[Docs] [txt|pdf|xml|html] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]

Versions: 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 draft-ietf-dnsop-no-response-issue

Network Working Group                                         M. Andrews
Internet-Draft                                                       ISC
Intended status: Best Current Practice                 November 26, 2015
Expires: May 29, 2016


   A Common Operational Problem in DNS Servers - Failure To Respond.
                 draft-andrews-dns-no-response-issue-16

Abstract

   The DNS is a query / response protocol.  Failure to respond or to
   respond correctly to queries causes both immediate operational
   problems and long term problems with protocol development.

   This document identifies a number of common classes of queries to
   which some servers either fail to respond or else respond
   incorrectly.  This document also suggests procedures for TLD and
   other similar zone operators to apply to help reduce / eliminate the
   problem.

   The document does not look at the DNS data itself, just the structure
   of the responses.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 29, 2016.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents



Andrews                   Expires May 29, 2016                  [Page 1]


Internet-Draft             Failure to respond              November 2015


   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Common queries class that result in non responses.  . . . . .   3
     2.1.  EDNS Queries - Version Independent  . . . . . . . . . . .   4
     2.2.  EDNS Queries - Version Specific . . . . . . . . . . . . .   4
     2.3.  EDNS Options  . . . . . . . . . . . . . . . . . . . . . .   4
     2.4.  EDNS Flags  . . . . . . . . . . . . . . . . . . . . . . .   4
     2.5.  DNS Flags . . . . . . . . . . . . . . . . . . . . . . . .   5
     2.6.  Unknown / Unsupported Type Queries  . . . . . . . . . . .   5
     2.7.  Unknown DNS opcodes . . . . . . . . . . . . . . . . . . .   5
     2.8.  TCP Queries . . . . . . . . . . . . . . . . . . . . . . .   5
   3.  Remediating . . . . . . . . . . . . . . . . . . . . . . . . .   6
   4.  Firewalls and Load Balancers  . . . . . . . . . . . . . . . .   7
   5.  Scrubbing Services  . . . . . . . . . . . . . . . . . . . . .   8
   6.  Whole Answer Caches . . . . . . . . . . . . . . . . . . . . .   9
   7.  Response Code Selection . . . . . . . . . . . . . . . . . . .   9
   8.  Testing . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
     8.1.  Testing - Basic DNS . . . . . . . . . . . . . . . . . . .  10
     8.2.  Testing - Extended DNS  . . . . . . . . . . . . . . . . .  12
   9.  Security Considerations . . . . . . . . . . . . . . . . . . .  15
   10. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  15
   11. Normative References  . . . . . . . . . . . . . . . . . . . .  15
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  16

1.  Introduction

   The DNS [RFC1034], [RFC1035] is a query / response protocol.  Failure
   to respond to queries or to respond incorrectly causes both immediate
   operational problems and long term problems with protocol
   development.

   Failure to respond to a query is indistinguishable from a packet loss
   without doing a analysis of query response patterns and results in
   unnecessary additional queries being made by DNS clients and
   unnecessary delays being introduced to the resolution process.

   Due to the inability to distinguish between packet loss and
   nameservers dropping EDNS [RFC6891] queries, packet loss is sometimes




Andrews                   Expires May 29, 2016                  [Page 2]


Internet-Draft             Failure to respond              November 2015


   misclassified as lack of EDNS support which can lead to DNSSEC
   validation failures.

   Allowing servers which fail to respond to queries to remain results
   in developers being afraid to deploy implementations of recent
   standards.  Such servers need to be identified and corrected /
   replaced.

   The DNS has response codes that cover almost any conceivable query
   response.  A nameserver should be able to respond to any conceivable
   query using them.

   Unless a nameserver is under attack, it should respond to all queries
   directed to it as a result of following delegations.  Additionally
   code should not assume that there isn't a delegation to the server
   even if it is not configured to serve the zone.  Broken delegations
   are a common occurrence in the DNS and receiving queries for zones
   that you are not configured for is not a necessarily a indication
   that you are under attack.  Parent zone operators are supposed to
   regularly check that the delegating NS records are consistent with
   those of the delegated zone and to correct them when they are not
   [RFC1034].  If this was being done regularly, the instances of broken
   delegations would be much lower.

