This book is a collection of RFCs and Internet-Drafts related to specific working group. The RFC and Internet-Drafts files are normally stored in plain ascii text format and they are converted to html suitable for eBook use by automatic scripts. Those scripts try to detect headers, pictures, lists, references etc and create special html for each of those. For text paragraphs those scripts remove indentation and hard linebreaks and makes text paragraphs as normal text so font size of the eBook can be adjusted at will and features like text-to-speech work.
As this conversion is completely automatic there might be errors in the converted files. I have tried to fix the issues when I find them, but sometimes fixing issue in one RFC cause problems in others, so not all errors can be easily fixed, this is especially true for very old RFCs which do not follow the formatting specifications. If you notice errors in the formatting please send email to the <kivinen+rfc-ebook@iki.fi> and describle the problem. Please, remember to include the RFC number and the version number of the eBook file (found from the cover page).
As the collection of RFCs is quite large there has been some issues with the conversion to kindle, and some features do not seem to work properly when full set of RFCs is used. Because of this some work-arounds have been made to make the eBook still usable. If the kindle software gets updated some of those work-arounds might be removed. For more information about those see the Conversion section.
The primary output format of the scripts is the .mobi format used in the kindle, and I have been using Kindle 3 as my primary testing device, so if other reader devices are used, there might be more issues. The automatic tools also create the .ePub file, which can be used on platforms which do not support .mobi format. There is program called mobipocket for reading .mobi files, and that program is available for wide range of devices including PalmOS, Symbian, PC, Windows Mobile, Blackberry etc, so also those devices can be used in addition to normal eBook readers.
In this section I will concentrate mostly on how to use this on Kindle 3. This eBook contains 5 main parts:
The cover page includes the date when this eBook was created (i.e. eBook version).
The conversion section includes technical information how this eBook was created and some known issues etc.
There are four main ways to navigate through the book in addition to normal page up and down.
Fastest way to go to specific RFC or Internet-Draft is to press menu button on the Kindle 3, and then select Index from the menu. This will give you the automatic index of the contents of the this file. This allows quick access to the RFC by just typing the numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y will jump you to the RFC 5996 and then you can use arrow down to select RFC and hit enter to go there. For internet draft start typing the draft name.
Another option is to use the RFC Index in the beginning of the file (You can get to there by either pressing menu, selecting Index and then clicking on the Index in the beginning of the index, or by pressing menu, selecting Go to... and then selecting Table of Contents).
Third option is to use left and right arrows to navigate the next and previous RFC/Internet-Drafts.
The fourth way to navigate inside the book is to use the links inside the files. The RFC Index has direct links to every 100th RFC. Each file contains links to back 5, forward 5, next and previous rfc. Also any reference inside the documents pointing to other RFCs gets you directly there. Some of the links inside RFC moves you inside the RFC, i.e. clicking link on the table of contents inside the RFC moves you to that section etc. Also references inside the RFC will move you to the refences section etc.
draft-ietf-tokbind-tls13-02 - Token Binding for Transport Layer Security (TLS) V
Network Working Group
Internet-Draft
Updates: RFC8472 (if approved)
Intended status: Standards Track
Expires: April 25, 2019
N. Harper
Google Inc.
October 22, 2018
draft-ietf-tokbind-tls13-02
Negotiation of the Token Binding protocol is only defined for Transport Layer Security (TLS) versions 1.2 and earlier. Token Binding users may wish to use it with TLS 1.3; this document defines a backwards compatible way to negotiate Token Binding on TLS 1.3 connections.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on April 25, 2019.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Negotiating Token Binding using a TLS [RFC8446] extension as described in [RFC8472] is fairly straightforward, but is restricted to TLS 1.2 and earlier. Only one minor change is needed to use this extension to negotiate Token Binding on connections using TLS 1.3 and later. Instead of the server putting the "token_binding" extension in the ServerHello like in TLS 1.2, in TLS 1.3 the server puts it in EncryptedExtensions instead.
This document also non-normatively provides a clarification for the definition of the TokenBinding.signature field from [RFC8471], since TLS 1.3 defines an alternate (but API-compatible) exporter mechanism to the one in [RFC5705] used in [RFC8471].
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
In TLS 1.3, the "token_binding" TLS extension may be present only in ClientHello and EncryptedExtensions handshake messages. The format of the "token_binding" TLS extension remains the same as defined in [RFC8472].
A client puts the "token_binding" TLS extension in its ClientHello to indicate its support for the Token Binding protocol. The client should follow the same rules for when to send this extension and the contents of its data as in section 2 of [RFC8472]. Since the "token_binding" extension remains unchanged from TLS 1.2 to TLS 1.3 in the ClientHello, a client sending the "token_binding" extension in a TLS 1.3 ClientHello is backwards compatible with a server that only supports TLS 1.2.
A server puts the "token_binding" TLS extension in the EncryptedExtensions message following its ServerHello to indicate support for the Token Binding protocol and to select protocol version and key parameters. The server includes the extension following the same rules as section 3 of [RFC8472], with the following changes:
o The "token_binding" TLS extension is in EncryptedExtensions instead of ServerHello.
o The server MUST NOT include both the "token_binding" extension and the "early_data" extension on the same connection.
[RFC8446]
requires that extensions define their interaction with 0-RTT. The "token_binding" extension MUST NOT be used with 0-RTT unless otherwise specified in another draft. A client MAY include both "early_data" and "token_binding" extensions in its ClientHello - this indicates that the client is willing to resume a connection and send early data (without Token Binding), or negotiate Token Binding on the connection and have early data rejected.
This non-normative section provides a clarification on the definition of the TokenBinding.signature field when used on a TLS 1.3 connection.
The Token Binding protocol [RFC8471] defines the TokenBinding.signature field in terms of an exported keying material (EKM) value as defined in [RFC5705]. TLS 1.3 [RFC8446] provides an equivalent interface in section 7.5. For clarity, using the terminology from [RFC8446], the EKM used in section 3.3 of [RFC8471] in TLS 1.3 is the exporter value (section 7.5 of [RFC8446]) computed with the following parameters:
o Secret: exporter_master_secret.
o label: The ASCII string "EXPORTER-Token-Binding" with no terminating NUL.
o context_value: No context value is supplied.
o key_length: 32 bytes.
These are the same input values as specified in section 3.3 of [RFC8471].
The consideration regarding downgrade attacks in [RFC8472] still apply here: The parameters negotiated in the "token_binding" extension are protected by the TLS handshake. An active network attacker cannot modify or remove the "token_binding" extension without also breaking the TLS connection.
This extension cannot be used with 0-RTT data, so the concerns in [RFC8446] about replay do not apply here.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc- editor.org/info/rfc2119>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8446]
Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>.
[RFC8472]
Popov, A., Ed., Nystroem, M., and D. Balfanz, "Transport Layer Security (TLS) Extension for Token Binding Protocol Negotiation", RFC 8472, DOI 10.17487/RFC8472, October 2018, <https://www.rfc-editor.org/info/rfc8472>.
[RFC5705]
Rescorla, E., "Keying Material Exporters for Transport Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705, March 2010, <https://www.rfc-editor.org/info/rfc5705>.
[RFC8471]
Popov, A., Ed., Nystroem, M., Balfanz, D., and J. Hodges, "The Token Binding Protocol Version 1.0", RFC 8471, DOI 10.17487/RFC8471, October 2018, <https://www.rfc- editor.org/info/rfc8471>.
Author's Address
Email: nharper@google.com
draft-ietf-tokbind-ttrp-07 - HTTPS Token Binding with TLS Terminating Reverse Pr
Internet Engineering Task Force
Internet-Draft
Intended status: Standards Track
Expires: April 22, 2019
B. Campbell
Ping Identity
October 19, 2018
draft-ietf-tokbind-ttrp-07
This document defines HTTP header fields that enable a TLS terminating reverse proxy to convey information to a backend server about the validated Token Binding Message received from a client, which enables that backend server to bind, or verify the binding of, cookies and other security tokens to the client's Token Binding key. This facilitates the reverse proxy and backend server functioning together as though they are a single logical server side deployment of HTTPS Token Binding.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on April 22, 2019.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Token Binding over HTTP [RFC8473] provides a mechanism that enables HTTP servers to cryptographically bind cookies and other security tokens to a key generated by the client. When the use of Token Binding is negotiated in the TLS [RFC5246] handshake [RFC8472] the client sends an encoded Token Binding Message [RFC8471] as a header in each HTTP request, which proves possession of one or more private keys held by the client. The public portion of the keys are represented in the Token Binding IDs of the Token Binding Message and for each one there is a signature over some data, which includes the exported keying material [RFC5705] of the TLS connection. An HTTP server issuing cookies or other security tokens can associate them with the Token Binding ID, which ensures those tokens cannot be used successfully over a different TLS connection or by a different client than the one to which they were issued.
A fairly common deployment architecture for HTTPS applications is to have the backend HTTP application servers sit behind a reverse proxy that terminates TLS connections from clients. The proxy is accessible to the internet and dispatches client requests to the appropriate backend server within a private or protected network. The backend servers are not directly accessible by clients and are only reachable through the reverse proxy. The details of such deployments are typically opaque to clients who make requests to the proxy server and see responses as though they originated from the proxy server itself. Although HTTPS is also usually employed between the proxy and the backend server, the TLS connection that the client establishes for HTTPS is between itself and the reverse proxy server.
Token Binding facilitates a binding of security tokens to a key held by the client by way of the TLS connection between that client and the server. In a deployment where TLS is terminated by a reverse proxy, however, the TLS connection is between the client and the proxy while the backend server is likely the system that will issue and validate cookies or other security tokens. Additional steps are therefore needed to enable the use of Token Binding in such deployment architectures. In the absence of a standardized approach, different implementations will address it differently, which will make interoperability between such implementations difficult or impossible without complex configurations or custom integrations.
This document standardizes HTTP header field names that a TLS terminating reverse proxy (TTRP) adds to requests that it sends to the backend servers. The headers contain information from the validated Token Binding Message sent by the client to the proxy, thus enabling the backend server to bind, or verify the binding of, cookies and other security tokens to the client's Token Binding key. The usage of the headers, both the TTRP adding the headers and the backend application server using the headers to bind cookies or other tokens, are to be configuration options of the respective systems as they will not always be applicable.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
The field-values of the HTTP headers defined herein utilize the following encoded forms.
A Token Binding ID is represented as an "EncodedTokenBindingID", which is thea base64url encoding of the TokenBindingID byte sequence (see section 3 of [RFC8471]) using the URL and filename safe alphabet described in Section 5 of [RFC4648], with all trailing pad characters '=' omitted and without the inclusion of any line breaks, whitespace, or other additional characters. ABNF [RFC5234] syntax for "EncodedTokenBindingID" is shown in Figure 1 below.
Figure 1: Encoded Token Binding ID ABNF
A Token Binding type value (a single byte) can be represented as an "EncodedTokenBindingType", which is a case-insensitive hex encoding (Section 8 of [RFC4648]). The ABNF definition is shown in Figure 2 below.
EncodedTokenBindingType = 1*2HEXDIG
HEXDIG = <Defined in Section B.1 of [RFC5234]>
Figure 2: Encoded Token Binding Type ABNF
The Token Binding Protocol [RFC8471] recommends that implementations make Token Binding IDs available to the application as opaque byte sequences, enabling those applications to use the Token Binding IDs when generating and verifying bound tokens. In the context of a TLS terminating reverse proxy (TTRP) deployment, the TTRP makes the Token Binding ID(s) available to the backend application with the following header fields.
Sec-Provided-Token-Binding-ID
The Token Binding ID of the provided Token Binding represented as an "EncodedTokenBindingID".
Sec-Referred-Token-Binding-ID
The Token Binding ID of the referred Token Binding represented as an "EncodedTokenBindingID".
Sec-Other-Token-Binding-ID
Additional Token Bindings that are sent by the client and validated by the TTRP are represented as a comma-separated list of the concatenation of the "EncodedTokenBindingType", a period (".") character, and the "EncodedTokenBindingID" of each.
Both "Sec-Provided-Token-Binding-ID" and "Sec-Referred-Token-Binding- ID" are single HTTP header field-valued as defined in Section 3.2 of [RFC7230], which MUST NOT have a list of values or occur multiple times in a request.
All header fields defined herein are only for use in HTTP requests and MUST NOT to be used in HTTP responses.
This section defines the applicable processing rules for a TLS terminating reverse proxy (TTRP) and backend server(s) to provide server side support of Token Binding over HTTP [RFC8473] using the HTTP headers described in Section 2.2. Use of the technique is to be a configuration or deployment option and the processing rules described herein are for servers operating with that option enabled.
A TTRP negotiates the use of Token Binding with the client, such as is described in [RFC8472] and validates the Token Binding Message as defined in The Token Binding Protocol [RFC8471] and Token Binding over HTTP [RFC8473] for each HTTP request on the underlying TLS connection. Requests with a valid Token Binding Message (and meeting any other authorization or policy requirements of the TTRP) are dispatched to the backend server with the following modifications.
1. The "Sec-Token-Binding" header in the original incoming request MUST be removed from the request that is dispatched to the backend server.
2. The Token Binding ID of the provided Token Binding of the Token Binding Message MUST be placed in the "Sec-Provided-Token- Binding-ID" header field of the dispatched request using the format defined in Section 2.2.
3. If the Token Binding Message contains a referred Token Binding, the referred Token Binding ID MUST be placed in the "Sec- Referred-Token-Binding-ID" header field of the dispatched request using the format defined in Section 2.2. Otherwise, the "Sec- Referred-Token-Binding-ID" header field MUST NOT be present in the dispatched request.
4. If the Token Binding Message contains any additional validated Token Bindings, they are placed in the "Sec-Other-Token-Binding- ID" header field using the format defined in Section 2.2. If the Token Binding Message contains no additional valid Token Bindings, the "Sec-Referred-Token-Binding-ID" header field MUST NOT be present in the dispatched request.
5. Any occurrence of the "Sec-Provided-Token-Binding-ID", "Sec- Referred-Token-Binding-ID", and "Sec-Other-Token-Binding-ID" headers in the original incoming request MUST be removed or overwritten before forwarding the request.
Requests made over a connection where the use of Token Binding was not negotiated MUST be sanitized by removing any occurrences of the "Sec-Provided-Token-Binding-ID", "Sec-Referred-Token-Binding-ID", and "Sec-Other-Token-Binding-ID" header fields prior to dispatching the request to the backend server.
Forward proxies and other intermediaries MUST NOT add the "Sec- Provided-Token-Binding-ID" "Sec-Referred-Token-Binding-ID", or "Sec- Other-Token-Binding-ID" header to requests.
Extra line breaks and whitespace have been added to the following examples for display and formatting purposes only.
The following "Sec-Token-Binding" header is from an HTTP request made over a TLS connection between the client and the TTRP where the use of Token Binding has been negotiated. The base64url-encoded representation of the exported keying material for that connection is "AYVUayPTP9RmELNpGjFl6Ykm2CUx7pUMxe35yb11dgU", which can be used to validate the Token Binding Message. The encoded Token Binding Message has the provided Token Binding that the client uses with the server.
Sec-Token-Binding: AIkAAgBBQKzyIrmcY_YCtHVoSHBut69vrGfFdy1_YKTZfFJv
6BjrZsKD9b9FRzSBxDs1twTqnAS71M1RBumuihhI9xqxXKkAQEtxe4jeUJU0WezxlQ XWVSBFeHxFMdXRBIH_LKOSAuSMOJ0XEw1Q8DE248qkOiRKzw3KdSNYukYEPmO21bQi 3YYAAA
Figure 3: Header in HTTP Request to TTRP
After validating the Token Binding Message, the TTRP removes the "Sec-Token-Binding" header and adds the following "Sec-Provided- Token-Binding-ID" header with the provided Token Binding ID to the request that is dispatched to the backend server.
Sec-Provided-Token-Binding-ID: AgBBQKzyIrmcY_YCtHVoSHBut69vrGfFdy1_
YKTZfFJv6BjrZsKD9b9FRzSBxDs1twTqnAS71M1RBumuihhI9xqxXKk
Figure 4: Header in HTTP Request to Backend Server
The following "Sec-Token-Binding" header is from an HTTP request made over a TLS connection between the client and the TTRP where the use of Token Binding has been negotiated. The base64url-encoded representation of the exported keying material for that connection is "wEWWCP1KPxfq-QL4NxYII_P4ti_9YYqrTpGs28BZEqE", which can be used to validate the Token Binding Message. The encoded Token Binding Message has the provided Token Binding that the client uses with the server as well as the referred Token Binding that it uses with a different server.
Sec-Token-Binding: ARIAAgBBQCfsI1D1sTq5mvT_2H_dihNIvuHJCHGjHPJchPav
NbGrOo26-2JgT_IsbvZd4daDFbirYBIwJ-TK1rh8FzrC-psAQMyYIqXj7djGPev1dk jV9XxLYGCyqOrBVEtBHrMUCeo22ymLg3OiFcl_fmOPxJbjxI6lKcF0lyfy-dSQmPIe zQ0AAAECAEFArPIiuZxj9gK0dWhIcG63r2-sZ8V3LX9gpNl8Um_oGOtmwoP1v0VHNI HEOzW3BOqcBLvUzVEG6a6KGEj3GrFcqQBAHQm0pzgUTXKLRamuKE1pmmP9I3UBVpoe 1DBCe9H2l1VPpsImakUa6crAqZ-0CGBmji7bYzQogpKcyxTTFk5zdwAA
Figure 5: Header in HTTP Request to TTRP
After validating the Token Binding Message, the TTRP removes the "Sec-Token-Binding" header and adds the following "Sec-Provided- Token-Binding-ID" and "Sec-Referred-Token-Binding-ID" headers, with the provided and referred Token Binding IDs respectively, to the request that is dispatched to the backend server.
Sec-Provided-Token-Binding-ID: AgBBQCfsI1D1sTq5mvT_2H_dihNIvuHJCHGj
HPJchPavNbGrOo26-2JgT_IsbvZd4daDFbirYBIwJ-TK1rh8FzrC-ps Sec-Referred-Token-Binding-ID: AgBBQKzyIrmcY_YCtHVoSHBut69vrGfFdy1_ YKTZfFJv6BjrZsKD9b9FRzSBxDs1twTqnAS71M1RBumuihhI9xqxXKk
Figure 6: Headers in HTTP Request to Backend Server
The following "Sec-Token-Binding" header is from an HTTP request made over a TLS connection between the client and the TTRP where the use of Token Binding has been negotiated. The base64url-encoded representation of the exported keying material for that connection is "Zr_1DESCcDoaltcZCK613UrEWHRf2B3w9i3bwcxpacc", which can be used to validate the Token Binding Message. The encoded Token Binding Message has the provided Token Binding and two other Token Bindings.
