[Docs] [txt|pdf|xml] [Tracker] [Email] [Diff1] [Diff2] [Nits] [IPR]

Versions: 00 01 02 03 04 05 06 07 draft-ietf-ippm-ioam-data

Network Working Group                                       F. Brockners
Internet-Draft                                               S. Bhandari
Intended status: Experimental                               C. Pignataro
Expires: May 3, 2017                                               Cisco
                                                              H. Gredler
                                                            RtBrick Inc.
                                                                J. Leddy
                                                                 Comcast
                                                               S. Youell
                                                                    JMPC
                                                              T. Mizrahi
                                                                 Marvell
                                                                D. Mozes
                                              Mellanox Technologies Ltd.
                                                             P. Lapukhov
                                                                Facebook
                                                                R. Chang
                                                       Barefoot Networks
                                                        October 30, 2016


                      Data Formats for In-situ OAM
                   draft-brockners-inband-oam-data-02

Abstract

   In-situ Operations, Administration, and Maintenance (OAM) records
   operational and telemetry information in the packet while the packet
   traverses a path between two points in the network.  This document
   discusses the data types and data formats for in-situ OAM data
   records.  In-situ OAM data records can be embedded into a variety of
   transports such as NSH, Segment Routing, VXLAN-GPE, native IPv6 (via
   extension header), or IPv4.  In-situ OAM is to complement current
   out-of-band OAM mechanisms based on ICMP or other types of probe
   packets.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any



Brockners, et al.          Expires May 3, 2017                  [Page 1]


Internet-Draft          In-situ OAM Data Formats            October 2016


   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 3, 2017.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Conventions . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  In-situ OAM Data Types and Data Format  . . . . . . . . . . .   4
     3.1.  In-situ OAM Tracing Options . . . . . . . . . . . . . . .   4
       3.1.1.  Pre-allocated Trace Option  . . . . . . . . . . . . .   6
       3.1.2.  Incremental Trace Option  . . . . . . . . . . . . . .   9
       3.1.3.  In-situ OAM node data element format  . . . . . . . .  11
       3.1.4.  Examples of In-situ OAM node data . . . . . . . . . .  14
     3.2.  In-situ OAM Proof of Transit Option . . . . . . . . . . .  16
     3.3.  In-situ OAM Edge-to-Edge Option . . . . . . . . . . . . .  18
   4.  In-situ OAM Data Export . . . . . . . . . . . . . . . . . . .  18
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  19
   6.  Manageability Considerations  . . . . . . . . . . . . . . . .  19
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .  19
   8.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  19
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  19
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  19
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  20
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  20

1.  Introduction

   This document defines data record types for "in-situ" Operations,
   Administration, and Maintenance (OAM).  In-situ OAM records OAM
   information within the packet while the packet traverses a particular
   network domain.  The term "in-situ" refers to the fact that the OAM



Brockners, et al.          Expires May 3, 2017                  [Page 2]


Internet-Draft          In-situ OAM Data Formats            October 2016


   data is added to the data packets rather than is being sent within
   packets specifically dedicated to OAM.  A discussion of the
   motivation and requirements for in-situ OAM can be found in
   [I-D.brockners-inband-oam-requirements].  In-situ OAM is to
   complement "out-of-band" or "active" mechanisms such as ping or
   traceroute, or more recent active probing mechanisms as described in
   [I-D.lapukhov-dataplane-probe].  In-situ OAM mechanisms can be
   leveraged where current out-of-band mechanisms do not apply or do not
   offer the desired results, such as proving that a certain set of
   traffic takes a pre-defined path, SLA verification for the live data
   traffic, detailed statistics on traffic distribution paths in
   networks that distribute traffic across multiple paths, or scenarios
   where probe traffic is potentially handled differently from regular
   data traffic by the network devices.

   This document defines the data types and data formats for in-situ OAM
   data records.  The in-situ OAM data records can be transported by a
   variety of transport protocols, including NSH, Segment Routing,
   VXLAN-GPE, IPv6, IPv4.  Encapsulation details for these different
   transport protocols are outside the scope of this document.