   When a nameserver is under attack it may wish to drop packets.  A
   common attack is to use a nameserver as a amplifier by sending
   spoofed packets.  This is done because response packets are bigger
   than the queries and big amplification factors are available
   especially if EDNS is supported.  Limiting the rate of responses is
   reasonable when this is occurring and the client should retry.  This
   however only works if legitimate clients are not being forced to
   guess whether EDNS queries are accept or not.  While there is still a
   pool of servers that don't respond to EDNS requests, clients have no
   way to know if the lack of response is due to packet loss, EDNS
   packets not being supported or rate limiting due to the server being
   under attack.  Mis-classifications of server characteristics are
   unavoidable when rate limiting is done.

2.  Common queries class that result in non responses.

   There are three common query classes that result in non responses
   today.  These are EDNS queries, queries for unknown (unallocated) or
   unsupported types, and filtering of TCP queries.








Andrews                   Expires May 29, 2016                  [Page 3]


Internet-Draft             Failure to respond              November 2015


2.1.  EDNS Queries - Version Independent

   Identifying servers that fail to respond to EDNS queries can be done
   by first identifying that the server responds to regular DNS queries,
   followed by a series of otherwise identical responses using EDNS,
   then making the original query again.  A series of EDNS queries is
   needed as at least one DNS implementation responds to the first EDNS
   query with FORMERR but fails to respond to subsequent queries from
   the same address for a period until a regular DNS query is made.  The
   EDNS query should specify a UDP buffer size of 512 bytes to avoid
   false classification of not supporting EDNS due to response packet
   size.

   If the server responds to the first and last queries but fails to
   respond to most or all of the EDNS queries, it is probably faulty.
   The test should be repeated a number of times to eliminate the
   likelihood of a false positive due to packet loss.

   Firewalls may also block larger EDNS responses but there is no easy
   way to check authoritative servers to see if the firewall is
   misconfigured.

2.2.  EDNS Queries - Version Specific

   Some servers respond correctly to EDNS version 0 queries but fail to
   respond to EDNS queries with version numbers that are higher than
   zero.  Servers should respond with BADVERS to EDNS queries with
   version numbers that they do not support.

   Some servers respond correctly to EDNS version 0 queries but fail to
   set QR=1 when responding to EDNS versions they do not support.  Such
   answers are discarded or treated as requests.

2.3.  EDNS Options

   Some servers fail to respond to EDNS queries with EDNS options set.
   Unknown EDNS options are supposed to be ignored by the server
   [RFC6891].

2.4.  EDNS Flags

   Some servers fail to respond to EDNS queries with EDNS flags set.
   Server should ignore EDNS flags there do not understand and should
   not add them to the response [RFC6891].







Andrews                   Expires May 29, 2016                  [Page 4]


Internet-Draft             Failure to respond              November 2015


2.5.  DNS Flags

   Some servers fail to respond to DNS queries with various DNS flags
   set, regardless of whether they are defined or still reserved.  At
   the time of writing there are servers that fail to respond to queries
   with the AD bit set to 1 and servers that fail to respond to queries
   with the last reserved flag bit set.

2.6.  Unknown / Unsupported Type Queries

   Identifying servers that fail to respond to unknown or unsupported
   types can be done by making an initial DNS query for an A record,
   making a number of queries for an unallocated type, them making a
   query for an A record again.  IANA maintains a registry of allocated
   types.

   If the server responds to the first and last queries but fails to
   respond to the queries for the unallocated type, it is probably
   faulty.  The test should be repeated a number of times to eliminate
   the likelihood of a false positive due to packet loss.

2.7.  Unknown DNS opcodes

   The use of previously undefined opcodes is to be expected.  Since the
   DNS was first defined two new opcodes have been added, UPDATE and
   NOTIFY.

