

Working Group ID and RFC eBook

Introduction

This book is a collection of RFCs and Internet-Drafts related to
specific working group. The RFC and Internet-Drafts files are normally
stored in plain ascii text format and they are converted to html
suitable for eBook use by automatic scripts. Those scripts try to
detect headers, pictures, lists, references etc and create special
html for each of those. For text paragraphs those scripts remove
indentation and hard linebreaks and makes text paragraphs as normal
text so font size of the eBook can be adjusted at will and features
like text-to-speech work.

As this conversion is completely automatic there might be errors in
the converted files. I have tried to fix the issues when I find them,
but sometimes fixing issue in one RFC cause problems in others, so not
all errors can be easily fixed, this is especially true for very old
RFCs which do not follow the formatting specifications. If you notice
errors in the formatting please send email to the
<kivinen+rfc-ebook@iki.fi> and describle the problem.
Please, remember to include the RFC number and the version number of
the eBook file (found from the cover page).

As the collection of RFCs is quite large there has been some issues
with the conversion to kindle, and some features do not seem to work
properly when full set of RFCs is used. Because of this some
work-arounds have been made to make the eBook still usable. If the
kindle software gets updated some of those work-arounds might be
removed. For more information about those see the Conversion section.

The primary output format of the scripts is the .mobi
format used in the kindle, and I have been using Kindle 3 as my
primary testing device, so if other reader devices are used, there
might be more issues. The automatic tools also create the
.ePub file, which can be used on platforms which do not
support .mobi format. There is program called mobipocket for
reading .mobi files, and that program is available for wide
range of devices including PalmOS, Symbian, PC, Windows Mobile,
Blackberry etc, so also those devices can be used in addition to
normal eBook readers.

How to use this book

In this section I will concentrate mostly on how to use this on
Kindle 3. This eBook contains 5 main parts:

	Cover page

	This introduction

	Index

	RFCs and Internet-Drafts

	Description of the conversion process

The cover page includes the date when this
eBook was created (i.e. eBook version).

The conversion section includes technical information how this
eBook was created and some known issues etc.

Navigation

There are four main ways to navigate through the book in addition
to normal page up and down.

Fastest way to go to specific RFC or Internet-Draft is to press
menu button on the Kindle 3, and then select Index from
the menu. This will give you the automatic index of the contents of
the this file. This allows quick access to the RFC by just typing the
numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y
will jump you to the RFC 5996 and then you can use arrow down to
select RFC and hit enter to go there. For internet draft start typing
the draft name.

Another option is to use the RFC Index in the beginning of the file
(You can get to there by either pressing menu, selecting
Index and then clicking on the Index in the beginning
of the index, or by pressing menu, selecting Go to...
and then selecting Table of Contents).

Third option is to use left and right arrows to navigate the next
and previous RFC/Internet-Drafts.

The fourth way to navigate inside the book is to use the links
inside the files. The RFC Index has direct links to every 100th RFC.
Each file contains links to back 5, forward 5, next and previous rfc.
Also any reference inside the documents pointing to other RFCs gets
you directly there. Some of the links inside RFC moves you inside the
RFC, i.e. clicking link on the table of contents inside the RFC moves
you to that section etc. Also references inside the RFC will move you
to the refences section etc.

uta RFC and Internet-Draft Index

Index

Active

	draft-ietf-uta-smtp-require-tls-08 SMTP Require TLS Option

	draft-ietf-uta-tls-for-email-01 Use of TLS for Email Submission and Access

RFC

	RFC7457 Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS)

	RFC7525 Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

	RFC7590 Use of Transport Layer Security (TLS) in the Extensible Messaging and Presence Protocol (XMPP)

	RFC7817 Updated Transport Layer Security (TLS) Server Identity Check Procedure for Email-Related Protocols

	RFC8314 Cleartext Considered Obsolete: Use of Transport Layer Security (TLS) for Email Submission and Access

	RFC8460 SMTP TLS Reporting

	RFC8461 SMTP MTA Strict Transport Security (MTA-STS)

Related Active

	draft-urien-uta-tls-dtls-security-module-07 TLS and DTLS Security Modules

draft-ietf-uta-smtp-require-tls-08 - SMTP Require TLS Option

Index
Next
Forward 5

Internet Engineering Task Force

Internet-Draft

Intended status: Standards Track

Expires: October 24, 2019

J. Fenton

Altmode Networks

April 22, 2019

SMTP Require TLS Option

draft-ietf-uta-smtp-require-tls-08

Abstract

 The SMTP STARTTLS option, used in negotiating transport-level
 encryption of SMTP connections, is not as useful from a security
 standpoint as it might be because of its opportunistic nature;
 message delivery is, by default, prioritized over security. This
 document describes an SMTP service extension, REQUIRETLS, and message
 header field, TLS-Required. If the REQUIRETLS option or TLS-Required
 message header field is used when sending a message, it asserts a
 request on the part of the message sender to override the default
 negotiation of TLS, either by requiring that TLS be negotiated when
 the message is relayed, or by requesting that recipient-side policy
 mechanisms such as MTA-STS and DANE be ignored when relaying a
 message for which security is unimportant.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 24, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	2. The REQUIRETLS Service Extension

	3. The TLS-Required Header Field

	4. REQUIRETLS Semantics
	 4.1. REQUIRETLS Receipt Requirements

	 4.2. REQUIRETLS Sender Requirements
	 4.2.1. Sending with TLS Required

	 4.2.2. Sending with TLS Optional

	 4.3. REQUIRETLS Submission

	 4.4. Delivery of REQUIRETLS messages

	5. Non-delivery message handling

	6. Reorigination considerations

	7. IANA Considerations

	8. Security Considerations
	 8.1. Passive attacks

	 8.2. Active attacks

	 8.3. Bad Actor MTAs

	 8.4. Policy Conflicts

	9. Acknowledgements

	10. Revision History
	 10.1. Changes since -07 Draft

	 10.2. Changes since -06 Draft

	 10.3. Changes since -05 Draft

	 10.4. Changes since -04 Draft

	 10.5. Changes since -03 Draft

	 10.6. Changes since -02 Draft

	 10.7. Changes since -01 Draft

	 10.8. Changes since -00 Draft

	 10.9. Changes since fenton-03 Draft

	 10.10. Changes Since -02 Draft

	 10.11. Changes Since -01 Draft

	 10.12. Changes Since -00 Draft

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Appendix A. Examples
	 A.1. REQUIRETLS SMTP Option

	 A.2. TLS-Required Header Field

	Author's Address

1. Introduction

 The SMTP [RFC5321] STARTTLS service extension [RFC3207] provides a
 means by which an SMTP server and client can establish a Transport
 Layer Security (TLS) protected session for the transmission of email
 messages. By default, TLS is used only upon mutual agreement
 (successful negotiation) of STARTTLS between the client and server;
 if this is not possible, the message is sent without transport
 encryption. Furthermore, it is common practice for the client to
 negotiate TLS even if the SMTP server's certificate is invalid.

 Policy mechanisms such as DANE [RFC7672] and MTA-STS [RFC8461] may
 impose requirements for the use of TLS for email destined for some
 domains. However, such policies do not allow the sender to specify
 which messages are more sensitive and require transport-level
 encryption, and which ones are less sensitive and ought to be relayed
 even if TLS cannot be negotiated successfully.

 The default opportunistic nature of SMTP TLS enables several "on the
 wire" attacks on SMTP security between MTAs. These include passive
 eavesdropping on connections for which TLS is not used, interference
 in the SMTP protocol to prevent TLS from being negotiated (presumably
 accompanied by eavesdropping), and insertion of a man-in-the-middle
 attacker exploiting the lack of server authentication by the client.
 Attacks are described in more detail in the Security Considerations
 section of this document.

 REQUIRETLS consists of two mechanisms: an SMTP service extension and
 a message header field. The service extension is used to specify
 that a given message sent during a particular session MUST be sent
 over a TLS-protected session with specified security characteristics.
 It also requires that the SMTP server advertise that it supports
 REQUIRETLS, in effect promising that it will honor the requirement to
 enforce TLS transmission and REQUIRETLS support for onward
 transmission of those messages.

 The TLS-Required message header field is used to convey a request to
 ignore recipient-side policy mechanisms such as MTA-STS and DANE,
 thereby prioritizing delivery over ability to negotiate TLS. Unlike
 the service extension, the TLS-Required header field allows the
 message to transit through one or more MTAs that do not support
 REQUIRETLS.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The formal syntax uses the Augmented Backus-Naur Form (ABNF)
 [RFC5234] including the core rules defined in Appendix B of that
 document.

2. The REQUIRETLS Service Extension

 1. The textual name of the extension is "Require TLS".

 2. The EHLO keyword value associated with this extension is
 "REQUIRETLS".

 3. No additional SMTP verbs are defined by this extension.

 4. One optional parameter ("REQUIRETLS") is added to the MAIL FROM
 command by this extension. No value is associated with this
 parameter.

 5. The maximum length of a MAIL FROM command line is increased by 11
 octets by the possible addition of a space and the REQUIRETLS
 keyword.

 6. One new SMTP status code is defined by this extension to convey
 an error condition resulting from failure of the client to send
 to a server not also supporting the REQUIRETLS extension.

 7. The REQUIRETLS extension is valid for message relay [RFC5321],
 submission [RFC6409], and the Local Mail Transfer Protocol (LMTP)
 [RFC2033]

 8. The ABNF syntax for the MAIL FROM parameter is as follows:

requiretls‑param = "REQUIRETLS"
 ; where requiretls‑param is an instance of an
 ; esmtp‑param used in Mail‑parameters in
 ; RFC 5321 Section 4.1.2. There is no esmtp‑value
 ; associated with requiretls‑param.

 In order to specify REQUIRETLS treatment for a given message, the
 REQUIRETLS option is specified on the MAIL FROM command when that
 message is transmitted. This option MUST only be specified in the
 context of an SMTP session meeting the security requirements of
 REQUIRETLS:

 o The session itself MUST employ TLS transmission.

 o If the SMTP server to which the message is being transmitted is
 identified through an MX record lookup, its name MUST be validated
 via a DNSSEC signature on the recipient domain's MX record, or the
 MX hostname MUST be validated by an MTA-STS policy as described in
 Section 4.1 of RFC 8461 [RFC8461]. DNSSEC is defined in RFC 4033
 [RFC4033], RFC 4034 [RFC4034], and RFC 4035 [RFC4035].

 o The certificate presented by the SMTP server MUST either verify
 successfully in a trust chain leading to a certificate trusted by
 the SMTP client or it MUST verify successfully using DANE as
 specified in RFC 7672 [RFC7672]. For trust chains, the choice of
 trusted (root) certificates is at the discretion of the SMTP
 client.

 o Following the negotiation of STARTTLS, the SMTP server MUST
 advertise in the subsequent EHLO response that it supports
 REQUIRETLS.

3. The TLS-Required Header Field

 One new message header field [RFC5322], TLS-Required, is defined by
 this specification. It is used for messages for which the originator
 requests that recipient TLS policy (including MTA-STS [RFC8461] and
 DANE [RFC7672]) be ignored. This might be done, for example, to
 report a misconfigured mail server, such as an expired TLS
 certificate.

 The TLS-Required header field has a single REQUIRED parameter:

 o No - The SMTP client SHOULD attempt to send the message regardless
 of its ability to negotiate STARTTLS with the SMTP server,
 ignoring policy-based mechanisms (including MTA-STS and DANE), if
 any, asserted by the recipient domain. Nevertheless, the client
 SHOULD negotiate STARTTLS with the server if available.

 More than one instance of the TLS-Required header field MUST NOT
 appear in a given message.

 The ABNF syntax for the TLS-Required header field is as follows:

requiretls‑field = "TLS‑Required:" [FWS] "No" CRLF
 ; where requiretls‑field in an instance of an
 ; optional‑field defined in RFC 5322 Section
 ; 3.6.8.
FWS = <as defined in RFC 5322>
CRLF = <as defined in RFC 5322>

4. REQUIRETLS Semantics

4.1. REQUIRETLS Receipt Requirements

 Upon receipt of the REQUIRETLS option on a MAIL FROM command during
 the receipt of a message, an SMTP server MUST tag that message as
 needing REQUIRETLS handling.

 Upon receipt of a message not specifying the REQUIRETLS option on its
 MAIL FROM command but containing the TLS-Required header field in its
 message header, an SMTP server implementing this specification MUST
 tag that message with the option specified in the TLS-Required header
 field. If the REQUIRETLS MAIL FROM parameter is specified, the TLS-
 Required header field MUST be ignored but MAY be included in onward
 relay of the message.

 The manner in which the above tagging takes place is implementation-
 dependent. If the message is being locally aliased and redistributed
 to multiple addresses, all instances of the message MUST be tagged in
 the same manner.

4.2. REQUIRETLS Sender Requirements

4.2.1. Sending with TLS Required

 When sending a message tagged as requiring TLS for which the MAIL
 FROM return-path is not empty (an empty MAIL FROM return-path
 indicating a bounce message), the sending (client) MTA MUST:

 1. Look up the SMTP server to which the message is to be sent as
 described in [RFC5321] Section 5.1.

 2. If the server lookup is accomplished via the recipient domain's
 MX record (the usual case) and is not accompanied by a valid
 DNSSEC signature, the client MUST also validate the SMTP server
 name using MTA-STS as described in RFC 8461 [RFC8461]
 Section 4.1.

 3. Open an SMTP session with the peer SMTP server using the EHLO
 verb.

 4. Establish a TLS-protected SMTP session with its peer SMTP server
 and authenticate the server's certificate as specified in
 [RFC6125] or [RFC7672] as applicable.

 5. Ensure that the response to the subsequent EHLO following
 establishment of the TLS protection advertises the REQUIRETLS
 capability.

 The SMTP client SHOULD follow the recommendations in [RFC7525] or its
 successor with respect to negotiation of the TLS session.

 If any of the above steps fail, the client MUST issue a QUIT to the
 server and repeat steps 2-5 with each host on the recipient domain's
 list of MX hosts in an attempt to find a mail path that meets the
 sender's requirements. The client MAY send other, unprotected,
 messages to that server if it has any prior to issuing the QUIT. If
 there are no more MX hosts, the client MUST NOT transmit the message
 to the domain.

 Following such a failure, the SMTP client MUST send a non-delivery
 notification to the reverse-path of the failed message as described
 in section 3.6 of [RFC5321]. The following status codes [RFC5248]
 SHOULD be used:

 o REQUIRETLS not supported by server: 5.7.YYY REQUIRETLS needed

 o Unable to establish TLS-protected SMTP session: 5.7.10 Encryption
 needed

 Refer to Section 5 for further requirements regarding non-delivery
 messages.

 If all REQUIRETLS requirements have been met, transmit the message,
 issuing the REQUIRETLS option on the MAIL FROM command with the
 required option(s), if any.

4.2.2. Sending with TLS Optional

 Messages tagged TLS-Required: No are handled as follows. When
 sending such a message, the sending (client) MTA MUST:

 o Look up the SMTP server to which the message is to be sent as
 described in [RFC5321] Section 5.1.

 o Open an SMTP session with the peer SMTP server using the EHLO
 verb. Attempt to negotiate STARTTLS if possible, and follow any
 policy published by the recipient domain, but do not fail if this
 is unsuccessful.

 Some SMTP servers may be configured to require STARTTLS connections
 as a matter of policy and not accept messages in the absence of
 STARTTLS. A non-delivery notification MUST be returned to the sender
 if message relay fails due to an inability to negotiate STARTTLS when
 required by the server.

 Since messages tagged with TLS-Required: No will sometimes be sent to
 SMTP servers not supporting REQUIRETLS, that option will not be
 uniformly observed by all SMTP relay hops.

4.3. REQUIRETLS Submission

 An MUA or other agent making the initial introduction of a message
 has authority to decide whether to require TLS. When TLS is to be
 required, it MUST do so by negotiating STARTTLS and REQUIRETLS and
 include the REQUIRETLS option on the MAIL FROM command, as is done
 for message relay.

 When TLS is not to be required, the sender MUST include the TLS-
 Required header field in the message. SMTP servers implementing this
 specification MUST interpret this header field as described in
 Section 4.1.

 In either case, the decision whether to specify REQUIRETLS MAY be
 done based on a user interface selection or based on a ruleset or
 other policy. The manner in which the decision to require TLS is
 made is implementation-dependent and is beyond the scope of this
 specification.

4.4. Delivery of REQUIRETLS messages

 Messages are usually retrieved by end users using protocols other
 than SMTP such as IMAP [RFC3501], POP [RFC1939], or web mail systems.
 Mail delivery agents supporting the REQUIRETLS SMTP option SHOULD
 observe the guidelines in [RFC8314].

5. Non-delivery message handling

 Non-delivery ("bounce") messages usually contain important metadata
 about the message to which they refer, including the original message
 header. They therefore MUST be protected in the same manner as the
 original message. All non-delivery messages resulting from messages
 with the REQUIRETLS SMTP option, whether resulting from a REQUIRETLS
 error or some other, MUST also specify the REQUIRETLS SMTP option
 unless redacted as described below.

 The path from the origination of an error bounce message back to the
 MAIL FROM address may not share the same REQUIRETLS support as the
 forward path. Therefore, users requiring TLS are advised to make
 sure that they are capable of receiving mail using REQUIRETLS as
 well. Otherwise, such non-delivery messages will be lost.

 If a REQUIRETLS message is bounced, the server MUST behave as if
 RET=HDRS was present as described in [RFC3461]. If both RET=FULL and
 REQUIRETLS are present, the RET=FULL MUST be disregarded. The SMTP
 client for a REQUIRETLS bounce message uses an empty MAIL FROM
 return-path as required by [RFC5321]. When the MAIL FROM return-path
 is empty, the REQUIRETLS parameter SHOULD NOT cause a bounce message
 to be discarded even if the next-hop relay does not advertise
 REQUIRETLS.

 Senders of messages requiring TLS are advised to consider the
 possibility that bounce messages will be lost as a result of
 REQUIRETLS return path failure, and that some information could be
 leaked if a bounce message is not able to be transmitted with
 REQUIRETLS.

6. Reorigination considerations

 In a number of situations, a mediator [RFC5598] originates a new
 message as a result of an incoming message. These situations
 include, but are not limited to, mailing lists (including
 administrative traffic such as message approval requests), Sieve
 [RFC5228], "vacation" responders, and other filters to which incoming
 messages may be piped. These newly originated messages may
 essentially be copies of the incoming message, such as with a
 forwarding service or a mailing list expander. In other cases, such
 as with a vacation message or a delivery notification, they will be
 different but might contain parts of the original message or other
 information for which the original message sender wants to influence
 the requirement to use TLS transmission.

 Mediators that reoriginate messages should apply REQUIRETLS
 requirements in incoming messages (both requiring TLS transmission
 and requesting that TLS not be required) to the reoriginated messages
 to the extent feasible. A limitation to this might be that for a
 message requiring TLS, redistribution to multiple addresses while
 retaining the TLS requirement could result in the message not being
 delivered to some of the intended recipients.

 User-side mediators (such as use of Sieve rules on a user agent)
 typically do not have access to the SMTP details, and therefore may
 not be aware of the REQUIRETLS requirement on a delivered message.
 Recipients that expect sensitive traffic should avoid the use of
 user-side mediators. Alternatively, if operationally feasible (such
 as when forwarding to a specific, known address), they should apply
 REQUIRETLS to all reoriginated messages that do not contain the "TLS-
 Required: No" header field.

7. IANA Considerations

 If published as an RFC, this draft requests the addition of the
 following keyword to the SMTP Service Extensions Registry
 [MailParams]:

Textual name: Require TLS
EHLO keyword value: REQUIRETLS
Syntax and parameters: (no parameters)
Additional SMTP verbs: none
MAIL and RCPT parameters: REQUIRETLS parameter on MAIL
Behavior: Use of the REQUIRETLS parameter on the
 MAIL verb causes that message to require
 the use of TLS and tagging with
 REQUIRETLS for all onward relay.
Command length increment: 11 characters

 If published as an RFC, this draft requests the addition of an entry
 to the Simple Mail Transfer Protocol (SMTP) Enhanced Status Codes
 Registry [SMTPStatusCodes]:

Code: 5.7.YYY
Sample Text: REQUIRETLS support required
Associated basic status code: 550
Description: This indicates that the message was not
 able to be forwarded because it was
 received with a REQUIRETLS requirement
 and none of the SMTP servers to which
 the message should be forwarded provide
 this support.
Reference: (this document)
Submitter: J. Fenton
Change controller: IESG

 If published as an RFC, this draft requests the addition of an entry
 to the Permanent Message Header Field Names Registry
 [PermMessageHeaderFields]:

Header field name: TLS‑Required
Applicable protocol: mail
Status: standard
Author/change controller: IETF
Specification document: (this document)

 This section is to be updated for publication by the RFC Editor.

8. Security Considerations

 The purpose of REQUIRETLS is to give the originator of a message
 control over the security of email they send, either by conveying an
 expectation that it will be transmitted in an encrypted form "over
 the wire" or explicitly that transport encryption is not required if
 it cannot be successfully negotiated.

 The following considerations apply to the REQUIRETLS service
 extension but not the TLS-Required header field, since messages
 specifying the header field are less concerned with transport
 security.

8.1. Passive attacks

 REQUIRETLS is generally effective against passive attackers who are
 merely trying to eavesdrop on an SMTP exchange between an SMTP client
 and server. This assumes, of course, the cryptographic integrity of
 the TLS connection being used.

8.2. Active attacks

 Active attacks against TLS encrypted SMTP connections can take many
 forms. One such attack is to interfere in the negotiation by
 changing the STARTTLS command to something illegal such as XXXXXXXX.
 This causes TLS negotiation to fail and messages to be sent in the
 clear, where they can be intercepted. REQUIRETLS detects the failure
 of STARTTLS and declines to send the message rather than send it
 insecurely.

 A second form of attack is a man-in-the-middle attack where the
 attacker terminates the TLS connection rather than the intended SMTP
 server. This is possible when, as is commonly the case, the SMTP
 client either does not verify the server's certificate or establishes
 the connection even when the verification fails. REQUIRETLS requires
 successful certificate validation before sending the message.

 Another active attack involves the spoofing of DNS MX records of the
 recipient domain. An attacker having this capability could
 potentially cause the message to be redirected to a mail server under
 the attacker's own control, which would presumably have a valid
 certificate. REQUIRETLS requires that the recipient domain's MX
 record lookup be validated either using DNSSEC or via a published
 MTA-STS policy that specifies the acceptable SMTP server hostname(s)
 for the recipient domain.

8.3. Bad Actor MTAs

 A bad-actor MTA along the message transmission path could
 misrepresent its support of REQUIRETLS and/or actively strip
 REQUIRETLS tags from messages it handles. However, since
 intermediate MTAs are already trusted with the cleartext of messages
 they handle, and are not part of the threat model for transport-layer
 security, they are also not part of the threat model for REQUIRETLS.

 It should be reemphasized that since SMTP TLS is a transport-layer
 security protocol, messages sent using REQUIRETLS are not encrypted
 end-to-end and are visible to MTAs that are part of the message
 delivery path. Messages containing sensitive information that MTAs
 should not have access to MUST be sent using end-to-end content
 encryption such as OpenPGP [RFC4880] or S/MIME [RFC5751].

8.4. Policy Conflicts

 In some cases, the use of the TLS-Required header field may conflict
 with a recipient domain policy expressed through the DANE [RFC7672]
 or MTA-STS [RFC8461] protocols. Although these protocols encourage
 the use of TLS transport by advertising availability of TLS, the use
 of "TLS-Required: No" header field represents an explicit decision on
 the part of the sender not to require the use of TLS, such as to
 overcome a configuration error. The recipient domain has the
 ultimate ability to require TLS by not accepting messages when
 STARTTLS has not been negotiated; otherwise, "TLS-Required: No" is
 effectively directing the client MTA to behave as if it does not
 support DANE nor MTA-STS.

9. Acknowledgements

 The author would like to acknowledge many helpful suggestions on the
 ietf-smtp and uta mailing lists, in particular those of Viktor
 Dukhovni, Chris Newman, Tony Finch, Jeremy Harris, Arvel Hathcock,
 John Klensin, Barry Leiba, John Levine, Rolf Sonneveld, and Per
 Thorsheim.

10. Revision History

 To be removed by RFC Editor upon publication as an RFC.

10.1. Changes since -07 Draft

 Changes in response to IESG review and IETF Last Call comments:

 o Change associated status code for 5.7.YYY from 530 to 550.

 o Correct textual name of extension in IANA Considerations for
 consistency with the rest of the document.

 o Remove special handling of bounce messages in Section 4.1.

 o Change name of header field from RequireTLS to TLS-Required and
 make capitalization of parameter consistent.

 o Remove mention of transforming RET=FULL to RET=HDRS on relay in
 Section 5.

 o Replace Section 6 dealing with mailing lists with a more general
 section on reorigination by mediators.

 o Add security considerations section on policy conflicts.

10.2. Changes since -06 Draft

 Various changes in response to AD review:

 o Reference RFC 7525 for TLS negotiation recommendations.

 o Make reference to requested 5.7.YYY error code consistent.

 o Clarify applicability to LMTP and submission.

 o Provide ABNF for syntax of SMTP option and header field and
 examples in Appendix A.

 o Correct use of normative language in Section 5.

 o Clarify case where REQUIRETLS option is used on bounce messages.

 o Improve Security Requirements wording to be incusive of both SMTP
 option and header field.

10.3. Changes since -05 Draft

 Corrected IANA Permanent Message Header Fields Registry request.

10.4. Changes since -04 Draft

 Require validation of SMTP server hostname via DNSSEC or MTA-STS
 policy when TLS is required.

10.5. Changes since -03 Draft

 Working Group Last Call changes, including:

 o Correct reference for SMTP DANE

 o Clarify that RequireTLS: NO applies to both MTA-STS and DANE
 policies

 o Correct newly-defined status codes

 o Update MTA-STS references to RFC

10.6. Changes since -02 Draft

 o More complete documentation for IANA registration requests.

 o Changed bounce handling to use RET parameters of [RFC3461], along
 with slightly more liberal transmission of bounces even if
 REQUIRETLS can't be negotiated.

10.7. Changes since -01 Draft

 o Converted DEEP references to RFC 8314.

 o Removed REQUIRETLS options: CHAIN, DANE, and DNSSEC.

 o Editorial corrections, notably making the header field name
 consistent (RequireTLS rather than Require-TLS).

10.8. Changes since -00 Draft

 o Created new header field, Require-TLS, for use by "NO" option.

 o Removed "NO" option from SMTP service extension.

 o Recommend DEEP requirements for delivery of messages requiring
 TLS.

 o Assorted copy edits

10.9. Changes since fenton-03 Draft

 o Wording improvements from Rolf Sonneveld review 22 July 2017

 o A few copy edits

 o Conversion from individual to UTA WG draft

10.10. Changes Since -02 Draft

 o Incorporation of "MAY TLS" functionality as REQUIRETLS=NO per
 suggestion on UTA WG mailing list.

 o Additional guidance on bounce messages

10.11. Changes Since -01 Draft

 o Specified retries when multiple MX hosts exist for a given domain.

 o Clarified generation of non-delivery messages

 o Specified requirements for application of REQUIRETLS to mail
 forwarders and mailing lists.

 o Clarified DNSSEC requirements to include MX lookup only.

 o Corrected terminology regarding message retrieval vs. delivery.

 o Changed category to standards track.

10.12. Changes Since -00 Draft

 o Conversion of REQUIRETLS from an SMTP verb to a MAIL FROM
 parameter to better associate REQUIRETLS requirements with
 transmission of individual messages.

 o Addition of an option to require DNSSEC lookup of the remote mail
 server, since this affects the common name of the certificate that
 is presented.

 o Clarified the wording to more clearly state that TLS sessions must
 be established and not simply that STARTTLS is negotiated.

 o Introduced need for minimum encryption standards (key lengths and
 algorithms)

 o Substantially rewritten Security Considerations section

11. References

11.1. Normative References

 [MailParams]

 Internet Assigned Numbers Authority (IANA), "IANA Mail
 Parameters", 2007,
 <http://www.iana.org/assignments/mail-parameters>.

 [PermMessageHeaderFields]

 Internet Assigned Numbers Authority (IANA), "Permanent
 Message Header Field Names Registry", 2004,
 <https://www.iana.org/assignments/message-headers/
 message-headers.xhtml#perm-headers>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3207]
 Hoffman, P., "SMTP Service Extension for Secure SMTP over
 Transport Layer Security", RFC 3207, DOI 10.17487/RFC3207,
 February 2002, <https://www.rfc-editor.org/info/rfc3207>.

 [RFC3461]
 Moore, K., "Simple Mail Transfer Protocol (SMTP) Service
 Extension for Delivery Status Notifications (DSNs)",
 RFC 3461, DOI 10.17487/RFC3461, January 2003,
 <https://www.rfc-editor.org/info/rfc3461>.

 [RFC4033]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

 [RFC4034]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <https://www.rfc-editor.org/info/rfc4034>.

 [RFC4035]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
 <https://www.rfc-editor.org/info/rfc4035>.

 [RFC5234]
 Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC5248]
 Hansen, T. and J. Klensin, "A Registry for SMTP Enhanced
 Mail System Status Codes", BCP 138, RFC 5248,
 DOI 10.17487/RFC5248, June 2008,
 <https://www.rfc-editor.org/info/rfc5248>.

 [RFC5321]
 Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 DOI 10.17487/RFC5321, October 2008,
 <https://www.rfc-editor.org/info/rfc5321>.

 [RFC5322]
 Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC6125]
 Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC7525]
 Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC7672]
 Dukhovni, V. and W. Hardaker, "SMTP Security via
 Opportunistic DNS-Based Authentication of Named Entities
 (DANE) Transport Layer Security (TLS)", RFC 7672,
 DOI 10.17487/RFC7672, October 2015,
 <https://www.rfc-editor.org/info/rfc7672>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8314]
 Moore, K. and C. Newman, "Cleartext Considered Obsolete:
 Use of Transport Layer Security (TLS) for Email Submission
 and Access", RFC 8314, DOI 10.17487/RFC8314, January 2018,
 <https://www.rfc-editor.org/info/rfc8314>.

 [RFC8461]
 Margolis, D., Risher, M., Ramakrishnan, B., Brotman, A.,
 and J. Jones, "SMTP MTA Strict Transport Security (MTA-
 STS)", RFC 8461, DOI 10.17487/RFC8461, September 2018,
 <https://www.rfc-editor.org/info/rfc8461>.

 [SMTPStatusCodes]

 Internet Assigned Numbers Authority (IANA), "Simple Mail
 Transfer Protocol (SMTP) Enhanced Status Codes Registry",
 2008, <http://www.iana.org/assignments/
 smtp-enhanced-status-codes>.

11.2. Informative References

 [RFC1939]
 Myers, J. and M. Rose, "Post Office Protocol - Version 3",
 STD 53, RFC 1939, DOI 10.17487/RFC1939, May 1996,
 <https://www.rfc-editor.org/info/rfc1939>.

 [RFC2033]
 Myers, J., "Local Mail Transfer Protocol", RFC 2033,
 DOI 10.17487/RFC2033, October 1996,
 <https://www.rfc-editor.org/info/rfc2033>.

 [RFC3501]
 Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
 4rev1", RFC 3501, DOI 10.17487/RFC3501, March 2003,
 <https://www.rfc-editor.org/info/rfc3501>.

 [RFC4880]
 Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.
 Thayer, "OpenPGP Message Format", RFC 4880,
 DOI 10.17487/RFC4880, November 2007,
 <https://www.rfc-editor.org/info/rfc4880>.

 [RFC5228]
 Guenther, P., Ed. and T. Showalter, Ed., "Sieve: An Email
 Filtering Language", RFC 5228, DOI 10.17487/RFC5228,
 January 2008, <https://www.rfc-editor.org/info/rfc5228>.

 [RFC5598]
 Crocker, D., "Internet Mail Architecture", RFC 5598,
 DOI 10.17487/RFC5598, July 2009,
 <https://www.rfc-editor.org/info/rfc5598>.

 [RFC5751]
 Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, DOI 10.17487/RFC5751, January
 2010, <https://www.rfc-editor.org/info/rfc5751>.

 [RFC6409]
 Gellens, R. and J. Klensin, "Message Submission for Mail",
 STD 72, RFC 6409, DOI 10.17487/RFC6409, November 2011,
 <https://www.rfc-editor.org/info/rfc6409>.

Appendix A. Examples

 This section is informative.

A.1. REQUIRETLS SMTP Option

 The TLS-Required SMTP option is used to express the intent of the
 sender that the associated message be relayed using TLS. In the
 following example, lines beginning with C: are transmitted from the
 SMTP client to the server, and lines beginning with S: are
 transmitted in the opposite direction.

S: 220 mail.example.net ESMTP
C: EHLO mail.example.org
S: 250‑mail.example.net Hello example.org [192.0.2.1]
S: 250‑SIZE 52428800
S: 250‑8BITMIME
S: 250‑PIPELINING
S: 250‑STARTTLS
S: 250 HELP
C: STARTTLS
S: TLS go ahead

 (at this point TLS negotiation takes place. The remainder of this
 session occurs within TLS.)

S: 220 mail.example.net ESMTP
C: EHLO mail.example.org
S: 250‑mail.example.net Hello example.org [192.0.2.1]
S: 250‑SIZE 52428800
S: 250‑8BITMIME
S: 250‑PIPELINING
S: 250‑REQUIRETLS
S: 250 HELP
C: MAIL FROM:<roger@example.org> REQUIRETLS
S: 250 OK
C: RCPT TO:<editor@example.net>
S: 250 Accepted
C: DATA
S: 354 Enter message, ending with "." on a line by itself

(message follows)
C: .
S: 250 OK
C: QUIT

A.2. TLS-Required Header Field

 The TLS-Required header field is used when the sender of the message
 wants to override the default policy of the recipient domain to
 require TLS. It might be used, for example, to allow problems with
 the recipient domain's TLS certificate to be reported:

From: Roger Reporter <roger@example.org>
To: Andy Admin <admin@example.com>
Subject: Certificate problem?
TLS‑Required: No
Date: Fri, 18 Jan 2019 10:26:55 ‑0800
Message‑ID: <5c421a6f79c0e_d153ff8286d45c468473@mail.example.org>

Andy, there seems to be a problem with the TLS certificate
on your mail server. Are you aware of this?

 Roger

Author's Address

Jim Fenton
Altmode Networks
Los Altos, California 94024
USA

 Email: fenton@bluepopcorn.net

draft-ietf-uta-tls-for-email-01 - Use of TLS for Email Submission and Access

Index
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Updates: 8314 (if approved)

Intended status: Standards Track

Expires: September 8, 2019

L. Velvindron

cyberstorm.mu

S. Farrell

Trinity College Dublin

March 7, 2019

Use of TLS for Email Submission and Access

draft-ietf-uta-tls-for-email-01

Abstract

 This specification updates current recommendation for the use of
 Transport Layer Security (TLS) protocol to provide confidentiality of
 email between a Mail User Agent (MUA) and a Mail Submission Server or
 Mail Access Server. This document updates RFC8314.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 8, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions Used in This Document

	3. Updates to RFC8314

	4. IANA Considerations

	5. Security Considerations

	6. Acknowledgement

	7. References
	 7.1. Informative References

	 7.2. Normative References

	Authors' Addresses

1. Introduction

 [RFC8314] defines the minimum recommended version for TLS as version
 1.1. Due to the deprecation of TLS 1.1 in
 [I-D.ietf-tls-oldversions-deprecate], this recommendation is no
 longer valid. Therefore this document updates [RFC8314] so that the
 minimum version for TLS is TLS 1.2.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119] when they
 appear in ALL CAPS. These words may also appear in this document in
 lower case as plain English words, absent their normative meanings.

3. Updates to RFC8314

 OLD:

 "4.1. Deprecation of Services Using Cleartext and TLS Versions Less
 Than 1.1"

 NEW:

 "4.1. Deprecation of Services Using Cleartext and TLS Versions Less
 Than 1.2"

 OLD

 "As soon as practicable, MSPs currently supporting Secure Sockets
 Layer (SSL) 2.x, SSL 3.0, or TLS 1.0 SHOULD transition their users to
 TLS 1.1 or later and discontinue support for those earlier versions
 of SSL and TLS."

 NEW:

 "As soon as practicable, MSPs currently supporting Secure Sockets
 Layer (SSL) 2.x, SSL 3.0, TLS 1.0 or TLS 1.1 SHOULD transition their
 users to TLS 1.2 or later and discontinue support for those earlier
 versions of SSL and TLS."

 OLD:

 In Section 4.1, the text should be revised from: "It is RECOMMENDED
 that new users be required to use TLS version 1.1 or greater from the
 start. However, an MSP may find it necessary to make exceptions to
 accommodate some legacy systems that support only earlier versions of
 TLS or only cleartext."

 NEW:

 "It is RECOMMENDED that new users be required to use TLS version 1.2
 or greater from the start. However, an MSP may find it necessary to
 make exceptions to accommodate some legacy systems that support only
 earlier versions of TLS or only cleartext."

 OLD:

 " If, however, an MUA provides such an indication, it MUST NOT
 indicate confidentiality for any connection that does not at least
 use TLS 1.1 with certificate verification and also meet the minimum
 confidentiality requirements associated with that account. "

 NEW:

 " If, however, an MUA provides such an indication, it MUST NOT
 indicate confidentiality for any connection that does not at least
 use TLS 1.2 with certificate verification and also meet the minimum
 confidentiality requirements associated with that account. "

 OLD

 " MUAs MUST implement TLS 1.2 [RFC5246] or later. Earlier TLS and
 SSL versions MAY also be supported, so long as the MUA requires at
 least TLS 1.1 [RFC4346] when accessing accounts that are configured
 to impose minimum confidentiality requirements. "

 NEW:

 " MUAs MUST implement TLS 1.2 [RFC5246] or later e.g TLS 1.3
 [RFC8446]. Earlier TLS and SSL versions MAY also be supported, so
 long as the MUA requires at least TLS 1.2 [RFC5246] when accessing
 accounts that are configured to impose minimum confidentiality
 requirements. "

 OLD:

 " The default minimum expected level of confidentiality for all new
 accounts MUST require successful validation of the server's
 certificate and SHOULD require negotiation of TLS version 1.2 or
 greater. (Future revisions to this specification may raise these
 requirements or impose additional requirements to address newly
 discovered weaknesses in protocols or cryptographic algorithms. "

 NEW:

 " The default minimum expected level of confidentiality for all new
 accounts MUST require successful validation of the server's
 certificate and SHOULD require negotiation of TLS version 1.2 or
 greater. (Future revisions to this specification may raise these
 requirements or impose additional requirements to address newly
 discovered weaknesses in protocols or cryptographic algorithms. "

4. IANA Considerations

 None of the proposed measures have an impact on IANA.

5. Security Considerations

 The purpose of this document is to document updated recommendations
 for using TLS with Email services. Those recommendations are based
 on [I-D.ietf-tls-oldversions-deprecate].

6. Acknowledgement

 The authors would like to thank Vittorio Bertola for his feedback.

7. References

7.1. Informative References

 [RFC4346]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346,
 DOI 10.17487/RFC4346, April 2006,
 <https://www.rfc-editor.org/info/rfc4346>.

7.2. Normative References

 [I-D.ietf-tls-oldversions-deprecate]

 Moriarty, K. and S. Farrell, "Deprecating TLSv1.0 and
 TLSv1.1", draft-ietf-tls-oldversions-deprecate-01 (work in
 progress), November 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC8314]
 Moore, K. and C. Newman, "Cleartext Considered Obsolete:
 Use of Transport Layer Security (TLS) for Email Submission
 and Access", RFC 8314, DOI 10.17487/RFC8314, January 2018,
 <https://www.rfc-editor.org/info/rfc8314>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Authors' Addresses

Loganaden Velvindron
cyberstorm.mu
88 Avenue De Plevitz Roches Brunes
Rose Hill 71259
Mauritius

Phone: +230 59762817
Email: loganaden@gmail.com

Stephen Farrell
Trinity College Dublin
Dublin 2
Ireland

Phone: +353‑1‑896‑2354
Email: stephen.farrell@cs.tcd.ie

7457 - Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram

Index
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7457

Category: Informational

ISSN: 2070-1721

Y. Sheffer

Porticor

R. Holz

Technische Universitaet Muenchen

P. Saint-Andre

&yet

February 2015

Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS)

Abstract

 Over the last few years, there have been several serious attacks on
 Transport Layer Security (TLS), including attacks on its most
 commonly used ciphers and modes of operation. This document
 summarizes these attacks, with the goal of motivating generic and
 protocol-specific recommendations on the usage of TLS and Datagram
 TLS (DTLS).

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7457.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents
 1. Introduction ..3
 2. Attacks on TLS ..3
 2.1. SSL Stripping ..3
 2.2. STARTTLS Command Injection Attack (CVE‑2011‑0411)4
 2.3. BEAST (CVE‑2011‑3389)4
 2.4. Padding Oracle Attacks4
 2.5. Attacks on RC4 ...5
 2.6. Compression Attacks: CRIME, TIME, and BREACH5
 2.7. Certificate and RSA‑Related Attacks5
 2.8. Theft of RSA Private Keys6
 2.9. Diffie‑Hellman Parameters6
 2.10. Renegotiation (CVE‑2009‑3555)6
 2.11. Triple Handshake (CVE‑2014‑1295)6
 2.12. Virtual Host Confusion7
 2.13. Denial of Service ...7
 2.14. Implementation Issues7
 2.15. Usability ...8
 3. Applicability to DTLS ...8
 4. Security Considerations ...8
 5. Informative References ..8
 Acknowledgements ..13
 Authors' Addresses ..13

1. Introduction

 Over the last few years, there have been several major attacks on TLS
 [RFC5246], including attacks on its most commonly used ciphers and
 modes of operation. Details are given in Section 2, but a quick
 summary is that both AES-CBC and RC4, which together make up for most
 current usage, have been seriously attacked in the context of TLS.