2.  Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   Abbreviations used in this document:

   MTU:       Maximum Transmit Unit

   NSH:       Network Service Header

   OAM:       Operations, Administration, and Maintenance

   SFC:       Service Function Chain

   SID:       Segment Identifier

   SR:        Segment Routing

   TLV:       Type-Length-Value

   VXLAN-GPE: Virtual eXtensible Local Area Network, Generic Protocol
              Extension






Brockners, et al.          Expires May 3, 2017                  [Page 3]


Internet-Draft          In-situ OAM Data Formats            October 2016


3.  In-situ OAM Data Types and Data Format

   This section defines in-situ OAM data types and data formats of the
   data records required for in-situ OAM.  The different uses of in-situ
   OAM require the definition of different types of data.  The in-situ
   OAM data format for the data being carried corresponds to the three
   main categories of in-situ OAM data defined in
   [I-D.brockners-inband-oam-requirements], which are : edge-to-edge,
   per node, and for selected nodes only.

   Transport options for in-situ OAM data are found in
   [I-D.brockners-inband-oam-transport].  In-situ OAM data is defined as
   options in Type-Length-Value (TLV) format.  The TLV format for each
   of the three different types of in-situ OAM data is defined in this
   document.

   In-situ OAM is expected to be deployed in a specific domain rather
   than on the overall Internet.  The part of the network which employs
   in situ OAM is referred to as the "in-situ OAM-domain".  In-situ OAM
   data is added to a packet upon entering the in-situ OAM-domain and is
   removed from the packet when exiting the domain.  Within the in-situ
   OAM-domain, the in-situ OAM data may be updated by network nodes that
   the packet traverses.  The device which adds in-situ OAM data
   container to the packet to capture in-situ OAM data is called the
   "in-situ OAM encapsulating node", whereas the device which removes
   the in-situ OAM data container is referred to as the "in-situ OAM
   decapsulating node".  Nodes within the domain which are aware of in-
   situ OAM data and read and/or write or process the in-situ OAM data
   are called "in-situ OAM transit nodes".  Note that not every node in
   an in-situ OAM domain needs to be an in-situ OAM transit node.  For
   example, a Segment Routing deployment might require the segment
   routing path to be verified.  In that case, only the SR nodes would
   also be in-situ OAM transit nodes rather than all nodes.

3.1.  In-situ OAM Tracing Options

   "In-situ OAM tracing data" is expected to be collected at every node
   that a packet traverses, i.e., in a typical deployment all nodes in
   an in-situ OAM-domain would participate in in-situ OAM and thus be
   in-situ OAM transit nodes, in-situ OAM encapsulating or in-situ OAM
   decapsulating nodes.  The maximum network diameter of the in-situ OAM
   domain is assumed to be known.

   To optimize hardware and software implementations tracing is defined
   as two separate options.  Any deployment MAY choose to configure and
   support one or both of the following options.  An implementation of
   the transport protocol that carries these in-situ OAM data MAY choose
   to support only one of the options.  In the event that both options



Brockners, et al.          Expires May 3, 2017                  [Page 4]


Internet-Draft          In-situ OAM Data Formats            October 2016


   are utilized at the same time, the Incremental Trace Option MUST be
   placed before the Pre-allocated Trace Option.

   Pre-allocated Trace Option:  This trace option is defined as a
      container of node-data elements with pre-allocated space for each
      node to populate its information.  This option is useful for
      software implementations where it is efficient to allocate the
      space once and index into the array to populate the data during
      transit.  The in-situ OAM encapsulating node allocates the option
      header and sets the fields in the option header.  The in situ OAM
      encapsulating node allocates an array which is to store
      operational data retrieved from every node while the packet
      traverses the domain.  In-situ OAM transit nodes update the
      content of the array.  A pointer which is part of the in-situ OAM
      trace data points to the next empty slot in the array, which is
      where the next in-situ OAM transit node fills in its data.

   Incremental Trace Option:  This trace options is defined as a
      container of node-data elements where each node allocates and
      pushes its node data immediately following the option header.  The
      number of node-data recorded and maximum number of node data that
      can be recorded are written into the option header.  This format
      of trace recording is useful for some of the hardware
      implementations as this eliminates the need for the transit
      network elements to read the full array in the option and allows
      for arbitrarily long packets as the MTU allows.  The in-situ OAM
      encapsulating node allocates the option header.  The in-situ OAM
      encapsulating node based on operational state and configuration
      sets the fields in the header to control how large the node data
      list can grow.  In-situ OAM transit nodes pushes its node data to
      the node data list and increments the number of node data records
      in the header.