   NOTIMP is the expected rcode to an unknown / unimplemented opcode.

   Note: while new opcodes will most probably use the current layout
   structure for the rest of the message there is no requirement than
   anything other than the DNS header match.

2.8.  TCP Queries

   All DNS servers are supposed to respond to queries over TCP
   [RFC5966].  Firewalls that drop TCP connection attempts rather that
   resetting the connect attempt or send a ICMP/ICMPv6 administratively
   prohibited message introduce excessive delays to the resolution
   process.

   Whether a server accepts TCP connections can be tested by first
   checking that it responds to UDP queries to confirm that it is up and
   operating, then attempting the same query over TCP.  An additional
   query should be made over UDP if the TCP connection attempt fails to
   confirm that the server under test is still operating.





Andrews                   Expires May 29, 2016                  [Page 5]


Internet-Draft             Failure to respond              November 2015


3.  Remediating

   While the first step in remediating this problem is to get the
   offending nameserver code corrected, there is a very long tail
   problem with DNS servers in that it can often take over a decade
   between the code being corrected and a nameserver being upgraded with
   corrected code.  With that in mind it is requested that TLD, and
   other similar zone operators, take steps to identify and inform their
   customers, directly or indirectly through registrars, that they are
   running such servers and that the customers need to correct the
   problem.

   TLD operators are being asked to do this as they, due to the nature
   of running a TLD and the hierarchical nature of the DNS, have access
   to a large numbers of nameserver names as well as contact details for
   the registrants of those nameservers.  One can construct lists of
   nameservers from other sources and that has been done to survey the
   state of the Internet, but that doesn't give you the contact details
   necessary to inform the operators.  The SOA RNAME is often invalid
   and whois data is obscured and / or not available which makes it
   infeasible for others to do this.

   TLD operators should construct a list of servers child zones are
   delegated to along with a delegated zone name.  This name shall be
   the query name used to test the server as it is supposed to exist.

   For each server the TLD operator shall make an SOA query of the
   delegated zone name.  This should result in the SOA record being
   returned in the answer section.  If the SOA record is not returned
   but some other response is returned, this is a indication of a bad
   delegation and the TLD operator should take whatever steps it
   normally takes to rectify a bad delegation.  If more that one zone is
   delegated to the server, it should choose another zone until it finds
   a zone which responds correctly or it exhausts the list of zones
   delegated to the server.

   If the server fails to get a response to a SOA query, the TLD
   operator should make an A query as some nameservers fail to respond
   to SOA queries but respond to A queries.  If it gets no response to
   the A query, another delegated zone should be queried for as some
   nameservers fail to respond to zones they are not configured for.  If
   subsequent queries find a responding zone, all delegation to this
   server need to be checked and rectified using the TLD's normal
   procedures.

   Having identified a working <server, query name> tuple the TLD
   operator should now check that the server responds to EDNS, Unknown
   Query Type and TCP tests as described above.  If the TLD operator



Andrews                   Expires May 29, 2016                  [Page 6]


Internet-Draft             Failure to respond              November 2015


   finds that server fails any of the tests, the TLD operator shall take
   steps to inform the operator of the server that they are running a
   faulty nameserver and that they need to take steps to correct the
   matter.  The TLD operator shall also record the <server, query name>
   for follow-up testing.

   If repeated attempts to inform and get the customer to correct /
   replace the faulty server are unsuccessful the TLD operator shall
   remove all delegations to said server from the zone.

   It will also be necessary for TLD operators to repeat the scans
   periodically.  It is recommended that this be performed monthly
   backing off to bi-annually once the numbers of faulty servers found
   drops off to less than 1 in 100000 servers tested.  Follow-up tests
   for faulty servers still need to be performed monthly.

   Some operators claim that they can't perform checks at registration
   time.  If a check is not performed at registration time, it needs to
   be performed within a week of registration in order to detect faulty
   servers swiftly.

