

Working Group ID and RFC eBook

Introduction

This book is a collection of RFCs and Internet-Drafts related to
specific working group. The RFC and Internet-Drafts files are normally
stored in plain ascii text format and they are converted to html
suitable for eBook use by automatic scripts. Those scripts try to
detect headers, pictures, lists, references etc and create special
html for each of those. For text paragraphs those scripts remove
indentation and hard linebreaks and makes text paragraphs as normal
text so font size of the eBook can be adjusted at will and features
like text-to-speech work.

As this conversion is completely automatic there might be errors in
the converted files. I have tried to fix the issues when I find them,
but sometimes fixing issue in one RFC cause problems in others, so not
all errors can be easily fixed, this is especially true for very old
RFCs which do not follow the formatting specifications. If you notice
errors in the formatting please send email to the
<kivinen+rfc-ebook@iki.fi> and describle the problem.
Please, remember to include the RFC number and the version number of
the eBook file (found from the cover page).

As the collection of RFCs is quite large there has been some issues
with the conversion to kindle, and some features do not seem to work
properly when full set of RFCs is used. Because of this some
work-arounds have been made to make the eBook still usable. If the
kindle software gets updated some of those work-arounds might be
removed. For more information about those see the Conversion section.

The primary output format of the scripts is the .mobi
format used in the kindle, and I have been using Kindle 3 as my
primary testing device, so if other reader devices are used, there
might be more issues. The automatic tools also create the
.ePub file, which can be used on platforms which do not
support .mobi format. There is program called mobipocket for
reading .mobi files, and that program is available for wide
range of devices including PalmOS, Symbian, PC, Windows Mobile,
Blackberry etc, so also those devices can be used in addition to
normal eBook readers.

How to use this book

In this section I will concentrate mostly on how to use this on
Kindle 3. This eBook contains 5 main parts:

	Cover page

	This introduction

	Index

	RFCs and Internet-Drafts

	Description of the conversion process

The cover page includes the date when this
eBook was created (i.e. eBook version).

The conversion section includes technical information how this
eBook was created and some known issues etc.

Navigation

There are four main ways to navigate through the book in addition
to normal page up and down.

Fastest way to go to specific RFC or Internet-Draft is to press
menu button on the Kindle 3, and then select Index from
the menu. This will give you the automatic index of the contents of
the this file. This allows quick access to the RFC by just typing the
numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y
will jump you to the RFC 5996 and then you can use arrow down to
select RFC and hit enter to go there. For internet draft start typing
the draft name.

Another option is to use the RFC Index in the beginning of the file
(You can get to there by either pressing menu, selecting
Index and then clicking on the Index in the beginning
of the index, or by pressing menu, selecting Go to...
and then selecting Table of Contents).

Third option is to use left and right arrows to navigate the next
and previous RFC/Internet-Drafts.

The fourth way to navigate inside the book is to use the links
inside the files. The RFC Index has direct links to every 100th RFC.
Each file contains links to back 5, forward 5, next and previous rfc.
Also any reference inside the documents pointing to other RFCs gets
you directly there. Some of the links inside RFC moves you inside the
RFC, i.e. clicking link on the table of contents inside the RFC moves
you to that section etc. Also references inside the RFC will move you
to the refences section etc.

webtrans RFC and Internet-Draft Index

Index

Active

	draft-ietf-webtrans-overview-00 The WebTransport Protocol Framework

Related Active

	draft-kinnear-webtransport-http2-01 WebTransport using HTTP/2

	draft-vvv-webtransport-http3-02 WebTransport over HTTP/3

	draft-vvv-webtransport-quic-02 WebTransport over QUIC

draft-ietf-webtrans-overview-00 - The WebTransport Protocol Framework

Index
Next

WEBTRANS

Internet-Draft

Intended status: Standards Track

Expires: 19 October 2020

V. Vasiliev

Google

17 April 2020

The WebTransport Protocol Framework

draft-ietf-webtrans-overview-00

Abstract

 The WebTransport Protocol Framework enables clients constrained by
 the Web security model to communicate with a remote server using a
 secure multiplexed transport. It consists of a set of individual
 protocols that are safe to expose to untrusted applications, combined
 with a model that allows them to be used interchangeably.

 This document defines the overall requirements on the protocols used
 in WebTransport, as well as the common features of the protocols,
 support for some of which may be optional.

Note to Readers

 Discussion of this draft takes place on the WebTransport mailing list
 (webtransport@ietf.org), which is archived at
 <https://mailarchive.ietf.org/arch/search/?email_list=webtransport>.

 The repository tracking the issues for this draft can be found at
 <https://github.com/ietf-wg-webtrans/draft-ietf-webtrans-overview/
 issues>. The web API draft corresponding to this document can be
 found at <https://wicg.github.io/web-transport/>.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 19 October 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Background

	 1.2. Conventions and Definitions

	2. Common Transport Requirements

	3. Session Establishment

	4. Transport Features
	 4.1. Datagrams

	 4.2. Streams

	 4.3. Protocol-Specific Features

	 4.4. Bandwidth Prediction

	5. Buffering and Prioritization

	6. Transport Properties

	7. Security Considerations

	8. IANA Considerations

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Author's Address

1. Introduction

 The WebTransport Protocol Framework enables clients constrained by
 the Web security model to communicate with a remote server using a
 secure multiplexed transport. It consists of a set of individual
 protocols that are safe to expose to untrusted applications, combined
 with a model that allows them to be used interchangeably.

 This document defines the overall requirements on the protocols used
 in WebTransport, as well as the common features of the protocols,
 support for some of which may be optional.

1.1. Background

 Historically, web applications that needed a bidirectional data
 stream between a client and a server could rely on WebSockets
 [RFC6455], a message-based protocol compatible with the Web security
 model. However, since the abstraction it provides is a single
 ordered stream of messages, it suffers from head-of-line blocking
 (HOLB), meaning that all messages must be sent and received in order
 even if they are independent and some of them are no longer needed.
 This makes it a poor fit for latency-sensitive applications which
 rely on partial reliability and stream independence for performance.

 One existing option available to Web developers are WebRTC data
 channels [I-D.ietf-rtcweb-data-channel], which provide a WebSocket-
 like API for a peer-to-peer SCTP channel protected by DTLS. In
 theory, it is possible to use it for the use cases addressed by this
 specification. However, in practice, its use in non-browser-to-
 browser settings has been quite low due to its dependency on ICE
 (which fits poorly with the Web model) and userspace SCTP (which has
 very few implementations available).

 An alternative design would be to layer WebSockets over HTTP/3
 [I-D.ietf-quic-http] in a manner similar to how they are currently
 layered over HTTP/2 [RFC8441]. That would avoid head-of-line
 blocking and provide an ability to cancel a stream by closing the
 corresponding WebSocket object. However, this approach has a number
 of drawbacks, which all stem primarily from the fact that
 semantically each WebSocket is a completely independent entity:

 * Each new stream would require a WebSocket handshake to agree on
 application protocol used, meaning that it would take at least one
 RTT to establish each new stream before the client can write to
 it.

 * Only clients can initiate streams. Server-initiated streams and
 other alternative modes of communication (such as the QUIC
 DATAGRAM frame [I-D.pauly-quic-datagram]) are not available.

 * While the streams would normally be pooled by the user agent, this
 is not guaranteed, and the general process of mapping a WebSocket
 to a server is opaque to the client. This introduces
 unpredictable performance properties into the system, and prevents
 optimizations which rely on the streams being on the same
 connection (for instance, it might be possible for the client to
 request different retransmission priorities for different streams,
 but that would be much more complex unless they are all on the
 same connection).

 The WebTransport protocol framework avoids all of those issues by
 letting applications create a single transport object that can
 contain multiple streams multiplexed together in a single context
 (similar to SCTP, HTTP/2, QUIC and others), and can be also used to
 send unreliable datagrams (similar to UDP).

1.2. Conventions and Definitions

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 WebTransport is a framework that aims to abstract away the underlying
 transport protocol while still exposing a few key transport-layer
 aspects to application developers. It is structured around the
 following concepts:

Transport session: A transport session is a single communication
 context established between a client and a server. It may
 correspond to a specific transport‑layer connection, or it may be
 a logical entity within an existing multiplexed transport‑layer
 connection. Transport sessions are logically independent from one
 another even if some sessions can share an underlying transport‑
 layer connection.

Transport protocol: A transport protocol (WebTransport protocol in
 contexts where this might be ambiguous) is an instantiation of
 WebTransport over a given transport‑layer protocol.

Datagram: A datagram is a unit of transmission that is treated
 atomically.

Stream: A stream is a sequence of bytes that is reliably delivered
 to the receiving application in the same order as it was
 transmitted by the sender. Streams can be of arbitrary length,
 and therefore cannot always be buffered entirely in memory. It is
 expected for transport protocols and APIs to provide partial
 stream data to the application before the stream has been entirely
 received.

Message: A message is a stream that is sufficiently small that it
 can be fully buffered before being passed to the application.
 WebTransport does not define messages as a primitive, since from
 the transport perspective they can be simulated by fully buffering
 a stream before passing it to the application. However, this
 distinction is important to highlight since some of the similar
 protocols and APIs (notably WebSocket [RFC6455]) use messages as a
 core abstraction.

Transport property: A transport property is a specific behavior that
 may or may not be exhibited by a transport. Some of those are
 inherent for all instances of a given transport protocol (TCP‑
 based transport cannot support unreliable delivery), while others
 can vary even within the same protocol (QUIC connections may or
 may not support connection migration).

Server: A WebTransport server is an application that accepts
 incoming transport sessions.

Client: A WebTransport client is an application that initiates the
 transport session and may be running in a constrained security
 context, for instance, a JavaScript application running inside a
 browser.

User agent: A WebTransport user agent is a software system that has
 an unrestricted access to the host network stack and can create
 transports on behalf of the client.

2. Common Transport Requirements

 Since clients are not necessarily trusted and have to be constrained
 by the Web security model, WebTransport imposes certain requirements
 on any specific transport protocol used.

 Any transport protocol used MUST use TLS [RFC8446] or a semantically
 equivalent security protocol (for instance, DTLS
 [I-D.ietf-tls-dtls13]). The protocols SHOULD use TLS version 1.3 or
 later, unless they aim for backwards compatibility with legacy
 systems.

 Any transport protocol used MUST require the user agent to obtain and
 maintain explicit consent from the server to send data. For
 connection-oriented protocols (such as TCP or QUIC), the connection
 establishment and keep-alive mechanisms suffice. STUN Consent
 Freshness [RFC7675] is another example of the mechanism satisfying
 this requirement.

 Any transport protocol used MUST limit the rate at which the client
 sends data. This SHOULD be accomplished via a feedback-based
 congestion control mechanism (such as [RFC5681] or
 [I-D.ietf-quic-recovery]).

 Any transport protocol used MUST support simultaneously establishing
 multiple sessions between the same client and server.

 Any transport protocol used MUST prevent the clients from
 establishing transport sessions to network endpoints that are not
 WebTransport servers.

 Any transport protocol used MUST provide a way for servers to filter
 clients that can access it by checking the initiating origin
 [RFC6454].

 Any transport protocol used MUST provide a way for a server endpoint
 location to be described using a URI [RFC3986]. This enables
 integration with various Web platform features that represent
 resources as URIs, such as Content Security Policy [CSP].

3. Session Establishment

 WebTransport session establishment is most often asynchronous,
 although in some transports it can succeed instantaneously (for
 instance, if a transport is immediately pooled with an existing
 connection). A session MUST NOT be considered established until it
 is secure against replay attacks. For instance, in protocols
 creating a new TLS 1.3 session [RFC8446], this would mean that the
 user agent MUST NOT treat the session as established until it
 received a Finished message from the server.

