes. This is a string
 corresponding to the address type as specified by the
 transport type used. The transport types can be defined
 elsewhere, in addition to the ones defined in this document.
 This can be an address of type IP version 4, IP version 6,
 Ethernet, DeviceNET, ControlNET, or IEC61158. The OCTET STRING
 representation of the OID of ptpbaseWellKnownTransportTypes
 will be used in the values contained in the OCTET STRING."

 REFERENCE "Annex D (IPv4), Annex E (IPv6), Annex F (Ethernet),
 Annex G (DeviceNET), Annex H (ControlNET), and
 Annex I (IEC61158) of [IEEE‑1588‑2008]"
 SYNTAX OCTET STRING (SIZE (1..255))

PtpClockProfileType ::= TEXTUAL‑CONVENTION
 STATUS current
 DESCRIPTION
 "Clock Profile used. A profile is the set of allowed PTP
 features applicable to a device."

 REFERENCE "Sections 3.1.30 ('profile') and 19.3 ('PTP
 profiles') of [IEEE‑1588‑2008]"
 SYNTAX INTEGER {
 default(1),
 telecom(2),
 vendorspecific(3)
 }

PtpClockQualityAccuracyType ::= TEXTUAL‑CONVENTION
 STATUS current
 DESCRIPTION
 "The ClockQuality as specified in Section 5.3.7,
 Section 7.6.2.5, and Table 6 of [IEEE‑1588‑2008].

 The following values are not represented in the enumerated
 values.

0x01‑0x1F Reserved
0x32‑0x7F Reserved

 It is important to note that Section 7.1.1 of RFC 2578 allows
 for gaps and for enumerated values to start at zero when
 indicated by the protocol."

 REFERENCE
 "Section 5.3.7 ('ClockQuality'), Section 7.6.2.5
 ('clockAccuracy'), and Table 6 ('clockAccuracy enumeration')
 of [IEEE‑1588‑2008]"
 SYNTAX INTEGER {
 ‑‑ reserved00(0:31), 0x00 to 0x1F
 nanoSecond25(32), ‑‑ 0x20
 nanoSecond100(33), ‑‑ 0x21
 nanoSecond250(34), ‑‑ 0x22
 microSec1(35), ‑‑ 0x23
 microSec2dot5(36), ‑‑ 0x24
 microSec10(37), ‑‑ 0x25
 microSec25(38), ‑‑ 0x26
 microSec100(39), ‑‑ 0x27
 microSec250(40), ‑‑ 0x28
 milliSec1(41), ‑‑ 0x29
 milliSec2dot5(42), ‑‑ 0x2A
 milliSec10(43), ‑‑ 0x2B
 milliSec25(44), ‑‑ 0x2C
 milliSec100(45), ‑‑ 0x2D
 milliSec250(46), ‑‑ 0x2E
 second1(47), ‑‑ 0x2F
 second10(48), ‑‑ 0x30
 secondGreater10(49), ‑‑ 0x31
 unknown(254) ‑‑ 0xFE
 ‑‑ reserved255(255), 0xFF
 }

PtpClockQualityClassType ::= TEXTUAL‑CONVENTION
 STATUS current
 DESCRIPTION
 "The ClockQuality as specified in Section 5.3.7,
 Section 7.6.2.4, and Table 5 of [IEEE‑1588‑2008]."

 REFERENCE "Section 5.3.7 ('ClockQuality'), Section 7.6.2.4
 ('clockClass'), and Table 5 ('clockClass
 specifications') of [IEEE‑1588‑2008]."
 SYNTAX INTEGER {
 ‑‑ reserved(0), 0x00
 ‑‑ reserved(1:5), 0x01 to 0x05
 clockclass6(6), ‑‑ 0x06

 clockclass7(7), ‑‑ 0x07
 ‑‑ reserved(8), 0x08
 ‑‑ reserved(9:10), 0x09 to 0x0A
 ‑‑ reserved(11:12), 0x0B, 0x0C
 clockclass13(13), ‑‑ 0x0D
 clockclass14(14), ‑‑ 0x0E
 ‑‑ reserved(15:51), 0x0F to 0x33
 clockclass52(52), ‑‑ 0x34
 ‑‑ reserved(53:57), 0x35 to 0x39
 clockclass58(58) ‑‑ 0x3A
 ‑‑ reserved(59:67), 0x3B to 0x43
 ‑‑ otherprofiles(68:122), 0x44 to 0x7A
 ‑‑ reserved(123:127), 0x7B to 0x7F
 ‑‑ reserved(128:132), 0x80 to 0x84
 }

PtpClockRoleType ::= TEXTUAL‑CONVENTION
 STATUS current
 DESCRIPTION
 "The Clock Role. The protocol generates a master‑slave
 relationship among the clocks in the system.

 Clock Role Value
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 Master clock 1
 Slave clock 2 "
 SYNTAX INTEGER {
 master(1),
 slave(2)
 }

PtpClockStateType ::= TEXTUAL‑CONVENTION
 STATUS current
 DESCRIPTION
 "The clock state returned by a PTP engine.

 Clock State Value
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 Freerun state 1
 Holdover state 2
 Acquiring state 3
 Freq_locked state 4
 Phase_aligned state 5 "
 SYNTAX INTEGER {
 freerun(1),
 holdover(2),
 acquiring(3),
 frequencyLocked(4),

 phaseAligned(5)
 }

PtpClockTimeInterval ::= TEXTUAL‑CONVENTION
 DISPLAY‑HINT "255a"
 STATUS current
 DESCRIPTION
 "This textual convention corresponds to the TimeInterval
 structure indicated in Section 5.3.2 of [IEEE‑1588‑2008].
 It will be presented in the form of a character array.
 Network byte order is assumed."

 REFERENCE
 "Sections 5.3.2 ('TimeInterval') and 7.7.2.1 ('Timer interval
 specification') of [IEEE‑1588‑2008]"
 SYNTAX OCTET STRING (SIZE (1..255))

PtpClockTimeSourceType ::= TEXTUAL‑CONVENTION
 STATUS current
 DESCRIPTION
 "The ClockQuality as specified in Sections 5.3.7,
 Section 7.6.2.6, and Table 7 of [IEEE‑1588‑2008].

 The following values are not represented in the enumerated
 values.

0xF0‑0xFE For use by alternate PTP profiles
0xFF Reserved

 It is important to note that Section 7.1.1 of RFC 2578 allows
 for gaps and for enumerated values to start at zero when
 indicated by the protocol."

 REFERENCE "Section 5.3.7 ('ClockQuality'), Section 7.6.2.6
 ('timeSource'), and Table 7 ('timeSource
 enumeration') of [IEEE‑1588‑2008]."
 SYNTAX INTEGER {
 atomicClock(16), ‑‑ 0x10
 gps(32), ‑‑ 0x20
 terrestrialRadio(48), ‑‑ 0x22
 ptp(64), ‑‑ 0x40
 ntp(80), ‑‑ 0x50
 handSet(96), ‑‑ 0x60
 other(144), ‑‑ 0x90
 internalOscillator(160) ‑‑ 0xA0
 }

PtpClockTxModeType ::= TEXTUAL‑CONVENTION
 STATUS current
 DESCRIPTION
 "Transmission mode.

 Unicast: Using unicast communication channel.
 Multicast: Using Multicast communication channel.
 multicast‑mix: Using multicast‑unicast communication channel"
 SYNTAX INTEGER {
 unicast(1),
 multicast(2),
 multicastmix(3)
 }

PtpClockType ::= TEXTUAL‑CONVENTION
 STATUS current
 DESCRIPTION
 "The clock types as defined in the MIB module description."

 REFERENCE
 "Section 6.5.1 ('PTP device types') of [IEEE‑1588‑2008]."
 SYNTAX INTEGER {
 ordinaryClock(1),
 boundaryClock(2),
 transparentClock(3),
 boundaryNode(4)
 }

ptpbaseMIBNotifs OBJECT IDENTIFIER
 ::= { ptpbaseMIB 0 }

ptpbaseMIBObjects OBJECT IDENTIFIER
 ::= { ptpbaseMIB 1 }

ptpbaseMIBConformance OBJECT IDENTIFIER
 ::= { ptpbaseMIB 2 }

ptpbaseMIBSystemInfo OBJECT IDENTIFIER
 ::= { ptpbaseMIBObjects 1 }

ptpbaseMIBClockInfo OBJECT IDENTIFIER
 ::= { ptpbaseMIBObjects 2 }

ptpbaseSystemTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF PtpbaseSystemEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Table of count information about the PTP system for all
 domains."
 ::= { ptpbaseMIBSystemInfo 1 }

ptpbaseSystemEntry OBJECT‑TYPE
 SYNTAX PtpbaseSystemEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table entry that contains count information about a
 single domain. New row entries are added when the PTP clock for
 this domain is configured, while the unconfiguration of the PTP
 clock removes them."
 INDEX {
 ptpDomainIndex,
 ptpInstanceIndex
 }
 ::= { ptpbaseSystemTable 1 }

PtpbaseSystemEntry ::= SEQUENCE {
 ptpDomainIndex PtpClockDomainType,
 ptpInstanceIndex PtpClockInstanceType,
 ptpDomainClockPortsTotal Gauge32
}

ptpDomainIndex OBJECT‑TYPE
 SYNTAX PtpClockDomainType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the domain number used to create a
 logical group of PTP devices. The Clock Domain is a logical
 group of clocks and devices that synchronize with each other
 using the PTP protocol.

 0 Default domain
 1 Alternate domain 1
 2 Alternate domain 2
 3 Alternate domain 3
 4 ‑ 127 User‑defined domains
 128 ‑ 255 Reserved"
 ::= { ptpbaseSystemEntry 1 }

ptpInstanceIndex OBJECT‑TYPE
 SYNTAX PtpClockInstanceType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the instance of the clock for this
 domain."
 ::= { ptpbaseSystemEntry 2 }

ptpDomainClockPortsTotal OBJECT‑TYPE
 SYNTAX Gauge32
 UNITS "ptp ports"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the total number of clock ports
 configured within a domain in the system."
 ::= { ptpbaseSystemEntry 3 }

ptpbaseSystemDomainTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF PtpbaseSystemDomainEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Table of information about the PTP system for all clock modes
 ‑‑ ordinary, boundary, or transparent."
 ::= { ptpbaseMIBSystemInfo 2 }

ptpbaseSystemDomainEntry OBJECT‑TYPE
 SYNTAX PtpbaseSystemDomainEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table entry that contains information about a single
 clock mode for the PTP system. A row entry gets added when PTP
 clocks are configured on the node."
 INDEX { ptpbaseSystemDomainClockTypeIndex }
 ::= { ptpbaseSystemDomainTable 1 }

PtpbaseSystemDomainEntry ::= SEQUENCE {
 ptpbaseSystemDomainClockTypeIndex PtpClockType,
 ptpbaseSystemDomainTotals Unsigned32
}

ptpbaseSystemDomainClockTypeIndex OBJECT‑TYPE
 SYNTAX PtpClockType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the clock type as defined in the
 textual convention description."
 ::= { ptpbaseSystemDomainEntry 1 }

ptpbaseSystemDomainTotals OBJECT‑TYPE
 SYNTAX Unsigned32
 UNITS "domains"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the total number of PTP domains for this
 particular clock type configured in this node."
 ::= { ptpbaseSystemDomainEntry 2 }

ptpbaseSystemProfile OBJECT‑TYPE
 SYNTAX PtpClockProfileType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the PTP profile implemented on the
 system."
 REFERENCE "Section 19.3 ('PTP profiles')
 of [IEEE‑1588‑2008]"
 ::= { ptpbaseMIBSystemInfo 3 }

ptpbaseClockCurrentDSTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF PtpbaseClockCurrentDSEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Table of information about the PTP clock currentDS for
 all domains."
 ::= { ptpbaseMIBClockInfo 1 }

ptpbaseClockCurrentDSEntry OBJECT‑TYPE
 SYNTAX PtpbaseClockCurrentDSEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table entry that contains information about a single
 PTP clock currentDS for a domain."
 REFERENCE
 "Section 8.2.2 ('currentDS data set member

 specifications') of [IEEE‑1588‑2008]"
 INDEX {
 ptpbaseClockCurrentDSDomainIndex,
 ptpbaseClockCurrentDSClockTypeIndex,
 ptpbaseClockCurrentDSInstanceIndex
 }
 ::= { ptpbaseClockCurrentDSTable 1 }

PtpbaseClockCurrentDSEntry ::= SEQUENCE {
 ptpbaseClockCurrentDSDomainIndex PtpClockDomainType,
 ptpbaseClockCurrentDSClockTypeIndex PtpClockType,
 ptpbaseClockCurrentDSInstanceIndex PtpClockInstanceType,
 ptpbaseClockCurrentDSStepsRemoved Unsigned32,
 ptpbaseClockCurrentDSOffsetFromMaster PtpClockTimeInterval,
 ptpbaseClockCurrentDSMeanPathDelay PtpClockTimeInterval
}

ptpbaseClockCurrentDSDomainIndex OBJECT‑TYPE
 SYNTAX PtpClockDomainType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the domain number used to create a
 logical group of PTP devices."
 ::= { ptpbaseClockCurrentDSEntry 1 }

ptpbaseClockCurrentDSClockTypeIndex OBJECT‑TYPE
 SYNTAX PtpClockType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the clock type as defined in the
 textual convention description."
 ::= { ptpbaseClockCurrentDSEntry 2 }

ptpbaseClockCurrentDSInstanceIndex OBJECT‑TYPE
 SYNTAX PtpClockInstanceType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the instance of the clock for this clock
 type in the given domain."
 ::= { ptpbaseClockCurrentDSEntry 3 }

ptpbaseClockCurrentDSStepsRemoved OBJECT‑TYPE
 SYNTAX Unsigned32
 UNITS "Steps"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The current clock dataset stepsRemoved value.

 This object specifies the distance measured by the number of
 boundary clocks between the local clock and the foreign master
 as indicated in the stepsRemoved field of Announce messages."
 REFERENCE
 "Section 8.2.2.2 ('stepsRemoved') of [IEEE‑1588‑2008]"
 ::= { ptpbaseClockCurrentDSEntry 4 }

ptpbaseClockCurrentDSOffsetFromMaster OBJECT‑TYPE
 SYNTAX PtpClockTimeInterval
 UNITS "Time Interval"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the current clock dataset ClockOffset
 value. The value of the computation of the offset in time
 between a slave and a master clock."
 REFERENCE
 "Section 8.2.2.3 ('currentDS.offsetFromMaster')
 of [IEEE‑1588‑2008]"
 ::= { ptpbaseClockCurrentDSEntry 5 }

ptpbaseClockCurrentDSMeanPathDelay OBJECT‑TYPE
 SYNTAX PtpClockTimeInterval
 UNITS "Time Interval"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the current clock dataset
 MeanPathDelay value.

 The mean path delay between a pair of ports as measured by the
 delay request‑response mechanism."
 REFERENCE
 "Section 8.2.2.4 ('currentDS.meanPathDelay')
 of [IEEE‑1588‑2008]"
 ::= { ptpbaseClockCurrentDSEntry 6 }

ptpbaseClockParentDSTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF PtpbaseClockParentDSEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Table of information about the PTP clock parentDS for
 all domains."
 ::= { ptpbaseMIBClockInfo 2 }

ptpbaseClockParentDSEntry OBJECT‑TYPE
 SYNTAX PtpbaseClockParentDSEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table entry that contains information about a single
 PTP clock parentDS for a domain."
 REFERENCE
 "Section 8.2.3 ('parentDS data set member specifications') of
 [IEEE‑1588‑2008]"
 INDEX {
 ptpbaseClockParentDSDomainIndex,
 ptpbaseClockParentDSClockTypeIndex,
 ptpbaseClockParentDSInstanceIndex
 }
 ::= { ptpbaseClockParentDSTable 1 }

PtpbaseClockParentDSEntry ::= SEQUENCE {
 ptpbaseClockParentDSDomainIndex PtpClockDomainType,
 ptpbaseClockParentDSClockTypeIndex PtpClockType,
 ptpbaseClockParentDSInstanceIndex PtpClockInstanceType,
 ptpbaseClockParentDSParentPortIdentity OCTET STRING,
 ptpbaseClockParentDSParentStats TruthValue,
 ptpbaseClockParentDSOffset PtpClockIntervalBase2,
 ptpbaseClockParentDSClockPhChRate Integer32,
 ptpbaseClockParentDSGMClockIdentity PtpClockIdentity,
 ptpbaseClockParentDSGMClockPriority1 Unsigned32,
 ptpbaseClockParentDSGMClockPriority2 Unsigned32,
 ptpbaseClockParentDSGMClockQualityClass PtpClockQualityClassType,
 ptpbaseClockParentDSGMClockQualityAccuracy
PtpClockQualityAccuracyType,
 ptpbaseClockParentDSGMClockQualityOffset Unsigned32
}

ptpbaseClockParentDSDomainIndex OBJECT‑TYPE
 SYNTAX PtpClockDomainType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the domain number used to create a
 logical group of PTP devices."
 ::= { ptpbaseClockParentDSEntry 1 }

ptpbaseClockParentDSClockTypeIndex OBJECT‑TYPE
 SYNTAX PtpClockType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the clock type as defined in the
 textual convention description."
 ::= { ptpbaseClockParentDSEntry 2 }

ptpbaseClockParentDSInstanceIndex OBJECT‑TYPE
 SYNTAX PtpClockInstanceType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the instance of the clock for this clock
 type in the given domain."
 ::= { ptpbaseClockParentDSEntry 3 }

ptpbaseClockParentDSParentPortIdentity OBJECT‑TYPE
 SYNTAX OCTET STRING(SIZE(1..256))
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the value of portIdentity of the port on
 the master that issues the Sync messages used in synchronizing
 this clock."
 REFERENCE
 "Section 8.2.3.2 ('parentDS.parentPortIdentity') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockParentDSEntry 4 }

ptpbaseClockParentDSParentStats OBJECT‑TYPE
 SYNTAX TruthValue
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the parentDS ParentStats value.