   Checking of delegations by TLD operators should be nothing new as
   they have been required from the very beginnings of DNS to do this
   [RFC1034].  Checking for compliance of nameserver operations should
   just be a extension of such testing.

   It is recommended that TLD operators setup a test web page which
   performs the tests the TLD operator performs as part of their regular
   audits to allow nameserver operators to test that they have correctly
   fixed their servers.  Such tests should be rate limited to avoid
   these pages being a denial of service vector.

4.  Firewalls and Load Balancers

   Firewalls and load balancers can affect the externally visible
   behaviour of a nameserver.  Tests for conformance need to be done
   from outside of any firewall so that the system as a whole is tested.

   Firewalls and load balancers should not drop DNS packets that they
   don't understand.  They should either pass through the packets or
   generate an appropriate error response.

   Requests for unknown query types are not attacks and should not be
   treated as such.

   Requests with unassigned flags set (DNS or EDNS) are not attacks and
   should not be treated as such.  The behaviour for unassigned is to
   ignore them in the request and to not set them in the response.  All



Andrews                   Expires May 29, 2016                  [Page 7]


Internet-Draft             Failure to respond              November 2015


   dropping DNS / EDNS packets with unassigned flags does is make it
   harder to deploy extensions that make use of them due to the need to
   reconfigure / update firewalls.

   Requests with unknown EDNS options are not an attack and should not
   be treated as such.  The correct behaviour for unknown EDNS options
   is to ignore them.

   Requests with unknown EDNS versions are not a attack and should not
   be treated as such.  The correct behaviour for unknown EDNS versions
   is to return BADVERS along with the highest EDNS version the server
   supports.  All dropping EDNS packets does is break EDNS version
   negotiation.

   Firewalls should not assume that there will only be a single response
   message to a requests.  There have been proposals to use EDNS to
   signal that multiple DNS messages be returned rather than a single
   UDP message that is fragmented at the IP layer.

5.  Scrubbing Services

   Scrubbing services, like firewalls, can affect the externally visible
   behaviour of a nameserver.  If you use a scrubbing service, you
   should check that legitimate queries are not being blocked.

   Scrubbing services, unlike firewalls, are also turned on and off in
   response to denial of service attacks.  One needs to take care when
   choosing a scrubbing service and ask questions like:

      Do they pass unknown DNS query types?

      Do they pass unknown EDNS versions?

      Do they pass unknown EDNS options?

      Do they pass unknown EDNS flags?

      Do they pass requests with unknown DNS opcodes?

      Do they pass requests with the remaining reserved DNS header flag
      bit set?

   All of these are not attack vectors but some scrubbing services treat
   them as such.







Andrews                   Expires May 29, 2016                  [Page 8]


Internet-Draft             Failure to respond              November 2015


6.  Whole Answer Caches

   Whole answer caches can return the wrong response to a query if they
   do not take all of the query into account.  This has implications
   when testing and with overall protocol compliance.

   e.g.  There are whole answer caches that ignore the EDNS version
   field which results in incorrect answers to non EDNS version 0
   queries being returned if they were proceeded by a EDNS version 0
   query for the same name and type.

7.  Response Code Selection

   Choosing the correct response code when fixing a nameserver is
   important.  Just because a type is not implemented does not mean that
   NOTIMP is the correct response code to return.  Response codes need
   to be chosen considering how clients will handle them.

   For unimplemented opcodes NOTIMP is the expected response code.
   Additionally a new opcode could change the message format by
   extending the header or changing the structure of the records etc.
   This may result in FORMERR being returned though NOTIMP would be more
   correct.

   In general, for unimplemented type codes Name Error (NXDOMAIN) and
   NOERROR (no data) are the expected response codes.  A server is not
   supposed to serve a zone which contains unsupported types ([RFC1034])
   so the only thing left is return if the QNAME exists or not.  NOTIMP
   and REFUSED are not useful responses as they force the clients to try
   all the authoritative servers for a zone looking for a server which
   will answer the query.