 In some cases, the transport protocol might allow transmitting data
 before the session is established; an example is TLS 0-RTT data.
 Since this data can be replayed by attackers, it MUST NOT be used
 unless the client has explicitly requested 0-RTT for specific streams
 or datagrams it knows to be safely replayable.

4. Transport Features

 The following transport features are defined in this document. This
 list is not meant to be comprehensive; future documents may define
 new features for both new and already existing transports.

 All transport protocols MUST provide datagrams, unidirectional and
 bidirectional streams in order to make the transport protocols easily
 interchangeable.

4.1. Datagrams

 A datagram is a sequence of bytes that is limited in size (generally
 to the path MTU) and is not expected to be transmitted reliably. The
 general goal for WebTransport datagrams is to be similar in behavior
 to UDP while being subject to common requirements expressed in
 Section 2.

 The WebTransport sender is not expected to retransmit datagrams,
 though it may if it is using a TCP-based protocol or some other
 underlying protocol that requires reliable delivery. WebTransport
 datagrams are not expected to be flow controlled, meaning that the
 receiver might drop datagrams if the application is not consuming
 them fast enough.

 The application MUST be provided with the maxiumum datagram size that
 it can send. The size SHOULD be derived from the result of
 performing path MTU discovery.

4.2. Streams

 A unidirectional stream is a one-way reliable in-order stream of
 bytes where the initiator is the only endpoint that can send data. A
 bidirectional stream allows both endpoints to send data and can be
 conceptually represented as a pair of unidirectional streams.

 The streams are in general expected to follow the semantics and the
 state machine of QUIC streams ([I-D.ietf-quic-transport], Sections 2
 and 3). TODO: describe the stream state machine explicitly.

 A WebTransport stream can be reset, indicating that the endpoint is
 not interested in either sending or receiving any data related to the
 stream. In that case, the sender is expected to not retransmit any
 data that was already sent on that stream.

 Streams SHOULD be sufficiently lightweight that they can be used as
 messages.

 Data sent on a stream is flow controlled by the transport protocol.
 In addition to flow controlling stream data, the creation of new
 streams is flow controlled as well: an endpoint may only open a
 limited number of streams until the peer explicitly allows creating
 more streams.

 Every stream within a transport has a unique 64-bit number
 identifying it. Both unidirectional and bidirectional streams share
 the number space. The client and the server have to agree on the
 numbering, so it can be referenced in the application payload.
 WebTransport does not impose any other specific restrictions on the
 structure of stream IDs, and they should be treated as opaque 64-bit
 blobs.

4.3. Protocol-Specific Features

 In addition to features described above, there are some capabilities
 that may be provided by an individual protocol but are not
 universally applicable to all protocols. Those are allowed, but any
 protocol is expected to be useful without those features, and
 portable clients should not rely on them.

 A notable class of protocol-specific features are features available
 only in non-pooled transports. Since those transports have a
 dedicated connection, a user agent can provide clients with an
 extensive amount of transport-level data that would be too noisy and
 difficult to interpret when the connection is shared with unrelated
 traffic. For instance, a user agent can provide the number of
 packets lost, or the number of times stream data was delayed due to
 flow control. It can also expose variables related to congestion
 control, such as the size of the congestion window or the current
 pacing rate.

4.4. Bandwidth Prediction

 Using congestion control state and transport metrics, the client can
 predict the rate at which it can send data. That is essential for
 many WebTransport use cases; for instance, real time media
 applications adapt the video bitrate to be a fraction of the
 throughput they expect to be available. While not all transport
 protocols can provide low-level transport details, all protocols
 SHOULD provide the client with an estimate of the available
 bandwidth.

5. Buffering and Prioritization

 TODO: expand this outline into a full summary.

 * Datagrams are intended for low-latency communications, so the
 buffers for them should be small, and prioritized over stream
 data.

 * In general, the transport should not apply aggregation algorithms
 (e.g., Nagle's algorithm [RFC0896]) to datagrams.

6. Transport Properties

 In addition to common requirements, each transport can have multiple
 optional properties associated with it. Querying them allows the
 client to ascertain the presence of features it can use without
 requiring knowledge of all protocols. This allows introducing new
 transports as drop-in replacements for existing ones.

 The following properties are defined in this specification:

 * Stream independence. This indicates that there is no head of line
 blocking between different streams.

 * Partial reliability. This indicates that if a stream is reset,
 none of the data sent on it will be retransmitted. This also
 indicates that datagrams will not be retransmitted.

 * Pooling support. Indicates that multiple transports using this
 transport protocol may end up sharing the same transport layer
 connection, and thus share a congestion controller and other
 contexts.

 * Connection mobility. Indicates that the transport may continue
 existing even if the network path between the client and the
 server changes.

7. Security Considerations

 Providing untrusted clients with a reasonably low-level access to the
 network comes with risks. This document mitigates those risks by
 imposing a set of common requirements described in Section 2.

 WebTransport mandates the use of TLS for all protocols implementing
 it. This has a dual purpose. On one hand, it protects the transport
 from the network, including both potential attackers and ossification
 by middleboxes. On the other hand, it protects the network elements
 from potential confusion attacks such as the one discussed in
 Section 10.3 of [RFC6455].

 One potential concern is that even when a transport cannot be
 created, the connection error would reveal enough information to
 allow an attacker to scan the network addresses that would normally
 be inaccessible. Because of that, the user agent that runs untrusted
 clients MUST NOT provide any detailed error information until the
 server has confirmed that it is a WebTransport endpoint. For
 example, the client must not be able to distinguish between a network
 address that is unreachable and one that is reachable but is not a
 WebTransport server.

 WebTransport does not support any traditional means of HTTP-based
 authentication. It is not necessarily based on HTTP, and hence does
 not support HTTP cookies or HTTP authentication. Since it requires
 TLS, individual transport protocols MAY expose TLS-based
 authentication capabilities such as client certificates.

8. IANA Considerations

 There are no requests to IANA in this document.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC6454]
 Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <https://www.rfc-editor.org/info/rfc6454>.

 [RFC3986]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

9.2. Informative References

 [CSP]
 W3C, "Content Security Policy Level 3", April 2020,
 <https://www.w3.org/TR/CSP/>.

 [RFC6455]
 Fette, I. and A. Melnikov, "The WebSocket Protocol",
 RFC 6455, DOI 10.17487/RFC6455, December 2011,
 <https://www.rfc-editor.org/info/rfc6455>.

 [I-D.ietf-rtcweb-data-channel]

 Jesup, R., Loreto, S., and M. Tuexen, "WebRTC Data
 Channels", Work in Progress, Internet-Draft, draft-ietf-

 rtcweb-data-channel-13, 4 January 2015,
 <http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-
 data-channel-13.txt>.

 [I-D.ietf-quic-http]

 Bishop, M., "Hypertext Transfer Protocol Version 3
 (HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-
 quic-http-23, 12 September 2019, <http://www.ietf.org/
 internet-drafts/draft-ietf-quic-http-23.txt>.

 [RFC8441]
 McManus, P., "Bootstrapping WebSockets with HTTP/2",
 RFC 8441, DOI 10.17487/RFC8441, September 2018,
 <https://www.rfc-editor.org/info/rfc8441>.

 [I-D.pauly-quic-datagram]

 Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable
 Datagram Extension to QUIC", Work in Progress, Internet-
 Draft, draft-pauly-quic-datagram-04, 22 October 2019,
 <http://www.ietf.org/internet-drafts/draft-pauly-quic-
 datagram-04.txt>.

 [I-D.ietf-tls-dtls13]

 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", Work in Progress, Internet-Draft, draft-ietf-tls-
 dtls13-33, 11 October 2019, <http://www.ietf.org/internet-
 drafts/draft-ietf-tls-dtls13-33.txt>.

 [RFC7675]
 Perumal, M., Wing, D., Ravindranath, R., Reddy, T., and M.
 Thomson, "Session Traversal Utilities for NAT (STUN) Usage
 for Consent Freshness", RFC 7675, DOI 10.17487/RFC7675,
 October 2015, <https://www.rfc-editor.org/info/rfc7675>.

 [RFC5681]
 Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [I-D.ietf-quic-recovery]

 Iyengar, J. and I. Swett, "QUIC Loss Detection and
 Congestion Control", Work in Progress, Internet-Draft,
 draft-ietf-quic-recovery-23, 11 September 2019,
 <http://www.ietf.org/internet-drafts/draft-ietf-quic-
 recovery-23.txt>.

 [I-D.ietf-quic-transport]

 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", Work in Progress, Internet-Draft,
 draft-ietf-quic-transport-23, 11 September 2019,
 <http://www.ietf.org/internet-drafts/draft-ietf-quic-
 transport-23.txt>.

 [RFC0896]
 Nagle, J., "Congestion Control in IP/TCP Internetworks",
 RFC 896, DOI 10.17487/RFC0896, January 1984,
 <https://www.rfc-editor.org/info/rfc896>.

Author's Address

Victor Vasiliev
Google

 Email: vasilvv@google.com

draft-kinnear-webtransport-http2-01 - WebTransport using HTTP/2

Index
Prev
Next

webtrans

Internet-Draft

Intended status: Standards Track

Expires: 14 January 2021

A. Frindell

Facebook Inc.

E. Kinnear

T. Pauly

Apple Inc.

V. Vasiliev

Google

G. Xie

Facebook Inc.

13 July 2020

WebTransport using HTTP/2

draft-kinnear-webtransport-http2-01

Abstract

 WebTransport is a protocol framework that enables clients constrained
 by the Web security model to communicate with a remote server using a
 secure multiplexed transport. This document describes
 Http2Transport, a WebTransport protocol that is based on HTTP/2 and
 provides support for either endpoint to initiate streams multiplexed
 within the same HTTP/2 connection.

Note to Readers

 Discussion of this draft takes place on the WebTransport mailing list
 (webtransport@ietf.org), which is archived at
 <https://mailarchive.ietf.org/arch/search/?email_list=webtransport>.

 The repository tracking the issues for this draft can be found at
 <https://github.com/erickinnear/draft-http-transport/issues>. The
 web API draft corresponding to this document can be found at
 <https://wicg.github.io/web-transport/>.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.
 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 14 January 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions and Definitions

	3. Http2Transport Overview
	 3.1. WebTransport Connect Streams

	 3.2. WebTransport Streams

	 3.3. Negotiation

	 3.4. The SETTINGS_ENABLE_WEBTRANSPORT SETTINGS parameter

	 3.5. The WTHEADERS Frame

	 3.6. Initiating the Extended CONNECT Handshake

	 3.7. Examples

	4. Using WebTransport Streams
	 4.1. Stream States

	 4.2. Interaction with HTTP/2 Features

	 4.3. Intermediaries

	 4.4. Session Termination

	5. Transport Properties

	6. Security Considerations

	7. IANA Considerations
	 7.1. HTTP/2 Frame Type Registry

	 7.2. HTTP/2 Settings Registry

	 7.3. HTTP/2 Error Code Registry

	 7.4. Upgrade Token Registration

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Acknowledgments

	Authors' Addresses

1. Introduction

 HTTP/2 [RFC7540] transports HTTP messages via a framing layer that
 includes many optimizations designed to make communication more
 efficient between clients and servers. These include multiplexing of
 multiple streams on a single underlying transport connection, flow
 control, priorities, header compression, and exchange of
 configuration information between endpoints.

 Currently, the only mechanism in HTTP/2 for server to client
 communication is server push. That is, servers can initiate
 unidirectional push promised streams to clients, but clients cannot
 respond to them; they can only accept them or discard them.
 Additionally, intermediaries along the path may have different server
 push policies and may not forward push promised streams to the
 downstream client. This best effort mechanism is not sufficient to
 reliably deliver messages from servers to clients, limiting server to
 client use-cases such as chat messages or notifications.