 This value indicates whether the values of ParentDSOffset
 and ParentDSClockPhChRate have been measured and are valid.
 A TRUE value shall indicate valid data."
 REFERENCE
 "Section 8.2.3.3 ('parentDS.parentStats') of [IEEE‑1588‑2008]"
 ::= { ptpbaseClockParentDSEntry 5 }

ptpbaseClockParentDSOffset OBJECT‑TYPE
 SYNTAX PtpClockIntervalBase2 (‑128..127)
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the parentDS
 ParentOffsetScaledLogVariance value.

 This value is the variance of the parent clock's phase as
 measured by the local clock."
 REFERENCE
 "Section 8.2.3.4
 ('parentDS.observedParentOffsetScaledLogVariance') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockParentDSEntry 6 }

ptpbaseClockParentDSClockPhChRate OBJECT‑TYPE
 SYNTAX Integer32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the clock's parentDS
 ParentClockPhaseChangeRate value.

 This value is an estimate of the parent clock's phase change
 rate as measured by the slave clock."
 REFERENCE
 "Section 8.2.3.5
 ('parentDS.observedParentClockPhaseChangeRate') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockParentDSEntry 7 }

ptpbaseClockParentDSGMClockIdentity OBJECT‑TYPE
 SYNTAX PtpClockIdentity
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the parentDS grandmaster clock
 identity."
 REFERENCE
 "Section 8.2.3.6 ('parentDS.grandmasterIdentity') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockParentDSEntry 8 }

ptpbaseClockParentDSGMClockPriority1 OBJECT‑TYPE
 SYNTAX Unsigned32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the parentDS grandmaster clock
 priority1."
 REFERENCE
 "Section 8.2.3.8 ('parentDS.grandmasterPriority1') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockParentDSEntry 9 }

ptpbaseClockParentDSGMClockPriority2 OBJECT‑TYPE
 SYNTAX Unsigned32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the parentDS grandmaster clock
 priority2."
 REFERENCE
 "Section 8.2.3.9 ('parentDS.grandmasterPriority2') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockParentDSEntry 10 }

ptpbaseClockParentDSGMClockQualityClass OBJECT‑TYPE
 SYNTAX PtpClockQualityClassType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the parentDS grandmaster clock
 quality class."
 REFERENCE
 "Section 8.2.3.7 ('parentDS.grandmasterClockQuality') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockParentDSEntry 11 }

ptpbaseClockParentDSGMClockQualityAccuracy OBJECT‑TYPE
 SYNTAX PtpClockQualityAccuracyType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the parentDS grandmaster clock
 quality accuracy."
 REFERENCE
 "Section 8.2.3.7 ('parentDS.grandmasterClockQuality') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockParentDSEntry 12 }

ptpbaseClockParentDSGMClockQualityOffset OBJECT‑TYPE
 SYNTAX Unsigned32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the parentDS grandmaster clock
 quality offset."
 REFERENCE
 "Section 8.2.3.7 ('parentDS.grandmasterClockQuality') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockParentDSEntry 13 }

ptpbaseClockDefaultDSTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF PtpbaseClockDefaultDSEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Table of information about the PTP clock defaultDS for
 all domains."
 ::= { ptpbaseMIBClockInfo 3 }

ptpbaseClockDefaultDSEntry OBJECT‑TYPE
 SYNTAX PtpbaseClockDefaultDSEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table entry that contains information about a single
 PTP clock defaultDS for a domain."
 INDEX {
 ptpbaseClockDefaultDSDomainIndex,
 ptpbaseClockDefaultDSClockTypeIndex,
 ptpbaseClockDefaultDSInstanceIndex
 }
 ::= { ptpbaseClockDefaultDSTable 1 }

PtpbaseClockDefaultDSEntry ::= SEQUENCE {

 ptpbaseClockDefaultDSDomainIndex PtpClockDomainType,
 ptpbaseClockDefaultDSClockTypeIndex PtpClockType,
 ptpbaseClockDefaultDSInstanceIndex PtpClockInstanceType,
 ptpbaseClockDefaultDSTwoStepFlag TruthValue,
 ptpbaseClockDefaultDSClockIdentity PtpClockIdentity,
 ptpbaseClockDefaultDSPriority1 Unsigned32,
 ptpbaseClockDefaultDSPriority2 Unsigned32,
 ptpbaseClockDefaultDSSlaveOnly TruthValue,
 ptpbaseClockDefaultDSQualityClass PtpClockQualityClassType,
 ptpbaseClockDefaultDSQualityAccuracy
PtpClockQualityAccuracyType,
 ptpbaseClockDefaultDSQualityOffset Integer32
}

ptpbaseClockDefaultDSDomainIndex OBJECT‑TYPE
 SYNTAX PtpClockDomainType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the domain number used to create a
 logical group of PTP devices."
 ::= { ptpbaseClockDefaultDSEntry 1 }

ptpbaseClockDefaultDSClockTypeIndex OBJECT‑TYPE
 SYNTAX PtpClockType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the clock type as defined in the
 textual convention description."
 ::= { ptpbaseClockDefaultDSEntry 2 }

ptpbaseClockDefaultDSInstanceIndex OBJECT‑TYPE
 SYNTAX PtpClockInstanceType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the instance of the clock for this clock
 type in the given domain."
 ::= { ptpbaseClockDefaultDSEntry 3 }

ptpbaseClockDefaultDSTwoStepFlag OBJECT‑TYPE
 SYNTAX TruthValue
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies whether the two‑step process is used."
 ::= { ptpbaseClockDefaultDSEntry 4 }

ptpbaseClockDefaultDSClockIdentity OBJECT‑TYPE
 SYNTAX PtpClockIdentity
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the defaultDS clockIdentity member."
 ::= { ptpbaseClockDefaultDSEntry 5 }

ptpbaseClockDefaultDSPriority1 OBJECT‑TYPE
 SYNTAX Unsigned32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the defaultDS priority1 member."
 ::= { ptpbaseClockDefaultDSEntry 6 }

ptpbaseClockDefaultDSPriority2 OBJECT‑TYPE
 SYNTAX Unsigned32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the defaultDS priority2 member."
 ::= { ptpbaseClockDefaultDSEntry 7 }

ptpbaseClockDefaultDSSlaveOnly OBJECT‑TYPE
 SYNTAX TruthValue
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies whether the SlaveOnly flag is set."
 ::= { ptpbaseClockDefaultDSEntry 8 }

ptpbaseClockDefaultDSQualityClass OBJECT‑TYPE
 SYNTAX PtpClockQualityClassType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the defaultDS Quality Class."
 ::= { ptpbaseClockDefaultDSEntry 9 }

ptpbaseClockDefaultDSQualityAccuracy OBJECT‑TYPE
 SYNTAX PtpClockQualityAccuracyType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the defaultDS Quality Accuracy."
 ::= { ptpbaseClockDefaultDSEntry 10 }

ptpbaseClockDefaultDSQualityOffset OBJECT‑TYPE
 SYNTAX Integer32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the defaultDS Quality offset."
 ::= { ptpbaseClockDefaultDSEntry 11 }

ptpbaseClockRunningTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF PtpbaseClockRunningEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Table of information about the PTP clock running datasets for
 all domains."
 ::= { ptpbaseMIBClockInfo 4 }

ptpbaseClockRunningEntry OBJECT‑TYPE
 SYNTAX PtpbaseClockRunningEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table entry that contains information about a single
 PTP clock running dataset for a domain."
 INDEX {
 ptpbaseClockRunningDomainIndex,
 ptpbaseClockRunningClockTypeIndex,
 ptpbaseClockRunningInstanceIndex
 }
 ::= { ptpbaseClockRunningTable 1 }

PtpbaseClockRunningEntry ::= SEQUENCE {
 ptpbaseClockRunningDomainIndex PtpClockDomainType,
 ptpbaseClockRunningClockTypeIndex PtpClockType,
 ptpbaseClockRunningInstanceIndex PtpClockInstanceType,
 ptpbaseClockRunningState PtpClockStateType,
 ptpbaseClockRunningPacketsSent Counter64,
 ptpbaseClockRunningPacketsReceived Counter64
}

ptpbaseClockRunningDomainIndex OBJECT‑TYPE
 SYNTAX PtpClockDomainType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the domain number used to create a
 logical group of PTP devices."
 ::= { ptpbaseClockRunningEntry 1 }

ptpbaseClockRunningClockTypeIndex OBJECT‑TYPE
 SYNTAX PtpClockType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the clock type as defined in the
 textual convention description."
 ::= { ptpbaseClockRunningEntry 2 }

ptpbaseClockRunningInstanceIndex OBJECT‑TYPE
 SYNTAX PtpClockInstanceType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the instance of the clock for this clock
 type in the given domain."
 ::= { ptpbaseClockRunningEntry 3 }

ptpbaseClockRunningState OBJECT‑TYPE
 SYNTAX PtpClockStateType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the clock state returned by a PTP
 engine."
 ::= { ptpbaseClockRunningEntry 4 }

ptpbaseClockRunningPacketsSent OBJECT‑TYPE
 SYNTAX Counter64
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the total number of all unicast and
 multicast packets that have been sent out for this clock in this
 domain for this type. These counters are discontinuous."
 ::= { ptpbaseClockRunningEntry 5 }

ptpbaseClockRunningPacketsReceived OBJECT‑TYPE
 SYNTAX Counter64
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the total number of all unicast and
 multicast packets that have been received for this clock in this
 domain for this type. These counters are discontinuous."
 ::= { ptpbaseClockRunningEntry 6 }

ptpbaseClockTimePropertiesDSTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF PtpbaseClockTimePropertiesDSEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Table of information about the PTP clock timePropertiesDS
 for all domains."
 ::= { ptpbaseMIBClockInfo 5 }

ptpbaseClockTimePropertiesDSEntry OBJECT‑TYPE
 SYNTAX PtpbaseClockTimePropertiesDSEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table entry that contains information about a single
 PTP clock timePropertiesDS for a domain."
 REFERENCE
 "Section 8.2.4 ('timePropertiesDS data set member
 specifications') of [IEEE‑1588‑2008]"
 INDEX {
 ptpbaseClockTimePropertiesDSDomainIndex,
 ptpbaseClockTimePropertiesDSClockTypeIndex,
 ptpbaseClockTimePropertiesDSInstanceIndex
 }
 ::= { ptpbaseClockTimePropertiesDSTable 1 }

PtpbaseClockTimePropertiesDSEntry ::= SEQUENCE {
 ptpbaseClockTimePropertiesDSDomainIndex PtpClockDomainType,
 ptpbaseClockTimePropertiesDSClockTypeIndex PtpClockType,
 ptpbaseClockTimePropertiesDSInstanceIndex
PtpClockInstanceType,
 ptpbaseClockTimePropertiesDSCurrentUTCOffsetValid TruthValue,
 ptpbaseClockTimePropertiesDSCurrentUTCOffset Integer32,
 ptpbaseClockTimePropertiesDSLeap59 TruthValue,
 ptpbaseClockTimePropertiesDSLeap61 TruthValue,
 ptpbaseClockTimePropertiesDSTimeTraceable TruthValue,
 ptpbaseClockTimePropertiesDSFreqTraceable TruthValue,
 ptpbaseClockTimePropertiesDSPTPTimescale TruthValue,

 ptpbaseClockTimePropertiesDSSource
PtpClockTimeSourceType
}

ptpbaseClockTimePropertiesDSDomainIndex OBJECT‑TYPE
 SYNTAX PtpClockDomainType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the domain number used to create a
 logical group of PTP devices."
 ::= { ptpbaseClockTimePropertiesDSEntry 1 }

ptpbaseClockTimePropertiesDSClockTypeIndex OBJECT‑TYPE
 SYNTAX PtpClockType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the clock type as defined in the
 textual convention description."
 ::= { ptpbaseClockTimePropertiesDSEntry 2 }

ptpbaseClockTimePropertiesDSInstanceIndex OBJECT‑TYPE
 SYNTAX PtpClockInstanceType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the instance of the clock for this clock
 type in the given domain."
 ::= { ptpbaseClockTimePropertiesDSEntry 3 }

ptpbaseClockTimePropertiesDSCurrentUTCOffsetValid OBJECT‑TYPE
 SYNTAX TruthValue
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the timePropertiesDS value of
 whether the current UTC offset is valid."
 REFERENCE
 "Section 8.2.4.2 ('timePropertiesDS.currentUtcOffset') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockTimePropertiesDSEntry 4 }

ptpbaseClockTimePropertiesDSCurrentUTCOffset OBJECT‑TYPE
 SYNTAX Integer32
 MAX‑ACCESS read‑only
 STATUS current

 DESCRIPTION
 "This object specifies the timePropertiesDS value of
 the current UTC offset.

 In PTP systems whose epoch is the PTP epoch, the value of
 timePropertiesDS.currentUtcOffset is the offset
 between TAI and UTC; otherwise, the value has no meaning. The
 value shall be in units of seconds."
 REFERENCE
 "Section 8.2.4.3 ('timePropertiesDS.currentUtcOffsetValid') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockTimePropertiesDSEntry 5 }

ptpbaseClockTimePropertiesDSLeap59 OBJECT‑TYPE
 SYNTAX TruthValue
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the Leap59 value in the clock
 currentDS."
 REFERENCE
 "Section 8.2.4.4 ('timePropertiesDS.leap59')
 of [IEEE‑1588‑2008]"
 ::= { ptpbaseClockTimePropertiesDSEntry 6 }

ptpbaseClockTimePropertiesDSLeap61 OBJECT‑TYPE
 SYNTAX TruthValue
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the Leap61 value in the clock
 currentDS."
 REFERENCE
 "Section 8.2.4.5 ('timePropertiesDS.leap61')
 of [IEEE‑1588‑2008]"
 ::= { ptpbaseClockTimePropertiesDSEntry 7 }

ptpbaseClockTimePropertiesDSTimeTraceable OBJECT‑TYPE
 SYNTAX TruthValue
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the Time Traceable value in the clock
 currentDS."
 REFERENCE
 "Section 8.2.4.6 ('timePropertiesDS.timeTraceable') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockTimePropertiesDSEntry 8 }

ptpbaseClockTimePropertiesDSFreqTraceable OBJECT‑TYPE
 SYNTAX TruthValue
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the Frequency Traceable value in the
 clock currentDS."
 REFERENCE
 "Section 8.2.4.7 ('timePropertiesDS.frequencyTraceable') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockTimePropertiesDSEntry 9 }

ptpbaseClockTimePropertiesDSPTPTimescale OBJECT‑TYPE
 SYNTAX TruthValue
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the PTP Timescale value in the clock
 currentDS."
 REFERENCE
 "Section 8.2.4.8 ('timePropertiesDS.ptpTimescale') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockTimePropertiesDSEntry 10 }

ptpbaseClockTimePropertiesDSSource OBJECT‑TYPE
 SYNTAX PtpClockTimeSourceType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the Timesource value in the clock
 currentDS."
 REFERENCE
 "Section 8.2.4.9 ('timePropertiesDS.timeSource') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockTimePropertiesDSEntry 11 }

ptpbaseClockTransDefaultDSTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF PtpbaseClockTransDefaultDSEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Table of information about the PTP transparentClockDefaultDS
 for all domains."
 ::= { ptpbaseMIBClockInfo 6 }

ptpbaseClockTransDefaultDSEntry OBJECT‑TYPE
 SYNTAX PtpbaseClockTransDefaultDSEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table entry that contains information about a single
 PTP transparent clock defaultDS for a domain."
 REFERENCE
 "Section 8.3.2 ('transparentClockDefaultDS data set member
 specifications') of [IEEE‑1588‑2008]"
 INDEX {
 ptpbaseClockTransDefaultDSDomainIndex,
 ptpbaseClockTransDefaultDSInstanceIndex
 }
 ::= { ptpbaseClockTransDefaultDSTable 1 }

PtpbaseClockTransDefaultDSEntry ::= SEQUENCE {
 ptpbaseClockTransDefaultDSDomainIndex PtpClockDomainType,
 ptpbaseClockTransDefaultDSInstanceIndex PtpClockInstanceType,
 ptpbaseClockTransDefaultDSClockIdentity PtpClockIdentity,
 ptpbaseClockTransDefaultDSNumOfPorts Counter32,
 ptpbaseClockTransDefaultDSDelay PtpClockMechanismType,
 ptpbaseClockTransDefaultDSPrimaryDomain PtpClockDomainType
}

ptpbaseClockTransDefaultDSDomainIndex OBJECT‑TYPE
 SYNTAX PtpClockDomainType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the domain number used to create a
 logical group of PTP devices."
 ::= { ptpbaseClockTransDefaultDSEntry 1 }

ptpbaseClockTransDefaultDSInstanceIndex OBJECT‑TYPE
 SYNTAX PtpClockInstanceType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the instance of the clock for this clock
 type in the given domain."
 ::= { ptpbaseClockTransDefaultDSEntry 2 }

ptpbaseClockTransDefaultDSClockIdentity OBJECT‑TYPE
 SYNTAX PtpClockIdentity
 MAX‑ACCESS read‑only
 STATUS current

 DESCRIPTION
 "This object specifies the value of the clockIdentity attribute
 of the local clock."
 REFERENCE
 "Section 8.3.2.2.1 ('transparentClockDefaultDS.clockIdentity')
 of [IEEE‑1588‑2008]"
 ::= { ptpbaseClockTransDefaultDSEntry 3 }

ptpbaseClockTransDefaultDSNumOfPorts OBJECT‑TYPE
 SYNTAX Counter32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the number of PTP ports of the device.
 These counters are discontinuous."
 REFERENCE
 "Section 8.3.2.2.2 ('transparentClockDefaultDS.numberPorts')
 of [IEEE‑1588‑2008]"
 ::= { ptpbaseClockTransDefaultDSEntry 4 }

ptpbaseClockTransDefaultDSDelay OBJECT‑TYPE
 SYNTAX PtpClockMechanismType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object, if the transparent clock is an end‑to‑end
 transparent clock, has the value of e2e; if the
 transparent clock is a peer‑to‑peer transparent clock, the
 value is p2p."
 REFERENCE
 "Section 8.3.2.3.1 ('transparentClockDefaultDS.delayMechanism')
 of [IEEE‑1588‑2008]"
 ::= { ptpbaseClockTransDefaultDSEntry 5 }

ptpbaseClockTransDefaultDSPrimaryDomain OBJECT‑TYPE
 SYNTAX PtpClockDomainType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the value of the primary syntonization
 domain. The initialization value is 0."
 REFERENCE
 "Section 8.3.2.3.2 ('transparentClockDefaultDS.primaryDomain')
 of [IEEE‑1588‑2008]"
 ::= { ptpbaseClockTransDefaultDSEntry 6 }

ptpbaseClockPortTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF PtpbaseClockPortEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Table of information about the clock ports for a particular
 domain."
 ::= { ptpbaseMIBClockInfo 7 }

ptpbaseClockPortEntry OBJECT‑TYPE
 SYNTAX PtpbaseClockPortEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table entry that contains information about a single
 clock port."
 INDEX {
 ptpbaseClockPortDomainIndex,
 ptpbaseClockPortClockTypeIndex,
 ptpbaseClockPortClockInstanceIndex,
 ptpbaseClockPortTablePortNumberIndex
 }
 ::= { ptpbaseClockPortTable 1 }