Sec-Token-Binding: AZsAAgBBQA35hcCjI5GEHLLAZ0i2l2ZvQe-bSPAP7jovkZJM
4wYHgmmXNd1aRpnQmXK9ghUmrdtS6p_e2uSlMXIVKOIwgysAQJ-TKyVGF37XUXMy79 ybwJyPpfCG9Iq6fdIxLX_yJn-L__Z3p_WIL3g17K0OH3XZmJS3qZNNEVu_8HmPN-d9 hGMAAE0CAEFAR68GbdIQyrHqkorJF0sekYJvf8iV03obGxbaWbqAEJetsYxprB6c3M x5KDHBGZjsFbeFW5Xec_EaxX0Hw3RmJwBA-Fu22kokRbB7G0D0g6_sdCHTbczSCmnm 6rqP1x7kRIIj_kJNCCWcwMMFzbsBTXcm5fJrRdBTcsqiiqYD6aJ1SgAACwIAQUCDqt 6m63By8b1lvhN-n9OsQThoLomzKpMicSZGwR166jplhbkjrFsHzdNqzLFFEhCT9s0p XrcbpOHsZnpRSkmhAEBfOwxjK3Y9EOeMrqjo0IUhmurW2EgtSRBjDwc0r-rDT231Zv _f1oePB8Pkd1kgAtgKX5EDiemfo1YER3_I2cv3AAA
Figure 7: Header in HTTP Request to TTRP
After validating the Token Binding Message, the TTRP removes the "Sec-Token-Binding" header and adds the following "Sec-Provided- Token-Binding-ID" and "Sec-Other-Token-Binding-ID" headers to the request that is dispatched to the backend server.
Sec-Provided-Token-Binding-ID: AgBBQA35hcCjI5GEHLLAZ0i2l2ZvQe-bSPAP
7jovkZJM4wYHgmmXNd1aRpnQmXK9ghUmrdtS6p_e2uSlMXIVKOIwgys Sec-Other-Token-Binding-ID: 4d.AgBBQEevBm3SEMqx6pKKyRdLHpGCb3_IldN6 GxsW2lm6gBCXrbGMaawenNzMeSgxwRmY7BW3hVuV3nPxGsV9B8N0Zic,B.AgBBQIO q3qbrcHLxvWW-E36f06xBOGguibMqkyJxJkbBHXrqOmWFuSOsWwfN02rMsUUSEJP2 zSletxuk4exmelFKSaE
Figure 8: Headers in HTTP Request to Backend Server
TLS 1.2 [RFC5246] is cited in this document because, at the time of writing, it is the latest version that is widely deployed. However, this document is applicable with other TLS versions that allow for negotiating the use of Token Binding. Token Binding for Transport Layer Security (TLS) Version 1.3 Connections [I-D.ietf-tokbind-tls13], for example, describes Token Binding with TLS 1.3 [RFC8446]. Implementation security considerations for TLS, including version recommendations, can be found in Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) [BCP195].
The headers described herein enable a reverse proxy and backend server to function together as though they are a single logical server side deployment of HTTPS Token Binding. Use of the headers outside that intended use case, however, may undermine the protections afforded by Token Binding. Therefore steps MUST be taken to prevent unintended use, both in sending the headers and in relying on their value.
Producing and consuming the headers SHOULD be a configurable option, respectively, in a reverse proxy and backend server (or individual application in that server). The default configuration for both should be to not use the headers thus requiring an "opt-in" to the functionality.
Backend servers MUST only accept the headers from trusted reverse proxies. And reverse proxies MUST sanitize the incoming request before forwarding it on by removing or overwriting any existing instances of the headers. Otherwise arbitrary clients can control the header values as seen and used by the backend server.
The communication between a reverse proxy and backend server needs to be secured against eavesdropping and modification by unintended parties.
The configuration options and request sanitization are necessarily functionally of the respective servers. The other requirements can be met in a number of ways, which will vary based on specific deployments. The communication between a reverse proxy and backend server, for example, might be over a mutually authenticated TLS with the insertion and consumption headers occurring only on that connection. Alternatively the network topology might dictate a private network such that the backend application is only able to accept requests from the reverse proxy and the proxy can only make requests to that server. Other deployments that meet the requirements set forth herein are also possible.
Employing the "Sec-" header field prefix for the headers defined herein denotes them as forbidden header names (see [fetch-spec]), which means they cannot be set or modified programmatically by script running in-browser.
This document specifies the following new HTTP header fields, registration of which is requested in the "Permanent Message Header Field Names" registry defined in [RFC3864].
[BCP195]
Sheffer, Y., Holz, R., and P. Saint-Andre, "Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May 2015, <http://www.rfc-editor.org/info/bcp195>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC4648]
Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006, <https://www.rfc-editor.org/info/rfc4648>.
[RFC5234]
Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", STD 68, RFC 5234, DOI 10.17487/RFC5234, January 2008, <https://www.rfc-editor.org/info/rfc5234>.
[RFC5246]
Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/RFC5246, August 2008, <https://www.rfc-editor.org/info/rfc5246>.
[RFC5705]
Rescorla, E., "Keying Material Exporters for Transport Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705, March 2010, <https://www.rfc-editor.org/info/rfc5705>.
[RFC7230]
Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014, <https://www.rfc-editor.org/info/rfc7230>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8471]
Popov, A., Ed., Nystroem, M., Balfanz, D., and J. Hodges, "The Token Binding Protocol Version 1.0", RFC 8471, DOI 10.17487/RFC8471, October 2018, <https://www.rfc-editor.org/info/rfc8471>.
[RFC8472]
Popov, A., Ed., Nystroem, M., and D. Balfanz, "Transport Layer Security (TLS) Extension for Token Binding Protocol Negotiation", RFC 8472, DOI 10.17487/RFC8472, October 2018, <https://www.rfc-editor.org/info/rfc8472>.
[RFC8473]
Popov, A., Nystroem, M., Balfanz, D., Ed., Harper, N., and J. Hodges, "Token Binding over HTTP", RFC 8473, DOI 10.17487/RFC8473, October 2018, <https://www.rfc-editor.org/info/rfc8473>.
[fetch-spec]
WhatWG, "Fetch", Living Standard , <https://fetch.spec.whatwg.org/>.
[I-D.ietf-tokbind-tls13]
Harper, N., "Token Binding for Transport Layer Security (TLS) Version 1.3 Connections", draft-ietf-tokbind- tls13-01 (work in progress), May 2018.
[RFC3864]
Klyne, G., Nottingham, M., and J. Mogul, "Registration Procedures for Message Header Fields", BCP 90, RFC 3864, DOI 10.17487/RFC3864, September 2004, <https://www.rfc-editor.org/info/rfc3864>.
[RFC8446]
Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>.
The author would like to thank the following people for their various contributions to the specification: Vinod Anupam, Dirk Balfanz, John Bradley, William Denniss, Nick Harper, Jeff Hodges, Subodh Iyengar, Leif Johansson, Michael B. Jones, Yoav Nir, James Manger, Andrei Popov, Eric Rescorla, Piotr Sikora, Martin Thomson, and Hans Zandbelt
[[to be removed by the RFC Editor before publication as an RFC]]
draft-ietf-tokbind-ttrp-07
o Update TLS 1.3 reference to RFC 8446.
o Update the references to the core token binding specs, which are now RFCs 8471, 8472, and 8473.
draft-ietf-tokbind-ttrp-06
o Move TLS Versions and Best Practices out of Security Considerations to its own top-level section.
draft-ietf-tokbind-ttrp-05
o Editorial updates.
o Change one character in the last example to help emphasize the case-insensitivity of hex.
o Add a TLS Versions and Best Practices section with BCP195 and also mention of ietf-tokbind-tls13 and ietf-tls-tls13.
draft-ietf-tokbind-ttrp-04
o Add an example with Sec-Other-Token-Binding-ID.
o Use the HEXDIG core ABNF rule for EncodedTokenBindingType and mention case-insensitive in the text.
o Minor editorial fixes.
o Add to the Acknowledgements and remove the 'and others' bit.
draft-ietf-tokbind-ttrp-03
o Add a header to allow for additional token binding types other than provided and referred to be conveyed.
o Reword the Abstract somewhat for (hopefully) improved readability.
o Minor editorial and formatting updates.
draft-ietf-tokbind-ttrp-02
o Add to the Acknowledgements.
o Update references for Token Binding negotiation, protocol, and https.
o Use the boilerplate from RFC 8174.
o Reformat the "HTTP Header Fields and Processing Rules" section to make the header names more prominent and move the encoding definitions earlier.
draft-ietf-tokbind-ttrp-01
o Prefix the header names with "Sec-" so that they are denoted as forbidden header names by Fetch https://fetch.spec.whatwg.org/
o Removed potentially confusing sentence from Security Considerations per https://mailarchive.ietf.org/arch/msg/unbearable/ O0IpppyyEqMrQjEkyEi8p8CeBGA
o Editorial fixes.
draft-ietf-tokbind-ttrp-00
o Initial WG draft from draft-campbell-tokbind-ttrp.
draft-campbell-tokbind-ttrp-01
o Minor editorial fixes.
o Add to the Acknowledgements.
draft-campbell-tokbind-ttrp-00
o Initial draft based on 'consensus to work on the problem' from the Seoul meeting [1][2] and reflecting the consensus approach from discussions at the Chicago meeting [3].
Author's Address
Email: brian.d.campbell@gmail.com
8471 - The Token Binding Protocol Version 1.0
Internet Engineering Task Force (IETF)
Request for Comments: 8471
Category: Standards Track
ISSN: 2070-1721
A. Popov, Ed.
M. Nystroem
Microsoft Corp.
D. Balfanz
Google Inc.
J. Hodges
Kings Mountain Systems
October 2018
This document specifies version 1.0 of the Token Binding protocol. The Token Binding protocol allows client/server applications to create long-lived, uniquely identifiable TLS bindings spanning multiple TLS sessions and connections. Applications are then enabled to cryptographically bind security tokens to the TLS layer, preventing token export and replay attacks. To protect privacy, the Token Binding identifiers are only conveyed over TLS and can be reset by the user at any time.
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8471.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Servers often generate various security tokens (e.g., HTTP cookies, OAuth tokens [RFC6749]) for applications to present when accessing protected resources. In general, any party in possession of bearer security tokens gains access to certain protected resource(s). Attackers take advantage of this by exporting bearer tokens from a user's application connections or machines, presenting them to application servers, and impersonating authenticated users. The idea of Token Binding is to prevent such attacks by cryptographically binding application security tokens to the underlying TLS layer [RFC5246]. (Note: This document deals with TLS 1.2 and therefore refers to RFC 5246 (which has been obsoleted by RFC 8446); [TOKENBIND-TLS13] addresses Token Binding in TLS 1.3.)
A Token Binding is established by a User Agent generating a private-public key pair (possibly within a secure hardware module, such as a Trusted Platform Module) per target server, providing the public key to the server, and proving possession of the corresponding private key, on every TLS connection to the server. The proof of possession involves signing the Exported Keying Material (EKM) [RFC5705] from the TLS connection with the private key. The corresponding public key is included in the Token Binding identifier structure (described in Section 3.2 ("TokenBinding.tokenbindingid")). Token Bindings are long-lived, i.e., they encompass multiple TLS connections and TLS sessions between a given client and server. To protect privacy, Token Binding IDs are never conveyed over insecure connections and can be reset by the user at any time, e.g., when clearing browser cookies.
When issuing a security token to a client that supports Token Binding, a server includes the client's Token Binding ID (or its cryptographic hash) in the token. Later on, when a client presents a security token containing a Token Binding ID, the server verifies that the ID in the token matches the ID of the Token Binding established with the client. In the case of a mismatch, the server rejects the token (details are application specific).
In order to successfully export and replay a bound security token, an attacker needs to also be able to use the client's private key; this is hard to do if the key is specially protected, e.g., generated in a secure hardware module.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
In the course of a TLS handshake, a client and server can use the Token Binding negotiation TLS extension [RFC8472] to negotiate the Token Binding protocol version and the parameters (signature algorithm, length) of the Token Binding key. This negotiation does not require additional round trips.
Version 1.0 of the Token Binding protocol is represented by TB_ProtocolVersion.major = 1 and TB_ProtocolVersion.minor = 0 in the Token Binding negotiation TLS extension; see [RFC8472] ("Transport Layer Security (TLS) Extension for Token Binding Protocol Negotiation").
The Token Binding protocol consists of one message sent by the client to the server, proving possession of one or more client-generated asymmetric private keys. This message is not sent if the Token Binding negotiation has been unsuccessful. The Token Binding message is sent with the application protocol data over TLS.
A server receiving the Token Binding message verifies that the key parameters in the message match the Token Binding parameters negotiated (e.g., via [RFC8472]) and then validates the signatures contained in the Token Binding message. If either of these checks fails, the server rejects the binding, along with all associated bound tokens. Otherwise, the Token Binding is successfully established with the ID contained in the Token Binding message.
When a server supporting the Token Binding protocol receives a bound token, the server compares the Token Binding ID in the token with the Token Binding ID established with the client. If the bound token is received on a TLS connection without a Token Binding or if the Token Binding IDs do not match, the token is rejected.
This document defines the format of the Token Binding protocol message, the process of establishing a Token Binding, the format of the Token Binding ID, and the process of validating a bound token. [RFC8472] describes the negotiation of the Token Binding protocol and key parameters. [RFC8473] ("Token Binding over HTTP") explains how the Token Binding message is encapsulated within HTTP/1.1 messages [RFC7230] or HTTP/2 messages [RFC7540]. [RFC8473] also describes Token Binding between multiple communicating parties: User Agent, Identity Provider, and Relying Party.
The Token Binding message is sent by the client to prove possession of one or more private keys held by the client. This message MUST be sent if the client and server successfully negotiated the use of the Token Binding protocol (e.g., via [RFC8472] or a different mechanism) and MUST NOT be sent otherwise. This message MUST be sent in the client's first application protocol message. This message MAY also be sent in subsequent application protocol messages, proving possession of additional private keys held by the same client; this information can be used to facilitate Token Binding between more than two communicating parties. For example, [RFC8473] specifies an encapsulation of the Token Binding message in HTTP application protocol messages, as well as scenarios involving more than two communicating parties.
The Token Binding message format is defined using the TLS presentation language (see Section 4 of [RFC5246]):
The Token Binding message consists of a series of TokenBinding structures, each containing the type of the Token Binding, the TokenBindingID, and a signature using the Token Binding key, optionally followed by TB_Extension structures.
This document defines two Token Binding types:
o provided_token_binding - used to establish a Token Binding when connecting to a server.
o referred_token_binding - used when requesting tokens that are intended to be presented to a different server.
[RFC8473] describes a use case for referred_token_binding where Token Bindings are established between multiple communicating parties: User Agent, Identity Provider, and Relying Party. The User Agent sends referred_token_binding to the Identity Provider in order to prove possession of the Token Binding key it uses with the Relying Party. The Identity Provider can then bind the token it is supplying (for presentation to the Relying Party) to the Token Binding ID contained in referred_token_binding.
An implementation MUST ignore any unknown Token Binding types.
The ID of the Token Binding established as a result of Token Binding message processing contains the identifier of the negotiated key parameters, the length (in bytes) of the Token Binding public key, and the Token Binding public key itself. The Token Binding ID can be obtained from the TokenBinding structure by discarding the Token Binding type, signature, and extensions.
When rsa2048_pkcs1.5 or rsa2048_pss is used, RSAPublicKey.modulus and RSAPublicKey.publicexponent contain the modulus and exponent of a 2048-bit RSA public key represented in big-endian format, with leading zero bytes omitted.
When ecdsap256 is used, TB_ECPoint.point contains the X coordinate followed by the Y coordinate of a Curve P-256 key. The X and Y coordinates are unsigned 32-byte integers encoded in big-endian format, preserving any leading zero bytes. Future specifications may define Token Binding keys using other elliptic curves with their corresponding signature and point formats.
Token Binding protocol implementations SHOULD make Token Binding IDs available to the application as opaque byte sequences, so that applications do not rely on a particular Token Binding ID structure. For example, server applications will use Token Binding IDs when generating and verifying bound tokens.
When rsa2048_pkcs1.5 is used, TokenBinding.signature contains the signature generated using the RSASSA-PKCS1-v1_5 signature scheme defined in [RFC8017] with SHA256 [FIPS.180-4.2015] as the hash function.
When rsa2048_pss is used, TokenBinding.signature contains the signature generated using the RSA Probabilistic Signature Scheme (RSASSA-PSS) defined in [RFC8017] with SHA256 as the hash function. MGF1 with SHA256 MUST be used as the mask generation function (MGF), and the salt length MUST equal 32 bytes.
When ecdsap256 is used, TokenBinding.signature contains a pair of 32-byte integers, R followed by S, generated with the Elliptic Curve Digital Signature Algorithm (ECDSA) using Curve P-256 and SHA256 as defined in [FIPS.186-4.2013] and [ANSI.X9-62.2005]. R and S are encoded in big-endian format, preserving any leading zero bytes.
The signature is computed over the byte string representing the concatenation of:
o The TokenBindingType value contained in the TokenBinding.tokenbinding_type field,
o The TokenBindingKeyParameters value contained in the TokenBindingID.key_parameters field, and
o The EKM value obtained from the current TLS connection.
Please note that TLS 1.2 and earlier versions support renegotiation, which produces a new TLS master secret for the same connection, with the associated session keys and EKM value. TokenBinding.signature MUST be a signature of the EKM value derived from the TLS master secret that produced the session keys encrypting the TLS application_data record(s) containing this TokenBinding. Such use of the current EKM for the TLS connection makes replay of bound tokens within renegotiated TLS sessions detectable but requires the application to synchronize Token Binding message generation and verification with the TLS handshake state.
Specifications defining the use of Token Binding with application protocols, such as Token Binding over HTTP [RFC8473], MAY prohibit the use of TLS renegotiation in combination with Token Binding, obviating the need for such synchronization. Alternatively, such specifications need to define (1) a way to determine which EKM value corresponds to a given TokenBindingMessage and (2) a mechanism that prevents a TokenBindingMessage from being split across TLS renegotiation boundaries due to TLS message fragmentation; see Section 6.2.1 of [RFC5246]. Note that application-layer messages conveying a TokenBindingMessage may cross renegotiation boundaries in ways that make processing difficult.