 Several techniques have been developed to workaround these
 limitations: long polling [RFC6202], WebSocket [RFC8441], and
 tunneling using the CONNECT method. All of these approaches layer an
 application protocol on top of HTTP/2, using HTTP/2 streams as
 transport connections. This layering defeats the optimizations
 provided by HTTP/2. For example, application metadata is
 encapsulated in DATA frames rather than HEADERS frames, bypassing the
 advantages of HPACK header compression. Further, application data
 might be framed multiple times at different protocol layers, reducing
 the wire efficiency of the protocol.

 This document defines Http2Transport, a mechanism for multiplexing
 non-request/response streams with HTTP/2 in a manner that conforms
 with the WebTransport protocol framework
 [I-D.vvv-webtransport-overview]. Using the mechanism described,
 multiple Http2Transport instances can be multiplexed simultaneously
 with regular HTTP traffic on the same HTTP/2 connection.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document follows terminology defined in Section 1.2 of
 [I-D.vvv-webtransport-overview]. Note that this document
 distinguishes between a WebTransport server and an HTTP/2 server. An
 HTTP/2 server is the server that terminates HTTP/2 connections; a
 WebTransport server is an application that accepts WebTransport
 sessions, which can be accessed via an HTTP/2 server.

3. Http2Transport Overview

 Section 8.3 of [RFC7540] defines the HTTP CONNECT method for HTTP/2,
 which converts an HTTP/2 stream into a tunnel for arbitrary data.
 [RFC8441] describes the use of the extended CONNECT method to
 negotiate the use of the WebSocket Protocol [RFC6455] on an HTTP/2
 stream. Http2Transport uses the extended CONNECT handshake to allow
 WebTransport endpoints to multiplex arbitrary data streams on HTTP/2
 connections.

 Http2Transport introduces a new HTTP/2 frame which carries structured
 metadata like the HEADERS and PUSH_PROMISE frames but without the
 constraints of the request/response state machine and semantics.

 The WebTransport over HTTP/2 extension:

 1. Enables bidirectional and symmetric communication over HTTP/2.
 After a WebTransport session is established, a server can
 initiate a WebTransport stream to the client at any time, and the
 client can respond to server-initiated streams.

 2. Allows WebTransport streams to take advantage of HTTP/2 features
 such as header compression, prioritization, and flow-control.

 3. Provides a mechanism for intermediaries to route server initiated
 messages to the correct client.

 4. Allows clients and servers to group streams and route them
 together.

3.1. WebTransport Connect Streams

 After negotiating the use of this extension, clients initiate one or
 more WebTransport Connect Streams to a Http2Transport Server.
 Http2Transport servers are identified by a pair of authority value
 and path value (defined in [RFC3986] Sections 3.2 and 3.3
 respectively). The client uses the extended CONNECT method with a
 :protocol token "webtransport" to establish a WebTransport Connect
 Stream. This stream is only used to establish a WebTransport session
 and is not intended for data exchange.

3.2. WebTransport Streams

 Following the establishment of a WebTransport Connect stream, either
 the client or the server can initiate a WebTransport Stream by
 sending the WTHEADERS frame, defined in Section 3.5. This frame
 references an open WebTransport Connect stream which is used by any
 intermediaries to correctly forward the stream to the destination
 endpoint. The only frames allowed on WebTransport Streams are
 WTHEADERS, CONTINUATION, DATA and any negotiated extension frames.

3.3. Negotiation

 Clients negotiate the use of WebTransport over HTTP/2 using both the
 SETTINGS frame and one or more extended CONNECT requests as defined
 in [RFC8441].

 Use of the extended CONNECT method extension requires the
 SETTINGS_ENABLE_CONNECT_PROTOCOL parameter to be received by a client
 prior to its use. An endpoint that supports receiving the extended
 CONNECT method SHOULD send this setting with a value of 1.

 The extended CONNECT method extension uses the ":protocol" pseudo-
 header field to negotiate the protocol that will be used on a given
 stream in an HTTP/2 connection. This document registers a new token,
 "webtransport", in the "Hypertext Transfer Protocol (HTTP) Upgrade
 Token Registry" established by [RFC7230] and located at
 https://www.iana.org/assignments/http-upgrade-tokens/
 (https://www.iana.org/assignments/http-upgrade-tokens/).

 This token is used in the ":protocol" pseudo-header field to indicate
 that the endpoint wishes to use the WebTransport protocol on the new
 stream.

3.4. The SETTINGS_ENABLE_WEBTRANSPORT SETTINGS parameter

 As described in Section 5.5 of [RFC7540], SETTINGS parameters allow
 endpoints to negotiate use of protocol extensions that would
 otherwise generate protocol errors.

 This document introduces a new SETTINGS parameter,
 SETTINGS_ENABLE_WEBTRANSPORT, which MUST have a value of 0 or 1.

 Once a SETTINGS_ENABLE_WEBTRANSPORT parameter has been sent with a
 value of 1, an endpoint MUST NOT send the parameter with a value of
 0.

 Upon receipt of SETTINGS_ENABLE_WEBTRANSPORT with a value of 1, an
 endpoint MAY use the WTHEADERS frame type defined in this document.
 An endpoint that supports receiving the WTHEADERS as part of the
 WebTransport protocol SHOULD send this setting with a value of 1.

3.5. The WTHEADERS Frame

 A new HTTP/2 frame called WTHEADERS is introduced for either endpoint
 to establish streams. A stream opened by a WTHEADERS frame is
 referred to as a WebTransport Stream, and it MAY be continued by
 CONTINUATION and DATA frames. WebTransport Streams can be initiated
 by either clients or servers via a WTHEADERS frame that refers to the
 corresponding WebTransport Connect Stream on which the WebTransport
 protocol was negotiated.

 The WTHEADERS frame (type=0xfb) has all the fields and frame header
 flags defined by HEADERS frame in HEADERS [RFC7540], Section 6.2.

 The WTHEADERS frame has one extra field, Connect Stream ID.
 WTHEADERS frames can be sent on a stream in the "idle", "open", or
 "half-closed (remote)" state, see Section 4.1.

 Like HEADERS, the CONTINUATION frame (type=0x9) is used to continue a
 sequence of header block fragments, if the headers do not fit into
 one WTHEADERS frame.

 The WTHEADERS frame is shown in Figure 1.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|Pad Length? (8)|
+‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
|E| Stream Dependency? (31) |
+‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
| Weight? (8) |
+‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
|R| Connect Stream ID (31) |
+‑+‑‑‑+
| Header Block Fragment (*) ...
+‑‑‑+
| Padding (*) ...
+‑‑‑+

 Figure 1: WTHEADERS Frame Format

 The Connect Stream specified in a WTHEADERS frame MUST be an open
 stream negotiated via the extended CONNECT protocol with a
 ":protocol" value of "webtransport".

 The recipient MUST respond with a connection error of type
 WTHEADERS_STREAM_ERROR if the specified WebTransport Connect Stream
 does not exist, is not a stream established via extended CONNECT to
 use the "webtransport" protocol, or if it is in the closed or half-
 closed (remote) stream state. This allows WebTransport Streams to
 participate in header compression and flow control.

3.6. Initiating the Extended CONNECT Handshake

 An endpoint that wishes to establish a WebTransport session over an
 HTTP/2 stream follows the extended CONNECT handshake procedure
 defined in [RFC8441], specifying "webtransport" for the :protocol
 pseudo-header field.

 The :scheme and :path pseudo-headers are required by [RFC6455]. The
 scheme of the target URI MUST be set to "https" for all :protocol
 values. The path is used to identify the specific WebTransport
 server instance for negotiation and MAY be set to "/" (an empty path
 component).

 Implementations should note that the Origin, Sec-WebSocket-Version,
 Sec-WebSocket-Protocol, and Sec-WebSocket-Extensions header fields
 are not required to be included in the CONNECT request and response
 header fields, since this handshake mechanism is not being used to
 negotiate a WebSocket connection.

 If the response to the extended CONNECT request indicates success of
 the handshake, then all further data sent or received on the new
 HTTP/2 stream is considered to be that of the WebTransport protocol
 and follows the semantics defined by that protocol. If the response
 indicates failure of the handshake, any WebTransport Streams that
 reference the WebTransport Connect Stream that failed to establish
 MUST also be reset.

3.7. Examples

 An example of negotiating a WebTransport Stream on an HTTP/2
 connection follows. This example is intended to closely follow the
 example in Section 5.1 of [RFC8441] to help illustrate the
 differences defined in this document.

[[From Client]] [[From Server]]

SETTINGS
SETTINGS_ENABLE_CONNECT_[..] = 1
SETTINGS_ENABLE_WEBTRANSPORT = 1

 SETTINGS
 SETTINGS_ENABLE_CONNECT_[..] = 1
 SETTINGS_ENABLE_WEBTRANSPORT = 1

HEADERS + END_HEADERS
+ STREAM_ID = 3
:method = CONNECT
:protocol = webtransport
:scheme = https
:path = /
:authority = server.example.com

 HEADERS + END_HEADERS
 + STREAM_ID = 3
 :status = 200

WTHEADERS + END_HEADERS
+ STREAM_ID = 5
+ CONNECT_STREAM = 3
:method = GET
:scheme = https
:path = /
:authority = server.example.com

 WTHEADERS + END_HEADERS
 + STREAM_ID = 5
 + CONNECT_STREAM = 3
 :status = 200

DATA + STREAM_ID = 5
WebTransport Data

 DATA + STREAM_ID = 5 + END_STREAM
 WebTransport Data

DATA + STREAM_ID = 5 + END_STREAM
WebTransport Data

 An example of the server initiating a WebTransport Stream follows.
 The only difference here is the endpoint that sends the first
 WTHEADERS frame.

[[From Client]] [[From Server]]

SETTINGS
SETTINGS_ENABLE_CONNECT_[..] = 1
SETTINGS_ENABLE_WEBTRANSPORT = 1

 SETTINGS
 SETTINGS_ENABLE_CONNECT_[..] = 1
 SETTINGS_ENABLE_WEBTRANSPORT = 1

HEADERS + END_HEADERS
+ STREAM_ID = 3
:method = CONNECT
:protocol = webtransport
:scheme = https
:path = /
:authority = server.example.com

 HEADERS + END_HEADERS
 + STREAM_ID = 3
 :status = 200

 WTHEADERS + END_HEADERS
 + STREAM_ID = 2
 + CONNECT_STREAM = 3
 :method = GET
 :scheme = https
 :path = /
 :authority = client.example.com

WTHEADERS + END_HEADERS
+ STREAM_ID = 2
+ CONNECT_STREAM = 3
:status = 200

 DATA + STREAM_ID = 2
 WebTransport Data

DATA + STREAM_ID = 2 + END_STREAM
WebTransport Data

 DATA + STREAM_ID = 2 + END_STREAM
 WebTransport Data

4. Using WebTransport Streams

 Once the extended CONNECT handshake has completed and a WebTransport
 connect stream has been established, WTHEADERS frames can be sent
 that reference that stream in the Connect Stream ID field to
 establish WebTransport Streams. WebTransport Connect Streams are
 intended for exchanging metadata only and are RECOMMENDED to be long
 lived streams. Once a WebTransport Connect Stream is closed, all
 routing information it carries is lost, and subsequent WebTransport
 Streams cannot be created with WTHEADERS frames until the client
 completes another extended CONNECT handshake to establish a new
 WebTransport Connect Stream.

 In contrast, WebTransport Streams established with WTHEADERS frames
 can be opened at any time by either endpoint and therefore need not
 remain open beyond their immediate usage as part of the WebTransport
 protocol.