   Every node data entry is to hold information for a particular in situ
   OAM transit node that is traversed by a packet.  The in-situ OAM
   decapsulating node removes the in-situ OAM data and process and/or
   export the metadata.  In-situ OAM data uses its own name-space for
   information such as node identifier or interface identifier.  This
   allows for a domain-specific definition and interpretation.  For
   example: In one case an interface-id could point to a physical
   interface (e.g., to understand which physical interface of an
   aggregated link is used when receiving or transmitting a packet)
   whereas in another case it could refer to a logical interface (e.g.,
   in case of tunnels).

   The following in-situ OAM data is defined for in-situ OAM tracing:





Brockners, et al.          Expires May 3, 2017                  [Page 5]


Internet-Draft          In-situ OAM Data Formats            October 2016


   o  Identification of the in-situ OAM node.  An in-situ OAM node
      identifier can match to a device identifier or a particular
      control point or subsystem within a device.

   o  Identification of the interface that a packet was received on.

   o  Identification of the interface that a packet was sent out on.

   o  Time of day when the packet was processed by the node.  Different
      definitions of processing time are feasible and expected, though
      it is important that all devices of an in-situ OAM domain follow
      the same definition.

   o  Generic data: Format-free information where syntax and semantic of
      the information is defined by the operator in a specific
      deployment.  For a specific deployment, all in-situ OAM nodes
      should interpret the generic data the same way.  Examples for
      generic in-situ OAM data include geo-location information
      (location of the node at the time the packet was processed),
      buffer queue fill level or cache fill level at the time the packet
      was processed, or even a battery charge level.

   o  A mechanism to detect whether in-situ OAM trace data was added at
      every hop or whether certain hops in the domain weren't in-situ
      OAM transit nodes.

   The "Node data List" array in the packet is populated iteratively as
   the packet traverses the network, starting with the last entry of the
   array, i.e., "Node data List [n]" is the first entry to be populated,
   "Node data List [n-1]" is the second one, etc.

3.1.1.  Pre-allocated Trace Option



















Brockners, et al.          Expires May 3, 2017                  [Page 6]


Internet-Draft          In-situ OAM Data Formats            October 2016


   In-situ OAM Pre-allocated Trace Option:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Option Type  |  Opt Data Len | Elements-left |    Reserved1  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         OAM-Trace-Type        |         Reserved2             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+
   |                                                               |  |
   |                        Node data List [0]                     |  |
   |                                                               |  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  D
   |                                                               |  a
   |                        Node data List [1]                     |  t
   |                                                               |  a
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                             ...                               ~  S
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  p
   |                                                               |  a
   |                        Node data List [n-1]                   |  c
   |                                                               |  e
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
   |                                                               |  |
   |                        Node data List [n]                     |  |
   |                                                               |  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+



   Option Type:  8-bit identifier of the type of option.  Option number
      is defined based on the encapsulation protocol.

   Opt Data Len:  8-bit unsigned integer.  Length of the Option Data
      field of this option, in octets.

   Elements-left:  8-bit unsigned integer.  A pointer that indicates the
      next data recording point in the data space of the packet in
      octets.  It is the index into the "Node data List" array shown
      above.

   Reserved1:  8-bit unused field in this document and MUST be set to
      zero.

   OAM-trace-type:  16-bit identifier of a particular trace element
      variant.





Brockners, et al.          Expires May 3, 2017                  [Page 7]


Internet-Draft          In-situ OAM Data Formats            October 2016


      The trace type value is a bit field.  The following bit fields are
      defined in this document, with details on each field described in
      the Section 3.1.3.  The order of packing the trace data in each
      Node-data element follows the bit order for setting each trace
      data element.

      Bit 0    When set indicates presence of Hop_Lim and node_id in the
               Node data.

      Bit 1    When set indicates presence of ingress_if_id and
               egress_if_id in the Node data.

      Bit 2    When set indicates presence of timestamp seconds in the
               Node data

      Bit 3    When set indicates presence of timestamp nanoseconds in
               the Node data.

      Bit 4    When set indicates presence of transit delay in the Node
               data.