The EKM is obtained using the keying material exporters for TLS as defined in [RFC5705], by supplying the following input values:
o Label: The ASCII string "EXPORTER-Token-Binding" with no terminating NUL.
o Context value: No application context supplied.
o Length: 32 bytes.
A Token Binding message may optionally contain a series of TB_Extension structures, each consisting of an extension_type and extension_data. The structure and meaning of extension_data depends on the specific extension_type.
The client MUST include at least one TokenBinding structure in the Token Binding message. When a provided_token_binding is included, the key parameters used in a provided_token_binding MUST match those negotiated with the server (e.g., via [RFC8472] or a different mechanism).
The client MUST generate and store Token Binding keys in a secure manner that prevents key export. In order to prevent cooperating servers from linking user identities, the scope of the Token Binding keys MUST NOT be broader than the scope of the tokens, as defined by the application protocol.
When the client needs to send a referred_token_binding to the Identity Provider, the client SHALL construct the referred TokenBinding structure in the following manner:
o Set TokenBinding.tokenbinding_type to referred_token_binding.
o Set TokenBinding.tokenbindingid to the Token Binding ID used with the Relying Party.
o Generate TokenBinding.signature, using the EKM value of the TLS connection to the Identity Provider, the Token Binding key established with the Relying Party, and the signature algorithm indicated by the associated key parameters. Note that these key parameters may differ from the key parameters negotiated with the Identity Provider.
Conveying referred Token Bindings in this fashion allows the Identity Provider to verify that the client controls the Token Binding key used with the Relying Party.
If the use of the Token Binding protocol was not negotiated but the client sends a Token Binding message, the server MUST reject any contained bindings.
If the Token Binding type is "provided_token_binding", the server MUST verify that the signature algorithm (including an elliptic curve in the case of ECDSA) and key length in the Token Binding message match those negotiated with this client (e.g., via [RFC8472] or a different mechanism). In the case of a mismatch, the server MUST reject the binding. Token Bindings of type "referred_token_binding" may use different key parameters than those negotiated with this client.
If the Token Binding message does not contain at least one TokenBinding structure or if a signature contained in any TokenBinding structure is invalid, the server MUST reject the binding.
Servers MUST ignore any unknown extensions. Initially, no extension types are defined (see Section 6.3 ("Token Binding Extensions Registry")).
If all checks defined above have passed successfully, the Token Binding between this client and server is established. The Token Binding ID(s) conveyed in the Token Binding message can be provided to the server-side application. The application may then use the Token Binding IDs for bound security token creation and validation; see Section 5.
If a Token Binding is rejected, any associated bound tokens presented on the current TLS connection MUST also be rejected by the server. The effect of this is application specific, e.g., failing requests, a requirement for the client to re-authenticate and present a different token, or connection termination.
Security tokens can be bound to the TLS layer in a variety of ways, e.g., by embedding the Token Binding ID or its cryptographic hash in the token or by maintaining a database mapping tokens to Token Binding IDs. The specific method of generating bound security tokens is defined by the application and is beyond the scope of this document. Note that applicable security considerations are outlined in Section 7.
Either or both clients and servers MAY create bound security tokens. For example, HTTPS servers employing Token Binding for securing their HTTP cookies will bind these cookies. In the case of a server- initiated challenge-response protocol employing Token Binding and TLS, the client can, for example, incorporate the Token Binding ID within the signed object it returns, thus binding the object.
Upon receipt of a security token, the server attempts to retrieve Token Binding ID information from the token and from the TLS connection with the client. Application-provided policy determines whether to honor non-bound (bearer) tokens. If the token is bound and a Token Binding has not been established for the client connection, the server MUST reject the token. If the Token Binding ID for the token does not match the Token Binding ID established for the client connection, the server MUST reject the token.
This section establishes a new IANA registry titled "Token Binding Protocol" with subregistries "Token Binding Key Parameters", "Token Binding Types", and "Token Binding Extensions". It also registers a new TLS exporter label in the "TLS Exporter Labels" registry.
This document establishes a subregistry for identifiers of Token Binding key parameters titled "Token Binding Key Parameters" under the "Token Binding Protocol" registry.
Entries in this registry require the following fields:
o Value: The octet value that identifies a set of Token Binding key parameters (0-255).
o Description: The description of the Token Binding key parameters.
o Reference: A reference to a specification that defines the Token Binding key parameters.
This registry operates under the "Specification Required" policy as defined in [RFC8126]. The designated expert will require the inclusion of a reference to a permanent and readily available specification that enables the creation of interoperable implementations using the identified set of Token Binding key parameters.
An initial set of registrations for this registry follows:
This document establishes a subregistry for Token Binding type identifiers titled "Token Binding Types" under the "Token Binding Protocol" registry.
Entries in this registry require the following fields:
o Value: The octet value that identifies the Token Binding type (0-255).
o Description: The description of the Token Binding type.
o Reference: A reference to a specification that defines the Token Binding type.
This registry operates under the "Specification Required" policy as defined in [RFC8126]. The designated expert will require the inclusion of a reference to a permanent and readily available specification that enables the creation of interoperable implementations using the identified Token Binding type.
An initial set of registrations for this registry follows:
This document establishes a subregistry for Token Binding extensions titled "Token Binding Extensions" under the "Token Binding Protocol" registry.
Entries in this registry require the following fields:
o Value: The octet value that identifies the Token Binding extension (0-255).
o Description: The description of the Token Binding extension.
o Reference: A reference to a specification that defines the Token Binding extension.
This registry operates under the "Specification Required" policy as defined in [RFC8126]. The designated expert will require the inclusion of a reference to a permanent and readily available specification that enables the creation of interoperable implementations using the identified Token Binding extension. This document creates no initial registrations in the "Token Binding Extensions" registry.
This document adds the following registration in the "TLS Exporter Labels" registry:
The manner in which a token is bound to the TLS layer is defined by the application and is beyond the scope of this document. However, the resulting bound token needs to be integrity-protected, so that an attacker cannot remove the binding or substitute a Token Binding ID of their choice without detection.
The Token Binding protocol does not prevent cooperating clients from sharing a bound token. A client could intentionally export a bound token with the corresponding Token Binding private key or perform signatures using this key on behalf of another client.
The Token Binding protocol MUST be negotiated using a mechanism that prevents downgrade attacks. For example, [RFC8472] specifies a TLS extension for Token Binding negotiation. TLS detects handshake message modification by active attackers; therefore, it is not possible for an attacker to remove or modify the "token_binding" extension without breaking the TLS handshake. The signature algorithm and key length used in the TokenBinding of type "provided_token_binding" MUST match the negotiated parameters.
Existing systems provide a variety of platform-specific mechanisms for certain applications to share tokens, e.g., to enable "single sign-on" scenarios. For these scenarios to keep working with bound tokens, the applications that are allowed to share tokens will need to also share Token Binding keys. Care must be taken to restrict the sharing of Token Binding keys to the same group(s) of applications that shares the same tokens.
The Token Binding protocol relies on the TLS exporters [RFC5705] to associate a TLS connection with a Token Binding. The triple handshake attack [TRIPLE-HS] is a known vulnerability in TLS 1.2 and older TLS versions, allowing the attacker to synchronize keying material between TLS connections. The attacker can then successfully replay bound tokens. For this reason, the Token Binding protocol MUST NOT be negotiated with these TLS versions, unless the extended master secret TLS extension [RFC7627] and the renegotiation indication TLS extension [RFC5746] have also been negotiated.
The Token Binding protocol uses persistent, long-lived Token Binding IDs. To protect privacy, Token Binding IDs are never transmitted in clear text and can be reset by the user at any time, e.g., when clearing browser cookies. Some applications offer a special privacy mode where they don't store or use tokens supplied by the server, e.g., "in private" browsing. When operating in this special privacy mode, applications SHOULD use newly generated Token Binding keys and delete them when exiting this mode; otherwise, they SHOULD NOT negotiate Token Binding at all.
In order to prevent cooperating servers from linking user identities, the scope of the Token Binding keys MUST NOT be broader than the scope of the tokens, as defined by the application protocol.
A server can use tokens and Token Binding IDs to track clients. Client applications that automatically limit the lifetime or scope of tokens to maintain user privacy SHOULD apply the same validity time and scope limits to Token Binding keys.
[ANSI.X9-62.2005]
American National Standards Institute, "Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)", ANSI X9.62, November 2005.
[FIPS.180-4.2015]
National Institute of Standards and Technology, "Secure Hash Standard (SHS)", FIPS 180-4, DOI 10.6028/NIST.FIPS.180-4, August 2015, <https://nvlpubs.nist.gov/nistpubs/FIPS/ NIST.FIPS.180-4.pdf>.
[FIPS.186-4.2013]
National Institute of Standards and Technology, "Digital Signature Standard (DSS)", FIPS 186-4, DOI 10.6028/NIST.FIPS.186-4, July 2013, <https://nvlpubs.nist.gov/nistpubs/fips/ nist.fips.186-4.pdf>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC5246]
Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/RFC5246, August 2008, <https://www.rfc-editor.org/info/rfc5246>.
[RFC5705]
Rescorla, E., "Keying Material Exporters for Transport Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705, March 2010, <https://www.rfc-editor.org/info/rfc5705>.
[RFC5746]
Rescorla, E., Ray, M., Dispensa, S., and N. Oskov, "Transport Layer Security (TLS) Renegotiation Indication Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010, <https://www.rfc-editor.org/info/rfc5746>.
[RFC7230]
Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014, <https://www.rfc-editor.org/info/rfc7230>.
[RFC7540]
Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI 10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/info/rfc7540>.
[RFC7627]
Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A., Langley, A., and M. Ray, "Transport Layer Security (TLS) Session Hash and Extended Master Secret Extension", RFC 7627, DOI 10.17487/RFC7627, September 2015, <https://www.rfc-editor.org/info/rfc7627>.
[RFC8126]
Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://www.rfc-editor.org/info/rfc8126>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8472]
Popov, A., Ed., Nystroem, M., and D. Balfanz, "Transport Layer Security (TLS) Extension for Token Binding Protocol Negotiation", RFC 8472, DOI 10.17487/RFC8472, October 2018, <https://www.rfc-editor.org/info/rfc8472>.
[RFC8473]
Popov, A., Nystroem, M., Balfanz, D., Ed., Harper, N., and J. Hodges, "Token Binding over HTTP", RFC 8473, DOI 10.17487/RFC8473, October 2018, <https://www.rfc-editor.org/info/rfc8473>.
[RFC6749]
Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://www.rfc-editor.org/info/rfc6749>.
[RFC8017]
Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch, "PKCS #1: RSA Cryptography Specifications Version 2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016, <https://www.rfc-editor.org/info/rfc8017>.
[TOKENBIND-TLS13]
Harper, N., "Token Binding for Transport Layer Security (TLS) Version 1.3 Connections", Work in Progress, draft-ietf-tokbind-tls13-01, May 2018.
[TRIPLE-HS]
Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti, A., and P. Strub, "Triple Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS", IEEE Symposium on Security and Privacy, DOI 10.1109/SP.2014.14, May 2014.
This document incorporates comments and suggestions offered by Eric Rescorla, Gabriel Montenegro, Martin Thomson, Vinod Anupam, Anthony Nadalin, Michael B. Jones, Bill Cox, Nick Harper, Brian Campbell, Benjamin Kaduk, Alexey Melnikov, and others.
This document was produced under the chairmanship of John Bradley and Leif Johansson. The area directors included Eric Rescorla, Kathleen Moriarty, and Stephen Farrell.
Authors' Addresses
Email: andreipo@microsoft.com
Email: mnystrom@microsoft.com
Email: balfanz@google.com
Email: Jeff.Hodges@KingsMountain.com
8472 - Transport Layer Security (TLS) Extension for Token Binding Protocol Negot
Internet Engineering Task Force (IETF)
Request for Comments: 8472
Category: Standards Track
ISSN: 2070-1721
A. Popov, Ed.
M. Nystroem
Microsoft Corp.
D. Balfanz
Google Inc.
October 2018
This document specifies a Transport Layer Security (TLS) extension for the negotiation of Token Binding protocol version and key parameters. Negotiation of Token Binding in TLS 1.3 and later versions is beyond the scope of this document.
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8472.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
In order to use the Token Binding protocol [RFC8471], the client and server need to agree on the Token Binding protocol version and the parameters (signature algorithm and length) of the Token Binding key. This document specifies a new TLS [RFC5246] extension to accomplish this negotiation without introducing additional network round trips in TLS 1.2 and earlier versions. [TOKENBIND-TLS13] addresses Token Binding in TLS 1.3. The negotiation of the Token Binding protocol and key parameters in combination with TLS 1.3 and later versions is beyond the scope of this document. (Note: This document deals with TLS 1.2 and therefore refers to RFC 5246 (which has been obsoleted by RFC 8446). [TOKENBIND-TLS13] addresses Token Binding in TLS 1.3).
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
The client uses the "token_binding" TLS extension to indicate the highest supported Token Binding protocol version and key parameters.
The "extension_data" field of this extension contains a "TokenBindingParameters" value.
Please note that the representation of the Token Binding protocol version using two octets ("major" and "minor") is for human convenience only and carries no protocol significance.
"key_parameters_list" contains the list of identifiers of the Token Binding key parameters supported by the client, in descending order of preference. [RFC8471] establishes an IANA registry for Token Binding key parameters identifiers.
The server uses the "token_binding" TLS extension to indicate support for the Token Binding protocol and to select the protocol version and key parameters.
The server that supports Token Binding and receives a ClientHello message containing the "token_binding" extension will include the "token_binding" extension in the ServerHello if all of the following conditions are satisfied:
1. The server supports the Token Binding protocol version offered by the client, or a lower version.
2. The server finds acceptable Token Binding key parameters in the client's list.
3. The server is also negotiating the extended master secret [RFC7627] and renegotiation indication [RFC5746] TLS extensions. This requirement applies when TLS 1.2 or an older TLS version is used (see Section 6 ("Security Considerations") for more details).
The server will ignore any key parameters that it does not recognize. The "extension_data" field of the "token_binding" extension is structured the same as described above for the client "extension_data".
"token_binding_version" contains the lower of:
o the Token Binding protocol version offered by the client in the "token_binding" extension, and
o the highest Token Binding protocol version supported by the server.
"key_parameters_list" contains exactly one Token Binding key parameters identifier selected by the server from the client's list.
It is expected that a server will have a list of Token Binding key parameters identifiers that it supports, in preference order. The server MUST only select an identifier that the client offered. The server SHOULD select the most highly preferred key parameters identifier it supports, which is also advertised by the client. In the event that the server supports none of the key parameters that the client advertises, then the server MUST NOT include the "token_binding" extension in the ServerHello.
The client receiving the "token_binding" extension MUST terminate the handshake with a fatal "unsupported_extension" alert if any of the following conditions are true:
1. The client did not include the "token_binding" extension in the ClientHello.
2. "token_binding_version" is higher than the Token Binding protocol version advertised by the client.
3. "key_parameters_list" includes more than one Token Binding key parameters identifier.
4. "key_parameters_list" includes an identifier that was not advertised by the client.
If the "token_binding" extension is included in the ServerHello and the client supports the Token Binding protocol version selected by the server, it means that the version and key parameters have been negotiated between the client and the server and SHALL be definitive for the TLS connection. TLS 1.2 and earlier versions support renegotiation, which allows the client and server to renegotiate the Token Binding protocol version and key parameters on the same connection. The client MUST use the negotiated key parameters in the "provided_token_binding" as described in [RFC8471].
If the client does not support the Token Binding protocol version selected by the server, then the connection proceeds without Token Binding. There is no requirement for the client to support any Token Binding versions other than the one advertised in the client's "token_binding" extension.
Client and server applications can choose to handle failure to negotiate Token Binding in a variety of ways: continue using the connection as usual, shorten the lifetime of tokens issued during this connection, require stronger authentication, terminate the connection, etc.
The Token Binding protocol version and key parameters are negotiated for each TLS connection, which means that the client and server include their "token_binding" extensions in both the full TLS handshake that establishes a new TLS session and the subsequent abbreviated TLS handshakes that resume the TLS session.
This document updates the "TLS ExtensionType Values" registry. The registration for the "token_binding" TLS extension is as follows:
Value: 24
Extension name: token_binding
Recommended: Yes
Reference: This document
This document uses the "Token Binding Key Parameters" registry created by [RFC8471]. This document creates no new registrations in the registry.
The Token Binding protocol version and key parameters are negotiated via the "token_binding" extension within the TLS handshake. TLS detects handshake message modification by active attackers; therefore, it is not possible for an attacker to remove or modify the "token_binding" extension without breaking the TLS handshake. The signature algorithm and key length used in the Token Binding of type "provided_token_binding" MUST match the parameters negotiated via the "token_binding" extension.
The Token Binding protocol relies on the TLS exporters [RFC5705] to associate a TLS connection with a Token Binding. The triple handshake attack [TRIPLE-HS] is a known vulnerability in TLS 1.2 and older TLS versions; it allows an attacker to synchronize keying material between TLS connections. The attacker can then successfully replay bound tokens. For this reason, the Token Binding protocol MUST NOT be negotiated with these TLS versions, unless the extended master secret [RFC7627] and renegotiation indication [RFC5746] TLS extensions have also been negotiated.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC5246]
Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/RFC5246, August 2008, <https://www.rfc-editor.org/info/rfc5246>.
[RFC5705]
Rescorla, E., "Keying Material Exporters for Transport Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705, March 2010, <https://www.rfc-editor.org/info/rfc5705>.
[RFC5746]
Rescorla, E., Ray, M., Dispensa, S., and N. Oskov, "Transport Layer Security (TLS) Renegotiation Indication Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010, <https://www.rfc-editor.org/info/rfc5746>.
[RFC7627]
Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A., Langley, A., and M. Ray, "Transport Layer Security (TLS) Session Hash and Extended Master Secret Extension", RFC 7627, DOI 10.17487/RFC7627, September 2015, <https://www.rfc-editor.org/info/rfc7627>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8471]
Popov, A., Ed., Nystroem, M., Balfanz, D., and J. Hodges, "The Token Binding Protocol Version 1.0", RFC 8471, DOI 10.17487/RFC8471, October 2018, <https://www.rfc-editor.org/info/rfc8471>.
[TOKENBIND-TLS13]
Harper, N., "Token Binding for Transport Layer Security (TLS) Version 1.3 Connections", Work in Progress, draft-ietf-tokbind-tls13-01, May 2018.
[TRIPLE-HS]
Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti, A., and P. Strub, "Triple Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS", IEEE Symposium on Security and Privacy, DOI 10.1109/SP.2014.14, May 2014.