 An endpoint MUST NOT send DATA frames with a non-zero payload length
 on a WebTransport Connect Stream beyond the completion of the
 extended CONNECT handshake. If data is received by an endpoint on a
 WebTransport Connect Stream, it MUST reset that stream with a new
 error code, PROHIBITED_WT_CONNECT_DATA, indicating that additional
 data is prohibited on the Connect Stream when using "webtransport" as
 the ":protocol" value.

4.1. Stream States

 WebTransport Connect Streams are regular HTTP/2 streams that follow
 the stream lifecycle described in Section 5.1 of [RFC7540].
 WebTransport Streams established with the WTHEADERS frame also follow
 the same lifecycle as regular HTTP/2 streams, but have an additional
 dependency on the Connect Stream that they reference via their
 Connect Stream ID.

 If the corresponding Connect Stream is reset, endpoints MUST reset
 the WebTransport Streams associated with that Connect Stream. If the
 Connect Stream is closed gracefully, endpoints SHOULD allow any
 existing WebTransport Streams to complete normally, however the
 Connect Stream SHOULD remain open while communication is expected to
 continue.

 Endpoints SHOULD take measures to prevent a peer or intermediary from
 timing out the Connect Stream while its associated WebTransport
 Streams are expected to remain open. For example, an endpoint might
 choose to refresh a timeout on a Connect Stream any time a
 corresponding timeout is refreshed on a corresponding WebTransport
 Stream, such as when any data is sent or received on that
 WebTransport Stream.

 An endpoint MUST NOT initiate new WebTransport Streams that reference
 a Connect Stream that is in the closed or half closed (remote) state.
 Endpoints process new WebTransport Streams only when the associated
 Connect Stream is in the open or half closed (local) state.

4.2. Interaction with HTTP/2 Features

 WebTransport Streams are extended HTTP/2 streams, and all of the
 standard HTTP/2 features for streams still apply to WebTransport
 Streams. For example, WebTransport Streams are counted against the
 concurrent stream limit, which is defined in Section 5.1.2 of
 [RFC7540]. The connection level and stream level flow control limits
 are still valid for WebTransport Streams. Prioritizing the
 WebTransport Streams across different Connect Stream groupings does
 not make sense because they belong to different services.

 Note that while HTTP/2 Stream IDs are used by WebTransport Streams to
 refer to their corresponding WebTransport Connect Streams, the Stream
 IDs themselves are an implementation detail and SHOULD NOT be vended
 to clients via a WebTransport API.

4.3. Intermediaries

 WebTransport Connect Streams, and their corresponding WebTransport
 Streams, can be independently routed by intermediaries on the network
 path. The main purpose for a WebTransport Connect Stream is to
 facilitate intermediary traversal by WebTransport Streams.

 Any segment on which SETTINGS_ENABLE_WEBTRANSPORT has been negotiated
 MUST route all WebTransport Streams established by WTHEADERS frames
 on the same connection as their corresponding WebTransport Connect
 Streams.

 If an intermediary cannot route WebTransport Streams on a subsequent
 segment of the path, it can fail the extended CONNECT handshake and
 prevent a WebTransport Connect Stream from being established for a
 given endpoint. In the event that additional WebTransport Streams
 reference that WebTransport Connect Stream, they will also be reset.
 An example of such routing, for both client-initiated and server-
 initiated WebTransport streams, is shown in Figure 2 and in Figure 3.
 Note that "webtransport" is specified as the ":protocol" being
 negotiated by the CONNECT frame on both segments, and the
 corresponding stream is referenced by the Connect Stream ID field in
 the WTHEADERS frames.

+‑‑‑‑‑‑‑‑+ CONNECT (5) +‑‑‑‑‑‑‑‑‑+ CONNECT (1) +‑‑‑‑‑‑‑‑+
| client |>‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| proxy |>‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| server |
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
 v ^ v ^
 | WTHEADERS(7, CS=5) | | WTHEADERS(3, CS=1) |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 2: A client initiates a WebTransport Stream to a server.

+‑‑‑‑‑‑‑‑+ CONNECT (5) +‑‑‑‑‑‑‑‑‑+ CONNECT (1) +‑‑‑‑‑‑‑‑+
| client |>‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| proxy |>‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| server |
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
 ^ v ^ v
 | WTHEADERS(4, CS=5) | | WTHEADERS(2, CS=1) |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 3: A server initiates a WebTransport Stream to a client.

4.4. Session Termination

 An Http2Transport session is terminated when either endpoint closes
 the stream associated with the CONNECT request that initiated the
 session. Upon learning about the session being terminated, both
 endpoints MUST stop sending new frames on the WebTransport Connect
 Stream associated with the CONNECT request and reset all WebTransport
 Streams associated with the session.

5. Transport Properties

 The WebTransport framework [I-D.vvv-webtransport-overview] defines a
 set of optional transport properties that clients can use to
 determine the presence of features which might allow additional
 optimizations beyond the common set of properties available via all
 WebTransport protocols. Below are details about support in
 Http2Transport for those properties.

Stream Independence: Http2Transport does not support stream
 independence, as HTTP/2 inherently has head of line blocking.

Partial Reliability: Http2Transport does not support partial

 reliability, as HTTP/2 retransmits any lost data. This means that
 any datagrams sent via Http2Transport will be retransmitted
 regardless of the preference of the application.

Pooling Support: Http2Transport supports pooling, as multiple
 transports using Http2Transport may share the same underlying
 HTTP/2 connection and therefore share a congestion controller and
 other transport context.

Connection Mobility: Http2Transport does not support connection
 mobility, unless an underlying transport protocol that supports
 multipath or migration, such as MPTCP [RFC7540], is used
 underneath HTTP/2 and TLS. Without such support, Http2Transport
 connections cannot survive network transitions.

6. Security Considerations

 WebTransport Streams established by the CONNECT handshake and the
 WTHEADERS frame are expected to be protected with a TLS connection.
 They inherit the security properties of this cryptographic context,
 as well as the security properties of client-server communication via
 HTTP/2 as described in [RFC7540].

 The security considerations of [RFC8441] Section 8 and [RFC7540]
 Section 10, and Section 10.5.2 especially, apply to this use of the
 CONNECT method.

 Http2Transport requires explicit opt-in through the use of an HTTP/2
 SETTINGS parameter, avoiding potential protocol confusion attacks by
 ensuring the HTTP/2 server explicitly supports the WebTransport
 protocol. It also requires the use of the Origin header, providing
 the server with the ability to deny access to Web-based clients that
 do not originate from a trusted origin.

 Just like HTTP/2 itself, Http2Transport pools traffic to different
 origins within a single connection. Different origins imply
 different trust domains, meaning that the implementations have to
 treat each transport as potentially hostile towards others on the
 same connection. One potential attack is a resource exhaustion
 attack: since all of the transports share both congestion control and
 flow control context, a single client aggressively using up those
 resources can cause other transports to stall. The user agent thus
 SHOULD implement a fairness scheme that ensures that each
 WebTransport session within a connection is allocated a reasonable
 share of controlled resources, both when sending data and opening new
 streams.

7. IANA Considerations

 This document adds an entry to the "HTTP/2 Frame Type" registry, the
 "HTTP/2 Settings" registry, and the "HTTP/2 Error Code" registry, all
 defined in [RFC7540]. It also registers an HTTP upgrade token in the
 registry established by [RFC7230].

7.1. HTTP/2 Frame Type Registry

 The following entry is added to the "HTTP/2 Frame Type" registry
 established by Section 11.2 of [RFC7540].

Frame Type: WTHEADERS

Code: 0xFB

Specification: _RFC Editor: Please fill in this value with the RFC
 number for this document_

7.2. HTTP/2 Settings Registry

 The following entry is added to the "HTTP/2 Settings" registry that
 was established by Section 11.3 of [RFC7540].

Code: 0xFB

Name: SETTINGS_ENABLE_WEBTRANSPORT

Initial Value: 0

Specification: _RFC Editor: Please fill in this value with the RFC
 number for this document_

7.3. HTTP/2 Error Code Registry

 The following entries are added to the "HTTP/2 Error Code" registry
 that was established by Section 11.2 of [RFC7540].

Name: WTHEADERS_STREAM_ERROR

Code: 0xFB

Description: Invalid use of WTHEADERS frame

Specification: _RFC Editor: Please fill in this value with the RFC
 number for this document_

Name: PROHIBITED_WT_CONNECT_DATA

Code: 0xFC

Description: Prohibited data sent on WebTransport Connect Stream

Specification: _RFC Editor: Please fill in this value with the RFC
 number for this document_

7.4. Upgrade Token Registration

 The following entry is added to the "Hypertext Transfer Protocol
 (HTTP) Upgrade Token Registry" registry established by [RFC7230].

Value: webtransport

Description: WebTransport over HTTP

 Expected Version Tokens:

Reference: _RFC Editor: Please fill in this value with the RFC
 number for this document_ and [I‑D.vvv‑webtransport‑http3]

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6455]
 Fette, I. and A. Melnikov, "The WebSocket Protocol",
 RFC 6455, DOI 10.17487/RFC6455, December 2011,
 <https://www.rfc-editor.org/info/rfc6455>.

 [RFC7230]
 Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7540]
 Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8441]
 McManus, P., "Bootstrapping WebSockets with HTTP/2",
 RFC 8441, DOI 10.17487/RFC8441, September 2018,
 <https://www.rfc-editor.org/info/rfc8441>.

8.2. Informative References

 [I-D.vvv-webtransport-http3]

 Vasiliev, V., "WebTransport over HTTP/3", Work in
 Progress, Internet-Draft, draft-vvv-webtransport-http3-02,
 30 June 2020, <http://www.ietf.org/internet-drafts/draft-
 vvv-webtransport-http3-02.txt>.

 [I-D.vvv-webtransport-overview]

 Vasiliev, V., "The WebTransport Protocol Framework", Work
 in Progress, Internet-Draft, draft-vvv-webtransport-
 overview-01, 3 November 2019, <http://www.ietf.org/
 internet-drafts/draft-vvv-webtransport-overview-01.txt>.

 [RFC6202]
 Loreto, S., Saint-Andre, P., Salsano, S., and G. Wilkins,
 "Known Issues and Best Practices for the Use of Long
 Polling and Streaming in Bidirectional HTTP", RFC 6202,
 DOI 10.17487/RFC6202, April 2011,
 <https://www.rfc-editor.org/info/rfc6202>.

Acknowledgments

 Thanks to Anthony Chivetta, Joshua Otto, and Valentin Pistol for
 their contributions in the design and implementation of this work.

Authors' Addresses

Alan Frindell
Facebook Inc.

 Email: afrind@fb.com

Eric Kinnear
Apple Inc.
One Apple Park Way
Cupertino, California 95014,
United States of America

 Email: ekinnear@apple.com

Tommy Pauly
Apple Inc.
One Apple Park Way
Cupertino, California 95014,
United States of America

 Email: tpauly@apple.com

Victor Vasiliev
Google

 Email: vasilvv@google.com

Guowu Xie
Facebook Inc.

 Email: woo@fb.com

draft-vvv-webtransport-http3-02 - WebTransport over HTTP/3

Index
Prev
Next

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: January 1, 2021

V. Vasiliev

Google

June 30, 2020

WebTransport over HTTP/3

draft-vvv-webtransport-http3-02

Abstract

 WebTransport [OVERVIEW] is a protocol framework that enables clients
 constrained by the Web security model to communicate with a remote
 server using a secure multiplexed transport. This document describes
 Http3Transport, a WebTransport protocol that is based on HTTP/3
 [HTTP3] and provides support for unidirectional streams,
 bidirectional streams and datagrams, all multiplexed within the same
 HTTP/3 connection.

Note to Readers

 Discussion of this draft takes place on the WebTransport mailing list
 (webtransport@ietf.org), which is archived at
 <https://mailarchive.ietf.org/arch/search/?email_list=webtransport>.