      Bit 5    When set indicates presence of app_data in the Node data.

      Bit 6    When set indicates presence of queue depth in the Node
               data.

      Bit 7 - 14  Undefined in this document.

      Bit 15   When set indicates wide data format for all the node data
               elements that are present.  When unset indicates short
               data format for all the node data elements that are
               present.

      Section 3.1.4 describes the format of a number of trace types.

   Reserved2:  16-bit unused field in this document and MUST be set to
      zero.

   Node data List [n]:  Variable-length field.  The format of which is
      determined by the OAM Type representing the n-th Node data in the
      Node data List.  The Node data List is encoded starting from the
      last Node data of the path.  The first element of the node data
      list (Node data List [0]) contains the last node of the path while
      the last node data of the Node data List (Node data List[n])
      contains the first Node data of the path traced.  The index
      contained in "Elements-left" identifies the current active Node
      data to be populated.




Brockners, et al.          Expires May 3, 2017                  [Page 8]


Internet-Draft          In-situ OAM Data Formats            October 2016


3.1.2.  Incremental Trace Option

   In-situ OAM Incremental Trace Option:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Option Type  |  Opt Data Len | Maximum Length|    Flags      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         OAM Trace Type        |         Reserved              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                        Node data List [0]                     |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                        Node data List [1]                     |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                             ...                               ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                        Node data List [n-1]                   |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                        Node data List [n]                     |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



   Option Type:  8-bit identifier of the type of option.  Option number
      is defined based on the encapsulation protocol.

   Opt Data Len:  8-bit unsigned integer.  Length of the Option Data
      field of this option, in octets.

   Maximum Length:  8-bit unsigned integer.  This field specifies the
      maximum length of the node data list in octets.  Given that the
      sender knows the minimum path MTU, the sender can set the maximum
      of node data bytes allowed before exceeding the MTU.  Thus, a
      simple comparison between "Opt data Len" and "Max Length" allows
      to decide whether or not data could be added.

   Flags  8-bit field.  Following flags are defined:





Brockners, et al.          Expires May 3, 2017                  [Page 9]


Internet-Draft          In-situ OAM Data Formats            October 2016


      1  "Overflow" (O-bit) (least significant bit).  This bit is set by
         the network element if the number of records on the packet is
         at the maximum limit as specified by the packet: i.e., the
         packet is already "full" of telemetry information.  This is
         useful for transit nodes to ignore further processing of the
         option.  If inserting a new node data record would cause "Opt
         Data Len" to exceed "Max Length", no record is added and the
         overflow "O-bit" must be set to "1" in the header.

   OAM-trace-type:  16-bit identifier of a particular trace element
      variant.

      The trace type value is a bit field.  The following bit fields are
      defined in this document, with details on each field described in
      the Section 3.1.3.  The order of packing the trace data in each
      Node-data element follows the bit order for setting each trace
      data element.

      Bit 0    When set indicates presence of Hop_Lim and node_id in the
               Node data.

      Bit 1    When set indicates presence of ingress_if_id and
               egress_if_id in the Node data.

      Bit 2    When set indicates presence of timestamp seconds in the
               Node data

      Bit 3    When set indicates presence of timestamp nanoseconds in
               the Node data.

      Bit 4    When set indicates presence of transit delay in the Node
               data.

      Bit 5    When set indicates presence of app_data in the Node data.

      Bit 6    When set indicates presence of queue depth in the Node
               data.

      Bit 7    When set indicates presence of variable length Opaque
               State Snapshot field.

      Bit 8-14 Undefined in this draft.

      Bit 15   When set indicates wide data format for all the node data
               elements that are present.  When unset indicates short
               data format for all the node data elements that are
               present.




Brockners, et al.          Expires May 3, 2017                 [Page 10]


Internet-Draft          In-situ OAM Data Formats            October 2016


      Section 3.1.4 describes the format of a number of trace types.

   Reserved:  2 bytes unused field in this document and MUST be set to
      zero.

   Node data List [n]:  Variable-length field.  The format of which is
      determined by the OAM Type representing the n-th Node data in the
      Node data List.  The Node data List is encoded starting from the
      last Node data of the path.  The first element of the node data
      list (Node data List [0]) contains the last node of the path while
      the last node data of the Node data List (Node data List[n])
      contains the first Node data of the path traced.