 This situation was one of the motivations for the creation of the UTA
 working group, which was tasked with the creation of generic and
 protocol-specific recommendations for the use of TLS and DTLS
 [RFC6347] (unless otherwise noted under Section 3, all of the
 information provided in this document applies to DTLS).

 There is an old saying attributed, ironically enough, to the US
 National Security Agency (NSA): "Attacks always get better; they
 never get worse." Unfortunately, that saying is true, so any
 description of security attacks can only be a snapshot in time.
 Therefore this document reflects our knowledge as of this writing.
 It seems likely that new attacks will be discovered in the future.

 For a more detailed discussion of the attacks listed here, the
 interested reader is referred to [Attacks-iSec].

2. Attacks on TLS

 This section lists the attacks that motivated the current
 recommendations in [SECURE-TLS]. This list is not intended to be an
 extensive survey of the security of TLS.

 While there are widely deployed mitigations for some of the attacks
 listed below, we believe that their root causes necessitate a more
 systematic solution, which we have attempted to develop in
 [SECURE-TLS].

 When an identifier exists for an attack, we have included its Common
 Vulnerabilities and Exposures (CVE) ID. CVE [CVE] is an extensive,
 industry-wide database of software vulnerabilities.

2.1. SSL Stripping

 Various attacks attempt to remove the use of Secure Socket Layer /
 Transport Layer Security (SSL/TLS) altogether by modifying
 unencrypted protocols that request the use of TLS, specifically
 modifying HTTP traffic and HTML pages as they pass on the wire.
 These attacks are known collectively as "SSL Stripping" (a form of
 the more generic "downgrade attack") and were first introduced by
 Moxie Marlinspike [SSL-Stripping]. In the context of Web traffic,
 these attacks are only effective if the client initially accesses a
 Web server using HTTP. A commonly used mitigation is HTTP Strict
 Transport Security (HSTS) [RFC6797].

2.2. STARTTLS Command Injection Attack (CVE-2011-0411)

 Similarly, there are attacks on the transition between unprotected
 and TLS-protected traffic. A number of IETF application protocols
 have used an application-level command, usually STARTTLS, to upgrade
 a cleartext connection to use TLS. Multiple implementations of
 STARTTLS had a flaw where an application-layer input buffer retained
 commands that were pipelined with the STARTTLS command, such that
 commands received prior to TLS negotiation are executed after TLS
 negotiation. This problem is resolved by requiring the application-
 level command input buffer to be empty before negotiating TLS. Note
 that this flaw lives in the application layer code and does not
 impact the TLS protocol directly.

 STARTTLS and similar mechanisms are vulnerable to downgrade attacks,
 whereby the attacker simply removes the STARTTLS indication from the
 (unprotected) request. This cannot be mitigated unless HSTS-like
 solutions are added.

2.3. BEAST (CVE-2011-3389)

 The BEAST attack [BEAST] uses issues with the TLS 1.0 implementation
 of Cipher Block Chaining (CBC) (that is, the predictable
 initialization vector) to decrypt parts of a packet, and specifically
 to decrypt HTTP cookies when HTTP is run over TLS.

2.4. Padding Oracle Attacks

 A consequence of the MAC-then-encrypt design in all current versions
 of TLS is the existence of padding oracle attacks [Padding-Oracle].
 A recent incarnation of these attacks is the Lucky Thirteen attack
 (CVE-2013-0169) [CBC-Attack], a timing side-channel attack that
 allows the attacker to decrypt arbitrary ciphertext.

 The Lucky Thirteen attack can be mitigated by using authenticated
 encryption like AES-GCM [RFC5288] or encrypt-then-MAC [RFC7366]
 instead of the TLS default of MAC-then-encrypt.

 An even newer variant of the padding oracle attack, one that does not
 use timing information, is the POODLE attack (CVE-2014-3566) [POODLE]
 on SSL 3.0. This attack has no known mitigation.

2.5. Attacks on RC4

 The RC4 algorithm [RC4] has been used with TLS (and previously, SSL)
 for many years. RC4 has long been known to have a variety of
 cryptographic weaknesses, e.g., [RC4-Attack-Pau], [RC4-Attack-Man],
 and [RC4-Attack-FMS]. Recent cryptanalysis results [RC4-Attack-AlF]
 exploit biases in the RC4 keystream to recover repeatedly encrypted
 plaintexts.

 These recent results are on the verge of becoming practically
 exploitable; currently they require 2^26 sessions or 13x2^30
 encryptions. As a result, RC4 can no longer be seen as providing a
 sufficient level of security for TLS sessions. For further details,
 the reader is referred to [CIPHER-SUITES] and the references it
 cites.

2.6. Compression Attacks: CRIME, TIME, and BREACH

 The CRIME attack [CRIME] (CVE-2012-4929) allows an active attacker to
 decrypt ciphertext (specifically, cookies) when TLS is used with TLS-
 level compression.

 The TIME attack [TIME] and the later BREACH attack [BREACH] (CVE-
 2013-3587, though the number has not been officially allocated) both
 make similar use of HTTP-level compression to decrypt secret data
 passed in the HTTP response. We note that compression of the HTTP
 message body is much more prevalent than compression at the TLS
 level.

 The TIME attack can be mitigated by disabling TLS compression. We
 are not aware of mitigations at the TLS protocol level to the BREACH
 attack, and so application-level mitigations are needed (see
 [BREACH]). For example, implementations of HTTP that use Cross-Site
 Request Forgery (CSRF) tokens will need to randomize them. Even the
 best practices and recommendations from [SECURE-TLS] are insufficient
 to thwart this attack.

2.7. Certificate and RSA-Related Attacks

 There have been several practical attacks on TLS when used with RSA
 certificates (the most common use case). These include
 [Bleichenbacher98] and [Klima03]. While the Bleichenbacher attack
 has been mitigated in TLS 1.0, the Klima attack, which relies on a
 version-check oracle, is only mitigated by TLS 1.1.

 The use of RSA certificates often involves exploitable timing issues
 [Brumley03] (CVE-2003-0147), unless the implementation takes care to
 explicitly eliminate them.

 A recent certificate fuzzing tool [Brubaker2014using] uncovered
 numerous vulnerabilities in different TLS libraries related to
 certificate validation.

2.8. Theft of RSA Private Keys

 When TLS is used with most non-Diffie-Hellman cipher suites, it is
 sufficient to obtain the server's private key in order to decrypt any
 sessions (past and future) that were initiated with that server.
 This technique is used, for example, by the popular Wireshark network
 sniffer to inspect TLS-protected connections.

 It is known that stolen (or otherwise obtained) private keys have
 been used as part of large-scale monitoring [RFC7258] of certain
 servers.

 Such attacks can be mitigated by better protecting the private key,
 e.g., using OS protections or dedicated hardware. Even more
 effective is the use of cipher suites that offer "forward secrecy",
 the property where revealing a secret such as a private key does not
 expose past or future sessions to a passive attacker.

2.9. Diffie-Hellman Parameters

 TLS allows the definition of ephemeral Diffie-Hellman (DH) and
 Elliptic Curve Diffie-Hellman parameters in its respective key
 exchange modes. This results in an attack detailed in
 [Cross-Protocol]. Using predefined DH groups, as proposed in
 [FFDHE-TLS], would mitigate this attack.

 In addition, clients that do not properly verify the received
 parameters are exposed to man-in-the-middle (MITM) attacks.
 Unfortunately, the TLS protocol does not mandate this verification
 (see [RFC6989] for analogous information for IPsec).

2.10. Renegotiation (CVE-2009-3555)

 A major attack on the TLS renegotiation mechanism applies to all
 current versions of the protocol. The attack and the TLS extension
 that resolves it are described in [RFC5746].

2.11. Triple Handshake (CVE-2014-1295)

 The triple handshake attack [BhargavanDFPS14] enables the attacker to
 cause two TLS connections to share keying material. This leads to a
 multitude of attacks, e.g., man-in-the-middle, breaking safe
 renegotiation, and breaking channel binding via TLS Exporter
 [RFC5705] or "tls-unique" [RFC5929].

2.12. Virtual Host Confusion

 A recent article [Delignat14] describes a security issue whereby
 SSLv3 fallback and improper handling of session caches on the server
 side can be abused by an attacker to establish a malicious connection
 to a virtual host other than the one originally intended and approved
 by the server. This attack is especially serious in performance
 critical environments where sharing of SSLv3 session caches is very
 common.

2.13. Denial of Service

 Server CPU power has progressed over the years so that TLS can now be
 turned on by default. However, the risk of malicious clients and
 coordinated groups of clients ("botnets") mounting denial-of-service
 attacks is still very real. TLS adds another vector for
 computational attacks, since a client can easily (with little
 computational effort) force the server to expend relatively large
 computational work. It is known that such attacks have in fact been
 mounted.

2.14. Implementation Issues

 Even when the protocol is properly specified, this does not guarantee
 the security of implementations. In fact, there are very common
 issues that often plague TLS implementations. In particular, when
 integrating into higher-level protocols, TLS and its PKI-based
 authentication are sometimes the source of misunderstandings and
 implementation "shortcuts". An extensive survey of these issues can
 be found in [Georgiev2012].

 o Implementations might omit validation of the server certificate
 altogether. For example, this is true of the default
 implementation of HTTP client libraries in Python 2 (e.g., CVE-
 2013-2191).

 o Implementations might not validate the server identity. This
 validation typically amounts to matching the protocol-level server
 name with the certificate's Subject Alternative Name field. Note:
 this same information is often also found in the Common Name part
 of the Distinguished Name, and some validators incorrectly
 retrieve it from there instead of from the Subject Alternative
 Name.

 o Implementations might validate the certificate chain incorrectly
 or not at all, or use an incorrect or outdated trust anchor list.

 An implementation attack of a different kind, one that exploits a
 simple coding mistake (bounds check), is the Heartbleed attack (CVE-
 2014-0160) that affected a wide swath of the Internet when it was
 discovered in April 2014.

2.15. Usability

 Many TLS endpoints, such as browsers and mail clients, allow the user
 to explicitly accept an invalid server certificate. This often takes
 the form of a UI dialog (e.g., "do you accept this server?"), and
 users have been conditioned to respond in the affirmative in order to
 allow the connection to take place.

 This user behavior is used by (arguably legitimate) "SSL proxies"
 that decrypt and re-encrypt the TLS connection in order to enforce
 local security policy. It is also abused by attackers whose goal is
 to gain access to the encrypted information.

 Mitigation is complex and will probably involve a combination of
 protocol mechanisms (HSTS, certificate pinning [KEY-PINNING]), and
 very careful UI design.

3. Applicability to DTLS

 DTLS [RFC4347] [RFC6347] is an adaptation of TLS for UDP.

 With respect to the attacks described in the current document, DTLS
 1.0 is equivalent to TLS 1.1. The only exception is RC4, which is
 disallowed in DTLS. DTLS 1.2 is equivalent to TLS 1.2.

4. Security Considerations

 This document describes protocol attacks in an informational manner
 and in itself does not have any security implications. Its companion
 documents, especially [SECURE-TLS], certainly do.

5. Informative References

 [Attacks-iSec]

 Sarkar, P. and S. Fitzgerald, "Attacks on SSL, a
 comprehensive study of BEAST, CRIME, TIME, BREACH, Lucky13
 and RC4 biases", August 2013,
 <https://www.isecpartners.com/media/106031/
 ssl_attacks_survey.pdf>.

 [BEAST]
 Rizzo, J. and T. Duong, "Browser Exploit Against SSL/TLS",
 2011, <http://packetstormsecurity.com/files/105499/
 Browser-Exploit-Against-SSL-TLS.html>.

 [BREACH]
 Prado, A., Harris, N., and Y. Gluck, "The BREACH Attack",
 2013, <http://breachattack.com/>.

 [BhargavanDFPS14]

 Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti,
 A., and P. Strub, "Triple handshakes and cookie cutters:
 breaking and fixing authentication over tls", 2014,
 <https://secure-resumption.com/tlsauth.pdf>.

 [Bleichenbacher98]

 Bleichenbacher, D., "Chosen Ciphertext Attacks Against
 Protocols Based on the RSA Encryption Standard PKCS #1",
 1998, <http://archiv.infsec.ethz.ch/education/fs08/secsem/
 Bleichenbacher98.pdf>.

 [Brubaker2014using]

 Brubaker, C., Jana, S., Ray, B., Khurshid, S., and V.
 Shmatikov, "Using Frankencerts for Automated Adversarial
 Testing of Certificate Validation in SSL/TLS
 Implementations", 2014,
 <https://www.cs.utexas.edu/~shmat/shmat_oak14.pdf>.

 [Brumley03]

 Brumley, D. and D. Boneh, "Remote Timing Attacks are
 Practical", 2003,
 <http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf>.

 [CBC-Attack]

 AlFardan, N. and K. Paterson, "Lucky Thirteen: Breaking
 the TLS and DTLS Record Protocols", IEEE Symposium on
 Security and Privacy, 2013, <http://www.ieee-security.org/
 TC/SP2013/papers/4977a526.pdf>.

 [CIPHER-SUITES]

 Popov, A., "Prohibiting RC4 Cipher Suites", Work in
 Progress, draft-ietf-tls-prohibiting-rc4-01, October 2014.

 [CRIME]
 Rizzo, J. and T. Duong, "The CRIME Attack", EKOparty
 Security Conference, 2012.

 [CVE]
 MITRE, "Common Vulnerabilities and Exposures",
 <https://cve.mitre.org/>.

 [Cross-Protocol]

 Mavrogiannopoulos, N., Vercauteren, F., Velichkov, V., and
 B. Preneel, "A cross-protocol attack on the TLS protocol",
 Proceedings of the 2012 ACM Conference in Computer and
 Communications Security, pages 62-72, 2012,
 <http://doi.acm.org/10.1145/2382196.2382206>.

 [Delignat14]

 Delignat-Lavaud, A. and K. Bhargavan, "Virtual Host
 Confusion: Weaknesses and Exploits", Black Hat 2014, 2014,
 <https://bh.ht.vc/vhost_confusion.pdf>.

 [FFDHE-TLS]

 Gillmor, D., "Negotiated Finite Field Diffie-Hellman
 Ephemeral Parameters for TLS", Work in Progress,
 draft-ietf-tls-negotiated-ff-dhe-05, December 2014.

 [Georgiev2012]

 Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh,
 D., and V. Shmatikov, "The most dangerous code in the
 world: validating SSL certificates in non-browser
 software", Proceedings of the 2012 ACM conference on
 Computer and Communications Security, pages 38-49, 2012,
 <http://doi.acm.org/10.1145/2382196.2382204>.

 [KEY-PINNING]

 Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning
 Extension for HTTP", Work in Progress,
 draft-ietf-websec-key-pinning-21, October 2014.

 [Klima03]
 Klima, V., Pokorny, O., and T. Rosa, "Attacking RSA-based
 Sessions in SSL/TLS", 2003,
 <https://eprint.iacr.org/2003/052.pdf>.

 [POODLE]
 Moeller, B., Duong, T., and K. Kotowicz, "This POODLE
 Bites: Exploiting the SSL 3.0 Fallback", September 2014,
 <https://www.openssl.org/~bodo/ssl-poodle.pdf>.

 [Padding-Oracle]

 Vaudenay, S., "Security Flaws Induced by CBC Padding
 Applications to SSL, IPSEC, WTLS...", EUROCRYPT 2002,
 2002, <http://www.iacr.org/cryptodb/archive/2002/
 EUROCRYPT/2850/2850.pdf>.

 [RC4]
 Schneier, B., "Applied Cryptography: Protocols,
 Algorithms, and Source Code in C", Second Edition, October
 1996.

 [RC4-Attack-AlF]

 AlFardan, N., Bernstein, D., Paterson, K., Poettering, B.,
 and J. Schuldt, "On the Security of RC4 in TLS", Usenix
 Security Symposium 2013, August 2013,
 <https://www.usenix.org/conference/usenixsecurity13/
 security-rc4-tls>.

 [RC4-Attack-FMS]

 Fluhrer, S., Mantin, I., and A. Shamir, "Weaknesses in the
 Key Scheduling Algorithm of RC4", Selected Areas in
 Cryptography, August 2001,
 <http://www.crypto.com/papers/others/rc4_ksaproc.pdf>.

 [RC4-Attack-Man]

 Mantin, I. and A. Shamir, "A Practical Attack on Broadcast
 RC4", April 2001,
 <http://saluc.engr.uconn.edu/refs/stream_cipher/
 mantin01attackRC4.pdf>.

 [RC4-Attack-Pau]

 Paul, G. and S. Maitra, "Permutation After RC4 Key
 Scheduling Reveals the Secret Key", August 2007,
 <http://dblp.uni-trier.de/db/conf/sacrypt/
 sacrypt2007.html#PaulM07>.

 [RFC4347]
 Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, April 2006,
 <http://www.rfc-editor.org/info/rfc4347>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5288]
 Salowey, J., Choudhury, A., and D. McGrew, "AES Galois
 Counter Mode (GCM) Cipher Suites for TLS", RFC 5288,
 August 2008, <http://www.rfc-editor.org/info/rfc5288>.

 [RFC5705]
 Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, March 2010,
 <http://www.rfc-editor.org/info/rfc5705>.

 [RFC5746]
 Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, February 2010,
 <http://www.rfc-editor.org/info/rfc5746>.

 [RFC5929]
 Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, July 2010,
 <http://www.rfc-editor.org/info/rfc5929>.

 [RFC6347]
 Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012,
 <http://www.rfc-editor.org/info/rfc6347>.

 [RFC6797]
 Hodges, J., Jackson, C., and A. Barth, "HTTP Strict
 Transport Security (HSTS)", RFC 6797, November 2012,
 <http://www.rfc-editor.org/info/rfc6797>.

 [RFC6989]
 Sheffer, Y. and S. Fluhrer, "Additional Diffie-Hellman
 Tests for the Internet Key Exchange Protocol Version 2
 (IKEv2)", RFC 6989, July 2013,
 <http://www.rfc-editor.org/info/rfc6989>.

 [RFC7258]
 Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, May 2014,
 <http://www.rfc-editor.org/info/rfc7258>.

 [RFC7366]
 Gutmann, P., "Encrypt-then-MAC for Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", RFC 7366, September 2014,
 <http://www.rfc-editor.org/info/rfc7366>.

 [SECURE-TLS]

 Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of TLS and DTLS", Work in
 Progress, draft-ietf-uta-tls-bcp-08, December 2014.

 [SSL-Stripping]

 Marlinspike, M., "sslstrip", February 2009,
 <http://www.thoughtcrime.org/software/sslstrip/>.

 [TIME]
 Be'ery, T. and A. Shulman, "A Perfect CRIME? Only TIME
 Will Tell", Black Hat Europe 2013, 2013,
 <https://media.blackhat.com/eu-13/briefings/Beery/
 bh-eu-13-a-perfect-crime-beery-wp.pdf>.

Acknowledgements

 We would like to thank Stephen Farrell, Simon Josefsson, John
 Mattsson, Yoav Nir, Kenny Paterson, Patrick Pelletier, Tom Ritter,
 Rich Salz, and Meral Shirazipour for their feedback on this document.
 We thank Andrei Popov for contributing text on RC4, Kohei Kasamatsu
 for text on Lucky13, Ilari Liusvaara for text on attacks and on DTLS,
 Aaron Zauner for text on virtual host confusion, and Chris Newman for
 text on STARTTLS command injection. Ralph Holz gratefully
 acknowledges the support of NICTA (National ICT of Australia) in the
 preparation of this document.

 During IESG review, Richard Barnes, Barry Leiba, and Kathleen
 Moriarty caught several issues that needed to be addressed.

 The authors gratefully acknowledge the assistance of Leif Johansson
 and Orit Levin as the working group chairs and Pete Resnick as the
 sponsoring Area Director.

 The document was prepared using the lyx2rfc tool, created by Nico
 Williams.

Authors' Addresses

Yaron Sheffer
Porticor
29 HaHarash St.
Hod HaSharon 4501303
Israel

 EMail: yaronf.ietf@gmail.com

Ralph Holz
Technische Universitaet Muenchen
Boltzmannstr. 3
Garching 85748
Germany

 EMail: holz@net.in.tum.de

Peter Saint‑Andre
&yet

EMail: peter@andyet.com
URI: https://andyet.com/

7525 - Recommendations for Secure Use of Transport Layer Security (TLS) and Data

Index
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7525

BCP: 195

Category: Best Current Practice

ISSN: 2070-1721

Y. Sheffer

Intuit

R. Holz

NICTA

P. Saint-Andre

&yet

May 2015

Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

Abstract

 Transport Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS) are widely used to protect data exchanged over application
 protocols such as HTTP, SMTP, IMAP, POP, SIP, and XMPP. Over the
 last few years, several serious attacks on TLS have emerged,
 including attacks on its most commonly used cipher suites and their
 modes of operation. This document provides recommendations for
 improving the security of deployed services that use TLS and DTLS.
 The recommendations are applicable to the majority of use cases.

Status of This Memo

 This memo documents an Internet Best Current Practice.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 BCPs is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7525.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. General Recommendations
	 3.1. Protocol Versions
	 3.1.1. SSL/TLS Protocol Versions

	 3.1.2. DTLS Protocol Versions

	 3.1.3. Fallback to Lower Versions

	 3.2. Strict TLS

	 3.3. Compression

	 3.4. TLS Session Resumption

	 3.5. TLS Renegotiation

	 3.6. Server Name Indication

	4. Recommendations: Cipher Suites
	 4.1. General Guidelines

	 4.2. Recommended Cipher Suites
	 4.2.1. Implementation Details

	 4.3. Public Key Length

	 4.4. Modular Exponential vs. Elliptic Curve DH Cipher Suites

	 4.5. Truncated HMAC

	5. Applicability Statement
	 5.1. Security Services

	 5.2. Opportunistic Security

	6. Security Considerations
	 6.1. Host Name Validation

	 6.2. AES-GCM

	 6.3. Forward Secrecy

	 6.4. Diffie-Hellman Exponent Reuse

	 6.5. Certificate Revocation

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Acknowledgments

	Authors' Addresses

1. Introduction

 Transport Layer Security (TLS) [RFC5246] and Datagram Transport
 Security Layer (DTLS) [RFC6347] are widely used to protect data
 exchanged over application protocols such as HTTP, SMTP, IMAP, POP,
 SIP, and XMPP. Over the last few years, several serious attacks on
 TLS have emerged, including attacks on its most commonly used cipher
 suites and their modes of operation. For instance, both the AES-CBC
 [RFC3602] and RC4 [RFC7465] encryption algorithms, which together
 have been the most widely deployed ciphers, have been attacked in the
 context of TLS. A companion document [RFC7457] provides detailed
 information about these attacks and will help the reader understand
 the rationale behind the recommendations provided here.

 Because of these attacks, those who implement and deploy TLS and DTLS
 need updated guidance on how TLS can be used securely. This document
 provides guidance for deployed services as well as for software
 implementations, assuming the implementer expects his or her code to
 be deployed in environments defined in Section 5. In fact, this
 document calls for the deployment of algorithms that are widely
 implemented but not yet widely deployed. Concerning deployment, this
 document targets a wide audience -- namely, all deployers who wish to
 add authentication (be it one-way only or mutual), confidentiality,
 and data integrity protection to their communications.

 The recommendations herein take into consideration the security of
 various mechanisms, their technical maturity and interoperability,
 and their prevalence in implementations at the time of writing.
 Unless it is explicitly called out that a recommendation applies to
 TLS alone or to DTLS alone, each recommendation applies to both TLS
 and DTLS.

 It is expected that the TLS 1.3 specification will resolve many of
 the vulnerabilities listed in this document. A system that deploys
 TLS 1.3 should have fewer vulnerabilities than TLS 1.2 or below.
 This document is likely to be updated after TLS 1.3 gets noticeable
 deployment.

 These are minimum recommendations for the use of TLS in the vast
 majority of implementation and deployment scenarios, with the
 exception of unauthenticated TLS (see Section 5). Other
 specifications that reference this document can have stricter
 requirements related to one or more aspects of the protocol, based on
 their particular circumstances (e.g., for use with a particular
 application protocol); when that is the case, implementers are
 advised to adhere to those stricter requirements. Furthermore, this
 document provides a floor, not a ceiling, so stronger options are
 always allowed (e.g., depending on differing evaluations of the
 importance of cryptographic strength vs. computational load).

 Community knowledge about the strength of various algorithms and
 feasible attacks can change quickly, and experience shows that a Best
 Current Practice (BCP) document about security is a point-in-time
 statement. Readers are advised to seek out any errata or updates
 that apply to this document.

2. Terminology

 A number of security-related terms in this document are used in the
 sense defined in [RFC4949].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. General Recommendations

 This section provides general recommendations on the secure use of
 TLS. Recommendations related to cipher suites are discussed in the
 following section.

3.1. Protocol Versions

3.1.1. SSL/TLS Protocol Versions

 It is important both to stop using old, less secure versions of SSL/
 TLS and to start using modern, more secure versions; therefore, the
 following are the recommendations concerning TLS/SSL protocol
 versions:

 o Implementations MUST NOT negotiate SSL version 2.

 Rationale: Today, SSLv2 is considered insecure [RFC6176].

 o Implementations MUST NOT negotiate SSL version 3.

 Rationale: SSLv3 [RFC6101] was an improvement over SSLv2 and
 plugged some significant security holes but did not support strong
 cipher suites. SSLv3 does not support TLS extensions, some of
 which (e.g., renegotiation_info [RFC5746]) are security-critical.
 In addition, with the emergence of the POODLE attack [POODLE],
 SSLv3 is now widely recognized as fundamentally insecure. See
 [DEP-SSLv3] for further details.

 o Implementations SHOULD NOT negotiate TLS version 1.0 [RFC2246];
 the only exception is when no higher version is available in the
 negotiation.

 Rationale: TLS 1.0 (published in 1999) does not support many
 modern, strong cipher suites. In addition, TLS 1.0 lacks a per-
 record Initialization Vector (IV) for CBC-based cipher suites and
 does not warn against common padding errors.

 o Implementations SHOULD NOT negotiate TLS version 1.1 [RFC4346];
 the only exception is when no higher version is available in the
 negotiation.

 Rationale: TLS 1.1 (published in 2006) is a security improvement
 over TLS 1.0 but still does not support certain stronger cipher
 suites.

 o Implementations MUST support TLS 1.2 [RFC5246] and MUST prefer to
 negotiate TLS version 1.2 over earlier versions of TLS.

 Rationale: Several stronger cipher suites are available only with
 TLS 1.2 (published in 2008). In fact, the cipher suites
 recommended by this document (Section 4.2 below) are only
 available in TLS 1.2.

 This BCP applies to TLS 1.2 and also to earlier versions. It is not
 safe for readers to assume that the recommendations in this BCP apply
 to any future version of TLS.

3.1.2. DTLS Protocol Versions

 DTLS, an adaptation of TLS for UDP datagrams, was introduced when TLS
 1.1 was published. The following are the recommendations with
 respect to DTLS:

 o Implementations SHOULD NOT negotiate DTLS version 1.0 [RFC4347].

 Version 1.0 of DTLS correlates to version 1.1 of TLS (see above).

 o Implementations MUST support and MUST prefer to negotiate DTLS
 version 1.2 [RFC6347].

 Version 1.2 of DTLS correlates to version 1.2 of TLS (see above).
 (There is no version 1.1 of DTLS.)

3.1.3. Fallback to Lower Versions

 Clients that "fall back" to lower versions of the protocol after the
 server rejects higher versions of the protocol MUST NOT fall back to
 SSLv3 or earlier.

 Rationale: Some client implementations revert to lower versions of
 TLS or even to SSLv3 if the server rejected higher versions of the
 protocol. This fallback can be forced by a man-in-the-middle (MITM)
 attacker. TLS 1.0 and SSLv3 are significantly less secure than TLS
 1.2, the version recommended by this document. While TLS 1.0-only
 servers are still quite common, IP scans show that SSLv3-only servers
 amount to only about 3% of the current Web server population. (At
 the time of this writing, an explicit method for preventing downgrade
 attacks has been defined recently in [RFC7507].)

3.2. Strict TLS

 The following recommendations are provided to help prevent SSL
 Stripping (an attack that is summarized in Section 2.1 of [RFC7457]):

 o In cases where an application protocol allows implementations or
 deployments a choice between strict TLS configuration and dynamic
 upgrade from unencrypted to TLS-protected traffic (such as
 STARTTLS), clients and servers SHOULD prefer strict TLS
 configuration.

 o Application protocols typically provide a way for the server to
 offer TLS during an initial protocol exchange, and sometimes also
 provide a way for the server to advertise support for TLS (e.g.,
 through a flag indicating that TLS is required); unfortunately,
 these indications are sent before the communication channel is
 encrypted. A client SHOULD attempt to negotiate TLS even if these
 indications are not communicated by the server.

 o HTTP client and server implementations MUST support the HTTP
 Strict Transport Security (HSTS) header [RFC6797], in order to
 allow Web servers to advertise that they are willing to accept
 TLS-only clients.

 o Web servers SHOULD use HSTS to indicate that they are willing to
 accept TLS-only clients, unless they are deployed in such a way
 that using HSTS would in fact weaken overall security (e.g., it
 can be problematic to use HSTS with self-signed certificates, as
 described in Section 11.3 of [RFC6797]).

 Rationale: Combining unprotected and TLS-protected communication
 opens the way to SSL Stripping and similar attacks, since an initial
 part of the communication is not integrity protected and therefore
 can be manipulated by an attacker whose goal is to keep the
 communication in the clear.

3.3. Compression

 In order to help prevent compression-related attacks (summarized in
 Section 2.6 of [RFC7457]), implementations and deployments SHOULD
 disable TLS-level compression (Section 6.2.2 of [RFC5246]), unless
 the application protocol in question has been shown not to be open to
 such attacks.

 Rationale: TLS compression has been subject to security attacks, such
 as the CRIME attack.

 Implementers should note that compression at higher protocol levels
 can allow an active attacker to extract cleartext information from
 the connection. The BREACH attack is one such case. These issues
 can only be mitigated outside of TLS and are thus outside the scope
 of this document. See Section 2.6 of [RFC7457] for further details.

3.4. TLS Session Resumption

 If TLS session resumption is used, care ought to be taken to do so
 safely. In particular, when using session tickets [RFC5077], the
 resumption information MUST be authenticated and encrypted to prevent
 modification or eavesdropping by an attacker. Further
 recommendations apply to session tickets:

 o A strong cipher suite MUST be used when encrypting the ticket (as
 least as strong as the main TLS cipher suite).

 o Ticket keys MUST be changed regularly, e.g., once every week, so
 as not to negate the benefits of forward secrecy (see Section 6.3
 for details on forward secrecy).

 o For similar reasons, session ticket validity SHOULD be limited to
 a reasonable duration (e.g., half as long as ticket key validity).

 Rationale: session resumption is another kind of TLS handshake, and
 therefore must be as secure as the initial handshake. This document
 (Section 4) recommends the use of cipher suites that provide forward
 secrecy, i.e. that prevent an attacker who gains momentary access to
 the TLS endpoint (either client or server) and its secrets from
 reading either past or future communication. The tickets must be
 managed so as not to negate this security property.

3.5. TLS Renegotiation

 Where handshake renegotiation is implemented, both clients and
 servers MUST implement the renegotiation_info extension, as defined
 in [RFC5746].

 The most secure option for countering the Triple Handshake attack is
 to refuse any change of certificates during renegotiation. In
 addition, TLS clients SHOULD apply the same validation policy for all
 certificates received over a connection. The [triple-handshake]
 document suggests several other possible countermeasures, such as
 binding the master secret to the full handshake (see [SESSION-HASH])
 and binding the abbreviated session resumption handshake to the
 original full handshake. Although the latter two techniques are
 still under development and thus do not qualify as current practices,
 those who implement and deploy TLS are advised to watch for further
 development of appropriate countermeasures.

3.6. Server Name Indication

 TLS implementations MUST support the Server Name Indication (SNI)
 extension defined in Section 3 of [RFC6066] for those higher-level
 protocols that would benefit from it, including HTTPS. However, the
 actual use of SNI in particular circumstances is a matter of local
 policy.

 Rationale: SNI supports deployment of multiple TLS-protected virtual
 servers on a single address, and therefore enables fine-grained
 security for these virtual servers, by allowing each one to have its
 own certificate.

4. Recommendations: Cipher Suites

 TLS and its implementations provide considerable flexibility in the
 selection of cipher suites. Unfortunately, some available cipher
 suites are insecure, some do not provide the targeted security
 services, and some no longer provide enough security. Incorrectly
 configuring a server leads to no or reduced security. This section
 includes recommendations on the selection and negotiation of cipher
 suites.

4.1. General Guidelines

 Cryptographic algorithms weaken over time as cryptanalysis improves:
 algorithms that were once considered strong become weak. Such
 algorithms need to be phased out over time and replaced with more
 secure cipher suites. This helps to ensure that the desired security
 properties still hold. SSL/TLS has been in existence for almost 20
 years and many of the cipher suites that have been recommended in
 various versions of SSL/TLS are now considered weak or at least not
 as strong as desired. Therefore, this section modernizes the
 recommendations concerning cipher suite selection.

 o Implementations MUST NOT negotiate the cipher suites with NULL
 encryption.

 Rationale: The NULL cipher suites do not encrypt traffic and so
 provide no confidentiality services. Any entity in the network
 with access to the connection can view the plaintext of contents
 being exchanged by the client and server. (Nevertheless, this
 document does not discourage software from implementing NULL
 cipher suites, since they can be useful for testing and
 debugging.)

 o Implementations MUST NOT negotiate RC4 cipher suites.

 Rationale: The RC4 stream cipher has a variety of cryptographic
 weaknesses, as documented in [RFC7465]. Note that DTLS
 specifically forbids the use of RC4 already.

 o Implementations MUST NOT negotiate cipher suites offering less
 than 112 bits of security, including so-called "export-level"
 encryption (which provide 40 or 56 bits of security).

 Rationale: Based on [RFC3766], at least 112 bits of security is
 needed. 40-bit and 56-bit security are considered insecure today.
 TLS 1.1 and 1.2 never negotiate 40-bit or 56-bit export ciphers.

 o Implementations SHOULD NOT negotiate cipher suites that use
 algorithms offering less than 128 bits of security.

 Rationale: Cipher suites that offer between 112-bits and 128-bits
 of security are not considered weak at this time; however, it is
 expected that their useful lifespan is short enough to justify
 supporting stronger cipher suites at this time. 128-bit ciphers
 are expected to remain secure for at least several years, and
 256-bit ciphers until the next fundamental technology
 breakthrough. Note that, because of so-called "meet-in-the-
 middle" attacks [Multiple-Encryption], some legacy cipher suites
 (e.g., 168-bit 3DES) have an effective key length that is smaller
 than their nominal key length (112 bits in the case of 3DES).
 Such cipher suites should be evaluated according to their
 effective key length.

 o Implementations SHOULD NOT negotiate cipher suites based on RSA
 key transport, a.k.a. "static RSA".

 Rationale: These cipher suites, which have assigned values
 starting with the string "TLS_RSA_WITH_*", have several drawbacks,
 especially the fact that they do not support forward secrecy.

 o Implementations MUST support and prefer to negotiate cipher suites
 offering forward secrecy, such as those in the Ephemeral Diffie-
 Hellman and Elliptic Curve Ephemeral Diffie-Hellman ("DHE" and
 "ECDHE") families.

 Rationale: Forward secrecy (sometimes called "perfect forward
 secrecy") prevents the recovery of information that was encrypted
 with older session keys, thus limiting the amount of time during
 which attacks can be successful. See Section 6.3 for a detailed
 discussion.

4.2. Recommended Cipher Suites

 Given the foregoing considerations, implementation and deployment of
 the following cipher suites is RECOMMENDED:

 o TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

 o TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 o TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

 o TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

 These cipher suites are supported only in TLS 1.2 because they are
 authenticated encryption (AEAD) algorithms [RFC5116].

 Typically, in order to prefer these suites, the order of suites needs
 to be explicitly configured in server software. (See [BETTERCRYPTO]
 for helpful deployment guidelines, but note that its recommendations
 differ from the current document in some details.) It would be ideal
 if server software implementations were to prefer these suites by
 default.

 Some devices have hardware support for AES-CCM but not AES-GCM, so
 they are unable to follow the foregoing recommendations regarding
 cipher suites. There are even devices that do not support public key
 cryptography at all, but they are out of scope entirely.

4.2.1. Implementation Details

 Clients SHOULD include TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as the
 first proposal to any server, unless they have prior knowledge that
 the server cannot respond to a TLS 1.2 client_hello message.

 Servers MUST prefer this cipher suite over weaker cipher suites
 whenever it is proposed, even if it is not the first proposal.

 Clients are of course free to offer stronger cipher suites, e.g.,
 using AES-256; when they do, the server SHOULD prefer the stronger
 cipher suite unless there are compelling reasons (e.g., seriously
 degraded performance) to choose otherwise.

 This document does not change the mandatory-to-implement TLS cipher
 suite(s) prescribed by TLS. To maximize interoperability, RFC 5246
 mandates implementation of the TLS_RSA_WITH_AES_128_CBC_SHA cipher
 suite, which is significantly weaker than the cipher suites
 recommended here. (The GCM mode does not suffer from the same
 weakness, caused by the order of MAC-then-Encrypt in TLS
 [Krawczyk2001], since it uses an AEAD mode of operation.)
 Implementers should consider the interoperability gain against the
 loss in security when deploying the TLS_RSA_WITH_AES_128_CBC_SHA
 cipher suite. Other application protocols specify other cipher
 suites as mandatory to implement (MTI).

 Note that some profiles of TLS 1.2 use different cipher suites. For
 example, [RFC6460] defines a profile that uses the
 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 and
 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 cipher suites.

 [RFC4492]
 allows clients and servers to negotiate ECDH parameters
 (curves). Both clients and servers SHOULD include the "Supported
 Elliptic Curves" extension [RFC4492]. For interoperability, clients
 and servers SHOULD support the NIST P-256 (secp256r1) curve
 [RFC4492]. In addition, clients SHOULD send an ec_point_formats
 extension with a single element, "uncompressed".

4.3. Public Key Length

 When using the cipher suites recommended in this document, two public
 keys are normally used in the TLS handshake: one for the Diffie-
 Hellman key agreement and one for server authentication. Where a
 client certificate is used, a third public key is added.

 With a key exchange based on modular exponential (MODP) Diffie-
 Hellman groups ("DHE" cipher suites), DH key lengths of at least 2048
 bits are RECOMMENDED.

 Rationale: For various reasons, in practice, DH keys are typically
 generated in lengths that are powers of two (e.g., 2^10 = 1024 bits,
 2^11 = 2048 bits, 2^12 = 4096 bits). Because a DH key of 1228 bits
 would be roughly equivalent to only an 80-bit symmetric key
 [RFC3766], it is better to use keys longer than that for the "DHE"
 family of cipher suites. A DH key of 1926 bits would be roughly
 equivalent to a 100-bit symmetric key [RFC3766] and a DH key of 2048
 bits might be sufficient for at least the next 10 years
 [NIST.SP.800-56A]. See Section 4.4 for additional information on the
 use of MODP Diffie-Hellman in TLS.

 As noted in [RFC3766], correcting for the emergence of a TWIRL
 machine would imply that 1024-bit DH keys yield about 65 bits of
 equivalent strength and that a 2048-bit DH key would yield about 92
 bits of equivalent strength.

 With regard to ECDH keys, the IANA "EC Named Curve Registry" (within
 the "Transport Layer Security (TLS) Parameters" registry [IANA-TLS])
 contains 160-bit elliptic curves that are considered to be roughly
 equivalent to only an 80-bit symmetric key [ECRYPT-II]. Curves of
 less than 192 bits SHOULD NOT be used.

 When using RSA, servers SHOULD authenticate using certificates with
 at least a 2048-bit modulus for the public key. In addition, the use
 of the SHA-256 hash algorithm is RECOMMENDED (see [CAB-Baseline] for
 more details). Clients SHOULD indicate to servers that they request
 SHA-256, by using the "Signature Algorithms" extension defined in
 TLS 1.2.

4.4. Modular Exponential vs. Elliptic Curve DH Cipher Suites

 Not all TLS implementations support both modular exponential (MODP)
 and elliptic curve (EC) Diffie-Hellman groups, as required by
 Section 4.2. Some implementations are severely limited in the length
 of DH values. When such implementations need to be accommodated, the
 following are RECOMMENDED (in priority order):

 1. Elliptic Curve DHE with appropriately negotiated parameters
 (e.g., the curve to be used) and a Message Authentication Code
 (MAC) algorithm stronger than HMAC-SHA1 [RFC5289]

 2. TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 [RFC5288], with 2048-bit
 Diffie-Hellman parameters

 3. TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, with 1024-bit parameters

 Rationale: Although Elliptic Curve Cryptography is widely deployed,
 there are some communities where its adoption has been limited for
 several reasons, including its complexity compared to modular
 arithmetic and longstanding perceptions of IPR concerns (which, for
 the most part, have now been resolved [RFC6090]). Note that ECDHE
 cipher suites exist for both RSA and ECDSA certificates, so moving to
 ECDHE cipher suites does not require moving away from RSA-based
 certificates. On the other hand, there are two related issues
 hindering effective use of MODP Diffie-Hellman cipher suites in TLS:

 o There are no standardized, widely implemented protocol mechanisms
 to negotiate the DH groups or parameter lengths supported by
 client and server.

 o Many servers choose DH parameters of 1024 bits or fewer.

 o There are widely deployed client implementations that reject
 received DH parameters if they are longer than 1024 bits. In
 addition, several implementations do not perform appropriate
 validation of group parameters and are vulnerable to attacks
 referenced in Section 2.9 of [RFC7457].