 The repository tracking the issues for this draft can be found at
 <https://github.com/vasilvv/webtransport/issues>. The web API draft
 corresponding to this document can be found at
 <https://wicg.github.io/web-transport/>.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 1, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. Protocol Overview

	3. Session IDs

	4. Session Establishment
	 4.1. Establishing a Transport-Capable HTTP/3 Connection

	 4.2. Extended CONNECT in HTTP/3

	 4.3. Creating a New Session

	 4.4. Limiting the Number of Simultaneous Sessions

	5. WebTransport Features
	 5.1. Unidirectional streams

	 5.2. Client-Initiated Bidirectional Streams

	 5.3. Server-Initiated Bidirectional Streams

	 5.4. Datagrams

	6. Session Termination

	7. Transport Properties

	8. Security Considerations

	9. IANA Considerations
	 9.1. Upgrade Token Registration

	 9.2. QUIC Transport Parameter Registration

	 9.3. Frame Type Registration

	 9.4. Stream Type Registration

	10. References
	 10.1. Normative References

	 10.2. Informative References

	Author's Address

1. Introduction

 HTTP/3 [HTTP3] is a protocol defined on top of QUIC [QUIC-TRANSPORT]
 that can multiplex HTTP requests over a QUIC connection. This
 document defines Http3Transport, a mechanism for multiplexing non-
 HTTP data with HTTP/3 in a manner that conforms with the WebTransport
 protocol framework [OVERVIEW]. Using the mechanism described here,
 multiple Http3Transport instances can be multiplexed simultaneously
 with regular HTTP traffic on the same HTTP/3 connection.

1.1. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document follows terminology defined in Section 1.2 of
 [OVERVIEW]. Note that this document distinguishes between a
 WebTransport server and an HTTP/3 server. An HTTP/3 server is the
 server that terminates HTTP/3 connections; a WebTransport server is
 an application that accepts WebTransport sessions, which can be
 accessed via an HTTP/3 server.

2. Protocol Overview

 Http3Transport servers are identified by a pair of authority value
 and path value (defined in [RFC3986] Sections 3.2 and 3.3
 correspondingly).

 When an HTTP/3 connection is established, the client and server have
 to negotiate a specific set of QUIC transport parameters that
 indicate support for various Http3Transport features. Most notably,
 the "http3_transport_support" parameter signals Http3Transport
 support to the peer.

 Http3Transport sessions are initiated inside a given HTTP/3
 connection by the client, who sends an extended CONNECT request
 [RFC8441]. If the server accepts the request, an Http3Transport
 session is established. As a part of this process, the client
 proposes, and the server confirms, a session ID. A session ID (SID)
 is unique within a given HTTP/3 connection, and is used to associate
 all of the streams and datagrams with the specific session.

 After the session is established, the peers can exchange data using
 the following mechanisms:

 o A client can create a bidirectional stream using a special
 indefinite-length HTTP/3 frame that transfers ownership of the
 stream to Http3Transport.

 o A server can create a bidirectional stream, which is possible
 since HTTP/3 does not define any semantics for server-initiated
 bidirectional streams.

 o Both client and server can create a unidirectional stream using a
 special stream type.

 o A datagram can be sent using a QUIC DATAGRAM frame
 [QUIC-DATAGRAM].

 An Http3Transport session is terminated when the CONNECT stream that
 created it is closed.

3. Session IDs

 In order to allow multiple Http3Transport sessions to occur within
 the same HTTP/3 connection, Http3Transport assigns every session a
 unique ID, further referred to as session ID. A session ID is a
 62-bit number that is unique within the scope of an HTTP/3
 connection, and is never reused even after the session is closed.
 The client unilaterally picks the session ID. As the IDs are encoded
 using QUIC variable length integers, the client SHOULD start with
 zero and then sequentially increment the IDs. A session ID is
 considered to be used, and thus ineligible for new transports, as
 soon as the client sends a request proposing it. These reuse
 requirements guarantee that both HTTP/3 endpoints have a consistent
 view of the session ID space.

 The Session ID is a hop-by-hop property: if Http3Transport is
 proxied, the same session can have different IDs from the client's
 and server's perspective. Because of that, session IDs SHOULD NOT be
 exposed to the application.

4. Session Establishment

4.1. Establishing a Transport-Capable HTTP/3 Connection

 In order to indicate support for Http3Transport, both the client and
 server MUST send an empty "http3_transport_support" transport
 parameter. Endpoints MUST NOT use any Http3Transport-related
 functionality unless the parameter has been negotiated. The
 negotiation is done through a QUIC transport parameter instead of an
 HTTP/3-level setting as it allows the server to customize the
 transport parameters it intends to send based on whether the client
 has indicated support for Http3Transport.

 If "http3_transport_support" is negotiated, support for the QUIC
 DATAGRAM extension MUST be negotiated. The
 "initial_max_bidi_streams" MUST be greater than zero, overriding the
 existing requirement in [HTTP3].

4.2. Extended CONNECT in HTTP/3

 [RFC8441]
 defines an extended CONNECT method in Section 4, enabled by
 the SETTINGS_ENABLE_CONNECT_PROTOCOL parameter. That parameter is
 only defined for HTTP/2. This document does not create a new multi-
 purpose parameter to indicate support for extended CONNECT in HTTP/3;
 instead, the "http3_transport_support" transport parameter implies
 that an endpoint supports extended CONNECT.

4.3. Creating a New Session

 As Http3Transport sessions are established over HTTP/3, they are
 identified using the "https" URI scheme [RFC7230].

 In order to create a new Http3Transport session, a client can send an
 HTTP CONNECT request. The ":protocol" pseudo-header field MUST be
 set to "webtransport". The ":scheme" field MUST be "https". Both
 the ":authority" and the ":path" value MUST be set; those fields
 indicate the desired WebTransport server. The client MUST pick a new
 session ID as described in Section 3 and send it encoded as a
 hexadecimal literal in ":sessionid" header. An "Origin" header
 [RFC6454] MUST be provided within the request.

 Upon receiving an extended CONNECT request with a ":protocol" field
 set to ":webtransport", the HTTP/3 server can check if it has a
 WebTransport server associated with the specified ":authority" and
 ":path" values. If it does not, it SHOULD reply with status code 404
 (Section 6.5.4, [RFC7231]). If it does, it MAY accept the session by
 replying with status code 200. Before accepting it, the HTTP/3
 server MUST verify that the proposed session ID does not conflict
 with any currently open sessions, and it MAY verify that it was not
 used ever before on this connection. The WebTransport server MUST
 verify the "Origin" header to ensure that the specified origin is
 allowed to access the server in question.

 From the client's perspective, an Http3Transport session is
 established when the client receives a 200 response. From the
 server's perspective, a session is established once it sends a 200
 response. Both endpoints MUST NOT open any streams or send any
 datagrams on a given session before that session is established.
 Http3Transport does not support 0-RTT.

4.4. Limiting the Number of Simultaneous Sessions

 From the flow control perspective, Http3Transport sessions count
 against the stream flow control just like regular HTTP requests,
 since they are established via an HTTP CONNECT request. This
 document does not make any effort to introduce a separate flow
 control mechanism for sessions, nor to separate HTTP requests from
 WebTransport data streams. If the server needs to limit the rate of
 incoming requests, it has alternative mechanisms at its disposal:

 o "HTTP_REQUEST_REJECTED" error code defined in [HTTP3] indicates to
 the receiving HTTP/3 stack that the request was not processed in
 any way.

 o HTTP status code 429 indicates that the request was rejected due
 to rate limiting [RFC6585]. Unlike the previous method, this
 signal is directly propagated to the application.

5. WebTransport Features

 Http3Transport provides the following features described in
 [OVERVIEW]: unidirectional streams, bidirectional streams and
 datagrams, initiated by either endpoint.

 Session IDs are used to demultiplex streams and datagrams belonging
 to different Http3Transport sessions. On the wire, session IDs are
 encoded using the QUIC variable length integer scheme described in
 [QUIC-TRANSPORT].

5.1. Unidirectional streams

 Once established, both endpoints can open unidirectional streams.
 The HTTP/3 control stream type SHALL be 0x54. The body of the stream
 SHALL be the stream type, followed by the session ID, encoded as a
 variable-length integer, followed by the user-specified stream data
 (Figure 1).

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| 0x54 (i) ...
+‑+
| Session ID (i) ...
+‑+
| Stream Body ...
+‑+

 Figure 1: Unidirectional Http3Transport stream format

5.2. Client-Initiated Bidirectional Streams

Http3Transport clients can initiate bidirectional streams by opening
an HTTP/3 bidirectional stream and sending an HTTP/3 frame with type
"WEBTRANSPORT_STREAM" (type=0x41). The format of the frame SHALL be
the frame type, followed by the session ID, encoded as a variable‑
length integer, followed by the user‑specified stream data
(Figure 2). The frame SHALL last until the end of the stream.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +‑+
 | 0x41 (i) ...
 +‑+
 | Session ID (i) ...
 +‑+
 | Stream Body ...
 +‑+

 Figure 2: WEBTRANSPORT_STREAM frame format

5.3. Server-Initiated Bidirectional Streams

 Http3Transport servers can initiate bidirectional streams by opening
 a bidirectional stream within the HTTP/3 connection. Note that since
 HTTP/3 does not define any semantics for server-initiated
 bidirectional streams, this document is a normative reference for the
 semantics of such streams for all HTTP/3 connections in which the
 "http3_transport_support" option is negotiated. The format of those
 streams SHALL be the session ID, encoded as a variable-length
 integer, followed by the user-specified stream data (Figure 3).

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Session ID (i) ...
+‑+
| Stream Body ...
+‑+

 Figure 3: Server-initiated bidirectional stream format

5.4. Datagrams

 Datagrams can be sent using the DATAGRAM frame as defined in
 [QUIC-DATAGRAM] and [H3-DATAGRAM]. For all HTTP/3 connections in
 which the "http3_transport_support" option is negotiated, the Flow
 Identifier is set to the session ID. In other words, the format of
 datagrams SHALL be the session ID, followed by the user-specified
 payload (Figure 4).

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Session ID (i) ...
+‑+
| Datagram Body ...
+‑+

 Figure 4: Datagram format

 In QUIC, a datagram frame can span at most one packet. Because of
 that, the applications have to know the maximum size of the datagram
 they can send. However, when proxying the datagrams, the hop-by-hop
 MTUs can vary. TODO: Describe how the path MTU can be computed,
 specifically propagation across HTTP proxies.

6. Session Termination

 An Http3Transport is terminated when either endpoint closes the
 stream associated with the CONNECT request that initiated the
 session. Upon learning about the session being terminated, the
 endpoint MUST stop sending new datagrams and reset all of the streams
 associated with the session.

7. Transport Properties

 Http3Transport supports most of the WebTransport features described
 in Table 1.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Property | Support |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
Stream independence	Always supported
Partial reliability	Always supported
Pooling support	Always supported
Connection mobility	Implementation‑dependent
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1: Transport properties of Http3Transport

8. Security Considerations

 Http3Transport satisfies all of the security requirements imposed by
 [QUIC-TRANSPORT] on WebTransport protocols, thus providing a secure
 framework for client-server communication in cases when the client is
 potentially untrusted. Since HTTP/3 is QUIC-based, a lot of the
 analysis in [WEBTRANSPORT-QUIC] applies here.

 Http3Transport requires explicit opt-in through the use of a QUIC
 transport parameter; this avoids potential protocol confusion attacks
 by ensuring the HTTP/3 server explicitly supports it. It also
 requires the use of the Origin header, providing the server with the
 ability to deny access to Web-based clients that do not originate
 from a trusted origin.