3.1.3.  In-situ OAM node data element format

   The in-situ OAM node data elements are defined in 2 formats - short
   and wide that is selected by bit 15 in the OAM-trace-type field.  All
   the data records MUST be 4-byte aligned in both the formats.

   Data type and format for each of the data records in short format is
   shown below:

   Hop_Lim and node_id:  4-octet field defined as follows:

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Hop_Lim     |              node_id                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Hop_Lim:  1-octet unsigned integer.  It is set to the Hop Limit
         value in the packet at the node that records this data.  Hop
         Limit information is used to identify the location of the node
         in the communication path.  This is copied from the lower layer
         for e.g.  TTL value in IPv4 header or hop limit field from IPv6
         header of the packet.

      node_id:  3-octet unsigned integer.  Node identifier field to
         uniquely identify a node within in-situ OAM domain.  The
         procedure to allocate, manage and map the node_ids is beyond
         the scope of this document.

   ingress_if_id and egress_if_id:  4-octet field defined as follows:

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     ingress_if_id             |         egress_if_id          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




Brockners, et al.          Expires May 3, 2017                 [Page 11]


Internet-Draft          In-situ OAM Data Formats            October 2016


      ingress_if_id:  2-octet unsigned integer.  Interface identifier to
         record the ingress interface the packet was received on.

      egress_if_id:  2-octet unsigned integer.  Interface identifier to
         record the egress interface the packet is forwarded out of.

   timestamp seconds:  4-octet unsigned integer.  Absolute timestamp in
      seconds that specifies the time at which the packet was received
      by the node.  The format of this field is identical to the most
      significant 32 bits of 64 least significant bits of the
      [IEEE1588v2].  This truncated format consists of a 32-bit seconds
      field.  As defined in [IEEE1588v2], the timestamp specifies the
      number of seconds elapsed since 1 January 1970 00:00:00 according
      to the International Atomic Time (TAI).

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       timestamp seconds                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   timestamp nanoseconds:  4-octet unsigned integer in the range 0 to
      10^9-1.  This timestamp specifies the fractional part of the wall
      clock time at which the packet was received by the node in units
      of nanoseconds.  It is nanoseconds that are recorded in 32 least
      significant bits of absolute time as per [IEEE1588v2].  This
      fields allows for delay computation between any two nodes in the
      network when the nodes are time synchronized.

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       timestamp nanoseconds                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   transit delay:  4-octet unsigned integer in the range 0 to 2^30-1.
      It is the time in nanoseconds packet spent in transiting a node.
      This can serve to give an indication of queuing delay at the node.
      If the transit delay exceeds 2^30-1 nanoseconds then the top bit
      'O' is set to indicate overflow.

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |O|                     transit delay                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   app_data:  4-octet placeholder which can be used by the node to add
      application specific data





Brockners, et al.          Expires May 3, 2017                 [Page 12]


Internet-Draft          In-situ OAM Data Formats            October 2016


   queue depth:  4-octet unsigned integer field.  This field indicates
      the length of the egress interface queue of the interface where
      the packet is forwarded out of.

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       queue depth                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Data type and format for each of the elements in wide format follows
   when Most Significant Bit (MSB) i.e., bit 15 of OAM-Trace-Type is
   set:

   Hop_Lim and node_id:  8-octet field defined as follows:

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Hop_Lim     |              node_id                          ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                         node_id (contd)                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Hop_Lim:  1-octet unsigned integer.  It is set to the Hop Limit
         value in the packet at the node that records this data.  Hop
         Limit information is used to identify the location of the node
         in the communication path.  This is copied from the lower layer
         for e.g.  TTL value in IPv4 header or hop limit field from IPv6
         header of the packet.

      node_id:  7-octet unsigned integer.  Node identifier field to
         uniquely identify a node within in-situ OAM domain.  The
         procedure to allocate, manage and map the node_ids is beyond
         the scope of this document.

   ingress_if_id and egress_if_id:  8-octet field defined as follows:

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       ingress_if_id                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       egress_if_id                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      ingress_if_id:  4-octet unsigned integer.  Interface identifier to
         record the ingress interface the packet was received on.

      egress_if_id:  4-octet unsigned integer.  Interface identifier to
         record the egress interface the packet is forwarded out of.



