[Docs] [txt|pdf] [Tracker] [Email] [Diff1] [Diff2] [Nits]

Versions: (RFC 7277) 00

Network Working Group                                       M. Bjorklund
Internet-Draft                                            Tail-f Systems
Obsoletes: rfc7277 (if approved)                         August 21, 2017
Intended status: Standards Track
Expires: February 22, 2018


                  A YANG Data Model for IP Management
                  draft-bjorklund-netmod-rfc7277bis-00

Abstract

   This document defines a YANG data model for management of IP
   implementations.  The data model includes configuration and system
   state.  This document obsoletes RFC 7277.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on February 22, 2018.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Bjorklund               Expires February 22, 2018               [Page 1]


Internet-Draft             YANG IP Management                August 2017


Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Summary of Changes from RFC 7277  . . . . . . . . . . . .   2
     1.2.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   3
     1.3.  Tree Diagrams . . . . . . . . . . . . . . . . . . . . . .   3
   2.  IP Data Model . . . . . . . . . . . . . . . . . . . . . . . .   4
   3.  Relationship to the IP-MIB  . . . . . . . . . . . . . . . . .   6
   4.  IP Management YANG Module . . . . . . . . . . . . . . . . . .   7
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  26
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  26
   7.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  27
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  27
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .  27
     8.2.  Informative References  . . . . . . . . . . . . . . . . .  29
   Appendix A.  Example: NETCONF <get-config> reply  . . . . . . . .  29
   Appendix B.  Example: NETCONF <get-data> Reply  . . . . . . . . .  30
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  32

1.  Introduction

   This document defines a YANG [RFC7950] data model for management of
   IP implementations.

   The data model covers configuration of per-interface IPv4 and IPv6
   parameters, and mappings of IP addresses to link-layer addresses.  It
   also provides information about which IP addresses are operationally
   used, and which link-layer mappings exist.  Per-interface parameters
   are added through augmentation of the interface data model defined in
   [I-D.bjorklund-netmod-rfc7223bis].

   This version of the IP data model supports the Network Management
   Datastore Architecture (NMDA) [I-D.ietf-netmod-revised-datastores].

1.1.  Summary of Changes from RFC 7277

   The "ipv4" and "ipv6" subtrees with "config false" data nodes in the
   "/interfaces-state/interface" subtree are deprecated.  All "config
   false" data nodes are now present in the "ipv4" and "ipv6" subtrees
   in the "/interfaces/interface" subtree.

   Servers that do not implement NMDA, or that wish to support clients
   that do not implement NMDA, MAY implement the deprecated "ipv4" and
   "ipv6" subtrees in the "/interfaces-state/interface" subtree.







Bjorklund               Expires February 22, 2018               [Page 2]


Internet-Draft             YANG IP Management                August 2017


1.2.  Terminology

   The following terms are defined in
   [I-D.ietf-netmod-revised-datastores] and are not redefined here:

   o  client

   o  server

   o  configuration

   o  system state

   o  operational state datastore

   o  running configuration datastore

   o  intended configuration datastore

   The following terms are defined in [RFC7950] and are not redefined
   here:

   o  augment

   o  data model

   o  data node

   The terminology for describing YANG data models is found in
   [RFC7950].

1.3.  Tree Diagrams

   A simplified graphical representation of the data model is used in
   this document.  The meaning of the symbols in these diagrams is as
   follows:

   o  Brackets "[" and "]" enclose list keys.

   o  Abbreviations before data node names: "rw" means configuration
      data (read-write), and "ro" means state data (read-only).

   o  Symbols after data node names: "?" means an optional node, "!"
      means a presence container, and "*" denotes a list and leaf-list.

   o  Parentheses enclose choice and case nodes, and case nodes are also
      marked with a colon (":").




Bjorklund               Expires February 22, 2018               [Page 3]


Internet-Draft             YANG IP Management                August 2017


   o  Ellipsis ("...") stands for contents of subtrees that are not
      shown.

2.  IP Data Model

   This document defines the YANG module "ietf-ip", which augments the
   "interface" and "interface-state" lists defined in the
   "ietf-interfaces" module [I-D.bjorklund-netmod-rfc7223bis] with IP-
   specific data nodes.

   The data model has the following structure for IP data nodes per
   interface, excluding the deprecated data nodes:







































Bjorklund               Expires February 22, 2018               [Page 4]


Internet-Draft             YANG IP Management                August 2017


   module: ietf-ip
     augment /if:interfaces/if:interface:
       +--rw ipv4!
       |  +--rw enabled?      boolean
       |  +--rw forwarding?   boolean
       |  +--rw mtu?          uint16
       |  +--rw address* [ip]
       |  |  +--rw ip               inet:ipv4-address-no-zone
       |  |  +--rw (subnet)
       |  |  |  +--:(prefix-length)
       |  |  |  |  +--rw prefix-length?   uint8
       |  |  |  +--:(netmask)
       |  |  |     +--rw netmask?         yang:dotted-quad
       |  |  |             {ipv4-non-contiguous-netmasks}?
       |  |  +--ro origin?          ip-address-origin
       |  +--rw neighbor* [ip]
       |     +--rw ip                    inet:ipv4-address-no-zone
       |     +--rw link-layer-address    yang:phys-address
       |     +--rw origin?               neighbor-origin
       +--rw ipv6!
          +--rw enabled?                     boolean
          +--rw forwarding?                  boolean
          +--rw mtu?                         uint32
          +--rw address* [ip]
          |  +--rw ip               inet:ipv6-address-no-zone
          |  +--rw prefix-length    uint8
          |  +--ro origin?          ip-address-origin
          |  +--ro status?          enumeration
          +--rw neighbor* [ip]
          |  +--rw ip                    inet:ipv6-address-no-zone
          |  +--rw link-layer-address    yang:phys-address
          |  +--ro origin?               neighbor-origin
          |  +--ro is-router?            empty
          |  +--ro state?                enumeration
          +--rw dup-addr-detect-transmits?   uint32
          +--rw autoconf
             +--rw create-global-addresses?        boolean
             +--rw create-temporary-addresses?     boolean
             |       {ipv6-privacy-autoconf}?
             +--rw temporary-valid-lifetime?       uint32
             |       {ipv6-privacy-autoconf}?
             +--rw temporary-preferred-lifetime?   uint32
                     {ipv6-privacy-autoconf}?