PtpbaseClockPortEntry ::= SEQUENCE {
 ptpbaseClockPortDomainIndex PtpClockDomainType,
 ptpbaseClockPortClockTypeIndex PtpClockType,
 ptpbaseClockPortClockInstanceIndex PtpClockInstanceType,
 ptpbaseClockPortTablePortNumberIndex PtpClockPortNumber,
 ptpbaseClockPortName DisplayString,
 ptpbaseClockPortRole PtpClockRoleType,
 ptpbaseClockPortSyncTwoStep TruthValue,
 ptpbaseClockPortCurrentPeerAddressType AutonomousType,
 ptpbaseClockPortCurrentPeerAddress
PtpClockPortTransportTypeAddress,
 ptpbaseClockPortNumOfAssociatedPorts Gauge32
}

ptpbaseClockPortDomainIndex OBJECT‑TYPE
 SYNTAX PtpClockDomainType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the domain number used to create a
 logical group of PTP devices."
 ::= { ptpbaseClockPortEntry 1 }

ptpbaseClockPortClockTypeIndex OBJECT‑TYPE
 SYNTAX PtpClockType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the clock type as defined in the
 textual convention description."
 ::= { ptpbaseClockPortEntry 2 }

ptpbaseClockPortClockInstanceIndex OBJECT‑TYPE
 SYNTAX PtpClockInstanceType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the instance of the clock for this clock
 type in the given domain."
 ::= { ptpbaseClockPortEntry 3 }

ptpbaseClockPortTablePortNumberIndex OBJECT‑TYPE
 SYNTAX PtpClockPortNumber
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the PTP portNumber for this port."
 ::= { ptpbaseClockPortEntry 4 }

ptpbaseClockPortName OBJECT‑TYPE
 SYNTAX DisplayString (SIZE (1..64))
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the PTP clock port name configured on the
 node."
 ::= { ptpbaseClockPortEntry 5 }

ptpbaseClockPortRole OBJECT‑TYPE
 SYNTAX PtpClockRoleType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object describes the current role (slave/master) of the
 port."
 ::= { ptpbaseClockPortEntry 6 }

ptpbaseClockPortSyncTwoStep OBJECT‑TYPE
 SYNTAX TruthValue
 MAX‑ACCESS read‑only
 STATUS current

 DESCRIPTION
 "This object specifies that two‑step clock operation between
 the PTP master and slave device is enabled."
 ::= { ptpbaseClockPortEntry 7 }

ptpbaseClockPortCurrentPeerAddressType OBJECT‑TYPE
 SYNTAX AutonomousType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the current peer's network address type
 used for PTP communication."
 ::= { ptpbaseClockPortEntry 8 }

ptpbaseClockPortCurrentPeerAddress OBJECT‑TYPE
 SYNTAX PtpClockPortTransportTypeAddress
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the current peer's network address used
 for PTP communication."
 ::= { ptpbaseClockPortEntry 9 }

ptpbaseClockPortNumOfAssociatedPorts OBJECT‑TYPE
 SYNTAX Gauge32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the following:
 For a master port ‑ the number of PTP slave sessions (peers)
 associated with this PTP port.
 For a slave port ‑ the number of masters available to this slave
 port (might or might not be peered)."
 ::= { ptpbaseClockPortEntry 10 }

ptpbaseClockPortDSTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF PtpbaseClockPortDSEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Table of information about the clock's portDS for a
 particular domain."
 ::= { ptpbaseMIBClockInfo 8 }

ptpbaseClockPortDSEntry OBJECT‑TYPE
 SYNTAX PtpbaseClockPortDSEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table entry that contains portDS information for
 a single clock port."
 INDEX {
 ptpbaseClockPortDSDomainIndex,
 ptpbaseClockPortDSClockTypeIndex,
 ptpbaseClockPortDSClockInstanceIndex,
 ptpbaseClockPortDSPortNumberIndex
 }
 ::= { ptpbaseClockPortDSTable 1 }

PtpbaseClockPortDSEntry ::= SEQUENCE {
 ptpbaseClockPortDSDomainIndex PtpClockDomainType,
 ptpbaseClockPortDSClockTypeIndex PtpClockType,
 ptpbaseClockPortDSClockInstanceIndex PtpClockInstanceType,
 ptpbaseClockPortDSPortNumberIndex PtpClockPortNumber,
 ptpbaseClockPortDSName DisplayString,
 ptpbaseClockPortDSPortIdentity OCTET STRING,
 ptpbaseClockPortDSlogAnnouncementInterval PtpClockIntervalBase2,
 ptpbaseClockPortDSAnnounceRctTimeout Integer32,
 ptpbaseClockPortDSlogSyncInterval PtpClockIntervalBase2,
 ptpbaseClockPortDSMinDelayReqInterval Integer32,
 ptpbaseClockPortDSPeerDelayReqInterval Integer32,
 ptpbaseClockPortDSDelayMech PtpClockMechanismType,
 ptpbaseClockPortDSPeerMeanPathDelay PtpClockTimeInterval,
 ptpbaseClockPortDSGrantDuration Unsigned32,
 ptpbaseClockPortDSPTPVersion Unsigned32
}

ptpbaseClockPortDSDomainIndex OBJECT‑TYPE
 SYNTAX PtpClockDomainType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the domain number used to create a
 logical group of PTP devices."
 ::= { ptpbaseClockPortDSEntry 1 }

ptpbaseClockPortDSClockTypeIndex OBJECT‑TYPE
 SYNTAX PtpClockType
 MAX‑ACCESS not‑accessible
 STATUS current

 DESCRIPTION
 "This object specifies the clock type as defined in the
 textual convention description."
 ::= { ptpbaseClockPortDSEntry 2 }

ptpbaseClockPortDSClockInstanceIndex OBJECT‑TYPE
 SYNTAX PtpClockInstanceType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the instance of the clock for this clock
 type in the given domain."
 ::= { ptpbaseClockPortDSEntry 3 }

ptpbaseClockPortDSPortNumberIndex OBJECT‑TYPE
 SYNTAX PtpClockPortNumber
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the PTP portNumber associated with this
 PTP port."
 ::= { ptpbaseClockPortDSEntry 4 }

ptpbaseClockPortDSName OBJECT‑TYPE
 SYNTAX DisplayString (SIZE (1..64))
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the PTP clock portDS name."
 ::= { ptpbaseClockPortDSEntry 5 }

ptpbaseClockPortDSPortIdentity OBJECT‑TYPE
 SYNTAX OCTET STRING(SIZE(1..256))
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the PTP clock port Identity."
 ::= { ptpbaseClockPortDSEntry 6 }

ptpbaseClockPortDSlogAnnouncementInterval OBJECT‑TYPE
 SYNTAX PtpClockIntervalBase2
 UNITS "Time Interval"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the Announce message transmission
 interval associated with this clock port."
 ::= { ptpbaseClockPortDSEntry 7 }

ptpbaseClockPortDSAnnounceRctTimeout OBJECT‑TYPE
 SYNTAX Integer32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the Announce receipt timeout associated
 with this clock port."
 ::= { ptpbaseClockPortDSEntry 8 }

ptpbaseClockPortDSlogSyncInterval OBJECT‑TYPE
 SYNTAX PtpClockIntervalBase2
 UNITS "Time Interval"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the Sync message transmission interval."
 ::= { ptpbaseClockPortDSEntry 9 }

ptpbaseClockPortDSMinDelayReqInterval OBJECT‑TYPE
 SYNTAX Integer32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the Delay_Req message transmission
 interval."
 ::= { ptpbaseClockPortDSEntry 10 }

ptpbaseClockPortDSPeerDelayReqInterval OBJECT‑TYPE
 SYNTAX Integer32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the Pdelay_Req message transmission
 interval."
 ::= { ptpbaseClockPortDSEntry 11 }

ptpbaseClockPortDSDelayMech OBJECT‑TYPE
 SYNTAX PtpClockMechanismType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the delay mechanism used. If the clock
 is an end‑to‑end clock, the value is e2e; if the
 clock is a peer to‑peer clock, the value is p2p."
 ::= { ptpbaseClockPortDSEntry 12 }

ptpbaseClockPortDSPeerMeanPathDelay OBJECT‑TYPE
 SYNTAX PtpClockTimeInterval
 UNITS "Time Interval"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the peer meanPathDelay."
 ::= { ptpbaseClockPortDSEntry 13 }

ptpbaseClockPortDSGrantDuration OBJECT‑TYPE
 SYNTAX Unsigned32
 UNITS "seconds"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the grant duration allocated by the
 master."
 ::= { ptpbaseClockPortDSEntry 14 }

ptpbaseClockPortDSPTPVersion OBJECT‑TYPE
 SYNTAX Unsigned32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the PTP version being used."
 ::= { ptpbaseClockPortDSEntry 15 }

ptpbaseClockPortRunningTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF PtpbaseClockPortRunningEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Table of information about the clock ports running datasets for
 a particular domain."
 ::= { ptpbaseMIBClockInfo 9 }

ptpbaseClockPortRunningEntry OBJECT‑TYPE
 SYNTAX PtpbaseClockPortRunningEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table entry that contains running dataset information
 about a single clock port."

 INDEX {
 ptpbaseClockPortRunningDomainIndex,
 ptpbaseClockPortRunningClockTypeIndex,
 ptpbaseClockPortRunningClockInstanceIndex,
 ptpbaseClockPortRunningPortNumberIndex
 }
 ::= { ptpbaseClockPortRunningTable 1 }

PtpbaseClockPortRunningEntry ::= SEQUENCE {
 ptpbaseClockPortRunningDomainIndex PtpClockDomainType,
 ptpbaseClockPortRunningClockTypeIndex PtpClockType,
 ptpbaseClockPortRunningClockInstanceIndex PtpClockInstanceType,
 ptpbaseClockPortRunningPortNumberIndex PtpClockPortNumber,
 ptpbaseClockPortRunningName DisplayString,
 ptpbaseClockPortRunningState PtpClockPortState,
 ptpbaseClockPortRunningRole PtpClockRoleType,
 ptpbaseClockPortRunningInterfaceIndex InterfaceIndexOrZero,
 ptpbaseClockPortRunningTransport AutonomousType,
 ptpbaseClockPortRunningEncapsulationType AutonomousType,
 ptpbaseClockPortRunningTxMode PtpClockTxModeType,
 ptpbaseClockPortRunningRxMode PtpClockTxModeType,
 ptpbaseClockPortRunningPacketsReceived Counter64,
 ptpbaseClockPortRunningPacketsSent Counter64
}

ptpbaseClockPortRunningDomainIndex OBJECT‑TYPE
 SYNTAX PtpClockDomainType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the domain number used to create a
 logical group of PTP devices."
 ::= { ptpbaseClockPortRunningEntry 1 }

ptpbaseClockPortRunningClockTypeIndex OBJECT‑TYPE
 SYNTAX PtpClockType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the clock type as defined in the
 textual convention description."
 ::= { ptpbaseClockPortRunningEntry 2 }

ptpbaseClockPortRunningClockInstanceIndex OBJECT‑TYPE
 SYNTAX PtpClockInstanceType
 MAX‑ACCESS not‑accessible
 STATUS current

 DESCRIPTION
 "This object specifies the instance of the clock for this clock
 type in the given domain."
 ::= { ptpbaseClockPortRunningEntry 3 }

ptpbaseClockPortRunningPortNumberIndex OBJECT‑TYPE
 SYNTAX PtpClockPortNumber
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the PTP portNumber associated with this
 clock port."
 ::= { ptpbaseClockPortRunningEntry 4 }

ptpbaseClockPortRunningName OBJECT‑TYPE
 SYNTAX DisplayString (SIZE (1..64))
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the PTP clock port name."
 ::= { ptpbaseClockPortRunningEntry 5 }

ptpbaseClockPortRunningState OBJECT‑TYPE
 SYNTAX PtpClockPortState
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the port state returned by PTP engine:

 initializing
 faulty
 disabled
 listening
 preMaster
 master
 passive
 uncalibrated
 slave "
 ::= { ptpbaseClockPortRunningEntry 6 }

ptpbaseClockPortRunningRole OBJECT‑TYPE
 SYNTAX PtpClockRoleType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the Clock Role."
 ::= { ptpbaseClockPortRunningEntry 7 }

ptpbaseClockPortRunningInterfaceIndex OBJECT‑TYPE
 SYNTAX InterfaceIndexOrZero
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the interface on the node being used by
 the PTP clock for PTP communication."
 ::= { ptpbaseClockPortRunningEntry 8 }

ptpbaseClockPortRunningTransport OBJECT‑TYPE
 SYNTAX AutonomousType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the transport protocol being used for PTP
 communication (the mapping used)."
 ::= { ptpbaseClockPortRunningEntry 9 }

ptpbaseClockPortRunningEncapsulationType OBJECT‑TYPE
 SYNTAX AutonomousType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the type of encapsulation if the
 interface is adding extra layers (e.g., VLAN or Pseudowire
 encapsulation) for the PTP messages."
 ::= { ptpbaseClockPortRunningEntry 10 }

ptpbaseClockPortRunningTxMode OBJECT‑TYPE
 SYNTAX PtpClockTxModeType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the clock transmission mode as:
 unicast: Using unicast communication channel
 multicast: Using multicast communication channel
 multicast‑mix: Using multicast‑unicast communication channel"
 ::= { ptpbaseClockPortRunningEntry 11 }

ptpbaseClockPortRunningRxMode OBJECT‑TYPE
 SYNTAX PtpClockTxModeType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the clock receive mode as:
 unicast: Using unicast communication channel
 multicast: Using multicast communication channel
 multicast‑mix: Using multicast‑unicast communication channel"

 ::= { ptpbaseClockPortRunningEntry 12 }

ptpbaseClockPortRunningPacketsReceived OBJECT‑TYPE
 SYNTAX Counter64
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the packets received on the clock port
 (cumulative). These counters are discontinuous."
 ::= { ptpbaseClockPortRunningEntry 13 }

ptpbaseClockPortRunningPacketsSent OBJECT‑TYPE
 SYNTAX Counter64
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the packets sent on the clock port
 (cumulative). These counters are discontinuous."
 ::= { ptpbaseClockPortRunningEntry 14 }

ptpbaseClockPortTransDSTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF PtpbaseClockPortTransDSEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Table of information about the transparentClockPortDS
 for a particular domain."
 ::= { ptpbaseMIBClockInfo 10 }

ptpbaseClockPortTransDSEntry OBJECT‑TYPE
 SYNTAX PtpbaseClockPortTransDSEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table entry that contains clock port transparent
 dataset information about a single clock port."
 INDEX {
 ptpbaseClockPortTransDSDomainIndex,
 ptpbaseClockPortTransDSInstanceIndex,
 ptpbaseClockPortTransDSPortNumberIndex
 }
 ::= { ptpbaseClockPortTransDSTable 1 }

PtpbaseClockPortTransDSEntry ::= SEQUENCE {
 ptpbaseClockPortTransDSDomainIndex PtpClockDomainType,
 ptpbaseClockPortTransDSInstanceIndex PtpClockInstanceType,
 ptpbaseClockPortTransDSPortNumberIndex PtpClockPortNumber,
 ptpbaseClockPortTransDSPortIdentity PtpClockIdentity,
 ptpbaseClockPortTransDSlogMinPdelayReqInt PtpClockIntervalBase2,
 ptpbaseClockPortTransDSFaultyFlag TruthValue,
 ptpbaseClockPortTransDSPeerMeanPathDelay PtpClockTimeInterval
}

ptpbaseClockPortTransDSDomainIndex OBJECT‑TYPE
 SYNTAX PtpClockDomainType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the domain number used to create a
 logical group of PTP devices."
 ::= { ptpbaseClockPortTransDSEntry 1 }

ptpbaseClockPortTransDSInstanceIndex OBJECT‑TYPE
 SYNTAX PtpClockInstanceType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the instance of the clock for this clock
 type in the given domain."
 ::= { ptpbaseClockPortTransDSEntry 2 }

ptpbaseClockPortTransDSPortNumberIndex OBJECT‑TYPE
 SYNTAX PtpClockPortNumber
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the PTP portNumber associated with this
 port."
 REFERENCE "Section 7.5.2 ('Port Identity')
 of [IEEE‑1588‑2008]"
 ::= { ptpbaseClockPortTransDSEntry 3 }

ptpbaseClockPortTransDSPortIdentity OBJECT‑TYPE
 SYNTAX PtpClockIdentity
 MAX‑ACCESS read‑only
 STATUS current

 DESCRIPTION
 "This object specifies the value of the PortIdentity
 attribute of the local port."
 REFERENCE
 "Section 8.3.3.2.1 ('transparentClockPortDS.portIdentity') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockPortTransDSEntry 4 }

ptpbaseClockPortTransDSlogMinPdelayReqInt OBJECT‑TYPE
 SYNTAX PtpClockIntervalBase2
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the value of the logarithm to the
 base 2 of the minPdelayReqInterval."
 REFERENCE
 "Section 8.3.3.3.1
 ('transparentClockPortDS.logMinPdelayReqInterval') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockPortTransDSEntry 5 }

ptpbaseClockPortTransDSFaultyFlag OBJECT‑TYPE
 SYNTAX TruthValue
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the value TRUE if the port is faulty
 and FALSE if the port is operating normally."
 REFERENCE
 "Section 8.3.3.3.2 ('transparentClockPortDS.faultyFlag') of
 [IEEE‑1588‑2008]"
 ::= { ptpbaseClockPortTransDSEntry 6 }

ptpbaseClockPortTransDSPeerMeanPathDelay OBJECT‑TYPE
 SYNTAX PtpClockTimeInterval
 UNITS "Time Interval"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies, if the delayMechanism used is p2p, the
 value of the estimate of the current one‑way propagation delay,
 i.e., <meanPathDelay> on the link attached to this port,
 computed using the peer delay mechanism. If the value of the
 delayMechanism used is e2e, then the value will be zero."
 REFERENCE
 "Section 8.3.3.3.3 ('transparentClockPortDS.peerMeanPathDelay')
 of [IEEE‑1588‑2008]"
 ::= { ptpbaseClockPortTransDSEntry 7 }

ptpbaseClockPortAssociateTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF PtpbaseClockPortAssociateEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Table of information about a given port's associated ports.