 Note that with DHE and ECDHE cipher suites, the TLS master key only
 depends on the Diffie-Hellman parameters and not on the strength of
 the RSA certificate; moreover, 1024 bit MODP DH parameters are
 generally considered insufficient at this time.

 With MODP ephemeral DH, deployers ought to carefully evaluate
 interoperability vs. security considerations when configuring their
 TLS endpoints.

4.5. Truncated HMAC

 Implementations MUST NOT use the Truncated HMAC extension, defined in
 Section 7 of [RFC6066].

 Rationale: the extension does not apply to the AEAD cipher suites
 recommended above. However it does apply to most other TLS cipher
 suites. Its use has been shown to be insecure in [PatersonRS11].

5. Applicability Statement

 The recommendations of this document primarily apply to the
 implementation and deployment of application protocols that are most
 commonly used with TLS and DTLS on the Internet today. Examples
 include, but are not limited to:

 o Web software and services that wish to protect HTTP traffic with
 TLS.

 o Email software and services that wish to protect IMAP, POP3, or
 SMTP traffic with TLS.

 o Instant-messaging software and services that wish to protect
 Extensible Messaging and Presence Protocol (XMPP) or Internet
 Relay Chat (IRC) traffic with TLS.

 o Realtime media software and services that wish to protect Secure
 Realtime Transport Protocol (SRTP) traffic with DTLS.

 This document does not modify the implementation and deployment
 recommendations (e.g., mandatory-to-implement cipher suites)
 prescribed by existing application protocols that employ TLS or DTLS.
 If the community that uses such an application protocol wishes to
 modernize its usage of TLS or DTLS to be consistent with the best
 practices recommended here, it needs to explicitly update the
 existing application protocol definition (one example is [TLS-XMPP],
 which updates [RFC6120]).

 Designers of new application protocols developed through the Internet
 Standards Process [RFC2026] are expected at minimum to conform to the
 best practices recommended here, unless they provide documentation of
 compelling reasons that would prevent such conformance (e.g.,
 widespread deployment on constrained devices that lack support for
 the necessary algorithms).

5.1. Security Services

 This document provides recommendations for an audience that wishes to
 secure their communication with TLS to achieve the following:

 o Confidentiality: all application-layer communication is encrypted
 with the goal that no party should be able to decrypt it except
 the intended receiver.

 o Data integrity: any changes made to the communication in transit
 are detectable by the receiver.

 o Authentication: an endpoint of the TLS communication is
 authenticated as the intended entity to communicate with.

 With regard to authentication, TLS enables authentication of one or
 both endpoints in the communication. In the context of opportunistic
 security [RFC7435], TLS is sometimes used without authentication. As
 discussed in Section 5.2, considerations for opportunistic security
 are not in scope for this document.

 If deployers deviate from the recommendations given in this document,
 they need to be aware that they might lose access to one of the
 foregoing security services.

 This document applies only to environments where confidentiality is
 required. It recommends algorithms and configuration options that
 enforce secrecy of the data in transit.

 This document also assumes that data integrity protection is always
 one of the goals of a deployment. In cases where integrity is not
 required, it does not make sense to employ TLS in the first place.
 There are attacks against confidentiality-only protection that
 utilize the lack of integrity to also break confidentiality (see, for
 instance, [DegabrieleP07] in the context of IPsec).

 This document addresses itself to application protocols that are most
 commonly used on the Internet with TLS and DTLS. Typically, all
 communication between TLS clients and TLS servers requires all three
 of the above security services. This is particularly true where TLS
 clients are user agents like Web browsers or email software.

 This document does not address the rarer deployment scenarios where
 one of the above three properties is not desired, such as the use
 case described in Section 5.2 below. As another scenario where
 confidentiality is not needed, consider a monitored network where the
 authorities in charge of the respective traffic domain require full
 access to unencrypted (plaintext) traffic, and where users
 collaborate and send their traffic in the clear.

5.2. Opportunistic Security

 There are several important scenarios in which the use of TLS is
 optional, i.e., the client decides dynamically ("opportunistically")
 whether to use TLS with a particular server or to connect in the
 clear. This practice, often called "opportunistic security", is
 described at length in [RFC7435] and is often motivated by a desire
 for backward compatibility with legacy deployments.

 In these scenarios, some of the recommendations in this document
 might be too strict, since adhering to them could cause fallback to
 cleartext, a worse outcome than using TLS with an outdated protocol
 version or cipher suite.

 This document specifies best practices for TLS in general. A
 separate document containing recommendations for the use of TLS with
 opportunistic security is to be completed in the future.

6. Security Considerations

 This entire document discusses the security practices directly
 affecting applications using the TLS protocol. This section contains
 broader security considerations related to technologies used in
 conjunction with or by TLS.

6.1. Host Name Validation

 Application authors should take note that some TLS implementations do
 not validate host names. If the TLS implementation they are using
 does not validate host names, authors might need to write their own
 validation code or consider using a different TLS implementation.

 It is noted that the requirements regarding host name validation
 (and, in general, binding between the TLS layer and the protocol that
 runs above it) vary between different protocols. For HTTPS, these
 requirements are defined by Section 3 of [RFC2818].

 Readers are referred to [RFC6125] for further details regarding
 generic host name validation in the TLS context. In addition, that
 RFC contains a long list of example protocols, some of which
 implement a policy very different from HTTPS.

 If the host name is discovered indirectly and in an insecure manner
 (e.g., by an insecure DNS query for an MX or SRV record), it SHOULD
 NOT be used as a reference identifier [RFC6125] even when it matches
 the presented certificate. This proviso does not apply if the host
 name is discovered securely (for further discussion, see [DANE-SRV]
 and [DANE-SMTP]).

 Host name validation typically applies only to the leaf "end entity"
 certificate. Naturally, in order to ensure proper authentication in
 the context of the PKI, application clients need to verify the entire
 certification path in accordance with [RFC5280] (see also [RFC6125]).

6.2. AES-GCM

 Section 4.2 above recommends the use of the AES-GCM authenticated
 encryption algorithm. Please refer to Section 11 of [RFC5246] for
 general security considerations when using TLS 1.2, and to Section 6
 of [RFC5288] for security considerations that apply specifically to
 AES-GCM when used with TLS.

6.3. Forward Secrecy

 Forward secrecy (also called "perfect forward secrecy" or "PFS" and
 defined in [RFC4949]) is a defense against an attacker who records
 encrypted conversations where the session keys are only encrypted
 with the communicating parties' long-term keys. Should the attacker
 be able to obtain these long-term keys at some point later in time,
 the session keys and thus the entire conversation could be decrypted.
 In the context of TLS and DTLS, such compromise of long-term keys is
 not entirely implausible. It can happen, for example, due to:

 o A client or server being attacked by some other attack vector, and
 the private key retrieved.

 o A long-term key retrieved from a device that has been sold or
 otherwise decommissioned without prior wiping.

 o A long-term key used on a device as a default key [Heninger2012].

 o A key generated by a trusted third party like a CA, and later
 retrieved from it either by extortion or compromise
 [Soghoian2011].

 o A cryptographic break-through, or the use of asymmetric keys with
 insufficient length [Kleinjung2010].

 o Social engineering attacks against system administrators.

 o Collection of private keys from inadequately protected backups.

 Forward secrecy ensures in such cases that it is not feasible for an
 attacker to determine the session keys even if the attacker has
 obtained the long-term keys some time after the conversation. It
 also protects against an attacker who is in possession of the long-
 term keys but remains passive during the conversation.

 Forward secrecy is generally achieved by using the Diffie-Hellman
 scheme to derive session keys. The Diffie-Hellman scheme has both
 parties maintain private secrets and send parameters over the network
 as modular powers over certain cyclic groups. The properties of the
 so-called Discrete Logarithm Problem (DLP) allow the parties to
 derive the session keys without an eavesdropper being able to do so.
 There is currently no known attack against DLP if sufficiently large
 parameters are chosen. A variant of the Diffie-Hellman scheme uses
 Elliptic Curves instead of the originally proposed modular
 arithmetics.

 Unfortunately, many TLS/DTLS cipher suites were defined that do not
 feature forward secrecy, e.g., TLS_RSA_WITH_AES_256_CBC_SHA256. This
 document therefore advocates strict use of forward-secrecy-only
 ciphers.

6.4. Diffie-Hellman Exponent Reuse

 For performance reasons, many TLS implementations reuse Diffie-
 Hellman and Elliptic Curve Diffie-Hellman exponents across multiple
 connections. Such reuse can result in major security issues:

 o If exponents are reused for too long (e.g., even more than a few
 hours), an attacker who gains access to the host can decrypt
 previous connections. In other words, exponent reuse negates the
 effects of forward secrecy.

 o TLS implementations that reuse exponents should test the DH public
 key they receive for group membership, in order to avoid some
 known attacks. These tests are not standardized in TLS at the
 time of writing. See [RFC6989] for recipient tests required of
 IKEv2 implementations that reuse DH exponents.

6.5. Certificate Revocation

 The following considerations and recommendations represent the
 current state of the art regarding certificate revocation, even
 though no complete and efficient solution exists for the problem of
 checking the revocation status of common public key certificates
 [RFC5280]:

 o Although Certificate Revocation Lists (CRLs) are the most widely
 supported mechanism for distributing revocation information, they
 have known scaling challenges that limit their usefulness (despite
 workarounds such as partitioned CRLs and delta CRLs).

 o Proprietary mechanisms that embed revocation lists in the Web
 browser's configuration database cannot scale beyond a small
 number of the most heavily used Web servers.

 o The On-Line Certification Status Protocol (OCSP) [RFC6960]
 presents both scaling and privacy issues. In addition, clients
 typically "soft-fail", meaning that they do not abort the TLS
 connection if the OCSP server does not respond. (However, this
 might be a workaround to avoid denial-of-service attacks if an
 OCSP responder is taken offline.)

 o The TLS Certificate Status Request extension (Section 8 of
 [RFC6066]), commonly called "OCSP stapling", resolves the
 operational issues with OCSP. However, it is still ineffective in
 the presence of a MITM attacker because the attacker can simply
 ignore the client's request for a stapled OCSP response.

 o OCSP stapling as defined in [RFC6066] does not extend to
 intermediate certificates used in a certificate chain. Although
 the Multiple Certificate Status extension [RFC6961] addresses this
 shortcoming, it is a recent addition without much deployment.

 o Both CRLs and OCSP depend on relatively reliable connectivity to
 the Internet, which might not be available to certain kinds of
 nodes (such as newly provisioned devices that need to establish a
 secure connection in order to boot up for the first time).

 With regard to common public key certificates, servers SHOULD support
 the following as a best practice given the current state of the art
 and as a foundation for a possible future solution:

 1. OCSP [RFC6960]

 2. Both the status_request extension defined in [RFC6066] and the
 status_request_v2 extension defined in [RFC6961] (This might
 enable interoperability with the widest range of clients.)

 3. The OCSP stapling extension defined in [RFC6961]

 The considerations in this section do not apply to scenarios where
 the DANE-TLSA resource record [RFC6698] is used to signal to a client
 which certificate a server considers valid and good to use for TLS
 connections.

7. References

7.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2818]
 Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000,
 <http://www.rfc-editor.org/info/rfc2818>.

 [RFC3766]
 Orman, H. and P. Hoffman, "Determining Strengths For
 Public Keys Used For Exchanging Symmetric Keys", BCP 86,
 RFC 3766, April 2004,
 <http://www.rfc-editor.org/info/rfc3766>.

 [RFC4492]
 Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492, May 2006,
 <http://www.rfc-editor.org/info/rfc4492>.

 [RFC4949]
 Shirey, R., "Internet Security Glossary, Version 2", FYI
 36, RFC 4949, August 2007,
 <http://www.rfc-editor.org/info/rfc4949>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5288]
 Salowey, J., Choudhury, A., and D. McGrew, "AES Galois
 Counter Mode (GCM) Cipher Suites for TLS", RFC 5288,
 August 2008, <http://www.rfc-editor.org/info/rfc5288>.

 [RFC5289]
 Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA-
 256/384 and AES Galois Counter Mode (GCM)", RFC 5289,
 August 2008, <http://www.rfc-editor.org/info/rfc5289>.

 [RFC5746]
 Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, February 2010,
 <http://www.rfc-editor.org/info/rfc5746>.

 [RFC6066]
 Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066, January
 2011, <http://www.rfc-editor.org/info/rfc6066>.

 [RFC6125]
 Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011,
 <http://www.rfc-editor.org/info/rfc6125>.

 [RFC6176]
 Turner, S. and T. Polk, "Prohibiting Secure Sockets Layer
 (SSL) Version 2.0", RFC 6176, March 2011,
 <http://www.rfc-editor.org/info/rfc6176>.

 [RFC6347]
 Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012,
 <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7465]
 Popov, A., "Prohibiting RC4 Cipher Suites", RFC 7465,
 February 2015, <http://www.rfc-editor.org/info/rfc7465>.

7.2. Informative References

 [BETTERCRYPTO]

 bettercrypto.org, "Applied Crypto Hardening", April 2015,
 <https://bettercrypto.org/static/
 applied-crypto-hardening.pdf>.

 [CAB-Baseline]

 CA/Browser Forum, "Baseline Requirements for the Issuance
 and Management of Publicly-Trusted Certificates Version
 1.1.6", 2013, <https://www.cabforum.org/documents.html>.

 [DANE-SMTP]

 Dukhovni, V. and W. Hardaker, "SMTP security via
 opportunistic DANE TLS", Work in Progress, draft-ietf-
 dane-smtp-with-dane-16, April 2015.

 [DANE-SRV]
 Finch, T., Miller, M., and P. Saint-Andre, "Using DNS-
 Based Authentication of Named Entities (DANE) TLSA Records
 with SRV Records", Work in Progress,
 draft-ietf-dane-srv-14, April 2015.

 [DEP-SSLv3]

 Barnes, R., Thomson, M., Pironti, A., and A. Langley,
 "Deprecating Secure Sockets Layer Version 3.0", Work in
 Progress, draft-ietf-tls-sslv3-diediedie-03, April 2015.

 [DegabrieleP07]

 Degabriele, J. and K. Paterson, "Attacking the IPsec
 Standards in Encryption-only Configurations", IEEE
 Symposium on Security and Privacy (SP '07), 2007,
 <http://dx.doi.org/10.1109/SP.2007.8>.

 [ECRYPT-II]

 Smart, N., "ECRYPT II Yearly Report on Algorithms and
 Keysizes (2011-2012)", 2012,
 <http://www.ecrypt.eu.org/ecrypt2/>.

 [Heninger2012]

 Heninger, N., Durumeric, Z., Wustrow, E., and J.
 Halderman, "Mining Your Ps and Qs: Detection of Widespread
 Weak Keys in Network Devices", Usenix Security Symposium
 2012, 2012.

 [IANA-TLS]
 IANA, "Transport Layer Security (TLS) Parameters",
 <http://www.iana.org/assignments/tls-parameters>.

 [Kleinjung2010]

 Kleinjung, T., "Factorization of a 768-Bit RSA modulus",
 CRYPTO 10, 2010, <https://eprint.iacr.org/2010/006.pdf>.

 [Krawczyk2001]

 Krawczyk, H., "The Order of Encryption and Authentication
 for Protecting Communications (Or: How Secure is SSL?)",
 CRYPTO 01, 2001,
 <https://www.iacr.org/archive/crypto2001/21390309.pdf>.

 [Multiple-Encryption]

 Merkle, R. and M. Hellman, "On the security of multiple
 encryption", Communications of the ACM, Vol. 24, 1981,
 <http://dl.acm.org/citation.cfm?id=358718>.

 [NIST.SP.800-56A]

 Barker, E., Chen, L., Roginsky, A., and M. Smid,
 "Recommendation for Pair-Wise Key Establishment Schemes
 Using Discrete Logarithm Cryptography", NIST Special
 Publication 800-56A, 2013,
 <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
 NIST.SP.800-56Ar2.pdf>.

 [POODLE]
 US-CERT, "SSL 3.0 Protocol Vulnerability and POODLE
 Attack", Alert TA14-290A, October 2014,
 <https://www.us-cert.gov/ncas/alerts/TA14-290A>.

 [PatersonRS11]

 Paterson, K., Ristenpart, T., and T. Shrimpton, "Tag size
 does matter: attacks and proofs for the TLS record
 protocol", 2011,
 <http://dx.doi.org/10.1007/978-3-642-25385-0_20>.

 [RFC2026]
 Bradner, S., "The Internet Standards Process -- Revision
 3", BCP 9, RFC 2026, October 1996,
 <http://www.rfc-editor.org/info/rfc2026>.

 [RFC2246]
 Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246, January 1999,
 <http://www.rfc-editor.org/info/rfc2246>.

 [RFC3602]
 Frankel, S., Glenn, R., and S. Kelly, "The AES-CBC Cipher
 Algorithm and Its Use with IPsec", RFC 3602, September
 2003, <http://www.rfc-editor.org/info/rfc3602>.

 [RFC4346]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006,
 <http://www.rfc-editor.org/info/rfc4346>.

 [RFC4347]
 Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, April 2006,
 <http://www.rfc-editor.org/info/rfc4347>.

 [RFC5077]
 Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, January 2008,
 <http://www.rfc-editor.org/info/rfc5077>.

 [RFC5116]
 McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, January 2008,
 <http://www.rfc-editor.org/info/rfc5116>.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC6090]
 McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090, February 2011,
 <http://www.rfc-editor.org/info/rfc6090>.

 [RFC6101]
 Freier, A., Karlton, P., and P. Kocher, "The Secure
 Sockets Layer (SSL) Protocol Version 3.0", RFC 6101,
 August 2011, <http://www.rfc-editor.org/info/rfc6101>.

 [RFC6120]
 Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 6120, March 2011,
 <http://www.rfc-editor.org/info/rfc6120>.

 [RFC6460]
 Salter, M. and R. Housley, "Suite B Profile for Transport
 Layer Security (TLS)", RFC 6460, January 2012,
 <http://www.rfc-editor.org/info/rfc6460>.

 [RFC6698]
 Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
 of Named Entities (DANE) Transport Layer Security (TLS)
 Protocol: TLSA", RFC 6698, August 2012,
 <http://www.rfc-editor.org/info/rfc6698>.

 [RFC6797]
 Hodges, J., Jackson, C., and A. Barth, "HTTP Strict
 Transport Security (HSTS)", RFC 6797, November 2012,
 <http://www.rfc-editor.org/info/rfc6797>.

 [RFC6960]
 Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960, June 2013,
 <http://www.rfc-editor.org/info/rfc6960>.

 [RFC6961]
 Pettersen, Y., "The Transport Layer Security (TLS)
 Multiple Certificate Status Request Extension", RFC 6961,
 June 2013, <http://www.rfc-editor.org/info/rfc6961>.

 [RFC6989]
 Sheffer, Y. and S. Fluhrer, "Additional Diffie-Hellman
 Tests for the Internet Key Exchange Protocol Version 2
 (IKEv2)", RFC 6989, July 2013,
 <http://www.rfc-editor.org/info/rfc6989>.

 [RFC7435]
 Dukhovni, V., "Opportunistic Security: Some Protection
 Most of the Time", RFC 7435, December 2014,
 <http://www.rfc-editor.org/info/rfc7435>.

 [RFC7457]
 Sheffer, Y., Holz, R., and P. Saint-Andre, "Summarizing
 Known Attacks on Transport Layer Security (TLS) and
 Datagram TLS (DTLS)", RFC 7457, February 2015,
 <http://www.rfc-editor.org/info/rfc7457>.

 [RFC7507]
 Moeller, B. and A. Langley, "TLS Fallback Signaling Cipher
 Suite Value (SCSV) for Preventing Protocol Downgrade
 Attacks", RFC 7507, April 2015.

 [SESSION-HASH]

 Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
 Langley, A., and M. Ray, "Transport Layer Security (TLS)
 Session Hash and Extended Master Secret Extension", Work
 in Progress, draft-ietf-tls-session-hash-05, April 2015.

 [Smith2013]

 Smith, B., "Proposal to Change the Default TLS
 Ciphersuites Offered by Browsers.", 2013,
 <https://briansmith.org/browser-ciphersuites-01.html>.

 [Soghoian2011]

 Soghoian, C. and S. Stamm, "Certified lies: Detecting and
 defeating government interception attacks against SSL",
 Proc. 15th Int. Conf. Financial Cryptography and Data
 Security, 2011.

 [TLS-XMPP]
 Saint-Andre, P. and a. alkemade, "Use of Transport Layer
 Security (TLS) in the Extensible Messaging and Presence
 Protocol (XMPP)", Work in Progress,
 draft-ietf-uta-xmpp-07, April 2015.

 [triple-handshake]

 Delignat-Lavaud, A., Bhargavan, K., and A. Pironti,
 "Triple Handshakes Considered Harmful: Breaking and Fixing
 Authentication over TLS", 2014,
 <https://secure-resumption.com/>.

Acknowledgments

 Thanks to RJ Atkinson, Uri Blumenthal, Viktor Dukhovni, Stephen
 Farrell, Daniel Kahn Gillmor, Paul Hoffman, Simon Josefsson, Watson
 Ladd, Orit Levin, Ilari Liusvaara, Johannes Merkle, Bodo Moeller,
 Yoav Nir, Massimiliano Pala, Kenny Paterson, Patrick Pelletier, Tom
 Ritter, Joe St. Sauver, Joe Salowey, Rich Salz, Brian Smith, Sean
 Turner, and Aaron Zauner for their feedback and suggested
 improvements. Thanks also to Brian Smith, who has provided a great
 resource in his "Proposal to Change the Default TLS Ciphersuites
 Offered by Browsers" [Smith2013]. Finally, thanks to all others who
 commented on the TLS, UTA, and other discussion lists but who are not
 mentioned here by name.

 Robert Sparks and Dave Waltermire provided helpful reviews on behalf
 of the General Area Review Team and the Security Directorate,
 respectively.

 During IESG review, Richard Barnes, Alissa Cooper, Spencer Dawkins,
 Stephen Farrell, Barry Leiba, Kathleen Moriarty, and Pete Resnick
 provided comments that led to further improvements.

 Ralph Holz gratefully acknowledges the support by Technische
 Universitaet Muenchen. The authors gratefully acknowledge the
 assistance of Leif Johansson and Orit Levin as the working group
 chairs and Pete Resnick as the sponsoring Area Director.

Authors' Addresses

Yaron Sheffer
Intuit
4 HaHarash St.
Hod HaSharon 4524075
Israel

 EMail: yaronf.ietf@gmail.com

Ralph Holz
NICTA
13 Garden St.
Eveleigh 2015 NSW
Australia

 EMail: ralph.ietf@gmail.com

Peter Saint‑Andre
&yet

EMail: peter@andyet.com
URI: https://andyet.com/

7590 - Use of Transport Layer Security (TLS) in the Extensible Messaging and Pre

Index
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7590

Updates: 6120

Category: Standards Track

ISSN: 2070-1721

P. Saint-Andre

&yet

T. Alkemade

June 2015

Use of Transport Layer Security (TLS) in the Extensible Messaging and Presence Protocol (XMPP)

Abstract

 This document provides recommendations for the use of Transport Layer
 Security (TLS) in the Extensible Messaging and Presence Protocol
 (XMPP). This document updates RFC 6120.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7590.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Recommendations
	 3.1. Support for TLS

	 3.2. Compression

	 3.3. Session Resumption

	 3.4. Authenticated Connections

	 3.5. Server Name Indication

	 3.6. Human Factors

	4. Security Considerations

	5. References
	 5.1. Normative References

	 5.2. Informative References

	Appendix A. Implementation Notes

	Acknowledgements

	Authors' Addresses

1. Introduction

 The Extensible Messaging and Presence Protocol (XMPP) [RFC6120]
 (along with its precursor, the so-called "Jabber protocol") has used
 Transport Layer Security (TLS) [RFC5246] (along with its precursor,
 Secure Sockets Layer or SSL) since 1999. Both [RFC6120] and its
 predecessor [RFC3920] provided recommendations regarding the use of
 TLS in XMPP. In order to address the evolving threat model on the
 Internet today, this document provides stronger recommendations.

 In particular, this document updates [RFC6120] by specifying that
 XMPP implementations and deployments MUST follow the best current
 practices documented in the "Recommendations for Secure Use of TLS
 and DTLS" [RFC7525]. This includes stronger recommendations
 regarding SSL/TLS protocol versions, fallback to lower versions,
 TLS-layer compression, TLS session resumption, cipher suites, public
 key lengths, forward secrecy, and other aspects of using TLS with
 XMPP.

2. Terminology

 Various security-related terms are to be understood in the sense
 defined in [RFC4949].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

3. Recommendations

 The best current practices documented in the "Recommendations for
 Secure Use of TLS and DTLS" [RFC7525] are included here by reference.
 Instead of repeating those recommendations here, this document mostly
 provides supplementary information regarding secure implementation
 and deployment of XMPP technologies.

3.1. Support for TLS

 Support for TLS (specifically, the XMPP profile of STARTTLS) is
 mandatory for XMPP implementations, as already specified in [RFC6120]
 and its predecessor [RFC3920].

 The server (i.e., the XMPP receiving entity) to which a client or
 peer server (i.e., the XMPP initiating entity) connects might not
 offer a stream feature of <starttls xmlns='urn:ietf:params:xml:ns
 :xmpp-tls'/>. Although in general this stream feature indicates that
 the server supports and offers TLS, this stream feature might be
 stripped out by an attacker (see Section 2.1 of [RFC7457]).
 Similarly, the <required/> child element of the <starttls/> stream
 feature is used to indicate that negotiation of TLS is mandatory;
 however, this could also be stripped out by an attacker. Therefore,
 the initiating entity MUST NOT be deterred from attempting TLS
 negotiation even if the receiving entity does not advertise support
 for TLS. Instead, the initiating entity SHOULD (based on local
 policy) proceed with the stream negotiation and attempt to negotiate
 TLS.

3.2. Compression

 XMPP supports an application-layer compression technology [XEP-0138].
 Although this XMPP extension might have slightly stronger security
 properties than TLS-layer compression (since it is enabled after
 Simple Authentication and Security Layer (SASL) authentication, as
 described in [XEP-0170]), this document neither encourages nor
 discourages use of XMPP-layer compression.

3.3. Session Resumption

 To improve the reliability of communications over XMPP, it is common
 practice for clients and servers to implement the stream management
 extension [XEP-0198]. Although that specification includes a method
 for resumption of XMPP streams at the application layer, also using
 session resumption at the TLS layer further optimizes the overall
 process of resuming an XMPP session (see [XEP-0198] for detailed
 information). Whether or not XEP-0198 is used for application-layer
 session resumption, implementations MUST follow the recommendations
 provided in [RFC7525] regarding TLS-layer session resumption.

3.4. Authenticated Connections

 Both the core XMPP specification [RFC6120] and the CertID
 specification [RFC6125] provide recommendations and requirements for
 certificate validation in the context of authenticated connections.
 This document does not supersede those specifications (e.g., it does
 not modify the recommendations in [RFC6120] regarding the Subject
 Alternative Names or other certificate details that need to be
 supported for authentication of XMPP connections using PKIX
 certificates).

 Wherever possible, it is best to prefer authenticated connections
 (along with SASL [RFC4422]), as already stated in the core XMPP
 specification [RFC6120]. In particular:

 o Clients MUST authenticate servers.

 o Servers MUST authenticate clients.

 o Servers SHOULD authenticate other servers.

 This document does not mandate that servers need to authenticate peer
 servers, although such authentication is strongly preferred.
 Unfortunately, in multi-tenanted environments it can be extremely
 difficult to obtain and deploy PKIX certificates with the proper
 Subject Alternative Names (see [XMPP-DNA] and [PKIX-POSH] for
 details). To overcome that difficulty, the Domain Name Associations
 (DNAs) specification [XMPP-DNA] describes a framework for XMPP server
 authentication methods, which include not only PKIX but also DNS-
 Based Authentication of Named Entities (DANE) as defined in
 [DANE-SRV] and PKIX over Secure HTTP (POSH) as defined in
 [PKIX-POSH]. These methods can provide a basis for server identity
 verification when appropriate PKIX certificates cannot be obtained
 and deployed.

 Given the pervasiveness of eavesdropping [RFC7258], even an encrypted
 but unauthenticated connection might be better than an unencrypted
 connection in these scenarios (this is similar to the "better-than-
 nothing security" approach for IPsec [RFC5386]). Encrypted but
 unauthenticated connections include connections negotiated using
 anonymous Diffie-Hellman mechanisms or using self-signed
 certificates, among others. In particular for XMPP server-to-server
 interactions, it can be reasonable for XMPP server implementations to
 accept encrypted but unauthenticated connections when Server Dialback
 keys [XEP-0220] are used; such keys on their own provide only weak
 identity verification (made stronger through the use of DNSSEC
 [RFC4033]), but this at least enables encryption of server-to-server
 connections. The DNA prooftypes mentioned above are intended to
 mitigate the residual need for encrypted but unauthenticated
 connections in these scenarios.

3.5. Server Name Indication

 Although there is no harm in supporting the TLS Server Name
 Indication (SNI) extension [RFC6066], this is not necessary since the
 same function is served in XMPP by the 'to' address of the initial
 stream header as explained in Section 4.7.2 of [RFC6120].

3.6. Human Factors

 It is strongly encouraged that XMPP clients provide ways for end
 users (and that XMPP servers provide ways for administrators) to
 complete the following tasks:

 o Determine if a given incoming or outgoing XML stream is encrypted
 using TLS.

 o Determine the version of TLS used for encryption of a given
 stream.

 o If authenticated encryption is used, determine how the connection
 was authenticated or verified (e.g., via PKI, DANE, POSH, or
 Server Dialback).

 o Inspect the certificate offered by an XMPP server.

 o Determine the cipher suite used to encrypt a connection.

 o Be warned if the certificate changes for a given server.

4. Security Considerations

 The use of TLS can help to limit the information available for
 correlation between the XMPP application layer and the underlying
 network and transport layers. As typically deployed, XMPP
 technologies do not leave application-layer routing data (such as
 XMPP 'to' and 'from' addresses) at rest on intermediate systems,
 since there is only one hop between any two given XMPP servers. As a
 result, encrypting all hops (sender's client to sender's server,
 sender's server to recipient's server, and recipient's server to
 recipient's client) can help to limit the amount of metadata that
 might leak.

 It is possible that XMPP servers themselves might be compromised. In
 that case, per-hop encryption would not protect XMPP communications,
 and even end-to-end encryption of (parts of) XMPP stanza payloads
 would leave addressing information and XMPP roster data in the clear.
 By the same token, it is possible that XMPP clients (or the end-user
 devices on which such clients are installed) could also be
 compromised, leaving users utterly at the mercy of an adversary.

 This document and related actions to strengthen the security of the
 XMPP network are based on the assumption that XMPP servers and
 clients have not been subject to widespread compromise. If this
 assumption is valid, then ubiquitous use of per-hop TLS channel
 encryption and more significant deployment of end-to-end object
 encryption technologies will serve to protect XMPP communications to
 a measurable degree, compared to the alternatives.

 This document covers only communication over the XMPP network and
 does not take into account gateways to non-XMPP networks. As an
 example, for security considerations related to gateways between XMPP
 and the Session Initiation Protocol (SIP), see [RFC7247] and
 [RFC7572].

5. References

5.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4949]
 Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <http://www.rfc-editor.org/info/rfc4949>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC6120]
 Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 6120, DOI 10.17487/RFC6120,
 March 2011, <http://www.rfc-editor.org/info/rfc6120>.

 [RFC6125]
 Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <http://www.rfc-editor.org/info/rfc6125>.

 [RFC7525]
 Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/rfc7525>.

5.2. Informative References

 [DANE-SRV]
 Finch, T., Miller, M., and P. Saint-Andre, "Using DNS-
 Based Authentication of Named Entities (DANE) TLSA
 records with SRV and MX records.", Work in Progress,
 draft-ietf-dane-srv-14, April 2015.

 [PKIX-POSH]
 Miller, M. and P. Saint-Andre, "PKIX over Secure HTTP
 (POSH)", Work in Progress, draft-ietf-xmpp-posh-04,
 February 2015.

 [RFC3920]
 Saint-Andre, P., Ed., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 3920, DOI 10.17487/RFC3920,
 October 2004, <http://www.rfc-editor.org/info/rfc3920>.

 [RFC4033]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <http://www.rfc-editor.org/info/rfc4033>.

 [RFC4422]
 Melnikov, A., Ed. and K. Zeilenga, Ed., "Simple
 Authentication and Security Layer (SASL)", RFC 4422,
 DOI 10.17487/RFC4422, June 2006,
 <http://www.rfc-editor.org/info/rfc4422>.

 [RFC5386]
 Williams, N. and M. Richardson, "Better-Than-Nothing
 Security: An Unauthenticated Mode of IPsec", RFC 5386,
 DOI 10.17487/RFC5386, November 2008,
 <http://www.rfc-editor.org/info/rfc5386>.

 [RFC6066]
 Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <http://www.rfc-editor.org/info/rfc6066>.

 [RFC7247]
 Saint-Andre, P., Houri, A., and J. Hildebrand,
 "Interworking between the Session Initiation Protocol
 (SIP) and the Extensible Messaging and Presence Protocol
 (XMPP): Architecture, Addresses, and Error Handling",
 RFC 7247, DOI 10.17487/RFC7247, May 2014,
 <http://www.rfc-editor.org/info/rfc7247>.

 [RFC7258]
 Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is
 an Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <http://www.rfc-editor.org/info/rfc7258>.

 [RFC7457]
 Sheffer, Y., Holz, R., and P. Saint-Andre, "Summarizing
 Known Attacks on Transport Layer Security (TLS) and
 Datagram TLS (DTLS)", RFC 7457, DOI 10.17487/RFC7457,
 February 2015, <http://www.rfc-editor.org/info/rfc7457>.

 [RFC7572]
 Saint-Andre, P., Houri, A., and J. Hildebrand,
 "Interworking between the Session Initiation Protocol
 (SIP) and the Extensible Messaging and Presence Protocol
 (XMPP): Instant Messaging", RFC 7572,
 DOI 10.17487/RFC7572, June 2015,
 <http://www.rfc-editor.org/info/rfc7572>.

 [XEP-0138]
 Hildebrand, J. and P. Saint-Andre, "Stream Compression",
 XSF XEP 0138, May 2009,
 <http://xmpp.org/extensions/xep-0138.html>.

 [XEP-0170]
 Saint-Andre, P., "Recommended Order of Stream Feature
 Negotiation", XSF XEP 0170, January 2007,
 <http://xmpp.org/extensions/xep-0170.html>.

 [XEP-0198]
 Karneges, J., Saint-Andre, P., Hildebrand, J., Forno, F.,
 Cridland, D., and M. Wild, "Stream Management", XSF XEP
 0198, June 2011,
 <http://xmpp.org/extensions/xep-0198.html>.

 [XEP-0220]
 Miller, J., Saint-Andre, P., and P. Hancke, "Server
 Dialback", XSF XEP 0220, August 2014,
 <http://xmpp.org/extensions/xep-0220.html>.

 [XMPP-DNA]
 Saint-Andre, P. and M. Miller, "Domain Name Associations
 (DNA) in the Extensible Messaging and Presence Protocol
 (XMPP)", Work in Progress, draft-ietf-xmpp-dna-10, March
 2015.

Appendix A. Implementation Notes

 Some governments enforce legislation prohibiting the export of strong
 cryptographic technologies. Nothing in this document ought to be
 taken as advice to violate such prohibitions.

Acknowledgements

 The authors would like to thank the following individuals for their
 input: Dave Cridland, Philipp Hancke, Olle Johansson, Steve Kille,
 Tobias Markmann, Matt Miller, and Rene Treffer.

 Roni Even caught several important issues in his review on behalf of
 the General Area Review Team.

 Ben Campbell, Spencer Dawkins, and Barry Leiba provided helpful input
 during IESG review.

 Thanks to Leif Johansson and Orit Levin as chairs of the UTA WG, Ben
 Campbell and Joe Hildebrand as chairs of the XMPP WG, and Stephen
 Farrell as the sponsoring Area Director.

Authors' Addresses

Peter Saint‑Andre
&yet

EMail: peter@andyet.com
URI: https://andyet.com/

 Thijs Alkemade

 EMail: me@thijsalkema.de

7817 - Updated Transport Layer Security (TLS) Server Identity Check Procedure fo

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7817

Updates: 2595, 3207, 3501, 5804

Category: Standards Track

ISSN: 2070-1721

A. Melnikov

Isode Ltd

March 2016

Updated Transport Layer Security (TLS) Server Identity Check Procedure for Email-Related Protocols

Abstract

 This document describes the Transport Layer Security (TLS) server
 identity verification procedure for SMTP Submission, IMAP, POP, and
 ManageSieve clients. It replaces Section 2.4 (Server Identity Check)
 of RFC 2595 and updates Section 4.1 (Processing After the STARTTLS
 Command) of RFC 3207, Section 11.1 (STARTTLS Security Considerations)
 of RFC 3501, and Section 2.2.1 (Server Identity Check) of RFC 5804.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7817.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions Used in This Document

	3. Email Server Certificate Verification Rules

	4. Compliance Checklist for Certification Authorities
	 4.1. Notes on Handling of Delegated Email Services by Certification Authorities

	5. Compliance Checklist for Mail Service Providers and Certificate Signing Request Generation Tools
	 5.1. Notes on Hosting Multiple Domains

	6. Examples

	7. Operational Considerations

	8. Security Considerations

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Appendix A. Changes to RFCs 2595, 3207, 3501, and 5804

	Acknowledgements

	Author's Address

1. Introduction

 Use of TLS by SMTP Submission, IMAP, POP, and ManageSieve clients is
 described in [RFC3207], [RFC3501], [RFC2595], and [RFC5804],
 respectively. Each of the documents describes slightly different
 rules for server certificate identity verification (or doesn't define
 any rules at all). In reality, email client and server developers
 implement many of these protocols at the same time, so it would be
 good to define modern and consistent rules for verifying email server
 identities using TLS.

 This document describes the updated TLS server identity verification
 procedure for SMTP Submission [RFC6409] [RFC3207], IMAP [RFC3501],
 POP [RFC1939], and ManageSieve [RFC5804] clients. Section 3 of this
 document replaces Section 2.4 of [RFC2595].

 Note that this document doesn't apply to use of TLS in MTA-to-MTA
 SMTP.

 This document provides a consistent TLS server identity verification
 procedure across multiple email-related protocols. This should make
 it easier for Certification Authorities (CAs) and ISPs to deploy TLS
 for email use and would enable email client developers to write more
 secure code.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms or concepts are used through the document:

reference identifier: One of the domain names that the email client
 (an SMTP, IMAP, POP3, or ManageSieve client) associates with the
 target email server. For some identifier types, the identifier
 also includes an application service type. Reference identifiers
 are used for performing name checks on server certificates. (This
 term is formally defined in [RFC6125].)

 CN-ID, DNS-ID, SRV-ID, and URI-ID are identifier types (see [RFC6125]
 for details). For convenience, their short definitions from
 [RFC6125] are listed below:

CN‑ID: A Relative Distinguished Name (RDN) in the certificate
 subject field that contains one and only one attribute‑type‑and‑
 value pair of type Common Name (CN), where the value matches the
 overall form of a domain name (informally, dot‑separated, letter‑
 digit‑hyphen labels).

DNS‑ID: A subjectAltName entry of type dNSName

SRV‑ID: A subjectAltName entry of type otherName whose name form is
 SRVName

URI‑ID: A subjectAltName entry of type uniformResourceIdentifier
 whose value includes both (i) a "scheme" and (ii) a "host"
 component (or its equivalent) that matches the "reg‑name" rule
 (where the quoted terms represent the associated [RFC5234]
 productions from [RFC3986]).

3. Email Server Certificate Verification Rules

 During a TLS negotiation, an email client (i.e., an SMTP, IMAP, POP3,
 or ManageSieve client) MUST check its understanding of the server
 identity (client's reference identifiers) against the server's
 identity as presented in the server Certificate message in order to
 prevent man-in-the-middle attacks. This check is only performed
 after the server certificate passes certification path validation as
 described in Section 6 of [RFC5280]. Matching is performed according
 to the rules specified in Section 6 of [RFC6125], including the
 relative order of matching of different identifier types,
 "certificate pinning", and the procedure on failure to match. The
 following inputs are used by the verification procedure used in
 [RFC6125]:

 1. For DNS-ID and CN-ID identifier types, the client MUST use one or
 more of the following as "reference identifiers": (a) the domain
 portion of the user's email address, (b) the hostname it used to
 open the connection (without CNAME canonicalization). The client
 MAY also use (c) a value securely derived from (a) or (b), such
 as using "secure" DNSSEC [RFC4033] [RFC4034] [RFC4035] validated
 lookup.

 2. When using email service discovery procedure specified in
 [RFC6186], the client MUST also use the domain portion of the
 user's email address as another "reference identifier" to compare
 against an SRV-ID identifier in the server certificate.