   The data model defines two containers per interface -- "ipv4" and
   "ipv6", representing the IPv4 and IPv6 address families.  In each
   container, there is a leaf "enabled" that controls whether or not the
   address family is enabled on that interface, and a leaf "forwarding"



Bjorklund               Expires February 22, 2018               [Page 5]


Internet-Draft             YANG IP Management                August 2017


   that controls whether or not IP packet forwarding for the address
   family is enabled on the interface.  In each container, there is also
   a list of addresses, and a list of mappings from IP addresses to
   link-layer addresses.

3.  Relationship to the IP-MIB

   If the device implements the IP-MIB [RFC4293], each entry in the
   "ipv4/address" and "ipv6/address" lists is mapped to one
   ipAddressEntry, where the ipAddressIfIndex refers to the "address"
   entry's interface.

   The IP-MIB defines objects to control IPv6 Router Advertisement
   messages.  The corresponding YANG data nodes are defined in
   [RFC8022].

   The entries in "ipv4/neighbor" and "ipv6/neighbor" are mapped to
   ipNetToPhysicalTable.

   The following table lists the YANG data nodes with corresponding
   objects in the IP-MIB.

   +--------------------------------------+----------------------------+
   | YANG data node in                    | IP-MIB object              |
   | /if:interfaces/if:interface          |                            |
   +--------------------------------------+----------------------------+
   | ipv4                                 | ipv4InterfaceEnableStatus  |
   |                                      |                            |
   |                                      | ipv4/enabled               |
   | ipv4InterfaceEnableStatus            |                            |
   |                                      |                            |
   | ipv4/address                         | ipAddressEntry             |
   |                                      |                            |
   |                                      | ipv4/address/ip            |
   | ipAddressAddrType ipAddressAddr      |                            |
   |                                      |                            |
   | ipv4/neighbor                        | ipNetToPhysicalEntry       |
   |                                      |                            |
   |                                      | ipv4/neighbor/ip           |
   | ipNetToPhysicalNetAddressType        |                            |
   | ipNetToPhysicalNetAddress            |                            |
   |                                      |                            |
   | ipv4/neighbor/link-layer-address     | ipNetToPhysicalPhysAddress |
   |                                      |                            |
   |                                      | ipv4/neighbor/origin       |
   | ipNetToPhysicalType                  |                            |
   |                                      |                            |
   | ipv6                                 | ipv6InterfaceEnableStatus  |



Bjorklund               Expires February 22, 2018               [Page 6]


Internet-Draft             YANG IP Management                August 2017


   |                                      |                            |
   |                                      | ipv6/enabled               |
   | ipv6InterfaceEnableStatus            |                            |
   |                                      |                            |
   | ipv6/forwarding                      | ipv6InterfaceForwarding    |
   |                                      |                            |
   |                                      | ipv6/address               |
   | ipAddressEntry                       |                            |
   |                                      |                            |
   | ipv6/address/ip                      | ipAddressAddrType          |
   |                                      | ipAddressAddr              |
   |                                      |                            |
   |                                      | ipv4/address/origin        |
   | ipAddressOrigin                      |                            |
   |                                      |                            |
   | ipv6/address/status                  | ipAddressStatus            |
   |                                      | ipv6/neighbor              |
   | ipNetToPhysicalEntry                 | ipv6/neighbor/ip           |
   | ipNetToPhysicalNetAddressType        |                            |
   | ipNetToPhysicalNetAddress            |                            |
   |                                      |                            |
   | ipv6/neighbor/link-layer-address     | ipNetToPhysicalPhysAddress |
   |                                      |                            |
   |                                      | ipv6/neighbor/origin       |
   | ipNetToPhysicalType                  |                            |
   |                                      |                            |
   | ipv6/neighbor/state                  | ipNetToPhysicalState       |
   |                                      |                            |
   |                                      |
   +--------------------------------------+----------------------------+

           YANG Interface Data Nodes and Related IP-MIB Objects

4.  IP Management YANG Module

   This module imports typedefs from [RFC6991] and
   [I-D.bjorklund-netmod-rfc7223bis], and it references [RFC0791],
   [RFC0826], [RFC2460], [RFC4861], [RFC4862], [RFC4941] and [RFC7217].

   RFC Ed.: update the date below with the date of RFC publication and
   remove this note.