 For a master port: multiple slave ports that have established
 sessions with the current master port.
 For a slave port: the list of masters available for a given
 slave port.

 Session information (packets, errors) to be displayed based on
 availability and scenario."
 ::= { ptpbaseMIBClockInfo 11 }

‑‑
‑‑ Well Known transport types for PTP communication.
‑‑
ptpbaseWellKnownTransportTypes OBJECT IDENTIFIER ::= {
ptpbaseMIBClockInfo 12 }

ptpbaseTransportTypeIPversion4 OBJECT‑IDENTITY
 STATUS current
 DESCRIPTION
 "IP version 4"
 ::= { ptpbaseWellKnownTransportTypes 1 }

ptpbaseTransportTypeIPversion6 OBJECT‑IDENTITY
 STATUS current
 DESCRIPTION
 "IP version 6"
 ::= { ptpbaseWellKnownTransportTypes 2 }

ptpbaseTransportTypeEthernet OBJECT‑IDENTITY
 STATUS current
 DESCRIPTION
 "Ethernet"
 ::= { ptpbaseWellKnownTransportTypes 3 }

ptpbaseTransportTypeDeviceNET OBJECT‑IDENTITY
 STATUS current
 DESCRIPTION
 "Device NET"
 ::= { ptpbaseWellKnownTransportTypes 4 }

ptpbaseTransportTypeControlNET OBJECT‑IDENTITY
 STATUS current
 DESCRIPTION
 "Control NET"
 ::= { ptpbaseWellKnownTransportTypes 5 }

ptpbaseTransportTypeIEC61158 OBJECT‑IDENTITY
 STATUS current
 DESCRIPTION
 "IEC61158"
 ::= { ptpbaseWellKnownTransportTypes 6 }

‑‑
‑‑ Well Known encapsulation types for PTP communication.
‑‑
ptpbaseWellKnownEncapsulationTypes OBJECT IDENTIFIER ::= {
ptpbaseMIBClockInfo 13 }

ptpbaseEncapsulationTypeEthernet OBJECT‑IDENTITY
 STATUS current
 DESCRIPTION
 "Ethernet Encapsulation type."
 ::= { ptpbaseWellKnownEncapsulationTypes 1 }

ptpbaseEncapsulationTypeVLAN OBJECT‑IDENTITY
 STATUS current
 DESCRIPTION
 "VLAN Encapsulation type."
 ::= { ptpbaseWellKnownEncapsulationTypes 2 }

ptpbaseEncapsulationTypeUDPIPLSP OBJECT‑IDENTITY
 STATUS current
 DESCRIPTION
 "UDP/IP over MPLS Encapsulation type."
 ::= { ptpbaseWellKnownEncapsulationTypes 3 }

ptpbaseEncapsulationTypePWUDPIPLSP OBJECT‑IDENTITY
 STATUS current
 DESCRIPTION
 "UDP/IP Pseudowire over MPLS Encapsulation type."
 ::= { ptpbaseWellKnownEncapsulationTypes 4 }

ptpbaseEncapsulationTypePWEthernetLSP OBJECT‑IDENTITY
 STATUS current
 DESCRIPTION
 "Ethernet Pseudowire over MPLS Encapsulation type."
 ::= { ptpbaseWellKnownEncapsulationTypes 5 }

ptpbaseClockPortAssociateEntry OBJECT‑TYPE
 SYNTAX PtpbaseClockPortAssociateEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table entry that contains information about a single
 associated port for the given clock port."
 INDEX {
 ptpClockPortCurrentDomainIndex,
 ptpClockPortCurrentClockTypeIndex,
 ptpClockPortCurrentClockInstanceIndex,
 ptpClockPortCurrentPortNumberIndex,
 ptpbaseClockPortAssociatePortIndex
 }
 ::= { ptpbaseClockPortAssociateTable 1 }

PtpbaseClockPortAssociateEntry ::= SEQUENCE {
 ptpClockPortCurrentDomainIndex PtpClockDomainType,
 ptpClockPortCurrentClockTypeIndex PtpClockType,
 ptpClockPortCurrentClockInstanceIndex PtpClockInstanceType,
 ptpClockPortCurrentPortNumberIndex PtpClockPortNumber,
 ptpbaseClockPortAssociatePortIndex Unsigned32,
 ptpbaseClockPortAssociateAddressType AutonomousType,
 ptpbaseClockPortAssociateAddress
PtpClockPortTransportTypeAddress,
 ptpbaseClockPortAssociatePacketsSent Counter64,
 ptpbaseClockPortAssociatePacketsReceived Counter64,
 ptpbaseClockPortAssociateInErrors Counter64,
 ptpbaseClockPortAssociateOutErrors Counter64
}

ptpClockPortCurrentDomainIndex OBJECT‑TYPE
 SYNTAX PtpClockDomainType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the given port's domain number."
 ::= { ptpbaseClockPortAssociateEntry 1 }

ptpClockPortCurrentClockTypeIndex OBJECT‑TYPE
 SYNTAX PtpClockType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the given port's clock type."
 ::= { ptpbaseClockPortAssociateEntry 2 }

ptpClockPortCurrentClockInstanceIndex OBJECT‑TYPE
 SYNTAX PtpClockInstanceType
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the instance of the clock for this clock
 type in the given domain."
 ::= { ptpbaseClockPortAssociateEntry 3 }

ptpClockPortCurrentPortNumberIndex OBJECT‑TYPE
 SYNTAX PtpClockPortNumber
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the PTP portNumber for the given port."
 ::= { ptpbaseClockPortAssociateEntry 4 }

ptpbaseClockPortAssociatePortIndex OBJECT‑TYPE
 SYNTAX Unsigned32 (1..65535)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "This object specifies the associated port's serial number in
 the current port's context."
 ::= { ptpbaseClockPortAssociateEntry 5 }

ptpbaseClockPortAssociateAddressType OBJECT‑TYPE
 SYNTAX AutonomousType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the peer port's network address type used
 for PTP communication. The OCTET STRING representation of the
 OID of ptpbaseWellKnownTransportTypes will be used in the values
 contained in the OCTET STRING."
 ::= { ptpbaseClockPortAssociateEntry 6 }

ptpbaseClockPortAssociateAddress OBJECT‑TYPE
 SYNTAX PtpClockPortTransportTypeAddress
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the peer port's network address used for
 PTP communication."
 ::= { ptpbaseClockPortAssociateEntry 7 }

ptpbaseClockPortAssociatePacketsSent OBJECT‑TYPE
 SYNTAX Counter64
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of packets sent to this peer port from the current
 port. These counters are discontinuous."
 ::= { ptpbaseClockPortAssociateEntry 8 }

ptpbaseClockPortAssociatePacketsReceived OBJECT‑TYPE
 SYNTAX Counter64
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of packets received from this peer port by the
 current port. These counters are discontinuous."
 ::= { ptpbaseClockPortAssociateEntry 9 }

ptpbaseClockPortAssociateInErrors OBJECT‑TYPE
 SYNTAX Counter64
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the input errors associated with the
 peer port. These counters are discontinuous."
 ::= { ptpbaseClockPortAssociateEntry 10 }

ptpbaseClockPortAssociateOutErrors OBJECT‑TYPE
 SYNTAX Counter64
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "This object specifies the output errors associated with the
 peer port. These counters are discontinuous."
 ::= { ptpbaseClockPortAssociateEntry 11 }

-- Conformance Information Definition

ptpbaseMIBCompliances OBJECT IDENTIFIER
 ::= { ptpbaseMIBConformance 1 }

ptpbaseMIBGroups OBJECT IDENTIFIER
 ::= { ptpbaseMIBConformance 2 }

ptpbaseMIBCompliancesSystemInfo MODULE‑COMPLIANCE
 STATUS current
 DESCRIPTION
 "Compliance statement for agents that provide read‑only support
 for PTPBASE‑MIB to provide system‑level information of clock
 devices. Such devices can only be monitored using this MIB
 module.

 The module is implemented with support for read‑only. In other
 words, only monitoring is available by implementing this
 MODULE‑COMPLIANCE."
 MODULE ‑‑ this module
 MANDATORY‑GROUPS { ptpbaseMIBSystemInfoGroup }
 ::= { ptpbaseMIBCompliances 1 }

ptpbaseMIBCompliancesClockInfo MODULE‑COMPLIANCE
 STATUS current
 DESCRIPTION
 "Compliance statement for agents that provide read‑only support
 for PTPBASE‑MIB to provide clock‑related information.
 Such devices can only be monitored using this MIB module.

 The module is implemented with support for read‑only. In other
 words, only monitoring is available by implementing this
 MODULE‑COMPLIANCE."
 MODULE ‑‑ this module
 MANDATORY‑GROUPS {
 ptpbaseMIBClockCurrentDSGroup,
 ptpbaseMIBClockParentDSGroup,
 ptpbaseMIBClockDefaultDSGroup,
 ptpbaseMIBClockRunningGroup,
 ptpbaseMIBClockTimepropertiesGroup
 }
 ::= { ptpbaseMIBCompliances 2 }

ptpbaseMIBCompliancesClockPortInfo MODULE‑COMPLIANCE
 STATUS current
 DESCRIPTION
 "Compliance statement for agents that provide read‑only support
 for PTPBASE‑MIB to provide clock‑port‑related information.
 Such devices can only be monitored using this MIB module.

 The module is implemented with support for read‑only. In other
 words, only monitoring is available by implementing this
 MODULE‑COMPLIANCE."
 MODULE ‑‑ this module
 MANDATORY‑GROUPS {
 ptpbaseMIBClockPortGroup,
 ptpbaseMIBClockPortDSGroup,
 ptpbaseMIBClockPortRunningGroup,
 ptpbaseMIBClockPortAssociateGroup
 }
 ::= { ptpbaseMIBCompliances 3 }

ptpbaseMIBCompliancesTransparentClockInfo MODULE‑COMPLIANCE
 STATUS current
 DESCRIPTION
 "Compliance statement for agents that provide read‑only support
 for PTPBASE‑MIB to provide transparent‑clock‑related
 information. Such devices can only be monitored using this MIB
 module.

 The module is implemented with support for read‑only. In other
 words, only monitoring is available by implementing this
 MODULE‑COMPLIANCE."
 MODULE ‑‑ this module
 MANDATORY‑GROUPS {
 ptpbaseMIBClockTranparentDSGroup,
 ptpbaseMIBClockPortTransDSGroup
 }
 ::= { ptpbaseMIBCompliances 4 }

ptpbaseMIBSystemInfoGroup OBJECT‑GROUP
 OBJECTS {
 ptpbaseSystemDomainTotals,
 ptpDomainClockPortsTotal,
 ptpbaseSystemProfile
 }
 STATUS current
 DESCRIPTION
 "Group that aggregates objects describing system‑wide
 information"
 ::= { ptpbaseMIBGroups 1 }

ptpbaseMIBClockCurrentDSGroup OBJECT‑GROUP
 OBJECTS {
 ptpbaseClockCurrentDSStepsRemoved,
 ptpbaseClockCurrentDSOffsetFromMaster,
 ptpbaseClockCurrentDSMeanPathDelay
 }
 STATUS current
 DESCRIPTION
 "Group that aggregates objects describing PTP currentDS
 information"
 ::= { ptpbaseMIBGroups 2 }

ptpbaseMIBClockParentDSGroup OBJECT‑GROUP
 OBJECTS {
 ptpbaseClockParentDSParentPortIdentity,
 ptpbaseClockParentDSParentStats,
 ptpbaseClockParentDSOffset,
 ptpbaseClockParentDSClockPhChRate,
 ptpbaseClockParentDSGMClockIdentity,
 ptpbaseClockParentDSGMClockPriority1,
 ptpbaseClockParentDSGMClockPriority2,
 ptpbaseClockParentDSGMClockQualityClass,
 ptpbaseClockParentDSGMClockQualityAccuracy,
 ptpbaseClockParentDSGMClockQualityOffset
 }
 STATUS current
 DESCRIPTION
 "Group that aggregates objects describing PTP parentDS
 information"
 ::= { ptpbaseMIBGroups 3 }

ptpbaseMIBClockDefaultDSGroup OBJECT‑GROUP
 OBJECTS {
 ptpbaseClockDefaultDSTwoStepFlag,
 ptpbaseClockDefaultDSClockIdentity,
 ptpbaseClockDefaultDSPriority1,
 ptpbaseClockDefaultDSPriority2,
 ptpbaseClockDefaultDSSlaveOnly,
 ptpbaseClockDefaultDSQualityClass,
 ptpbaseClockDefaultDSQualityAccuracy,
 ptpbaseClockDefaultDSQualityOffset
 }
 STATUS current
 DESCRIPTION
 "Group that aggregates objects describing PTP defaultDS
 information"
 ::= { ptpbaseMIBGroups 4 }

ptpbaseMIBClockRunningGroup OBJECT‑GROUP
 OBJECTS {
 ptpbaseClockRunningState,
 ptpbaseClockRunningPacketsSent,
 ptpbaseClockRunningPacketsReceived
 }
 STATUS current
 DESCRIPTION
 "Group that aggregates objects describing PTP running state
 information"
 ::= { ptpbaseMIBGroups 5 }

ptpbaseMIBClockTimepropertiesGroup OBJECT‑GROUP
 OBJECTS {
 ptpbaseClockTimePropertiesDSCurrentUTCOffsetValid,
 ptpbaseClockTimePropertiesDSCurrentUTCOffset,
 ptpbaseClockTimePropertiesDSLeap59,
 ptpbaseClockTimePropertiesDSLeap61,
 ptpbaseClockTimePropertiesDSTimeTraceable,
 ptpbaseClockTimePropertiesDSFreqTraceable,
 ptpbaseClockTimePropertiesDSPTPTimescale,
 ptpbaseClockTimePropertiesDSSource
 }
 STATUS current
 DESCRIPTION
 "Group that aggregates objects describing PTP Time Properties
 information"
 ::= { ptpbaseMIBGroups 6 }

ptpbaseMIBClockTranparentDSGroup OBJECT‑GROUP
 OBJECTS {
 ptpbaseClockTransDefaultDSClockIdentity,
 ptpbaseClockTransDefaultDSNumOfPorts,
 ptpbaseClockTransDefaultDSDelay,
 ptpbaseClockTransDefaultDSPrimaryDomain
 }
 STATUS current
 DESCRIPTION
 "Group that aggregates objects describing PTP
 transparentClockDefaultDS information"
 ::= { ptpbaseMIBGroups 7 }

ptpbaseMIBClockPortGroup OBJECT‑GROUP
 OBJECTS {
 ptpbaseClockPortName,
 ptpbaseClockPortSyncTwoStep,
 ptpbaseClockPortCurrentPeerAddress,
 ptpbaseClockPortNumOfAssociatedPorts,

 ptpbaseClockPortCurrentPeerAddressType,
 ptpbaseClockPortRole
 }
 STATUS current
 DESCRIPTION
 "Group that aggregates objects describing information for a
 given PTP Port"
 ::= { ptpbaseMIBGroups 8 }

ptpbaseMIBClockPortDSGroup OBJECT‑GROUP
 OBJECTS {
 ptpbaseClockPortDSName,
 ptpbaseClockPortDSPortIdentity,
 ptpbaseClockPortDSlogAnnouncementInterval,
 ptpbaseClockPortDSAnnounceRctTimeout,
 ptpbaseClockPortDSlogSyncInterval,
 ptpbaseClockPortDSMinDelayReqInterval,
 ptpbaseClockPortDSPeerDelayReqInterval,
 ptpbaseClockPortDSDelayMech,
 ptpbaseClockPortDSPeerMeanPathDelay,
 ptpbaseClockPortDSGrantDuration,
 ptpbaseClockPortDSPTPVersion
 }
 STATUS current
 DESCRIPTION
 "Group that aggregates objects describing PTP portDS
 information"
 ::= { ptpbaseMIBGroups 9 }

ptpbaseMIBClockPortRunningGroup OBJECT‑GROUP
 OBJECTS {
 ptpbaseClockPortRunningName,
 ptpbaseClockPortRunningState,
 ptpbaseClockPortRunningRole,
 ptpbaseClockPortRunningInterfaceIndex,
 ptpbaseClockPortRunningTransport,
 ptpbaseClockPortRunningEncapsulationType,
 ptpbaseClockPortRunningTxMode,
 ptpbaseClockPortRunningRxMode,
 ptpbaseClockPortRunningPacketsReceived,
 ptpbaseClockPortRunningPacketsSent
 }
 STATUS current
 DESCRIPTION
 "Group that aggregates objects describing PTP running interface
 information"
 ::= { ptpbaseMIBGroups 10 }

ptpbaseMIBClockPortTransDSGroup OBJECT‑GROUP
 OBJECTS {
 ptpbaseClockPortTransDSPortIdentity,
 ptpbaseClockPortTransDSlogMinPdelayReqInt,
 ptpbaseClockPortTransDSFaultyFlag,
 ptpbaseClockPortTransDSPeerMeanPathDelay
 }
 STATUS current
 DESCRIPTION
 "Group that aggregates objects describing PTP
 transparentClockPortDS information"
 ::= { ptpbaseMIBGroups 11 }

ptpbaseMIBClockPortAssociateGroup OBJECT‑GROUP
 OBJECTS {
 ptpbaseClockPortAssociatePacketsSent,
 ptpbaseClockPortAssociatePacketsReceived,
 ptpbaseClockPortAssociateAddress,
 ptpbaseClockPortAssociateAddressType,
 ptpbaseClockPortAssociateInErrors,
 ptpbaseClockPortAssociateOutErrors
 }
 STATUS current
 DESCRIPTION
 "Group that aggregates objects describing information on peer
 PTP ports for a given PTP clock port"
 ::= { ptpbaseMIBGroups 12 }

END

5. Security Considerations

 There are no management objects defined in this MIB module that have
 a MAX-ACCESS clause of read-write and/or read-create. So, if this
 MIB module is implemented correctly, then there is no risk that an
 intruder can alter or create any management objects of this MIB
 module via direct SNMP SET operations.