 The rules and guidelines defined in [RFC6125] apply to an email
 server certificate with the following supplemental rules:

 1. Support for the DNS-ID identifier type (subjectAltName of dNSName
 type [RFC5280]) is REQUIRED in email client software
 implementations.

 2. Support for the SRV-ID identifier type (subjectAltName of SRVName
 type [RFC4985]) is REQUIRED for email client software
 implementations that support [RFC6186]. A list of SRV-ID types
 for email services is specified in [RFC6186]. For the
 ManageSieve protocol, the service name "sieve" is used.

 3. A URI-ID identifier type (subjectAltName of
 uniformResourceIdentifier type [RFC5280]) MUST NOT be used by
 clients for server verification, as URI-IDs were not historically
 used for email.

 4. For backward compatibility with deployed software, a CN-ID
 identifier type (CN attribute from the subject name, see
 [RFC6125]) MAY be used for server identity verification.

 5. Email protocols allow use of certain wildcards in identifiers
 presented by email servers. The "*" wildcard character MAY be
 used as the left-most name component of a DNS-ID or CN-ID in the
 certificate. For example, a DNS-ID of "*.example.com" would
 match "a.example.com", "foo.example.com", etc., but would not
 match "example.com". Note that the wildcard character MUST NOT
 be used as a fragment of the left-most name component (e.g.,
 "*oo.example.com", "f*o.example.com", or "foo*.example.com").

4. Compliance Checklist for Certification Authorities

 1. CAs MUST support issuance of server certificates with a DNS-ID
 identifier type (subjectAltName of dNSName type [RFC5280]).
 (Note that some DNS-IDs may refer to domain portions of email
 addresses, so they might not have corresponding A/AAAA DNS
 records.)

 2. CAs MUST support issuance of server certificates with an SRV-ID
 identifier type (subjectAltName of SRVName type [RFC4985]) for
 each type of email service. See Section 4.1 for more discussion
 on what this means for CAs.

 3. For backward compatibility with a deployed client base, CAs MUST
 support issuance of server certificates with a CN-ID identifier
 type (CN attribute from the subject name, see [RFC6125]).

 4. CAs MAY allow "*" (wildcard) as the left-most name component of a
 DNS-ID or CN-ID in server certificates it issues.

4.1. Notes on Handling of Delegated Email Services by Certification
 Authorities

 [RFC6186]
 provides an easy way for organizations to autoconfigure
 email clients. It also allows for delegation of email services to an
 email hosting provider. When connecting to such delegated hosting
 service, an email client that attempts to verify TLS server identity
 needs to know that if it connects to "imap.hosting.example.net", such
 server is authorized to provide email access for an email such as
 alice@example.org. In absence of SRV-IDs, users of compliant email
 clients would be forced to manually confirm exceptions because the
 TLS server certificate verification procedures specified in this
 document would result in failure to match the TLS server certificate
 against the expected domain(s). One way to provide such
 authorization is for the TLS certificate for
 "imap.hosting.example.net" to include SRV-ID(s) (or a DNS-ID) for the
 "example.org" domain. Note that another way is for DNS Service
 Record (SRV) lookups to be protected by DNSSEC, but this solution
 depends on ubiquitous use of DNSSEC and availability of DNSSEC-aware
 APIs and thus is not discussed in this document. A future update to
 this document might rectify this.

 A CA that receives a Certificate Signing Request containing multiple
 unrelated DNS-IDs and/or SRV-IDs (e.g., a DNS-ID of "example.org" and
 a DNS-ID of "example.com") needs to verify that the entity that
 supplied such Certificate Signing Request is authorized to provide
 email service for all requested domains.

 The ability to issue certificates that contain an SRV-ID (or a DNS-ID
 for the domain part of email addresses) implies the ability to verify
 that entities requesting them are authorized to run email service for
 these SRV-IDs/DNS-IDs. In particular, CAs that can't verify such
 authorization (whether for a particular domain or in general) MUST
 NOT include such email SRV-IDs/DNS-IDs in certificates they issue.
 This document doesn't specify exact mechanism(s) that can be used to
 achieve this. However, a few special case recommendations are listed
 below.

 A CA willing to sign a certificate containing a particular DNS-ID
 SHOULD also support signing a certificate containing one or more of
 the email SRV-IDs for the same domain because the SRV-ID effectively
 provides more restricted access to an email service for the domain
 (as opposed to unrestricted use of any services for the same domain,
 as specified by the DNS-ID).

 A CA that also provides DNS service for a domain can use DNS
 information to validate SRV-IDs/DNS-IDs for the domain.

 A CA that is also a Mail Service Provider for a hosted domain can use
 that knowledge to validate SRV-IDs/DNS-IDs for the domain.

5. Compliance Checklist for Mail Service Providers and Certificate
 Signing Request Generation Tools

 Mail Service Providers and Certificate Signing Request generation
 tools:

 1. MUST include the DNS-ID identifier type in Certificate Signing
 Requests for the host name(s) where the email server(s) are
 running. They SHOULD include the DNS-ID identifier type in
 Certificate Signing Requests for the domain portion of served
 email addresses.

 2. MUST include the SRV-ID identifier type for each type of email
 service in Certificate Signing Requests if the email services
 provided are discoverable using DNS SRV as specified in
 [RFC6186].

 3. SHOULD include the CN-ID identifier type for the host name where
 the email server(s) is running in Certificate Signing Requests
 for backward compatibility with deployed email clients. (Note, a
 certificate can only include a single CN-ID, so if a mail service
 is running on multiple hosts, either each host has to use
 different certificate with its own CN-ID, a single certificate
 with multiple DNS-IDs, or a single certificate with wildcard in a
 CN-ID can be used).

 4. MAY include "*" (wildcard) as the left-most name component of a
 DNS-ID or CN-ID in Certificate Signing Requests.

5.1. Notes on Hosting Multiple Domains

 A server that hosts multiple domains needs to do one of the following
 (or some combination thereof):

 1. Use DNS SRV records to redirect each hosted email service to a
 fixed domain, deploy TLS certificate(s) for that single domain,
 and instruct users to configure their clients with appropriate
 pinning (unless the SRV records can always be obtained via
 DNSSEC). Some email clients come with preloaded lists of pinned
 certificates for some popular domains; this can avoid the need
 for manual confirmation.

 2. Use a single TLS certificate that includes a complete list of all
 the domains it is serving.

 3. Serve each domain on its own IP/port, using separate TLS
 certificates on each IP/port.

 4. Use the Server Name Indication (SNI) TLS extension [RFC6066] to
 select the right certificate to return during TLS negotiation.
 Each domain has its own TLS certificate in this case.

 Each of these deployment choices have their scaling disadvantages
 when the list of domains changes. Use of DNS SRV without an SRV-ID
 requires manual confirmation from users. While preloading pinned
 certificates avoids the need for manual confirmation, this
 information can get stale quickly or would require support for a new
 mechanism for distributing preloaded pinned certificates. A single
 certificate (the second choice) requires that when a domain is added,
 then a new Certificate Signing Request that includes a complete list
 of all the domains needs to be issued and passed to a CA in order to
 generate a new certificate. A separate IP/port can avoid
 regenerating the certificate but requires more transport layer
 resources. Use of TLS SNI requires each email client to use it.

 Several Mail Service Providers host hundreds and even thousands of
 domains. This document, as well as its predecessors, RFCs 2595,
 3207, 3501, and 5804, don't address scaling issues caused by use of
 TLS in multi-tenanted environments. Further work is needed to
 address this issue, possibly using DNSSEC or something like PKIX over
 Secure HTTP (POSH) [RFC7711].

6. Examples

 Consider an IMAP-accessible email server that supports both IMAP and
 IMAP-over-TLS (IMAPS) at the host "mail.example.net" servicing email
 addresses of the form "user@example.net". A certificate for this
 service needs to include DNS-IDs of "example.net" (because it is the
 domain portion of emails) and "mail.example.net" (this is what a user
 of this server enters manually if not using [RFC6186]). It might
 also include a CN-ID of "mail.example.net" for backward compatibility
 with deployed infrastructure.

 Consider the IMAP-accessible email server from the previous paragraph
 that is additionally discoverable via DNS SRV lookups in domain
 "example.net" (using DNS SRV records "_imap._tcp.example.net" and
 "_imaps._tcp.example.net"). In addition to the DNS-ID/CN-ID identity
 types specified above, a certificate for this service also needs to
 include SRV-IDs of "_imap.example.net" (when STARTTLS is used on the
 IMAP port) and "_imaps.example.net" (when TLS is used on IMAPS port).
 See [RFC6186] for more details. (Note that unlike DNS SRV there is
 no "_tcp" component in SRV-IDs).

 Consider the IMAP-accessible email server from the first paragraph
 that is running on a host also known as "mycompany.example.com". In
 addition to the DNS-ID identity types specified above, a certificate
 for this service also needs to include a DNS-ID of
 "mycompany.example.com" (this is what a user of this server enters
 manually if not using [RFC6186]). It might also include a CN-ID of
 "mycompany.example.com" instead of the CN-ID "mail.example.net" for
 backward compatibility with deployed infrastructure. (This is so,
 because a certificate can only include a single CN-ID)

 Consider an SMTP Submission server at the host "submit.example.net"
 servicing email addresses of the form "user@example.net" and
 discoverable via DNS SRV lookups in domain "example.net" (using DNS
 SRV record "_submission._tcp.example.net"). A certificate for this
 service needs to include SRV-IDs of "_submission.example.net" (see
 [RFC6186]) along with DNS-IDs of "example.net" and
 "submit.example.net". It might also include a CN-ID of
 "submit.example.net" for backward compatibility with deployed
 infrastructure.

 Consider a host "mail.example.net" servicing email addresses of the
 form "user@example.net" and discoverable via DNS SRV lookups in
 domain "example.net", which runs SMTP Submission, IMAPS and POP3S
 (POP3-over-TLS), and ManageSieve services. Each of the servers can
 use their own certificate specific to their service (see examples
 above). Alternatively, they can all share a single certificate that
 would include SRV-IDs of "_submission.example.net",
 "_imaps.example.net", "_pop3s.example.net", and "_sieve.example.net"
 along with DNS-IDs of "example.net" and "mail.example.net". It might
 also include a CN-ID of "mail.example.net" for backward compatibility
 with deployed infrastructure.

7. Operational Considerations

 Section 5 covers operational considerations (in particular, use of
 DNS SRV for autoconfiguration) related to generating TLS certificates
 for email servers so that they can be successfully verified by email
 clients. Additionally, Section 5.1 talks about operational
 considerations related to hosting multiple domains.

8. Security Considerations

 The goal of this document is to improve interoperability and thus
 security of email clients wishing to access email servers over TLS-
 protected email protocols by specifying a consistent set of rules
 that email service providers, email client writers, and CAs can use
 when creating server certificates.

 The TLS server identity check for email relies on use of trustworthy
 DNS hostnames when constructing "reference identifiers" that are
 checked against an email server certificate. Such trustworthy names
 are either entered manually (for example, if they are advertised on a
 Mail Service Provider's website), explicitly confirmed by the user
 (e.g., if they are a target of a DNS SRV lookup), or derived using a
 secure third party service (e.g., DNSSEC-protected SRV records that
 are verified by the client or trusted local resolver). Future work
 in this area might benefit from integration with DNS-Based
 Authentication of Named Entities (DANE) [RFC6698], but it is not
 covered by this document.

9. References

9.1. Normative References

 [RFC1939]
 Myers, J. and M. Rose, "Post Office Protocol - Version 3",
 STD 53, RFC 1939, DOI 10.17487/RFC1939, May 1996,
 <http://www.rfc-editor.org/info/rfc1939>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3207]
 Hoffman, P., "SMTP Service Extension for Secure SMTP over
 Transport Layer Security", RFC 3207, DOI 10.17487/RFC3207,
 February 2002, <http://www.rfc-editor.org/info/rfc3207>.

 [RFC3501]
 Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
 4rev1", RFC 3501, DOI 10.17487/RFC3501, March 2003,
 <http://www.rfc-editor.org/info/rfc3501>.

 [RFC4985]
 Santesson, S., "Internet X.509 Public Key Infrastructure
 Subject Alternative Name for Expression of Service Name",
 RFC 4985, DOI 10.17487/RFC4985, August 2007,
 <http://www.rfc-editor.org/info/rfc4985>.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC5804]
 Melnikov, A., Ed. and T. Martin, "A Protocol for Remotely
 Managing Sieve Scripts", RFC 5804, DOI 10.17487/RFC5804,
 July 2010, <http://www.rfc-editor.org/info/rfc5804>.

 [RFC6066]
 Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <http://www.rfc-editor.org/info/rfc6066>.

 [RFC6125]
 Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <http://www.rfc-editor.org/info/rfc6125>.

 [RFC6186]
 Daboo, C., "Use of SRV Records for Locating Email
 Submission/Access Services", RFC 6186,
 DOI 10.17487/RFC6186, March 2011,
 <http://www.rfc-editor.org/info/rfc6186>.

 [RFC6409]
 Gellens, R. and J. Klensin, "Message Submission for Mail",
 STD 72, RFC 6409, DOI 10.17487/RFC6409, November 2011,
 <http://www.rfc-editor.org/info/rfc6409>.

9.2. Informative References

 [RFC2595]
 Newman, C., "Using TLS with IMAP, POP3 and ACAP",
 RFC 2595, DOI 10.17487/RFC2595, June 1999,
 <http://www.rfc-editor.org/info/rfc2595>.

 [RFC3986]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC4033]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <http://www.rfc-editor.org/info/rfc4033>.

 [RFC4034]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <http://www.rfc-editor.org/info/rfc4034>.

 [RFC4035]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
 <http://www.rfc-editor.org/info/rfc4035>.

 [RFC5234]
 Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC6698]
 Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
 of Named Entities (DANE) Transport Layer Security (TLS)
 Protocol: TLSA", RFC 6698, DOI 10.17487/RFC6698, August
 2012, <http://www.rfc-editor.org/info/rfc6698>.

 [RFC7711]
 Miller, M. and P. Saint-Andre, "PKIX over Secure HTTP
 (POSH)", RFC 7711, DOI 10.17487/RFC7711, November 2015,
 <http://www.rfc-editor.org/info/rfc7711>.

Appendix A. Changes to RFCs 2595, 3207, 3501, and 5804

 This section lists detailed changes this document applies to RFCs
 2595, 3207, 3501, and 5804.

 The entire Section 2.4 of RFC 2595 is replaced with the following
 text:

 During the TLS negotiation, the client checks its understanding of
 the server identity against the provided server's identity as
 specified in Section 3 of [RFC7817].

 The 3rd paragraph (and its subparagraphs) in Section 11.1 of RFC 3501
 is replaced with the following text:

 During the TLS negotiation, the IMAP client checks its
 understanding of the server identity against the provided server's
 identity as specified in Section 3 of [RFC7817].

 The 3rd paragraph (and its subparagraphs) in Section 4.1 of RFC 3207
 is replaced with the following text:

 During the TLS negotiation, the Submission client checks its
 understanding of the server identity against the provided server's
 identity as specified in Section 3 of [RFC7817].

 Sections 2.2.1 and 2.2.1.1 of RFC 5804 are replaced with the
 following text:

 During the TLS negotiation, the ManageSieve client checks its
 understanding of the server identity against the server's identity
 as specified in Section 3 of [RFC7817]. When the reference
 identity is an IP address, the iPAddress subjectAltName SHOULD be
 used by the client for comparison. The comparison is performed as
 described in Section 2.2.1.2 of RFC 5804.

Acknowledgements

 Thank you to Chris Newman, Viktor Dukhovni, Sean Turner, Russ
 Housley, Alessandro Vesely, Harald Alvestrand, and John Levine for
 comments on this document.

 The editor of this document copied lots of text from RFCs 2595 and
 6125, so the hard work of editors of these documents is appreciated.

Author's Address

Alexey Melnikov
Isode Ltd
14 Castle Mews
Hampton, Middlesex TW12 2NP
United Kingdom

 EMail: Alexey.Melnikov@isode.com

8314 - Cleartext Considered Obsolete: Use of Transport Layer Security (TLS) for

Index
Back 5
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 8314

Updates: 1939, 2595, 3501, 5068, 6186, 6409

Category: Standards Track

ISSN: 2070-1721

K. Moore

Windrock, Inc.

C. Newman

Oracle

January 2018

Cleartext Considered Obsolete: Use of Transport Layer Security (TLS) for Email Submission and Access

Abstract

 This specification outlines current recommendations for the use of
 Transport Layer Security (TLS) to provide confidentiality of email
 traffic between a Mail User Agent (MUA) and a Mail Submission Server
 or Mail Access Server. This document updates RFCs 1939, 2595, 3501,
 5068, 6186, and 6409.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8314.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. How This Document Updates Previous RFCs

	2. Conventions and Terminology Used in This Document

	3. Implicit TLS
	 3.1. Implicit TLS for POP

	 3.2. Implicit TLS for IMAP

	 3.3. Implicit TLS for SMTP Submission

	 3.4. Implicit TLS Connection Closure for POP, IMAP, and SMTP Submission

	4. Use of TLS by Mail Access Servers and Message Submission Servers
	 4.1. Deprecation of Services Using Cleartext and TLS Versions Less Than 1.1

	 4.2. Mail Server Use of Client Certificate Authentication

	 4.3. Recording TLS Ciphersuite in "Received" Header Field

	 4.4. TLS Server Certificate Requirements

	 4.5. Recommended DNS Records for Mail Protocol Servers
	 4.5.1. MX Records

	 4.5.2. SRV Records

	 4.5.3. DNSSEC

	 4.5.4. TLSA Records

	 4.6. Changes to Internet-Facing Servers

	5. Use of TLS by Mail User Agents
	 5.1. Use of SRV Records in Establishing Configuration

	 5.2. Minimum Confidentiality Level

	 5.3. Certificate Validation

	 5.4. Certificate Pinning

	 5.5. Client Certificate Authentication

	6. Considerations Related to Antivirus/Antispam Software and Services

	7. IANA Considerations
	 7.1. POP3S Port Registration Update

	 7.2. IMAPS Port Registration Update

	 7.3. Submissions Port Registration

	 7.4. Additional Registered Clauses for "Received" Fields

	8. Security Considerations

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Appendix A. Design Considerations

	Acknowledgements

	Authors' Addresses

1. Introduction

 Software that provides email service via the Internet Message Access
 Protocol (IMAP) [RFC3501], the Post Office Protocol (POP) [RFC1939],
 and/or Simple Mail Transfer Protocol (SMTP) Submission [RFC6409]
 usually has Transport Layer Security (TLS) [RFC5246] support but
 often does not use it in a way that maximizes end-user
 confidentiality. This specification describes current
 recommendations for the use of TLS in interactions between Mail User
 Agents (MUAs) and Mail Access Servers, and also between MUAs and Mail
 Submission Servers.

 In brief, this memo now recommends that:

 o TLS version 1.2 or greater be used for all traffic between MUAs
 and Mail Submission Servers, and also between MUAs and Mail Access
 Servers.

o MUAs and Mail Service Providers (MSPs) (a) discourage the use of
 cleartext protocols for mail access and mail submission and
 (b) deprecate the use of cleartext protocols for these purposes as
 soon as practicable.

 o Connections to Mail Submission Servers and Mail Access Servers be
 made using "Implicit TLS" (as defined below), in preference to
 connecting to the "cleartext" port and negotiating TLS using the
 STARTTLS command or a similar command.

 This memo does not address the use of TLS with SMTP for message relay
 (where Message Submission [RFC6409] does not apply). Improving the
 use of TLS with SMTP for message relay requires a different approach.
 One approach to address that topic is described in [RFC7672]; another
 is provided in [MTA-STS].

 The recommendations in this memo do not replace the functionality of,
 and are not intended as a substitute for, end-to-end encryption of
 electronic mail.

1.1. How This Document Updates Previous RFCs

 This document updates POP (RFC 1939), IMAP (RFC 3501), and Submission
 (RFC 6409, RFC 5068) in two ways:

 1. By adding Implicit TLS ports as Standards Track ports for these
 protocols as described in Section 3.

 2. By updating TLS best practices that apply to these protocols as
 described in Sections 4 and 5.

 This document updates RFC 2595 by replacing Section 7 of RFC 2595
 with the preference for Implicit TLS as described in Sections 1 and 3
 of this document, as well as by updating TLS best practices that
 apply to the protocols in RFC 2595 as described in Sections 4 and 5
 of this document.

 This document updates RFC 6186 as described herein, in Section 5.1.

2. Conventions and Terminology Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The term "Implicit TLS" refers to the automatic negotiation of TLS
 whenever a TCP connection is made on a particular TCP port that is
 used exclusively by that server for TLS connections. The term
 "Implicit TLS" is intended to contrast with the use of STARTTLS and
 similar commands in POP, IMAP, SMTP Message Submission, and other
 protocols, that are used by the client and the server to explicitly
 negotiate TLS on an established cleartext TCP connection.

 The term "Mail Access Server" refers to a server for POP, IMAP, and
 any other protocol used to access or modify received messages, or to
 access or modify a mail user's account configuration.

 The term "Mail Submission Server" refers to a server for the protocol
 specified in [RFC6409] (or one of its predecessors or successors) for
 submission of outgoing messages for delivery to recipients.

 The term "Mail Service Provider" (or "MSP") refers to an operator of
 Mail Access Servers and/or Mail Submission Servers.

 The term "Mail Account" refers to a user's identity with an MSP, that
 user's authentication credentials, any user email that is stored by
 the MSP, and any other per-user configuration information maintained
 by the MSP (for example, instructions for filtering spam). Most MUAs
 support the ability to access multiple Mail Accounts.

 For each account that an MUA accesses on its user's behalf, it must
 have the server names, ports, authentication credentials, and other
 configuration information specified by the user. This information,
 which is used by the MUA, is referred to as "Mail Account
 Configuration".

 This specification expresses syntax using the Augmented Backus-Naur
 Form (ABNF) as described in [RFC5234], including the core rules
 provided in Appendix B of [RFC5234] and the rules provided in
 [RFC5322].

3. Implicit TLS

 Previous standards for the use of email protocols with TLS used the
 STARTTLS mechanism: [RFC2595], [RFC3207], and [RFC3501]. With
 STARTTLS, the client establishes a cleartext application session and
 determines whether to issue a STARTTLS command based on server
 capabilities and client configuration. If the client issues a
 STARTTLS command, a TLS handshake follows that can upgrade the
 connection. Although this mechanism has been deployed, an alternate
 mechanism where TLS is negotiated immediately at connection start on
 a separate port (referred to in this document as "Implicit TLS") has
 been deployed more successfully. To encourage more widespread use of
 TLS and to also encourage greater consistency regarding how TLS is
 used, this specification now recommends the use of Implicit TLS for
 POP, IMAP, SMTP Submission, and all other protocols used between an
 MUA and an MSP.

3.1. Implicit TLS for POP

 When a TCP connection is established for the "pop3s" service (default
 port 995), a TLS handshake begins immediately. Clients MUST
 implement the certificate validation mechanism described in
 [RFC7817]. Once the TLS session is established, POP3 [RFC1939]
 protocol messages are exchanged as TLS application data for the
 remainder of the TCP connection. After the server sends an +OK
 greeting, the server and client MUST enter the AUTHORIZATION state,
 even if a client certificate was supplied during the TLS handshake.

 See Sections 5.5 and 4.2 for additional information on client
 certificate authentication. See Section 7.1 for port registration
 information.

3.2. Implicit TLS for IMAP

 When a TCP connection is established for the "imaps" service (default
 port 993), a TLS handshake begins immediately. Clients MUST
 implement the certificate validation mechanism described in
 [RFC7817]. Once the TLS session is established, IMAP [RFC3501]
 protocol messages are exchanged as TLS application data for the
 remainder of the TCP connection. If a client certificate was
 provided during the TLS handshake that the server finds acceptable,
 the server MAY issue a PREAUTH greeting, in which case both the
 server and the client enter the AUTHENTICATED state. If the server
 issues an OK greeting, then both the server and the client enter the
 NOT AUTHENTICATED state.

 See Sections 5.5 and 4.2 for additional information on client
 certificate authentication. See Section 7.2 for port registration
 information.

3.3. Implicit TLS for SMTP Submission

 When a TCP connection is established for the "submissions" service
 (default port 465), a TLS handshake begins immediately. Clients MUST
 implement the certificate validation mechanism described in
 [RFC7817]. Once the TLS session is established, Message Submission
 protocol data [RFC6409] is exchanged as TLS application data for the
 remainder of the TCP connection. (Note: The "submissions" service
 name is defined in Section 7.3 of this document and follows the usual
 convention that the name of a service layered on top of Implicit TLS
 consists of the name of the service as used without TLS, with an "s"
 appended.)

The STARTTLS mechanism on port 587 is relatively widely deployed due
to the situation with port 465 (discussed in Section 7.3). This
differs from IMAP and POP services where Implicit TLS is more widely
deployed on servers than STARTTLS. It is desirable to migrate core
protocols used by MUA software to Implicit TLS over time, for
consistency as well as for the additional reasons discussed in
Appendix A. However, to maximize the use of encryption for
submission, it is desirable to support both mechanisms for Message
Submission over TLS for a transition period of several years. As a
result, clients and servers SHOULD implement both STARTTLS on
port 587 and Implicit TLS on port 465 for this transition period.
Note that there is no significant difference between the security
properties of STARTTLS on port 587 and Implicit TLS on port 465 if
the implementations are correct and if both the client and the server
are configured to require successful negotiation of TLS prior to
Message Submission.

 Note that the "submissions" port provides access to a Message
 Submission Agent (MSA) as defined in [RFC6409], so requirements and
 recommendations for MSAs in that document, including the requirement
 to implement SMTP AUTH [RFC4954] and the requirements of Email
 Submission Operations [RFC5068], also apply to the submissions port.

 See Sections 5.5 and 4.2 for additional information on client
 certificate authentication. See Section 7.3 for port registration
 information.

3.4. Implicit TLS Connection Closure for POP, IMAP, and SMTP Submission

 When a client or server wishes to close the connection, it SHOULD
 initiate the exchange of TLS close alerts before TCP connection
 termination. The client MAY, after sending a TLS close alert,
 gracefully close the TCP connection (e.g., call the close() function
 on the TCP socket or otherwise issue a TCP CLOSE ([RFC793],
 Section 3.5)) without waiting for a TLS response from the server.

4. Use of TLS by Mail Access Servers and Message Submission Servers

 The following requirements and recommendations apply to Mail Access
 Servers and Mail Submission Servers, or, if indicated, to MSPs:

 o MSPs that support POP, IMAP, and/or Message Submission MUST
 support TLS access for those protocol servers.

 o Servers provided by MSPs other than POP, IMAP, and/or Message
 Submission SHOULD support TLS access and MUST support TLS access
 for those servers that support authentication via username and
 password.

 o MSPs that support POP, IMAP, and/or Message Submission SHOULD
 provide and support instances of those services that use Implicit
 TLS. (See Section 3.)

 o For compatibility with existing MUAs and existing MUA
 configurations, MSPs SHOULD also, in the near term, provide
 instances of these services that support STARTTLS. This will
 permit legacy MUAs to discover new availability of TLS capability
 on servers and may increase the use of TLS by such MUAs. However,
 servers SHOULD NOT advertise STARTTLS if the use of the STARTTLS
 command by a client is likely to fail (for example, if the server
 has no server certificate configured).

 o MSPs SHOULD advertise their Mail Access Servers and Mail
 Submission Servers, using DNS SRV records according to [RFC6186].
 (In addition to making correct configuration easier for MUAs, this
 provides a way by which MUAs can discover when an MSP begins to
 offer TLS-based services.) Servers supporting TLS SHOULD be
 advertised in preference to cleartext servers (if offered). In
 addition, servers using Implicit TLS SHOULD be advertised in
 preference to servers supporting STARTTLS (if offered). (See also
 Section 4.5.)

 o MSPs SHOULD deprecate the use of cleartext Mail Access Servers and
 Mail Submission Servers as soon as practicable. (See
 Section 4.1.)

 o MSPs currently supporting such use of cleartext SMTP (on port 25)
 as a means of Message Submission by their users (whether or not
 requiring authentication) SHOULD transition their users to using
 TLS (either Implicit TLS or STARTTLS) as soon as practicable.

o Mail Access Servers and Mail Submission Servers MUST support
 TLS 1.2 or later.

 o All Mail Access Servers and Mail Submission Servers SHOULD
 implement the recommended TLS ciphersuites described in [RFC7525]
 or a future BCP or Standards Track revision of that document.

 o As soon as practicable, MSPs currently supporting Secure Sockets
 Layer (SSL) 2.x, SSL 3.0, or TLS 1.0 SHOULD transition their users
 to TLS 1.1 or later and discontinue support for those earlier
 versions of SSL and TLS.

 o Mail Submission Servers accepting mail using TLS SHOULD include in
 the Received field of the outgoing message the TLS ciphersuite of
 the session in which the mail was received. (See Section 4.3.)

 o All Mail Access Servers and Mail Submission Servers implementing
 TLS SHOULD log TLS cipher information along with any connection or
 authentication logs that they maintain.

 Additional considerations and details appear below.

4.1. Deprecation of Services Using Cleartext and TLS Versions
 Less Than 1.1

 The specific means employed for deprecation of cleartext Mail Access
 Servers and Mail Submission Servers MAY vary from one MSP to the next
 in light of their user communities' needs and constraints. For
 example, an MSP MAY implement a gradual transition in which, over
 time, more and more users are forbidden to authenticate to cleartext
 instances of these servers, thus encouraging those users to migrate
 to Implicit TLS. Access to cleartext servers should eventually be
 either (a) disabled or (b) limited strictly for use by legacy systems
 that cannot be upgraded.

 After a user's ability to authenticate to a server using cleartext is
 revoked, the server denying such access MUST NOT provide any
 indication over a cleartext channel of whether the user's
 authentication credentials were valid. An attempt to authenticate as
 such a user using either invalid credentials or valid credentials
 MUST both result in the same indication of access being denied.
 Also, users previously authenticating with passwords sent as
 cleartext SHOULD be required to change those passwords when migrating
 to TLS, if the old passwords were likely to have been compromised.
 (For any large community of users using the public Internet to access
 mail without encryption, the compromise of at least some of those
 passwords should be assumed.)

Transition of users from SSL or TLS 1.0 to later versions of TLS MAY
be accomplished by a means similar to that described above. There
are multiple ways to accomplish this. One way is for the server to
refuse a ClientHello message from any client sending a
ClientHello.version field corresponding to any version of SSL or
TLS 1.0. Another way is for the server to accept ClientHello
messages from some client versions that it does not wish to support
but later refuse to allow the user to authenticate. The latter
method may provide a better indication to the user of the reason for
the failure but (depending on the protocol and method of
authentication used) may also risk exposure of the user's password
over a channel that is known to not provide adequate confidentiality.

 It is RECOMMENDED that new users be required to use TLS version 1.1
 or greater from the start. However, an MSP may find it necessary to
 make exceptions to accommodate some legacy systems that support only
 earlier versions of TLS or only cleartext.

4.2. Mail Server Use of Client Certificate Authentication

 Mail Submission Servers and Mail Access Servers MAY implement client
 certificate authentication on the Implicit TLS port. Such servers
 MUST NOT request a client certificate during the TLS handshake unless
 the server is configured to accept some client certificates as
 sufficient for authentication and the server has the ability to
 determine a mail server authorization identity matching such
 certificates. How to make this determination is presently
 implementation specific.

 If the server accepts the client's certificate as sufficient for
 authorization, it MUST enable the Simple Authentication and Security
 Layer (SASL) EXTERNAL mechanism [RFC4422]. An IMAPS server MAY issue
 a PREAUTH greeting instead of enabling SASL EXTERNAL.

4.3. Recording TLS Ciphersuite in "Received" Header Field

 The ESMTPS transmission type [RFC3848] provides trace information
 that can indicate that TLS was used when transferring mail. However,
 TLS usage by itself is not a guarantee of confidentiality or
 security. The TLS ciphersuite provides additional information about
 the level of security made available for a connection. This section
 defines a new SMTP "tls" Received header additional-registered-clause
 that is used to record the TLS ciphersuite that was negotiated for
 the connection. This clause SHOULD be included whenever a Submission
 server generates a Received header field for a message received via
 TLS. The value included in this additional clause SHOULD be the
 registered ciphersuite name (e.g.,
 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256) included in the "TLS Cipher
 Suite Registry". In the event that the implementation does not know
 the name of the ciphersuite (a situation that should be remedied
 promptly), a four-digit hexadecimal ciphersuite identifier MAY be
 used. In addition, the Diffie-Hellman group name associated with the
 ciphersuite MAY be included (when applicable and known) following the
 ciphersuite name. The ABNF for the field follows:

tls‑cipher‑clause = CFWS "tls" FWS tls‑cipher
 [CFWS tls‑dh‑group‑clause]

tls‑cipher = tls‑cipher‑name / tls‑cipher‑hex

tls‑cipher‑name = ALPHA *(ALPHA / DIGIT / "_")
; as registered in the IANA "TLS Cipher Suite Registry"
; <https://www.iana.org/assignments/tls‑parameters>

tls‑cipher‑hex = "0x" 4HEXDIG

tls‑dh‑group‑clause = "group" FWS dh‑group
; not to be used except immediately after tls‑cipher

dh‑group = ALPHA *(ALPHA / DIGIT / "_" / "‑")
; as registered in the IANA "TLS Supported Groups Registry"
; <https://www.iana.org/assignments/tls‑parameters>

4.4. TLS Server Certificate Requirements

 MSPs MUST maintain valid server certificates for all servers. See
 [RFC7817] for the recommendations and requirements necessary to
 achieve this.

 If a protocol server provides service for more than one mail domain,
 it MAY use a separate IP address for each domain and/or a server
 certificate that advertises multiple domains. This will generally be
 necessary unless and until it is acceptable to impose the constraint
 that the server and all clients support the Server Name Indication
 (SNI) extension to TLS [RFC6066]. Mail servers supporting the SNI
 need to support the post-SRV hostname to interoperate with MUAs that
 have not implemented [RFC6186]. For more discussion of this problem,
 see Section 5.1 of [RFC7817].

4.5. Recommended DNS Records for Mail Protocol Servers

 This section discusses not only the DNS records that are recommended
 but also implications of DNS records for server configuration and TLS
 server certificates.

4.5.1. MX Records

 It is recommended that MSPs advertise MX records for the handling of
 inbound mail (instead of relying entirely on A or AAAA records) and
 that those MX records be signed using DNSSEC [RFC4033]. This is
 mentioned here only for completeness, as the handling of inbound mail
 is out of scope for this document.

4.5.2. SRV Records

 MSPs SHOULD advertise SRV records to aid MUAs in determining the
 proper configuration of servers, per the instructions in [RFC6186].

 MSPs SHOULD advertise servers that support Implicit TLS in preference
 to servers that support cleartext and/or STARTTLS operation.

4.5.3. DNSSEC

 All DNS records advertised by an MSP as a means of aiding clients in
 communicating with the MSP's servers SHOULD be signed using DNSSEC if
 and when the parent DNS zone supports doing so.

4.5.4. TLSA Records

 MSPs SHOULD advertise TLSA records to provide an additional trust
 anchor for public keys used in TLS server certificates. However,
 TLSA records MUST NOT be advertised unless they are signed using
 DNSSEC.

4.6. Changes to Internet-Facing Servers

 When an MSP changes the Internet-facing Mail Access Servers and Mail
 Submission Servers, including SMTP-based spam/virus filters, it is
 generally necessary to support the same and/or a newer version of TLS
 than the one previously used.

5. Use of TLS by Mail User Agents

 The following requirements and recommendations apply to MUAs:

 o MUAs SHOULD be capable of using DNS SRV records to discover Mail
 Access Servers and Mail Submission Servers that are advertised by
 an MSP for an account being configured. Other means of
 discovering server configuration information (e.g., a database
 maintained by the MUA vendor) MAY also be supported. (See
 Section 5.1 for more information.)

 o MUAs SHOULD be configurable to require a minimum level of
 confidentiality for any particular Mail Account and refuse to
 exchange information via any service associated with that Mail
 Account if the session does not provide that minimum level of
 confidentiality. (See Section 5.2.)

 o MUAs MUST NOT treat a session as meeting a minimum level of
 confidentiality if the server's TLS certificate cannot be
 validated. (See Section 5.3.)

 o MUAs MAY impose other minimum confidentiality requirements in the
 future, e.g., in order to discourage the use of TLS versions or
 cryptographic algorithms in which weaknesses have been discovered.

o MUAs SHOULD provide a prominent indication of the level of
 confidentiality associated with an account configuration that is
 appropriate for the user interface (for example, a "lock" icon or
 changed background color for a visual interface, or some sort of
 audible indication for an audio user interface), at appropriate
 times and/or locations, in order to inform the user of the
 confidentiality of the communications associated with that
 account. For example, this might be done whenever (a) the user is
 prompted for authentication credentials, (b) the user is composing
 mail that will be sent to a particular submission server, (c) a
 list of accounts is displayed (particularly if the user can select
 from that list to read mail), or (d) the user is asking to view or
 update any configuration data that will be stored on a remote
 server. If, however, an MUA provides such an indication, it
 MUST NOT indicate confidentiality for any connection that does not
 at least use TLS 1.1 with certificate verification and also meet
 the minimum confidentiality requirements associated with that
 account.

 o MUAs MUST implement TLS 1.2 [RFC5246] or later. Earlier TLS and
 SSL versions MAY also be supported, so long as the MUA requires at
 least TLS 1.1 [RFC4346] when accessing accounts that are
 configured to impose minimum confidentiality requirements.

 o All MUAs SHOULD implement the recommended TLS ciphersuites
 described in [RFC7525] or a future BCP or Standards Track revision
 of that document.

 o MUAs that are configured to not require minimum confidentiality
 for one or more accounts SHOULD detect when TLS becomes available
 on those accounts (using [RFC6186] or other means) and offer to
 upgrade the account to require TLS.

 Additional considerations and details appear below.

5.1. Use of SRV Records in Establishing Configuration

 This document updates [RFC6186] by changing the preference rules and
 adding a new SRV service label _submissions._tcp to refer to Message
 Submission with Implicit TLS.

 User-configurable MUAs SHOULD support the use of [RFC6186] for
 account setup. However, when using configuration information
 obtained via this method, MUAs SHOULD ignore advertised services that
 do not satisfy minimum confidentiality requirements, unless the user
 has explicitly requested reduced confidentiality. This will have the
 effect of causing the MUA to default to ignoring advertised
 configurations that do not support TLS, even when those advertised
 configurations have a higher priority than other advertised
 configurations.

 When using configuration information per [RFC6186], MUAs SHOULD NOT
 automatically establish new configurations that do not require TLS
 for all servers, unless there are no advertised configurations using
 TLS. If such a configuration is chosen, prior to attempting to
 authenticate to the server or use the server for Message Submission,
 the MUA SHOULD warn the user that traffic to that server will not be
 encrypted and that it will therefore likely be intercepted by
 unauthorized parties. The specific wording is to be determined by
 the implementation, but it should adequately capture the sense of
 risk, given the widespread incidence of mass surveillance of email
 traffic.

 Similarly, an MUA MUST NOT attempt to "test" a particular Mail
 Account configuration by submitting the user's authentication
 credentials to a server, unless a TLS session meeting minimum
 confidentiality levels has been established with that server. If
 minimum confidentiality requirements have not been satisfied, the MUA
 must explicitly warn that the user's password may be exposed to
 attackers before testing the new configuration.

 When establishing a new configuration for connecting to an IMAP, POP,
 or SMTP submission server, based on SRV records, an MUA SHOULD verify
 that either (a) the SRV records are signed using DNSSEC or (b) the
 target Fully Qualified Domain Name (FQDN) of the SRV record matches
 the original server FQDN for which the SRV queries were made. If the
 target FQDN is not in the queried domain, the MUA SHOULD verify with
 the user that the SRV target FQDN is suitable for use, before
 executing any connections to the host. (See Section 6 of [RFC6186].)

 An MUA MUST NOT consult SRV records to determine which servers to use
 on every connection attempt, unless those SRV records are signed by
 DNSSEC and have a valid signature. However, an MUA MAY consult SRV
 records from time to time to determine if an MSP's server
 configuration has changed and alert the user if it appears that this
 has happened. This can also serve as a means to encourage users to
 upgrade their configurations to require TLS if and when their MSPs
 support it.

5.2. Minimum Confidentiality Level

 MUAs SHOULD, by default, require a minimum level of confidentiality
 for services accessed by each account. For MUAs supporting the
 ability to access multiple Mail Accounts, this requirement SHOULD be
 configurable on a per-account basis.

 The default minimum expected level of confidentiality for all new
 accounts MUST require successful validation of the server's
 certificate and SHOULD require negotiation of TLS version 1.1 or
 greater. (Future revisions to this specification may raise these
 requirements or impose additional requirements to address newly
 discovered weaknesses in protocols or cryptographic algorithms.)

 MUAs MAY permit the user to disable this minimum confidentiality
 requirement during initial account configuration or when subsequently
 editing an account configuration but MUST warn users that such a
 configuration will not assure privacy for either passwords or
 messages.

 An MUA that is configured to require a minimum level of
 confidentiality for a Mail Account MUST NOT attempt to perform any
 operation other than capability discovery, or STARTTLS for servers
 not using Implicit TLS, unless the minimum level of confidentiality
 is provided by that connection.