   <CODE BEGINS> file "ietf-ip@2017-08-21.yang"

   module ietf-ip {
     yang-version 1.1;
     namespace "urn:ietf:params:xml:ns:yang:ietf-ip";
     prefix ip;



Bjorklund               Expires February 22, 2018               [Page 7]


Internet-Draft             YANG IP Management                August 2017


     import ietf-interfaces {
       prefix if;
     }
     import ietf-inet-types {
       prefix inet;
     }
     import ietf-yang-types {
       prefix yang;
     }

     organization
       "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

     contact
       "WG Web:   <http://tools.ietf.org/wg/netmod/>
        WG List:  <mailto:netmod@ietf.org>

        Editor:   Martin Bjorklund
                  <mailto:mbj@tail-f.com>";
     description
       "This module contains a collection of YANG definitions for
        managing IP implementations.

        Copyright (c) 2017 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject
        to the license terms contained in, the Simplified BSD License
        set forth in Section 4.c of the IETF Trust's Legal Provisions
        Relating to IETF Documents
        (http://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX; see
        the RFC itself for full legal notices.";

     revision 2017-08-21 {
       description
         "Updated to support NMDA.";
       reference
         "RFC XXXX: A YANG Data Model for IP Management";
     }

     revision 2014-06-16 {
       description
         "Initial revision.";
       reference
         "RFC 7277: A YANG Data Model for IP Management";



Bjorklund               Expires February 22, 2018               [Page 8]


Internet-Draft             YANG IP Management                August 2017


     }

     /*
      * Features
      */

     feature ipv4-non-contiguous-netmasks {
       description
         "Indicates support for configuring non-contiguous
          subnet masks.";
     }

     feature ipv6-privacy-autoconf {
       description
         "Indicates support for Privacy Extensions for Stateless Address
          Autoconfiguration in IPv6.";
       reference
         "RFC 4941: Privacy Extensions for Stateless Address
                    Autoconfiguration in IPv6";
     }

     /*
      * Typedefs
      */

     typedef ip-address-origin {
       type enumeration {
         enum other {
           description
             "None of the following.";
         }
         enum static {
           description
             "Indicates that the address has been statically
              configured - for example, using NETCONF or a Command Line
              Interface.";
         }
         enum dhcp {
           description
             "Indicates an address that has been assigned to this
              system by a DHCP server.";
         }
         enum link-layer {
           description
             "Indicates an address created by IPv6 stateless
              autoconfiguration that embeds a link-layer address in its
              interface identifier.";
         }



Bjorklund               Expires February 22, 2018               [Page 9]


Internet-Draft             YANG IP Management                August 2017


         enum random {
           description
             "Indicates an address chosen by the system at

              random, e.g., an IPv4 address within 169.254/16, an
              RFC 4941 temporary address, or an RFC 7217 semantically
              opaque address.";
           reference
             "RFC 4941: Privacy Extensions for Stateless Address
                        Autoconfiguration in IPv6
              RFC 7217: A Method for Generating Semantically Opaque
                        Interface Identifiers with IPv6 Stateless
                        Address Autoconfiguration (SLAAC)";
         }
       }
       description
         "The origin of an address.";
     }

     typedef neighbor-origin {
       type enumeration {
         enum other {
           description
             "None of the following.";
         }
         enum static {
           description
             "Indicates that the mapping has been statically
              configured - for example, using NETCONF or a Command Line
              Interface.";
         }
         enum dynamic {
           description
             "Indicates that the mapping has been dynamically resolved
              using, e.g., IPv4 ARP or the IPv6 Neighbor Discovery
              protocol.";
         }
       }
       description
         "The origin of a neighbor entry.";
     }

     /*
      * Data nodes
      */

     augment "/if:interfaces/if:interface" {
       description



Bjorklund               Expires February 22, 2018              [Page 10]


Internet-Draft             YANG IP Management                August 2017


         "IP parameters on interfaces.

          If an interface is not capable of running IP, the server
          must not allow the client to configure these parameters.";

       container ipv4 {
         presence
           "Enables IPv4 unless the 'enabled' leaf
            (which defaults to 'true') is set to 'false'";
         description
           "Parameters for the IPv4 address family.";

         leaf enabled {
           type boolean;
           default true;
           description
             "Controls whether IPv4 is enabled or disabled on this
              interface.  When IPv4 is enabled, this interface is
              connected to an IPv4 stack, and the interface can send
              and receive IPv4 packets.";
         }
         leaf forwarding {
           type boolean;
           default false;
           description
             "Controls IPv4 packet forwarding of datagrams received by,
              but not addressed to, this interface.  IPv4 routers
              forward datagrams.  IPv4 hosts do not (except those
              source-routed via the host).";
         }
         leaf mtu {
           type uint16 {
             range "68..max";
           }
           units octets;
           description
             "The size, in octets, of the largest IPv4 packet that the
              interface will send and receive.

              The server may restrict the allowed values for this leaf,
              depending on the interface's type.

              If this leaf is not configured, the operationally used MTU
              depends on the interface's type.";
           reference
             "RFC 791: Internet Protocol";
         }
         list address {



Bjorklund               Expires February 22, 2018              [Page 11]


Internet-Draft             YANG IP Management                August 2017


           key "ip";
           description
             "The list of IPv4 addresses on the interface.";

           leaf ip {
             type inet:ipv4-address-no-zone;
             description
               "The IPv4 address on the interface.";
           }
           choice subnet {
             mandatory true;
             description
               "The subnet can be specified as a prefix-length, or,
                if the server supports non-contiguous netmasks, as
                a netmask.";
             leaf prefix-length {
               type uint8 {
                 range "0..32";
               }
               description
                 "The length of the subnet prefix.";
             }
             leaf netmask {
               if-feature ipv4-non-contiguous-netmasks;
               type yang:dotted-quad;
               description
                 "The subnet specified as a netmask.";
             }
           }
           leaf origin {
             type ip-address-origin;
             config false;
             description
               "The origin of this address.";
           }
         }
         list neighbor {
           key "ip";
           description
             "A list of mappings from IPv4 addresses to
              link-layer addresses.