 Just like HTTP/3 itself, Http3Transport pools traffic to different
 origins within a single connection. Different origins imply
 different trust domains, meaning that the implementations have to
 treat each transport as potentially hostile towards others on the
 same connection. One potential attack is a resource exhaustion
 attack: since all of the transports share both congestion control and
 flow control context, a single client aggressively using up those
 resources can cause other transports to stall. The user agent thus
 SHOULD implement a fairness scheme that ensures that each transport
 within connection gets a reasonable share of controlled resources;
 this applies both to sending data and to opening new streams.

9. IANA Considerations

9.1. Upgrade Token Registration

 The following entry is added to the "Hypertext Transfer Protocol
 (HTTP) Upgrade Token Registry" registry established by [RFC7230]:
 The "webtransport" label identifies HTTP/3 used as a protocol for
 WebTransport:

Value: webtransport

Description: WebTransport over HTTP/3

Reference: This document

9.2. QUIC Transport Parameter Registration

 The following entry is added to the "QUIC Transport Parameter
 Registry" registry established by [QUIC-TRANSPORT]:

 The "http3_transport_support" parameter indicates that the specified
 HTTP/3 connection is Http3Transport-capable.

Value: 0x????

Parameter Name: http3_transport_support

Specification: This document

9.3. Frame Type Registration

 The following entry is added to the "HTTP/3 Frame Type" registry
 established by [HTTP3]:

 The "WEBTRANSPORT_STREAM" frame allows HTTP/3 client-initiated
 bidirectional streams to be used by WebTransport:

Code: 0x54

Frame Type: WEBTRANSPORT_STREAM

Specification: This document

9.4. Stream Type Registration

 The following entry is added to the "HTTP/3 Stream Type" registry
 established by [HTTP3]:

 The "WebTransport stream" type allows unidirectional streams to be
 used by WebTransport:

Code: 0x41

Stream Type: WebTransport stream

Specification: This document

Sender: Both

10. References

10.1. Normative References

 [H3-DATAGRAM]

 Schinazi, D., "Using QUIC Datagrams with HTTP/3", draft-
 schinazi-quic-h3-datagram-04 (work in progress), April
 2020.

 [HTTP3]
 Bishop, M., Ed., "Hypertext Transfer Protocol Version 3
 (HTTP/3)", draft-ietf-quic-http (work in progress).

 [OVERVIEW]

 Vasiliev, V., "The WebTransport Protocol Framework",
 draft-ietf-webtrans-overview-latest (work in progress).

 [QUIC-DATAGRAM]

 Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable
 Datagram Extension to QUIC", draft-pauly-quic-datagram
 (work in progress).

 [QUIC-TRANSPORT]

 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-
 transport (work in progress).

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6454]
 Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <https://www.rfc-editor.org/info/rfc6454>.

 [RFC6585]
 Nottingham, M. and R. Fielding, "Additional HTTP Status
 Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,
 <https://www.rfc-editor.org/info/rfc6585>.

 [RFC7230]
 Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231]
 Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8441]
 McManus, P., "Bootstrapping WebSockets with HTTP/2",
 RFC 8441, DOI 10.17487/RFC8441, September 2018,
 <https://www.rfc-editor.org/info/rfc8441>.

10.2. Informative References

 [WEBTRANSPORT-QUIC]

 Vasiliev, V., "WebTransport over QUIC", draft-vvv-
 webtransport-quic-02 (work in progress).

Author's Address

Victor Vasiliev
Google

 Email: vasilvv@google.com

draft-vvv-webtransport-quic-02 - WebTransport over QUIC

Index
Prev
Next

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: January 1, 2021

V. Vasiliev

Google

June 30, 2020

WebTransport over QUIC

draft-vvv-webtransport-quic-02

Abstract

 WebTransport [OVERVIEW] is a protocol framework that enables clients
 constrained by the Web security model to communicate with a remote
 server using a secure multiplexed transport. This document describes
 QuicTransport, a transport protocol that uses a dedicated QUIC [QUIC]
 connection and provides support for unidirectional streams,
 bidirectional streams and datagrams.

Note to Readers

 Discussion of this draft takes place on the WebTransport mailing list
 (webtransport@ietf.org), which is archived at
 <https://mailarchive.ietf.org/arch/search/?email_list=webtransport>.

 The repository tracking the issues for this draft can be found at
 <https://github.com/vasilvv/webtransport/issues>. The web API draft
 corresponding to this document can be found at
 <https://wicg.github.io/web-transport/>.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 1, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. Protocol Overview

	3. Connection Establishment
	 3.1. Identifying as QuicTransport

	 3.2. Client Indication
	 3.2.1. Origin Field

	 3.2.2. Path Field

	 3.3. 0-RTT

	4. Streams

	5. Datagrams

	6. QuicTransport URI Scheme

	7. Transport Properties

	8. Security Considerations

	9. IANA Considerations
	 9.1. ALPN Value Registration

	 9.2. Client Indication Fields Registry

	 9.3. URI Scheme Registration

	10. References
	 10.1. Normative References

	 10.2. Informative References

	 10.3. URIs

	Author's Address

1. Introduction

 WebTransport [OVERVIEW] is a protocol framework that enables clients
 constrained by the Web security model to communicate with a remote
 server using a secure multiplexed transport. This document describes
 QuicTransport, a transport protocol that uses a dedicated QUIC [QUIC]
 connection and provides support for unidirectional streams,
 bidirectional streams and datagrams.

 QUIC [QUIC] is a UDP-based multiplexed secure transport. It is the
 underlying protocol for HTTP/3 [I-D.ietf-quic-http], and as such is
 reasonably expected to be available in web browsers and server-side
 web frameworks. This makes it a compelling transport to base a
 WebTransport protocol on.

 This document defines QuicTransport, a protocol conforming to the
 WebTransport protocol framework. QuicTransport is an application
 protocol running directly over QUIC. The protocol is designed to
 have low implementation overhead on the server side, meaning that
 server software that already has a working QUIC implementation
 available would not require large amounts of code to implement
 QuicTransport. Where possible, WebTransport concepts are mapped
 directly to the corresponding QUIC concepts.

1.1. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document follows terminology defined in Section 1.2 of
 [OVERVIEW]. The diagrams describe encoding following the conventions
 described in Section 1.3 of [QUIC].

2. Protocol Overview

 Each instance of QuicTransport uses a single dedicated QUIC
 connection. This allows the peers to exercise a greater level of
 control over the way their data is being transmitted. However, this
 also means that multiple instances of QuicTransport cannot be pooled,
 and thus do not benefit from sharing a congestion controller with
 other connections.

 QuicTransport is designed to be a minimal extension of QUIC, and as
 such does not provide much higher-level functionality, such as
 pooling, exchanging metadata at session establishment, redirects, and
 other similar capabilties not provided by QUIC itself.
 Http3Transport [I-D.vvv-webtransport-http3] can be used in situations
 where these features are desired.

 When a client requests a QuicTransport session to be created, the
 user agent establishes a QUIC connection to the specified address.
 It verifies that the the server is a QuicTransport endpoint using
 ALPN, and additionally sends a client indication containing the
 requested path and the origin of the initiating website to the
 server. At that point, the connection is ready from the client's
 perspective. The server MUST wait until the client indication is
 received before processing any application data.

 WebTransport streams are provided by creating an individual
 unidirectional or bidirectional QUIC stream. WebTransport datagrams
 are provided through the QUIC datagram extension [QUIC-DATAGRAM].

3. Connection Establishment

 In order to establish a QuicTransport session, a QUIC connection must
 be established. From the client perspective, the session becomes
 established when the client both have received a TLS Finished message
 from the server and has sent a client indication. From the server
 perspective, the session is established after the client indication
 has been successfully processed.

3.1. Identifying as QuicTransport

 In order to identify itself as a WebTransport application,
 QuicTransport relies on TLS Application-Layer Protocol Negotiation
 [RFC7301]. The user agent MUST request the ALPN value of "wq-vvv-01"
 and it MUST close the connection unless the server confirms that ALPN
 value.

3.2. Client Indication

 In order to verify that the client's origin is allowed to connect to
 the server in question, the user agent has to communicate the origin
 to the server. This is accomplished by sending a special message,
 called client indication, on stream 2, which is the first client-
 initiated unidirectional stream.

 The client indication is a sequence of key-value pairs that are
 formatted in the following way:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Key (16) | Length (16) |
+‑+
| Value (*) ...
+‑+

 Figure 1: Client indication format

 The pair includes the following fields:

Key: Indicates the field that is being expressed.

Length: Indicates the length of the value (the length of the key and
 the length itself are not included).

Value: The value of the field, the semantics of which are determined
 by the key.

 A FIN on the stream 2 SHALL indicate that the message is complete.
 The client MUST send the entirety of the client indication and a FIN
 immediately after opening the connection. The server MUST NOT
 process any application data before receiving the entirety of the
 client indication. The total length of the client indication MUST
 NOT exceed 65,535 bytes.

 In order to ensure that the user agent can send the client indication
 immediately, the server MUST set "initial_max_streams_uni" transport
 parameter to at least "1". The user agent MUST close the connection
 if the server sets "initial_max_streams_uni" to "0".

 The server MUST ignore any field it does not recognize. All of the
 fields MUST be unique; the server MAY close the connection if any of
 the keys is used more than once.

3.2.1. Origin Field

 In order to allow the server to enforce its origin policy, the user
 agent has to communicate the origin in the client indication. This
 can be accomplished using the "Origin" field:

Name: Origin

Key: 0x0000

Description: The origin [RFC6454] of the client initiating the
 connection.

 The user agent MUST send the "Origin" field. The "Origin" field MUST
 be set to the origin of the client initiating the connection,
 serialized as described in the "serializing a request origin" section
 of [FETCH].

3.2.2. Path Field

 In order to allow multiplexing multiple application on the same host-
 port tuple, QuicTransport allows specifying extra routing information
 in the path component of the URI. That component is communicated
 using the "Path" field in the client indication:

Name: Path

Key: 0x0001

Description: The path component of the QuicTransport URI.

 The user agent MUST send a non-empty "Path" field. When the
 connection is initiated through a URI Section 6, that value SHALL be
 the "path-abempty" part, followed by a concatenation of the "?"
 literal and the "query" componenet if such is present. In case when
 "path-abempty" is empty, the value sent SHALL be "/".

 Unlike HTTP, the "authority" portion of the URL is not communicated
 in the client indication. As QuicTransport has its own connection
 dedicated to it, the host name portion can be retrieved from the
 "server_name" TLS extension [RFC6066].

 The server MAY use the value of the "Path" field in any way defined
 by the target application.

3.3. 0-RTT

 QuicTransport provides applications with the ability to use the 0-RTT
 feature described in [RFC8446] and [QUIC]. 0-RTT allows a client to
 send data before the TLS session is fully established. It provides
 lower latency, but has the drawback of being vulnerable to replay
 attacks. Since only the application can make an informed decision as
 to whether some data is safe to send in that context, 0-RTT requires
 the client API to only send data over 0-RTT when specifically
 requested by the client.

 0-RTT support in QuicTransport is OPTIONAL, as it is in QUIC and TLS
 1.3.

4. Streams

 QuicTransport unidirectional and bidirectional streams are created by
 creating a QUIC stream of the corresponding type. All other
 operations (read, write, close) are also mapped directly to the
 operations defined in [QUIC]. The QUIC stream IDs are the stream IDs
 that are exposed to the application.

5. Datagrams

 QuicTransport uses the QUIC DATAGRAM frame [QUIC-DATAGRAM] to provide
 WebTransport datagrams. A QuicTransport endpoint MUST negotiate and
 support the DATAGRAM frame. The datagrams provided by the
 application are sent as-is.