This document incorporates comments and suggestions offered by Eric Rescorla, Gabriel Montenegro, Martin Thomson, Vinod Anupam, Anthony Nadalin, Michael B. Jones, Bill Cox, Nick Harper, Brian Campbell, Benjamin Kaduk, Alexey Melnikov, and others.
This document was produced under the chairmanship of John Bradley and Leif Johansson. The area directors included Eric Rescorla, Kathleen Moriarty, and Stephen Farrell.
Authors' Addresses
Email: andreipo@microsoft.com
Email: mnystrom@microsoft.com
Email: balfanz@google.com
8473 - Token Binding over HTTP
Internet Engineering Task Force (IETF)
Request for Comments: 8473
Category: Standards Track
ISSN: 2070-1721
A. Popov
M. Nystroem
Microsoft Corp.
D. Balfanz, Ed.
N. Harper
Google Inc.
J. Hodges
Kings Mountain Systems
October 2018
This document describes a collection of mechanisms that allow HTTP servers to cryptographically bind security tokens (such as cookies and OAuth tokens) to TLS connections.
We describe both first-party and federated scenarios. In a first- party scenario, an HTTP server is able to cryptographically bind the security tokens that it issues to a client -- and that the client subsequently returns to the server -- to the TLS connection between the client and the server. Such bound security tokens are protected from misuse, since the server can generally detect if they are replayed inappropriately, e.g., over other TLS connections.
Federated Token Bindings, on the other hand, allow servers to cryptographically bind security tokens to a TLS connection that the client has with a different server than the one issuing the token.
This document is a companion document to "The Token Binding Protocol Version 1.0" (RFC 8471).
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8473.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
The Token Binding protocol [RFC8471] defines a Token Binding ID for a TLS connection between a client and a server. The Token Binding ID of a TLS connection is constructed using the public key of a private-public key pair. The client proves possession of the corresponding private key. This Token Binding key pair is long-lived. That is, subsequent TLS connections between the same client and server have the same Token Binding ID, unless specifically reset, e.g., by the user. When issuing a security token (e.g., an HTTP cookie or an OAuth token [RFC6749]) to a client, the server can include the Token Binding ID in the token, thus cryptographically binding the token to TLS connections between that particular client and server, and inoculating the token against abuse (reuse, attempted impersonation, etc.) by attackers.
While the Token Binding protocol [RFC8471] defines a message format for establishing a Token Binding ID, it does not specify how this message is embedded in higher-level protocols. The purpose of this specification is to define how TokenBindingMessages are embedded in HTTP (both versions 1.1 [RFC7230] and 2 [RFC7540]). Note that TokenBindingMessages are only defined if the underlying transport uses TLS. This means that Token Binding over HTTP is only defined when HTTP is layered on top of TLS (commonly referred to as HTTPS [RFC2818]).
HTTP clients establish a Token Binding ID with a server by including a special HTTP header field in HTTP requests. The HTTP header field value is a base64url-encoded TokenBindingMessage.
A TokenBindingMessage allows a client to establish multiple Token Binding IDs with the server by including multiple TokenBinding structures. By default, a client will establish a Provided Token Binding ID with the server, indicating a Token Binding ID that the client will persistently use with the server. Under certain conditions, the client can also include a Referred Token Binding ID in the TokenBindingMessage, indicating a Token Binding ID that the client is using with a different server than the one that the TokenBindingMessage is sent to. This is useful in federation scenarios.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
Once a client and server have negotiated the Token Binding protocol with HTTP/1.1 or HTTP/2 (see [RFC8471] and [RFC8472]), clients MUST include a Sec-Token-Binding header field in their HTTP requests and MUST include only one such header field per HTTP request. Also, the Sec-Token-Binding header field MUST NOT be included in HTTP responses. The ABNF of the Sec-Token-Binding header field is (per the style of [RFC7230]; see also Section 8.3 of [RFC7231]):
Sec-Token-Binding = EncodedTokenBindingMessage
The header field name is Sec-Token-Binding, and its single value, EncodedTokenBindingMessage, is a base64url encoding of a single TokenBindingMessage, as defined in [RFC8471]. The base64url encoding uses the URL and filename safe character set described in Section 5 of [RFC4648], with all trailing padding characters (i.e., "=") omitted and without the inclusion of any line breaks, whitespace, or other additional characters.
For example:
Sec-Token-Binding: AIkAAgBBQFzK4_bhAqLDwRQxqJWte33d7hZ0hZWHwk-miKPg4E\
9fcgs7gBPoz-9RfuDfN9WCw6keHEw1ZPQMGs9CxpuHm-YAQM_j\ aOwwej6a-cQBGU7CJpUHOvXG4VvjNq8jDsvta9Y8_bPEPj25Gg\ mKiPjhJEtZA6mJ_9SNifLvVBTi7fR9wSAAAA
(Note that the backslashes and line breaks are provided to ease readability; they are not part of the actual encoded message.)
If the server receives more than one Sec-Token-Binding header field in an HTTP request, then the server MUST reject the message with a 400 (Bad Request) HTTP status code. Additionally, the Sec-Token-Binding header field:
o SHOULD NOT be stored by origin servers on PUT requests,
o MAY be listed by a server in a Vary response header field, and
o MUST NOT be used in HTTP trailers.
The TokenBindingMessage MUST contain exactly one TokenBinding structure with a TokenBindingType value of provided_token_binding, which MUST be signed with the Token Binding private key used by the client for connections between itself and the server that the HTTP request is sent to (clients use different Token Binding key pairs for different servers; see Section 2.1 below). The Token Binding ID
The TokenBindingMessage MAY also contain exactly one TokenBinding structure with a TokenBindingType value of referred_token_binding, as specified in Section 5.3. In addition to the latter, or rather than the latter, the TokenBindingMessage MAY contain other TokenBinding structures. This is specific to the use case in question; such use cases are outside the scope of this specification.
A TokenBindingMessage is validated by the server as described in Section 4.2 ("Server Processing Rules") of [RFC8471]. If validation fails and a Token Binding is rejected, any associated bound tokens MUST also be rejected by the server. HTTP requests containing invalid tokens MUST be rejected. In this case, the server application MAY return HTTP status code 400 (Bad Request) or proceed with an application-specific "invalid token" response (e.g., directing the client to re-authenticate and present a different token), or terminate the connection.
In HTTP/2, the client SHOULD use header compression [RFC7541] to avoid the overhead of repeating the same header field in subsequent HTTP requests.
HTTPS is used in conjunction with various application protocols and application contexts, in various ways. For example, general-purpose web browsing is one such HTTP-based application context. Within that context, HTTP cookies [RFC6265] are typically utilized for state management, including client authentication. A related, though distinct, example of other HTTP-based application contexts is where OAuth tokens [RFC6749] are utilized to manage authorization for third-party application access to resources. The token-scoping rules of these two examples can differ: the scoping rules for cookies are concisely specified in [RFC6265], whereas OAuth is a framework and defines various token types with various scopings, some of which are determined by the encompassing application.
The scoping of Token Binding key pairs generated by web browsers for the purpose of binding HTTP cookies MUST be no wider than the granularity of a "registered domain" (also known as "effective top-level domain + 1", or "eTLD+1"). An origin's "registered domain" is the origin's host's public suffix plus the label to its left (where the term "public suffix" is defined in the "NOTE:" paragraph in Section 5.3 of [RFC6265] as "a domain that is controlled by a public registry"). For example, for "https://www.example.com", the public suffix (eTLD) is "com", and the registered domain (eTLD+1) is "example.com". User Agents SHOULD use an up-to-date public suffix list, such as the one maintained by Mozilla [PSL].
This means that in practice the scope of a Token Binding key pair is no larger than the scope of a cookie allowed by a web browser. If a web browser restricts cookies to a narrower scope than registered domains, the scope of Token Binding key pairs MAY also be narrower. This applies to the use of Token Binding key pairs in first-party use cases, as well as in federation use cases defined in this specification (Section 5).
Key pairs used to bind other application tokens, such as OAuth tokens or "OpenID Connect" ID Tokens [OpenID.Core], SHOULD adhere to the above eTLD+1 scoping requirement for those tokens being employed in first-party or federation scenarios. Applications other than web browsers MAY use different key-pair scoping rules. See also Section 8.1 below.
Scoping rules for other HTTP-based application contexts are outside the scope of this specification.
Token Binding over HTTP/1.1 [RFC7230] can be performed in combination with TLS renegotiation. In this case, renegotiation MUST only occur between a client's HTTP request and the server's response, the client MUST NOT send any pipelined requests, and the client MUST NOT initiate renegotiation. (That is, the client may only send a renegotiation ClientHello in response to the server's HelloRequest.) These conditions ensure that both the client and the server can clearly identify which TLS Exported Keying Material value [RFC5705] to use when generating or verifying the TokenBindingMessage. This also prevents a TokenBindingMessage from being split across TLS renegotiation boundaries due to TLS message fragmentation; see Section 6.2.1 of [RFC5246].
In a first-party use case (also known as a "same-site" use case), an HTTP server issues a security token such as a cookie (or similar) to a client and expects the client to return the security token at a later time, e.g., in order to authenticate. Binding the security token to the TLS connection between the client and the server protects the security token from misuse, since the server can detect if the security token is replayed inappropriately, e.g., over other TLS connections.
See Section 5 of [RFC8471] for general guidance regarding the binding of security tokens and their subsequent validation.
For privacy reasons, clients use different Token Binding key pairs to establish Provided Token Binding IDs with different servers. As a result, a server cannot bind a security token (such as an OAuth token or an OpenID Connect ID Token [OpenID.Core]) to a TLS connection that the client has with a different server. This is, however, a common requirement in federation scenarios: for example, an Identity Provider may wish to issue an identity token to a client and cryptographically bind that token to the TLS connection between the client and a Relying Party.
In this section, we describe mechanisms to achieve this. The common idea among these mechanisms is that a server (called the "Token Consumer" in this document) signals to the client that it should reveal the Provided Token Binding ID that is used between the client and itself to another server (called the "Token Provider" in this document). Also common across the mechanisms is how the Token Binding ID is revealed to the Token Provider: the client uses the Token Binding protocol [RFC8471] and includes a TokenBinding structure in the Sec-Token-Binding HTTP header field defined above. What differs between the various mechanisms is how the Token Consumer signals to the client that it should reveal the Token Binding ID to the Token Provider. Below, we specify one such mechanism, which is suitable for redirect-based interactions between Token Consumers and Token Providers.
In a federated sign-on protocol, an Identity Provider issues an identity token to a client, which sends the identity token to a Relying Party to authenticate itself. Examples of this include OpenID Connect (in which the identity token is called an "ID Token") and the Security Assertion Markup Language (SAML) [OASIS.saml-core-2.0-os] (in which the identity token is a SAML assertion).
To better protect the security of the identity token, the Identity Provider may wish to bind the identity token to the TLS connection between the client and the Relying Party, thus ensuring that only said client can use the identity token. The Relying Party will compare the Token Binding ID (or a cryptographic hash of it) in the identity token with the Token Binding ID (or a hash thereof) of the TLS connection between this Relying Party and the client.
This is an example of a federation scenario, which more generally can be described as follows:
o A Token Consumer causes the client to issue a token request to the Token Provider. The goal is for the client to obtain a token and then use it with the Token Consumer.
o The client delivers the token request to the Token Provider.
o The Token Provider issues the token. The token is issued for the specific Token Consumer who requested it (thus preventing malicious Token Consumers from using tokens with other Token Consumers). The token is, however, typically a bearer token, meaning that any client can use it with the Token Consumer -- not just the client to which it was issued.
o Therefore, in the previous step, the Token Provider may want to include in the token the Token Binding ID (or a cryptographic hash of it) that the client uses when communicating with the Token Consumer, thus binding the token to the client's Token Binding key pair. The client proves possession of the private key when communicating with the Token Consumer through the Token Binding protocol [RFC8471] and uses the corresponding public key of this key pair as a component of the Token Binding ID. Comparing the Token Binding ID from the token to the Token Binding ID established with the client allows the Token Consumer to verify that the token was sent to it by the legitimate client.
o To allow the Token Provider to include the Token Binding ID in the token, the Token Binding ID between the client and the Token Consumer must therefore be communicated to the Token Provider along with the token request. Communicating a Token Binding ID involves proving possession of a private key and is described in the Token Binding protocol [RFC8471].
The client will perform this last operation only if the Token Consumer requests the client to do so.
Below, we specify how Token Consumers can signal this request in redirect-based federation protocols. Note that this assumes that the federated sign-on flow starts at the Token Consumer or, at the very least, includes a redirect from the Token Consumer to the Token Provider. It is outside the scope of this document to specify similar mechanisms for flows that do not include such redirects.
When a Token Consumer redirects the client to a Token Provider as a means to deliver the token request, it SHOULD include an Include-Referred-Token-Binding-ID HTTP response header field in its HTTP response. The ABNF of the Include-Referred-Token-Binding-ID header is (per the style of [RFC7230]; see also Section 8.3 of [RFC7231]):
Include-Referred-Token-Binding-ID = "true"
Where the header field name is "Include-Referred-Token-Binding-ID" and the field value of "true" is case insensitive. For example:
Include-Referred-Token-Binding-ID: true
Including this response header field signals to the client that it should reveal, to the Token Provider, the Token Binding ID used between itself and the Token Consumer. In the absence of this response header field, the client will not disclose any information about the Token Binding used between the client and the Token Consumer to the Token Provider.
As illustrated in Section 5.5, when a client receives this header field, it should take the TokenBindingID [RFC8471] of the provided TokenBinding from the referrer and create a referred TokenBinding with it to include in the TokenBindingMessage in the redirect request. In other words, the Token Binding message in the redirect request to the Token Provider now includes one provided binding and one referred binding, the latter constructed from the binding between the client and the Token Consumer.
When a client receives the Include-Referred-Token-Binding-ID header, it includes the referred Token Binding even if both the Token Provider and the Token Consumer fall under the same eTLD+1 and the provided and Referred Token Binding IDs are the same.
The referred Token Binding is sent only in the initial request resulting from the HTTP response that included the Include-Referred-Token-Binding-ID header. Should the response to that initial request be a further redirect, the original referred Token Binding is no longer included in subsequent requests. (A new referred Token Binding may be included if the redirecting endpoint itself responded with an Include-Referred-Token-Binding-ID response header.)
This header field only has meaning if the HTTP status code is a redirection code (300-399) and MUST be ignored by the client for any other status codes. As described in Section 2, if the client supports the Token Binding protocol and has negotiated the Token Binding protocol with both the Token Consumer and the Token Provider, it sends the Sec-Token-Binding header field to the Token Provider with each HTTP request.
The TokenBindingMessage included in the redirect request to the Token Provider SHOULD contain a TokenBinding with a TokenBindingType value of referred_token_binding. If included, this TokenBinding MUST be signed with the Token Binding private key used by the client for connections between itself and the Token Consumer (more specifically, the server that issued the Include-Referred-Token-Binding-ID response header field). The Token Binding ID established by this TokenBinding is called a "Referred Token Binding ID".
As described above, the TokenBindingMessage MUST additionally contain a Provided Token Binding ID, i.e., a TokenBinding structure with a TokenBindingType value of provided_token_binding, which MUST be signed with the Token Binding private key used by the client for connections between itself and the Token Provider (more specifically, the server that the token request is being sent to).
If, for some deployment-specific reason, the initial Token Provider ("TP1") needs to redirect the client to another Token Provider ("TP2") rather than directly back to the Token Consumer, it can be accommodated using the header fields defined in this specification in the following fashion ("the redirect-chain approach"):
Initially, the client is redirected to TP1 by the Token Consumer ("TC"), as described above. Upon receiving a client's request that contains a TokenBindingMessage that in turn contains both provided and referred TokenBindings (for TP1 and TC, respectively), TP1 responds to the client with a redirect response that (1) contains the Include-Referred-Token-Binding-ID header field and (2) directs the client to send a request to TP2. This causes the client to follow the same pattern and send a request containing a TokenBindingMessage that contains both provided and referred TokenBindings (for TP2 and TP1, respectively) to TP2. Note that this pattern can continue to additional Token Providers. In this case, TP2 issues a security token, bound to the client's TokenBinding with TP1, and sends a redirect response to the client pointing to TP1. TP1 in turn constructs a security token for the Token Consumer, bound to the TC's referred TokenBinding that had been conveyed earlier, and sends a redirect response pointing to the TC, containing the bound security token, to the client.
The above is intended as only a non-normative example. Details are specific to deployment contexts. Other approaches are possible but are outside the scope of this specification.
The TLS extension for Token Binding protocol negotiation [RFC8472] allows the server and client to negotiate the parameters (signature algorithm, length) of the Token Binding key pair. It is possible that the Token Binding ID used between the client and the Token Consumer, and the Token Binding ID used between the client and the Token Provider, use different key parameters. The client MUST use the key parameters negotiated with the Token Consumer in the referred_token_binding TokenBinding of the TokenBindingMessage, even if those key parameters are different from the ones negotiated with the server that the header field is sent to.
Token Providers SHOULD support all the Token Binding key parameters specified in [RFC8471]. If a Token Provider does not support the key parameters specified in the referred_token_binding TokenBinding in the TokenBindingMessage, it MUST NOT issue a bound token.
The diagram below shows a typical HTTP redirect-based web browser single sign-on (SSO) profile (Section 4.1 of [OASIS.saml-prof-2.0-os]) (no artifact, no callbacks), featuring the binding of, for example, a TLS Token Binding ID into an OpenID Connect ID Token.
Legend:
HTTPS-based applications may have multi-party use cases other than, or in addition to, the HTTP redirect-based signaling and conveyance of referred Token Bindings, as presented above in Section 5.3.
Thus, Token Binding implementations should provide APIs for such applications to generate Token Binding messages containing Token Binding IDs of various application-specified Token Binding types, to be conveyed by the Sec-Token-Binding header field.
However, Token Binding implementations MUST only convey Token Binding IDs to servers if signaled to do so by an application. Signaling mechanisms other than the Include-Referred-Token-Binding-ID HTTP response header field are possible, but these mechanisms are outside the scope of this specification.
NOTE: See Section 8 ("Privacy Considerations") for privacy guidance
regarding the use of this functionality.
The goal of the federated Token Binding mechanisms is to prevent attackers from exporting and replaying tokens used in protocols between the client and the Token Consumer, thereby impersonating legitimate users and gaining access to protected resources. Although bound tokens can still be replayed by any malware present in clients (which may be undetectable to a server), in order to export bound tokens to other machines and successfully replay them, attackers also need to export the corresponding Token Binding private keys. Token Binding private keys are therefore high-value assets and SHOULD be strongly protected, ideally by generating them in a hardware security module that prevents key export.