              Entries in this list in the intended configuration
              datastore are used as static entries in the ARP Cache.

              In the operational state datastore, this list represents
              the ARP Cache.";
           reference



Bjorklund               Expires February 22, 2018              [Page 12]


Internet-Draft             YANG IP Management                August 2017


             "RFC 826: An Ethernet Address Resolution Protocol";

           leaf ip {
             type inet:ipv4-address-no-zone;
             description
               "The IPv4 address of the neighbor node.";
           }
           leaf link-layer-address {
             type yang:phys-address;
             mandatory true;
             description
               "The link-layer address of the neighbor node.";
           }
           leaf origin {
             type neighbor-origin;
             description
               "The origin of this neighbor entry.";
           }
         }
       }

       container ipv6 {
         presence
           "Enables IPv6 unless the 'enabled' leaf
            (which defaults to 'true') is set to 'false'";
         description
           "Parameters for the IPv6 address family.";

         leaf enabled {
           type boolean;
           default true;
           description
             "Controls whether IPv6 is enabled or disabled on this
              interface.  When IPv6 is enabled, this interface is
              connected to an IPv6 stack, and the interface can send
              and receive IPv6 packets.";
         }
         leaf forwarding {
           type boolean;
           default false;
           description
             "Controls IPv6 packet forwarding of datagrams received by,
              but not addressed to, this interface.  IPv6 routers
              forward datagrams.  IPv6 hosts do not (except those
              source-routed via the host).";
           reference
             "RFC 4861: Neighbor Discovery for IP version 6 (IPv6)
                        Section 6.2.1, IsRouter";



Bjorklund               Expires February 22, 2018              [Page 13]


Internet-Draft             YANG IP Management                August 2017


         }
         leaf mtu {
           type uint32 {
             range "1280..max";
           }
           units octets;
           description
             "The size, in octets, of the largest IPv6 packet that the
              interface will send and receive.

              The server may restrict the allowed values for this leaf,
              depending on the interface's type.

              If this leaf is not configured, the operationally used MTU
              depends on the interface's type.";
           reference
             "RFC 2460: Internet Protocol, Version 6 (IPv6)
                        Specification
                        Section 5";
         }

         list address {
           key "ip";
           description
             "The list of IPv6 addresses on the interface.";

           leaf ip {
             type inet:ipv6-address-no-zone;
             description
               "The IPv6 address on the interface.";
           }
           leaf prefix-length {
             type uint8 {
               range "0..128";
             }
             mandatory true;
             description
               "The length of the subnet prefix.";
           }
           leaf origin {
             type ip-address-origin;
             config false;
             description
               "The origin of this address.";
           }
           leaf status {
             type enumeration {
               enum preferred {



Bjorklund               Expires February 22, 2018              [Page 14]


Internet-Draft             YANG IP Management                August 2017


                 description
                   "This is a valid address that can appear as the
                    destination or source address of a packet.";
               }
               enum deprecated {
                 description
                   "This is a valid but deprecated address that should
                    no longer be used as a source address in new
                    communications, but packets addressed to such an
                    address are processed as expected.";
               }
               enum invalid {
                 description
                   "This isn't a valid address, and it shouldn't appear
                    as the destination or source address of a packet.";
               }
               enum inaccessible {
                 description
                   "The address is not accessible because the interface
                    to which this address is assigned is not
                    operational.";
               }
               enum unknown {
                 description
                   "The status cannot be determined for some reason.";
               }
               enum tentative {
                 description
                   "The uniqueness of the address on the link is being
                    verified.  Addresses in this state should not be
                    used for general communication and should only be
                    used to determine the uniqueness of the address.";
               }
               enum duplicate {
                 description
                   "The address has been determined to be non-unique on
                    the link and so must not be used.";
               }
               enum optimistic {
                 description
                   "The address is available for use, subject to
                    restrictions, while its uniqueness on a link is
                    being verified.";
               }
             }
             config false;
             description
               "The status of an address.  Most of the states correspond



Bjorklund               Expires February 22, 2018              [Page 15]


Internet-Draft             YANG IP Management                August 2017


                to states from the IPv6 Stateless Address
                Autoconfiguration protocol.";
             reference
               "RFC 4293: Management Information Base for the
                          Internet Protocol (IP)
                          - IpAddressStatusTC
                RFC 4862: IPv6 Stateless Address Autoconfiguration";
           }
         }
         list neighbor {
           key "ip";
           description
             "A list of mappings from IPv6 addresses to
              link-layer addresses.

              Entries in this list in the intended configuration
              datastore are used as static entries in the Neighbor
              Cache.