   Meta queries type may be the exception but these need to be thought
   about on a case by case basis.

   If you support EDNS and get a query with an unsupported EDNS version,
   the correct response is BADVERS [RFC6891].

   If you do not support EDNS at all, FORMERR and NOTIMP are the
   expected error codes.  That said a minimal EDNS server implementation
   just requires parsing the OPT records and responding with an empty
   OPT record.  There is no need to interpret any EDNS options present
   in the request as unsupported options are expected to be ignored
   [RFC6891].







Andrews                   Expires May 29, 2016                  [Page 9]


Internet-Draft             Failure to respond              November 2015


8.  Testing

   Testing is broken into two sections.  Basic DNS which all servers
   should meet and Extended DNS which should be met by all servers that
   support EDNS.

   It is advisable to run all the below tests in parallel so as to
   minimise the delays due to multiple timeouts when the servers do not
   respond.

   The below tests use dig from BIND 9.11.0 which is still in
   development.

8.1.  Testing - Basic DNS

   This first set of tests cover basic DNS server behaviour and all
   servers should pass these tests.

   Verify the server is configured for the zone:

   dig +noedns +noad +norec soa $zone @$server

   expect: status: NOERROR
   expect: SOA record
   expect: flag: aa to be present

   Check that TCP queries work:

   dig +noedns +noad +norec +tcp soa $zone @$server

   expect: status: NOERROR
   expect: SOA record
   expect: flag: aa to be present

   The requirement that TCP be supported is defined in [RFC5966].

   Check that queries for an unknown type to work:

   dig +noedns +noad +norec type1000 $zone @$server

   expect: status: NOERROR
   expect: an empty answer section.
   expect: flag: aa to be present

   That new types are to be expected is specified in Section 3.6,
   [RFC1035].  Servers that don't support a new type are expected to
   reject a zone that contains a unsupported type as per Section 5.2,
   [RFC1035].  This means that a server that does load a zone can answer



Andrews                   Expires May 29, 2016                 [Page 10]


Internet-Draft             Failure to respond              November 2015


   questions for unknown types with NOERROR or NXDOMAIN as per
   Section 4.3.2, [RFC1034].  [RFC5395] later reserved distinct ranges
   for meta and data types which allows servers to be definitive about
   whether a query should be answerable from zone content or not.

   Check that queries with CD=1 work:

   dig +noedns +noad +norec +cd soa $zone @$server

   expect: status: NOERROR
   expect: SOA record to be present
   expect: flag: aa to be present

   CD use in queries is defined in [RFC4035].

   Check that queries with AD=1 work:

   dig +noedns +norec +ad soa $zone @$server

   expect: status: NOERROR
   expect: SOA record to be present
   expect: flag: aa to be present

   AD use in queries is defined in [RFC6840].

   Check that queries with the last unassigned DNS header flag to work
   and that the flag bit is not copied to the response:

   dig +noedns +noad +norec +zflag soa $zone @$server

   expect: status: NOERROR
   expect: SOA record to be present
   expect: MBZ to not be in the response
   expect: flag: aa to be present

   MBZ (Must Be Zero) presence indicates the flag bit has been
   incorrectly copied.  See Section 4.1.1, [RFC1035] "Z Reserved for
   future use.  Must be zero in all queries and responses."

   Check that new opcodes are handled:

   dig +noedns +noad +opcode=15 +norec +header-only @$server

   expect: status: NOTIMP
   expect: SOA record to not be present
   expect: flag: aa to NOT be present





Andrews                   Expires May 29, 2016                 [Page 11]


Internet-Draft             Failure to respond              November 2015


   As unknown opcodes have no definition, including packet format other
   than there must be a DNS header present, there is only one possible
   rcode that make sense to return to a request with a unknown opcode
   and that is NOTIMP.

8.2.  Testing - Extended DNS

   The next set of test cover various aspects of EDNS behaviour.  If any
   of these tests succeed, then all of them should succeed.  There are
   servers that support EDNS but fail to handle plain EDNS queries
   correctly so a plain EDNS query is not a good indicator of lack of
   EDNS support.