This consideration is a special case of the scenario described in Section 7.1 ("Security Token Replay") of [RFC8471].
The purpose of the Token Binding protocol is to convince the server that the client that initiated the TLS connection controls a certain key pair. For the server to correctly draw this conclusion after processing the Sec-Token-Binding header field, certain secrecy and integrity requirements must be met.
For example, the client must keep its Token Binding private key secret. If the private key is not secret, then another actor in the system could create a valid Token Binding header field and thereby impersonate the client. This can render the main purpose of the protocol -- to bind bearer tokens to certain clients -- moot. Consider, for example, an attacker who obtained (perhaps through a network intrusion) an authentication cookie that a client uses with a certain server. Consider further that the server bound that cookie to the client's Token Binding ID precisely to thwart misuse of the cookie. If the attacker were to come into possession of the client's private key, they could then establish a TLS connection with the server and craft a Sec-Token-Binding header field that matches the binding present in the cookie, thus successfully authenticating as the client and gaining access to the client's data at the server. The Token Binding protocol, in this case, did not successfully bind the cookie to the client.
Likewise, we need integrity protection of the Sec-Token-Binding header field. A client should not be tricked into sending to a server a Sec-Token-Binding header field that contains Token Bindings signed with any Token Binding keys that the client does not control. Consider an attacker A that somehow has knowledge of the Exported Keying Material (EKM) for a TLS connection between a client C and a server S. (While that is somewhat unlikely, it is also not entirely out of the question, since the client might not treat the EKM as a secret -- after all, a pre-image-resistant hash function has been applied to the TLS master secret, making it impossible for someone knowing the EKM to recover the TLS master secret. Such considerations might lead some clients to not treat the EKM as a secret.) Such an attacker A could craft a Sec-Token-Binding header field with A's key pair over C's EKM. If the attacker could now trick C into sending such a header field to S, it would appear to S as if C controls a certain key pair, when in fact it does not (the attacker A controls the key pair).
If A has a pre-existing relationship with S (e.g., perhaps has an account on S), it now appears to the server S as if A is connecting to it, even though it is really C. (If the server S does not simply use Token Binding IDs to identify clients but also uses bound authentication cookies, then A would also have to trick C into sending one of A's cookies to S, which it can do through a variety of means -- inserting cookies through JavaScript APIs, setting cookies through related-domain attacks, etc.) In other words, in this scenario, A can trick C into logging into A's account on S. This could lead to a loss of privacy for C, since A presumably has some other way to also access the account and can thus indirectly observe C's behavior (for example, if S has a feature that lets account holders see their activity history on S).
Therefore, we need to protect the integrity of the Sec-Token-Binding header field. One eTLD+1 should not be able to set the Sec-Token-Binding header field (through a Document Object Model (DOM) API [W3C.REC-DOM-Level-3-Core-20040407] or otherwise) that the User Agent uses with another eTLD+1. Employing the "Sec-" header field prefix helps to meet this requirement by denoting the header field name as a "forbidden header name"; see [fetch-spec].
As explained above, in a federated sign-on scenario, a client will prove possession of two different Token Binding private keys to a Token Provider: one private key corresponds to the "provided" Token Binding ID (which the client normally uses with the Token Provider), and the other is the Token Binding private key corresponding to the "referred" Token Binding ID (which the client normally uses with the Token Consumer). The Token Provider is expected to issue a token that is bound to the Referred Token Binding ID.
Both proofs (that of the provided Token Binding private key and that of the referred Token Binding private key) are necessary. To show this, consider the following scenario:
o The client has an authentication token with the Token Provider that is bound to the client's Token Binding ID used with that Token Provider.
o The client wants to establish a secure (i.e., free of men-in-the- middle) authenticated session with the Token Consumer but has not yet done so (in other words, we are about to run the federated sign-on protocol).
o A man-in-the-middle is allowed to intercept the connection between the client and the Token Consumer or between the client and the Token Provider (or both).
The goal is to detect the presence of the man-in-the-middle in these scenarios.
First, consider a man-in-the-middle between the client and the Token Provider. Recall that we assume that the client possesses a bound authentication token (e.g., cookie) for the Token Provider. The man-in-the-middle can intercept and modify any message sent by the client to the Token Provider and any message sent by the Token Provider to the client. (This means, among other things, that the man-in-the-middle controls the JavaScript running at the client in the origin of the Token Provider.) It is not, however, in possession of the client's Token Binding private key. Therefore, it can choose to either (1) replace the Token Binding ID in requests from the client to the Token Provider and create a Sec-Token-Binding header field that matches the TLS connection between the man-in-the-middle and the Token Provider or (2) leave the Sec-Token-Binding header field unchanged. If it chooses the latter, the signature in the Token Binding message (created by the original client on the EKM for the connection between the client and the man-in-the-middle) will not match a signature on the EKM between the man-in-the-middle and the Token Provider. If it chooses the former (and creates its own signature, using its own Token Binding private key, over the EKM for the connection between itself, the man-in-the-middle, and the Token Provider), then the Token Binding message will match the connection between the man-in-the-middle and the Token Provider, but the Token Binding ID in the message will not match the Token Binding ID that the client's authentication token is bound to. Either way, the man-in-the-middle is detected by the Token Provider, but only if the proof of possession of the provided Token Binding private key is required in the protocol (as is done above).
Next, consider the presence of a man-in-the-middle between the client and the Token Consumer. That man-in-the-middle can intercept and modify any message sent by the client to the Token Consumer and any message sent by the Token Consumer to the client. The Token Consumer is the party that redirects the client to the Token Provider. In this case, the man-in-the-middle controls the redirect URL and can tamper with any redirect URL issued by the Token Consumer (as well as with any JavaScript running in the origin of the Token Consumer). The goal of the man-in-the-middle is to trick the Token Provider into issuing a token bound to its Token Binding ID and not to the Token Binding ID of the legitimate client. To thwart this goal of the man-in-the-middle, the client's Referred Token Binding ID must be communicated to the Token Provider in a manner that cannot be affected by the man-in-the-middle (who, as mentioned above, can modify redirect URLs and JavaScript at the client). Including the referred TokenBinding structure in the Sec-Token-Binding header field (as opposed to, say, including the Referred Token Binding ID in an application-level message as part of the redirect URL) is one way to assure that the man-in-the-middle between the client and the Token Consumer cannot affect the communication of the Referred Token Binding ID to the Token Provider.
Therefore, the Sec-Token-Binding header field in the federated sign-on use case contains both a proof of possession of the provided Token Binding key and a proof of possession of the referred Token Binding key.
Note that the presence of Token Binding does not relieve the Token Provider and Token Consumer from performing various checks to ensure the security of clients during the use of federated sign-on protocols. These include the following:
o The Token Provider should not issue tokens to Token Consumers that have been shown to act maliciously. To aid in this, the federation protocol should identify the Token Consumer to the Token Provider (e.g., through OAuth client IDs or similar mechanisms), and the Token Provider should ensure that tokens are indeed issued to the Token Consumer identified in the token request (e.g., by verifying that the redirect URI is associated with the OAuth client ID).
o The Token Consumer should verify that the tokens were issued for it and not for some other Token Consumer. To aid in this, the federation protocol should include an audience parameter in the token response or apply equivalent mechanisms (the implicit OAuth flow requires Token Consumers to identify themselves when they exchange OAuth authorization codes for OAuth refresh tokens, leaving it up to the Token Provider to verify that the OAuth authorization was delivered to the correct Token Consumer).
Clients use different Token Binding key pairs for different servers, so as to not allow Token Binding to become a tracking tool across different servers. However, the scoping of the Token Binding key pairs to servers varies according to the scoping rules of the application protocol (Section 4.1 of [RFC8471]).
In the case of HTTP cookies, servers may use Token Binding to secure their cookies. These cookies can be attached to any subdomain of effective top-level domains (eTLDs), and clients therefore should use the same Token Binding key pair across such subdomains. This will ensure that any server capable of receiving the cookie will see the same Token Binding ID from the client and thus be able to verify the Token Binding of the cookie. See Section 2.1 above.
If the client application is not a web browser, it may have additional knowledge about the relationship between different servers. For example, the client application might be aware of the fact that two servers play the roles of Relying Party and Identity Provider, respectively, in a federated sign-on protocol and that they therefore share the identity of the user. In such cases, it is permissible to use different Token Binding key-pair scoping rules, such as using the same Token Binding key pair for both the Relying Party and the Identity Provider. Absent such special knowledge, conservative key-pair scoping rules should be used, assuring that clients use different Token Binding key pairs with different servers.
Token Binding key pairs do not have an expiration time. This means that they can potentially be used by a server to track a user for an extended period of time (similar to a long-lived cookie). HTTPS clients such as web User Agents SHOULD therefore provide a user interface for discarding Token Binding key pairs (similar to the controls provided for deleting cookies).
If a User Agent provides modes such as private browsing mode in which the user is promised that browsing state such as cookies are discarded after the session is over, the User Agent MUST also discard Token Binding key pairs from such modes after the session is over. Generally speaking, users should be given the same level of control over the lifetime of Token Binding key pairs as they have over cookies or other potential tracking mechanisms.
An application's various communicating endpoints that receive Token Binding IDs for TLS connections other than their own obtain information about the application's other TLS connections. (In this context, "an application" is a combination of client-side and server-side components, communicating over HTTPS, where the client side may be web-browser-based, native-application-based, or both.) These other Token Binding IDs can serve as correlation handles for the endpoints of the other connections. If the receiving endpoints are otherwise aware of these other connections, then no additional information is being exposed. For instance, if in a redirect-based federation protocol the Identity Provider and Relying Party already possess URLs for one another, then also having Token Binding IDs for these connections does not provide additional correlation information. If not, by providing the other Token Binding IDs, additional information is then exposed that can be used to correlate the other endpoints. In such cases, a privacy analysis of enabled correlations and their potential privacy impacts should be performed as part of the application design decisions of how, and whether, to utilize Token Binding.
Also, Token Binding implementations must take care to only reveal Token Binding IDs to other endpoints if signaled to do so by the application associated with a Token Binding ID; see Section 6 ("Implementation Considerations").
Finally, care should be taken to ensure that unrelated applications do not obtain information about each other's Token Bindings. For instance, a Token Binding implementation shared between multiple applications on a given system should prevent unrelated applications from obtaining each other's Token Binding information. This may be accomplished by using techniques such as application isolation and key segregation, depending upon system capabilities.
Below is the Internet Assigned Numbers Authority (IANA) "Permanent Message Header Field Names" registration information per [RFC3864].
[PSL]
Mozilla, "Public Suffix List", <https://publicsuffix.org/>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC2818]
Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/RFC2818, May 2000, <https://www.rfc-editor.org/info/rfc2818>.
[RFC3864]
Klyne, G., Nottingham, M., and J. Mogul, "Registration Procedures for Message Header Fields", BCP 90, RFC 3864, DOI 10.17487/RFC3864, September 2004, <https://www.rfc-editor.org/info/rfc3864>.
[RFC4648]
Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006, <https://www.rfc-editor.org/info/rfc4648>.
[RFC5246]
Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/RFC5246, August 2008, <https://www.rfc-editor.org/info/rfc5246>.
[RFC5705]
Rescorla, E., "Keying Material Exporters for Transport Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705, March 2010, <https://www.rfc-editor.org/info/rfc5705>.
[RFC6265]
Barth, A., "HTTP State Management Mechanism", RFC 6265, DOI 10.17487/RFC6265, April 2011, <https://www.rfc-editor.org/info/rfc6265>.
[RFC7230]
Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014, <https://www.rfc-editor.org/info/rfc7230>.
[RFC7231]
Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content", RFC 7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-editor.org/info/rfc7231>.
[RFC7541]
Peon, R. and H. Ruellan, "HPACK: Header Compression for HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015, <https://www.rfc-editor.org/info/rfc7541>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8471]
Popov, A., Ed., Nystroem, M., Balfanz, D., and J. Hodges, "The Token Binding Protocol Version 1.0", RFC 8471, DOI 10.17487/RFC8471, October 2018, <https://www.rfc-editor.org/info/rfc8471>.
[RFC8472]
Popov, A., Ed., Nystroem, M., and D. Balfanz, "Transport Layer Security (TLS) Extension for Token Binding Protocol Negotiation", RFC 8472, DOI 10.17487/RFC8472, October 2018, <https://www.rfc-editor.org/info/rfc8472>.
[fetch-spec]
WhatWG, "Fetch", Living Standard, <https://fetch.spec.whatwg.org/>.
[OASIS.saml-core-2.0-os]
Cantor, S., Kemp, J., Philpott, R., and E. Maler, "Assertions and Protocols for the OASIS Security Assertion Markup Language (SAML) V2.0", OASIS Standard saml-core-2.0-os, March 2005, <http://docs.oasis-open.org/ security/saml/v2.0/saml-core-2.0-os.pdf>.
[OASIS.saml-prof-2.0-os]
Hughes, J., Ed., Cantor, S., Ed., Hodges, J., Ed., Hirsch, F., Ed., Mishra, P., Ed., Philpott, R., Ed., and E. Maler, Ed., "Profiles for the OASIS Security Assertion Markup Language (SAML) V2.0", OASIS Standard OASIS.saml-profiles-2.0-os, March 2005, <http://docs.oasis-open.org/security/ saml/v2.0/saml-profiles-2.0-os.pdf>.
[OpenID.Core]
Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and C. Mortimore, "OpenID Connect Core 1.0 incorporating errata set 1", November 2014, <http://openid.net/specs/openid-connect-core-1_0.html>.
[RFC6749]
Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://www.rfc-editor.org/info/rfc6749>.
[RFC7540]
Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI 10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/info/rfc7540>.
[TOKENBIND-TLS13]
Harper, N., "Token Binding for Transport Layer Security (TLS) Version 1.3 Connections", Work in Progress, draft-ietf-tokbind-tls13-01, May 2018.
[W3C.REC-DOM-Level-3-Core-20040407]
Le Hors, A., Ed., Le Hegaret, P., Ed., Wood, L., Ed., Nicol, G., Ed., Robie, J., Ed., Champion, M., Ed., and S. Byrne, Ed., "Document Object Model (DOM) Level 3 Core Specification", World Wide Web Consortium Recommendation REC-DOM-Level-3-Core-20040407, April 2004, <https://www.w3.org/TR/2004/ REC-DOM-Level-3-Core-20040407>.
This document incorporates comments and suggestions offered by Eric Rescorla, Gabriel Montenegro, Martin Thomson, Vinod Anupam, Anthony Nadalin, Michael B. Jones, Bill Cox, Brian Campbell, and others.
This document was produced under the chairmanship of John Bradley and Leif Johansson. The area directors included Eric Rescorla, Kathleen Moriarty, and Stephen Farrell.
Authors' Addresses
Email: andreipo@microsoft.com
Email: mnystrom@microsoft.com
Email: balfanz@google.com
Email: nharper@google.com
Email: Jeff.Hodges@KingsMountain.com
draft-ietf-oauth-token-binding-08 - OAuth 2.0 Token Binding
OAuth Working Group
Internet-Draft
Intended status: Standards Track
Expires: April 22, 2019
M. Jones
Microsoft
B. Campbell
Ping Identity
J. Bradley
Yubico
W. Denniss
Google
October 19, 2018
draft-ietf-oauth-token-binding-08
This specification enables OAuth 2.0 implementations to apply Token Binding to Access Tokens, Authorization Codes, Refresh Tokens, JWT Authorization Grants, and JWT Client Authentication. This cryptographically binds these tokens to a client's Token Binding key pair, possession of which is proven on the TLS connections over which the tokens are intended to be used. This use of Token Binding protects these tokens from man-in-the-middle and token export and replay attacks.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on April 22, 2019.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This specification enables OAuth 2.0 [RFC6749] implementations to apply Token Binding (TLS Extension for Token Binding Protocol Negotiation [RFC8472], The Token Binding Protocol Version 1.0 [RFC8471] and Token Binding over HTTP [RFC8473]) to Access Tokens, Authorization Codes, Refresh Tokens, JWT Authorization Grants, and JWT Client Authentication. This cryptographically binds these tokens to a client's Token Binding key pair, possession of which is proven on the TLS connections over which the tokens are intended to be used. This use of Token Binding protects these tokens from man-in-the- middle and token export and replay attacks.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
This specification uses the terms "Access Token", "Authorization Code", "Authorization Endpoint", "Authorization Server", "Client", "Protected Resource", "Refresh Token", and "Token Endpoint" defined by OAuth 2.0 [RFC6749], the terms "Claim" and "JSON Web Token (JWT)" defined by JSON Web Token (JWT) [JWT], the term "User Agent" defined by RFC 7230 [RFC7230], and the terms "Provided", "Referred", "Token Binding" and "Token Binding ID" defined by Token Binding over HTTP [RFC8473].
Token Binding of refresh tokens is a straightforward first-party scenario, applying term "first-party" as used in Token Binding over HTTP [RFC8473]. It cryptographically binds the refresh token to the client's Token Binding key pair, possession of which is proven on the TLS connections between the client and the token endpoint. This case is straightforward because the refresh token is both retrieved by the client from the token endpoint and sent by the client to the token endpoint. Unlike the federation use cases described in Token Binding over HTTP [RFC8473], Section 4, and the access token case described in the next section, only a single TLS connection is involved in the refresh token case.
Token Binding a refresh token requires that the authorization server do two things. First, when refresh token is sent to the client, the authorization server needs to remember the Provided Token Binding ID and remember its association with the issued refresh token. Second, when a token request containing a refresh token is received at the token endpoint, the authorization server needs to verify that the Provided Token Binding ID for the request matches the remembered Token Binding ID associated with the refresh token. If the Token Binding IDs do not match, the authorization server should return an error in response to the request.
How the authorization server remembers the association between the refresh token and the Token Binding ID is an implementation detail that beyond the scope of this specification. Some authorization servers will choose to store the Token Binding ID (or a cryptographic hash of it, such a SHA-256 hash [SHS]) in the refresh token itself, provided it is integrity-protected, thus reducing the amount of state to be kept by the server. Other authorization servers will add the Token Binding ID value (or a hash of it) to an internal data structure also containing other information about the refresh token, such as grant type information. These choices make no difference to the client, since the refresh token is opaque to it.
This section provides an example of what the interactions around a Token Bound refresh token might look like, along with some details of the involved processing. Token Binding of refresh tokens is most useful for native application clients so the example has protocol elements typical of a native client flow. Extra line breaks in all examples are for display purposes only.