 Some of the readable objects in this MIB module (i.e., objects with a
 MAX-ACCESS other than not-accessible) may be considered sensitive or
 vulnerable in some network environments. It is thus important to
 control even GET and/or NOTIFY access to these objects and possibly
 to even encrypt the values of these objects when sending them over
 the network via SNMP.

 These are the tables and objects and their sensitivity/vulnerability:

 ptpDomainClockPortsTotal, ptpbaseSystemDomainTotals, and
 ptpbaseSystemProfile expose general information about the clock
 system.

 ptpbaseClockRunningState, ptpbaseClockRunningPacketsSent, and
 ptpbaseClockRunningPacketsReceived expose a clock's current
 running status.

 ptpbaseClockCurrentDSStepsRemoved,
 ptpbaseClockCurrentDSOffsetFromMaster, and
 ptpbaseClockCurrentDSMeanPathDelay expose the values of a clock's
 current dataset (currentDS).

 ptpbaseClockParentDSParentPortIdentity,
 ptpbaseClockParentDSParentStats, ptpbaseClockParentDSOffset,
 ptpbaseClockParentDSClockPhChRate,
 ptpbaseClockParentDSGMClockIdentity,
 ptpbaseClockParentDSGMClockPriority1,
 ptpbaseClockParentDSGMClockPriority2,
 ptpbaseClockParentDSGMClockQualityClass,
 ptpbaseClockParentDSGMClockQualityAccuracy, and
 ptpbaseClockParentDSGMClockQualityOffset expose the values of a
 clock's parent dataset (parentDS).

 ptpbaseClockDefaultDSTwoStepFlag,
 ptpbaseClockDefaultDSClockIdentity,
 ptpbaseClockDefaultDSPriority1, ptpbaseClockDefaultDSPriority2,
 ptpbaseClockDefaultDSSlaveOnly, ptpbaseClockDefaultDSQualityClass,
 ptpbaseClockDefaultDSQualityAccuracy, and
 ptpbaseClockDefaultDSQualityOffset expose the values of a clock's
 default dataset (defaultDS).
 ptpbaseClockTimePropertiesDSCurrentUTCOffsetValid,
 ptpbaseClockTimePropertiesDSCurrentUTCOffset,
 ptpbaseClockTimePropertiesDSLeap59,
 ptpbaseClockTimePropertiesDSLeap61,
 ptpbaseClockTimePropertiesDSTimeTraceable,
 ptpbaseClockTimePropertiesDSFreqTraceable,
 ptpbaseClockTimePropertiesDSPTPTimescale, and
 ptpbaseClockTimePropertiesDSSource expose the values of a clock's
 time properties dataset (timePropertiesDS).

 ptpbaseClockTransDefaultDSClockIdentity,
 ptpbaseClockTransDefaultDSNumOfPorts,
 ptpbaseClockTransDefaultDSDelay, and
 ptpbaseClockTransDefaultDSPrimaryDomain expose the values of a
 transparent clock's default dataset (transparentClockDefaultDS).

 ptpbaseClockPortName, ptpbaseClockPortRole,
 ptpbaseClockPortSyncTwoStep,
 ptpbaseClockPortCurrentPeerAddressType,
 ptpbaseClockPortCurrentPeerAddress, and
 ptpbaseClockPortNumOfAssociatedPorts expose general information
 about a clock port.

 ptpbaseClockPortRunningName, ptpbaseClockPortRunningState,
 ptpbaseClockPortRunningRole,
 ptpbaseClockPortRunningInterfaceIndex,
 ptpbaseClockPortRunningTransport,
 ptpbaseClockPortRunningEncapsulationType,
 ptpbaseClockPortRunningTxMode, ptpbaseClockPortRunningRxMode,
 ptpbaseClockPortRunningPacketsReceived, and
 ptpbaseClockPortRunningPacketsSent expose a clock port's current
 running status.

 ptpbaseClockPortDSName, ptpbaseClockPortDSPortIdentity,
 ptpbaseClockPortDSlogAnnouncementInterval,
 ptpbaseClockPortDSAnnounceRctTimeout,
 ptpbaseClockPortDSlogSyncInterval,
 ptpbaseClockPortDSMinDelayReqInterval,
 ptpbaseClockPortDSPeerDelayReqInterval,
 ptpbaseClockPortDSDelayMech, ptpbaseClockPortDSPeerMeanPathDelay,
 ptpbaseClockPortDSGrantDuration, and ptpbaseClockPortDSPTPVersion
 expose the values of a clock port's port dataset (portDS).

 ptpbaseClockPortTransDSPortIdentity,
 ptpbaseClockPortTransDSlogMinPdelayReqInt,
 ptpbaseClockPortTransDSFaultyFlag, and
 ptpbaseClockPortTransDSPeerMeanPathDelay expose the values of a
 transparent clock port's port dataset (transparentClockPortDS).
 ptpbaseClockPortAssociateAddressType,
 ptpbaseClockPortAssociateAddress,
 ptpbaseClockPortAssociatePacketsSent,
 ptpbaseClockPortAssociatePacketsReceived,
 ptpbaseClockPortAssociateInErrors, and
 ptpbaseClockPortAssociateOutErrors expose information about a
 clock port's peer node.

 SNMP versions prior to SNMPv3 did not include adequate security.
 Even if the network itself is secure (for example, by using IPsec),
 even then, there is no control as to who on the secure network is
 allowed to access and GET (read) the objects in this MIB module.

 Implementations SHOULD provide the security features described by the
 SNMPv3 framework (see [RFC3410]), and implementations claiming
 compliance to the SNMPv3 standard MUST include full support for
 authentication and privacy via the User-based Security Model (USM)
 [RFC3414] with the AES cipher algorithm [RFC3826]. Implementations
 MAY also provide support for the Transport Security Model (TSM)
 [RFC5591] in combination with a secure transport such as SSH
 [RFC5592] or TLS/DTLS [RFC6353].

 Further, deployment of SNMP versions prior to SNMPv3 is NOT
 recommended. Instead, it is recommended to deploy SNMPv3 and to
 enable cryptographic security. It is then a customer/operator
 responsibility to ensure that the SNMP entity giving access to an
 instance of this MIB module is properly configured to give access to
 those objects only to those principals (users) that have legitimate
 rights to access them.

6. IANA Considerations

 The MIB module defined in this document uses the following IANA-
 assigned OBJECT IDENTIFIER value recorded in the "Structure of
 Management Information (SMI) Numbers (MIB Module Registrations)"
 registry:

Descriptor OBJECT IDENTIFIER value
‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
ptpbaseMIB { mib‑2 241 }

7. References

7.1. Normative References

 [IEEE-1588-2008]

 IEEE, "IEEE Standard for a Precision Clock
 Synchronization Protocol for Networked Measurement and
 Control Systems", IEEE Std. 1588-2008,
 DOI 10.1109/IEEESTD.2008.4579760.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2578]
 McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578,
 DOI 10.17487/RFC2578, April 1999,
 <http://www.rfc-editor.org/info/rfc2578>.

 [RFC2579]
 McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Textual Conventions for SMIv2", STD
 58, RFC 2579, DOI 10.17487/RFC2579, April 1999,
 <http://www.rfc-editor.org/info/rfc2579>.

 [RFC2580]
 McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Conformance Statements for SMIv2",
 STD 58, RFC 2580, DOI 10.17487/RFC2580, April 1999,
 <http://www.rfc-editor.org/info/rfc2580>.

 [RFC3414]
 Blumenthal, U. and B. Wijnen, "User-based Security Model
 (USM) for version 3 of the Simple Network Management
 Protocol (SNMPv3)", STD 62, RFC 3414,
 DOI 10.17487/RFC3414, December 2002,
 <http://www.rfc-editor.org/info/rfc3414>.

 [RFC3826]
 Blumenthal, U., Maino, F., and K. McCloghrie, "The
 Advanced Encryption Standard (AES) Cipher Algorithm in
 the SNMP User-based Security Model", RFC 3826,
 DOI 10.17487/RFC3826, June 2004,
 <http://www.rfc-editor.org/info/rfc3826>.

 [RFC5591]
 Harrington, D. and W. Hardaker, "Transport Security Model
 for the Simple Network Management Protocol (SNMP)", STD
 78, RFC 5591, DOI 10.17487/RFC5591, June 2009,
 <http://www.rfc-editor.org/info/rfc5591>.

 [RFC5592]
 Harrington, D., Salowey, J., and W. Hardaker, "Secure
 Shell Transport Model for the Simple Network Management
 Protocol (SNMP)", RFC 5592, DOI 10.17487/RFC5592, June
 2009, <http://www.rfc-editor.org/info/rfc5592>.

 [RFC6353]
 Hardaker, W., "Transport Layer Security (TLS) Transport
 Model for the Simple Network Management Protocol (SNMP)",
 STD 78, RFC 6353, DOI 10.17487/RFC6353, July 2011,
 <http://www.rfc-editor.org/info/rfc6353>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <http://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [RFC3410]
 Case, J., Mundy, R., Partain, D., and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410,
 DOI 10.17487/RFC3410, December 2002,
 <http://www.rfc-editor.org/info/rfc3410>.

 [RFC5905]
 Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June
 2010, <http://www.rfc-editor.org/info/rfc5905>.

 [G.8265.1]
 ITU-T, "Precision time protocol telecom profile for
 frequency synchronization", ITU-T Recommendation
 G.8265.1, July 2014.

Acknowledgements

 Thanks to John Linton and Danny Lee for their valuable comments and
 to Bert Wijnen, Kevin Gross, Alan Luchuk, Chris Elliot, Brian
 Haberman, and Dan Romascanu for their reviews of this MIB module.

Authors' Addresses

Vinay Shankarkumar
Cisco Systems
7100‑9 Kit Creek Road
Research Triangle Park, NC 27709
United States of America

 Email: vinays@cisco.com

Laurent Montini
Cisco Systems
11, rue Camille Desmoulins
92782 Issy‑les‑Moulineaux
France

 Email: lmontini@cisco.com

Tim Frost
Calnex Solutions Ltd.
Oracle Campus
Linlithgow
EH49 7LR
United Kingdom

 Email: tim.frost@calnexsol.com

Greg Dowd
Microsemi Inc.
3870 North First Street
San Jose, CA 95134
United States of America

 Email: greg.dowd@microsemi.com

draft-alavarez-hamelin-tictoc-sic-02 - Synchronizing Internet Clock frequency pr

Index
Back 5
Prev
Next

TICTOC

Internet-Draft

Updates: none (if approved)

Intended status: Standards Track

Expires: April 26, 2019

J. Alvarez-Hamelin, Ed.

Universidad de Buenos Aires - CONICET

D. Samaniego

A. Ortega

Universidad de Buenos Aires

R. Geib

Deutsche Telekom

October 23, 2018

Synchronizing Internet Clock frequency protocol (sic)

draft-alavarez-hamelin-tictoc-sic-02

Abstract

 Synchronizing Internet Clock Frequency specifies a new secure method
 to synchronize difference clocks on the Internet, assuring smoothness
 (i.e., frequency stability) and robustness to man-in-the-middle
 attacks. In 90% of all cases, Synchronized Internet Clock Frequency
 is highly accurate, with a Maximum Time Interval Error less than 25
 microseconds by a minute. Synchronized Internet Clock Frequency is
 based on a regular packet exchange and works with commodity terminal
 hardware.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 26, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. sic frequency protocol overview

	3. The formal definition of sic frequency protocol
	 3.1. Algorithm description

	 3.2. Protocol definitions

	 3.3. Protocol packet specification

	 3.4. Minimum sic deployment

	4. Implementation of sic frequency protocol
	 4.1. Evaluation

	5. Conclusions

	6. Security Considerations

	7. IANA Considerations

	8. Acknowledgements

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Appendix A. Example of RTT to NTP servers

	Authors' Addresses

1. Introduction

 There are different types of clock synchronization on the Internet.
 NTP [RFC5905] remains one of the most popular because a potential
 user does not need any extra hardware, and it is practically a
 standard in most of the operating systems distributions. Its working
 principle relies on time servers having some kind of precise clock
 source, like atomic clocks or GPS based. For most of the needs, NTP
 provides an accurate synchronization. Moreover, NTP recently
 incorporates some strategies oriented to avoid man-in-the-middle
 (MitM) attacks. NTPs potential accuracy is in the order of tens of
 milliseconds.

 Synchronizing Internet Clock frequency (sic frequency) is a protocol
 providing synchronized difference clocks in two endpoints connected
 to the Internet. While synchronized absolute clocks aim on a
 measurement of exact time differences between them, synchronized
 difference clocks allow measurements during identical time intervals
 at two locations. This is useful if loads, packet loss or a
 variation in delay is to be measured.

 The sic frequency design is close to TSClocks (see below) but it
 takes advantage of statistics to perform better. sic frequency
 synchronization relies on Internet based delay measurements. Route
 changes are frequent, so we include its detection. Finally, our
 implementation also contemplates the protection to MitM attacks,
 including the signature of measurements in each packet. sic frequency
 does neither put constrains on the quality of a server's clock, nor
 does it require a limitation of the distance of synchronized end
 systems.

 Another proposal is the TSClocks [ToN2008], which take advantage of
 the internal computers' clock. This work has been shown a very
 interesting solution because it is not expensive and can be used in
 any computer connected to the Internet. This solution was proposed
 in the beginning at LAN (Local Area Network) level, and then it has
 been extended to other situations. In [ToN2008] authors report a
 difference clock error of about half of hundred of microseconds for a
 WAN connection with 40ms of RTT (Round Trip Time).

 When accuracy and stability are needed, further options arise, e.g.,
 the PTP clock [RFC8173] (this mechanism was also defined as the IEEE
 Std. 1588-2008). The PTP clock however incorporates specialized
 hardware to provide a highly accurate clock, which is required in
 each point to be synchronised. Also the GPS (Global Position System)
 requires specialized hardware in every point of measurement. While
 GPS may be less expensive than PTP, the GPS unit requires a sky clear
 view for working. The latter may be costly or impossible in some
 locations.

 Finally, we mention the [ITU-G.8260] shows a methodology to measure
 delays in networks. It is based on filtering that selects some
 packets to perform the delay computation. The packet selection is
 based on the minimum and average RTT, and we show that both of them
 have some statistical problems to determine (see Section 2).

2. sic frequency protocol overview

 Synchronizing Internet Clock frequency (sic frequency) is a protocol
 providing synchronized difference clocks in two endpoints connected
 to the Internet. Synchronized difference clocks allow measurements
 during identical time intervals at two locations. This is useful if
 loads, packet loss or a variation in delay is to be measured. The
 model of typical Internet time-measurement is shown in Figure 1.

 XXXXXXXX XXXXXXXX
 XXXXXX XXX X
 XX XXX
+‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+XX XXXX
 | XX XX
 | X Internet XX
 | XX XXX
 +‑‑+‑‑‑‑‑‑+ XXXXXX XX+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+
 | | X XX |
 | Client | XX XXX |
 | | XX XXX XXXXX XX +‑‑‑+‑‑‑‑+
 | | XXX XXXXXXX XXXXXX | |
 +‑‑‑‑‑‑‑‑‑+ | Server |
 | |
 | |
 +‑‑‑‑‑‑‑‑+

 Figure 1: The clock synchronization of sic.--

 In this model, sic frequency performs measurements with packets in
 the way shown in Figure 2.

 t2 t3
Server +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑@‑‑‑‑‑‑‑*‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>
 / _ C_s [s]
 / _
 / _
 / _
 / _
 / _
 / _
 / _
 / _
 / _
 / _ C_c [s]
Client +‑‑‑*‑‑@‑‑‑‑‑‑>
 t1 t4

 Figure 2: Time line of packets.--

 Here, C_s is the server clock, C_c is the client clock and t1...t4
 are timestamps.

 Figure 2 shows a horizontal time line for client and server. The
 diagonal lines depict a packet traversing some physical space (wires,
 routers, and switches). The packet travel times are not assumed to
 be identical, because routes and background load may differ in each
 direction.

 The difference between the client clock C_c and the server clock C_s
 can be modeled as:

C_c = C_s + phi ,

phi(t) = C_c(t) ‑ C_s(t) , (1)

 where phi is the absolute clock difference. If RTT is constant (i.e.
 little or no background load) and routes are symmetric in both
 directions, the difference between clocks can be computed as:

phi[c‑>s] = t1 ‑ (t2 ‑ RTT/2) , (2)

phi[c<‑s] = t4 ‑ (t3 + RTT/2) , (3)

 and phi[c->s] = phi[c<-s]. The general equation for the RTT is:

RTT = (t2 ‑ t1) + (t4 ‑ t3) . (4)

 Computing Equations 2 and 3 for the this simplified case allows
 calculation of phi as a function of RTT. Note that if routes are not
 symmetrical it is impossible to determine the absolute clocks'
 difference.

 The sic frequency protocol is based on statistics, background
 traffic- and network behavior observations. The RTT between two
 endpoints follows a heavy-tailed distribution. An alpha-stable
 distribution shows as one possible model [traffic-stable]. This
 distribution can be characterized by four parameters: the
 localization "delta," the stretching "gamma," the tail "alpha," and
 the symmetry "beta," [alfa-estables]. The location parameter is
 highly related to the mode of the distribution: delta > 0. The
 stretching is related to the dispersion: gamma > 0. The symmetry, -1
 <= beta <= 1, indicates if the distribution is skewed to the right
 (the tail decays to the left) for positive values or the opposite
 direction for negatives ones. Finally, the tail alpha, defined in
 (0,2], indicates if the distribution is Gaussian one when alpha=2, a
 power law without variance for alpha <2, and also without statistic
 mean for alpha<1. The alpha-stable distribution is the
 generalization of the Central Limit Theorem for any distribution
 (i.e., it includes the cases without variance or mean).