 MUAs SHOULD NOT allow users to easily access or send mail via a
 connection, or authenticate to any service using a password, if that
 account is configured to impose minimum confidentiality requirements
 and that connection does not meet all of those requirements. An
 example of "easy access" would be to display a dialog informing the
 user that the security requirements of the account were not met by
 the connection but allowing the user to "click through" to send mail
 or access the service anyway. Experience indicates that users
 presented with such an option often "click through" without
 understanding the risks that they're accepting by doing so.
 Furthermore, users who frequently find the need to "click through" to
 use an insecure connection may become conditioned to do so as a
 matter of habit, before considering whether the risks are reasonable
 in each specific instance.

 An MUA that is not configured to require a minimum level of
 confidentiality for a Mail Account SHOULD still attempt to connect to
 the services associated with that account using the most secure means
 available, e.g., by using Implicit TLS or STARTTLS.

5.3. Certificate Validation

 MUAs MUST validate TLS server certificates according to [RFC7817] and
 PKIX [RFC5280].

 MUAs MAY also support DNS-Based Authentication of Named Entities
 (DANE) [RFC6698] as a means of validating server certificates in
 order to meet minimum confidentiality requirements.

 MUAs MAY support the use of certificate pinning but MUST NOT consider
 a connection in which the server's authenticity relies on certificate
 pinning as providing the minimum level of confidentiality. (See
 Section 5.4.)

5.4. Certificate Pinning

 During account setup, the MUA will identify servers that provide
 account services such as mail access and mail submission (Section 5.1
 describes one way to do this). The certificates for these servers
 are verified using the rules described in [RFC7817] and PKIX
 [RFC5280]. In the event that the certificate does not validate due
 to an expired certificate, a lack of an appropriate chain of trust,
 or a lack of an identifier match, the MUA MAY offer to create a
 persistent binding between that certificate and the saved hostname
 for the server, for use when accessing that account's servers. This
 is called "certificate pinning".

 (Note: This use of the term "certificate pinning" means something
 subtly different than HTTP Public Key Pinning as described in
 [RFC7469]. The dual use of the same term is confusing, but
 unfortunately both uses are well established.)

 Certificate pinning is only appropriate during Mail Account setup and
 MUST NOT be offered as an option in response to a failed certificate
 validation for an existing Mail Account. An MUA that allows
 certificate pinning MUST NOT allow a certificate pinned for one
 account to validate connections for other accounts. An MUA that
 allows certificate pinning MUST also allow a user to undo the
 pinning, i.e., to revoke trust in a certificate that has previously
 been pinned.

 A pinned certificate is subject to a man-in-the-middle attack at
 account setup time and typically lacks a mechanism to automatically
 revoke or securely refresh the certificate. Note also that a man-in-
 the-middle attack at account setup time will expose the user's
 password to the attacker (if a password is used). Therefore, the use
 of a pinned certificate does not meet the requirement for a minimum
 confidentiality level, and an MUA MUST NOT indicate to the user that
 such confidentiality is provided. Additional advice on certificate
 pinning is presented in [RFC6125].

5.5. Client Certificate Authentication

 MUAs MAY implement client certificate authentication on the Implicit
 TLS port. An MUA MUST NOT provide a client certificate during the
 TLS handshake unless the server requests one and the MUA has been
 authorized to use that client certificate with that account. Having
 the end user explicitly configure a client certificate for use with a
 given account is sufficient to meet this requirement. However,
 installing a client certificate for use with one account MUST NOT
 automatically authorize the use of that certificate with other
 accounts. This is not intended to prohibit site-specific
 authorization mechanisms, such as (a) a site-administrator-controlled
 mechanism to authorize the use of a client certificate with a given
 account or (b) a domain-name-matching mechanism.

 Note: The requirement that the server request a certificate is just a
 restatement of the TLS protocol rules, e.g., Section 7.4.6 of
 [RFC5246]. The requirement that the client not send a certificate
 not known to be acceptable to the server is pragmatic in multiple
 ways: the current TLS protocol provides no way for the client to know
 which of the potentially multiple certificates it should use; also,
 when the client sends a certificate, it is potentially disclosing its
 identity (or its user's identity) to both the server and any party
 with access to the transmission medium, perhaps unnecessarily and for
 no useful purpose.

 A client supporting client certificate authentication with Implicit
 TLS MUST implement the SASL EXTERNAL mechanism [RFC4422], using the
 appropriate authentication command (AUTH for POP3 [RFC5034], AUTH for
 SMTP Submission [RFC4954], or AUTHENTICATE for IMAP [RFC3501]).

6. Considerations Related to Antivirus/Antispam Software and Services

 There are multiple ways to connect an AVAS service (e.g., "Antivirus
 & Antispam") to a mail server. Some mechanisms, such as the de facto
 "milter" protocol, are out of scope for this specification. However,
 some services use an SMTP relay proxy that intercepts mail at the
 application layer to perform a scan and proxy or forward to another
 Mail Transfer Agent (MTA). Deploying AVAS services in this way can
 cause many problems [RFC2979], including direct interference with
 this specification, and other forms of confidentiality or security
 reduction. An AVAS product or service is considered compatible with
 this specification if all IMAP, POP, and SMTP-related software
 (including proxies) it includes are compliant with this
 specification.

 Note that end-to-end email encryption prevents AVAS software and
 services from using email content as part of a spam or virus
 assessment. Furthermore, although a minimum confidentiality level
 can prevent a man-in-the-middle from introducing spam or virus
 content between the MUA and Submission server, it does not prevent
 other forms of client or account compromise. The use of AVAS
 services for submitted email therefore remains necessary.

7. IANA Considerations

7.1. POP3S Port Registration Update

 IANA has updated the registration of the TCP well-known port 995
 using the following template [RFC6335]:

Service Name: pop3s
Transport Protocol: TCP
Assignee: IESG <iesg@ietf.org>
Contact: IETF Chair <chair@ietf.org>
Description: POP3 over TLS protocol
Reference: RFC 8314
Port Number: 995

7.2. IMAPS Port Registration Update

 IANA has updated the registration of the TCP well-known port 993
 using the following template [RFC6335]:

Service Name: imaps
Transport Protocol: TCP
Assignee: IESG <iesg@ietf.org>
Contact: IETF Chair <chair@ietf.org>
Description: IMAP over TLS protocol
Reference: RFC 8314
Port Number: 993

 No changes to existing UDP port assignments for pop3s or imaps are
 being requested.

7.3. Submissions Port Registration

 IANA has assigned an alternate usage of TCP port 465 in addition to
 the current assignment using the following template [RFC6335]:

Service Name: submissions
Transport Protocol: TCP
Assignee: IESG <iesg@ietf.org>
Contact: IETF Chair <chair@ietf.org>
Description: Message Submission over TLS protocol
Reference: RFC 8314
Port Number: 465

 This is a one-time procedural exception to the rules in [RFC6335].
 This requires explicit IESG approval and does not set a precedent.
 Note: Since the purpose of this alternate usage assignment is to
 align with widespread existing practice and there is no known usage
 of UDP port 465 for Message Submission over TLS, IANA has not
 assigned an alternate usage of UDP port 465.

 Historically, port 465 was briefly registered as the "smtps" port.
 This registration made no sense, as the SMTP transport MX
 infrastructure has no way to specify a port, so port 25 is always
 used. As a result, the registration was revoked and was subsequently
 reassigned to a different service. In hindsight, the "smtps"
 registration should have been renamed or reserved rather than
 revoked. Unfortunately, some widely deployed mail software
 interpreted "smtps" as "submissions" [RFC6409] and used that port for
 email submission by default when an end user requested security
 during account setup. If a new port is assigned for the submissions
 service, either (a) email software will continue with unregistered
 use of port 465 (leaving the port registry inaccurate relative to

 de facto practice and wasting a well-known port) or (b) confusion
 between the de facto and registered ports will cause harmful
 interoperability problems that will deter the use of TLS for Message
 Submission. The authors of this document believe that both of these
 outcomes are less desirable than a "wart" in the registry documenting
 real-world usage of a port for two purposes. Although STARTTLS on
 port 587 has been deployed, it has not replaced the deployed use of
 Implicit TLS submission on port 465.

7.4. Additional Registered Clauses for "Received" Fields

 Per the provisions in [RFC5321], IANA has added two additional-
 registered-clauses for Received fields as defined in Section 4.3 of
 this document:

 o "tls": Indicates the TLS cipher used (if applicable)

 o "group": Indicates the Diffie-Hellman group used with the TLS
 cipher (if applicable)

 The descriptions and syntax of these additional clauses are provided
 in Section 4.3 of this document.

8. Security Considerations

 This entire document is about security considerations. In general,
 this is targeted to improve mail confidentiality and to mitigate
 threats external to the email system such as network-level snooping
 or interception; this is not intended to mitigate active attackers
 who have compromised service provider systems.

 Implementers should be aware that the use of client certificates with
 TLS 1.2 reveals the user's identity to any party with the ability to
 read packets from the transmission medium and therefore may
 compromise the user's privacy. There seems to be no easy fix with
 TLS 1.2 or earlier versions, other than to avoid presenting client
 certificates except when there is explicit authorization to do so.
 TLS 1.3 [TLS-1.3] appears to reduce this privacy risk somewhat.

9. References

9.1. Normative References

 [RFC793]
 Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC1939]
 Myers, J. and M. Rose, "Post Office Protocol - Version 3",
 STD 53, RFC 1939, DOI 10.17487/RFC1939, May 1996,
 <https://www.rfc-editor.org/info/rfc1939>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3207]
 Hoffman, P., "SMTP Service Extension for Secure SMTP over
 Transport Layer Security", RFC 3207, DOI 10.17487/RFC3207,
 February 2002, <https://www.rfc-editor.org/info/rfc3207>.

 [RFC3501]
 Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL -
 VERSION 4rev1", RFC 3501, DOI 10.17487/RFC3501,
 March 2003, <https://www.rfc-editor.org/info/rfc3501>.

 [RFC4033]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

 [RFC5034]
 Siemborski, R. and A. Menon-Sen, "The Post Office Protocol
 (POP3) Simple Authentication and Security Layer (SASL)
 Authentication Mechanism", RFC 5034, DOI 10.17487/RFC5034,
 July 2007, <https://www.rfc-editor.org/info/rfc5034>.

 [RFC5234]
 Crocker, D., Ed., and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5322]
 Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC6186]
 Daboo, C., "Use of SRV Records for Locating Email
 Submission/Access Services", RFC 6186,
 DOI 10.17487/RFC6186, March 2011,
 <https://www.rfc-editor.org/info/rfc6186>.

 [RFC6409]
 Gellens, R. and J. Klensin, "Message Submission for Mail",
 STD 72, RFC 6409, DOI 10.17487/RFC6409, November 2011,
 <https://www.rfc-editor.org/info/rfc6409>.

 [RFC6698]
 Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
 of Named Entities (DANE) Transport Layer Security (TLS)
 Protocol: TLSA", RFC 6698, DOI 10.17487/RFC6698,
 August 2012, <https://www.rfc-editor.org/info/rfc6698>.

 [RFC7525]
 Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525,
 May 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC7672]
 Dukhovni, V. and W. Hardaker, "SMTP Security via
 Opportunistic DNS-Based Authentication of Named Entities
 (DANE) Transport Layer Security (TLS)", RFC 7672,
 DOI 10.17487/RFC7672, October 2015,
 <https://www.rfc-editor.org/info/rfc7672>.

 [RFC7817]
 Melnikov, A., "Updated Transport Layer Security (TLS)
 Server Identity Check Procedure for Email-Related
 Protocols", RFC 7817, DOI 10.17487/RFC7817, March 2016,
 <https://www.rfc-editor.org/info/rfc7817>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in
 RFC 2119 Key Words", BCP 14, RFC 8174,
 DOI 10.17487/RFC8174, May 2017,
 <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [CERT-555316]

 CERT, "Vulnerability Note VU#555316: STARTTLS plaintext
 command injection vulnerability", Carnegie Mellon
 University Software Engineering Institute, September 2011,
 <https://www.kb.cert.org/vuls/id/555316>.

 [Email-TLS]

 Moore, K., "Recommendations for use of TLS by Electronic
 Mail Access Protocols", Work in Progress, draft-moore-
 email-tls-00, October 2013.

 [MTA-STS]
 Margolis, D., Risher, M., Ramakrishnan, B., Brotman, A.,
 and J. Jones, "SMTP MTA Strict Transport Security
 (MTA-STS)", Work in Progress, draft-ietf-uta-mta-sts-14,
 January 2018.

 [POP3-over-TLS]

 Melnikov, A., Newman, C., and M. Yevstifeyev, Ed., "POP3
 over TLS", Work in Progress, draft-melnikov-pop3-
 over-tls-02, August 2011.

 [RFC2595]
 Newman, C., "Using TLS with IMAP, POP3 and ACAP",
 RFC 2595, DOI 10.17487/RFC2595, June 1999,
 <https://www.rfc-editor.org/info/rfc2595>.

 [RFC2979]
 Freed, N., "Behavior of and Requirements for Internet
 Firewalls", RFC 2979, DOI 10.17487/RFC2979, October 2000,
 <https://www.rfc-editor.org/info/rfc2979>.

 [RFC3848]
 Newman, C., "ESMTP and LMTP Transmission Types
 Registration", RFC 3848, DOI 10.17487/RFC3848, July 2004,
 <https://www.rfc-editor.org/info/rfc3848>.

 [RFC4346]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346,
 DOI 10.17487/RFC4346, April 2006,
 <https://www.rfc-editor.org/info/rfc4346>.

 [RFC4422]
 Melnikov, A., Ed., and K. Zeilenga, Ed., "Simple
 Authentication and Security Layer (SASL)", RFC 4422,
 DOI 10.17487/RFC4422, June 2006,
 <https://www.rfc-editor.org/info/rfc4422>.

 [RFC4954]
 Siemborski, R., Ed., and A. Melnikov, Ed., "SMTP Service
 Extension for Authentication", RFC 4954,
 DOI 10.17487/RFC4954, July 2007,
 <https://www.rfc-editor.org/info/rfc4954>.

 [RFC5068]
 Hutzler, C., Crocker, D., Resnick, P., Allman, E., and T.
 Finch, "Email Submission Operations: Access and
 Accountability Requirements", BCP 134, RFC 5068,
 DOI 10.17487/RFC5068, November 2007,
 <https://www.rfc-editor.org/info/rfc5068>.

 [RFC5321]
 Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 DOI 10.17487/RFC5321, October 2008,
 <https://www.rfc-editor.org/info/rfc5321>.

 [RFC6066]
 Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC6125]
 Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125,
 March 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC6335]
 Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC7469]
 Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning
 Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469,
 April 2015, <https://www.rfc-editor.org/info/rfc7469>.

 [TLS-1.3]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", Work in Progress, draft-ietf-tls-tls13-23,
 January 2018.

Appendix A. Design Considerations

 This section is not normative.

 The first version of this document was written independently from the
 October 2013 version of [Email-TLS] ("Recommendations for use of TLS
 by Electronic Mail Access Protocols"). Subsequent versions merge
 ideas from both documents.

 One author of this document was also the author of RFC 2595, which
 became the standard for TLS usage with POP and IMAP, and the other
 author was perhaps the first to propose that idea. In hindsight,
 both authors now believe that that approach was a mistake. At this
 point, the authors believe that while anything that makes it easier
 to deploy TLS is good, the desirable end state is that these
 protocols always use TLS, leaving no need for a separate port for
 cleartext operation except to support legacy clients while they
 continue to be used. The separate-port model for TLS is inherently
 simpler to implement, debug, and deploy. It also enables a "generic
 TLS load-balancer" that accepts secure client connections for
 arbitrary foo-over-TLS protocols and forwards them to a server that
 may or may not support TLS. Such load-balancers cause many problems
 because they violate the end-to-end principle and the server loses
 the ability to log security-relevant information about the client
 unless the protocol is designed to forward that information (as this
 specification does for the ciphersuite). However, they can result in
 TLS deployment where it would not otherwise happen, which is a
 sufficiently important goal that it overrides any problems.

 Although STARTTLS appears only slightly more complex than
 separate-port TLS, we again learned the lesson that complexity is the
 enemy of security in the form of the STARTTLS command injection
 vulnerability (Computer Emergency Readiness Team (CERT) vulnerability
 ID #555316 [CERT-555316]). Although there's nothing inherently wrong
 with STARTTLS, the fact that it resulted in a common implementation
 error (made independently by multiple implementers) suggests that it
 is a less secure architecture than Implicit TLS.

 Section 7 of RFC 2595 critiques the separate-port approach to TLS.
 The first bullet was a correct critique. There are proposals in the
 HTTP community to address that, and the use of SRV records as
 described in RFC 6186 resolves that critique for email. The second
 bullet is correct as well but is not very important because useful
 deployment of security layers other than TLS in email is small enough
 to be effectively irrelevant. (Also, it's less correct than it used
 to be because "export" ciphersuites are no longer supported in modern
 versions of TLS.) The third bullet is incorrect because it misses
 the desirable option of "use TLS for all subsequent connections to
 this server once TLS is successfully negotiated". The fourth bullet
 may be correct, but it is not a problem yet with current port
 consumption rates. The fundamental error was prioritizing a
 perceived better design based on a mostly valid critique over
 real-world deployability. But getting security and confidentiality
 facilities actually deployed is so important that it should trump
 design purity considerations.

 Port 465 is presently used for two purposes: for submissions by a
 large number of clients and service providers and for the "urd"
 protocol by one vendor. Actually documenting this current state is
 controversial, as discussed in the IANA Considerations section.
 However, there is no good alternative. Registering a new port for
 submissions when port 465 is already widely used for that purpose
 will just create interoperability problems. Registering a port
 that's only used if advertised by an SRV record (RFC 6186) would not
 create interoperability problems but would require all client
 deployments, server deployments, and software to change
 significantly, which is contrary to the goal of promoting the
 increased use of TLS. Encouraging the use of STARTTLS on port 587
 would not create interoperability problems, but it is unlikely to
 have any impact on the current undocumented use of port 465 and makes
 the guidance in this document less consistent. The remaining option
 is to document the current state of the world and support future use
 of port 465 for submission, as this increases consistency and ease of
 deployment for TLS email submission.

Acknowledgements

Thanks to Ned Freed for discussion of the initial concepts in this
document. Thanks to Alexey Melnikov for [POP3‑over‑TLS], which was
the basis of the POP3 Implicit TLS text. Thanks to Russ Housley,
Alexey Melnikov, and Dan Newman for review feedback. Thanks to
Paul Hoffman for interesting feedback in initial conversations about
this idea.

Authors' Addresses

Keith Moore
Windrock, Inc.
PO Box 1934
Knoxville, TN 37901
United States of America

 Email: moore@network-heretics.com

Chris Newman
Oracle
440 E. Huntington Dr., Suite 400
Arcadia, CA 91006
United States of America

 Email: chris.newman@oracle.com

8460 - SMTP TLS Reporting

Index
Back 5
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 8460

Category: Standards Track

ISSN: 2070-1721

D. Margolis

Google, Inc.

A. Brotman

Comcast, Inc.

B. Ramakrishnan

Oath, Inc.

J. Jones

Microsoft, Inc.

M. Risher

Google, Inc.

September 2018

SMTP TLS Reporting

Abstract

 A number of protocols exist for establishing encrypted channels
 between SMTP Mail Transfer Agents (MTAs), including STARTTLS, DNS-
 Based Authentication of Named Entities (DANE) TLSA, and MTA Strict
 Transport Security (MTA-STS). These protocols can fail due to
 misconfiguration or active attack, leading to undelivered messages or
 delivery over unencrypted or unauthenticated channels. This document
 describes a reporting mechanism and format by which sending systems
 can share statistics and specific information about potential
 failures with recipient domains. Recipient domains can then use this
 information to both detect potential attacks and diagnose
 unintentional misconfigurations.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8460.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. Related Technologies

	3. Reporting Policy
	 3.1. Example Reporting Policy
	 3.1.1. Report Using MAILTO

	 3.1.2. Report Using HTTPS

	4. Reporting Schema
	 4.1. Report Time Frame

	 4.2. Delivery Summary
	 4.2.1. Success Count

	 4.2.2. Failure Count

	 4.3. Result Types
	 4.3.1. Negotiation Failures

	 4.3.2. Policy Failures

	 4.3.3. General Failures

	 4.3.4. Transient Failures

	 4.4. JSON Report Schema

	 4.5. Policy Samples

	5. Report Delivery
	 5.1. Report Filename

	 5.2. Compression

	 5.3. Email Transport
	 5.3.1. Example Report

	 5.4. HTTPS Transport

	 5.5. Delivery Retry

	 5.6. Metadata Variances

	6. IANA Considerations
	 6.1. Message Headers

	 6.2. Report Type

	 6.3. +gzip Media Type Suffix

	 6.4. application/tlsrpt+json Media Type

	 6.5. application/tlsrpt+gzip Media Type

	 6.6. STARTTLS Validation Result Types

	7. Security Considerations

	8. Privacy Considerations

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Appendix A. Example Reporting Policy
	 A.1. Report Using MAILTO

	 A.2. Report Using HTTPS

	Appendix B. Example JSON Report

	Contributors

	Authors' Addresses

1. Introduction

 The STARTTLS extension to SMTP [RFC3207] allows SMTP clients and
 hosts to establish secure SMTP sessions over TLS. The protocol
 design uses an approach that has come to be known as "Opportunistic
 Security" (OS) [RFC7435]. This method maintains interoperability
 with clients that do not support STARTTLS, but it means that any
 attacker could potentially eavesdrop on a session. An attacker could
 perform a downgrade or interception attack by deleting parts of the
 SMTP session (such as the "250 STARTTLS" response) or redirect the
 entire SMTP session (perhaps by overwriting the resolved MX record of
 the delivery domain).

 Because such "downgrade attacks" are not necessarily apparent to the
 receiving MTA, this document defines a mechanism for sending domains
 to report on failures at multiple stages of the MTA-to-MTA
 conversation.

 Recipient domains may also use the mechanisms defined by MTA-STS
 [RFC8461] or DANE [RFC6698] to publish additional encryption and
 authentication requirements; this document defines a mechanism for
 sending domains that are compatible with MTA-STS or DANE to share
 success and failure statistics with recipient domains.

 Specifically, this document defines a reporting schema that covers
 failures in routing, DNS resolution, and STARTTLS negotiation; policy
 validation errors for both DANE [RFC6698] and MTA-STS [RFC8461]; and
 a standard TXT record that recipient domains can use to indicate
 where reports in this format should be sent. The report can also
 serve as a heartbeat to indicate that systems are successfully
 negotiating TLS during sessions as expected.

 This document is intended as a companion to the specification for
 SMTP MTA-STS [RFC8461] and adds reporting abilities for those
 implementing DANE [RFC7672].

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 We also define the following terms for further use in this document:

 o MTA-STS Policy: A mechanism by which administrators can specify
 the expected TLS availability, presented identity, and desired
 actions for a given email recipient domain. MTA-STS is defined in
 [RFC8461].

 o DANE Policy: A mechanism by which administrators can use DNSSEC to
 commit an MTA to support STARTTLS and to publish criteria to be
 used to validate its presented certificates. DANE for SMTP is
 defined in [RFC7672], with the base specification defined in
 [RFC6698] (and updated by [RFC7671]).

 o TLSRPT (TLS Reporting) Policy: A policy specifying the endpoint to
 which Sending MTAs should deliver reports.

 o Policy Domain: The domain against which a TLSRPT, an MTA-STS, or a
 DANE policy is defined. For TLSRPT and MTA-STS, this is typically
 the same as the envelope recipient domain [RFC5321], but when mail
 is routed to a "smarthost" gateway by local policy, the
 "smarthost" domain name is used instead. For DANE, the Policy
 Domain is the "TLSA base domain" of the receiving SMTP server as
 described in Section 2.2.3 of RFC 7672 and Section 3 of RFC 6698.

 o Sending MTA: The MTA initiating the relay of an email message.

 o Aggregate Report URI (rua): A comma-separated list of locations
 where the report is to be submitted.

 o ABNF: Augmented Backus-Naur Form, a syntax for formally specifying
 syntax, defined in [RFC5234] and [RFC7405].

2. Related Technologies

 o This document is intended as a companion to the specification for
 SMTP MTA-STS [RFC8461].

 o SMTP TLSRPT defines a mechanism for sending domains that are
 compatible with MTA-STS or DANE to share success and failure
 statistics with recipient domains. DANE is defined in [RFC6698],
 and MTA-STS is defined in [RFC8461].

3. Reporting Policy

 A domain publishes a record to its DNS indicating that it wishes to
 receive reports. These SMTP TLSRPT policies are distributed via DNS
 from the Policy Domain's zone as TXT records (similar to Domain-based
 Message Authentication, Reporting, and Conformance (DMARC) policies)
 under the name "_smtp._tls". For example, for the Policy Domain
 "example.com", the recipient's TLSRPT policy can be retrieved from
 "_smtp._tls.example.com".

 Policies consist of the following directives:

 o "v": This document defines version 1 of TLSRPT, for which this
 value MUST be equal to "TLSRPTv1". Other versions may be defined
 in later documents.

 o "rua": A URI specifying the endpoint to which aggregate
 information about policy validation results should be sent (see
 Section 4, "Reporting Schema", for more information). Two URI
 schemes are supported: "mailto" and "https". As with DMARC
 [RFC7489], the Policy Domain can specify a comma-separated list of
 URIs.

 o In the case of "https", reports should be submitted via POST
 [RFC7231] to the specified URI. Report submitters MAY ignore
 certificate validation errors when submitting reports via HTTPS
 POST.

 o In the case of "mailto", reports should be submitted to the
 specified email address [RFC6068]. When sending failure reports
 via SMTP, Sending MTAs MUST deliver reports despite any TLS-
 related failures and SHOULD NOT include this SMTP session in the
 next report. This may mean that the reports are delivered
 unencrypted. Reports sent via SMTP MUST contain a valid
 DomainKeys Identified Mail (DKIM) [RFC6376] signature by the
 reporting domain. Reports lacking such a signature MUST be
 ignored by the recipient. DKIM signatures MUST NOT use the "l="
 attribute to limit the body length used in the signature. This
 ensures attackers cannot append extraneous or misleading data to a
 report without breaking the signature. The DKIM TXT record SHOULD
 contain the appropriate service type declaration, "s=tlsrpt". If
 not present, the receiving system MAY ignore reports lacking that
 service type.

 Sample DKIM record:

 dkim_selector._domainkey.example.com TXT

 "v=DKIM1;k=rsa;s=tlsrpt;p=Mlf4qwSZfase4fa=="

 The formal definition of the "_smtp._tls" TXT record, defined using
 [RFC5234] and [RFC7405], is as follows:

tlsrpt‑record = tlsrpt‑version 1*(field‑delim tlsrpt‑field)
 [field‑delim]

field‑delim = *WSP ";" *WSP

tlsrpt‑field = tlsrpt‑rua / ; Note that the
 tlsrpt‑extension ; tlsrpt‑rua record is
 ; required.

tlsrpt‑version = %s"v=TLSRPTv1"

tlsrpt‑rua = %s"rua="
 tlsrpt‑uri *(*WSP "," *WSP tlsrpt‑uri)

tlsrpt‑uri = URI
 ; "URI" is imported from [RFC3986];
 ; commas (ASCII 0x2C), exclamation
 ; points (ASCII 0x21), and semicolons
 ; (ASCII 0x3B) MUST be encoded

tlsrpt‑extension = tlsrpt‑ext‑name "=" tlsrpt‑ext‑value

tlsrpt‑ext‑name = (ALPHA / DIGIT) *31(ALPHA /
 DIGIT / "_" / "‑" / ".")

tlsrpt‑ext‑value = 1*(%x21‑3A / %x3C / %x3E‑7E)
 ; chars excluding "=", ";", SP, and control
 ; chars

 If multiple TXT records for "_smtp._tls" are returned by the
 resolver, records that do not begin with "v=TLSRPTv1;" are discarded.
 If the number of resulting records is not one, senders MUST assume
 the recipient domain does not implement TLSRPT. If the resulting TXT
 record contains multiple strings (as described in Section 3.3 of
 [RFC7208]), then the record MUST be treated as if those strings are
 concatenated without adding spaces.

 The record supports the ability to declare more than one rua, and if
 there exists more than one, the reporter MAY attempt to deliver to
 each of the supported rua destinations. A receiver MAY opt to only
 attempt delivery to one of the endpoints; however, the report SHOULD
 NOT be considered successfully delivered until one of the endpoints
 accepts delivery of the report.

 Parsers MUST accept TXT records that are syntactically valid (i.e.,
 valid key/value pairs separated by semicolons) and implement a
 superset of this specification, in which case unknown fields SHALL be
 ignored.

3.1. Example Reporting Policy

3.1.1. Report Using MAILTO

 _smtp._tls.example.com. IN TXT \

 "v=TLSRPTv1;rua=mailto:reports@example.com"

3.1.2. Report Using HTTPS

 _smtp._tls.example.com. IN TXT \

 "v=TLSRPTv1; \
 rua=https://reporting.example.com/v1/tlsrpt"

4. Reporting Schema

 The report is composed as a plaintext file encoded in the Internet
 JSON (I-JSON) format [RFC7493].

 Aggregate reports contain the following fields:

 o Report metadata:

 * The organization responsible for the report

 * Contact information for one or more responsible parties for the
 contents of the report

 * A unique identifier for the report

 * The reporting date range for the report

 o Policy, consisting of:

 * One of the following policy types: (1) the MTA-STS Policy
 applied (as a string), (2) the DANE TLSA record applied (as a
 string, with each RR entry of the RRset listed and separated by
 a semicolon), and (3) the literal string "no-policy-found", if
 neither a DANE nor MTA-STS Policy could be found.

 * The domain for which the policy is applied

 * The MX host

 o Aggregate counts, comprising result type, Sending MTA IP,
 receiving MTA hostname, session count, and an optional additional
 information field containing a URI for recipients to review
 further information on a failure type.

 Note that the failure types are non-exclusive; an aggregate report
 may contain overlapping "counts" of failure types when a single send
 attempt encountered multiple errors. Reporters may report multiple
 applied policies (for example, an MTA-STS Policy and a DANE TLSA
 record for the same domain and MX). Because of this, even in the
 case where only a single policy was applied, the "policies" field of
 the report body MUST be an array and not a singular value.

 In the case of multiple failure types, the "failure-details" array
 would contain multiple entries. Each entry would have its own set of
 information pertaining to that failure type.

4.1. Report Time Frame

 The report SHOULD cover a full day, from 00:00-24:00 UTC. This
 should allow for easier correlation of failure events. To avoid
 unintentionally overloading the system processing the reports, the
 reports should be delivered after some delay, perhaps several hours.

 As an example, a sending site might want to introduce a random delay
 of up to four hours:

func generate_sleep_delay() {
 min_delay = 1
 max_delay = 14400
 rand = random(min_delay, max_delay)
 return rand
}

func generate_report(policy_domain) {
 do_rpt_work(policy_domain)
 send_rpt(policy_domain)
}

func generate_tlsrpt() {
 sleep(generate_sleep_delay())
 for policy_domain in list_of_tlsrpt_enabled_domains {
 generate_report(policy_domain)
 }
}

4.2. Delivery Summary

4.2.1. Success Count

 o "total-successful-session-count": This indicates that the Sending
 MTA was able to successfully negotiate a policy-compliant TLS
 connection and serves to provide a "heartbeat" to receiving
 domains that signifies reporting is functional and tabulating
 correctly. This field contains an aggregate count of successful
 connections for the reporting system.

4.2.2. Failure Count

 o "total-failure-session-count": This indicates that the Sending MTA
 was unable to successfully establish a connection with the
 receiving platform. Section 4.3, "Result Types", will elaborate
 on the failed negotiation attempts. This field contains an
 aggregate count of failed connections.

4.3. Result Types

 The list of result types will start with the minimal set below and is
 expected to grow over time based on real-world experience. The
 initial set is outlined in Sections 4.3.1 to 4.3.4:

4.3.1. Negotiation Failures

 o "starttls-not-supported": This indicates that the recipient MX did
 not support STARTTLS.

 o "certificate-host-mismatch": This indicates that the certificate
 presented did not adhere to the constraints specified in the MTA-
 STS or DANE policy, e.g., if the MX hostname does not match any
 identities listed in the subject alternative name (SAN) [RFC5280].

 o "certificate-expired": This indicates that the certificate has
 expired.

 o "certificate-not-trusted": This is a label that covers multiple
 certificate-related failures that include, but are not limited to,
 errors such as untrusted/unknown certification authorities (CAs),
 certificate name constraints, certificate chain errors, etc. When
 using this declaration, the reporting MTA SHOULD utilize the
 "failure-reason-code" to provide more information to the receiving
 entity.

 o "validation-failure": This indicates a general failure for a
 reason not matching a category above. When using this
 declaration, the reporting MTA SHOULD utilize the "failure-reason-
 code" to provide more information to the receiving entity.

4.3.2. Policy Failures

4.3.2.1. DANE-Specific Policy Failures

 o "tlsa-invalid": This indicates a validation error in the TLSA
 record associated with a DANE policy. None of the records in the
 RRset were found to be valid.

 o "dnssec-invalid": This indicates that no valid records were
 returned from the recursive resolver.

 o "dane-required": This indicates that the sending system is
 configured to require DANE TLSA records for all the MX hosts of
 the destination domain, but no DNSSEC-validated TLSA records were
 present for the MX host that is the subject of the report.
 Mandatory DANE for SMTP is described in Section 6 of [RFC7672].
 Such policies may be created by mutual agreement between two
 organizations that frequently exchange sensitive content via
 email.

4.3.2.2. MTA-STS-specific Policy Failures

 o "sts-policy-fetch-error": This indicates a failure to retrieve an
 MTA-STS policy, for example, because the policy host is
 unreachable.

 o "sts-policy-invalid": This indicates a validation error for the
 overall MTA-STS Policy.

 o "sts-webpki-invalid": This indicates that the MTA-STS Policy could
 not be authenticated using PKIX validation.

4.3.3. General Failures

 When a negotiation failure cannot be categorized into one of the
 "Negotiation Failures" stated above, the reporter SHOULD use the
 "validation-failure" category. As TLS grows and becomes more
 complex, new mechanisms may not be easily categorized. This allows
 for a generic feedback category. When this category is used, the
 reporter SHOULD also use "failure-reason-code" to give some feedback
 to the receiving entity. This is intended to be a short text field,
 and the contents of the field should be an error code or error text,
 such as "X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION".

4.3.4. Transient Failures

 Transient errors due to too-busy networks, TCP timeouts, etc., are
 not required to be reported.

4.4. JSON Report Schema

 The JSON schema is derived from the HTTP Public Key Pinning (HPKP)
 JSON schema; see Section 3 of [RFC7469].

{
 "organization‑name": organization‑name,
 "date‑range": {
 "start‑datetime": date‑time,
 "end‑datetime": date‑time
 },
 "contact‑info": email‑address,
 "report‑id": report‑id,
 "policies": [{
 "policy": {
 "policy‑type": policy‑type,
 "policy‑string": policy‑string,
 "policy‑domain": domain,
 "mx‑host": mx‑host‑pattern
 },
 "summary": {
 "total‑successful‑session‑count": total‑successful‑session‑count,
 "total‑failure‑session‑count": total‑failure‑session‑count
 },
 "failure‑details": [
 {
 "result‑type": result‑type,
 "sending‑mta‑ip": ip‑address,
 "receiving‑mx‑hostname": receiving‑mx‑hostname,
 "receiving‑mx‑helo": receiving‑mx‑helo,
 "receiving‑ip": receiving‑ip,
 "failed‑session‑count": failed‑session‑count,
 "additional‑information": additional‑info‑uri,
 "failure‑reason‑code": failure‑reason‑code
 }
]
 }
]
}

 JSON Report Format

 o "organization-name": The name of the organization responsible for
 the report. It is provided as a string.

 o "date-time": The date-time indicates the start and end times for
 the report range. It is provided as a string formatted according
 to "Internet Date/Time Format", Section 5.6 of [RFC3339]. The
 report should be for a full UTC day, 00:00-24:00.

 o "email-address": The contact information for the party responsible
 for the report. It is provided as a string formatted according to
 "Addr-Spec Specification", Section 3.4.1 of [RFC5322].

 o "report-id": A unique identifier for the report. Report authors
 may use whatever scheme they prefer to generate a unique
 identifier. It is provided as a string.

 o "policy-type": The type of policy that was applied by the sending
 domain. Presently, the only three valid choices are "tlsa",
 "sts", and the literal string "no-policy-found". It is provided
 as a string.

 o "policy-string": An encoding of the applied policy as a JSON array
 of strings, whether it's a TLSA record ([RFC6698], Section 2.3) or
 an MTA-STS Policy. Examples follow in the next section.

 o "domain": The Policy Domain against which the MTA-STS or DANE
 policy is defined. In the case of Internationalized Domain Names
 [RFC5891], the domain MUST consist of the Punycode-encoded
 A-labels [RFC3492] and not the U-labels.

 o "mx-host-pattern": In the case where "policy-type" is "sts", it's
 the pattern of MX hostnames from the applied policy. It is
 provided as a JSON array of strings and is interpreted in the same
 manner as the rules in "MX Host Validation"; see Section 4.1 of
 [RFC8461]. In the case of Internationalized Domain Names
 [RFC5891], the domain MUST consist of the Punycode-encoded
 A-labels [RFC3492] and not the U-labels.

 o "result-type": A value from Section 4.3, "Result Types", above.

 o "ip-address": The IP address of the Sending MTA that attempted the
 STARTTLS connection. It is provided as a string representation of
 an IPv4 (see below) or IPv6 [RFC5952] address in dot-decimal or
 colon-hexadecimal notation.

 o "receiving-mx-hostname": The hostname of the receiving MTA MX
 record with which the Sending MTA attempted to negotiate a
 STARTTLS connection.

 o "receiving-mx-helo" (optional): The HELLO (HELO) or Extended HELLO
 (EHLO) string from the banner announced during the reported
 session.

 o "receiving-ip": The destination IP address that was used when
 creating the outbound session. It is provided as a string
 representation of an IPv4 (see below) or IPv6 [RFC5952] address in
 dot-decimal or colon-hexadecimal notation.

 o "total-successful-session-count": The aggregate count (an integer,
 encoded as a JSON number) of successfully negotiated TLS-enabled
 connections to the receiving site.

 o "total-failure-session-count": The aggregate count (an integer,
 encoded as a JSON number) of failures to negotiate a TLS-enabled
 connection to the receiving site.

 o "failed-session-count": The number of (attempted) sessions that
 match the relevant "result-type" for this section (an integer,
 encoded as a JSON number).

 o "additional-info-uri" (optional): A URI [RFC3986] that points to
 additional information around the relevant "result-type". For
 example, this URI might host the complete certificate chain
 presented during an attempted STARTTLS session.

 o "failure-reason-code": A text field to include a TLS-related error
 code or error message.

 For report purposes, an IPv4 address is defined via the following
 ABNF:

IPv4address = dec‑octet "." dec‑octet "." dec‑octet "." dec‑octet
dec‑octet = DIGIT ; 0‑9
 / %x31‑39 DIGIT ; 10‑99
 / "1" 2DIGIT ; 100‑199
 / "2" %x30‑34 DIGIT ; 200‑249
 / "25" %x30‑35 ; 250‑255

 And an IPv6 address is defined via the following ABNF:

 IPv6address = <as defined in [RFC5954]>

4.5. Policy Samples

 Part of the report body includes the policy that is applied when
 attempting relay to the destination.

 For DANE TLSA policies, this is a JSON array of strings each
 representing the RDATA of a single TLSA resource record as a space-
 separated list of its four TLSA fields; the fields are in
 presentation format (defined in [RFC6698], Section 2.2) with no
 internal spaces or grouping parentheses:

[
"3 0 1 1F850A337E6DB9C609C522D136A475638CC43E1ED424F8EEC8513
 D747D1D085D",
"3 0 1 12350A337E6DB9C6123522D136A475638CC43E1ED424F8EEC8513
 D747D1D1234"
]

 For MTA-STS policies, this is an array of JSON strings that
 represents the policy that is declared by the receiving site,
 including any errors that may be present. Note that where there are
 multiple "mx" values, they must be listed as separate "mx" elements
 in the policy array rather than as a single nested "mx" sub-array.

[
"version: STSv1",
"mode: testing",
"mx: mx1.example.com",
"mx: mx2.example.com",
"mx: mx.backup‑example.com",
"max_age: 604800"
]

5. Report Delivery

 Reports can be delivered either via SMTP (as an email message) or via
 HTTP POST.

5.1. Report Filename

 The filename is RECOMMENDED to be constructed using the following
 ABNF:

filename = sender "!" policy‑domain "!" begin‑timestamp
 "!" end‑timestamp ["!" unique‑id] "." extension

unique‑id = 1*(ALPHA / DIGIT)

sender = domain ; from [RFC5321] ‑‑ this is used
 ; as the domain for the `contact‑info`
 ; address in the report body.
 ; In the case of Internationalized Domain
 ; Names [RFC5891], the domain MUST consist of
 ; the Punycode‑encoded A‑labels [RFC3492] and
 ; not the U‑labels.

policy‑domain = domain
 ; In the case of Internationalized Domain
 ; Names [RFC5891], the domain MUST consist of
 ; the Punycode‑encoded A‑labels [RFC3492] and
 ; not the U‑labels.

begin‑timestamp = 1*DIGIT
 ; seconds since 00:00:00 UTC January 1, 1970
 ; indicating start of the time range contained
 ; in the report

end‑timestamp = 1*DIGIT
 ; seconds since 00:00:00 UTC January 1, 1970
 ; indicating end of the time range contained
 ; in the report

extension = "json" / "json.gz"

 The extension MUST be "json" for a plain JSON file or "json.gz" for a
 JSON file compressed using gzip.