A native application client makes the following access token request with an authorization code using a TLS connection where Token Binding has been negotiated. A PKCE "code_verifier" is included because use of PKCE is considered best practice for native application clients [BCP212]. The base64url-encoded representation of the exported keying material (EKM) from that TLS connection is "p6ZuSwfl6pIe8es5KyeV76T4swZmQp0_awd27jHfrbo", which is needed to validate the Token Binding Message.
grant_type=authorization_code&code=4bwcZesc7Xacc330ltc66Wxk8EAfP9j2
&code_verifier=2x6_ylS390-8V7jaT9wj.8qP9nKmYCf.V-rD9O4r_1 &client_id=example-native-client-id
Figure 1: Initial Request with Code
A refresh token is issued in response to the prior request. Although it looks like a typical response to the client, the authorization server has bound the refresh token to the Provided Token Binding ID from the encoded Token Binding message in the "Sec-Token-Binding" header of the request. In this example, that binding is done by saving the Token Binding ID alongside other information about the refresh token in some server side persistent storage. The base64url- encoded representation of that Token Binding ID is "AgBBQGto7hHRR0Y5n kOWqc9KNfwW95dEFmSI_tCZ_Cbl7LWlt6Xjp3DbjiDJavGFiKP2HV_2JSE42VzmKOVVV8 m7eqA".
Figure 2: Successful Response
When the access token expires, the client requests a new one with a refresh request to the token endpoint. In this example, the request is made on a new TLS connection so the EKM (base64url-encoded: "va- 84Ukw4Zqfd7uWOtFrAJda96WwgbdaPDX2knoOiAE") and signature in the Token Binding Message are different than in the initial request.
refresh_token=ACClZEIQTjW9arT9GOJGGd7QNwqOMmUYfsJTiv8his4
&grant_type=refresh_token&client_id=example-native-client-id
Figure 3: Refresh Request
However, because the Token Binding ID is long-lived and may span multiple TLS sessions and connections, it is the same as in the initial request. That Token Binding ID is what the refresh token is bound to, so the authorization server is able to verify it and issue a new access token.
Figure 4: Successful Response
Token Binding for access tokens cryptographically binds the access token to the client's Token Binding key pair, possession of which is proven on the TLS connections between the client and the protected resource. Token Binding is applied to access tokens in a similar manner to that described in Token Binding over HTTP [RFC8473], Section 4 (Federation Use Cases). It also builds upon the mechanisms for Token Binding of ID Tokens defined in OpenID Connect Token Bound Authentication 1.0 [OpenID.TokenBinding].
In the OpenID Connect [OpenID.Core] use case, HTTP redirects are used to pass information between the identity provider and the relying party; this HTTP redirect makes the Token Binding ID of the relying party available to the identity provider as the Referred Token Binding ID, information about which is then added to the ID Token. No such redirect occurs between the authorization server and the protected resource in the access token case; therefore, information about the Token Binding ID for the TLS connection between the client and the protected resource needs to be explicitly communicated by the client to the authorization server to achieve Token Binding of the access token.
This information is passed to the authorization server using the Referred Token Binding ID, just as in the ID Token case. The only difference is that the client needs to explicitly communicate the Token Binding ID of the TLS connection between the client and the protected resource to the Token Binding implementation so that it is sent as the Referred Token Binding ID in the request to the authorization server. This functionality provided by Token Binding implementations is described in Implementation Considerations of Token Binding over HTTP [RFC8473], Section 6.
Note that to obtain this Token Binding ID, the client may need to establish a TLS connection between itself and the protected resource prior to making the request to the authorization server so that the Provided Token Binding ID for the TLS connection to the protected resource can be obtained. How the client retrieves this Token Binding ID from the underlying Token Binding API is implementation and operating system specific. An alternative, if supported, is for the client to generate a Token Binding key to use for the protected resource, use the Token Binding ID for that key, and then later use that key when the TLS connection to the protected resource is established.
For access tokens returned directly from the authorization endpoint, such as with the implicit grant defined in OAuth 2.0 [RFC6749], Section 4.2, the Token Binding ID of the client's TLS channel to the protected resource is sent with the authorization request as the Referred Token Binding ID in the "Sec-Token-Binding" header, and is used to Token Bind the access token.
Upon receiving the Referred Token Binding ID in an authorization request, the authorization server associates (Token Binds) the ID with the access token in a way that can be accessed by the protected resource. Such methods include embedding the Referred Token Binding ID (or a cryptographic hash of it) in the issued access token itself, possibly using the syntax described in Section 3.4, or through token introspection as described in Section 3.5. The method for associating the referred token binding ID with the access token is determined by the authorization server and the protected resource, and is beyond the scope for this specification.
This section provides an example of what the interactions around a Token Bound access token issued from the authorization endpoint might look like, along with some details of the involved processing. Extra line breaks in all examples are for display purposes only.
The client directs the user-agent to make the following HTTP request to the authorization endpoint. It is a typical authorization request that, because Token Binding was negotiated on the underlying TLS connection and the user-agent was signaled to reveal the Referred Token Binding, also includes the "Sec-Token-Binding" header with a Token Binding Message that contains both a Provided and Referred Token Binding. The base64url-encoded EKM from the TLS connection over which the request was made is "jI5UAyjs5XCPISUGQIwgcSrOiVIWq4fhLVIFTQ4nLxc".
Figure 5: Authorization Request
The authorization server issues an access token and delivers it to the client by redirecting the user-agent with the following HTTP response:
Figure 6: Authorization Response
The access token is bound to the Referred Token Binding ID from the authorization request, which when represented as a JWT, as described in Section 3.4, contains the SHA-256 hash of the Token Binding ID as the value of the "tbh" (token binding hash) member of the "cnf" (confirmation) claim. The confirmation claim portion of the JWT Claims Set is shown in the following figure.
Figure 7: Confirmation Claim
For access tokens returned from the token endpoint, the Token Binding ID of the client's TLS channel to the protected resource is sent as the Referred Token Binding ID in the "Sec-Token-Binding" header, and is used to Token Bind the access token. This applies to all the grant types from OAuth 2.0 [RFC6749] using the token endpoint, including, but not limited to the refresh and authorization code token requests, as well as some extension grants, such as JWT assertion authorization grants [RFC7523].
Upon receiving the Referred Token Binding ID in a token request, the authorization server associates (Token Binds) the ID with the access token in a way that can be accessed by the protected resource. Such methods include embedding the Referred Token Binding ID (or a cryptographic hash of it) in the issued access token itself, possibly using the syntax described in Section 3.4, or through token introspection as described in Section 3.5. The method for associating the referred token binding ID with the access token is determined by the authorization server and the protected resource, and is beyond the scope for this specification.
Note that if the request results in a new refresh token being generated, it can be Token bound using the Provided Token Binding ID, per Section 2.
This section provides an example of what the interactions around a Token Bound access token issued from the token endpoint might look like, along with some details of the involved processing. Extra line breaks in all examples are for display purposes only.
The client makes an access token request to the token endpoint and includes the "Sec-Token-Binding" header with a Token Binding Message that contains both Provided and Referred Token Binding IDs. The Provided Token Binding ID is used to validate the token binding of the refresh token in the request (and to Token Bind a new refresh token, if one is issued), and the Referred Token Binding ID is used to Token Bind the access token that is generated. The base64url- encoded EKM from the TLS connection over which the access token request was made is "4jTc5e1QpocqPTZ5l6jsb6pRP18IFKdwwPvasYjn1-E".
refresh_token=gZR_ZI8EAhLgWR-gWxBimbgZRZi_8EAhLgWRgWxBimbf
&grant_type=refresh_token&client_id=example-client-id
Figure 8: Access Token Request
The authorization server issues an access token bound to the Referred Token Binding ID and delivers it in a response the client.
Figure 9: Response
The access token is bound to the Referred Token Binding ID of the access token request, which when represented as a JWT, as described in Section 3.4, contains the SHA-256 hash of the Token Binding ID as the value of the "tbh" (token binding hash) member of the "cnf" (confirmation) claim. The confirmation claim portion of the JWT Claims Set of the access token is shown in the following figure.
Figure 10: Confirmation Claim
Upon receiving a token bound access token, the protected resource validates the binding by comparing the Provided Token Binding ID to the Token Binding ID for the access token. Alternatively, cryptographic hashes of these Token Binding ID values can be compared. If the values do not match, the resource access attempt MUST be rejected with an error.
For example, a protected resource request using the access token from Section 3.2.1 would look something like the following. The base64url-encoded EKM from the TLS connection over which the request was made is "7LsNP3BT1aHHdXdk6meEWjtSkiPVLb7YS6iHp-JXmuE". The protected resource validates the binding by comparing the Provided Token Binding ID from the "Sec-Token-Binding" header to the token binding hash confirmation of the access token. Extra line breaks in the example are for display purposes only.
Figure 11: Protected Resource Request
If the access token is represented as a JWT, the token binding information SHOULD be represented in the same way that it is in token bound OpenID Connect ID Tokens [OpenID.TokenBinding]. That specification defines the new JWT Confirmation Method RFC 7800 [RFC7800] member "tbh" (token binding hash) to represent the SHA-256 hash of a Token Binding ID in an ID Token. The value of the "tbh" member is the base64url encoding of the SHA-256 hash of the Token Binding ID. All trailing pad '=' characters are omitted from the encoded value and no line breaks, whitespace, or other additional characters are included.
The following example demonstrates the JWT Claims Set of an access token containing the base64url encoding of the SHA-256 hash of a Token Binding ID as the value of the "tbh" (token binding hash) element in the "cnf" (confirmation) claim:
Figure 12: JWT with Token Binding Hash Confirmation Claim
OAuth 2.0 Token Introspection [RFC7662] defines a method for a protected resource to query an authorization server about the active state of an access token as well as to determine meta-information about the token.
For a token bound access token, the hash of the Token Binding ID to which the token is bound is conveyed to the protected resource as meta-information in a token introspection response. The hash is conveyed using same structure as the token binding hash confirmation method, described in Section 3.4, as a top-level member of the introspection response JSON. The protected resource compares that token binding hash to a hash of the provided Token Binding ID and rejects the request, if they do not match.
The following is an example of an introspection response for an active token bound access token with a "tbh" token binding hash confirmation method.
Figure 13: Example Introspection Response for a Token Bound Access
Token
Clients supporting Token Binding that also support the OAuth 2.0 Dynamic Client Registration Protocol [RFC7591] use these metadata values to declare their support for Token Binding of access tokens and refresh tokens:
client_access_token_token_binding_supported
OPTIONAL. Boolean value specifying whether the client supports Token Binding of access tokens. If omitted, the default value is "false".
client_refresh_token_token_binding_supported
OPTIONAL. Boolean value specifying whether the client supports Token Binding of refresh tokens. If omitted, the default value is "false". Authorization servers MUST NOT Token Bind refresh tokens issued to a client that does not support Token Binding of refresh tokens, but MAY reject requests completely from such clients if token binding is required by authorization server policy by returning an OAuth error response.
Authorization servers supporting Token Binding that also support OAuth 2.0 Authorization Server Metadata [RFC8414] use these metadata values to declare their support for Token Binding of access tokens and refresh tokens:
as_access_token_token_binding_supported
OPTIONAL. Boolean value specifying whether the authorization server supports Token Binding of access tokens. If omitted, the default value is "false".
as_refresh_token_token_binding_supported
OPTIONAL. Boolean value specifying whether the authorization server supports Token Binding of refresh tokens. If omitted, the default value is "false".
There are two variations for Token Binding of an authorization code. One is appropriate for native application clients and the other for web server clients. The nature of where the various components reside for the different client types demands different methods of Token Binding the authorization code so that it is bound to a Token Binding key on the end user's device. This ensures that a lost or stolen authorization code cannot be successfully utilized from a different device. For native application clients, the code is bound to a Token Binding key pair that the native client itself possesses. For web server clients, the code is bound to a Token Binding key pair on the end user's browser. Both variations utilize the extensible framework of Proof Key for Code Exchange (PKCE) [RFC7636], which enables the client to show possession of a certain key when exchanging the authorization code for tokens. The following subsections individually describe each of the two PKCE methods respectively.
This section describes a PKCE method suitable for native application clients that cryptographically binds the authorization code to a Token Binding key pair on the client, which the client proves possession of on the TLS connection during the access token request containing the authorization code. The authorization code is bound to the Token Binding ID that the native application client uses to resolve the authorization code at the token endpoint. This binding ensures that the client that made the authorization request is the same client that is presenting the authorization code.
As defined in Proof Key for Code Exchange [RFC7636], the client sends the code challenge as part of the OAuth 2.0 authorization request with the two additional parameters: "code_challenge" and "code_challenge_method".
For this Token Binding method of PKCE, "TB-S256" is used as the value of the "code_challenge_method" parameter.
The value of the "code_challenge" parameter is the base64url encoding (per Section 5 of [RFC4648] with all trailing padding ('=') characters omitted and without the inclusion of any line breaks or whitespace) of the SHA-256 hash of the Provided Token Binding ID that the client will use when calling the authorization server's token endpoint. Note that, prior to making the authorization request, the client may need to establish a TLS connection between itself and the authorization server's token endpoint in order to establish the appropriate Token Binding ID.
When the authorization server issues the authorization code in the authorization response, it associates the code challenge and method values with the authorization code so they can be verified later when the authorization code is presented in the access token request.
For example, a native application client sends an authorization request by sending the user's browser to the authorization endpoint. The resulting HTTP request looks something like the following (with extra line breaks for display purposes only).
Figure 14: Authorization Request with PKCE Challenge
Upon receipt of the authorization code, the client sends the access token request to the token endpoint. The Token Binding Protocol [RFC8471] is negotiated on the TLS connection between the client and the authorization server and the "Sec-Token-Binding" header, as defined in Token Binding over HTTP [RFC8473], is included in the access token request. The authorization server extracts the Provided Token Binding ID from the header value, hashes it with SHA-256, and compares it to the "code_challenge" value previously associated with the authorization code. If the values match, the token endpoint continues processing as normal (as defined by OAuth 2.0 [RFC6749]). If the values do not match, an error response indicating "invalid_grant" MUST be returned.
The "Sec-Token-Binding" header contains sufficient information for verification of the authorization code and its association to the original authorization request. However, PKCE [RFC7636] requires that a "code_verifier" parameter be sent with the access token request, so the static value "provided_tb" is used to meet that requirement and indicate that the Provided Token Binding ID is used for the verification.
An example access token request, correlating to the authorization request in the previous example, to the token endpoint over a TLS connection for which Token Binding has been negotiated would look like the following (with extra line breaks for display purposes only). The base64url-encoded EKM from the TLS connection over which the request was made is "pNVKtPuQFvylNYn000QowWrQKoeMkeX9H32hVuU71Bs".
grant_type=authorization_code&code=mJAReTWKX7zI3oHUNd4o3PeNqNqxKGp6
&code_verifier=provided_tb&client_id=example-native-client-id
Figure 15: Token Request with PKCE Verifier
This section describes a PKCE method suitable for web server clients, which cryptographically binds the authorization code to a Token Binding key pair on the browser. The authorization code is bound to the Token Binding ID that the browser uses to deliver the authorization code to a web server client, which is sent to the authorization server as the Referred Token Binding ID during the authorization request. The web server client conveys the Token Binding ID to the authorization server when making the access token request containing the authorization code. This binding ensures that the authorization code cannot successfully be played or replayed to the web server client from a different browser than the one that made the authorization request.
As defined in Proof Key for Code Exchange [RFC7636], the client sends the code challenge as part of the OAuth 2.0 Authorization Request with the two additional parameters: "code_challenge" and "code_challenge_method".
The client must send the authorization request through the browser such that the Token Binding ID established between the browser and itself is revealed to the authorization server's authorization endpoint as the Referred Token Binding ID. Typically, this is done with an HTTP redirection response and the "Include-Referred-Token- Binding-ID" header, as defined in Token Binding over HTTP [RFC8473], Section 5.3.
For this Token Binding method of PKCE, "referred_tb" is used for the value of the "code_challenge_method" parameter.
The value of the "code_challenge" parameter is "referred_tb". The static value for the required PKCE parameter indicates that the authorization code is to be bound to the Referred Token Binding ID from the Token Binding Message sent in the "Sec-Token-Binding" header of the authorization request.
When the authorization server issues the authorization code in the authorization response, it associates the Token Binding ID (or hash thereof) and code challenge method with the authorization code so they can be verified later when the authorization code is presented in the access token request.
For example, the web server client sends the authorization request by redirecting the browser to the authorization endpoint. That HTTP redirection response looks like the following (with extra line breaks for display purposes only).
Figure 16: Redirect the Browser
The redirect includes the "Include-Referred-Token-Binding-ID" response header field that signals to the user-agent that it should reveal, to the authorization server, the Token Binding ID used on the connection to the web server client. The resulting HTTP request to the authorization server looks something like the following (with extra line breaks for display purposes only). The base64url-encoded EKM from the TLS connection over which the request was made is "7gOdRzMhPeO-1YwZGmnVHyReN5vd2CxcsRBN69Ue4cI".
Figure 17: Authorization Request
The web server client receives the authorization code from the browser and extracts the Provided Token Binding ID from the "Sec- Token-Binding" header of the request. The client sends the base64url-encoded (per Section 5 of [RFC4648] with all trailing padding ('=') characters omitted and without the inclusion of any line breaks or whitespace) Provided Token Binding ID as the value of the "code_verifier" parameter in the access token request to the authorization server's token endpoint. The authorization server compares the value of the "code_verifier" parameter to the Token Binding ID value previously associated with the authorization code. If the values match, the token endpoint continues processing as normal (as defined by OAuth 2.0 [RFC6749]). If the values do not match, an error response indicating "invalid_grant" MUST be returned.
Continuing the example from the previous section, the authorization server sends the code to the web server client by redirecting the browser to the client's "redirect_uri", which results in the browser making a request like the following (with extra line breaks for display purposes only) to the web server client over a TLS channel for which Token Binding has been established. The base64url-encoded EKM from the TLS connection over which the request was made is "EzW60vyINbsb_tajt8ij3tV6cwy2KH-i8BdEMYXcNn0".
Figure 18: Authorization Response to Web Server Client
The web server client takes the Provided Token Binding ID from the above request from the browser and sends it, base64url encoded, to the authorization server in the "code_verifier" parameter of the authorization code grant type request. Extra line breaks in the example request are for display purposes only.
grant_type=authorization_code&code=jwD3oOa5cQvvLc81bwc4CMw
&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Eorg%2Fcb &client_id=example-web-client-id &code_verifier=AgBBQHVBU530AA5J9bg20J7yRJOqELN_C_doL_ijv qpWGnS6AyCntoed4UoisCD_fIkY_7p3nZDZADMoPXtpmOBqe1s
Figure 19: Exchange Authorization Code
The JWT Profile for OAuth 2.0 Client Authentication and Authorization Grants [RFC7523] defines the use of bearer JWTs as a means for requesting an OAuth 2.0 access token as well as for client authentication. This section describes extensions to that specification enabling the application of Token Binding to JWT client authentication and JWT authorization grants.