 Then, the phi(t) estimation involves the subtraction of two alpha-
 stable random variables, which yields on another alfa-stable
 distribution but symmetrical [alfa-estables]. Due to the
 characteristic of this result, i.e., a fixed mode and symmetry, a
 good estimator of the mode is the median.

 Therefore, sic performs periodic measurements to infer the difference
 of two clocks in the Internet taking advantage of the empiric
 observations. The periodicity of RTT measurements is set to 1
 second.

 The parameters of the simple skew model [ToN2008] are estimated by
 the following equation:

phi(t) = K + F * t , (5)

 where phi(t) = C_c - C_s, K is a constant representing the absolute
 difference of time of client clock C_c and server clock C_s, and F is
 the rate parameter. As sic frequency is a difference clock, we only
 estimate the frequency parameter "F."

 Note that the "K" parameter cannot be estimated using just endpoints
 measurements. Estimating the "K" parameter accurately is out of
 scope, and we use K=min(RTT)/2, as it used in several synchronization
 procotols under the assumption of symmetric paths. Considering the
 following asymmetry definition,

 t[c‑>s]
A = 1 ‑ ‑‑‑‑‑‑‑‑‑ , (6)
 t[c<‑s]

 where t[c->s] is the minimum delay measured from the client to the
 server. The maximum asymmetry A of equation 6 is A=1, which is
 unlucky, and this establishes the hard bound for the error of K as
 min(RTT): if t[c->s] approaches RTT, t[c->s] approaches zero. The
 difference between the two is phi (t), and this difference hence is
 close to min(RTT), if A=1. In our experiments the error in
 estimation phi(t) was always less than min(RTT)/2.

 Another problem with most of the synchronization protocols is the
 estimation of the minimum RTT, which depends upon the time-window
 within which the RTT is captured. A minimum RTT can only be measured
 in the absence of any cross traffic. In a first step, the minimum
 RTT measured during a window of 10 minutes (mRTT10m) is captured.
 Based on these values, the minimum RTT over a week (mRTTw) is
 determined. RTTee is defined as mRTT10m - mRTTw. Figure 3 shows the
 the RTT estimation error captured during an experiment where the
 minimum latency between probes was 9431 microseconds during one week,
 i.e., mRTTw=9431 microseconds. Notice that mRTT10m varies a lot, and
 the observed values can be more than 450 microseconds above the
 minimum RTT over a week. This error is a consequence of the
 statistical behavior of the RTT which can be modeled by the alfa-
 stable distribution.

 Finally, it is mostly believed there always exist NTP servers at less
 than five hops with few milliseconds of RTT, because of the NTP
 deployment. In Appendix A we show a typical case in Latin America
 region where the RTT differ notably form host in the same city
 (Buenos Aires). This example reveals that in some countries could be
 not possible to have this desired situation and other synchronization
 tools are needed.

Error of the min(RTT)
[micro‑seconds]
 500 +‑‑‑‑‑‑|‑‑‑‑‑‑‑|‑‑‑‑‑‑|‑‑‑‑‑‑|‑‑‑‑‑‑|‑‑‑‑‑‑‑|‑‑‑‑‑‑|‑‑‑‑‑‑+
 | + + + O + + + + |
 | * |
 400 |‑+ ** O +‑|
 | * * O O ** O O |
 | O * * ** * ** ** ** |
 300 |‑+ * O*O * O O* * O*O * * O O *‑|
 | O* O O * * * O * * * *|
 | O * O ** * * O * * * O** O|
 200 |‑* * * * * O * O * O*O * O +‑|
 |** O O * ** * * * * O |
 |O * *** O * * * |
 100 |‑+ O O O * O +‑|
 | ** |
 | ** |
 0 |‑+ + + O + + + + + +‑|
 +‑‑‑‑‑‑|‑‑‑‑‑‑‑|‑‑‑‑‑‑|‑‑‑‑‑‑|‑‑‑‑‑‑|‑‑‑‑‑‑‑|‑‑‑‑‑‑|‑‑‑‑‑‑+
 0 50 100 150 200 250 300 350 400
 time [minutes]

 Figure 3: Min RTT error, estimated every 10 minutes along 7 hours.--

 The sic frequency protocol estimates phi(t) of Equation 5 using
 measurement statistics and taking advantage of the inherent RTT
 properties, i.e., the heavy tail distribution and its alfa-stable
 distribution model. The basic sic frequency operation is to
 periodically send packets, estimate phi(t), and correct the local
 clock with:

t_c = t + phi(t) , (7)

 where t_c is the corrected time and t the local clock time (notice
 that phi(t) is calculated according to Equation 1).

 The sic protocol also detects route changes by seeking a non-
 negligible difference between the minimum RTT of the actual and past
 round trip measurement. The next section also discusses different
 mechanisms to detect route changes by RTT evaluation.

3. The formal definition of sic frequency protocol

 Section 3.1 presents the sic frequency algorithm. In addition,
 parameters and their definitions are introduced. Finally, formal
 packet formats are provided.

 The sic frequency protocol MUST sign the packets with the
 deterministic Elliptic Curve Digital Signature Algorithm (ECDSA)
 specified by [RFC6979] to protect sic frequency from MitM attacks.
 To avoid delays when a packet is signed, sic frequency signs them in
 a deferred fashion. That is, in each packet carries the signature of
 the previous packet (see algorithms in Figure 6 and Figure 5).

3.1. Algorithm description

 sic frequency implementations MUST support the formal description
 specified by this section. Once activated, the sic frequency
 protocol MUST operate permanently while a client and a receiver
 exchange measurement packets. sic frequency works with three states:
 NOSYNC, PRESYNC, and SYNC. These states are triggered by the
 variables errsync, presync, and synck.

 Lines 1 to 4 of the pseudocode in Figure 4 initialize the required
 data structures needed and set the sic frequency state to NOSYNC. In
 NOSYNC state, a complete measurement window estimates phi's by
 Equation 2 (see line 8). Notice that also Equation 3 can be used, or
 an average of both Equations. During the experiments, using a single
 equation only resulted in estimations with a smaller error. The
 possible explanation is that measurements are affected by the same
 type of traffic.

 The median of the measurement window is also computed in line 9,
 while lines 10-12 are used to verify if there is a path change in the
 measurements. When an appreciable difference is detected (bounded by
 errRTT) in line 13, the "else" clause is executed and the systems re-
 initiates the cycle (see lines 17-22). Notice that line 13 verifies
 if the absolute value of the minimum RTTs is lower than a percentage
 of minimum over the complete RTT window.

 The sic frequency algorithm specification is presented by three
 tables of pseudocode. The parameters are explained after the third
 table.

===
| sic frequency algorithm |
===
1 Wmedian <‑0, Wm <‑0, WRTT <‑0, actual_m <‑0, actual_c <‑0
2 presync <‑ INT_MAX ‑ P, epochsync <‑ INT_MAX ‑ P, n_to <‑0
3 synck <‑ false, errsync <‑ epoch, set(0, 0, NOSYNC), e_prev<‑epoch
4 send_sic_packet(SERVER_IP, TIMEOUT)
5 for each timer(RUNNING_TIME) == 0
6 | (epoch, t1, t2, t3, t4, to) <‑ send_sic_p(SERVER_IP,TIMEOUT)
7 | if (to == false) then
8 | | Wm <‑ t1 ‑ t2 + (t2 ‑ t1 + t4 ‑ t3)/2
9 | | Wmedian <‑ median(Wm)
10 | | WRTT <‑ t4 ‑ t1 size(W)
11 | | RTTf <‑ min(WRTT[size(WRTT)/2,size(WRTT)])
12 | | RTTl <‑ min(WRTT[0,size(WRTT)/2])
13 | | if ((|RTTf ‑ RTTl| <= errRTT * min(WRTT)) then
14 | | | if (epoch >= presynck + P)) then
15 | | | | presynck <‑ true
16 | | | end if
17 | | else
18 | | | synck <‑ false, Wmedian <‑ 0
19 | | | Wm <‑ 0, errsync <‑ epoch, n_to <‑ 0
20 | | | epoch_sync <‑ INT_MAX ‑ P, pre_sync <‑ INT_MAX ‑ P
21 | | | set(0, 0, NOSYNC)
22 | | end if
23 | | if ((synck == true) && (epoch >= epochsync + P)) then
24 | | | (m, c) <‑ linear_fit(Wmedian)
25 | | | actual_c <‑ c
26 | | | actual_m <‑ (1‑alpha) * m + alpha * actual_m
27 | | | epochsync <‑ epoch, n_to <‑ 0
28 | | | set(actual_m, actual_c, SYNC)
29 | | else
30 | | | if (epoch == errsync + MEDIAN_MAX_SIZE) then
31 | | | | presync <‑ epoch
32 | | | end if
33 | | | if (epoch >= presync + P) then
34 | | | | (actual_m, actual_c) <‑ linear_fit(Wmedian)
35 | | | | synck <‑ true , epoch_sync <‑ epoch
36 | | | | set(actual_m, actual_c, PRESYNC)
37 | | | end if
38 | | end if
39 | else
40 | | to <‑ false
41 | end if
42 end for
===

 Figure 4: Formal description of sic.--

 Several conditions should be verified to pass from NOSYNC to PRESYNC.
 First, the "else" condition of line 29 should occur, and also the
 elapsed time between errsync and actual epoch should be
 MEDIAN_MAX_SIZE (30-32). Therefore, when it also P time is passed
 form presync, the condition on line 33 is true, and the system
 arrives at PRESYNC, providing an initial estimation of phi.

 Then, if there is no route change, the condition in line 14 will be
 true when the time was increased in another P period. Then, the
 system is in SYNC state, and it provides the estimation of phi(t) in
 line 28. Notice that every P time the estimation of phi(t) is
 computed unless a route change occurs (lines 13 and 17-22).

 The function in line 6: (epoch, t1, t2, t3, t4, to) <-
 send_sic_packet(SERVER_IP, TIMEOUT), has a special treatment. It
 sends the packets specified in Section 3.3, which have signatures.
 To avoid the processing delay caused by the signature computation, we
 implemented a policy to send the signature of the previous packet,
 and if an error is detected, we can stop the synchronization just one
 loop ahead.

 Figure 5 illustrates how the client side MUST implement the function
 send_sic_p (SERVER_IP, TIMEOUT). This function computes the
 timestamp t1 in line 1, build and send the UDP packet in lines 2-3.
 Then, if there is no timeout, it calculates the t4 timestamp (line
 5), and if no packets were lost, verifies the signature of the
 previous one in lines 8-18. If the signature is not valid with the
 received certificate, then the system MUST change to NOSYNC state
 immediately (see line 11). NOSYNC state MUST also be set, if the
 limit of time without receiving packets MAX_to is reached. Finally,
 it stores the received packet into prev_rcv_pck (a global variable)
 to use in the next packet (line 19). Notice that n_to, the lost
 packets, is a global variable, as well as the epoch of the previous
 packet: e_prev.

===
| function: send_sic_p(server, TIMEOUT) |
===
1 t1 <‑ get_timestamp()
2 sic_P <‑ sic_pck(t1, 0, 0, prev_sig)
3 (to, rcv_sic_pck) <‑ send(sic_P,UDP_PORT, SERVER_IP, TIMEOUT)
4 if (to == false) then
5 | t4 <‑ get_timestamp()
6 | epoch <‑ trunc_to_seconds(t1)
7 | prev_sig <‑ get_signature(sic_P)
8 | if (epoch ‑ e_prev <= RUNNING_TIME) then
9 | | if (n_to < MAX_to) then
10 | | | if (verify(prev_rcv_pck,rcv_sic.CERT) == false) then
11 | | | | set(0, 0, NOSYNC)
12 | | | else
13 | | | | n_to <‑ 0, e_prev <‑ epoch
14 | | | end if
15 | | else
16 | | | set(0, 0, NOSYNC)
17 | | end if
18 | end if
19 | prev_rcv_pck <‑ rcv_sic_pck
20 | t2 <‑ rcv_sic_pck.t2
21 | t3 <‑ rcv_sic_pck.t3
22 else
23 | n_to <‑ n_to + 1
24 end if
25 return (epoch, t1, t2, t3, t4, to)
===

 Figure 5: The send_sic_p function.--

 The server sic algorithm is presented in Figure 6. It uses
 prev_sic_P{}, which is a structure to store the received previous
 signatures, indexed by the IP client addresses (CLIENT_add contains
 its IP and UDP port); and the same for prev_sig{} with the previously
 sent signatures. Line 6 verifies either signature is null because it
 is the first packet, or it is a valid signature. In both cases, the
 algorithm process the packet computing t3, building up the sic
 frequency packet, sending it and computing its signature (stored to
 send in the next reply) in lines 7-11. Next, the actual packet is
 stored in the prev_sic_P{} structure, line 13.

===
| sic Server algorithm |
===
1 prev_sic_P{} <‑ null, prev_sig{} <‑‑ null
2 while (RUNNING == true) then
3 | if (receive() == true) then
4 | | t2 <‑ get_timestamp()
5 | | prev_sig <‑ get_signature(prev_sic_P{receive().CLIENT_add})
6 | | if (prev_sig == null) ||
 | | (verify(prev_sig, CLIENT_add.CERT) == true) then
7 [| | t3 <‑ get_timestamp()
8 | | | sic_P<‑sic_pack(t1, t2, t3, prev_sig)
9 | | | send(sic_P, CLIENT_add.UDP, CLIENT_add.IP, TIMEOUT)
10 | | | prev_sig <‑ get_signature(sic_P)
11 | | | prev_sig{receive().CLIENT_add} <‑ prev_sig
12 | | end if
13 | | prev_sic_P{receive().CLIENT_add} <‑ receive().sic_pack
14 | end if
15 end while
===

 Figure 6: Algorithm sic for the Server.--

3.2. Protocol definitions

 We provide a formal definition of each used constant and variables;
 the RECOMMENDED values are displayed in parentheses at the end of the
 description. These constant and variables MUST be represented in a
 sic frequency implementation. All the types MUST be respected. They
 are expressed in "C" programming language running on a 64-bit
 processor.

 a. Constants used for the sic frequency algorithm (Figure 4)

 1. RUNNING_TIME: is the period between sic packets are sent (1
 second).

 2. MEDIAN_MAX_SIZE: is the window size used to compute the
 median of the measurements (600).

 3. P: is the period between phi's estimation (60).

 4. alpha: is a float in the [0,1], the coefficient of the
 autoregressive estimation of the slope of phi(t) (0.05).

 5. TIMEOUT: is the maximum time in seconds that a sic packet
 reply is expected (0.8 seconds).

 6. SERVER_IP: is the IP address of the server (@IP in version 4
 or 6).

 7. errRTT: is a float that bounds the maximum difference to
 detect a route change (0.2).

 8. MAX_to: is an integer representing the maximum number of
 packet lost (P/10).

 9. CERT: is a public certificate of the other end, it is used
 to verify signs of the packets.

 10. UDP_PORT: is an integer with the port UDP where the service
 is running on the server. (4444)

 11. SERVER_IP: is the IP address of the server.

 12. CLIENT_IP: is the IP address of the client.

 b. States used for the sic frequency algorithm (Figure 4)

 1. NOSYNC: a boolean indicates that it is not possible to
 correct the local time.

 2. PRESYNC: an integer indicates that sic is almost (P
 RUNNING_TIME) seconds from the synchronization.

 3. SYNC: a boolean indicates that sic is synchronized.

 c. Variables used for the sic frequency algorithms (Figure 4,
 Figure 5 and Figure 6)

 1. errsync: is an integer with the UNIX timestamp epoch of the
 initial NOSYNC cycle. It is used to complete the window or
 measurements (Wm) to compute their medians.

 2. presync: is an integer with the UNIX timestamp epoch of the
 initial PRESYNC cycle. It is used to wait until (P
 RUNNING_TIME) seconds to the linear fit of phi(t).

 3. synck: is an integer with the UNIX timestamp epoch of the
 initial SYNC cycle. Every P RUNNING_TIME) seconds the
 phi(t) function is estimated.

 4. epochsync: is an integer with the last UNIX timestamp epoch
 of synchronization. It is used to compute a new estimation
 of phi(t), every (P RUNNING_TIME) seconds.

 5. epoch: is an integer with UNIX timestamp in seconds. It
 carries the initial epoch of each sic measurement packet.

 6. t1, t2, t3, t4: are long long integers to store the t UNIX
 timestamps in microseconds.

 7. actual_m : is a double with the slope for the phi(t)
 estimation.

 8. actual_c: is a double with the intercept for the phi(t)
 estimation.

 9. Wm: is an array of doubles of MEDIAN_MAX_SIZE. It stores
 the instantaneous estimates of phi(t).

 10. Wmedian: is an array of doubles of P size. It saves the
 computed medians of Wm every RUNNING_TIME.

 11. WRTT: is an array of doubles of (2 P) size. It stores the
 calculated RTT of last measurements.

 12. RTTl: is a double with the minimum of last P RTTs. It is
 used to detect changes on the route from the client to the
 server.

 13. RTTf: is a double with the minimum of previous P RTTs. It
 is used to detect changes on the route from the client to
 the server.

 14. n_to: is an integer representing the number of lost packets
 in the actual synchronization window P.

 15. e_prev: is an integer with the UNIX timestamp epoch of the
 last valid packet.

 16. prev_rcv_pck: is a sic packet structure, the previous
 received one.

3.3. Protocol packet specification

 The sic frequency uses UNIX microsecond format timestamps. Regarding
 Figure 2, the client takes a timestamp t1 just before it sends the
 packet. When the server receives the packet, it immediately computes
 t2, and just before it is sent back to the client, it computes t3.
 When the client receives the packet, it calculates t4.

 The server does not need the timestamp t1 because the proposed
 protocol synchronizes a client with the server clock. This
 information could however be useful for the server for future use.

 The packets are shown in Figure 7. They MUST be sent as UDP data,
 and it MUST have five fields. The first three correspond to t1
 (client), t2 (server), and t3 (server); the last one is the signature
 of the previous message of the sender (client o server) with its
 private key. The timestamps t1, t2, and t3 MUST be the UNIX
 timestamp in microseconds represented with a long long integer of
 64-bit C language.