   Check that plain EDNS queries work:

   dig +nocookie +edns=0 +noad +norec soa $zone @$server

   expect: status: NOERROR
   expect: SOA record to be present
   expect: OPT record to be present
   expect: EDNS Version 0 in response
   expect: flag: aa to be present

   +nocookie disables sending a EDNS COOKIE option in which is on by
   default.

   Check that EDNS version 1 queries work (EDNS supported):

   dig +nocookie +edns=1 +noednsneg +noad +norec soa $zone @$server

   expect: status: BADVERS
   expect: SOA record to not be present
   expect: OPT record to be present
   expect: EDNS Version 0 in response
   expect: flag: aa to NOT be present

   Only EDNS Version 0 is currently defined so the response should
   always be a 0 version.  This will change when EDNS version 1 is
   defined.  BADVERS is the expected rcode if EDNS is supported as per
   Section 6.1.3, [RFC6891].

   Check that EDNS queries with an unknown option work (EDNS supported):









Andrews                   Expires May 29, 2016                 [Page 12]


Internet-Draft             Failure to respond              November 2015


   dig +nocookie +edns=0 +noad +norec +ednsopt=100 soa $zone @$server

   expect: status: NOERROR
   expect: SOA record to be present
   expect: OPT record to be present
   expect: OPT=100 to not be present
   expect: EDNS Version 0 in response
   expect: flag: aa to be present

   Unknown EDNS options are supposed to be ignored, Section 6.1.2,
   [RFC6891].

   Check that EDNS queries with unknown flags work (EDNS supported):

   dig +nocookie +edns=0 +noad +norec +ednsflags=0x40 soa $zone @$server

   expect: status: NOERROR
   expect: SOA record to be present
   expect: OPT record to be present
   expect: MBZ not to be present
   expect: EDNS Version 0 in response
   expect: flag: aa to be present

   MBZ (Must Be Zero) presence indicates the flag bit has been
   incorrectly copied as per Section 6.1.4, [RFC6891].

   Check that EDNS version 1 queries with unknown flags work (EDNS
   supported):

   dig +nocookie +edns=1 +noednsneg +noad +norec +ednsflags=0x40 soa \
       $zone @$server

   expect: status: BADVERS
   expect: SOA record to NOT be present
   expect: OPT record to be present
   expect: MBZ not to be present
   expect: EDNS Version 0 in response
   expect: flag: aa to NOT be present

   +noednsneg disables EDNS version negotiation in DiG; MBZ (Must Be
   Zero) presence indicates the flag bit has been incorrectly copied.

   Check that EDNS version 1 queries with unknown options work (EDNS
   supported):







Andrews                   Expires May 29, 2016                 [Page 13]


Internet-Draft             Failure to respond              November 2015


   dig +nocookie +edns=1 +noednsneg +noad +norec +ednsopt=100 soa \
           $zone @$server

   expect: status: BADVERS
   expect: SOA record to NOT be present
   expect: OPT record to be present
   expect: OPT=100 to NOT be present
   expect: EDNS Version 0 in response
   expect: flag: aa to be present

   +noednsneg disables EDNS version negotiation in DiG.

   Check that a DNSSEC queries work (EDNS supported):

   dig +nocookie +edns=0 +noad +norec +dnssec soa $zone @$server

   expect: status: NOERROR
   expect: SOA record to be present
   expect: OPT record to be present
   expect: DO=1 to be present if a RRSIG is in the response
   expect: EDNS Version 0 in response
   expect: flag: aa to be present

   DO=1 should be present if RRSIGs are returned as they indicate that
   the server supports DNSSEC.  Servers that support DNSSEC are supposed
   to copy the DO bit from the request to the response as per [RFC3225].