              In the operational state datastore, this list represents
              the Neighbor Cache.";
           reference
             "RFC 4861: Neighbor Discovery for IP version 6 (IPv6)";

           leaf ip {
             type inet:ipv6-address-no-zone;
             description
               "The IPv6 address of the neighbor node.";
           }
           leaf link-layer-address {
             type yang:phys-address;
             mandatory true;
             description
               "The link-layer address of the neighbor node.";
           }
           leaf origin {
             type neighbor-origin;
             config false;
             description
               "The origin of this neighbor entry.";
           }
           leaf is-router {
             type empty;
             config false;
             description
               "Indicates that the neighbor node acts as a router.";
           }
           leaf state {



Bjorklund               Expires February 22, 2018              [Page 16]


Internet-Draft             YANG IP Management                August 2017


             type enumeration {
               enum incomplete {
                 description
                   "Address resolution is in progress, and the
                    link-layer address of the neighbor has not yet been
                    determined.";
               }
               enum reachable {
                 description
                   "Roughly speaking, the neighbor is known to have been
                    reachable recently (within tens of seconds ago).";
               }
               enum stale {
                 description
                   "The neighbor is no longer known to be reachable, but
                    until traffic is sent to the neighbor no attempt
                    should be made to verify its reachability.";
               }
               enum delay {
                 description
                   "The neighbor is no longer known to be reachable, and
                    traffic has recently been sent to the neighbor.
                    Rather than probe the neighbor immediately, however,
                    delay sending probes for a short while in order to
                    give upper-layer protocols a chance to provide
                    reachability confirmation.";
               }
               enum probe {
                 description
                   "The neighbor is no longer known to be reachable, and
                    unicast Neighbor Solicitation probes are being sent
                    to verify reachability.";
               }
             }
             config false;
             description
               "The Neighbor Unreachability Detection state of this
                entry.";
             reference
               "RFC 4861: Neighbor Discovery for IP version 6 (IPv6)
                          Section 7.3.2";
           }
         }

         leaf dup-addr-detect-transmits {
           type uint32;
           default 1;
           description



Bjorklund               Expires February 22, 2018              [Page 17]


Internet-Draft             YANG IP Management                August 2017


             "The number of consecutive Neighbor Solicitation messages
              sent while performing Duplicate Address Detection on a
              tentative address.  A value of zero indicates that
              Duplicate Address Detection is not performed on
              tentative addresses.  A value of one indicates a single
              transmission with no follow-up retransmissions.";
           reference
             "RFC 4862: IPv6 Stateless Address Autoconfiguration";
         }
         container autoconf {
           description
             "Parameters to control the autoconfiguration of IPv6
              addresses, as described in RFC 4862.";
           reference
             "RFC 4862: IPv6 Stateless Address Autoconfiguration";

           leaf create-global-addresses {
             type boolean;
             default true;
             description
               "If enabled, the host creates global addresses as
                described in RFC 4862.";
             reference
               "RFC 4862: IPv6 Stateless Address Autoconfiguration
                          Section 5.5";
           }
           leaf create-temporary-addresses {
             if-feature ipv6-privacy-autoconf;
             type boolean;
             default false;
             description
               "If enabled, the host creates temporary addresses as
                described in RFC 4941.";
             reference
               "RFC 4941: Privacy Extensions for Stateless Address
                          Autoconfiguration in IPv6";
           }

           leaf temporary-valid-lifetime {
             if-feature ipv6-privacy-autoconf;
             type uint32;
             units "seconds";
             default 604800;
             description
               "The time period during which the temporary address
                is valid.";
             reference
               "RFC 4941: Privacy Extensions for Stateless Address



Bjorklund               Expires February 22, 2018              [Page 18]


Internet-Draft             YANG IP Management                August 2017


                          Autoconfiguration in IPv6
                          - TEMP_VALID_LIFETIME";
           }
           leaf temporary-preferred-lifetime {
             if-feature ipv6-privacy-autoconf;
             type uint32;
             units "seconds";
             default 86400;
             description
               "The time period during which the temporary address is
                preferred.";
             reference
               "RFC 4941: Privacy Extensions for Stateless Address
                          Autoconfiguration in IPv6
                          - TEMP_PREFERRED_LIFETIME";
           }
         }
       }
     }

     /*
      * Legacy operational state data nodes
      */

     augment "/if:interfaces-state/if:interface" {
       status deprecated;
       description
         "Data nodes for the operational state of IP on interfaces.";

       container ipv4 {
         presence "Present if IPv4 is enabled on this interface";
         config false;
         status deprecated;
         description
           "Interface-specific parameters for the IPv4 address family.";

         leaf forwarding {
           type boolean;
           status deprecated;
           description
             "Indicates whether IPv4 packet forwarding is enabled or
              disabled on this interface.";
         }
         leaf mtu {
           type uint16 {
             range "68..max";
           }
           units octets;



Bjorklund               Expires February 22, 2018              [Page 19]


Internet-Draft             YANG IP Management                August 2017


           status deprecated;
           description
             "The size, in octets, of the largest IPv4 packet that the
              interface will send and receive.";
           reference
             "RFC 791: Internet Protocol";
         }
         list address {
           key "ip";
           status deprecated;
           description
             "The list of IPv4 addresses on the interface.";

           leaf ip {
             type inet:ipv4-address-no-zone;
             status deprecated;
             description
               "The IPv4 address on the interface.";
           }
           choice subnet {
             status deprecated;
             description
               "The subnet can be specified as a prefix-length, or,
                if the server supports non-contiguous netmasks, as
                a netmask.";
             leaf prefix-length {
               type uint8 {
                 range "0..32";
               }
               status deprecated;
               description
                 "The length of the subnet prefix.";
             }
             leaf netmask {
               if-feature ipv4-non-contiguous-netmasks;
               type yang:dotted-quad;
               status deprecated;
               description
                 "The subnet specified as a netmask.";
             }
           }
           leaf origin {
             type ip-address-origin;
             status deprecated;
             description
               "The origin of this address.";
           }
         }



Bjorklund               Expires February 22, 2018              [Page 20]


Internet-Draft             YANG IP Management                August 2017


         list neighbor {
           key "ip";
           status deprecated;
           description
             "A list of mappings from IPv4 addresses to
              link-layer addresses.