 The client and server certificates SHOULD be valid and signed ones
 (only for experimentation user MAY use autogenerated ones).

 f1 f2 f3 f4
+‑‑+
| t1_c | 0 | 0 | Sig_c n‑1 |
+‑‑+
 Client ‑‑> Server

 f1 f2 f3 f4
+‑‑+
| t1_c | t2_s | t3_s | Sig_s n‑1 |
+‑‑+
 Server ‑‑> Client

 Figure 7: Packet format for the sic protocol.--

3.4. Minimum sic deployment

 To deploy the sic frequency algorithm, as a minimum a Server and one
 Client are needed. The Server can support multiple clients. The
 maximum number of clients is for further study. The Server clock is
 considered the master one, and all clients synchronize with it. The
 Server side runs sic frequency as a server with a UDP_PORT number, as
 specified by the algorithm shown in Figure 6.

 Client sic runs the algorithm shown in Figure 4 and also SHOULD
 provide the corrected time as

t = actual_c + actual_m * timestamp (8)

 Figure 8

 Different ways of doing this task are possible:

 Providing a client capable of reading the variables actual_m and
 actual_c in shared memory and producing the result of Equation 8.

 Providing a service in a UDP port answering the correcter
 timestamp queries with Equation 8.

 Other solution.

4. Implementation of sic frequency protocol

 In this section we present the prove of the sic concept through some
 test that we already performed, and the current implementation of sic
 in C language. Our implementation is publicly available
 [sic-implementation]. Currently, the authentication process
 requiring transport of packet signatures is under development.

 @@@@ We started with a version to test sic without the MitM
 protection; soon we will finish with the secured version.

 This protocol implements protection against MitM attacks. The
 identity of endpoints is guarantee by signed certificates using the
 deterministic Elliptic Curve Digital Signature Algorithm (ECDSA)
 specified in the [RFC6979]. Server and Client should use signed and
 valid ECDSA certificates to ensure their identity, and each side has
 is responsible to verify the public certificate of the other side
 before to run the algorithm in Figure 4.

4.1. Evaluation

 To verify the sic proposal, we tested it using three hosts with GPS
 units. The first two were located at Buenos Aires, and the third at
 Los Angeles. We slightly modified the algorithm in Figure 4 to
 trigger each measurement using the PPS (pulse per second) signal
 provided by the GPS unit. Then, recording the client and server
 clocks with the PPS signal, we can determine the real phi function of
 Equation 1, within the GPS error (it is several orders of magnitude
 smaller than the error of the sic frequency protocol).

 We use MTIE defined as follows (Maximum Time Interval Error, see
 [ToIM1996]):

MTIE = max [phi(t')] ‑ min [phi (t)] , (9)

 for every t' and t in the interval [t,t+s]; and we chose s=60
 seconds. We first used two host (RaspBerriesPI-2) connected back to
 back to analyze the minimum achievable precision, yielding a MTIE of
 15.8 microseconds for the 90 percentile. Then, we selected two real
 cases of study, one national and other international. In Figure 9 we
 show the result of the MTIE, evaluated in 60 seconds intervals, for
 the experiment Buenos Aires-Buenos Aires (RTT of 10ms) and Buenos
 Aires-Los Angeles (RTT of 198ms). The percentile 90 corresponds to
 18.35 microseconds for the Buenos Aires case, and 25.4 microseconds
 for the Los Angeles case. The percentile 97.5 corresponds to 30
 microseconds for the Buenos Aires case, and 42 microseconds for the
 Los Angeles case. We display the quartiles in Figure 10 . These
 measurements were performed during a week in each case.

CDF
 +‑‑|‑‑‑‑‑‑‑|‑‑‑‑‑‑‑|‑‑‑‑‑|‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑|‑‑‑‑‑‑+
 1 |‑+ + + + #########*#*#*#*#*#*#*#*#******|
 | ##### ******* |
 | #### **** |
0.8 |‑+ ## *** +‑|
 | ### ** |
 | ## *** |
0.6 |‑+ ## ** +‑|
 | ## ** |
 | ## ** |
0.4 |‑+ ## ** +‑|
 | ## ** |
 | ## ** |
0.2 |‑+ ## *** +‑|
 | #### *** Buenos Aires ####### |
 | #### *** Los Angeles ******* |
 0 |##******* + + + + + + + +‑|
 +‑‑|‑‑‑‑‑‑‑|‑‑‑‑‑‑‑|‑‑‑‑‑|‑‑‑‑‑‑‑|‑‑‑‑‑|‑‑‑‑|‑‑‑‑‑‑|‑‑‑‑‑‑+
 7 10 15 20 30 40 50 70 100
 [micro‑seconds]

 Figure 9: Cumulative distribution function of the MTIE (60s).--

 |Buenos Aires (10ms) | Los Angeles (198ms) |
====+====================+=====================+
 Q3 | 14.69 | 19.29 |
‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 Q2 | 11.60 | 14.93 |
‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 Q1 | 9.41 | 12.26 |

 Figure 10: Table with MTIE quartiles for two RTT cases (the numbers

 indicate microseconds).--

5. Conclusions

 This document presents the sic algorithm to synchronize host clock
 frequency using the Internet and resistant to MitM attacks. It also
 shows the complete specification, implementation, and experiments
 results that support it working principle. In particular, sic
 frequency provides a clock rate stability of less than 1ppm for most
 of the time.

6. Security Considerations

 Following [RFC7384] enumeration of Time Protocols in packet-switched
 networks, the proposed encryption of timing packets, based on a
 mechanism of secure key distribution, provides the following
 characteristics:

 3.2.1 Packet Manipulation: Prevented by packet signature.

 3.2.2 Spoofing: Prevented by packet signature and secure key
 distribution.

 3.2.3 Replay Attack: Prevented by chain signing of packets.

 3.2.4 Rogue Master Attack: Prevented by secure key distribution.

 3.2.5 Packet Interception and Removal: If several packets are
 removal, the protocol do not arrive to SYNC state.

 3.2.6 Packet Delay Manipulation: Not prevented. Future versions
 may prevent this using over-specification of timing (using
 redundant masters)

 3.2.7 L2/L3 DoS attacks: Not prevented. This can be prevented in
 future versions using over-specification of timing and redundant
 masters time servers.

 3.2.8 Cryptographic performance attacks: Not an issue in ECDSA.

 3.2.9 DoS attacks agains the time protocol: Prevented by secure
 key distribution.

 3.2.10 Grandmaster Time source attack (GPS attacks): Not
 prevented. Future versions may prevent this using over-
 specification of timing (using several time servers) .

 3.2.11 Exploiting vulnerabilities in the time protocol: Not
 prevented, future vulnerabilities are unknown.

 3.2.12 Network Reconnaissance: Not prevented in this version. No
 countermeasures were done in node anonymization.

 The Packet Delay manipulation is one of the hardest problems to solve
 because there exist some smart ways to attack any synchronization
 protocol. Even thou, the sic frequency protocol can protect itself
 because can identify several attacks of this type, i.e., it is
 challenging to mimic traffic behavior.

7. IANA Considerations

 This memo makes no requests of IANA.

8. Acknowledgements

 The authors thank to Ethan Katz-Bassett, Zahaib Akhtar, the USC and
 CAIDA for lodging the testbed of sic frequency.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5905]
 Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC6979]
 Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
 2013, <https://www.rfc-editor.org/info/rfc6979>.

 [RFC7384]
 Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

 [RFC8173]
 Shankarkumar, V., Montini, L., Frost, T., and G. Dowd,
 "Precision Time Protocol Version 2 (PTPv2) Management
 Information Base", RFC 8173, DOI 10.17487/RFC8173, June
 2017, <https://www.rfc-editor.org/info/rfc8173>.

9.2. Informative References

 [alfa-estables]

 Uchaikin, V. and V. Zolotarev, "Chance and stability:
 stable distributions and their applications.", Walter de
 Gruyter. (Book), 1999.

 [ITU-G.8260]

 "Definitions and terminology for synchronization in packet
 networks (Recommendation ITU-T G.8260)", August 2015.

 [sic-implementation]

 Samariego, E., Ortega, A., and J. Alvarez-Hamelin,
 "Synchronizing Internet Clocks",
 https://github.com/CoNexDat/SIC, February 2018.

 [ToIM1996]

 Bregni, S., "Measurement of maximum time interval error
 for telecommunications clock stability characterization",
 Bregni S. Measurement of maximum time interval error for
 telecommunicIEEE transactions on instrumentation and
 measurement. 45(5):900-906, October 1996.

 [ToN2008]
 Veitch, D., Ridoux, J., and S. Korada, "Robust
 synchronization of absolute and difference clocks over
 networks.", IEEE.ACM Transactions on Networking (TON)
 17.2 (2009): 417-430, 2009.

 [traffic-stable]

 Carisimo, E., Grynberg, S., and J. Alvarez-Hamelin,
 "Influence of traffic in stochastic behavior of latency.",
 7th PhD School on Traffic Monitoring and Analysis (TMA),
 Ireland, Dublin,, June 2017.

Appendix A. Example of RTT to NTP servers

 This appendix shows an experiment to measure the RTT and the distance
 in hops from four different points to a time server in Buenos Aires
 city (the capital of Argentina). We did the measures two times from
 the four points, and we used one hundred packets to determine some
 statistical parameters. Next traceroute measurements show that the
 number of hops and RTT are very different from each point also
 changes a lot. For instance, taking a distinctive look at the STD,
 average, and maximum is possible to detect huge variations. We
 provide here a case in Argentina, trying to reach an NTP server from
 4 different points at the Buenos Aires city.

host1$ mtr ‑r ‑c 100 time.afip.gov.ar
Start: Tue Mar 27 19:03:51 2018
HOST: raspbian‑server Loss% Snt Last Avg Best Wrst StDev
 1.|‑‑ gw‑vlan‑srv.innova‑red.ne 0.0% 100 2.2 2.8 2.1 37.7 4.9
 2.|‑‑ rnoc5.BUENOS‑AIRES.innova 0.0% 100 2.3 3.8 2.1 55.8 7.9
 3.|‑‑ 10.5.10.2 0.0% 100 2.5 2.6 2.2 3.1 0.0
 4.|‑‑ 200.0.17.104 0.0% 100 3.1 3.1 2.4 13.7 1.1
 5.|‑‑ 172.18.2.53 0.0% 100 4.8 5.7 3.8 12.4 1.7
 6.|‑‑ time.afip.gob.ar 0.0% 100 5.2 5.2 3.8 12.0 1.3

host1$ mtr ‑r ‑c 100 time.afip.gov.ar
Start: Tue Mar 27 18:57:06 2018
HOST: raspbian‑server Loss% Snt Last Avg Best Wrst StDev
 1.|‑‑ gw‑vlan‑srv.innova‑red.ne 0.0% 50 2.4 2.8 2.0 34.2 4.5
 2.|‑‑ rnoc5.BUENOS‑AIRES.innova 0.0% 50 2.1 3.8 2.1 52.8 7.7
 3.|‑‑ 10.5.10.2 0.0% 50 2.7 2.9 2.2 15.6 1.8
 4.|‑‑ 200.0.17.104 0.0% 50 2.8 3.0 2.3 3.9 0.0
 5.|‑‑ 172.18.2.53 0.0% 50 4.5 5.8 3.8 17.8 2.2
 6.|‑‑ time.afip.gob.ar 0.0% 50 4.7 9.9 4.2 238.5 33.0

host2$ mtr ‑r ‑c 100 time.afip.gov.ar
Start: Tue Mar 27 19:03:47 2018
HOST: ws‑david Loss% Snt Last Avg Best Wrst StDev
 1.|‑‑ 10.10.96.1 0.0% 100 0.3 0.2 0.2 0.3 0.0
 2.|‑‑ 200.16.116.171 0.0% 100 1.0 5.9 0.6 158.4 22.9
 3.|‑‑ static.33.229.104.190.cps 1.0% 100 1.6 2.5 1.5 80.6 8.0
 4.|‑‑ static.129.192.104.190.cp 0.0% 100 2.1 1.9 1.8 3.0 0.1
 5.|‑‑ 200.0.17.104 1.0% 100 2.0 2.2 1.8 9.4 0.7
 6.|‑‑ 172.18.2.53 0.0% 100 3.2 4.2 3.1 12.0 1.5
 7.|‑‑ auth.afip.gob.ar 0.0% 100 4.2 4.5 3.3 9.8 1.2

host2$ mtr ‑r ‑c 100 time.afip.gov.ar
Start: Tue Mar 27 18:57:00 2018
HOST: ws‑david Loss% Snt Last Avg Best Wrst StDev
 1.|‑‑ 10.10.96.1 0.0% 50 0.3 0.3 0.2 0.7 0.0
 2.|‑‑ 200.16.116.171 0.0% 50 0.9 6.7 0.7 196.5 29.1
 3.|‑‑ static.33.229.104.190.cps 2.0% 50 1.6 1.7 1.5 2.2 0.0
 4.|‑‑ static.129.192.104.190.cp 0.0% 50 2.1 2.0 1.7 2.4 0.0
 5.|‑‑ 200.0.17.104 0.0% 50 2.0 2.1 1.8 2.6 0.0
 6.|‑‑ 172.18.2.53 0.0% 50 4.8 4.3 3.2 9.1 1.3
 7.|‑‑ time.afip.gob.ar 0.0% 50 4.3 9.4 3.3 234.9 32.7

host3$ mtr ‑r ‑c 100 time.afip.gov.ar
Start: 2018‑03‑27T19:03:51‑0300

HOST: aleph.local Loss% Snt Last Avg Best Wrst StDev
 1.|‑‑ 10.17.71.254 0.0% 100 4.7 30.3 3.5 280.4 52.4
 2.|‑‑ 10.255.254.250 0.0% 100 2.5 31.1 1.8 285.4 59.2
 3.|‑‑ 209.13.133.10 0.0% 100 30.5 43.9 2.3 237.2 64.9
 4.|‑‑ host169.advance.com.ar 3.0% 100 36.0 64.8 3.1 404.4 86.9
 5.|‑‑ 200.32.33.33 2.0% 100 106.9 70.6 2.8 315.0 80.4
 6.|‑‑ 200.32.34.66 5.0% 100 93.1 56.8 2.7 336.1 74.5
 7.|‑‑ 200.32.33.38 7.0% 100 42.8 58.0 2.9 357.8 76.7
 8.|‑‑ 209.13.139.211 4.0% 100 46.2 56.7 2.8 298.8 69.9
 9.|‑‑ 209.13.139.209 1.0% 100 84.5 57.1 2.6 277.7 72.3
10.|‑‑ 209.13.166.211 1.0% 100 43.4 63.5 3.2 390.6 78.7
11.|‑‑ 200.32.34.137 2.0% 100 68.7 64.1 3.7 259.5 75.5
12.|‑‑ 200.32.33.37 0.0% 100 4.1 56.9 3.3 249.6 64.3
13.|‑‑ 200.32.34.121 3.0% 100 10.9 65.0 4.1 415.7 85.1
14.|‑‑ 200.32.33.241 2.0% 100 252.6 61.8 3.8 355.9 74.5
15.|‑‑ 200.16.206.198 3.0% 100 188.0 54.6 3.1 461.7 74.9
16.|‑‑ 172.18.2.53 2.0% 100 133.4 53.1 4.3 402.1 69.2
17.|‑‑ time.afip.gob.ar 4.0% 100 72.5 54.1 4.9 343.2 66.9

host3$ mtr ‑r ‑c 100 time.afip.gov.ar
Start: 2018‑03‑27T18:57:05‑0300
HOST: aleph.local Loss% Snt Last Avg Best Wrst StDev
 1.|‑‑ 10.17.71.254 0.0% 50 125.6 88.1 3.7 392.4 79.3
 2.|‑‑ 10.255.254.250 0.0% 50 62.1 54.8 2.1 333.2 68.0
 3.|‑‑ 209.13.133.10 0.0% 50 4.0 33.9 2.4 280.8 51.3
 4.|‑‑ host169.advance.com.ar 2.0% 50 4.1 21.3 2.9 236.7 40.4
 5.|‑‑ 200.32.33.33 2.0% 50 4.5 32.2 3.2 341.3 69.4
 6.|‑‑ 200.32.34.66 4.0% 50 7.7 26.0 3.5 278.8 55.8
 7.|‑‑ 200.32.33.38 2.0% 50 4.8 29.4 3.0 221.3 43.4
 8.|‑‑ 209.13.139.211 0.0% 50 84.8 40.3 3.1 250.4 53.0
 9.|‑‑ 209.13.139.209 0.0% 50 25.1 35.0 2.8 249.2 55.4
10.|‑‑ 209.13.166.211 0.0% 50 3.7 33.5 2.6 188.9 54.3
11.|‑‑ 200.32.34.137 0.0% 50 5.6 28.2 3.7 224.3 51.1
12.|‑‑ 200.32.33.37 0.0% 50 3.7 24.2 3.5 189.5 44.9
13.|‑‑ 200.32.34.121 0.0% 50 4.7 30.8 4.0 213.2 51.6
14.|‑‑ 200.32.33.241 0.0% 50 14.4 33.1 3.9 364.6 67.2
15.|‑‑ 200.16.206.198 0.0% 50 5.0 58.2 3.1 300.7 88.5
16.|‑‑ 172.18.2.53 0.0% 50 9.4 117.8 4.4 315.1 103.4
17.|‑‑ time.afip.gob.ar 0.0% 50 199.6 120.2 5.2 484.0 96.2

host4$ mtr ‑r ‑c 100 time.afip.gov.ar
Start: 2018‑03‑27T19:03:51‑0300
HOST: cnet Loss% Snt Last Avg Best Wrst StDev
 1.|‑‑ 157.92.58.1 0.0% 100 6.6 2.8 0.3 12.8 2.5
 2.|‑‑ ??? 100.0 100 0.0 0.0 0.0 0.0 0.0
 3.|‑‑ ??? 100.0 100 0.0 0.0 0.0 0.0 0.0

 4.|‑‑ host98.131‑100‑186.static 0.0% 100 5.7 5.6 1.5 9.4 2.2
 5.|‑‑ host130.131‑100‑186.stati 0.0% 100 6.5 6.3 2.5 10.3 2.2
 6.|‑‑ 200.0.17.104 0.0% 100 2.4 2.7 2.3 15.6 1.4
 7.|‑‑ ??? 100.0 100 0.0 0.0 0.0 0.0 0.0
 8.|‑‑ time.afip.gob.ar 0.0% 100 4.9 7.6 3.9 243.0 23.9

host4$ mtr ‑r ‑c 100 time.afip.gov.ar
Start: Tue Mar 27 18:41:40 2018
HOST: cnet Loss% Snt Last Avg Best Wrst StDev
 1.|‑‑ 157.92.58.1 0.0% 50 4.0 1.6 0.3 9.1 1.6
 2.|‑‑ ??? 100.0 50 0.0 0.0 0.0 0.0 0.0
 3.|‑‑ ??? 100.0 50 0.0 0.0 0.0 0.0 0.0
 4.|‑‑ host98.131‑100‑186.static 0.0% 50 4.7 5.5 1.5 10.9 2.4
 5.|‑‑ host130.131‑100‑186.stati 0.0% 50 8.4 6.5 2.6 10.5 2.2
 6.|‑‑ 200.0.17.104 0.0% 50 2.5 2.8 2.3 11.0 1.2
 7.|‑‑ ??? 100.0 50 0.0 0.0 0.0 0.0 0.0
 8.|‑‑ time.afip.gob.ar 0.0% 50 4.9 9.2 3.8 226.7 31.4

--

Authors' Addresses

Jose Ignacio Alvarez‑Hamelin (editor)
Universidad de Buenos Aires ‑ CONICET
Av. Paseo Colon 850
Buenos Aires C1063ACV
Argentina

Phone: +54 11 5285‑0716
Email: ihameli@cnet.fi.uba.ar
URI: http://cnet.fi.uba.ar/ignacio.alvarez‑hamelin/

David Samaniego
Universidad de Buenos Aires
Av. Paseo Colon 850
Buenos Aires C1063ACV
Argentina

Phone: +54 11 5285‑0716
Email: dsamanie@fi.uba.ar

Alfredo A. Ortega
Universidad de Buenos Aires
Av. Paseo Colon 850
Buenos Aires C1063ACV
Argentina

Phone: +54 11 5285‑0716
Email: ortegaalfredo@gmail.com

Ruediger Geib
Deutsche Telekom
Heinrich‑Hertz‑Str. 3‑7
Darmstadt 64297
Germany

Phone: +49 6151 5812747
Email: Ruediger.Geib@telekom.de

RFC eBook Conversion

This text describes the conversion process used to create this
ebook.