 "unique-id" allows an optional unique ID generated by the Sending MTA
 to distinguish among multiple reports generated simultaneously by
 different sources for the same Policy Domain. For example, this is a
 possible filename for a compressed report to the Policy Domain
 "example.net" from the Sending MTA "mail.sndr.example.com":

 "mail.sndr.example.com!example.net!1470013207!1470186007!001.json.gz"

5.2. Compression

 The report SHOULD be subjected to gzip [RFC1952] compression for both
 email and HTTPS transport. Declining to apply compression can cause
 the report to be too large for a receiver to process (a commonly
 observed receiver limit is ten megabytes); compressing the file
 increases the chances of acceptance of the report at some
 computational cost.

5.3. Email Transport

 The report MAY be delivered by email. To make the reports machine-
 parsable for the receivers, we define a top-level media type
 "multipart/report" with a new parameter "report-type="tlsrpt"".
 Inside it, there are two parts: The first part is human readable,
 typically "text/plain", and the second part is machine readable with
 a new media type defined called "application/tlsrpt+json". If
 compressed, the report should use the media type "application/
 tlsrpt+gzip".

 In addition, the following two new top-level message header fields
 are defined:

 "TLS-Report-Domain: Receiver-Domain"

 "TLS-Report-Submitter: Sender-Domain"

 The "TLS-Report-Submitter" value MUST match the value found in the
 domain [RFC5321] of the "contact-info" from the report body. These
 message header fields MUST be included and should allow for easy
 searching for all reports submitted by a reporting domain or a
 particular submitter, for example, in IMAP [RFC3501]:

 "s SEARCH HEADER "TLS-Report-Domain" "example.com""

 It is presumed that the aggregate reporting address will be equipped
 to process new message header fields and extract MIME parts with the
 prescribed media type and filename, and ignore the rest. These
 additional headers SHOULD be included in the DKIM [RFC6376] signature
 for the message.

 The RFC5322.Subject field for report submissions SHOULD conform to
 the following ABNF:

tlsrpt‑subject = %s"Report" FWS ; "Report"
 %s"Domain:" FWS ; "Domain:"
 domain‑name FWS ; per [RFC6376]
 %s"Submitter:" FWS ; "Submitter:"
 domain‑name FWS ; per [RFC6376]
 %s"Report‑ID:" FWS ; "Report‑ID:
 "<" id‑left "@" id‑right ">" ; per [RFC5322]
 [CFWS] ; per [RFC5322]
 ; (as with FWS)

 The first domain-name indicates the DNS domain name about which the
 report was generated. The second domain-name indicates the DNS
 domain name representing the Sending MTA generating the report. The
 purpose of the "Report-ID:" portion of the field is to enable the
 Policy Domain to identify and ignore duplicate reports that might be
 sent by a Sending MTA.

 For instance, this is a possible Subject field for a report to the
 Policy Domain "example.net" from the Sending MTA
 "mail.sender.example.com". It is line-wrapped as allowed by
 [RFC5322]:

Subject: Report Domain: example.net
 Submitter: mail.sender.example.com
 Report‑ID: <735ff.e317+bf22029@mailexample.net>

5.3.1. Example Report

From: tlsrpt@mail.sender.example.com
 Date: Fri, May 09 2017 16:54:30 ‑0800
 To: mts‑sts‑tlsrpt@example.net
 Subject: Report Domain: example.net
 Submitter: mail.sender.example.com
 Report‑ID: <735ff.e317+bf22029@example.net>
 TLS‑Report‑Domain: example.net
 TLS‑Report‑Submitter: mail.sender.example.com
 MIME‑Version: 1.0
 Content‑Type: multipart/report; report‑type="tlsrpt";
 boundary="‑‑‑‑=_NextPart_000_024E_01CC9B0A.AFE54C00"
 Content‑Language: en‑us

 This is a multipart message in MIME format.

‑‑‑‑‑‑=_NextPart_000_024E_01CC9B0A.AFE54C00
Content‑Type: text/plain; charset="us‑ascii"
Content‑Transfer‑Encoding: 7bit

 This is an aggregate TLS report from mail.sender.example.com

‑‑‑‑‑‑=_NextPart_000_024E_01CC9B0A.AFE54C00
Content‑Type: application/tlsrpt+gzip
Content‑Transfer‑Encoding: base64
Content‑Disposition: attachment;
 filename="mail.sender.example!example.com!
 1013662812!1013749130.json.gz"

 <gzipped content of report>

‑‑‑‑‑‑=_NextPart_000_024E_01CC9B0A.AFE54C00‑‑
...

 Note that, when sending failure reports via SMTP, Sending MTAs MUST
 NOT honor MTA-STS or DANE TLSA failures.

5.4. HTTPS Transport

 The report MAY be delivered by POST to HTTPS. If compressed, the
 report SHOULD use the media type "application/tlsrpt+gzip"; otherwise
 it SHOULD use the media type "application/tlsrpt+json" (see
 Section 6, "IANA Considerations").

 The receiving system MUST return a "successful" response from its
 HTTPS server, typically a 200 or 201 HTTP code [RFC7231]. Other
 codes could indicate a delivery failure and may be retried as per
 local sender policy. The receiving system is not expected to process
 reports at receipt time and MAY store them for processing at a later
 time.

5.5. Delivery Retry

 In the event of a delivery failure, regardless of the delivery
 method, a sender SHOULD attempt redelivery for up to 24 hours after
 the initial attempt. As previously stated, the reports are optional,
 so while it is ideal to attempt redelivery, it is not required. If
 multiple retries are attempted, ideally they SHOULD be done with
 exponential backoff.

5.6. Metadata Variances

 As stated above, there are a variable number of ways to declare
 information about the data therein. If any of the items declared via
 subject or filename disagree with the report, the report MUST be
 considered the authoritative source.

6. IANA Considerations

 The following are the IANA considerations discussed in this document.

6.1. Message Headers

 Below is the Internet Assigned Numbers Authority (IANA) Permanent
 Message Header Field registration information per [RFC3864].

Header field name: TLS‑Report‑Domain
Applicable protocol: mail
Status: standard
Author/Change controller: IETF
Specification document(s): RFC 8460

Header field name: TLS‑Report‑Submitter
Applicable protocol: mail
Status: standard
Author/Change controller: IETF
Specification document(s): RFC 8460

6.2. Report Type

 This document creates a new registry for the "report-type" parameter
 to the Content-Type header field for the "multipart/report" top-level
 media type defined in [RFC6522].

 The registry name is "Report Type Registry", and the procedure for
 updating the registry will be "Specification Required" [RFC8126].

 An entry in this registry should contain:

 o the report-type being registered

 o one or more registered media types that can be used with this
 report-type

 o the document containing the registration action

 o an optional comment

 The initial entries are:

Report‑Type: tlsrpt
Media Type: application/tlsrpt+gzip, application/tlsrpt+json
Registered By: [RFC8460]
Comment: Media types suitable for use with this report‑type are
defined in Sections 6.4 and 6.5 of [RFC8460]

Report‑Type: disposition‑notification
Media Type: message/disposition‑notification
Registered By: [RFC8098], Section 10

Report‑Type: disposition‑notification
Media Type: message/global‑disposition‑notification
Registered By: [RFC6533], Section 6

Report‑Type: delivery‑status
Media Type: message/delivery‑status
Registered By: [RFC3464], Section 6.2

Report‑Type: delivery‑status
Media Type: message/global‑delivery‑status
Registered By: [RFC6533], Section 6

6.3. +gzip Media Type Suffix

 This document registers a new media type suffix "+gzip". The gzip
 format is a public domain, cross-platform, interoperable file storage
 and transfer format, specified in [RFC1952]; it supports compression
 and is used as the underlying representation by a variety of file
 formats. The media type "application/gzip" has been registered for
 such files. The suffix "+gzip" MAY be used with any media type whose
 representation follows that established for "application/gzip". The
 registration form for the structured syntax suffix for use with media
 types is as follows:

 Type name: gzip file storage and transfer format.

 +suffix: +gzip

 References: [RFC1952] [RFC6713]

 Encoding considerations: gzip is a binary encoding.

 Fragment identifier considerations: The syntax and semantics of
 fragment identifiers specified for +gzip SHOULD be as specified for
 "application/gzip". (At publication of this document, there is no
 fragment identification syntax defined for "application/gzip".) The
 syntax and semantics for fragment identifiers for a specific "xxx/
 yyy+gzip" SHOULD be processed as follows:

For cases defined in +gzip, where the fragment identifier
resolves per the +gzip rules, process as specified in
+gzip.

 For cases defined in +gzip, where the fragment identifier does
 not resolve per the +gzip rules, process as specified in
 "xxx/yyy+gzip".

 For cases not defined in +gzip, process as specified in
 "xxx/yyy+gzip".

 Interoperability considerations: N/A

 Security considerations: gzip format doesn't provide confidentiality
 protection. Integrity protection is provided by an Adler-32
 checksum, which is not cryptographically strong. See also the
 security considerations of [RFC6713]. Each individual media type
 registered with a +gzip suffix can have additional security
 considerations. Additionally, gzip objects can contain multiple
 files and associated paths. File paths must be validated when the
 files are extracted; a malicious file path could otherwise cause the
 extractor to overwrite application or system files.

 Contact: art@ietf.org

 Author/Change controller: Internet Engineering Task Force
 (iesg@ietf.org).

6.4. application/tlsrpt+json Media Type

 This document registers multiple media types, beginning with Table 1
 below.

+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Type | Subtype | File Ext | Specification |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| application | tlsrpt+json | .json | Section 5.3 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1: SMTP TLS Reporting Media Type

 Type name: application

 Subtype name: tlsrpt+json

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: Encoding considerations are identical to
 those specified for the "application/json" media type. See
 [RFC7493].

 Security considerations: Security considerations relating to SMTP TLS
 Reporting are discussed in Section 7.

 Interoperability considerations: This document specifies the format
 of conforming messages and the interpretation thereof.

 Published specification: Section 5.3 of RFC 8460.

 Applications that use this media type: Mail User Agents (MUAs) and
 Mail Transfer Agents.

 Additional information:

 Deprecated alias names for this type: N/A

 Magic number(s): N/A

 File extension(s): ".json"

 Macintosh file type code(s): N/A

Person & email address to contact for further information:
See the Authors' Addresses section.

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: See the Authors' Addresses section.

 Change controller: Internet Engineering Task Force (iesg@ietf.org).

6.5. application/tlsrpt+gzip Media Type

+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Type | Subtype | File Ext | Specification |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| application | tlsrpt+gzip | .gz | Section 5.3 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 2: SMTP TLS Reporting Media Type

 Type name: application

 Subtype name: tlsrpt+gzip

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: Binary

 Security considerations: Security considerations relating to SMTP TLS
 Reporting are discussed in Section 7. Security considerations
 related to gzip compression are discussed in RFC 6713.

 Interoperability considerations: This document specifies the format
 of conforming messages and the interpretation thereof.

 Published specification: Section 5.3 of RFC 8460.

 Applications that use this media type: Mail User Agents (MUAs) and
 Mail Transfer Agents.

 Additional information:

 Deprecated alias names for this type: N/A

 Magic number(s): The first two bytes are 0x1f, 0x8b.

 File extension(s): ".gz"

 Macintosh file type code(s): N/A

Person & email address to contact for further information:
See the Authors' Addresses section.

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: See the Authors' Addresses section.

 Change controller: Internet Engineering Task Force (iesg@ietf.org).

6.6. STARTTLS Validation Result Types

 This document creates a new registry, "STARTTLS Validation Result
 Types". The initial entries in the registry are:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Result Type | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
starttls‑not‑supported	Section 4.3
certificate‑host‑mismatch	Section 4.3
certificate‑expired	Section 4.3
tlsa‑invalid	Section 4.3
dnssec‑invalid	Section 4.3
dane‑required	Section 4.3
certificate‑not‑trusted	Section 4.3
sts‑policy‑invalid	Section 4.3
sts‑webpki‑invalid	Section 4.3
validation‑failure	Section 4.3
sts‑policy‑fetch‑error	Section 4.3
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 The above entries are described in Section 4.3, "Result Types". New
 result types can be added to this registry using the "Expert Review"
 IANA registration policy.

7. Security Considerations

 SMTP TLS Reporting provides visibility into misconfigurations or
 attempts to intercept or tamper with mail between hosts who support
 STARTTLS. There are several security risks presented by the
 existence of this reporting channel:

 o Flooding of the Aggregate Report URI (rua) endpoint: An attacker
 could flood the endpoint with excessive reporting traffic and
 prevent the receiving domain from accepting additional reports.
 This type of Denial-of-Service attack would limit visibility into
 STARTTLS failures, leaving the receiving domain blind to an
 ongoing attack.

 o Untrusted content: An attacker could inject malicious code into
 the report, exploiting any vulnerabilities in the report-handling
 systems of the receiving domain. Implementers are advised to take
 precautions against evaluating the contents of the report.

 o Report snooping: An attacker could create a bogus TLSRPT record to
 receive statistics about a domain the attacker does not own.
 Since an attacker that is able to poison DNS is already able to
 receive counts of SMTP connections (and, absent DANE or MTA-STS
 policies, actual SMTP message payloads), this does not present a
 significant new vulnerability.

 o Ignoring HTTPS validation when submitting reports: When reporting
 benign misconfigurations, it is likely that a misconfigured SMTP
 server may also mean a misconfigured HTTPS server; as a result,
 reporters who require HTTPS validity on the reporting endpoint may
 fail to alert administrators about such misconfigurations.
 Conversely, in the event of an actual attack, an attacker who
 wishes to create a gap in reporting and could intercept HTTPS
 reports could, just as easily, simply thwart the resolution of the
 TLSRPT TXT record or establishment of the TCP session to the HTTPS
 endpoint. Furthermore, such a man-in-the-middle attacker could
 discover most or all of the metadata exposed in a report merely
 through passive observation. As a result, we consider the risks
 of failure to deliver reports on misconfigurations to outweigh
 those of attackers intercepting reports.

 o Reports as DDoS: TLSRPT allows specifying destinations for the
 reports that are outside the authority of the Policy Domain, which
 allows domains to delegate processing of reports to a partner
 organization. However, an attacker who controls the Policy Domain
 DNS could also use this mechanism to direct the reports to an
 unwitting victim, flooding that victim with excessive reports.
 DMARC [RFC7489] defines a solution for verifying delegation to
 avoid such attacks; the need for this is greater with DMARC,
 however, because DMARC allows an attacker to trigger reports to a
 target from an innocent third party by sending mail to that third
 party (which triggers a report from the third party to the
 target). In the case of TLSRPT, the attacker would have to induce
 the third party to send mail to the attacker in order to trigger
 reports from the third party to the victim; this reduces the risk
 of such an attack and the need for a verification mechanism.

 Finally, because TLSRPT is intended to help administrators discover
 man-in-the-middle attacks against transport-layer encryption,
 including attacks designed to thwart negotiation of encrypted
 connections (by downgrading opportunistic encryption or, in the case
 of MTA-STS, preventing discovery of a new MTA-STS Policy), we must
 also consider the risk that an adversary who can induce such a
 downgrade attack can also prevent discovery of the TLSRPT TXT record
 (and thus prevent discovery of the successful downgrade attack).
 Administrators are thus encouraged to deploy TLSRPT TXT records with
 a large TTL (reducing the window for successful application of
 transient attacks against DNS resolution of the record) or to deploy
 DNSSEC on the deploying zone.

8. Privacy Considerations

 MTAs are generally considered public knowledge; however, the
 internals of how those MTAs are configured and the users of those
 MTAs may not be as public. It should be noted that providing a
 receiving site with information about TLS failures may reveal
 information about the sender's configuration or even information
 about the senders themselves. For example, sending a report may
 disclose what TLS implementation the sender uses, as the inability to
 negotiate a session may be a known incompatibility between two
 implementations. This may, indirectly, leak information on the
 reporter's operating system or even region, if, for example, a rare
 TLS implementation is popular among certain users or in certain
 locations.

9. References

9.1. Normative References

 [RFC1952]
 Deutsch, P., "GZIP file format specification version 4.3",
 RFC 1952, DOI 10.17487/RFC1952, May 1996,
 <https://www.rfc-editor.org/info/rfc1952>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3339]
 Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC3492]
 Costello, A., "Punycode: A Bootstring encoding of Unicode
 for Internationalized Domain Names in Applications
 (IDNA)", RFC 3492, DOI 10.17487/RFC3492, March 2003,
 <https://www.rfc-editor.org/info/rfc3492>.

 [RFC3986]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC5234]
 Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5321]
 Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 DOI 10.17487/RFC5321, October 2008,
 <https://www.rfc-editor.org/info/rfc5321>.

 [RFC5322]
 Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC5891]
 Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891,
 DOI 10.17487/RFC5891, August 2010,
 <https://www.rfc-editor.org/info/rfc5891>.

 [RFC5952]
 Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952,
 DOI 10.17487/RFC5952, August 2010,
 <https://www.rfc-editor.org/info/rfc5952>.

 [RFC6068]
 Duerst, M., Masinter, L., and J. Zawinski, "The 'mailto'
 URI Scheme", RFC 6068, DOI 10.17487/RFC6068, October 2010,
 <https://www.rfc-editor.org/info/rfc6068>.

 [RFC6376]
 Crocker, D., Ed., Hansen, T., Ed., and M. Kucherawy, Ed.,
 "DomainKeys Identified Mail (DKIM) Signatures", STD 76,
 RFC 6376, DOI 10.17487/RFC6376, September 2011,
 <https://www.rfc-editor.org/info/rfc6376>.

 [RFC6522]
 Kucherawy, M., Ed., "The Multipart/Report Media Type for
 the Reporting of Mail System Administrative Messages",
 STD 73, RFC 6522, DOI 10.17487/RFC6522, January 2012,
 <https://www.rfc-editor.org/info/rfc6522>.

 [RFC6698]
 Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
 of Named Entities (DANE) Transport Layer Security (TLS)
 Protocol: TLSA", RFC 6698, DOI 10.17487/RFC6698, August
 2012, <https://www.rfc-editor.org/info/rfc6698>.

 [RFC6713]
 Levine, J., "The 'application/zlib' and 'application/gzip'
 Media Types", RFC 6713, DOI 10.17487/RFC6713, August 2012,
 <https://www.rfc-editor.org/info/rfc6713>.

 [RFC7208]
 Kitterman, S., "Sender Policy Framework (SPF) for
 Authorizing Use of Domains in Email, Version 1", RFC 7208,
 DOI 10.17487/RFC7208, April 2014,
 <https://www.rfc-editor.org/info/rfc7208>.

 [RFC7231]
 Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7405]
 Kyzivat, P., "Case-Sensitive String Support in ABNF",
 RFC 7405, DOI 10.17487/RFC7405, December 2014,
 <https://www.rfc-editor.org/info/rfc7405>.

 [RFC7493]
 Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

 [RFC7671]
 Dukhovni, V. and W. Hardaker, "The DNS-Based
 Authentication of Named Entities (DANE) Protocol: Updates
 and Operational Guidance", RFC 7671, DOI 10.17487/RFC7671,
 October 2015, <https://www.rfc-editor.org/info/rfc7671>.

 [RFC7672]
 Dukhovni, V. and W. Hardaker, "SMTP Security via
 Opportunistic DNS-Based Authentication of Named Entities
 (DANE) Transport Layer Security (TLS)", RFC 7672,
 DOI 10.17487/RFC7672, October 2015,
 <https://www.rfc-editor.org/info/rfc7672>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8461]
 Margolis, D., Risher, M., Ramakrishnan, B., Brotman, A.,
 and J. Jones, "SMTP MTA Strict Transport Security (MTA-
 STS)", RFC 8461, DOI 10.17487/RFC8461, September 2018,
 <https://www.rfc-editor.org/info/rfc8461>.

9.2. Informative References

 [RFC3207]
 Hoffman, P., "SMTP Service Extension for Secure SMTP over
 Transport Layer Security", RFC 3207, DOI 10.17487/RFC3207,
 February 2002, <https://www.rfc-editor.org/info/rfc3207>.

 [RFC3464]
 Moore, K. and G. Vaudreuil, "An Extensible Message Format
 for Delivery Status Notifications", RFC 3464,
 DOI 10.17487/RFC3464, January 2003,
 <https://www.rfc-editor.org/info/rfc3464>.

 [RFC3501]
 Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
 4rev1", RFC 3501, DOI 10.17487/RFC3501, March 2003,
 <https://www.rfc-editor.org/info/rfc3501>.

 [RFC3864]
 Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 DOI 10.17487/RFC3864, September 2004,
 <https://www.rfc-editor.org/info/rfc3864>.

 [RFC6533]
 Hansen, T., Ed., Newman, C., and A. Melnikov,
 "Internationalized Delivery Status and Disposition
 Notifications", RFC 6533, DOI 10.17487/RFC6533, February
 2012, <https://www.rfc-editor.org/info/rfc6533>.

 [RFC7435]
 Dukhovni, V., "Opportunistic Security: Some Protection
 Most of the Time", RFC 7435, DOI 10.17487/RFC7435,
 December 2014, <https://www.rfc-editor.org/info/rfc7435>.

 [RFC7469]
 Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning
 Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469, April
 2015, <https://www.rfc-editor.org/info/rfc7469>.

 [RFC7489]
 Kucherawy, M., Ed. and E. Zwicky, Ed., "Domain-based
 Message Authentication, Reporting, and Conformance
 (DMARC)", RFC 7489, DOI 10.17487/RFC7489, March 2015,
 <https://www.rfc-editor.org/info/rfc7489>.

 [RFC8098]
 Hansen, T., Ed. and A. Melnikov, Ed., "Message Disposition
 Notification", STD 85, RFC 8098, DOI 10.17487/RFC8098,
 February 2017, <https://www.rfc-editor.org/info/rfc8098>.

 [RFC8126]
 Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

Appendix A. Example Reporting Policy

A.1. Report Using MAILTO

 _smtp._tls.mail.example.com. IN TXT \

 "v=TLSRPTv1;rua=mailto:reports@example.com"

A.2. Report Using HTTPS

 _smtp._tls.mail.example.com. IN TXT \

 "v=TLSRPTv1; \
 rua=https://reporting.example.com/v1/tlsrpt"

Appendix B. Example JSON Report

 Below is an example JSON report for messages from Company-X to
 Company-Y, where 100 sessions were attempted to Company-Y servers
 with an expired certificate, and 200 sessions were attempted to
 Company-Y servers that did not successfully respond to the "STARTTLS"
 command. Additionally, 3 sessions failed due to
 "X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED".

{
 "organization‑name": "Company‑X",
 "date‑range": {
 "start‑datetime": "2016‑04‑01T00:00:00Z",
 "end‑datetime": "2016‑04‑01T23:59:59Z"
 },
 "contact‑info": "sts‑reporting@company‑x.example",
 "report‑id": "5065427c‑23d3‑47ca‑b6e0‑946ea0e8c4be",
 "policies": [{
 "policy": {
 "policy‑type": "sts",
 "policy‑string": ["version: STSv1","mode: testing",
 "mx: *.mail.company‑y.example","max_age: 86400"],
 "policy‑domain": "company‑y.example",
 "mx‑host": "*.mail.company‑y.example"
 },
 "summary": {
 "total‑successful‑session‑count": 5326,
 "total‑failure‑session‑count": 303
 },
 "failure‑details": [{
 "result‑type": "certificate‑expired",
 "sending‑mta‑ip": "2001:db8:abcd:0012::1",
 "receiving‑mx‑hostname": "mx1.mail.company‑y.example",
 "failed‑session‑count": 100
 }, {

 "result‑type": "starttls‑not‑supported",
 "sending‑mta‑ip": "2001:db8:abcd:0013::1",
 "receiving‑mx‑hostname": "mx2.mail.company‑y.example",
 "receiving‑ip": "203.0.113.56",
 "failed‑session‑count": 200,
 "additional‑information": "https://reports.company‑x.example/
 report_info ? id = 5065427 c ‑ 23 d3# StarttlsNotSupported "
 }, {
 "result‑type": "validation‑failure",
 "sending‑mta‑ip": "198.51.100.62",
 "receiving‑ip": "203.0.113.58",
 "receiving‑mx‑hostname": "mx‑backup.mail.company‑y.example",
 "failed‑session‑count": 3,
 "failure‑reason‑code": "X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED"
 }]
 }]
}

Contributors

Laetitia Baudoin
Google, Inc.
lbaudoin@google.com

Authors' Addresses

Daniel Margolis
Google, Inc.

 Email: dmargolis@google.com

Alexander Brotman
Comcast, Inc.

 Email: alex_brotman@comcast.com

Binu Ramakrishnan
Oath, Inc.

 Email: prbinu@yahoo.com

Janet Jones
Microsoft, Inc.

 Email: janet.jones@microsoft.com

Mark Risher
Google, Inc.

 Email: risher@google.com

8461 - SMTP MTA Strict Transport Security (MTA-STS)

Index
Back 5
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 8461

Category: Standards Track

ISSN: 2070-1721

D. Margolis

M. Risher

Google, Inc.

B. Ramakrishnan

Oath, Inc.

A. Brotman

Comcast, Inc.

J. Jones

Microsoft, Inc.

September 2018

SMTP MTA Strict Transport Security (MTA-STS)

Abstract

 SMTP MTA Strict Transport Security (MTA-STS) is a mechanism enabling
 mail service providers (SPs) to declare their ability to receive
 Transport Layer Security (TLS) secure SMTP connections and to specify
 whether sending SMTP servers should refuse to deliver to MX hosts
 that do not offer TLS with a trusted server certificate.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8461.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. Related Technologies

	3. Policy Discovery
	 3.1. MTA-STS TXT Records

	 3.2. MTA-STS Policies

	 3.3. HTTPS Policy Fetching

	 3.4. Policy Selection for Smart Hosts and Subdomains

	4. Policy Validation
	 4.1. MX Host Validation

	 4.2. Recipient MTA Certificate Validation

	5. Policy Application
	 5.1. Policy Application Control Flow

	6. Reporting Failures

	7. Interoperability Considerations
	 7.1. SNI Support

	 7.2. Minimum TLS Version Support

	8. Operational Considerations
	 8.1. Policy Updates

	 8.2. Policy Delegation

	 8.3. Removing MTA-STS

	 8.4. Preserving MX Candidate Traversal

	9. IANA Considerations
	 9.1. Well-Known URIs Registry

	 9.2. MTA-STS TXT Record Fields

	 9.3. MTA-STS Policy Fields

	10. Security Considerations
	 10.1. Obtaining a Signed Certificate

	 10.2. Preventing Policy Discovery

	 10.3. Denial of Service

	 10.4. Weak Policy Constraints

	 10.5. Compromise of the Web PKI System

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Appendix A. MTA-STS Example Record and Policy

	Appendix B. Message Delivery Pseudocode

	Contributors

	Authors' Addresses

1. Introduction

 The STARTTLS extension to SMTP [RFC3207] allows SMTP clients and
 hosts to negotiate the use of a TLS channel for encrypted mail
 transmission.

 While this opportunistic encryption protocol by itself provides a
 high barrier against passive man-in-the-middle traffic interception,
 any attacker who can delete parts of the SMTP session (such as the
 "250 STARTTLS" response) or who can redirect the entire SMTP session
 (perhaps by overwriting the resolved MX record of the delivery
 domain) can perform downgrade or interception attacks.

 This document defines a mechanism for recipient domains to publish
 policies, via a combination of DNS and HTTPS, specifying:

 o whether MTAs sending mail to this domain can expect PKIX-
 authenticated TLS support

 o what a conforming client should do with messages when TLS cannot
 be successfully negotiated

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 We also define the following terms for further use in this document:

 o MTA-STS Policy: A commitment by the Policy Domain to support TLS
 authenticated with PKIX [RFC5280] for the specified MX hosts.

 o Policy Domain: The domain for which an MTA-STS Policy is defined.
 This is the next-hop domain; when sending mail to
 "alice@example.com", this would ordinarily be "example.com", but
 this may be overridden by explicit routing rules (as described in
 Section 3.4, "Policy Selection for Smart Hosts and Subdomains").

 o Policy Host: The HTTPS host that serves the MTA-STS Policy for a
 Policy Domain. Rules for constructing the hostname are described
 in Section 3.2, "MTA-STS Policies".

 o Sender or Sending MTA: The SMTP MTA sending an email message.

 o ABNF: Augmented Backus-Naur Form, a syntax for formally specifying
 syntax, defined in [RFC5234] and [RFC7405].

2. Related Technologies

 The DNS-Based Authentication of a Named Entities (DANE) TLSA record
 [RFC7672] is similar, in that DANE is also designed to upgrade
 unauthenticated encryption or plaintext transmission into
 authenticated, downgrade-resistant encrypted transmission. DANE
 requires DNSSEC [RFC4033] for authentication; the mechanism described
 here instead relies on certification authorities (CAs) and does not
 require DNSSEC, at a cost of risking malicious downgrades. For a
 thorough discussion of this trade-off, see Section 10, "Security
 Considerations".

 In addition, MTA-STS provides an optional testing-only mode, enabling
 soft deployments to detect policy failures; partial deployments can
 be achieved in DANE by deploying TLSA records only for some of a
 domain's MXes, but such a mechanism is not possible for the per-
 domain policies used by MTA-STS.

 The primary motivation of MTA-STS is to provide a mechanism for
 domains to ensure transport security even when deploying DNSSEC is
 undesirable or impractical. However, MTA-STS is designed not to
 interfere with DANE deployments when the two overlap; in particular,
 senders who implement MTA-STS validation MUST NOT allow MTA-STS
 Policy validation to override a failing DANE validation.

3. Policy Discovery

 MTA-STS policies are distributed via HTTPS from a "well-known"
 [RFC5785] path served within the Policy Domain, and their presence
 and current version are indicated by a TXT record at the Policy
 Domain. These TXT records additionally contain a policy "id" field,
 allowing Sending MTAs to check that a cached policy is still current
 without performing an HTTPS request.

 To discover if a recipient domain implements MTA-STS, a sender need
 only resolve a single TXT record. To see if an updated policy is
 available for a domain for which the sender has a previously cached
 policy, the sender need only check the TXT record's version "id"
 against the cached value.

3.1. MTA-STS TXT Records

 The MTA-STS TXT record is a TXT record with the name "_mta-sts" at
 the Policy Domain. For the domain "example.com", this record would
 be "_mta-sts.example.com". MTA-STS TXT records MUST be US-ASCII,
 semicolon-separated key/value pairs containing the following fields:

 o "v" (plaintext, required): Currently, only "STSv1" is supported.

 o "id" (plaintext, required): A short string used to track policy
 updates. This string MUST uniquely identify a given instance of a
 policy, such that senders can determine when the policy has been
 updated by comparing to the "id" of a previously seen policy.
 There is no implied ordering of "id" fields between revisions.

 An example TXT record is as below:

 _mta-sts.example.com. IN TXT "v=STSv1; id=20160831085700Z;"

 The formal definition of the "_mta-sts" TXT record, defined using
 ABNF [RFC7405], is as follows:

 sts-text-record = sts-version 1*(sts-field-delim sts-field)

 [sts-field-delim]

sts‑field = sts‑id / ; Note that sts‑id record
 sts‑extension ; is required.

 sts-field-delim = *WSP ";" *WSP

sts‑version = %s"v=STSv1"

sts‑id = %s"id=" 1*32(ALPHA / DIGIT) ; id=...

sts‑extension = sts‑ext‑name "=" sts‑ext‑value ; name=value

sts‑ext‑name = (ALPHA / DIGIT)
 *31(ALPHA / DIGIT / "_" / "‑" / ".")

sts‑ext‑value = 1*(%x21‑3A / %x3C / %x3E‑7E)
 ; chars excluding "=", ";", SP, and CTLs

 The TXT record MUST begin with the sts-version field; the order of
 other fields is not significant. If multiple TXT records for
 "_mta-sts" are returned by the resolver, records that do not begin
 with "v=STSv1;" are discarded. If the number of resulting records is
 not one, or if the resulting record is syntactically invalid, senders
 MUST assume the recipient domain does not have an available MTA-STS
 Policy and skip the remaining steps of policy discovery. (Note that
 the absence of a usable TXT record is not by itself sufficient to
 remove a sender's previously cached policy for the Policy Domain, as
 discussed in Section 5.1, "Policy Application Control Flow".) If the
 resulting TXT record contains multiple strings, then the record MUST
 be treated as if those strings are concatenated without adding
 spaces.

 The "_mta-sts" record MAY return a CNAME that points (directly or via
 other CNAMEs) to a TXT record, in which case senders MUST follow the
 CNAME pointers. This can be used for policy delegation, as described
 in Section 8.2.

3.2. MTA-STS Policies

 The policy itself is a set of key/value pairs (similar to header
 fields in [RFC5322]) served via the HTTPS GET method from the fixed
 "well-known" [RFC5785] path of ".well-known/mta-sts.txt" served by
 the Policy Host. The Policy Host DNS name is constructed by
 prepending "mta-sts" to the Policy Domain.

 Thus, for a Policy Domain of "example.com", the full URL is
 "https://mta-sts.example.com/.well-known/mta-sts.txt".

 When fetching a policy, senders SHOULD validate that the media type
 is "text/plain" to guard against cases where web servers allow
 untrusted users to host non-text content (typically, HTML or images)
 at a user-defined path. All parameters other than charset=utf-8 or
 charset=us-ascii are ignored. Additional "Content-Type" parameters
 are also ignored.

 This resource contains the following CRLF-separated key/value pairs:

 o "version": Currently, only "STSv1" is supported.

 o "mode": One of "enforce", "testing", or "none", indicating the
 expected behavior of a Sending MTA in the case of a policy
 validation failure. See Section 5, "Policy Application", for more
 details about the three modes.

 o "max_age": Max lifetime of the policy (plaintext non-negative
 integer seconds, maximum value of 31557600). Well-behaved clients
 SHOULD cache a policy for up to this value from the last policy
 fetch time. To mitigate the risks of attacks at policy refresh
 time, it is expected that this value typically be in the range of
 weeks or greater.

 o "mx": Allowed MX patterns. One or more patterns matching allowed
 MX hosts for the Policy Domain. As an example,

mx: mail.example.com <CRLF>
mx: *.example.net

 indicates that mail for this domain might be handled by MX
 "mail.example.com" or any MX at "example.net". Valid patterns can be
 either fully specified names ("example.com") or suffixes prefixed by
 a wildcard ("*.example.net"). If a policy specifies more than one
 MX, each MX MUST have its own "mx:" key, and each MX key/value pair
 MUST be on its own line in the policy file. In the case of
 Internationalized Domain Names [RFC5891], the "mx" value MUST specify
 the Punycode-encoded A-label [RFC3492] to match against, and not the
 Unicode-encoded U-label. The full semantics of certificate
 validation (including the use of wildcard patterns) are described in
 Section 4.1, "MX Host Validation".

 An example policy is as below:

version: STSv1
mode: enforce
mx: mail.example.com
mx: *.example.net
mx: backupmx.example.com
max_age: 604800

 The formal definition of the policy resource, defined using ABNF
 [RFC7405], is as follows:

sts‑policy‑record = sts‑policy‑field *WSP
 *(sts‑policy‑term sts‑policy‑field *WSP)
 [sts‑policy‑term]

sts‑policy‑field = sts‑policy‑version / ; required once
 sts‑policy‑mode / ; required once
 sts‑policy‑max‑age / ; required once
 sts‑policy‑mx /
 ; required at least once, except when
 ; mode is "none"
 sts‑policy‑extension ; other fields

sts‑policy‑field‑delim = ":" *WSP

sts‑policy‑version = sts‑policy‑version‑field sts‑policy‑field‑delim
 sts‑policy‑version‑value

sts-policy-version-field = %s"version"

sts-policy-version-value = %s"STSv1"

sts‑policy‑mode = sts‑policy‑mode‑field sts‑policy‑field‑delim
 sts‑policy‑mode‑value

sts‑policy‑mode‑field = %s"mode"

sts‑policy‑mode‑value = %s"testing" / %s"enforce" / %s"none"

sts‑policy‑mx = sts‑policy‑mx‑field sts‑policy‑field‑delim
 sts‑policy‑mx‑value

sts‑policy‑mx‑field = %s"mx"

sts‑policy‑mx‑value = ["*."] Domain

sts‑policy‑max‑age = sts‑policy‑max‑age‑field sts‑policy‑field‑delim
 sts‑policy‑max‑age‑value

sts-policy-max-age-field = %s"max_age"

sts-policy-max-age-value = 1*10(DIGIT)

sts‑policy‑extension = sts‑policy‑ext‑name ; additional
 sts‑policy‑field‑delim ; extension
 sts‑policy‑ext‑value ; fields

sts‑policy‑ext‑name = (sts‑policy‑alphanum)
 *31(sta‑policy‑alphanum / "_" / "‑" / ".")

sts‑policy‑term = LF / CRLF

sts‑policy‑ext‑value = sts‑policy‑vchar
 [*(%x20 / sts‑policy‑vchar)
 sts‑policy‑vchar]
 ; chars, including UTF‑8 [RFC3629],
 ; excluding CTLs and no
 ; leading/trailing spaces

sts‑policy‑alphanum = ALPHA / DIGIT

sts‑policy‑vchar = %x21‑7E / UTF8‑2 / UTF8‑3 / UTF8‑4

UTF8‑2 = <Defined in Section 4 of [RFC3629]>

UTF8‑3 = <Defined in Section 4 of [RFC3629]>

UTF8‑4 = <Defined in Section 4 of [RFC3629]>

Domain = <Defined in Section 4.1.2 of [RFC5321]>

 Parsers MUST accept TXT records and policy files that are
 syntactically valid (i.e., valid key/value pairs separated by
 semicolons for TXT records), possibly containing additional key/value
 pairs not specified in this document, in which case unknown fields
 SHALL be ignored. If any non-repeated field -- i.e., all fields
 excepting "mx" -- is duplicated, all entries except for the first
 SHALL be ignored.

3.3. HTTPS Policy Fetching

 Policy bodies are, as described above, retrieved by Sending MTAs via
 HTTPS [RFC2818]. During the TLS handshake initiated to fetch a new
 or updated policy from the Policy Host, the Policy Host HTTPS server
 MUST present an X.509 certificate that is valid for the "mta-sts"
 DNS-ID [RFC6125] (e.g., "mta-sts.example.com") as described below,
 chain to a root CA that is trusted by the Sending MTA, and be non-
 expired. It is expected that Sending MTAs use a set of trusted CAs
 similar to those in widely deployed web browsers and operating
 systems. See [RFC5280] for more details about certificate
 verification.

 The certificate is valid for the Policy Host (i.e., "mta-sts"
 prepended to the Policy Domain) with respect to the rules described
 in [RFC6125], with the following application-specific considerations:

 o Matching is performed only against the DNS-ID identifiers.

 o DNS domain names in server certificates MAY contain the wildcard
 character '*' as the complete left-most label within the
 identifier.

 The certificate MAY be checked for revocation via the Online
 Certificate Status Protocol (OCSP) [RFC6960], certificate revocation
 lists (CRLs), or some other mechanism.

 Policies fetched via HTTPS are only valid if the HTTP response code
 is 200 (OK). HTTP 3xx redirects MUST NOT be followed, and HTTP
 caching (as specified in [RFC7234]) MUST NOT be used.

 Senders may wish to rate-limit the frequency of attempts to fetch the
 HTTPS endpoint even if a valid TXT record for the recipient domain
 exists. In the case where the HTTPS GET fails, implementers SHOULD
 limit further attempts to a period of five minutes or longer per
 version ID, to avoid overwhelming resource-constrained recipients
 with cascading failures.

 Senders MAY impose a timeout on the HTTPS GET and/or a limit on the
 maximum size of the response body to avoid long delays or resource
 exhaustion during attempted policy updates. A suggested timeout is
 one minute, and a suggested maximum policy size is 64 kilobytes;
 Policy Hosts SHOULD respond to requests with a complete policy body
 within that timeout and size limit.

 If a valid TXT record is found but no policy can be fetched via HTTPS
 (for any reason), and there is no valid (non-expired) previously
 cached policy, senders MUST continue with delivery as though the
 domain has not implemented MTA-STS.

 Conversely, if no "live" policy can be discovered via DNS or fetched
 via HTTPS, but a valid (non-expired) policy exists in the sender's
 cache, the sender MUST apply that cached policy.

 Finally, to mitigate the risk of persistent interference with policy
 refresh, as discussed in-depth in Section 10, MTAs SHOULD proactively
 refresh cached policies before they expire; a suggested refresh
 frequency is once per day. To enable administrators to discover
 problems with policy refresh, MTAs SHOULD alert administrators
 (through the use of logs or similar) when such attempts fail, unless
 the cached policy mode is "none".

3.4. Policy Selection for Smart Hosts and Subdomains

 When sending mail via a "smart host" -- an administratively
 configured intermediate SMTP relay, which is different from the
 message recipient's server as determined from DNS -- compliant
 senders MUST treat the smart host domain as the Policy Domain for the
 purposes of policy discovery and application. This specification
 does not provide a means of associating policies with email addresses
 that employ Address Literals [RFC5321].

 When sending mail to a mailbox at a subdomain, compliant senders MUST
 NOT attempt to fetch a policy from the parent zone. Thus, for mail
 sent to "user@mail.example.com", the policy can be fetched only from
 "mail.example.com", not "example.com".

4. Policy Validation

 When sending to an MX at a domain for which the sender has a valid
 and non-expired MTA-STS Policy, a Sending MTA honoring MTA-STS MUST
 check whether:

 1. At least one of the policy's "mx" patterns matches the selected
 MX host, as described in Section 4.1, "MX Host Validation".