              This list represents the ARP Cache.";
           reference
             "RFC 826: An Ethernet Address Resolution Protocol";

           leaf ip {
             type inet:ipv4-address-no-zone;
             status deprecated;
             description
               "The IPv4 address of the neighbor node.";
           }
           leaf link-layer-address {
             type yang:phys-address;
             status deprecated;
             description
               "The link-layer address of the neighbor node.";
           }
           leaf origin {
             type neighbor-origin;
             status deprecated;
             description
               "The origin of this neighbor entry.";
           }
         }
       }

       container ipv6 {
         presence "Present if IPv6 is enabled on this interface";
         config false;
         status deprecated;
         description
           "Parameters for the IPv6 address family.";

         leaf forwarding {
           type boolean;
           default false;
           status deprecated;
           description
             "Indicates whether IPv6 packet forwarding is enabled or
              disabled on this interface.";
           reference
             "RFC 4861: Neighbor Discovery for IP version 6 (IPv6)



Bjorklund               Expires February 22, 2018              [Page 21]


Internet-Draft             YANG IP Management                August 2017


                        Section 6.2.1, IsRouter";
         }
         leaf mtu {
           type uint32 {
             range "1280..max";
           }
           units octets;
           status deprecated;
           description
             "The size, in octets, of the largest IPv6 packet that the
              interface will send and receive.";
           reference
             "RFC 2460: Internet Protocol, Version 6 (IPv6)
                        Specification
                        Section 5";
         }
         list address {
           key "ip";
           status deprecated;
           description
             "The list of IPv6 addresses on the interface.";

           leaf ip {
             type inet:ipv6-address-no-zone;
             status deprecated;
             description
               "The IPv6 address on the interface.";
           }
           leaf prefix-length {
             type uint8 {
               range "0..128";
             }
             mandatory true;
             status deprecated;
             description
               "The length of the subnet prefix.";
           }
           leaf origin {
             type ip-address-origin;
             status deprecated;
             description
               "The origin of this address.";
           }
           leaf status {
             type enumeration {
               enum preferred {
                 description
                   "This is a valid address that can appear as the



Bjorklund               Expires February 22, 2018              [Page 22]


Internet-Draft             YANG IP Management                August 2017


                    destination or source address of a packet.";
               }
               enum deprecated {
                 description
                   "This is a valid but deprecated address that should
                    no longer be used as a source address in new
                    communications, but packets addressed to such an
                    address are processed as expected.";
               }
               enum invalid {
                 description
                   "This isn't a valid address, and it shouldn't appear
                    as the destination or source address of a packet.";
               }
               enum inaccessible {
                 description
                   "The address is not accessible because the interface
                    to which this address is assigned is not
                    operational.";
               }
               enum unknown {
                 description
                   "The status cannot be determined for some reason.";
               }
               enum tentative {
                 description
                   "The uniqueness of the address on the link is being
                    verified.  Addresses in this state should not be
                    used for general communication and should only be
                    used to determine the uniqueness of the address.";
               }
               enum duplicate {
                 description
                   "The address has been determined to be non-unique on
                    the link and so must not be used.";
               }
               enum optimistic {
                 description
                   "The address is available for use, subject to
                    restrictions, while its uniqueness on a link is
                    being verified.";
               }
             }
             status deprecated;
             description
               "The status of an address.  Most of the states correspond
                to states from the IPv6 Stateless Address
                Autoconfiguration protocol.";



Bjorklund               Expires February 22, 2018              [Page 23]


Internet-Draft             YANG IP Management                August 2017


             reference
               "RFC 4293: Management Information Base for the
                          Internet Protocol (IP)
                          - IpAddressStatusTC
                RFC 4862: IPv6 Stateless Address Autoconfiguration";
           }
         }
         list neighbor {
           key "ip";
           status deprecated;
           description
             "A list of mappings from IPv6 addresses to
              link-layer addresses.

              This list represents the Neighbor Cache.";
           reference
             "RFC 4861: Neighbor Discovery for IP version 6 (IPv6)";

           leaf ip {
             type inet:ipv6-address-no-zone;
             status deprecated;
             description
               "The IPv6 address of the neighbor node.";
           }
           leaf link-layer-address {
             type yang:phys-address;
             status deprecated;
             description
               "The link-layer address of the neighbor node.";
           }
           leaf origin {
             type neighbor-origin;
             status deprecated;
             description
               "The origin of this neighbor entry.";
           }
           leaf is-router {
             type empty;
             status deprecated;
             description
               "Indicates that the neighbor node acts as a router.";
           }
           leaf state {
             type enumeration {
               enum incomplete {
                 description
                   "Address resolution is in progress, and the
                    link-layer address of the neighbor has not yet been



Bjorklund               Expires February 22, 2018              [Page 24]