   Check that EDNS version 1 DNSSEC queries work (EDNS supported):

   dig +nocookie +edns=1 +noednsneg +noad +norec +dnssec soa \
       $zone @$server

   expect: status: BADVERS
   expect: SOA record to not be present
   expect: OPT record to be present
   expect: DO=1 to be present if the EDNS version 0 DNSSEC query test
           returned DO=1
   expect: EDNS Version 0 in response
   expect: flag: aa to NOT be present

   +noednsneg disables EDNS version negotiation in DiG.

   Check that EDNS queries with multiple defined EDNS options work.








Andrews                   Expires May 29, 2016                 [Page 14]


Internet-Draft             Failure to respond              November 2015


   dig +edns=0 +noad +norec +cookie +nsid +expire +subnet=0.0.0.0/0 \
       soa $zone @$server

   expect: status: NOERROR
   expect: SOA record to be present
   expect: OPT record to be present
   expect: EDNS Version 0 in response
   expect: flag: aa to be present

   If EDNS is not supported by the nameserver, we expect a response to
   all the above queries.  That response may be a FORMERR or NOTIMP
   error response or the OPT record may just be ignored.

9.  Security Considerations

   Testing protocol compliance can potentially result in false reports
   of attempts to break services from Intrusion Detection Services and
   firewalls.  None of the tests listed above should break nominally
   EDNS compliant servers.  None of the tests above should break non
   EDNS servers.  All the tests above are well formed, though not
   necessarily common, DNS queries.

   Relaxing firewall settings to ensure EDNS compliance could
   potentially expose a critical implementation flaw in the nameserver.
   Nameservers should be tested for conformance before relaxing firewall
   settings.

10.  IANA Considerations

   IANA / ICANN needs to consider what tests, if any, from above that it
   should add to the zone maintenance procedures for zones under its
   control including pre-delegation checks.  Otherwise this document has
   no actions for IANA.

11.  Normative References

   [RFC1034]  Mockapetris, P., "Domain names - concepts and facilities",
              STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
              <http://www.rfc-editor.org/info/rfc1034>.

   [RFC1035]  Mockapetris, P., "Domain names - implementation and
              specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
              November 1987, <http://www.rfc-editor.org/info/rfc1035>.

   [RFC3225]  Conrad, D., "Indicating Resolver Support of DNSSEC",
              RFC 3225, DOI 10.17487/RFC3225, December 2001,
              <http://www.rfc-editor.org/info/rfc3225>.




Andrews                   Expires May 29, 2016                 [Page 15]


Internet-Draft             Failure to respond              November 2015


   [RFC4035]  Arends, R., Austein, R., Larson, M., Massey, D., and S.
              Rose, "Protocol Modifications for the DNS Security
              Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
              <http://www.rfc-editor.org/info/rfc4035>.

   [RFC5395]  Eastlake 3rd, D., "Domain Name System (DNS) IANA
              Considerations", RFC 5395, DOI 10.17487/RFC5395, November
              2008, <http://www.rfc-editor.org/info/rfc5395>.

   [RFC5966]  Bellis, R., "DNS Transport over TCP - Implementation
              Requirements", RFC 5966, DOI 10.17487/RFC5966, August
              2010, <http://www.rfc-editor.org/info/rfc5966>.

   [RFC6840]  Weiler, S., Ed. and D. Blacka, Ed., "Clarifications and
              Implementation Notes for DNS Security (DNSSEC)", RFC 6840,
              DOI 10.17487/RFC6840, February 2013,
              <http://www.rfc-editor.org/info/rfc6840>.

   [RFC6891]  Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
              for DNS (EDNS(0))", STD 75, RFC 6891,
              DOI 10.17487/RFC6891, April 2013,
              <http://www.rfc-editor.org/info/rfc6891>.

Author's Address

   M. Andrews
   Internet Systems Consortium
   950 Charter Street
   Redwood City, CA  94063
   US

   Email: marka@isc.org



















Andrews                   Expires May 29, 2016                 [Page 16]


Html markup produced by rfcmarkup 1.123, available from https://tools.ietf.org/tools/rfcmarkup/