6. QuicTransport URI Scheme

 NOTE: the URI scheme definition in this section is provisional and
 subject to change, especially the name of the scheme.

 QuicTransport uses the "quic-transport" URI scheme for identifying
 QuicTransport servers.

 The syntax definition below uses Augmented Backus-Naur Form (ABNF)
 [RFC5234]. The definitions of "host", "port", "path-abempty",
 "query" and "fragment" are adopted from [RFC3986]. The syntax of a
 QuicTransport URI SHALL be:

quic‑transport‑URI = "quic‑transport:" "//"
 host [":" port]
 path‑abempty
 ["?" query]
 ["#" fragment]

 The "path-abempty" and the "query" portions of the URI are
 communicated to the server in the client indication as described in
 Section 3.2.2. The "quic-transport" URI scheme supports the "/.well-
 known/" path prefix defined in [RFC8615].

 This document does not assign any semantics to the "fragment" portion
 of the URI. Any QuicTransport implementation MUST ignore those until
 a subsequent specification assigns semantics to those.

 The "host" component MUST NOT be empty. If the "port" component is
 missing, the port SHALL be assumed to be 0.

 In order to connect to a QuicTransport server identified by a given
 URI, the user agent SHALL establish a QUIC connection to the
 specified "host" and "port" as described in Section 3. It MUST
 immediately signal an error to the client if the port value is 0.

 NOTE: this effectively requires the port number to be specified.
 This specification may include an actually usable default port number
 in the future.

7. Transport Properties

 QuicTransport supports most WebTransport features as described in
 Table 1.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Property | Support |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
Stream independence	Always supported
Partial reliability	Always supported
Pooling support	Not supported
Connection mobility	Implementation‑dependent
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1: Transport properties of QuicTransport

8. Security Considerations

 QuicTransport satisfies all of the security requirements imposed by
 [OVERVIEW] on WebTransport protocols, thus providing a secure
 framework for client-server communication in cases when the the
 client is potentially untrusted.

 QuicTransport uses QUIC with TLS, and as such, provides the full
 range of security properties provided by TLS, including
 confidentiality, integrity and authentication of the server.

 QUIC is a client-server protocol where a client cannot send data
 until either the handshake is complete or a previously established
 session is resumed. This ensures that clients cannot send data to a
 network endpoint that has not accepted an incoming connection.
 Furthermore, the QuicTransport session can be immediately aborted by
 the server through a connection close or a stateless reset, causing
 the user agent to stop the traffic from the client. This provides a
 defense against potential denial-of-service attacks on the network by
 untrusted clients.

 QUIC provides a congestion control mechanism [I-D.ietf-quic-recovery]
 that limits the rate at which the traffic is sent. This prevents
 potentially malicious clients from overloading the network.

 WebTransport requires user agents to continually verify that the
 server is still interested in talking to them. QuicTransport
 accomplishes that by virtue of QUIC being an acknowledgement-based
 protocol; if the client is attempting to send data, and the server
 does not send any ACK frames in response, the client side of the QUIC
 connection will time out.

 QuicTransport prevents WebTransport clients from connecting to
 arbitrary non-Web servers through the use of ALPN. Unlike TLS over
 TCP, successful ALPN negotiation is mandatory in QUIC. Thus, unless
 the server explicitly picks the QuicTransport ALPN value, the TLS
 handshake will fail.

 QuicTransport uses a unidirectional QUIC stream to provide the server
 with the origin of the client.

 In order to avoid the use of QuicTransport to scan internal networks,
 the user agents MUST NOT allow the clients to distinguish different
 connection errors before the correct ALPN is received from the
 server.

 Since each instance of QuicTransport opens a new connection, a
 malicious client can cause resource exhaustion, both on the local
 system (through depleting file descriptor space or other per-
 connection resources) and on a given remote server. Because of that,
 user agents SHOULD limit the amount of simultaneous connections
 opened. The server MAY limit the amount of open connections from a
 given client.

9. IANA Considerations

9.1. ALPN Value Registration

 The following entry is added to the "Application Layer Protocol
 Negotiation (ALPN) Protocol IDs" registry established by [RFC7301]:

 The "wq-vvv-01" label identifies QUIC used as a protocol for
 WebTransport:

Protocol: QuicTransport

Identification Sequence: 0x77 0x71 0x2d 0x76 0x76 0x76 0x2d 0x30
 0x31 ("wq‑vvv‑01")

Specification: This document

9.2. Client Indication Fields Registry

 IANA SHALL add a registry for "QuicTransport Client Indication
 Fields" registry. Every entry in the registry SHALL include the
 following fields:

Name: The name of the field.

Key: The 16‑bit unique identifier that is used on the wire.

Description: A brief description of what the parameter does.

Reference: The document that describes the parameter.

 The IANA policy, as described in [RFC8126], SHALL be Standards Action
 for values between 0x0000 and 0x03ff; Specification Required for
 values between 0x0400 and 0xefff; and Private Use for values between
 0xf000 and 0xffff.

9.3. URI Scheme Registration

 This document contains the request for the registration of the URI
 scheme "quic-transport". The registration request is in accordance
 with [RFC7595].

Scheme name: quic‑transport

Status: Permanent

Applications/protocols that use this scheme name: QuicTransport

Contact: IETF Chair chair@ietf.org [1]

Change controller: IESG iesg@ietf.org [2]

Reference: Section 6 of this document.

Well‑Known URI Support: Section 6 of this document.

10. References

10.1. Normative References

 [FETCH]
 WHATWG, "Fetch Standard", June 2020,
 <https://fetch.spec.whatwg.org/>.

 [OVERVIEW]

 Vasiliev, V., "The WebTransport Protocol Framework",
 draft-ietf-webtrans-overview-latest (work in progress).

 [QUIC]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-
 transport-latest (work in progress).

 [QUIC-DATAGRAM]

 Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable
 Datagram Extension to QUIC", draft-pauly-quic-datagram-
 latest (work in progress).

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC5234]
 Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC6454]
 Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <https://www.rfc-editor.org/info/rfc6454>.

 [RFC7301]
 Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC7595]
 Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines
 and Registration Procedures for URI Schemes", BCP 35,
 RFC 7595, DOI 10.17487/RFC7595, June 2015,
 <https://www.rfc-editor.org/info/rfc7595>.

 [RFC8126]
 Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8615]
 Nottingham, M., "Well-Known Uniform Resource Identifiers
 (URIs)", RFC 8615, DOI 10.17487/RFC8615, May 2019,
 <https://www.rfc-editor.org/info/rfc8615>.

10.2. Informative References

 [I-D.ietf-quic-http]

 Bishop, M., "Hypertext Transfer Protocol Version 3
 (HTTP/3)", draft-ietf-quic-http-29 (work in progress),
 June 2020.

 [I-D.ietf-quic-recovery]

 Iyengar, J. and I. Swett, "QUIC Loss Detection and
 Congestion Control", draft-ietf-quic-recovery-29 (work in
 progress), June 2020.

 [I-D.vvv-webtransport-http3]

 Vasiliev, V., "WebTransport over HTTP/3", draft-vvv-
 webtransport-http3-01 (work in progress), November 2019.

 [RFC6066]
 Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

10.3. URIs

 [1] mailto:chair@ietf.org

 [2] mailto:iesg@ietf.org

Author's Address

Victor Vasiliev
Google

 Email: vasilvv@google.com

RFC eBook Conversion

This text describes the conversion process used to create this
ebook.

Conversion process for rfc.mobi/rfc.epub

The conversion process goes like follows:

	Update rfc index from the www.ietf.org

	Create the cover jpg from the postscript file and scale it
down

	Create list of files to be included to the book

	Create ncx file based on the list created before

	Go through RFCs and convert them from text to html

	Create opf file for the book

	Convert the rfc-index.txt to index.html file

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.

Conversion process for working group internet-drafts

The conversion process goes like follows:

	Update rfc and internet-draft reposotiries from the
www.ietf.org

	Create the directory structure where we have one directory for
each area, and inside that directory we have directory for each
working group in that area. Also create the .htaccess file containing
full names for working groups.

	Create ebooks, by looping through all working groups in all areas
and do following:

	Fetch list of working group drafts, RFCs and related from the
http://datatracker.ietf.org/wg/wgname/documents/txt.

	Create the cover jpg from the postscript file and scale it
down

	Create ncx file based on the list created before

	Go through documents and convert them from text to html

	Create opf file for the book

	Create index.html file based on the files and titles fetched in
the beginning from datatracker.

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

	 Copy .epub and .mobi files to the correct place in the directory
structure.

Creating Cover page

make-cover.sh "\nRFC Index\n$date" "$time" \
 "ietf-logo.eps" > rfc.jpg

This program takes the title, time and logo postscript, and creates
a postscript file which it then runs through ghostscript and converts
it file suitable for the Kindle 3. The title can have three lines
separated with "\n". Normally the top two lines contain the
actual title, and third line contains the date of conversion. The time
is added to the end of the page with small font, so it can be used
during development phase to see which version of ebook this is (during
development I did have multiple versions loaded to my Kindle and it
was painful to find out which one of them is newest before this was
added). The logo is ietf-logo.eps directly from the IETF web page.

The page is initially created at 2400x3200 pixel resolution and
then scaled down to 25% of size meaning the final page is 600x800
pixels in size.

Creating NCX file

For RFC ebook:

make-ncx.pl --title "RFC Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file $ncxtocentries \
 --out \
 --class book \
 --include-regexp '^rfc[0-9][0-9][0-9]1' \
 --split-regexp '^rfc[0-9][0-9]01' \
 --input-file $ncxrfcentries

For the Internet-Draft ebooks:

make-ncx.pl --title "$wg Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --class book \
 --input-file $ncxentries

NCX file contains list all files and the navigation information.
That is used when you press left or right arrows on the kindle to see
where to move next. See make-ncx manual
page for information about options.

Creating OPF file

For RFC ebook:

files=`ls -1 "$dir"/rfc*.html | sed 's/.*\///g'`
make-opf.pl --title "RFC Index $date" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 --output rfc.opf \
 intro.html \
 $files \
 conversion.html \
 $manpages

For the Internet-Draft ebooks:

make-opf.pl --title "$wg ID and RFC Docs $date" \
 --language en \
 --cover wg.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "$wg RFCs and Internet-Drafts" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc wg-"$wg".ncx \
 --output "$opf" \
 $files \
 conversion.html \
 $manpages

Open package format file describes what files are in the ebook. It
also contains information where to start reading and in which order
entries are appearing in the book. See make-opf manual page for information about
options.

Converting text RFC to html

For RFCs the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -r $rfcnum \
 -o rfc$rfcnum.html \
 $rfctxtfile

For Internet-Drafts the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -t $draft-name \
 -o $draft-name.html \
 $draft-name.txt

This program takes the text formatted RFC or Internet-Draft and
formats it to html suitable for ebooks. The first step is to remove
page formatting (page breaks, page numbers, page headers and footers).
In that phase it also tries to see if one textual paragraph is
continuing from the previous page to the next, and if so then it will
glue them together. The second phase is to go through all paragraphs
and try to find out what type of paragraph it is (text, picture,
header, table of contents, authors address section, terminology
defination, bulleted or numbered list, references section). After this
it goes through the actual text paragraphs and converts them to html
suitable for their type. See rfc2html manual page for information about
options.

Converting rfc-index.txt to index.html

TBF

Creating .mobi file

kindlegen rfc.opf -c1 -verbose

TBF

Converting files to .epub format

makeepub.sh current

TBF

Kindle 3 issues

Issues I have found when converting this to kindle 3

Ncx file size

It seems there is maximum number of items the ncx file can have, or
some other limitation in the ncx file parsing. When I included all the
rfcs to the ncx file then the next and previous arrows in the kindle 3
does not work anymore. If the number if items is reduced then they
start working.