Internet-Draft             YANG IP Management                August 2017


                    determined.";
               }
               enum reachable {
                 description
                   "Roughly speaking, the neighbor is known to have been
                    reachable recently (within tens of seconds ago).";
               }
               enum stale {
                 description
                   "The neighbor is no longer known to be reachable, but
                    until traffic is sent to the neighbor no attempt
                    should be made to verify its reachability.";
               }
               enum delay {
                 description
                   "The neighbor is no longer known to be reachable, and
                    traffic has recently been sent to the neighbor.
                    Rather than probe the neighbor immediately, however,
                    delay sending probes for a short while in order to
                    give upper-layer protocols a chance to provide
                    reachability confirmation.";
               }
               enum probe {
                 description
                   "The neighbor is no longer known to be reachable, and
                    unicast Neighbor Solicitation probes are being sent
                    to verify reachability.";
               }
             }
             status deprecated;
             description
               "The Neighbor Unreachability Detection state of this
                entry.";
             reference
               "RFC 4861: Neighbor Discovery for IP version 6 (IPv6)
                          Section 7.3.2";
           }
         }
       }
     }
   }

   <CODE ENDS>








Bjorklund               Expires February 22, 2018              [Page 25]


Internet-Draft             YANG IP Management                August 2017


5.  IANA Considerations

   This document registers a URI in the "IETF XML Registry" [RFC3688].
   Following the format in RFC 3688, the following registration has been
   made.

       URI: urn:ietf:params:xml:ns:yang:ietf-ip

       Registrant Contact: The NETMOD WG of the IETF.

       XML: N/A; the requested URI is an XML namespace.

   This document registers a YANG module in the "YANG Module Names"
   registry [RFC6020].

     Name:         ietf-ip
     Namespace:    urn:ietf:params:xml:ns:yang:ietf-ip
     Prefix:       ip
     Reference:    RFC 7277

6.  Security Considerations

   The YANG module defined in this memo is designed to be accessed via
   the NETCONF protocol [RFC6241].  The lowest NETCONF layer is the
   secure transport layer and the mandatory-to-implement secure
   transport is SSH [RFC6242].  The NETCONF access control model
   [RFC6536] provides the means to restrict access for particular
   NETCONF users to a pre-configured subset of all available NETCONF
   protocol operations and content.

   There are a number of data nodes defined in the YANG module which are
   writable/creatable/deletable (i.e., config true, which is the
   default).  These data nodes may be considered sensitive or vulnerable
   in some network environments.  Write operations (e.g., edit-config)
   to these data nodes without proper protection can have a negative
   effect on network operations.  These are the subtrees and data nodes
   and their sensitivity/vulnerability:

   ipv4/enabled and ipv6/enabled:  These leafs are used to enable or
      disable IPv4 and IPv6 on a specific interface.  By enabling a
      protocol on an interface, an attacker might be able to create an
      unsecured path into a node (or through it if routing is also
      enabled).  By disabling a protocol on an interface, an attacker
      might be able to force packets to be routed through some other
      interface or deny access to some or all of the network via that
      protocol.





Bjorklund               Expires February 22, 2018              [Page 26]


Internet-Draft             YANG IP Management                August 2017


   ipv4/address and ipv6/address:  These lists specify the configured IP
      addresses on an interface.  By modifying this information, an
      attacker can cause a node to either ignore messages destined to it
      or accept (at least at the IP layer) messages it would otherwise
      ignore.  The use of filtering or security associations may reduce
      the potential damage in the latter case.

   ipv4/forwarding and ipv6/forwarding:  These leafs allow a client to
      enable or disable the forwarding functions on the entity.  By
      disabling the forwarding functions, an attacker would possibly be
      able to deny service to users.  By enabling the forwarding
      functions, an attacker could open a conduit into an area.  This
      might result in the area providing transit for packets it
      shouldn't, or it might allow the attacker access to the area,
      bypassing security safeguards.

   ipv6/autoconf:  The leafs in this branch control the
      autoconfiguration of IPv6 addresses and, in particular, whether or
      not temporary addresses are used.  By modifying the corresponding
      leafs, an attacker might impact the addresses used by a node and
      thus indirectly the privacy of the users using the node.

   ipv4/mtu and ipv6/mtu:  Setting these leafs to very small values can
      be used to slow down interfaces.

7.  Acknowledgments

   The author wishes to thank Jeffrey Lange, Ladislav Lhotka, Juergen
   Schoenwaelder, and Dave Thaler for their helpful comments.

8.  References

8.1.  Normative References

   [I-D.bjorklund-netmod-rfc7223bis]
              Bjorklund, M., "A YANG Data Model for Interface
              Configuration", draft-bjorklund-netmod-rfc7223bis-00 (work
              in progress), August 2017.

   [I-D.ietf-netmod-revised-datastores]
              Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
              and R. Wilton, "Network Management Datastore
              Architecture", draft-ietf-netmod-revised-datastores-03
              (work in progress), July 2017.

   [RFC0791]  Postel, J., "Internet Protocol", STD 5, RFC 791,
              DOI 10.17487/RFC0791, September 1981, <https://www.rfc-
              editor.org/info/rfc791>.



Bjorklund               Expires February 22, 2018              [Page 27]


Internet-Draft             YANG IP Management                August 2017


   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
              editor.org/info/rfc2119>.

   [RFC2460]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
              (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
              December 1998, <https://www.rfc-editor.org/info/rfc2460>.

   [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004, <https://www.rfc-
              editor.org/info/rfc3688>.

   [RFC4861]  Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
              "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
              DOI 10.17487/RFC4861, September 2007, <https://www.rfc-
              editor.org/info/rfc4861>.

   [RFC4862]  Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
              Address Autoconfiguration", RFC 4862,
              DOI 10.17487/RFC4862, September 2007, <https://www.rfc-
              editor.org/info/rfc4862>.