In addition the requirements set forth in Section 3 of RFC 7523 [RFC7523], the following criteria must also be met for token bound JWTs used as authorization grants or for client authentication.
o The JWT MUST contain a "cnf" (confirmation) claim with a "tbh" (token binding hash) member identifying the Token Binding ID of the Provided Token Binding used by the client on the TLS connection to the authorization server. The authorization server MUST reject any JWT that has a token binding hash confirmation
that does not match the corresponding hash of the Provided Token Binding ID from the "Sec-Token-Binding" header of the request.
To use a token bound JWT for client authentication, the client uses the parameter values and encodings from Section 2.2 of RFC 7523 [RFC7523] with one exception: the value of the "client_assertion_type" is "urn:ietf:params:oauth:client-assertion- type:jwt-token-bound".
The "OAuth Token Endpoint Authentication Methods" registry [IANA.OAuth.Parameters] contains values, each of which specify a method of authenticating a client to the authorization server. The values are used to indicated supported and utilized client authentication methods in authorization server metadata, such as [OpenID.Discovery] and [RFC8414], and in OAuth 2.0 Dynamic Client Registration Protocol [RFC7591]. The values "private_key_jwt" and "client_secret_jwt" are designated by OpenID Connect [OpenID.Core] as authentication method values for bearer JWT client authentication using asymmetric and symmetric JWS [RFC7515] algorithms respectively. For Token Bound JWT for client authentication, this specification defines and registers the following authentication method values.
private_key_token_bound_jwt
Indicates that client authentication to the authorization server will occur with a Token Bound JWT, which is signed with a client's private key.
client_secret_token_bound_jwt
Indicates that client authentication to the authorization server will occur with a Token Bound JWT, which is integrity protected with a MAC using the octets of the UTF-8 representation of the client secret as the shared key.
Note that just as with the "private_key_jwt" and "client_secret_jwt" authentication methods, the "token_endpoint_auth_signing_alg" client registration parameter may be used to indicate the JWS algorithm used for signing the client authentication JWT for the authentication methods defined above.
To use a token bound JWT for an authorization grant, the client uses the parameter values and encodings from Section 2.1 of RFC 7523 [RFC7523] with one exception: the value of the "grant_type" is "urn:ietf:params:oauth:grant-type:jwt-token-bound".
Many OAuth implementations will be deployed in situations in which not all participants support Token Binding. Any of combination of the client, the authorization server, the protected resource, and the user agent may not yet support Token Binding, in which case it will not work end-to-end.
It is a context-dependent deployment choice whether to allow interactions to proceed in which Token Binding is not supported or whether to treat the omission of Token Binding at any step as a fatal error. Particularly in dynamic deployment environments in which End Users have choices of clients, authorization servers, protected resources, and/or user agents, it is recommended that, for some reasonable period of time during which Token Binding technology is being adopted, authorizations using one or more components that do not implement Token Binding be allowed to successfully proceed. This enables different components to be upgraded to supporting Token Binding at different times, providing a smooth transition path for phasing in Token Binding. However, when Token Binding has been performed, any Token Binding key mismatches MUST be treated as fatal errors.
In more controlled deployment environments where the participants in an authorization interaction are known or expected to support Token Binding and yet one or more of them does not use it, the authorization SHOULD be aborted with an error. For instance, an authorization server should reject a token request that does not include the "Sec-Token-Binding" header, if the request is from a client known to support Token Binding (via configuration or the "client_access_token_token_binding_supported" metadata parameter).
Section 6 of RFC 6749 [RFC6749] requires that a refresh token be bound to the client to which it was issued and that, if the client type is confidential or the client was issued client credentials (or assigned other authentication requirements), the client must authenticate with the authorization server when presenting the refresh token. As a result, for non-public clients, refresh tokens are indirectly bound to the client's credentials and cannot be used without the associated client authentication. Non-public clients then are afforded protections (equivalent to the strength of their authentication credentials) against unauthorized replay of refresh tokens and it is reasonable to not Token Bind refresh tokens for such clients while still Toking Binding the issued access tokens. Refresh tokens issued to public clients, however, do not have the benefit of such protections and authorization servers MAY elect to disallow public clients from registering or establishing configuration that would allow Token Bound access tokens but unbound refresh tokens.
Some web-based confidential clients implemented as distributed nodes may be perfectly capable of implementing access token binding (if the access token remains on the node it was bound to, the token binding keys would be locally available for that node to prove possession), but may struggle with refresh token binding due to an inability to share token binding key material between nodes. As confidential clients already have credentials which are required to use the refresh token, and those credentials should only ever be sent over TLS server-to-server between the client and the Token Endpoint, there is still value in token binding access tokens without token binding refresh tokens. Authorization servers SHOULD consider supporting access token binding without refresh token binding for confidential web clients as there are still security benefits to do so.
Clients MUST declare through dynamic (Section 4.1) or static registration information what types of token bound tokens they support to enable the server to bind tokens accordingly, taking into account any phase-in policies. Authorization servers MAY reject requests from any client who does not support token binding (by returning an OAuth error response) per their own security policies.
This specification registers the following client metadata definitions in the IANA "OAuth Dynamic Client Registration Metadata" registry [IANA.OAuth.Parameters] established by [RFC7591]:
o Specification Document(s): Section 4.1 of [[this specification]]
This specification registers the following metadata definitions in the IANA "OAuth Authorization Server Metadata" registry [IANA.OAuth.Parameters] established by [RFC8414]:
This specification requests registration of the following Code Challenge Method Parameter Names in the IANA "PKCE Code Challenge Methods" registry [IANA.OAuth.Parameters] established by [RFC7636].
This specification requests registration of the following values in the IANA "OAuth Token Endpoint Authentication Methods" registry [IANA.OAuth.Parameters] established by [RFC7591].
This specification requests registration of the following values in the IANA "OAuth URI" registry [IANA.OAuth.Parameters] established in An IETF URN Sub-Namespace for OAuth [RFC6755].
[IANA.OAuth.Parameters]
IANA, "OAuth Parameters", <http://www.iana.org/assignments/oauth-parameters>.
[JWT]
Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015, <http://tools.ietf.org/html/rfc7519>.
[OpenID.TokenBinding]
Jones, M., Bradley, J., and B. Campbell, "OpenID Connect Token Bound Authentication 1.0", October 2017, <http://openid.net/specs/ openid-connect-token-bound-authentication-1_0-03.html>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC4648]
Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006, <https://www.rfc-editor.org/info/rfc4648>.
[RFC6749]
Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://www.rfc-editor.org/info/rfc6749>.
[RFC7230]
Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014, <https://www.rfc-editor.org/info/rfc7230>.
[RFC7523]
Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants", RFC 7523, DOI 10.17487/RFC7523, May 2015, <https://www.rfc-editor.org/info/rfc7523>.
[RFC7591]
Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol", RFC 7591, DOI 10.17487/RFC7591, July 2015, <https://www.rfc-editor.org/info/rfc7591>.
[RFC7636]
Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key for Code Exchange by OAuth Public Clients", RFC 7636, DOI 10.17487/RFC7636, September 2015, <https://www.rfc-editor.org/info/rfc7636>.
[RFC7662]
Richer, J., Ed., "OAuth 2.0 Token Introspection", RFC 7662, DOI 10.17487/RFC7662, October 2015, <https://www.rfc-editor.org/info/rfc7662>.
[RFC7800]
Jones, M., Bradley, J., and H. Tschofenig, "Proof-of- Possession Key Semantics for JSON Web Tokens (JWTs)", RFC 7800, DOI 10.17487/RFC7800, April 2016, <https://www.rfc-editor.org/info/rfc7800>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8414]
Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0 Authorization Server Metadata", RFC 8414, DOI 10.17487/RFC8414, June 2018, <https://www.rfc-editor.org/info/rfc8414>.
[RFC8471]
Popov, A., Ed., Nystroem, M., Balfanz, D., and J. Hodges, "The Token Binding Protocol Version 1.0", RFC 8471, DOI 10.17487/RFC8471, October 2018, <https://www.rfc-editor.org/info/rfc8471>.
[RFC8472]
Popov, A., Ed., Nystroem, M., and D. Balfanz, "Transport Layer Security (TLS) Extension for Token Binding Protocol Negotiation", RFC 8472, DOI 10.17487/RFC8472, October 2018, <https://www.rfc-editor.org/info/rfc8472>.
[RFC8473]
Popov, A., Nystroem, M., Balfanz, D., Ed., Harper, N., and J. Hodges, "Token Binding over HTTP", RFC 8473, DOI 10.17487/RFC8473, October 2018, <https://www.rfc-editor.org/info/rfc8473>.
[SHS]
National Institute of Standards and Technology, "Secure Hash Standard (SHS)", FIPS PUB 180-4, March 2012, <http://csrc.nist.gov/publications/fips/fips180-4/ fips-180-4.pdf>.
[BCP212]
Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps", BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017, <https://www.rfc-editor.org/info/rfc8252>.
[OpenID.Core]
Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and C. Mortimore, "OpenID Connect Core 1.0", August 2015, <http://openid.net/specs/openid-connect-core-1_0.html>.
[OpenID.Discovery]
Sakimura, N., Bradley, J., Jones, M., and E. Jay, "OpenID Connect Discovery 1.0", August 2015, <http://openid.net/specs/ openid-connect-discovery-1_0.html>.
[RFC6755]
Campbell, B. and H. Tschofenig, "An IETF URN Sub-Namespace for OAuth", RFC 6755, DOI 10.17487/RFC6755, October 2012, <https://www.rfc-editor.org/info/rfc6755>.
[RFC7515]
Jones, M., Bradley, J., and N. Sakimura, "JSON Web Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May 2015, <https://www.rfc-editor.org/info/rfc7515>.
This specification was developed within the OAuth Working Group under the chairmanship of Hannes Tschofenig and Rifaat Shekh-Yusef with Kathleen Moriarty, Eric Rescorla, and Benjamin Kaduk serving as Security Area Directors. Additionally, the following individuals contributed ideas, feedback, and wording that helped shape this specification: Dirk Balfanz, Andrei Popov, Justin Richer, and Nat Sakimura.
[[to be removed by the RFC Editor before publication as an RFC]]
-08
o Update reference to -03 of openid-connect-token-bound- authentication.
o Update the references to the core token binding specs, which are now RFCs 8471, 8472, and 8473.
o Update reference to AS metadata, which is now RFC 8414.
o Add chairs and ADs to the Acknowledgements.
-07
o Explicitly state that the base64url encoding of the tbh value doesn't include any trailing pad characters, line breaks, whitespace, etc.
o Update to latest references for tokbind drafts and draft-ietf- oauth-discovery.
o Update reference to Implementation Considerations in draft-ietf- tokbind-https, which is section 6 rather than 5.
o Try to tweak text that references specific sections in other documents so that the HTML generated by the ietf tools doesn't link to the current document (based on old suggestion from Barry https://www.ietf.org/mail-archive/web/jose/current/msg04571.html).
-06
o Use the boilerplate from RFC 8174.
o Update reference for draft-ietf-tokbind-https to -12 and draft- ietf-oauth-discovery to -09.
o Minor editorial fixes.
-05
o State that authorization servers should not token bind refresh tokens issued to a client that doesn't support bound refresh tokens, which can be indicated by the "client_refresh_token_token_binding_supported" client metadata parameter.
o Add Token Binding for JWT Authorization Grants and JWT Client Authentication.
o Adjust the language around aborting authorizations in Phasing in Token Binding to be somewhat more general and not only about downgrades.
o Remove reference to, and usage of, 'OAuth 2.0 Protected Resource Metadata', which is no longer a going concern.
o Moved "Token Binding Metadata" section before "Token Binding for Authorization Codes" to be closer to the "Token Binding for Access Tokens" and "Token Binding for Refresh Tokens", to which it is more closely related.
o Update references for draft-ietf-tokbind- negotiation(-10), protocol(-16), and https(-10), as well as draft-ietf-oauth- discovery(-07), and BCP212/RFC8252 OAuth 2.0 for Native Apps.
-04
o Define how to convey token binding information of an access token via RFC 7662 OAuth 2.0 Token Introspection (note that the Introspection Response Registration request for cnf/Confirmation is in https://tools.ietf.org/html/draft-ietf-oauth-mtls- 02#section-4.3 which will likely be published and registered prior to this document).
o Minor editorial fixes.
o Added an open issue about needing to allow for web server clients to opt-out of having refresh tokens bound while still allowing for binding of access tokens (following from mention of the problem on
slide 16 of the presentation from Chicago https://www.ietf.org/proceedings/98/slides/slides-98-oauth-sessb- token-binding-00.pdf).
-03
o Fix a few mistakes in and around the examples that were noticed preparing the slides for IETF 98 Chicago.
-02
o Added a section on Token Binding for authorization codes with one variation for native clients and one for web server clients.
o Updated language to reflect that the binding is to the token binding key pair and that proof-of-possession of that key is done on the TLS connection.
o Added a bunch of examples.
o Added a few Open Issues so they are tracked in the document.
o Updated the Token Binding and OAuth Metadata references.
o Added William Denniss as an author.
-01
o Changed Token Binding for access tokens to use the Referred Token Binding ID, now that the Implementation Considerations in the Token Binding HTTPS specification make it clear that implementations will enable using the Referred Token Binding ID.
o Defined Protected Resource Metadata value.
o Changed to use the more specific term "protected resource" instead of "resource server".
-00
o Created the initial working group version from draft-jones-oauth- token-binding-00.
Authors' Addresses
Email: brian.d.campbell@gmail.com
draft-mandyam-tokbind-attest-06 - Attested TLS Token Binding
Token Binding Working Group
Internet-Draft
Intended status: Standards Track
Expires: January 25, 2019
G. Mandyam
L. Lundblade
J. Azen
Qualcomm Technologies Inc.
July 24, 2018
draft-mandyam-tokbind-attest-06
Token binding allows HTTP servers to bind bearer tokens to TLS connections. In order to do this, clients or user agents must prove possession of a private key. However, proof-of-possession of a private key becomes truly meaningful to a server when accompanied by an attestation statement. This specification describes extensions to the existing token binding protocol to allow for attestation statements to be sent along with the related token binding messages.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on January 25, 2019.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
[I-D.ietf-tokbind-protocol] and [I-D.ietf-tokbind-negotiation] describe a framework whereby servers can leverage cryptographically- bound authentication tokens in part to create uniquely-identifiable TLS bindings that can span multiple connections between a client and a server. Once the use of token binding is negotiated as part of the TLS handshake, an application layer message (the Token Binding message) may be sent from the client to the relying party whose primary purpose is to encapsulate a signature over a value associated with the current TLS session. The payload used for the signature is the token binding public key (see [I-D.ietf-tokbind-protocol]). Use of the token binding public key allows for generation of the attestation signature once over the lifetime of the public key.
Proof-of-possession of a private key is useful to a relying party, but the associated signature in the Token Binding message does not provide an indication as to how the private key is stored and in what kind of environment the associated cryptographic operation takes place. This information may be required by a relying party in order to satisfy requirements regarding client platform integrity. Therefore, attestations are sometimes required by relying parties in order for them to accept signatures from clients. As per the definition in [I-D.birkholz-tuda], "remote attestation describes the attempt to determine the integrity and trustworthiness of an endpoint -- the attestee -- over a network to another endpoint -- the verifier -- without direct access." Attestation statements are therefore widely used in any server verification operation that leverages client cryptography.
TLS token binding can therefore be enhanced with remote attestation statements. The attestation statement can be used to augment Token Binding message. This could be used by a relying party for several different purpose, including (1) to determine whether to accept token binding messages from the associated client, or (2) require an additional mechanism for binding the TLS connection to an authentication operation by the client.
The attestation statement can be processed 'in-band' as part of the Token Binding Message itself. This document leverages the TokenBinding.extensions field of the Token Binding Message as described in Section 3.4 of [I-D.ietf-tokbind-protocol], where the extension data conforms to the guidelines of Section 6.3 of the same document. The value of the extension, as required by this same section, is assigned per attestation type. The extension data takes the form of a CBOR (compact binary object representation) Data Definition Language construct, i.e. CDDL.
The attestation data is determined according to the attestation type. In this document, the following types are defined: "KeyStore" (where the corresponding attestation data defined in [Keystore]) and "TPMv2" (where the corresponding attestation data defined in [TPMv2]). Additional attestation types may be accepted by the token binding implementation (for instance, see Section 8 of [webauthn]).
The attestation data will likely include a signature over a challenge (depenting on the attestation type). The challenge can be used to prevent replay of the attestation. However since the attestation is itself part of the token binding message (which has its own anti- replay protection mechanism), the attestation signature need only be generated over a known payload associated with the TLS token binding session - the token binding public key. As a result, the token binding client only needs to send the attestation once during the lifetime of the token binding public key. In other words, if an attestation is included in the token binding message, it should only be sent in the initial token binding message following the creation of the token binding key pair.
KeyStore attestation is relevant to the Android operating system. The Android Keystore mechanism allows for an application (such as a browser implementing the Token Binding stack) to create a key pair, export the public key, and protect the private key in a hardware- backed keystore. The Android Keystore can then be used to verify a keypair using the Keystore Attestation mechanism, which involves signing a payload according to a public key that chains to a root certificate signed by an attestation root key that is specific to the device manufacturer.
The octet value of the token binding extension that serves as identifiaction for the Keystore attestation type is requested to be 0.
KeyStore attestation provides a signature over a payload generated by the application. The payload is a SHA-256 hash of the token binding public key corresponding to the current TLS connection (see Section 3.3 of [I-D.ietf-tokbind-protocol]). Then the attestation takes the form of a signature, a signature-generation algorithmic identifier corresponding to the COSE algorithm registry ([cose_iana]), and a chain of DER-encoded x.509 certificates:
The steps at the server for verifying a Token Binding KeyStore Attestation are:
o Retrieve token binding public key for the current TLS connection, and compute is SHA-256 hash.
o Verify that attestation_data is in the expected CBOR format.
o Parse the first certificate listed in x5c and extract the public key and challenge. If the challenge does not match the SHA-256 hash of the token binding public key then the attestation is invalid.
o If the challenge matches the expected hash of the token binding public key, verify the sig with respect to the extracted public key and algorithm from the previous step.
o Verify the rest of the certificate chain up to the root. The root certificate must match the expected root for the device.