Kindle -c2 compression

When I tried to use the best compression of kindlegen, the program
did create a eBook file but all the links inside the file pointed in
wrong place, i.e. when you used link to go rfc5996 you ended up in the
middle of rfc6020 or so.

No support for multiple indexes

The mobipockect supports multiple indexes and the eBook originally
included titleword and full title text indexes, but those were removed
as kindle 3 does not support them.

Last item in might be missing in index

The automatic index (using the menu and selecting index) sometimes
misses the last item in it. Thats why I added this conversion
description to the end, so if something is missing it will be this
text.

Kindle 3 and pictures

Kindle 3 does support monospace font and the screen is wide enough
for 67 charactes if screen is rotated. This allows the normal 32 bit
packet frame description pictures to be shown properly using the
normal pre-tag. The Kindle 3 will still wrap words to the next line,
and this was problematic when combined with hyphens used in pictures.
To fix this all the hyphens in the text are converted to the
no-breaking hyphens.

No-breaking hyphen not shown properly on Kindle for PC

Because of the previous issue with word wrap we needed to use
non-breaking hyphens, but unfortunately they do not show properly on
the kindle for PC, but instead of unknown character box is shown
instead.

Searching does not work

For some reason the searching from the RFC eBook does not work on
the Kindle 3.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-ncx - Create NCX file

[bookmark: synopsis]SYNOPSIS

make-ncx [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--depth|-d depth-of-toc]
 [--total-page-count|-T total-page-count]
 [--max-page-number|-m max-page-number]
 [--separator|-s separator-regexp]
 --author|-a author
 --title|-t title
 entry ...
 [--class|-c class] entry ...
 [--in] entry ... [--out]
 [--autosplit|-A split-count] entry ...
 [--include-regexp include-regexp] entry ...
 [--exclude-regexp exclude-regexp] entry ...
 [--split-regexp split-regexp] entry ...
 [--input-file|-i input-file] entry ...
 entry ...

make-ncx --help

[bookmark: description]DESCRIPTION

make-ncx takes list of ncx entries and creates NCX (Navigation
Control for for XML applications Format) file out of them.

NCX is hierarchical structure, and the make-ncx supports this so
that the list of entries can include --in and --out options to
in and out in the hierarchy. Note, that the first item is always on
level 1 and you can go in only one level per entry, i.e. adding two
--in options right after each other is an error. Multiple --out
options is allowed, but going out from level 1 is not allowed.

Each entry contain 4 fields separated from each other by separator
regexp. The first field is the class of the entry. This can be
something like "book", "toc", "entry" etc. Second field is the id of
the entry. This should be something unique. Third field is the actual
link inside the mobibook, i.e. "index.html", "index.html#s1000" or
"rfc1234.html". Last field is the text of the entry.

If only 3 fields are given then they are assumed to be id, link and
text, and the class is the one given with --class option.

If only 2 fields are given then they are assumed to be link and text,
and the class is processed as with 3 fields, and id is autogenerated
from the link, by removing path, prefixes and special chars.

If only one field is given then it is assumed to be link, and class
and id is generated as previously, and link is converted to text by
removing prefixes and removing some special charactes and replacing
'/', '-', '_' to spaces.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: depth_d_depth_of_toc]--depth -d depth-of-toc

	
Max depth of the NCX file. If not given this is autodetected from the
options.

	[bookmark: total_page_count_t_total_page_count]--total-page-count -T total-page-count

	
Sets total page count. If not given this is set to 0.

	[bookmark: max_page_number_m_max_page_number]--max-page-number -m max-page-number

	
Sets max page number. If not given this is set to 0.

	[bookmark: separator_s_separator_regexp]--separator -s separator-regexp

	
Separator regexp used to split entries to class, id, link and text.
Defaults to ':'

	[bookmark: author_a_author]--author -a author

	
Author of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: in]--in

	
Go one level into the hierarchy. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: out]--out

	
Go one level out in the hierarchy. This option is used inside the
entry list and it affects the entries coming after it.

	[bookmark: class_c]--class -c

	
Set the class of the entries coming after this if no class given in
the entry. This option is used inside the entry list and it affects
the entries coming after it.

	[bookmark: autosplit_a_split_count]--autosplit -A split-count

	
Starts autosplitting long list of entries, so that split-count
entries are combined so that the first entry stays at current level,
and all other entries are moved in one level inside the first entry.
This process is repeated until --in, --out, or new
--autosplit option is found. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: include_regexp_include_regexp]--include-regexp include-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which are matching this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: exclude_regexp_exclude_regexp]--exclude-regexp exclude-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which do not match this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: split_regexp_split_regexp]--split-regexp split-regexp

	
Automatically split entries to sublevels based on the regexp. This
will match entries against the regexp and when first match is found it
will put this entry on current level and then go down one level, and
then put all further entries not matching this regexp to that level.
Further matching entries are moved to the same level as the first one.
This can be used in combination with --autosplit option in which
case --autosplit entries will be below this, meaning the hierarchy
will have 3 levels. Top level contains the entries matching this
regexp. The next level contains every Nth entry and lowest level
contains all other entries. Every time matching entry is found the
--autosplit counter is reset.

	[bookmark: input_file_i_input_file]--input-file -i input-file

	
Reads the list of options from the input-file instead of reading
them from command line. The options are in the file one option at
line, and are processed exactly as they would be on the command line.
This means that you can give --class, --in, --autosplit etc options
first and then just get the list of filenames from the file.

[bookmark: examples]EXAMPLES

make-ncx --title foo \
 --author bar \
 toc:toc:index.html:Index \
 book:rfc0001:rfc0001.html:RFC0001

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 0000:index.html#s0000:RFC0000 \
 1000:index.html#s1000:RFC1000 \
 2000:index.html#s2000:RFC2000 \
 3000:index.html#s3000:RFC3000 \
 4000:index.html#s4000:RFC4000 \
 5000:index.html#s5000:RFC5000 \
 6000:index.html#s6000:RFC6000 \
 --out \
 --class book \
 --autosplit 5 \
 rfc0001.html rfc0002.html rfc0003.html rfc0004.html rfc0005.html \
 rfc0006.html rfc0007.html rfc0008.html rfc0009.html rfc0010.html \
 rfc6001.html rfc6002.html rfc6003.html rfc6004.html rfc6005.html \
 rfc6006.html rfc6007.html

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file toc-entries.txt \
 --out \
 --class book \
 --autosplit 5 \
 --input-file rfc-list.txt

[bookmark: files]FILES

	[bookmark: makencxrc]~/.makencxrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-opf - Create OPF file

[bookmark: synopsis]SYNOPSIS

make-opf [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--beginning|-b first-page-filename]
 [--cover|-c cover-jpg-file-name]
 [--creator|-C creator]
 [--date|-D date]
 [--description|-d description]
 --id|-i id
 [--index|-I index-html-file-name]
 --language|-l language
 [--publisher|-p publisher]
 [--role|-r creator-role]
 [--stylesheet|-S stylesheet-css-file-name]
 [--subject|-s subject]
 --title|-t title
 [--toc|-T toc-ncs-file-name]
 filename ...

make-opf --help

[bookmark: description]DESCRIPTION

make-opf takes list of html files inside the mobibook and creates a
OPF (Open Packaging Format) file out of them.

Files are added to the spine in the order they appear in the command
line. Note, that before any files there is --cover, --beginning
and ---index pages, which always come in that order in the
beginning of the book.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: beginning_b_first_page_filen_file_name]--beginning -b first-page-filen-file-name

	
File name inside the mobibook which is used as a beginning of the
book, i.e. when book is opened it comes to this page.

	[bookmark: cover_c_cover_jpg_file_name]--cover -c cover-jpg-file-name

	
File name inside the mobibook which is used as a cover page for the
publication. Must be jpg file. This is mandatory for Kindle books.

	[bookmark: creator_c_creator]--creator -C creator

	
Creator of the publication. Usually the name of the author.

	[bookmark: date_d_date]--date -D date

	
Date of the publication.

	[bookmark: description_d_description]--description -d description

	
Short description of the publication.

	[bookmark: id_i_id]--id -i id

	
Unique ID for the publication.

	[bookmark: index_i_index_html_file_name]--index -I index-html-file-name

	
File name inside the mobibook which is used as index. If included this
is also used as table of contents.

	[bookmark: language_l_language]--language -l language

	
Language tag of the publication. Typically "en".

	[bookmark: publisher_p_publisher]--publisher -p publisher

	
Publisher name.

	[bookmark: role_r_creator_role]--role -r creator-role

	
Role of the creator, i.e. author (aut), collaborator (clb), editor
(edt) etc.

	[bookmark: stylesheet_s_stylesheet_css_filename]--stylesheet -S stylesheet-css-filename

	
File name inside the mobibook which used as css stylesheet.

	[bookmark: subject_s_subject]--subject -S subject

	
Subject of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: toc_t_toc_ncs_file_name]--toc -T toc-ncs-file-name

	
File name inside the mobibook which is used as NCS table of contents
file name.

[bookmark: examples]EXAMPLES

make-opf.pl --title "${partial}RFC Index $d" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$d" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 rfc*.html

[bookmark: files]FILES

	[bookmark: makeopfrc]~/.makeopfrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

rfc2html - Convert RFC to simple html

[bookmark: synopsis]SYNOPSIS

rfc2html [--help|-h] [--version|-V] [--verbose|-v]
 [--key-index]
 [--navigation|-n navigation-links]
 [--filelist|-f filelist-file]
 [--rfc|-r rfc-number]
 [--title|-t title-prefix]
 [--output|-o output-file]
 [--config config-file]
 filename ...

rfc2html --help

[bookmark: description]DESCRIPTION

rfc2html takes RFC txt file and converts it to simple html file.

filename is read in and new file is created so that .txt extension
is removed from the filename (if it exists) and .html extesion is
added.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to <inputfile>.txt.

	[bookmark: rfc_r_rfc_number]--rfc -r rfc-number

	
Gives the RFC number of the current file. Used to make title
information correct.

	[bookmark: title_t_title_prefix]--title -t title-prefix

	
Gives text added to the beginning of the title, for example the file
name.

	[bookmark: filelist_f_file_list_filename]--filelist -f file-list-filename

	
Filename of the file containing list of files in the book. If given
only those links pointing to files listed in this file are converted
to links.

	[bookmark: navigation_n_navigation_links]--navigation -n navigation-links

	
Creates navigation links at the top of the file. The navigation links
text is semicolon separated list of navigation links. Each link
consists of file name inside the book, and the link title. The
filename can either be full filename like "index.html", or it can be
relative filename like "-1" or "+100". Using this option requires that
the filelist option is also used and all links given here are found
from the filelist. The filelist is also used to find the current file
name and then calculate relative filenames from there, i.e. "-1" means
the filename in the filename list just before this file.

The filename used for searching this entry from the filelist is the
output filename, and if exact match is not found then the path
components are removed and file is searched again.

	[bookmark: key_index]--key-index

	
Create key index entries. Those are only useful for mobipacket reader,
they do not work on kindle.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

[bookmark: examples]EXAMPLES

 rfc2html rfc5996.txt
 rfc2html *.txt

[bookmark: files]FILES

	[bookmark: rfc2htmlrc]~/.rfc2htmlrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created based on the rfcmarkup version 1.90 to
convert RFCs to simple html suitable for kindle ebook conversion. The
rfcmarkup tries to keep formatting intact, while this actually removes
things which are not needed in ebooks, i.e page breaks and page
numbers, and makes text paragraphs as html paragraphs, instead of
using <pre> around the whole file.

OPS/wg.jpg
webtrans
Documents
2020-07-19

SO ¢

1 E T F

Kindle transformation by Tero Kivinen
01:13:39