 2. The recipient mail server supports STARTTLS and offers a PKIX-
 based TLS certificate, during TLS handshake, which is valid for
 that host, as described in Section 4.2, "Recipient MTA
 Certificate Validation".

 When these conditions are not met, a policy is said to fail to
 validate. This section does not dictate the behavior of Sending MTAs
 when the above conditions are not met; see Section 5, "Policy
 Application", for a description of Sending MTA behavior when policy
 validation fails.

4.1. MX Host Validation

 A receiving candidate MX host is valid according to an applied MTA-
 STS Policy if the MX record name matches one or more of the "mx"
 fields in the applied policy. Matching is identical to the rules
 given in [RFC6125], with the restriction that the wildcard character
 '*' may only be used to match the entire left-most label in the
 presented identifier. Thus, the mx pattern "*.example.com" matches
 "mail.example.com" but not "example.com" or "foo.bar.example.com".

4.2. Recipient MTA Certificate Validation

 The certificate presented by the receiving MTA MUST not be expired
 and MUST chain to a root CA that is trusted by the Sending MTA. The
 certificate MUST have a subject alternative name (SAN) [RFC5280] with
 a DNS-ID [RFC6125] matching the hostname, per the rules given in
 [RFC6125]. The MX's certificate MAY also be checked for revocation
 via OCSP [RFC6960], CRLs [RFC6818], or some other mechanism.

5. Policy Application

 When sending to an MX at a domain for which the sender has a valid,
 non-expired MTA-STS Policy, a Sending MTA honoring MTA-STS applies
 the result of a policy validation failure in one of two ways,
 depending on the value of the policy "mode" field:

 1. "enforce": In this mode, Sending MTAs MUST NOT deliver the
 message to hosts that fail MX matching or certificate validation
 or that do not support STARTTLS.

 2. "testing": In this mode, Sending MTAs that also implement the
 TLSRPT (TLS Reporting) specification [RFC8460] send a report
 indicating policy application failures (as long as TLSRPT is also
 implemented by the recipient domain); in any case, messages may
 be delivered as though there were no MTA-STS validation failure.

 3. "none": In this mode, Sending MTAs should treat the Policy Domain
 as though it does not have any active policy; see Section 8.3,
 "Removing MTA-STS", for use of this mode value.

 When a message fails to deliver due to an "enforce" policy, a
 compliant MTA MUST NOT permanently fail to deliver messages before
 checking, via DNS, for the presence of an updated policy at the
 Policy Domain. (In all cases, MTAs SHOULD treat such failures as
 transient errors and retry delivery later.) This allows implementing
 domains to update long-lived policies on the fly.

5.1. Policy Application Control Flow

 An example control flow for a compliant sender consists of the
 following steps:

 1. Check for a cached policy whose time-since-fetch has not exceeded
 its "max_age". If none exists, attempt to fetch a new policy
 (perhaps asynchronously, so as not to block message delivery).
 Optionally, Sending MTAs may unconditionally check for a new
 policy at this step.

 2. For each candidate MX, in order of MX priority, attempt to
 deliver the message. If a policy is present with an "enforce"
 mode, when attempting to deliver to each candidate MX, ensure
 STARTTLS support and host identity validity as described in
 Section 4, "Policy Validation". If a candidate fails validation,
 continue to the next candidate (if there is one).

 3. A message delivery attempt MUST NOT be permanently failed until
 the sender has first checked for the presence of a new policy (as
 indicated by the "id" field in the "_mta-sts" TXT record). If a
 new policy is not found, existing rules for the case of temporary
 message delivery failures apply (as discussed in [RFC5321],
 Section 4.5.4.1).

6. Reporting Failures

 MTA-STS is intended to be used along with TLSRPT [RFC8460] in order
 to ensure that implementing domains can detect cases of both benign
 and malicious failures and to ensure that failures that indicate an
 active attack are discoverable. As such, senders that also implement
 TLSRPT SHOULD treat the following events as reportable failures:

 o HTTPS policy fetch failures when a valid TXT record is present.

 o Policy fetch failures of any kind when a valid policy exists in
 the policy cache, except if that policy's mode is "none".

 o Delivery attempts in which a contacted MX does not support
 STARTTLS or does not present a certificate that validates
 according to the applied policy, except if that policy's mode is
 "none".

7. Interoperability Considerations

7.1. SNI Support

 To ensure that the server sends the right certificate chain, the SMTP
 client MUST have support for the TLS Server Name Indication (SNI)
 extension [RFC6066]. When connecting to an HTTP server to retrieve
 the MTA-STS Policy, the SNI extension MUST contain the name of the
 Policy Host (e.g., "mta-sts.example.com"). When connecting to an
 SMTP server, the SNI extension MUST contain the MX hostname.

 HTTP servers used to deliver MTA-STS policies MAY rely on SNI to
 determine which certificate chain to present to the client. HTTP
 servers MUST respond with a certificate chain that matches the policy
 hostname or abort the TLS handshake if unable to do so. Clients that
 do not send SNI information may not see the expected certificate
 chain.

 SMTP servers MAY rely on SNI to determine which certificate chain to
 present to the client. However, servers that have one identity and a
 single matching certificate do not require SNI support. Servers MUST
 NOT enforce the use of SNI by clients, as the client may be using
 unauthenticated opportunistic TLS and may not expect any particular
 certificate from the server. If the client sends no SNI extension or
 sends an SNI extension for an unsupported server name, the server
 MUST simply send a fallback certificate chain of its choice. The
 reason for not enforcing strict matching of the requested SNI
 hostname is that MTA-STS TLS clients may be typically willing to
 accept multiple server names but can only send one name in the SNI
 extension. The server's fallback certificate may match a different
 name that is acceptable to the client, e.g., the original next-hop
 domain.

7.2. Minimum TLS Version Support

 MTAs supporting MTA-STS MUST have support for TLS 1.2 [RFC5246] or
 TLS 1.3 [RFC8446] or higher. The general TLS usage guidance in
 [RFC7525] SHOULD be followed.

8. Operational Considerations

8.1. Policy Updates

 Updating the policy requires that the owner make changes in two
 places: the "_mta-sts" TXT record in the Policy Domain's DNS zone and
 at the corresponding HTTPS endpoint. As a result, recipients should
 expect that a policy will continue to be used by senders until both
 the HTTPS and TXT endpoints are updated and the TXT record's TTL has
 passed.

 In other words, a sender who is unable to successfully deliver a
 message while applying a cache of the recipient's now-outdated policy
 may be unable to discover that a new policy exists until the DNS TTL
 has passed. Recipients SHOULD therefore ensure that old policies
 continue to work for message delivery during this period of time, or
 risk message delays.

 Recipients SHOULD also update the HTTPS policy body before updating
 the TXT record; this ordering avoids the risk that senders, seeing a
 new TXT record, mistakenly cache the old policy from HTTPS.

8.2. Policy Delegation

 Domain owners commonly delegate SMTP hosting to a different
 organization, such as an ISP or a web host. In such a case, they may
 wish to also delegate the MTA-STS Policy to the same organization,
 which can be accomplished with two changes.

 First, the Policy Domain must point the "_mta-sts" record, via CNAME,
 to the "_mta-sts" record maintained by the provider. This allows the
 provider to control update signaling.

 Second, the Policy Domain must point the "well-known" policy location
 to the provider. This can be done either by setting the "mta-sts"
 record to an IP address or CNAME specified by the provider and by
 giving the provider a TLS certificate that is valid for that host or
 by setting up a "reverse proxy" (also known as a "gateway") server
 for the Policy Domain's Policy Host, configured to serve proxied
 responses from the Policy Host of the provider.

 For example, given a user domain "user.example" hosted by a mail
 provider "provider.example", the following configuration would allow
 policy delegation:

 DNS:

 _mta-sts.user.example. IN CNAME _mta-sts.provider.example.

 Policy:

> GET /.well‑known/mta‑sts.txt Host: mta‑sts.user.example
< HTTP/1.1 200 OK # Response proxies content from
 # https://mta‑sts.provider.example

 Note that in all such cases, the policy endpoint
 ("https://mta-sts.user.example/.well-known/mta-sts.txt" in this
 example) must still present a certificate valid for the Policy Host
 ("mta-sts.user.example"), and not for that host at the provider's
 domain ("mta-sts.provider.example").

 Note that while Sending MTAs MUST NOT use HTTP caching when fetching
 policies via HTTPS, such caching may nonetheless be useful to a
 reverse proxy configured as described in this section. An HTTPS
 policy endpoint expecting to be proxied for multiple hosted domains
 -- as with a large mail hosting provider or similar -- may wish to
 indicate an HTTP Cache-Control "max-age" response directive (as
 specified in [RFC7234]) of 60 seconds as a reasonable value to save
 reverse proxies an unnecessarily high-rate of proxied policy
 fetching.

8.3. Removing MTA-STS

 In order to facilitate clean opt-out of MTA-STS by implementing
 Policy Domains, and to distinguish clearly between failures that
 indicate attacks and those that indicate such opt-outs, MTA-STS
 implements the "none" mode, which allows validated policies to
 indicate authoritatively that the Policy Domain wishes to no longer
 implement MTA-STS and may, in the future, remove the MTA-STS TXT and
 policy endpoints entirely.

 A suggested workflow to implement such an opt out is as follows:

 1. Publish a new policy with "mode" equal to "none" and a small
 "max_age" (e.g., one day).

 2. Publish a new TXT record to trigger fetching of the new policy.

 3. When all previously served policies have expired -- normally this
 is the time the previously published policy was last served plus
 that policy's "max_age", but note that policies older than the
 previously published policy may have been served with a greater
 "max_age" than the previously published policy, allowing
 overlapping policy caches -- safely remove the TXT record and
 HTTPS endpoint.

8.4. Preserving MX Candidate Traversal

 Implementers of send-time MTA-STS validation in mail transfer agents
 should take note of the risks of modifying the logic of traversing MX
 candidate lists. Because an MTA-STS Policy can be used to prefilter
 invalid MX candidates from the MX candidate list, it is tempting to
 implement a "two-pass" model, where MX candidates are first filtered
 for possible validity according to the MTA-STS Policy, and then the
 remaining candidates are attempted in order as without an MTA-STS
 Policy. This may lead to incorrect implementations, such as message
 loops; instead, it is recommended that implementers traverse the MX
 candidate list as usual, and treat invalid candidates as though they
 were unreachable (i.e., as though there were some transient error
 when trying to deliver to that candidate).

 One consequence of validating MX hosts in order of ordinary candidate
 traversal is that in the event a higher-priority MX is MTA-STS valid
 and a lower-priority MX is not, senders may never encounter the
 lower-priority MX, leading to a risk that policy misconfigurations
 that apply only to "backup" MXes may only be discovered in the case
 of primary MX failure.

9. IANA Considerations

9.1. Well-Known URIs Registry

 A new "well-known" URI as described in Section 3 has been registered
 in the "Well-Known URIs" registry as described below:

 URI Suffix: mta-sts.txt

 Change Controller: IETF

9.2. MTA-STS TXT Record Fields

 IANA has created a new registry titled "MTA-STS TXT Record Fields".
 The initial entries in the registry are:

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Field Name | Description | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| v | Record version | Section 3.1 of RFC 8461 |
| id | Policy instance ID | Section 3.1 of RFC 8461 |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 New fields are added to this registry using IANA's "Expert Review"
 policy [RFC8126].

9.3. MTA-STS Policy Fields

 IANA has created a new registry titled "MTA-STS Policy Fields". The
 initial entries in the registry are:

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Field Name | Description | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
version	Policy version	Section 3.2 of RFC 8461
mode	Enforcement behavior	Section 3.2 of RFC 8461
max_age	Policy lifetime	Section 3.2 of RFC 8461
mx	MX identities	Section 3.2 of RFC 8461
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 New fields are added to this registry using IANA's "Expert Review"
 policy.

10. Security Considerations

 SMTP MTA-STS attempts to protect against an active attacker trying to
 intercept or tamper with mail between hosts that support STARTTLS.
 There are two classes of attacks considered:

 o Foiling TLS negotiation (for example, by deleting the "250
 STARTTLS" response from a server or altering TLS session
 negotiation). This would result in the SMTP session occurring
 over plaintext, despite both parties supporting TLS.

 o Impersonating the destination mail server, whereby the sender
 might deliver the message to an impostor, who could then monitor
 and/or modify messages despite opportunistic TLS. This
 impersonation could be accomplished by spoofing the DNS MX record
 for the recipient domain or by redirecting client connections
 intended for the legitimate recipient server (for example, by
 altering BGP routing tables).

 MTA-STS can thwart such attacks only if the sender is able to
 previously obtain and cache a policy for the recipient domain, and
 only if the attacker is unable to obtain a valid certificate that
 complies with that policy. Below, we consider specific attacks on
 this model.

10.1. Obtaining a Signed Certificate

 SMTP MTA-STS relies on certificate validation via PKIX-based TLS
 identity checking [RFC6125]. Attackers who are able to obtain a
 valid certificate for the targeted recipient mail service (e.g., by
 compromising a CA) are thus able to circumvent STS authentication.

10.2. Preventing Policy Discovery

 Since MTA-STS uses DNS TXT records for policy discovery, an attacker
 who is able to block DNS responses can suppress the discovery of an
 MTA-STS Policy, making the Policy Domain appear not to have an MTA-
 STS Policy. The sender policy cache is designed to resist this
 attack by decreasing the frequency of policy discovery and thus
 reducing the window of vulnerability; it is nonetheless a risk that
 attackers who can predict or induce policy discovery -- for example,
 by inducing a sending domain to send mail to a never-before-contacted
 recipient while carrying out a man-in-the-middle attack -- may be
 able to foil policy discovery and effectively downgrade the security
 of the message delivery.

 Since this attack depends upon intercepting initial policy discovery,
 implementers SHOULD prefer policy "max_age" values to be as long as
 is practical.

 Because this attack is also possible upon refresh of a cached policy,
 implementers SHOULD NOT wait until a cached policy has expired before
 checking for an update; if senders attempt to refresh the cache
 regularly (for example, by fetching the current live policy in a
 background task that runs daily or weekly, regardless of the state of
 the "_mta-sts" TXT record, and updating their cache's "max age"
 accordingly), an attacker would have to foil policy discovery
 consistently over the lifetime of a cached policy to prevent a
 successful refresh.

 Additionally, MTAs SHOULD alert administrators to repeated policy
 refresh failures long before cached policies expire (through warning
 logs or similar applicable mechanisms), allowing administrators to
 detect such a persistent attack on policy refresh. (However, they
 should not implement such alerts if the cached policy has a "none"
 mode, to allow clean MTA-STS removal, as described in Section 8.3.)

 Resistance to downgrade attacks of this nature -- due to the ability
 to authoritatively determine "lack of a record" even for non-
 participating recipients -- is a feature of DANE, due to its use of
 DNSSEC for policy discovery.

10.3. Denial of Service

 We additionally consider the Denial-of-Service risk posed by an
 attacker who can modify the DNS records for a recipient domain.
 Absent MTA-STS, such an attacker can cause a Sending MTA to cache
 invalid MX records, but only for however long the sending resolver
 caches those records. With MTA-STS, the attacker can additionally
 advertise a new, long "max_age" MTA-STS Policy with "mx" constraints
 that validate the malicious MX record, causing senders to cache the
 policy and refuse to deliver messages once the victim has resecured
 the MX records.

 This attack is mitigated in part by the ability of a victim domain to
 (at any time) publish a new policy updating the cached, malicious
 policy, though this does require the victim domain to both obtain a
 valid CA-signed certificate and to understand and properly configure
 MTA-STS.

 Similarly, we consider the possibility of domains that deliberately
 allow untrusted users to serve untrusted content on user-specified
 subdomains. In some cases (e.g., the service "tumblr.com"), this
 takes the form of providing HTTPS hosting of user-registered
 subdomains; in other cases (e.g. dynamic DNS providers), this takes
 the form of allowing untrusted users to register custom DNS records
 at the provider's domain.

 In these cases, there is a risk that untrusted users would be able to
 serve custom content at the "mta-sts" host, including serving an
 illegitimate MTA-STS Policy. We believe this attack is rendered more
 difficult by the need for the attacker to also serve the "_mta-sts"
 TXT record on the same domain -- something not, to our knowledge,
 widely provided to untrusted users. This attack is additionally
 mitigated by the aforementioned ability for a victim domain to update
 an invalid policy at any future date.

10.4. Weak Policy Constraints

 Even if an attacker cannot modify a served policy, the potential
 exists for configurations that allow attackers on the same domain to
 receive mail for that domain. For example, an easy configuration
 option when authoring an MTA-STS Policy for "example.com" is to set
 the "mx" equal to "*.example.com"; in this case, recipient domains
 must consider the risk that any user possessing a valid hostname and
 CA-signed certificate (for example, "dhcp-123.example.com") will,
 from the perspective of MTA-STS Policy validation, be a valid MX host
 for that domain.

10.5. Compromise of the Web PKI System

 A number of risks apply to the PKI system that is used for
 certificate authentication, both of the "mta-sts" HTTPS host's
 certificate and the SMTP servers' certificates. These risks are
 broadly applicable within the Web PKI ecosystem and are not specific
 to MTA-STS; nonetheless, they deserve some consideration in this
 context.

 Broadly speaking, attackers may compromise the system by obtaining
 certificates under fraudulent circumstances (i.e., by impersonating
 the legitimate owner of the victim domain), by compromising a CA or
 Delegate Authority's private keys, by obtaining a legitimate
 certificate issued to the victim domain, and similar.

 One approach commonly employed by web browsers to help mitigate
 against some of these attacks is to allow for revocation of
 compromised or fraudulent certificates via OCSP [RFC6960] or CRLs
 [RFC6818]. Such mechanisms themselves represent trade-offs and are
 not universally implemented; we nonetheless recommend implementers of
 MTA-STS to implement revocation mechanisms that are most applicable
 to their implementations.

11. References

11.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2818]
 Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/info/rfc2818>.

 [RFC3207]
 Hoffman, P., "SMTP Service Extension for Secure SMTP over
 Transport Layer Security", RFC 3207, DOI 10.17487/RFC3207,
 February 2002, <https://www.rfc-editor.org/info/rfc3207>.

 [RFC3492]
 Costello, A., "Punycode: A Bootstring encoding of Unicode
 for Internationalized Domain Names in Applications
 (IDNA)", RFC 3492, DOI 10.17487/RFC3492, March 2003,
 <https://www.rfc-editor.org/info/rfc3492>.

 [RFC3629]
 Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC5234]
 Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5321]
 Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 DOI 10.17487/RFC5321, October 2008,
 <https://www.rfc-editor.org/info/rfc5321>.

 [RFC5785]
 Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <https://www.rfc-editor.org/info/rfc5785>.

 [RFC6066]
 Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC6125]
 Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC7405]
 Kyzivat, P., "Case-Sensitive String Support in ABNF",
 RFC 7405, DOI 10.17487/RFC7405, December 2014,
 <https://www.rfc-editor.org/info/rfc7405>.

 [RFC7525]
 Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8460]
 Margolis, D., Brotman, A., Ramakrishnan, B., Jones, J.,
 and M. Risher, "SMTP TLS Reporting", RFC 8460,
 DOI 10.17487/RFC8460, September 2018,
 <https://www.rfc-editor.org/info/rfc8460>.

11.2. Informative References

 [RFC4033]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

 [RFC5322]
 Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC5891]
 Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891,
 DOI 10.17487/RFC5891, August 2010,
 <https://www.rfc-editor.org/info/rfc5891>.

 [RFC6818]
 Yee, P., "Updates to the Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 6818, DOI 10.17487/RFC6818, January
 2013, <https://www.rfc-editor.org/info/rfc6818>.

 [RFC6960]
 Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/info/rfc6960>.

 [RFC7234]
 Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",
 RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <https://www.rfc-editor.org/info/rfc7234>.

 [RFC7672]
 Dukhovni, V. and W. Hardaker, "SMTP Security via
 Opportunistic DNS-Based Authentication of Named Entities
 (DANE) Transport Layer Security (TLS)", RFC 7672,
 DOI 10.17487/RFC7672, October 2015,
 <https://www.rfc-editor.org/info/rfc7672>.

 [RFC8126]
 Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

Appendix A. MTA-STS Example Record and Policy

 The owner of "example.com" wishes to begin using MTA-STS with a
 policy that will solicit reports from senders without affecting how
 the messages are processed, in order to verify the identity of MXes
 that handle mail for "example.com", confirm that TLS is correctly
 used, and ensure that certificates presented by the recipient MX
 validate.

 MTA-STS Policy indicator TXT RR:

 _mta-sts.example.com. IN TXT "v=STSv1; id=20160831085700Z;"

 MTA-STS Policy file served as the response body at
 "https://mta-sts.example.com/.well-known/mta-sts.txt":

version: STSv1
mode: testing
mx: mx1.example.com
mx: mx2.example.com
mx: mx.backup‑example.com
max_age: 1296000

Appendix B. Message Delivery Pseudocode

 Below is pseudocode demonstrating the logic of a compliant Sending
 MTA.

 While this pseudocode implementation suggests synchronous policy
 retrieval in the delivery path, that may be undesirable in a working
 implementation, and we expect some implementers to instead prefer a
 background fetch that does not block delivery when no cached policy
 is present.

func isEnforce(policy) {
 // Return true if the policy mode is "enforce".
}

func isNonExpired(policy) {
 // Return true if the policy is not expired.
}

func tryStartTls(connection) {
 // Attempt to open an SMTP STARTTLS connection with the MX.
}

 func certMatches(connection, host) {

 // Assume a handy function to return if the server
 // certificate presented in "connection" is valid for "host".
}

func policyMatches(candidate, policy) {
 for mx in policy.mx {
 // Literal match.
 if mx == candidate {
 return true
 }
 // Wildcard matches only the leftmost label.
 // Wildcards must always be followed by a '.'.
 if mx[0] == '*' {
 parts = SplitN(candidate, '.', 2) // Split on the first '.'.
 if len(parts) > 1 && parts[1] == mx[2:] {
 return true
 }
 }
 }
 return false
}

func tryDeliverMail(connection, message) {
 // Attempt to deliver "message" via "connection".
}

func tryGetNewPolicy(domain) {
 // Check for an MTA‑STS TXT record for "domain" in DNS, and return
 // the indicated policy.
}

func cachePolicy(domain, policy) {
 // Store "policy" as the cached policy for "domain".
}

func tryGetCachedPolicy(domain) {
 // Return a cached policy for "domain".
}

func reportError(error) {
 // Report an error via TLSRPT.
}

func tryMxAccordingTo(message, mx, policy) {
 connection := connect(mx)
 if !connection {
 return false // Can't connect to the MX, so it's not an MTA‑STS
 // error.

 }
 secure := true
 if !policyMatches(mx, policy) {
 secure = false
 reportError(E_HOST_MISMATCH)
 } else if !tryStartTls(connection) {
 secure = false
 reportError(E_NO_VALID_TLS)
 } else if !certMatches(connection, policy) {
 secure = false
 reportError(E_CERT_MISMATCH)
 }
 if secure || !isEnforce(policy) {
 return tryDeliverMail(connection, message)
 }
 return false
}

func tryWithPolicy(message, domain, policy) {
 mxes := getMxForDomain(domain)
 for mx in mxes {
 if tryMxAccordingTo(message, mx, policy) {
 return true
 }
 }
 return false
}

func handleMessage(message) {
 domain := ... // domain part after '@' from recipient
 policy := tryGetNewPolicy(domain)
 if policy {
 cachePolicy(domain, policy)
 } else {
 policy = tryGetCachedPolicy(domain)
 }
 if policy {
 return tryWithPolicy(message, domain, policy)
 }
 // Try to deliver the message normally (i.e., without MTA‑STS).
}

Contributors

Wei Chuang
Google, Inc.
weihaw@google.com

Viktor Dukhovni
ietf‑dane@dukhovni.de

Markus Laber
1&1 Mail & Media Development & Technology GmbH
markus.laber@1und1.de

Nicolas Lidzborski
Google, Inc.
nlidz@google.com

Brandon Long
Google, Inc.
blong@google.com

Franck Martin
LinkedIn, Inc.
fmartin@linkedin.com

Klaus Umbach
1&1 Mail & Media Development & Technology GmbH
klaus.umbach@1und1.de

Authors' Addresses

Daniel Margolis
Google, Inc.

 Email: dmargolis@google.com

Mark Risher
Google, Inc.

 Email: risher@google.com

Binu Ramakrishnan
Oath, Inc.

 Email: prbinu@yahoo.com

Alexander Brotman
Comcast, Inc.

 Email: alex_brotman@comcast.com

Janet Jones
Microsoft, Inc.

 Email: janet.jones@microsoft.com

draft-urien-uta-tls-dtls-security-module-07 - December 2018 Expires: June 2019

Index
Back 5
Prev
Next

 UTA Working Group

 Internet Draft

 Intended status: Experimental

P. Urien

Telecom ParisTech

December 2018 Expires: June 2019

 TLS and DTLS Security Modules
 draft-urien-uta-tls-dtls-security-module-07.txt

Abstract

 Security and trust are very critical topics in the context of the
 anywhere, anytime, anything internet connectivity. TLS and DTLS are
 two major IETF protocols widely used to secure IP exchanges.
 According to CoAP, DTLS is the protocol used by constraint nodes in
 the Internet of Things (IoT) context.

 In this draft we specify an ISO7816 interface for TLS and DTLS
 secure modules based on ISO7816 secure chips, which are today
 manufactured per billions every year.

 Secure elements are cheap secure microcontrollers whose size is
 about 25mm2 and whose security is ranked by evaluations typically
 according to Common Criteria (CC) standards.

 The support of TLS and DTLS is based on the EAP-TLS protocol, and
 the IETF draft "EAP Support in smartcard" describing EAP-TLS support
 for secure elements. First implementation demonstrates that such low
 cost security modules are realistic, with a setup time for handshake
 completion under the second.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

TLS and DTLS Security Modules December 2018

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

TLS and DTLS Security Modules December 2018

Table of Contents

	Abstract

	Requirements Language

	Status of this Memo

	Copyright Notice

	1 Overview

	2 The EAP-TLS Smartcard
	 2.1 The EAP-TLS protocol

	 2.2 The EAP-TLS Smartcard

	4 The TLS Security Module
	 4.1 EAP-TLS for TLS Security Module

	 4.2 The TLS / EAP-TLS Software Bridge

	 4.3 The TLS Security Module Encryption and Decryption procedures

	5 The DTLS Security Module
	 5.1 EAP-TLS for DTLS Security Module

	 5.2 The DTLS / EAP-TLS Software Bridge

	 5.3 The DTLS Security Module Encryption and Decryption procedures

	6 Example of TLS processing by the TLS security module

	7 Example of DTLS processing by the DTLS security module

	8 Security Considerations

	9 IANA Considerations

	10 References
	 10.1 Normative References

	 10.2 Informative References

	11 Authors' Addresses
		 TLS and DTLS Security Modules December

1 Overview

 Security and trust are very critical topics in the context of the
 anywhere, anytime, anything internet connectivity. TLS [TLS 1.0]
 [TLS 1.1], [TLS 1.2] and DTLS [DTLS 1.0] [DTLS 1.2] are two major
 IETF protocols widely used to secure IP exchanges. According to
 [COAP], DTLS is the protocol used by constraint nodes in the
 Internet of Things (IoT) context. In this draft we specify an
 interface for TLS and DTLS secure modules based on [ISO7816] secure
 chips, which are today manufactured per billions every year. Secure
 elements are cheap secure microcontrollers whose size is about 25mm2
 and whose security is ranked by evaluations typically according to
 Common Criteria (CC) standards. The support of TLS and DTLS is based
 on the EAP-TLS [EAP-TLS] protocol, and the IETF draft [EAP SC] "EAP
 Support for Smartcards" describing EAP-TLS support for secure
 elements. First implementation demonstrate that such low cost
 security modules are realistic, with a setup time for handshake
 completion, under the second.

2 The EAP-TLS Smartcard

2.1 The EAP-TLS protocol

 The EAP-TLS [EAP-TLS] protocol (as illustrated by figure 1)defines a
 transparent transport of the TLS protocol until the exchange
 finished messages (both for server and client). According to EAP-
 TLS, and similarly to DTLS [DTLS 1.0] [DTLS 1.2], messages are
 grouped into a series of flights (four for the TLS full mode, and
 three for the TLS Session Resumption.

 The EAP-TLS protocol supports segmentation and reassembly operations
 managed via the "Flags" byte, which is detailed below:

 0 1 2 3 4 5 6 7
 +‑+‑+‑+‑+‑+‑+‑+‑+
 |L M S R R R R R|
 +‑+‑+‑+‑+‑+‑+‑+‑+

 L = Length included
 M = More fragments
 S = Start bit
 R = Reserved

‑ The L bit (length included) is set to indicate the presence of the
four‑octet TLS Message Length field, and MUST be set for the first
fragment of a fragmented TLS message or set of messages.
‑ The M bit (more fragments) is set on all but the last fragment.
‑ The S bit (EAP‑TLS start) is set in an EAP‑TLS Start message.

 TLS and DTLS Security Modules December 2018

 When an EAP-TLS peer receives an EAP-Request packet with the M bit
 set, it MUST respond with an EAP-Response with EAP-Type=EAP-TLS and
 no data. This serves as a fragment ACK.

Authenticating Peer Authenticator
EAP‑TLS Smartcard (SC) SC User
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑
 <‑ EAP‑Request/
 Identity
EAP‑Response/
Identity (MyID) ‑>
 <‑ EAP‑Request/
 EAP‑Type=EAP‑TLS
 Flags
 (TLS Start)
EAP‑Response/
EAP‑Type=EAP‑TLS
Flags
(TLS client‑hello)‑> Flight 1
 <‑ EAP‑Request/
 EAP‑Type=EAP‑TLS
 Flags
 (TLS server‑hello, Flight 2
 TLS certificate,
 [TLS server‑key‑exchange,]
 TLS certificate‑request,
 TLS server‑hello‑done)
EAP‑Response/
EAP‑Type=EAP‑TLS
Flags
(TLS certificate, Flight 3
 TLS client‑key‑exchange,
 TLS certificate‑verify,
 TLS change‑cipher‑spec,
 TLS finished) ‑>
 <‑ EAP‑Request/
 EAP‑Type=EAP‑TLS
 Flags
 (TLS change‑cipher‑spec, Flight 4
 TLS finished)
EAP‑Response/
EAP‑Type=EAP‑TLS
Flags ‑>

 <- EAP-Success

 Figure 1. The EAP-TLS protocol

TLS and DTLS Security Modules December 2018

2.2 The EAP-TLS Smartcard

 The "EAP Support in Smartcard" draft [EAP SC] specifies an ISO7816
 interface for a secure element (named EAP-TLS smartcard, in figure
 1) that fully processes the EAP-TLS protocol until the reception of
 the EAP-Success message.

The two main commands are detailed in figure 2:
‑ Reset‑State, which resets the EAP‑TLS state machine ,
‑ Process‑EAP that transports TLS flights encapsulated in EAP‑TLS
messages.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
 | Command |Class| INS | P1 | P2 | Lc | Le |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
 | Process‑EAP | A0 |80‑88| 00 | 00 | xx | yy |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
 | Reset‑State | A0 | 19 | 10 | 00 | 00 | 01 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
 Figure 2

4 The TLS Security Module

4.1 EAP-TLS for the TLS Security Module

 TLS security modules are based on EAP-TLS devices, performing, as
 illustrated by figure 3, a transparent encapsulation of TLS packets.

 The EAP-Request-Identity message and EAP-Success message are not
 used by the TLS secure modules.

 TLS and DTLS Security Modules December 2018

 Security Module (SM) SM User
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑

 <‑ EAP‑Request/
 EAP‑Type=EAP‑TLS
 Flags
 (TLS Start)
 EAP‑Response/
 EAP‑Type=EAP‑TLS
 Flags
 (TLS client‑hello)‑>
 <‑ EAP‑Request/
 EAP‑Type=EAP‑TLS
 Flags
 (TLS server‑hello,
 TLS certificate,
 [TLS server‑key‑exchange,]
 TLS certificate‑request,
 TLS server‑hello‑done)
 EAP‑Response/
 EAP‑Type=EAP‑TLS
 Flags
 (TLS certificate,
 TLS client‑key‑exchange,
 TLS certificate‑verify,
 TLS change‑cipher‑spec,
 TLS finished) ‑>
 <‑ EAP‑Request/
 EAP‑Type=EAP‑TLS
 Flags
 (TLS change‑cipher‑spec,
 TLS finished)
 EAP‑Response/
 EAP‑Type=EAP‑TLS
 Flags ‑>

===
 Four ways TLS Handshake Completion
===

 Figure 2. The TLS Handshake Completion with the Security Module

TLS and DTLS Security Modules December 2018

4.2 The TLS / EAP-TLS Software Bridge

 A software bridge, illustrated by figure 3 extracts TLS flights from
 TLS packets, and manages EAP-TLS messages exchanged with the
 Security Module.

 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 TLS | TLS | EAP‑TLS | TLS |
 packet | EAP‑TLS | Packet | Security |
<=======> | Bridge | <========> | Module |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+

 Figure 3. The TLS / EAP-TLS Software Bridge

4.3 The TLS Security Module Encryption and Decryption procedures

 After the completion of the TLS four ways or three ways handshake
 (notified by the delivery of EAP-Success message in EAP-TLS) the
 Security Module supports two procedures, Process-EAP-Encrypt and
 Process-EAP-Decrypt, in order to respectively compute TLS encrypted
 packets (see figure 4) or to check and decrypt the payload of TLS
 ciphered packets (see figure 5).

 Process‑EAP‑Encrypt(Type)
 <‑ EAP‑Request/
 EAP‑Type=EAP‑TLS
 Flags
 (Payload= Clear Text)
EAP‑Response/
EAP‑Type=EAP‑TLS
Flags
(Payload= TLS Encrypted
 Record Layer Message)‑>

 Figure 4. Generation of TLS encrypted packet by TLS Security module

 Process‑EAP‑Decrypt
 <‑ EAP‑Request/
 EAP‑Type=EAP‑TLS
 Flags
 (Payload= TLS Encrypted
 Record Layer Message)‑>
EAP‑Response/
EAP‑Type=EAP‑TLS
Flags
(Payload= TLS Clear
 Record Layer payload)‑>

 Figure 5. Generation of TLS decrypted packets

TLS and DTLS Security Modules December 2018

 In the case of the Process-EAP-Encrypt(Type) procedure the payload
 of the EAP-TLS packet (see figure 4) is the clear text to be
 encrypted in the TLS Record Layer packet. The SM adds the Type field
 indicated in the Process-EAP-Encrypt command, and performs all
 needed operations in order to compute the TLS encrypted packet
 (including HMAC and optional padding bytes see figure 6),
 encapsulated in the EAP-Response message (depicted in figure 4).

 In the case of the Process-EAP-Decrypt() procedure, the payload of
 the EAP-TLS packet (see figure 5) is the received TLS Record Layer
 encrypted packet, as showed by figure 6. The Security Module checks
 the HMAC, and upon success deciphers the encrypted payload; the
 resulting data is returned encapsulated in the EAP-Response message.

+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Type | Version | Length | Encrypted |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+ Payload |
+ |
+ +‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
+ | HMAC | Pad | Pad Length |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 6. A TLS (Record Layer) encrypted packet.

 The figure 7 details the structure of the Security Module command
 needed for the encryption and decryption of TLS packets.

+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑‑‑‑‑‑+
| Command |Class| INS | P1 | P2 | Lc | Le | SW |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑‑‑‑‑‑+
| Process‑EAP | A0 |80‑88| 00 | 80 || Type | xx | yy | 9000 OK |
| Encrypt | | | | | | | 6985 ERR|
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑‑‑‑‑‑+
| Process‑EAP | A0 |80‑88| 00 | 00 | xx | yy | 9000 OK |
| Decrypt | | | | | | | 6985 ERR|
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑‑‑‑‑‑+

 Figure 7. The Security Module ISO7816 commands

TLS and DTLS Security Modules December 2018

5 The DTLS Security Module

5.1 EAP-TLS for the DTLS Security Module

 Security Module (SM) SM User
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑
 <‑ EAP‑Request/
 EAP‑Type=EAP‑TLS
 Flags
 (TLS Start)
 EAP‑Response/
 EAP‑Type=EAP‑TLS
 Flags
 (DTLS client‑hello) ‑> Flight 1
 <‑ EAP‑Request/
 DTLS Hello‑Verify‑Request Flight 2
 (contains cookie)
 EAP‑Response/
 EAP‑Type=EAP‑TLS
 Flags
 (DTLS client‑hello
 with cookie) ‑> Flight 3
 <‑ EAP‑Request/
 EAP‑Type=EAP‑TLS
 Flags
 (DTLS server‑hello,
 DTLS certificate, Flight 4
 [DTLS server‑key‑exchange,]
 DTLS certificate‑request,
 DTLS server‑hello‑done)
 EAP‑Response/
 EAP‑Type=EAP‑TLS
 Flags
 (DTLS certificate,
 DTLS client‑key‑exchange,
 DTLS certificate‑verify, Flight 5
 DTLS change‑cipher‑spec,
 DTLS finished) ‑>
 <‑ EAP‑Request/
 Flags
 EAP‑Type=EAP‑TLS
 (DTLS change‑cipher‑spec, Flight 6
 DTLS finished)
 EAP‑Response/
 EAP‑Type=EAP‑TLS
 Flags ‑>
===
 Four ways DTLS Handshake Completion
===

 Figure 8. The DTLS handshake completion with the Security Module

TLS and DTLS Security Modules December 2018

 In a way similar to TLS (see figure 8), DTLS messages are
 encapsulated in EAP-TLS messages.

5.2 The DTLS / EAP-TLS Software Bridge

 A software bridge, illustrated by figure 9 extracts DTLS flights
 from DTLS packets, and manages EAP-TLS exchanges with the Security
 Module.

 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 DTLS | DTLS | EAP‑TLS | DTLS |
 packets | EAP‑TLS | Packets | Security |
<=======> | Bridge | <========> | Module |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+

 Figure 9. DTLS / EAP-TLS software bridge

 The DTLS security module doesn't manage handshake messages
 fragmentation and reassembly. These operations are handled by the
 software bridge during the DTLS three ways or four ways handshake.
 Timeout and retransmission are also managed by the bridge entity.

 According to [DTLS 1.0] finished messages have no sensitivity to
 fragmentation. There are computed as if each handshake message had
 been sent as a single fragment. The security module (see figure 10)
 deals with handshake message with the fields fragment-offset set to
 zero, and fragment-length equal to length. Because the handshake
 sequence in not used in cryptographic calculations, it is fully
 managed by the bridge. The security module does not take into
 account the received messages sequences, and produces handshake
 messages starting from zero (at the DTLS first hello message
 generation) and incremented for every message.

HandshakeType msgtype;
uint24 length;
uint16 message‑sequence;
uint24 fragment‑offset;
uint24 fragment‑length;
[Handshake Message]

 Figure 10. Structure of the DTLS Handshake message.

 It also should be noted that according to the DTLS protocol [DTLS
 1.0] in cases where the cookie exchange is used, the initial
 ClientHello and HelloVerifyRequest are NOT included in the Finished
 MAC.

 When the Security Module builds the client finished message it sets
 the EPOCH field to one and resets the sequence number used by the

TLS and DTLS Security Modules December 2018

 record layer. The record layer packet structure is detailed by
 figure 11.

struct {
ContentType type;
ProtocolVersion version;
uint16 epoch;
uint48 sequence‑number;
uint16 length;
opaque fragment[DTLSPlaintext.length];
} DTLSPlaintext;

 Figure 11. DTLS Record Layer packet structure

 According to [DTLS 1.0] the DTLS MAC is the same as that of TLS 1.1.
 However, rather than using TLS's implicit sequence number, the
 sequence number used to compute the MAC is the 64-bit value formed
 by concatenating the epoch and the sequence number in the order they
 appear on the wire. TLS MAC calculation is parameterized on the
 protocol version number, which, in the case of DTLS, is the on-the-
 wire version, i.e., {254,255 } for DTLS 1.0.

5.3 The DTLS Security Module Encryption and Decryption procedures

 Upon the completion of the DTLS handshake, i.e. after the generation
 of finished messages (both and on client and server side) the record
 layer is fully handle by the security module, which checks and
 decrypts all incoming packets (see figure 13), and produces
 encrypted and HMACed packets (see figure 12).

 Process‑EAP‑Encrypt(Type)
 <‑ EAP‑Request/
 EAP‑Type=EAP‑TLS
 Flags
 (Payload= Clear Text)
EAP‑Response/
EAP‑Type=EAP‑TLS
Flags
(Payload= DTLS Encrypted
 Record Layer Message)‑>

 Figure 12. Generation of DTLS encrypted packet by the DTLS Security
 module

 TLS and DTLS Security Modules December 2018

 Process‑EAP‑Decrypt
 <‑ EAP‑Request/
 EAP‑Type=EAP‑TLS
 Flags
 (Payload= DTLS Encrypted
 Record Layer Message)‑>
EAP‑Response/
EAP‑Type=EAP‑TLS
Flags
(Payload= DTLS Clear
 Record Layer payload)‑>

 Figure 13. Generation of TLS decrypted packets

TLS and DTLS Security Modules December 2018

6 Example of TLS processing by the TLS security module

 The following choreography illustrates the processing of a TLS (1.0)
 resume session by the TLS security module. The CipherSuite is AES-
 SHA1.