Version 2 of the Trusted Computing Group's Trusted Platform Module (TPM) specification provides for an attestation generated within the context of a TPM. The attestation then is defined as
The tpmt_sig is generated over a tpms_attest structure signed with respect to the certificate chain provided in the x5c array, and the algorithmic identifier corresponding to the COSE algorithm registry ([cose_iana]). It is derived from the TPMT_SIGNATURE data structure defined in Section 11.3.4 of [TPMv2]. tpms_attest is derived from the TPMS_ATTEST data structure in Section 10.2.8 of [TPMv2], specifically with the extraData field being set to a SHA-256 hash of the token binding public key.
The octet value of the token binding extension that serves as identifiaction for the TPMv2 attestation type is requested to be 1.
The steps for verifying a Token Binding TPMv2 Attestation are:
o Extract the token binding public key for the current TLS connection.
o Verify that attestation_data is in the expected CBOR format.
o Parse the first certificate listed in x5c and extract the public key.
o Verify the tpms_attest structure,which includes
* Verify that the type field is set to TPM_ST_ATTEST_CERTIFY.
* Verify that extraData is equivalent to the SHA-256 hash of the token binding public key for the current TLS connection.
* Verify that magic is set to the expected TPM_GENERATED_VALUE for the expected command sequence used to generate the attestation.
* Verification of additonal TPMS_ATTEST data fields is optional.
o Verify tpmt_sig with respect to the public key provided in the first certifcate in x5c, using the algorithm as specified in the sigAlg field (see Sections 11.3.4, 11.2.1.5 and 9.29 of [TPMv2]).
Even if the client supports a Token Binding extension, it may not be desirable to send the extension if the server does not support it. The benefits of client-suppression of an extension could include saving of bits "over the wire" or simplified processing of the Token Binding message at the server. Currently, extension support is not communicated as part of the Token Binding extensions to TLS (see [I-D.ietf-tokbind-negotiation]).
It is proposed that the Client and Server Hello extensions defined in Sections 3 and 4 of [I-D.ietf-tokbind-negotiation] be extended so that endpoints can communicate their support for specific TokenBinding.extensions. With reference to Section 3, it is recommended that the "token_binding" TLS extension be augmented by the client to include supported TokenBinding.extensions as follows:
The "supported_extensions_list" contains the list of identifiers of all token binding message extensions supported by the client. A server supporting token binding extensions will respond in the server hello with an appropriate "token_binding" extension that includes a "supported_extensions_list". This list must be a subset of the the extensions provided in the client hello.
Since a TLS extension cannot itself be extended, the "token_binding" TLS extension cannot be reused. Therefore it is proposed that a new TLS extension be defined - "token_binding_with_extensions". This TLS extension codepoint is identical to the existing "token_binding" extension except for the additional data structures defined above.
The negotation described in Section 4 of [I-D.ietf-tokbind-negotiation] still applies, except now the "token_binding_with_extensions" codepoint would be used if the client supports any token binding extension. In addition, a client can receive a "supported_extensions_list" from the server as part of the server hello. The client must terminate the handshake if the "supported_extensions_list" received from the server is not a subset of the "supported_extensions_list" sent by the client in the client hello. If the server hello list of supported extensions is a subset of the client supported extensions, then the client must only send those extensions specified in the server hello in the Token Binding protocol. If the server hello does not include a "supported_extensions_list", then the client must not send any extensions along with the Token Binding Message.
An example of where a platform-based attestation is useful can be for remote attestation based on client traffic anomaly detection. Many network infrastructure deployments employ network traffic monitors for anomalous pattern detection. Examples of anomalous patterns detectable in the TLS handshake could be unexpected cipher suite negotiation for a given source/destination pairing. In this case, it may be desirable for a client-enhanced attestation reflecting for instance that an expected offered cipher suite in the client hello message is present or the originating browser integrity is intact (e.g. through a hash over the browser application package). If the network traffic monitor can interpret the atttestation included in the token binding message, then it can verify the attestation and potentially emit alerts based on an unexpected attestation.
This memo includes the following requests to IANA.
This document proposes an update of the TLS "ExtensionType Values" registry. The following addition to the registry is requested:
Value: TBD
Extension name: token_binding_with_extensions
Reference: this document
Recommended: Yes
This document proposes two extensions conformant with Section 6.3 of [I-D.ietf-tokbind-protocol], with the following specifics:
Androoid Keystore Attestation:
o Value: 0
o Description: Android Keystore Attestation
o Specification: This document
TPM v2 Attestation:
o Value: 1
o Description: TPMv2 Attestation
o Specification: This document
The security and privacy considerations provided in Section 7 of [I-D.ietf-tokbind-protocol] are applicable to the attestation extensions proposed in this document. Additional considerations are provided in this section.
The root signing key for the certificate chain used in verifying an attestation can be unique to the device. As a result, this can be used to track a device and/or end user. This potential privacy issue can be mitigated by the use of batch keys as an alternative to unique keys, or by generation of origin-specific attestation keys.
The attestation data may also contain device-specific identifiers, or information that can be used to fingerprint a device. Sensitive information can be excluded from the attestation data when this is a concern.
Thanks to Andrei Popov for his detailed review and recommendations.
[cose_iana]
Internet Assigned Numbers Authority, "COSE Algorithms", <https://www.iana.org/assignments/cose/ cose.xhtml#algorithms>.
[I-D.greevenbosch-appsawg-cbor-cddl]
Birkholz, H., Vigano, C., and C. Bormann, "Concise data definition language (CDDL): a notational convention to express CBOR data structures", draft-greevenbosch-appsawg- cbor-cddl-11 (work in progress), July 2017.
[I-D.ietf-tokbind-https]
Popov, A., Nystrom, M., Balfanz, D., Langley, A., Harper, N., and J. Hodges, "Token Binding over HTTP", draft-ietf- tokbind-https-12 (work in progress), January 2018.
[I-D.ietf-tokbind-negotiation]
Popov, A., Nystrom, M., Balfanz, D., and A. Langley, "Transport Layer Security (TLS) Extension for Token Binding Protocol Negotiation", draft-ietf-tokbind- negotiation-10 (work in progress), October 2017.
[I-D.ietf-tokbind-protocol]
Popov, A., Nystrom, M., Balfanz, D., Langley, A., and J. Hodges, "The Token Binding Protocol Version 1.0", draft- ietf-tokbind-protocol-16 (work in progress), October 2017.
[Keystore]
Google Inc., "Verifying hardware-backed key pairs with Key Attestation", <https://developer.android.com/training/articles/ security-key-attestation>.
[TPMv2]
The Trusted Computing Group, "Trusted Platform Module Library, Part 2: Structures", September 2016, <http://www.trustedcomputinggroup.org/wp-content/uploads/ TPM-Rev-2.0-Part-2-Structures-01.38.pdf>.
[webauthn]
The Worldwide Web Consortium, "Web Authentication: An API for accessing Scoped Credentials", <https://www.w3.org/TR/webauthn/>.
[I-D.birkholz-tuda]
Fuchs, A., Birkholz, H., McDonald, I., and C. Bormann, "Time-Based Uni-Directional Attestation", draft-birkholz- tuda-02 (work in progress), July 2016.
Authors' Addresses
This text describes the conversion process used to create this ebook.
The conversion process goes like follows:
Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.
The conversion process goes like follows:
This program takes the title, time and logo postscript, and creates a postscript file which it then runs through ghostscript and converts it file suitable for the Kindle 3. The title can have three lines separated with "\n". Normally the top two lines contain the actual title, and third line contains the date of conversion. The time is added to the end of the page with small font, so it can be used during development phase to see which version of ebook this is (during development I did have multiple versions loaded to my Kindle and it was painful to find out which one of them is newest before this was added). The logo is ietf-logo.eps directly from the IETF web page.
The page is initially created at 2400x3200 pixel resolution and then scaled down to 25% of size meaning the final page is 600x800 pixels in size.
For RFC ebook:
For the Internet-Draft ebooks:
NCX file contains list all files and the navigation information. That is used when you press left or right arrows on the kindle to see where to move next. See make-ncx manual page for information about options.
For RFC ebook:
For the Internet-Draft ebooks:
Open package format file describes what files are in the ebook. It also contains information where to start reading and in which order entries are appearing in the book. See make-opf manual page for information about options.
For RFCs the conversion command line is:
For Internet-Drafts the conversion command line is:
This program takes the text formatted RFC or Internet-Draft and formats it to html suitable for ebooks. The first step is to remove page formatting (page breaks, page numbers, page headers and footers). In that phase it also tries to see if one textual paragraph is continuing from the previous page to the next, and if so then it will glue them together. The second phase is to go through all paragraphs and try to find out what type of paragraph it is (text, picture, header, table of contents, authors address section, terminology defination, bulleted or numbered list, references section). After this it goes through the actual text paragraphs and converts them to html suitable for their type. See rfc2html manual page for information about options.
TBF
TBF
TBF
Issues I have found when converting this to kindle 3
It seems there is maximum number of items the ncx file can have, or some other limitation in the ncx file parsing. When I included all the rfcs to the ncx file then the next and previous arrows in the kindle 3 does not work anymore. If the number if items is reduced then they start working.
When I tried to use the best compression of kindlegen, the program did create a eBook file but all the links inside the file pointed in wrong place, i.e. when you used link to go rfc5996 you ended up in the middle of rfc6020 or so.
The mobipockect supports multiple indexes and the eBook originally included titleword and full title text indexes, but those were removed as kindle 3 does not support them.
The automatic index (using the menu and selecting index) sometimes misses the last item in it. Thats why I added this conversion description to the end, so if something is missing it will be this text.
Kindle 3 does support monospace font and the screen is wide enough for 67 charactes if screen is rotated. This allows the normal 32 bit packet frame description pictures to be shown properly using the normal pre-tag. The Kindle 3 will still wrap words to the next line, and this was problematic when combined with hyphens used in pictures. To fix this all the hyphens in the text are converted to the no-breaking hyphens.
Because of the previous issue with word wrap we needed to use non-breaking hyphens, but unfortunately they do not show properly on the kindle for PC, but instead of unknown character box is shown instead.
For some reason the searching from the RFC eBook does not work on the Kindle 3.
make-ncx - Create NCX file
make-ncx [--help|-h] [--version|-V] [--verbose|-v] [--output|-o output-file-name] [--config config-file] [--depth|-d depth-of-toc] [--total-page-count|-T total-page-count] [--max-page-number|-m max-page-number] [--separator|-s separator-regexp] --author|-a author --title|-t title entry ... [--class|-c class] entry ... [--in] entry ... [--out] [--autosplit|-A split-count] entry ... [--include-regexp include-regexp] entry ... [--exclude-regexp exclude-regexp] entry ... [--split-regexp split-regexp] entry ... [--input-file|-i input-file] entry ... entry ...
make-ncx --help
make-ncx takes list of ncx entries and creates NCX (Navigation Control for for XML applications Format) file out of them.
NCX is hierarchical structure, and the make-ncx supports this so that the list of entries can include --in and --out options to in and out in the hierarchy. Note, that the first item is always on level 1 and you can go in only one level per entry, i.e. adding two --in options right after each other is an error. Multiple --out options is allowed, but going out from level 1 is not allowed.
Each entry contain 4 fields separated from each other by separator regexp. The first field is the class of the entry. This can be something like "book", "toc", "entry" etc. Second field is the id of the entry. This should be something unique. Third field is the actual link inside the mobibook, i.e. "index.html", "index.html#s1000" or "rfc1234.html". Last field is the text of the entry.
If only 3 fields are given then they are assumed to be id, link and text, and the class is the one given with --class option.
If only 2 fields are given then they are assumed to be link and text, and the class is processed as with 3 fields, and id is autogenerated from the link, by removing path, prefixes and special chars.
If only one field is given then it is assumed to be link, and class and id is generated as previously, and link is converted to text by removing prefixes and removing some special charactes and replacing '/', '-', '_' to spaces.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to stdout.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
Max depth of the NCX file. If not given this is autodetected from the options.
Sets total page count. If not given this is set to 0.
Sets max page number. If not given this is set to 0.
Separator regexp used to split entries to class, id, link and text. Defaults to ':'
Author of the publication.
Title of the publication.
Go one level into the hierarchy. This option is used inside the entry list and it affects the entries coming after it.
Go one level out in the hierarchy. This option is used inside the entry list and it affects the entries coming after it.
Set the class of the entries coming after this if no class given in the entry. This option is used inside the entry list and it affects the entries coming after it.
Starts autosplitting long list of entries, so that split-count entries are combined so that the first entry stays at current level, and all other entries are moved in one level inside the first entry. This process is repeated until --in, --out, or new --autosplit option is found. This option is used inside the entry list and it affects the entries coming after it.
Filters entries based on the regexp. Only those entries will be processed which are matching this regexp. This allows creating one entry file having all entries, and then filter them so that only parts of them are included to the final ncx file. This option is used inside the entry list and it affects the entries coming after it.
Filters entries based on the regexp. Only those entries will be processed which do not match this regexp. This allows creating one entry file having all entries, and then filter them so that only parts of them are included to the final ncx file. This option is used inside the entry list and it affects the entries coming after it.
Automatically split entries to sublevels based on the regexp. This will match entries against the regexp and when first match is found it will put this entry on current level and then go down one level, and then put all further entries not matching this regexp to that level. Further matching entries are moved to the same level as the first one. This can be used in combination with --autosplit option in which case --autosplit entries will be below this, meaning the hierarchy will have 3 levels. Top level contains the entries matching this regexp. The next level contains every Nth entry and lowest level contains all other entries. Every time matching entry is found the --autosplit counter is reset.
Reads the list of options from the input-file instead of reading them from command line. The options are in the file one option at line, and are processed exactly as they would be on the command line. This means that you can give --class, --in, --autosplit etc options first and then just get the list of filenames from the file.
make-ncx --title foo \ --author bar \ toc:toc:index.html:Index \ book:rfc0001:rfc0001.html:RFC0001
make-ncx --title "RFC Index" \ --author "IETF" \ "toc:toc:index.html:Table of Contents" \ --in \ --class entry \ 0000:index.html#s0000:RFC0000 \ 1000:index.html#s1000:RFC1000 \ 2000:index.html#s2000:RFC2000 \ 3000:index.html#s3000:RFC3000 \ 4000:index.html#s4000:RFC4000 \ 5000:index.html#s5000:RFC5000 \ 6000:index.html#s6000:RFC6000 \ --out \ --class book \ --autosplit 5 \ rfc0001.html rfc0002.html rfc0003.html rfc0004.html rfc0005.html \ rfc0006.html rfc0007.html rfc0008.html rfc0009.html rfc0010.html \ rfc6001.html rfc6002.html rfc6003.html rfc6004.html rfc6005.html \ rfc6006.html rfc6007.html
make-ncx --title "RFC Index" \ --author "IETF" \ "toc:toc:index.html:Table of Contents" \ --in \ --class entry \ --input-file toc-entries.txt \ --out \ --class book \ --autosplit 5 \ --input-file rfc-list.txt
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created when making RFC mobibook files for IETF use.
make-opf - Create OPF file
make-opf [--help|-h] [--version|-V] [--verbose|-v] [--output|-o output-file-name] [--config config-file] [--beginning|-b first-page-filename] [--cover|-c cover-jpg-file-name] [--creator|-C creator] [--date|-D date] [--description|-d description] --id|-i id [--index|-I index-html-file-name] --language|-l language [--publisher|-p publisher] [--role|-r creator-role] [--stylesheet|-S stylesheet-css-file-name] [--subject|-s subject] --title|-t title [--toc|-T toc-ncs-file-name] filename ...
make-opf --help
make-opf takes list of html files inside the mobibook and creates a OPF (Open Packaging Format) file out of them.
Files are added to the spine in the order they appear in the command line. Note, that before any files there is --cover, --beginning and ---index pages, which always come in that order in the beginning of the book.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to stdout.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
File name inside the mobibook which is used as a beginning of the book, i.e. when book is opened it comes to this page.
File name inside the mobibook which is used as a cover page for the publication. Must be jpg file. This is mandatory for Kindle books.
Creator of the publication. Usually the name of the author.
Date of the publication.
Short description of the publication.
Unique ID for the publication.
File name inside the mobibook which is used as index. If included this is also used as table of contents.
Language tag of the publication. Typically "en".
Publisher name.
Role of the creator, i.e. author (aut), collaborator (clb), editor (edt) etc.
File name inside the mobibook which used as css stylesheet.
Subject of the publication.
Title of the publication.
File name inside the mobibook which is used as NCS table of contents file name.
make-opf.pl --title "${partial}RFC Index $d" \ --language en \ --cover rfc.jpg \ --subject Reference \ --id "$id" \ --role clb \ --creator "Tero Kivinen" \ --publisher "IETF" \ --description "All RFCs as mobibook" \ --date "$d" \ --index index.html \ --stylesheet rfc.css \ --toc rfc.ncx \ rfc*.html
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created when making RFC mobibook files for IETF use.
rfc2html - Convert RFC to simple html
rfc2html [--help|-h] [--version|-V] [--verbose|-v] [--key-index] [--navigation|-n navigation-links] [--filelist|-f filelist-file] [--rfc|-r rfc-number] [--title|-t title-prefix] [--output|-o output-file] [--config config-file] filename ...
rfc2html --help
rfc2html takes RFC txt file and converts it to simple html file.
filename is read in and new file is created so that .txt extension is removed from the filename (if it exists) and .html extesion is added.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to <inputfile>.txt.
Gives the RFC number of the current file. Used to make title information correct.
Gives text added to the beginning of the title, for example the file name.
Filename of the file containing list of files in the book. If given only those links pointing to files listed in this file are converted to links.
Creates navigation links at the top of the file. The navigation links text is semicolon separated list of navigation links. Each link consists of file name inside the book, and the link title. The filename can either be full filename like "index.html", or it can be relative filename like "-1" or "+100". Using this option requires that the filelist option is also used and all links given here are found from the filelist. The filelist is also used to find the current file name and then calculate relative filenames from there, i.e. "-1" means the filename in the filename list just before this file.
The filename used for searching this entry from the filelist is the output filename, and if exact match is not found then the path components are removed and file is searched again.
Create key index entries. Those are only useful for mobipacket reader, they do not work on kindle.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created based on the rfcmarkup version 1.90 to convert RFCs to simple html suitable for kindle ebook conversion. The rfcmarkup tries to keep formatting intact, while this actually removes things which are not needed in ebooks, i.e page breaks and page numbers, and makes text paragraphs as html paragraphs, instead of using <pre> around the whole file.