   [RFC4941]  Narten, T., Draves, R., and S. Krishnan, "Privacy
              Extensions for Stateless Address Autoconfiguration in
              IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,
              <https://www.rfc-editor.org/info/rfc4941>.

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010, <https://www.rfc-
              editor.org/info/rfc6020>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
              RFC 6991, DOI 10.17487/RFC6991, July 2013,
              <https://www.rfc-editor.org/info/rfc6991>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/info/rfc7950>.






Bjorklund               Expires February 22, 2018              [Page 28]


Internet-Draft             YANG IP Management                August 2017


8.2.  Informative References

   [RFC0826]  Plummer, D., "Ethernet Address Resolution Protocol: Or
              Converting Network Protocol Addresses to 48.bit Ethernet
              Address for Transmission on Ethernet Hardware", STD 37,
              RFC 826, DOI 10.17487/RFC0826, November 1982,
              <https://www.rfc-editor.org/info/rfc826>.

   [RFC4293]  Routhier, S., Ed., "Management Information Base for the
              Internet Protocol (IP)", RFC 4293, DOI 10.17487/RFC4293,
              April 2006, <https://www.rfc-editor.org/info/rfc4293>.

   [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
              Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
              <https://www.rfc-editor.org/info/rfc6242>.

   [RFC6536]  Bierman, A. and M. Bjorklund, "Network Configuration
              Protocol (NETCONF) Access Control Model", RFC 6536,
              DOI 10.17487/RFC6536, March 2012, <https://www.rfc-
              editor.org/info/rfc6536>.

   [RFC7217]  Gont, F., "A Method for Generating Semantically Opaque
              Interface Identifiers with IPv6 Stateless Address
              Autoconfiguration (SLAAC)", RFC 7217,
              DOI 10.17487/RFC7217, April 2014, <https://www.rfc-
              editor.org/info/rfc7217>.

   [RFC8022]  Lhotka, L. and A. Lindem, "A YANG Data Model for Routing
              Management", RFC 8022, DOI 10.17487/RFC8022, November
              2016, <https://www.rfc-editor.org/info/rfc8022>.

Appendix A.  Example: NETCONF <get-config> reply

   This section gives an example of a reply to the NETCONF <get-config>
   request for the running configuration datastore for a device that
   implements the data model defined in this document.















Bjorklund               Expires February 22, 2018              [Page 29]


Internet-Draft             YANG IP Management                August 2017


   <rpc-reply
       xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
       message-id="101">
     <data>
       <interfaces
           xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
           xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
         <interface>
           <name>eth0</name>
           <type>ianaift:ethernetCsmacd</type>
           <ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
             <address>
               <ip>192.0.2.1</ip>
               <prefix-length>24</prefix-length>
             </address>
           </ipv4>
           <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
             <mtu>1280</mtu>
             <address>
               <ip>2001:db8::10</ip>
               <prefix-length>32</prefix-length>
             </address>
             <dup-addr-detect-transmits>0</dup-addr-detect-transmits>
           </ipv6>
         </interface>
       </interfaces>
     </data>
   </rpc-reply>

Appendix B.  Example: NETCONF <get-data> Reply

   This section gives an example of a reply to the NETCONF <get-data>
   request for the operational state datastore for a device that
   implements the data model defined in this document.

   <rpc-reply
       xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
       message-id="101">
     <data>
       <interfaces
           xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
           xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
           xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin">

         <interface or:origin="or:intended">
           <name>eth0</name>
           <type>ianaift:ethernetCsmacd</type>
           <!-- other parameters from ietf-interfaces omitted -->



Bjorklund               Expires February 22, 2018              [Page 30]


Internet-Draft             YANG IP Management                August 2017


           <ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
             <forwarding>false</forwarding>
             <mtu>1500</mtu>
             <address>
               <ip>192.0.2.1</ip>
               <prefix-length>24</prefix-length>
               <origin>static</origin>
             </address>
             <neighbor>
               <ip>192.0.2.2</ip>
               <link-layer-address>
                 00:01:02:03:04:05
               </link-layer-address>
             </neighbor>
           </ipv4>
           <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
             <forwarding>false</forwarding>
             <mtu>1280</mtu>
             <address>
               <ip>2001:db8::10</ip>
               <prefix-length>32</prefix-length>
               <origin>static</origin>
               <status>preferred</status>
             </address>
             <address or:origin="or:learned">
               <ip>2001:db8::1:100</ip>
               <prefix-length>32</prefix-length>
               <origin>dhcp</origin>
               <status>preferred</status>
             </address>
             <dup-addr-detect-transmits>0</dup-addr-detect-transmits>
             <neighbor or:origin="or:learned">
               <ip>2001:db8::1</ip>
               <link-layer-address>
                 00:01:02:03:04:05
               </link-layer-address>
               <origin>dynamic</origin>
               <is-router/>
               <state>reachable</state>
             </neighbor>
             <neighbor or:origin="or:learned">
               <ip>2001:db8::4</ip>
               <origin>dynamic</origin>
               <state>incomplete</state>
             </neighbor>
           </ipv6>
         </interface>




Bjorklund               Expires February 22, 2018              [Page 31]


Internet-Draft             YANG IP Management                August 2017


       </interfaces>
     </data>
   </rpc-reply>

Author's Address

   Martin Bjorklund
   Tail-f Systems

   Email: mbj@tail-f.com









































Bjorklund               Expires February 22, 2018              [Page 32]


Html markup produced by rfcmarkup 1.123, available from https://tools.ietf.org/tools/rfcmarkup/