// RESET the Security Module
>> A0 19 10 00 00
<< 90 00

// Send EAP‑TLS‑Start in EAP‑Request
// last four bytes represent the time
>> A0 80 00 00 0A 01 14 00 06 0D 20 55 82 E9 D1

// Flight 1
// Client Hello in EAP‑Response
<< 02 14 00 5C 0D 80 00 00 00 52 16 03 01 00 4D 01 00 00 49 03
 01 55 82 E9 D1 BE 21 DF 71 68 C3 14 BB DC 09 57 24 DA 77 F1
 EA C1 9F 54 AF 0F E4 61 C9 5A 3F 06 93 20 34 1A 3F 0A E5 6C
 C0 39 F1 E2 9A F7 D3 D6 6E C0 91 CC EB 77 61 7D 88 FF C7 00
 F9 C3 6D 1F 1F 8C 00 02 00 2F 01 00
 90 00

// Flight 2
// Server Hello + CCS + Finished in EAP‑Request
// 1st fragment

>> A0 80 00 00 8A 01 0D 00 8A 0D C0 00 00 00 8A 16 03 01 00 4A
 02 00 00 46 03 01 55 82 EA 66 4D ED 28 C0 E2 4F 22 12 01 35
 49 82 61 5A FC 29 64 3B 20 1D 3A D4 00 39 91 27 07 06 20 34
 1A 3F 0A E5 6C C0 39 F1 E2 9A F7 D3 D6 6E C0 91 CC EB 77 61
 7D 88 FF C7 00 F9 C3 6D 1F 1F 8C 00 2F 00 14 03 01 00 01 01
 16 03 01 00 30 85 D5 76 49 D3 58 C9 93 D8 03 B1 91 19 78 3F
 16 A1 3A DF 03 54 53 63 B6 42 A5 5A 8A 23 C2 C5 AD 84 75 30
 85 BE 75

// EAP‑TLS ACK
<< 02 0D 00 06 0D 00
 90 00

// 2nd fragment
>> A0 80 00 00 10 01 0E 00 10 0D 00 26 92 99 2A 9E 7F FF 2E
 BC CB

// Flight 3
// Client CCS + Finished in EAP‑Response
<< 02 0E 00 45 0D 80 00 00 00 3B 14 03 01 00 01 01 16 03 01 00
 30 86 8A 10 A2 85 5F DA D8 52 16 D6 57 12 75 A6 57 A2 20 1B
 A5 5B F0 0A E5 34 62 FF 92 28 BC DD 72 5E D7 6E C0 D4 A5 52
 1F AA F5 6D 7C 8A 37 02 54
 90 00

 TLS and DTLS Security Modules December 2018

 // TLS handshake completion

// Process‑EAP‑Decrypt
>> A0 80 00 00 2B 01 0F 00 2B 0D 00 17 03 01 00 20 75 1A 28 2D
 F3 E1 12 D5 19 7C 3E 38 CB 49 D6 43 CF B0 F3 E5 A3 1A BF A1
 E0 75 AE A8 07 89 B0 45

// Empty Record Layer Payload
<< 02 0F 00 0A 0D 80 00 00 00 00
 90 00

 //Process-EAP-Decrypt

>> A0 80 00 00 2B 01 10 00 2B 0D 00 17 03 01 00 20 A0 65 57 15
 17 D2 DA 92 FF A3 7F 07 F4 95 53 86 4C 55 F3 2C 87 6B A8 CB
 2F 36 F3 71 D2 AD A3 F7

// Record Layer Clear Payload = 31 32 33 34 0D OA
<< 02 10 00 10 0D 80 00 00 00 06 31 32 33 34 0D 0A
 90 00

// Process‑EAP‑Encrypt type=17h, payload = 31 32 33 34 0D 0A
>> A0 80 00 97 0C 01 11 00 0C 0D 00 31 32 33 34 0D 0A

// Encrypted TLS Record Layer packet in EAP‑Response
<< 02 11 00 2F 0D 80 00 00 00 25 17 03 01 00 20 15 06 B7 7D 1F
 1E F3 51 4A 8E 70 3C AE B2 EF EF D0 45 A7 1E 3F 68 92 AF 0C
 09 C7 91 97 F7 C2 E6
 90 00

 TLS and DTLS Security Modules December 2018

7 Example of DTLS processing by the DTLS security module

 The following choreography illustrates the processing of a DTLS full
 session the DTLS security module. The CipherSuite is AES-SHA1.

// RESET the Security Module
>> A0 19 10 00 00
<< 90 00

// Send EAP‑TLS‑Start in EAP‑Request
// The last four bytes represent the time

 >> A0 80 00 00 0A 01 14 00 06 0D 20 55 83 BF CA

// Flight 1
// DTLS ClientHello (no cookie) in EAP‑Response
// RL‑seq=0, RL‑epoch=0, Handshake‑seq=0
<< 02 14 00 4D 0D 80 00 00 00 43 16 FE FF 00 00 00 00 00 00 00
 00 00 36 01 00 00 2A 00 00 00 00 00 00 00 2A FE FF 55 83 BF
 CA DD 4C 24 32 85 D1 A5 21 EB EE F3 33 50 88 17 6B 48 6A CB
 24 E6 28 8B FE 3C 85 F3 F1 00 00 00 02 00 2F 01 00
 90 00

DTLS Bridge sends 67 bytes
DTLS Bridge receives RL‑Seq=0, RL‑epoch=0, Handshake‑seq=0

// Flight 2 DTLS HelloVerifyRequest (contains cookie)
// DTLS HelloVerifyRequest in EAP‑Response

>> A0 80 00 00 36 01 01 00 36 0D 00 16 FE FF 00 00 00 00 00 00
 00 00 00 23 03 00 00 17 00 00 00 00 00 00 00 17 FE FF 14 C2
 38 AC 8C F8 F5 CE CA 9B 9E F1 2F 8A D1 9E 2F 84 27 F2 FF

// Flight 3 DTLS HelloClient (contains cookie)
// DTLS ClientHello in EAP‑Response
// RL‑seq=1, RL‑epoch=0, Handshake‑seq=1

<< 02 01 00 61 0D 80 00 00 00 57 16 FE FF 00 00 00 00 00 00 00
 01 00 4A 01 00 00 3E 00 01 00 00 00 00 00 3E FE FF 55 83 BF
 CA DD 4C 24 32 85 D1 A5 21 EB EE F3 33 50 88 17 6B 48 6A CB
 24 E6 28 8B FE 3C 85 F3 F1 00 14 C2 38 AC 8C F8 F5 CE CA 9B
 9E F1 2F 8A D1 9E 2F 84 27 F2 FF 00 02 00 2F 01 00
 90 00

DTLS Bridges sends 87 bytes
DTLS Bridges receives
RL‑seq=1 RL‑epoch=0 Handshake‑seq=1
RL‑seq=2 RL‑epoch=0 Handshake‑seq=2
RL‑seq=3 RL‑epoch=0 Handshake‑seq=3

 TLS and DTLS Security Modules December 2018

 RL-seq=4 RL-epoch=0 Handshake-seq=4

// Flight 4
// DTLS ServerHello, Certificate, CertificateRequest
// ServerHelloDone in EAP‑Request
// 4 record layer messages

// EAP‑TLS message 1st fragment
>> A0 80 00 00 8A 01 02 00 8A 0D C0 00 00 02 D2 16 FE FF 00 00
 00 00 00 00 00 01 00 32 02 00 00 26 00 01 00 00 00 00 00 26
 FE FF 55 83 BF CF F6 1B 78 8E 10 05 FC F7 4C 0C 0D 9D 98 4E
 90 DA 71 EC BC 83 45 97 4A 71 D9 89 19 C1 00 00 2F 00 16 FE
 FF 00 00 00 00 00 00 00 02 02 4E 0B 00 02 42 00 02 00 00 00
 00 02 42 00 02 3F 00 02 3C 30 82 02 38 30 82 01 A1 A0 03 02
 01 02 02 02 00 8B 30 0D 06 09 2A 86 48 86 F7 0D 01 01 05 05
 00 30 57

// EAP‑TLS Ack
<< 02 02 00 06 0D 00
 90 00

// 2nd fragment
>> A0 80 00 00 8A 01 03 00 8A 0D 40 31 0B 30 09 06 03 55 04 06
 13 02 55 53 31 11 30 0F 06 03 55 04 08 13 08 56 69 72 67 69
 6E 69 61 31 10 30 0E 06 03 55 04 07 13 07 46 61 69 72 66 61
 78 31 11 30 0F 06 03 55 04 0A 13 08 5A 6F 72 6B 2E 6F 72 67
 31 10 30 0E 06 03 55 04 03 13 07 52 6F 6F 74 20 43 41 30 1E
 17 0D 31 34 30 37 31 33 32 32 34 39 30 37 5A 17 0D 32 32 30
 39 32 39 32 32 34 39 30 37 5A 30 5D 31 0B 30 09 06 03 55 04
 06 13 02

// EAP‑TLS Ack
<< 02 03 00 06 0D 00
 90 00

// 3rd fragment
>> A0 80 00 00 8A 01 04 00 8A 0D 40 46 52 31 14 30 12 06 03 55
 04 08 13 0B 49 6C 65 44 65 46 72 61 6E 63 65 31 0E 30 0C 06
 03 55 04 07 13 05 50 61 72 69 73 31 17 30 15 06 03 55 04 0A
 13 0E 65 74 68 65 72 74 72 75 73 74 2E 63 6F 6D 31 0F 30 0D
 06 03 55 04 03 13 06 63 6C 69 65 6E 74 30 81 9F 30 0D 06 09
 2A 86 48 86 F7 0D 01 01 01 05 00 03 81 8D 00 30 81 89 02 81
 81 00 E3 83 38 A1 60 FE 8B 24 6F 39 E6 A8 A9 81 8F BE 9C E2
 E3 7F 45

// EAP‑TLS ack
<< 02 04 00 06 0D 00
 90 00

// 4th fragment
>> A0 80 00 00 8A 01 05 00 8A 0D 40 2F 9B C7 41 09 B2 10 52 38

 TLS and DTLS Security Modules December 2018

 3F 74 46 89 C4 A1 4E 28 9D F7 22 8B AF 90 D1 3C 3C 03 4A 2F
 FC AA 03 26 3E 21 6C 19 DB 87 D7 F6 19 D6 F4 57 A4 BA 08 14
 CB B3 1C 1F 01 76 6B 08 5A 4B 40 09 8B AB C8 6E 31 25 17 78
 04 78 84 0F CB 0E B1 B9 D0 27 73 30 0D AE C1 7D BB 8E 1B 65
 0A 17 51 23 9F C9 89 62 44 38 5C E6 63 A0 72 E2 99 67 02 03
 01 00 01 A3 0D 30 0B 30 09 06 03 55 1D 13 04 02 30 00 30 0D
 06 09 2A

// EAP‑TLS Ack
<< 02 05 00 06 0D 00
 90 00

 // 5th fragment

>> A0 80 00 00 8A 01 06 00 8A 0D 40 86 48 86 F7 0D 01 01 05 05
 00 03 81 81 00 7C 95 33 F9 17 27 BE CB 2A 85 6C A9 9E B8 4B
 07 9B 09 69 ED D1 8A 38 A5 CA 1B C6 44 06 F9 A3 BD E4 66 58
 C4 BE 92 32 C9 9E 43 42 26 9E EF 67 1D 6E A3 2C CE 59 DE 3E
 0F 07 3A 10 66 72 5E A1 E5 06 76 76 CC 8D C0 47 54 42 AB FA
 36 1C F1 8B 57 C0 A7 2B 65 52 4F 2E 36 75 D5 15 34 18 38 61
 3A 18 18 5D D5 E3 9E 8D 1C DD 3D D3 A6 93 3D 19 0C 9C FA 98
 C0 B0 5B

// EAP‑TLS Ack
<< 02 06 00 06 0D 00
 90 00

 // 6th and last fragment

>> A0 80 00 00 48 01 07 00 48 0D 00 4F 35 CF B2 88 51 6D 9F 75
 FD 16 FE FF 00 00 00 00 00 00 00 03 00 12 0D 00 00 06 00 03
 00 00 00 00 00 06 03 01 02 40 00 00 16 FE FF 00 00 00 00 00
 00 00 04 00 0C 0E 00 00 00 00 04 00 00 00 00 00 00

// Flight 5
// Certificate, KeyExchange, CertificateVerify, ChangeCipherSpec
// Finished, in EAP‑Response, 2 record layer messages
// RL‑seq=2, RL‑epoch=0, Handshake‑seq=2,3,4,5
// RL‑seq=0, RL‑epoch=0, Handshake‑seq=0

// EAP‑TLS message, 1st EAP fragment
<< 02 07 00 8A 0D C0 00 00 04 0F 16 FE FF 00 00 00 00 00 00 00
 02 03 A7 0B 00 02 7F 00 02 00 00 00 00 02 7F 00 02 7C 00 02
 79 30 82 02 75 30 82 01 DE A0 03 02 01 02 02 01 0C 30 0D 06
 09 2A 86 48 86 F7 0D 01 01 05 05 00 30 81 94 31 0B 30 09 06
 03 55 04 06 13 02 46 52 31 0F 30 0D 06 03 55 04 08 13 06 46
 72 61 6E 63 65 31 0E 30 0C 06 03 55 04 07 13 05 50 61 72 69
 73 31 13 30 11 06 03 55 04 0A 13 0A 45 74 68 65 72 54 90 00

 TLS and DTLS Security Modules December 2018

// EAP‑TLS ack
>> A0 80 00 00 06 01 08 00 06 0D 00

// 2nd EAP fragment
<< 02 08 00 86 0D 40 72 75 73 74 31 0D 30 0B 06 03 55 04 0B 13
 04 54 65 73 74 31 14 30 12 06 03 55 04 03 13 0B 50 61 73 63
 61 6C 55 72 69 65 6E 31 2A 30 28 06 09 2A 86 48 86 F7 0D 01
 09 01 16 1B 70 61 73 63 61 6C 2E 75 72 69 65 6E 40 65 74 68
 65 72 74 72 75 73 74 2E 63 6F 6D 30 1E 17 0D 31 34 30 37 31
 34 30 38 30 33 31 37 5A 17 0D 32 32 30 39 33 30 30 38 30 33
 31 37 5A 30 5D 31 0B 30 09 06 03 55 04 06
 90 00

// EAP‑TLS Ack
>> A0 80 00 00 06 01 09 00 06 0D 00

// 3rd EAP fragment
<< 02 09 00 86 0D 40 13 02 46 52 31 14 30 12 06 03 55 04 08 13
 0B 49 6C 65 44 65 46 72 61 6E 63 65 31 0E 30 0C 06 03 55 04
 07 13 05 50 61 72 69 73 31 17 30 15 06 03 55 04 0A 13 0E 65
 74 68 65 72 74 72 75 73 74 2E 63 6F 6D 31 0F 30 0D 06 03 55
 04 03 13 06 53 65 72 76 65 72 30 81 9F 30 0D 06 09 2A 86 48
 86 F7 0D 01 01 01 05 00 03 81 8D 00 30 81 89 02 81 81 00 D5
 E3 52 F5 55 2B 10 1D 7D E9 3F 1A 49 23 59
 90 00

// EAP‑TLS Ack
>> A0 80 00 00 06 01 0A 00 06 0D 00

// 4th EAP fragment
<< 02 0A 00 86 0D 40 8D F4 B2 E7 5C FE 4A 5B 0D D1 EA AB F2 A1
 6D 79 36 EA CC 06 E2 2B 4F C9 6C EB 7C 69 DB 22 BE B2 72 26
 26 A5 53 75 32 D4 80 7E CF AD 85 C1 B0 89 D4 35 FF B1 71 6B
 65 74 46 23 BD 52 B5 1B 90 D2 78 4B AF 1F EE C5 94 8D 9B 93
 55 70 4B 1B 5F E6 42 31 2D EA 48 BC C2 4E B4 CD C2 9F FF C2
 BE F2 D8 2B E2 99 AD 98 2E 22 EB 97 81 12 70 8E AF 37 29 02
 03 01 00 01 A3 0D 30 0B 30 09 06 03 55 1D
 90 00

// EAP‑TLS Ack
>> A0 80 00 00 06 01 0B 00 06 0D 00

// 5th EAP fragment
<< 02 0B 00 86 0D 40 13 04 02 30 00 30 0D 06 09 2A 86 48 86 F7
 0D 01 01 05 05 00 03 81 81 00 05 C2 17 66 F6 50 B5 BC EB 77
 CB 57 20 5A 46 9A FB FE 0B 53 1B E7 39 9F B4 8D FE A5 B8 5A
 5A 70 18 32 9C EE 0F 67 E8 F3 A2 61 94 5D A7 ED 89 F0 42 A3
 8C 85 CA 42 A9 94 49 C3 52 2C EF 9A 2E 64 DA BA B5 AE E9 29
 C4 F6 5D 7F E9 4D BF CF 7A D9 6D DE 22 3F E2 57 DF 50 B0 E3
 6E AD 69 4E 05 C8 B5 F7 DC FC 26 0D F8 B7
 90 00

 TLS and DTLS Security Modules December 2018

// EAP‑TLS Ack
>> A0 80 00 00 06 01 0C 00 06 0D 00

// 6th EAP fragment
<< 02 0C 00 86 0D 40 9A 9E B1 C3 9D 4C 4A C7 17 AB 72 18 80 84
 3F 71 4F CA 14 29 78 40 37 FF 10 00 00 82 00 03 00 00 00 00
 00 82 00 80 75 0B 3B E0 EC 77 E9 5E A0 4B A9 EE AE 1A B2 50
 37 13 3C 5A 93 8B A9 DD C1 9D 0F 50 21 9E 12 34 60 AA 74 BC
 AA 36 C7 41 D9 EA DE 25 6C A5 C7 43 F6 87 7A 4D 31 A0 50 D6
 B4 B9 F9 4E 6A FF D1 25 9A 62 18 43 54 3F 00 B6 31 21 C1 09
 28 9A BB 7B EE F0 62 92 5D E0 A3 9A CA E2
 90 00

// EAP‑TLS Ack
>> A0 80 00 00 06 01 0D 00 06 0D 00

// 7th EAP fragment
<< 02 0D 00 86 0D 40 51 EE 0A 87 85 36 BD 02 7A 40 B2 86 16 0E
 5E CE B5 E8 62 C0 3D F8 BC 2E F9 68 53 75 87 B7 AA 68 C8 EC
 65 AD 50 AD 0F 00 00 82 00 04 00 00 00 00 00 82 00 80 5A 35
 9C 84 56 48 04 91 2D EE 13 0D CB B1 C0 26 FE A9 37 40 B8 78
 A8 C5 06 27 94 2B 5D 04 65 2F 85 22 FB D7 56 04 72 C5 7B B4
 2D 41 E9 A9 4E 1D 14 1F F0 8C 83 40 FD 6A 84 39 49 E4 EF D6
 D1 8C 4E 7E 22 BD 96 5B 9B 2E 65 04 91 28
 90 00

// EAP‑TLS Ack
>> A0 80 00 00 06 01 0E 00 06 0D 00

// 8th EAP fragment
<< 02 0E 00 3A 0D 40 FE 91 4E 1A 1A 36 91 F1 05 12 C5 9D 78 11
 24 E6 65 44 E9 A2 80 4D F4 61 0C 79 5C 93 D5 B4 F0 29 47 DE
 50 91 77 6D 99 62 D8 3E 02 12 2C E0 75 BE A4 4F 1C B9
 90 00

// EAP‑TLS ack
>> A0 80 00 00 06 01 0F 00 06 0D 00

// 9th and last fragment
<< 02 0F 00 61 0D 00 14 FE FF 00 00 00 00 00 00 00 03 00 01 01
 16 FE FF 00 01 00 00 00 00 00 00 00 40 75 D7 8B EB FD 23 6F
 F7 63 65 D0 4C 40 1E F2 D5 9F 4D F0 D2 EA DF 6E F0 A8 89 7D
 15 86 B4 96 AB 93 61 9B 17 8D 01 50 64 C6 7C 76 BA 90 F7 22
 B3 D9 1A E3 B3 DA F4 43 1E 2C 3D 8B 49 02 D7 F6 6F
 90 00

DTLS Bridge sends 664 bytes
DTLS Bridge sends 155 bytes
DTLS Bridge sends 155 bytes

 TLS and DTLS Security Modules December 2018

DTLS Bridge sends 14 bytes
DTLS Bridge sends 77 bytes

DTLS Bridge receives
RL‑Seq=9, RL‑epoch=0
RL‑Seq=0, RL‑epoch=1

// Flight 6
// ChangeCipherSpec, Finished, in EAP‑TLS Request
>> A0 80 00 00 61 01 10 00 61 0D 00 14 FE FF 00 00 00 00 00 00
 00 09 00 01 01 16 FE FF 00 01 00 00 00 00 00 00 00 40 3F 2C
 D4 FE 86 92 89 66 C7 97 59 F1 C4 B8 15 C4 20 EC 39 FB B5 D5
 37 D9 86 72 37 95 DF 88 3A 22 A8 54 98 F0 BD 99 AF AC 37 62
 38 0C 86 4A 47 1B C0 63 08 CF 57 1B 5C DC 8C 7B C9 DB FE C0
 64 11

// EAP‑TLS Ack
<< 02 10 00 06 0D 00
 90 00

 TLS handshake completion

 // Process-EAP-Encrypt type=17h, payload = 16x AA

 >> A0 80 00 97 16 01 11 00 16 0D 00 AA AA AA AA AA AA AA AA AA

 AA AA AA AA AA AA AA

// Encrypted DTLS Record Layer packet in EAP‑Response
<< 02 11 00 57 0D 80 00 00 00 4D 17 FE FF 00 01 00 00 00 00 00
 01 00 40 2C E9 45 8E A9 44 FA 2B 13 75 A3 A3 63 01 F5 29 91
 8B 20 B1 9B E2 7D 30 2D 91 D1 32 9A 6F 2E 3E D1 7B 64 F0 2A
 06 3E C3 5E 34 81 A0 2D 6D C5 30 70 41 83 4A 1C 09 E6 93 66
 76 23 45 63 14 3E BB
 90 00

Bridge sends 77 bytes
Bridge receives RL‑seq=1, RL‑epoch=1

//Process‑EAP‑Decrypt
>> A0 80 00 00 53 01 12 00 53 0D 00 17 FE FF 00 01 00 00 00 00
 00 01 00 40 0F 0E EE 3C F7 F4 FF 87 03 22 53 93 53 0D 83 E8
 86 A5 F4 36 FB 94 B3 58 B3 A8 86 1A 29 B5 A8 BB 6A EA 8B ED
 B9 81 62 A4 96 57 7B 39 8E 55 E5 D1 0E DC 74 49 42 16 27 60
 C3 32 ED DA CC D3 42 4A

// DTLS Record Layer Clear Payload = 16x AA
<< 02 12 00 1A 0D 80 00 00 00 10 AA AA AA AA AA AA AA AA AA AA
 AA AA AA AA AA AA
 90 00

 TLS and DTLS Security Modules December 2018

// Process‑EAP‑Encrypt type=15h (Alert), payload = 0100
>> A0 80 00 95 08 01 13 00 08 0D 00 01 00

// Encrypted DTLS Record Layer packet in EAP‑Response
<< 02 13 00 47 0D 80 00 00 00 3D 15 FE FF 00 01 00 00 00 00 00
 02 00 30 76 A5 73 71 9A 69 A3 8F DE 2F 0D 3D 15 49 D5 C1 01
 23 AE 0A 0B BB 14 F4 EC 8E 2E 84 A0 76 20 BF 3B 56 E7 C2 B9
 A4 0B 13 C2 71 BD AE C4 7F 95 32
 90 00

Bridge sends 61 bytes
Bridges receives RL‑seq=2, RL‑epoch=1

//Process‑EAP‑Decrypt
>> A0 80 00 00 43 01 14 00 43 0D 00 15 FE FF 00 01 00 00 00 00
 00 02 00 30 6B 4A 48 86 92 88 95 3C D9 0D 7B CD 9E 94 7B 93
 02 5C 75 FE C1 25 3E 5B 0D 99 8D 13 06 A3 3D 36 12 CD F9 1B
 23 0B CE 6E 55 E1 B1 9F 39 18 FA 10

// DTLS Record Layer Clear Payload = 0100
<< 02 14 00 0C 0D 80 00 00 00 02 01 00
 90 00

8 Security Considerations

9 IANA Considerations

10 References

10.1 Normative References

 [TLS 1.0] Dierks, T., C. Allen, "The TLS Protocol Version 1.0", RFC
 2246, January 1999

 [TLS 1.1] Dierks, T., Rescorla, E., "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006

 [DTLS 1.0] E. Rescorla, N. Modadugu, " Datagram Transport Layer
 Security", RFC 4347, April 2006

 [EAP-TLS]
 D. Simon, B. Aboba, R. Hurst, "The EAP-TLS Authentication
 Protocol", RFC 5216, March 2008

 [TLS 1.2] Dierks, T., Rescorla, E., "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 5746, August 2008

 TLS and DTLS Security Modules December 2018

[DTLS 1.2] E. Rescorla, N. Modadugu "Datagram Transport Layer
Security Version 1.2", RFC 6347, January 2012

 [COAP]
 Z. Shelby, K. Hartke, C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, June 2014

 [ISO7816]
 ISO 7816, "Cards Identification - Integrated Circuit Cards
 with Contacts", The International Organization for Standardization
 (ISO)

10.2 Informative References

 [EAP SC] Urien, P., "EAP Support in Smartcard", draft-urien-eap-
 smartcard-30.txt, December 2016

11 Authors' Addresses

Pascal Urien
Telecom ParisTech
23 avenue d'Italie
75013 Paris Phone: NA
France Email: Pascal.Urien@telecom‑paristech.fr

RFC eBook Conversion

This text describes the conversion process used to create this
ebook.

Conversion process for rfc.mobi/rfc.epub

The conversion process goes like follows:

	Update rfc index from the www.ietf.org

	Create the cover jpg from the postscript file and scale it
down

	Create list of files to be included to the book

	Create ncx file based on the list created before

	Go through RFCs and convert them from text to html

	Create opf file for the book

	Convert the rfc-index.txt to index.html file

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.

Conversion process for working group internet-drafts

The conversion process goes like follows:

	Update rfc and internet-draft reposotiries from the
www.ietf.org

	Create the directory structure where we have one directory for
each area, and inside that directory we have directory for each
working group in that area. Also create the .htaccess file containing
full names for working groups.

	Create ebooks, by looping through all working groups in all areas
and do following:

	Fetch list of working group drafts, RFCs and related from the
http://datatracker.ietf.org/wg/wgname/documents/txt.

	Create the cover jpg from the postscript file and scale it
down

	Create ncx file based on the list created before

	Go through documents and convert them from text to html

	Create opf file for the book

	Create index.html file based on the files and titles fetched in
the beginning from datatracker.

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

	 Copy .epub and .mobi files to the correct place in the directory
structure.

Creating Cover page

make-cover.sh "\nRFC Index\n$date" "$time" \
 "ietf-logo.eps" > rfc.jpg

This program takes the title, time and logo postscript, and creates
a postscript file which it then runs through ghostscript and converts
it file suitable for the Kindle 3. The title can have three lines
separated with "\n". Normally the top two lines contain the
actual title, and third line contains the date of conversion. The time
is added to the end of the page with small font, so it can be used
during development phase to see which version of ebook this is (during
development I did have multiple versions loaded to my Kindle and it
was painful to find out which one of them is newest before this was
added). The logo is ietf-logo.eps directly from the IETF web page.

The page is initially created at 2400x3200 pixel resolution and
then scaled down to 25% of size meaning the final page is 600x800
pixels in size.

Creating NCX file

For RFC ebook:

make-ncx.pl --title "RFC Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file $ncxtocentries \
 --out \
 --class book \
 --include-regexp '^rfc[0-9][0-9][0-9]1' \
 --split-regexp '^rfc[0-9][0-9]01' \
 --input-file $ncxrfcentries

For the Internet-Draft ebooks:

make-ncx.pl --title "$wg Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --class book \
 --input-file $ncxentries

NCX file contains list all files and the navigation information.
That is used when you press left or right arrows on the kindle to see
where to move next. See make-ncx manual
page for information about options.

Creating OPF file

For RFC ebook:

files=`ls -1 "$dir"/rfc*.html | sed 's/.*\///g'`
make-opf.pl --title "RFC Index $date" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 --output rfc.opf \
 intro.html \
 $files \
 conversion.html \
 $manpages

For the Internet-Draft ebooks:

make-opf.pl --title "$wg ID and RFC Docs $date" \
 --language en \
 --cover wg.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "$wg RFCs and Internet-Drafts" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc wg-"$wg".ncx \
 --output "$opf" \
 $files \
 conversion.html \
 $manpages

Open package format file describes what files are in the ebook. It
also contains information where to start reading and in which order
entries are appearing in the book. See make-opf manual page for information about
options.

Converting text RFC to html

For RFCs the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -r $rfcnum \
 -o rfc$rfcnum.html \
 $rfctxtfile

For Internet-Drafts the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -t $draft-name \
 -o $draft-name.html \
 $draft-name.txt

This program takes the text formatted RFC or Internet-Draft and
formats it to html suitable for ebooks. The first step is to remove
page formatting (page breaks, page numbers, page headers and footers).
In that phase it also tries to see if one textual paragraph is
continuing from the previous page to the next, and if so then it will
glue them together. The second phase is to go through all paragraphs
and try to find out what type of paragraph it is (text, picture,
header, table of contents, authors address section, terminology
defination, bulleted or numbered list, references section). After this
it goes through the actual text paragraphs and converts them to html
suitable for their type. See rfc2html manual page for information about
options.

Converting rfc-index.txt to index.html

TBF

Creating .mobi file

kindlegen rfc.opf -c1 -verbose

TBF

Converting files to .epub format

makeepub.sh current

TBF

Kindle 3 issues

Issues I have found when converting this to kindle 3

Ncx file size

It seems there is maximum number of items the ncx file can have, or
some other limitation in the ncx file parsing. When I included all the
rfcs to the ncx file then the next and previous arrows in the kindle 3
does not work anymore. If the number if items is reduced then they
start working.

Kindle -c2 compression

When I tried to use the best compression of kindlegen, the program
did create a eBook file but all the links inside the file pointed in
wrong place, i.e. when you used link to go rfc5996 you ended up in the
middle of rfc6020 or so.

No support for multiple indexes

The mobipockect supports multiple indexes and the eBook originally
included titleword and full title text indexes, but those were removed
as kindle 3 does not support them.

Last item in might be missing in index

The automatic index (using the menu and selecting index) sometimes
misses the last item in it. Thats why I added this conversion
description to the end, so if something is missing it will be this
text.

Kindle 3 and pictures

Kindle 3 does support monospace font and the screen is wide enough
for 67 charactes if screen is rotated. This allows the normal 32 bit
packet frame description pictures to be shown properly using the
normal pre-tag. The Kindle 3 will still wrap words to the next line,
and this was problematic when combined with hyphens used in pictures.
To fix this all the hyphens in the text are converted to the
no-breaking hyphens.

No-breaking hyphen not shown properly on Kindle for PC

Because of the previous issue with word wrap we needed to use
non-breaking hyphens, but unfortunately they do not show properly on
the kindle for PC, but instead of unknown character box is shown
instead.

Searching does not work

For some reason the searching from the RFC eBook does not work on
the Kindle 3.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-ncx - Create NCX file

[bookmark: synopsis]SYNOPSIS

make-ncx [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--depth|-d depth-of-toc]
 [--total-page-count|-T total-page-count]
 [--max-page-number|-m max-page-number]
 [--separator|-s separator-regexp]
 --author|-a author
 --title|-t title
 entry ...
 [--class|-c class] entry ...
 [--in] entry ... [--out]
 [--autosplit|-A split-count] entry ...
 [--include-regexp include-regexp] entry ...
 [--exclude-regexp exclude-regexp] entry ...
 [--split-regexp split-regexp] entry ...
 [--input-file|-i input-file] entry ...
 entry ...

make-ncx --help

[bookmark: description]DESCRIPTION

make-ncx takes list of ncx entries and creates NCX (Navigation
Control for for XML applications Format) file out of them.

NCX is hierarchical structure, and the make-ncx supports this so
that the list of entries can include --in and --out options to
in and out in the hierarchy. Note, that the first item is always on
level 1 and you can go in only one level per entry, i.e. adding two
--in options right after each other is an error. Multiple --out
options is allowed, but going out from level 1 is not allowed.

Each entry contain 4 fields separated from each other by separator
regexp. The first field is the class of the entry. This can be
something like "book", "toc", "entry" etc. Second field is the id of
the entry. This should be something unique. Third field is the actual
link inside the mobibook, i.e. "index.html", "index.html#s1000" or
"rfc1234.html". Last field is the text of the entry.

If only 3 fields are given then they are assumed to be id, link and
text, and the class is the one given with --class option.

If only 2 fields are given then they are assumed to be link and text,
and the class is processed as with 3 fields, and id is autogenerated
from the link, by removing path, prefixes and special chars.

If only one field is given then it is assumed to be link, and class
and id is generated as previously, and link is converted to text by
removing prefixes and removing some special charactes and replacing
'/', '-', '_' to spaces.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: depth_d_depth_of_toc]--depth -d depth-of-toc

	
Max depth of the NCX file. If not given this is autodetected from the
options.

	[bookmark: total_page_count_t_total_page_count]--total-page-count -T total-page-count

	
Sets total page count. If not given this is set to 0.

	[bookmark: max_page_number_m_max_page_number]--max-page-number -m max-page-number

	
Sets max page number. If not given this is set to 0.

	[bookmark: separator_s_separator_regexp]--separator -s separator-regexp

	
Separator regexp used to split entries to class, id, link and text.
Defaults to ':'

	[bookmark: author_a_author]--author -a author

	
Author of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: in]--in

	
Go one level into the hierarchy. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: out]--out

	
Go one level out in the hierarchy. This option is used inside the
entry list and it affects the entries coming after it.

	[bookmark: class_c]--class -c

	
Set the class of the entries coming after this if no class given in
the entry. This option is used inside the entry list and it affects
the entries coming after it.

	[bookmark: autosplit_a_split_count]--autosplit -A split-count

	
Starts autosplitting long list of entries, so that split-count
entries are combined so that the first entry stays at current level,
and all other entries are moved in one level inside the first entry.
This process is repeated until --in, --out, or new
--autosplit option is found. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: include_regexp_include_regexp]--include-regexp include-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which are matching this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: exclude_regexp_exclude_regexp]--exclude-regexp exclude-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which do not match this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: split_regexp_split_regexp]--split-regexp split-regexp

	
Automatically split entries to sublevels based on the regexp. This
will match entries against the regexp and when first match is found it
will put this entry on current level and then go down one level, and
then put all further entries not matching this regexp to that level.
Further matching entries are moved to the same level as the first one.
This can be used in combination with --autosplit option in which
case --autosplit entries will be below this, meaning the hierarchy
will have 3 levels. Top level contains the entries matching this
regexp. The next level contains every Nth entry and lowest level
contains all other entries. Every time matching entry is found the
--autosplit counter is reset.

	[bookmark: input_file_i_input_file]--input-file -i input-file

	
Reads the list of options from the input-file instead of reading
them from command line. The options are in the file one option at
line, and are processed exactly as they would be on the command line.
This means that you can give --class, --in, --autosplit etc options
first and then just get the list of filenames from the file.

[bookmark: examples]EXAMPLES

make-ncx --title foo \
 --author bar \
 toc:toc:index.html:Index \
 book:rfc0001:rfc0001.html:RFC0001

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 0000:index.html#s0000:RFC0000 \
 1000:index.html#s1000:RFC1000 \
 2000:index.html#s2000:RFC2000 \
 3000:index.html#s3000:RFC3000 \
 4000:index.html#s4000:RFC4000 \
 5000:index.html#s5000:RFC5000 \
 6000:index.html#s6000:RFC6000 \
 --out \
 --class book \
 --autosplit 5 \
 rfc0001.html rfc0002.html rfc0003.html rfc0004.html rfc0005.html \
 rfc0006.html rfc0007.html rfc0008.html rfc0009.html rfc0010.html \
 rfc6001.html rfc6002.html rfc6003.html rfc6004.html rfc6005.html \
 rfc6006.html rfc6007.html

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file toc-entries.txt \
 --out \
 --class book \
 --autosplit 5 \
 --input-file rfc-list.txt

[bookmark: files]FILES

	[bookmark: makencxrc]~/.makencxrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-opf - Create OPF file

[bookmark: synopsis]SYNOPSIS

make-opf [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--beginning|-b first-page-filename]
 [--cover|-c cover-jpg-file-name]
 [--creator|-C creator]
 [--date|-D date]
 [--description|-d description]
 --id|-i id
 [--index|-I index-html-file-name]
 --language|-l language
 [--publisher|-p publisher]
 [--role|-r creator-role]
 [--stylesheet|-S stylesheet-css-file-name]
 [--subject|-s subject]
 --title|-t title
 [--toc|-T toc-ncs-file-name]
 filename ...

make-opf --help

[bookmark: description]DESCRIPTION

make-opf takes list of html files inside the mobibook and creates a
OPF (Open Packaging Format) file out of them.

Files are added to the spine in the order they appear in the command
line. Note, that before any files there is --cover, --beginning
and ---index pages, which always come in that order in the
beginning of the book.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: beginning_b_first_page_filen_file_name]--beginning -b first-page-filen-file-name

	
File name inside the mobibook which is used as a beginning of the
book, i.e. when book is opened it comes to this page.

	[bookmark: cover_c_cover_jpg_file_name]--cover -c cover-jpg-file-name

	
File name inside the mobibook which is used as a cover page for the
publication. Must be jpg file. This is mandatory for Kindle books.

	[bookmark: creator_c_creator]--creator -C creator

	
Creator of the publication. Usually the name of the author.

	[bookmark: date_d_date]--date -D date

	
Date of the publication.

	[bookmark: description_d_description]--description -d description

	
Short description of the publication.

	[bookmark: id_i_id]--id -i id

	
Unique ID for the publication.

	[bookmark: index_i_index_html_file_name]--index -I index-html-file-name

	
File name inside the mobibook which is used as index. If included this
is also used as table of contents.

	[bookmark: language_l_language]--language -l language

	
Language tag of the publication. Typically "en".

	[bookmark: publisher_p_publisher]--publisher -p publisher

	
Publisher name.

	[bookmark: role_r_creator_role]--role -r creator-role

	
Role of the creator, i.e. author (aut), collaborator (clb), editor
(edt) etc.

	[bookmark: stylesheet_s_stylesheet_css_filename]--stylesheet -S stylesheet-css-filename

	
File name inside the mobibook which used as css stylesheet.

	[bookmark: subject_s_subject]--subject -S subject

	
Subject of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: toc_t_toc_ncs_file_name]--toc -T toc-ncs-file-name

	
File name inside the mobibook which is used as NCS table of contents
file name.

[bookmark: examples]EXAMPLES

make-opf.pl --title "${partial}RFC Index $d" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$d" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 rfc*.html

[bookmark: files]FILES

	[bookmark: makeopfrc]~/.makeopfrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

rfc2html - Convert RFC to simple html

[bookmark: synopsis]SYNOPSIS

rfc2html [--help|-h] [--version|-V] [--verbose|-v]
 [--key-index]
 [--navigation|-n navigation-links]
 [--filelist|-f filelist-file]
 [--rfc|-r rfc-number]
 [--title|-t title-prefix]
 [--output|-o output-file]
 [--config config-file]
 filename ...

rfc2html --help

[bookmark: description]DESCRIPTION

rfc2html takes RFC txt file and converts it to simple html file.

filename is read in and new file is created so that .txt extension
is removed from the filename (if it exists) and .html extesion is
added.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to <inputfile>.txt.

	[bookmark: rfc_r_rfc_number]--rfc -r rfc-number

	
Gives the RFC number of the current file. Used to make title
information correct.

	[bookmark: title_t_title_prefix]--title -t title-prefix

	
Gives text added to the beginning of the title, for example the file
name.

	[bookmark: filelist_f_file_list_filename]--filelist -f file-list-filename

	
Filename of the file containing list of files in the book. If given
only those links pointing to files listed in this file are converted
to links.

	[bookmark: navigation_n_navigation_links]--navigation -n navigation-links

	
Creates navigation links at the top of the file. The navigation links
text is semicolon separated list of navigation links. Each link
consists of file name inside the book, and the link title. The
filename can either be full filename like "index.html", or it can be
relative filename like "-1" or "+100". Using this option requires that
the filelist option is also used and all links given here are found
from the filelist. The filelist is also used to find the current file
name and then calculate relative filenames from there, i.e. "-1" means
the filename in the filename list just before this file.

The filename used for searching this entry from the filelist is the
output filename, and if exact match is not found then the path
components are removed and file is searched again.

	[bookmark: key_index]--key-index

	
Create key index entries. Those are only useful for mobipacket reader,
they do not work on kindle.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

[bookmark: examples]EXAMPLES

 rfc2html rfc5996.txt
 rfc2html *.txt

[bookmark: files]FILES

	[bookmark: rfc2htmlrc]~/.rfc2htmlrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created based on the rfcmarkup version 1.90 to
convert RFCs to simple html suitable for kindle ebook conversion. The
rfcmarkup tries to keep formatting intact, while this actually removes
things which are not needed in ebooks, i.e page breaks and page
numbers, and makes text paragraphs as html paragraphs, instead of
using <pre> around the whole file.

OPS/wg.jpg
uta
Documents
2019-05-19

SO ¢

1 E T F

Kindle transformation by Tero Kivinen
or2r2s