Conversion process for rfc.mobi/rfc.epub

The conversion process goes like follows:

	Update rfc index from the www.ietf.org

	Create the cover jpg from the postscript file and scale it
down

	Create list of files to be included to the book

	Create ncx file based on the list created before

	Go through RFCs and convert them from text to html

	Create opf file for the book

	Convert the rfc-index.txt to index.html file

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.

Conversion process for working group internet-drafts

The conversion process goes like follows:

	Update rfc and internet-draft reposotiries from the
www.ietf.org

	Create the directory structure where we have one directory for
each area, and inside that directory we have directory for each
working group in that area. Also create the .htaccess file containing
full names for working groups.

	Create ebooks, by looping through all working groups in all areas
and do following:

	Fetch list of working group drafts, RFCs and related from the
http://datatracker.ietf.org/wg/wgname/documents/txt.

	Create the cover jpg from the postscript file and scale it
down

	Create ncx file based on the list created before

	Go through documents and convert them from text to html

	Create opf file for the book

	Create index.html file based on the files and titles fetched in
the beginning from datatracker.

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

	 Copy .epub and .mobi files to the correct place in the directory
structure.

Creating Cover page

make-cover.sh "\nRFC Index\n$date" "$time" \
 "ietf-logo.eps" > rfc.jpg

This program takes the title, time and logo postscript, and creates
a postscript file which it then runs through ghostscript and converts
it file suitable for the Kindle 3. The title can have three lines
separated with "\n". Normally the top two lines contain the
actual title, and third line contains the date of conversion. The time
is added to the end of the page with small font, so it can be used
during development phase to see which version of ebook this is (during
development I did have multiple versions loaded to my Kindle and it
was painful to find out which one of them is newest before this was
added). The logo is ietf-logo.eps directly from the IETF web page.

The page is initially created at 2400x3200 pixel resolution and
then scaled down to 25% of size meaning the final page is 600x800
pixels in size.

Creating NCX file

For RFC ebook:

make-ncx.pl --title "RFC Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file $ncxtocentries \
 --out \
 --class book \
 --include-regexp '^rfc[0-9][0-9][0-9]1' \
 --split-regexp '^rfc[0-9][0-9]01' \
 --input-file $ncxrfcentries

For the Internet-Draft ebooks:

make-ncx.pl --title "$wg Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --class book \
 --input-file $ncxentries

NCX file contains list all files and the navigation information.
That is used when you press left or right arrows on the kindle to see
where to move next. See make-ncx manual
page for information about options.

Creating OPF file

For RFC ebook:

files=`ls -1 "$dir"/rfc*.html | sed 's/.*\///g'`
make-opf.pl --title "RFC Index $date" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 --output rfc.opf \
 intro.html \
 $files \
 conversion.html \
 $manpages

For the Internet-Draft ebooks:

make-opf.pl --title "$wg ID and RFC Docs $date" \
 --language en \
 --cover wg.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "$wg RFCs and Internet-Drafts" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc wg-"$wg".ncx \
 --output "$opf" \
 $files \
 conversion.html \
 $manpages

Open package format file describes what files are in the ebook. It
also contains information where to start reading and in which order
entries are appearing in the book. See make-opf manual page for information about
options.

Converting text RFC to html

For RFCs the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -r $rfcnum \
 -o rfc$rfcnum.html \
 $rfctxtfile

For Internet-Drafts the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -t $draft-name \
 -o $draft-name.html \
 $draft-name.txt

This program takes the text formatted RFC or Internet-Draft and
formats it to html suitable for ebooks. The first step is to remove
page formatting (page breaks, page numbers, page headers and footers).
In that phase it also tries to see if one textual paragraph is
continuing from the previous page to the next, and if so then it will
glue them together. The second phase is to go through all paragraphs
and try to find out what type of paragraph it is (text, picture,
header, table of contents, authors address section, terminology
defination, bulleted or numbered list, references section). After this
it goes through the actual text paragraphs and converts them to html
suitable for their type. See rfc2html manual page for information about
options.

Converting rfc-index.txt to index.html

TBF

Creating .mobi file

kindlegen rfc.opf -c1 -verbose

TBF

Converting files to .epub format

makeepub.sh current

TBF

Kindle 3 issues

Issues I have found when converting this to kindle 3

Ncx file size

It seems there is maximum number of items the ncx file can have, or
some other limitation in the ncx file parsing. When I included all the
rfcs to the ncx file then the next and previous arrows in the kindle 3
does not work anymore. If the number if items is reduced then they
start working.

Kindle -c2 compression

When I tried to use the best compression of kindlegen, the program
did create a eBook file but all the links inside the file pointed in
wrong place, i.e. when you used link to go rfc5996 you ended up in the
middle of rfc6020 or so.

No support for multiple indexes

The mobipockect supports multiple indexes and the eBook originally
included titleword and full title text indexes, but those were removed
as kindle 3 does not support them.

Last item in might be missing in index

The automatic index (using the menu and selecting index) sometimes
misses the last item in it. Thats why I added this conversion
description to the end, so if something is missing it will be this
text.

Kindle 3 and pictures

Kindle 3 does support monospace font and the screen is wide enough
for 67 charactes if screen is rotated. This allows the normal 32 bit
packet frame description pictures to be shown properly using the
normal pre-tag. The Kindle 3 will still wrap words to the next line,
and this was problematic when combined with hyphens used in pictures.
To fix this all the hyphens in the text are converted to the
no-breaking hyphens.

No-breaking hyphen not shown properly on Kindle for PC

Because of the previous issue with word wrap we needed to use
non-breaking hyphens, but unfortunately they do not show properly on
the kindle for PC, but instead of unknown character box is shown
instead.

Searching does not work

For some reason the searching from the RFC eBook does not work on
the Kindle 3.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-ncx - Create NCX file

[bookmark: synopsis]SYNOPSIS

make-ncx [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--depth|-d depth-of-toc]
 [--total-page-count|-T total-page-count]
 [--max-page-number|-m max-page-number]
 [--separator|-s separator-regexp]
 --author|-a author
 --title|-t title
 entry ...
 [--class|-c class] entry ...
 [--in] entry ... [--out]
 [--autosplit|-A split-count] entry ...
 [--include-regexp include-regexp] entry ...
 [--exclude-regexp exclude-regexp] entry ...
 [--split-regexp split-regexp] entry ...
 [--input-file|-i input-file] entry ...
 entry ...

make-ncx --help

[bookmark: description]DESCRIPTION

make-ncx takes list of ncx entries and creates NCX (Navigation
Control for for XML applications Format) file out of them.

NCX is hierarchical structure, and the make-ncx supports this so
that the list of entries can include --in and --out options to
in and out in the hierarchy. Note, that the first item is always on
level 1 and you can go in only one level per entry, i.e. adding two
--in options right after each other is an error. Multiple --out
options is allowed, but going out from level 1 is not allowed.

Each entry contain 4 fields separated from each other by separator
regexp. The first field is the class of the entry. This can be
something like "book", "toc", "entry" etc. Second field is the id of
the entry. This should be something unique. Third field is the actual
link inside the mobibook, i.e. "index.html", "index.html#s1000" or
"rfc1234.html". Last field is the text of the entry.

If only 3 fields are given then they are assumed to be id, link and
text, and the class is the one given with --class option.

If only 2 fields are given then they are assumed to be link and text,
and the class is processed as with 3 fields, and id is autogenerated
from the link, by removing path, prefixes and special chars.

If only one field is given then it is assumed to be link, and class
and id is generated as previously, and link is converted to text by
removing prefixes and removing some special charactes and replacing
'/', '-', '_' to spaces.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: depth_d_depth_of_toc]--depth -d depth-of-toc

	
Max depth of the NCX file. If not given this is autodetected from the
options.

	[bookmark: total_page_count_t_total_page_count]--total-page-count -T total-page-count

	
Sets total page count. If not given this is set to 0.

	[bookmark: max_page_number_m_max_page_number]--max-page-number -m max-page-number

	
Sets max page number. If not given this is set to 0.

	[bookmark: separator_s_separator_regexp]--separator -s separator-regexp

	
Separator regexp used to split entries to class, id, link and text.
Defaults to ':'

	[bookmark: author_a_author]--author -a author

	
Author of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: in]--in

	
Go one level into the hierarchy. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: out]--out

	
Go one level out in the hierarchy. This option is used inside the
entry list and it affects the entries coming after it.

	[bookmark: class_c]--class -c

	
Set the class of the entries coming after this if no class given in
the entry. This option is used inside the entry list and it affects
the entries coming after it.

	[bookmark: autosplit_a_split_count]--autosplit -A split-count

	
Starts autosplitting long list of entries, so that split-count
entries are combined so that the first entry stays at current level,
and all other entries are moved in one level inside the first entry.
This process is repeated until --in, --out, or new
--autosplit option is found. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: include_regexp_include_regexp]--include-regexp include-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which are matching this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: exclude_regexp_exclude_regexp]--exclude-regexp exclude-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which do not match this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: split_regexp_split_regexp]--split-regexp split-regexp

	
Automatically split entries to sublevels based on the regexp. This
will match entries against the regexp and when first match is found it
will put this entry on current level and then go down one level, and
then put all further entries not matching this regexp to that level.
Further matching entries are moved to the same level as the first one.
This can be used in combination with --autosplit option in which
case --autosplit entries will be below this, meaning the hierarchy
will have 3 levels. Top level contains the entries matching this
regexp. The next level contains every Nth entry and lowest level
contains all other entries. Every time matching entry is found the
--autosplit counter is reset.

	[bookmark: input_file_i_input_file]--input-file -i input-file

	
Reads the list of options from the input-file instead of reading
them from command line. The options are in the file one option at
line, and are processed exactly as they would be on the command line.
This means that you can give --class, --in, --autosplit etc options
first and then just get the list of filenames from the file.

[bookmark: examples]EXAMPLES

make-ncx --title foo \
 --author bar \
 toc:toc:index.html:Index \
 book:rfc0001:rfc0001.html:RFC0001

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 0000:index.html#s0000:RFC0000 \
 1000:index.html#s1000:RFC1000 \
 2000:index.html#s2000:RFC2000 \
 3000:index.html#s3000:RFC3000 \
 4000:index.html#s4000:RFC4000 \
 5000:index.html#s5000:RFC5000 \
 6000:index.html#s6000:RFC6000 \
 --out \
 --class book \
 --autosplit 5 \
 rfc0001.html rfc0002.html rfc0003.html rfc0004.html rfc0005.html \
 rfc0006.html rfc0007.html rfc0008.html rfc0009.html rfc0010.html \
 rfc6001.html rfc6002.html rfc6003.html rfc6004.html rfc6005.html \
 rfc6006.html rfc6007.html

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file toc-entries.txt \
 --out \
 --class book \
 --autosplit 5 \
 --input-file rfc-list.txt

[bookmark: files]FILES

	[bookmark: makencxrc]~/.makencxrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-opf - Create OPF file

[bookmark: synopsis]SYNOPSIS

make-opf [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--beginning|-b first-page-filename]
 [--cover|-c cover-jpg-file-name]
 [--creator|-C creator]
 [--date|-D date]
 [--description|-d description]
 --id|-i id
 [--index|-I index-html-file-name]
 --language|-l language
 [--publisher|-p publisher]
 [--role|-r creator-role]
 [--stylesheet|-S stylesheet-css-file-name]
 [--subject|-s subject]
 --title|-t title
 [--toc|-T toc-ncs-file-name]
 filename ...

make-opf --help

[bookmark: description]DESCRIPTION

make-opf takes list of html files inside the mobibook and creates a
OPF (Open Packaging Format) file out of them.

Files are added to the spine in the order they appear in the command
line. Note, that before any files there is --cover, --beginning
and ---index pages, which always come in that order in the
beginning of the book.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: beginning_b_first_page_filen_file_name]--beginning -b first-page-filen-file-name

	
File name inside the mobibook which is used as a beginning of the
book, i.e. when book is opened it comes to this page.

	[bookmark: cover_c_cover_jpg_file_name]--cover -c cover-jpg-file-name

	
File name inside the mobibook which is used as a cover page for the
publication. Must be jpg file. This is mandatory for Kindle books.

	[bookmark: creator_c_creator]--creator -C creator

	
Creator of the publication. Usually the name of the author.

	[bookmark: date_d_date]--date -D date

	
Date of the publication.

	[bookmark: description_d_description]--description -d description

	
Short description of the publication.

	[bookmark: id_i_id]--id -i id

	
Unique ID for the publication.

	[bookmark: index_i_index_html_file_name]--index -I index-html-file-name

	
File name inside the mobibook which is used as index. If included this
is also used as table of contents.

	[bookmark: language_l_language]--language -l language

	
Language tag of the publication. Typically "en".

	[bookmark: publisher_p_publisher]--publisher -p publisher

	
Publisher name.

	[bookmark: role_r_creator_role]--role -r creator-role

	
Role of the creator, i.e. author (aut), collaborator (clb), editor
(edt) etc.

	[bookmark: stylesheet_s_stylesheet_css_filename]--stylesheet -S stylesheet-css-filename

	
File name inside the mobibook which used as css stylesheet.

	[bookmark: subject_s_subject]--subject -S subject

	
Subject of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: toc_t_toc_ncs_file_name]--toc -T toc-ncs-file-name

	
File name inside the mobibook which is used as NCS table of contents
file name.

[bookmark: examples]EXAMPLES

make-opf.pl --title "${partial}RFC Index $d" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$d" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 rfc*.html

[bookmark: files]FILES

	[bookmark: makeopfrc]~/.makeopfrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

rfc2html - Convert RFC to simple html

[bookmark: synopsis]SYNOPSIS

rfc2html [--help|-h] [--version|-V] [--verbose|-v]
 [--key-index]
 [--navigation|-n navigation-links]
 [--filelist|-f filelist-file]
 [--rfc|-r rfc-number]
 [--title|-t title-prefix]
 [--output|-o output-file]
 [--config config-file]
 filename ...

rfc2html --help

[bookmark: description]DESCRIPTION

rfc2html takes RFC txt file and converts it to simple html file.

filename is read in and new file is created so that .txt extension
is removed from the filename (if it exists) and .html extesion is
added.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to <inputfile>.txt.

	[bookmark: rfc_r_rfc_number]--rfc -r rfc-number

	
Gives the RFC number of the current file. Used to make title
information correct.

	[bookmark: title_t_title_prefix]--title -t title-prefix

	
Gives text added to the beginning of the title, for example the file
name.

	[bookmark: filelist_f_file_list_filename]--filelist -f file-list-filename

	
Filename of the file containing list of files in the book. If given
only those links pointing to files listed in this file are converted
to links.

	[bookmark: navigation_n_navigation_links]--navigation -n navigation-links

	
Creates navigation links at the top of the file. The navigation links
text is semicolon separated list of navigation links. Each link
consists of file name inside the book, and the link title. The
filename can either be full filename like "index.html", or it can be
relative filename like "-1" or "+100". Using this option requires that
the filelist option is also used and all links given here are found
from the filelist. The filelist is also used to find the current file
name and then calculate relative filenames from there, i.e. "-1" means
the filename in the filename list just before this file.

The filename used for searching this entry from the filelist is the
output filename, and if exact match is not found then the path
components are removed and file is searched again.

	[bookmark: key_index]--key-index

	
Create key index entries. Those are only useful for mobipacket reader,
they do not work on kindle.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

[bookmark: examples]EXAMPLES

 rfc2html rfc5996.txt
 rfc2html *.txt

[bookmark: files]FILES

	[bookmark: rfc2htmlrc]~/.rfc2htmlrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created based on the rfcmarkup version 1.90 to
convert RFCs to simple html suitable for kindle ebook conversion. The
rfcmarkup tries to keep formatting intact, while this actually removes
things which are not needed in ebooks, i.e page breaks and page
numbers, and makes text paragraphs as html paragraphs, instead of
using <pre> around the whole file.

OPS/wg.jpg
tictoc
Documents
2018-12-16

SO ¢

1 E T F

Kindle trans formation by Tero Kivinen
010520