Brockners, et al.          Expires May 3, 2017                 [Page 13]


Internet-Draft          In-situ OAM Data Formats            October 2016


   app_data:  8-octet placeholder which can be used by the node to add
      application specific data.

   Opaque State Snapshot:  Variable length field.  It allows the network
      element to store arbitrary state in the node data record, without
      a pre-defined schema.  The schema needs to made known to the
      analyzer by some out-of-band means.  The 24-bit "Schema Id" field
      in the record is supposed to let the analyzer know which
      particular schema to use, and it is expected to be configured on
      the network element by the operator.  This ID is expected to be
      configured on the device by the network operator.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Length      |                     Schema ID                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |                                                               |
      |                        Opaque data                            |
      ~                                                               ~
      .                                                               .
      .                                                               .
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Length:  1-octet unsigned integer.  It is the length of the Opaque
         data field that follows Schema Id.  It MUST always be a
         multiple of 4.

      Schema ID:  3-octet unsigned integer identifying the schema of
         Opaque data.

      Opaque data:  Variable length field.  This field is interpreted as
         specified by the schema identified by the Schema ID.

      The fields - timestamp seconds, timestamp nanoseconds and transit
      delay have the same format as defined in short format.

3.1.4.  Examples of In-situ OAM node data

   An entry in the "Node data List" array can have different formats,
   following the needs of the deployment.  Some deployments might only
   be interested in recording the node identifiers, whereas others might
   be interested in recording node identifier and timestamp.  The
   section defines different formats that an entry in "Node data List"
   can take.





Brockners, et al.          Expires May 3, 2017                 [Page 14]


Internet-Draft          In-situ OAM Data Formats            October 2016


   0x002B:  In-situ OAM-trace-type is 0x2B then the format of node data
      is:

        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Hop_Lim     |              node_id                          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |     ingress_if_id             |         egress_if_id          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                  timestamp nanoseconds                        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                            app_data                           |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   0x0003:  In-situ OAM-trace-type is 0x0003 then the format is:

        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Hop_Lim     |              node_id                          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |     ingress_if_id             |         egress_if_id          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



   0x0009:  In-situ OAM-trace-type is 0x0009 then the format is:

        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Hop_Lim     |              node_id                          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                   timestamp nanoseconds                       |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   0x0021:  In-situ OAM-trace-type is 0x0021 then the format is:

        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Hop_Lim     |              node_id                          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                            app_data                           |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   0x0029:  In-situ OAM-trace-type is 0x0029 then the format is:




Brockners, et al.          Expires May 3, 2017                 [Page 15]


Internet-Draft          In-situ OAM Data Formats            October 2016


        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Hop_Lim     |              node_id                          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                    timestamp nanoseconds                      |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                            app_data                           |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   0x104D:  In-situ OAM-trace-type is 0x104D then the format is:

        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Hop_Lim     |              node_id                          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                         node_id(contd)                        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                      timestamp seconds                        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                    timestamp nanoseconds                      |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Length      |                     Schema Id                 |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       |                                                               |
       |                        Opaque data                            |
       ~                                                               ~
       .                                                               .
       .                                                               .
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


3.2.  In-situ OAM Proof of Transit Option

   In-situ OAM Proof of Transit data is to support the path or service
   function chain [RFC7665] verification use cases.  Proof-of-transit
   uses methods like nested hashing or nested encryption of the in-situ
   OAM data or mechanisms such as Shamir's Secret Sharing Schema (SSSS).
   While details on how the in-situ OAM data for the proof of transit
   option is processed at in-situ OAM encapsulating, decapsulating and
   transit nodes are outside the scope of the document, all of these
   approaches share the need to uniquely identify a packet as well as
   iteratively operate on a set of information that is handed from node
   to node.  Correspondingly, two pieces of information are added as in-
   situ OAM data to the packet:





Brockners, et al.          Expires May 3, 2017                 [Page 16]


Internet-Draft          In-situ OAM Data Formats            October 2016


   o  Random: Unique identifier for the packet (e.g., 64-bits allow for
      the unique identification of 2^64 packets).

   o  Cumulative: Information which is handed from node to node and
      updated by every node according to a verification algorithm.

   In-situ OAM Proof of Transit option:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Option Type  |  Opt Data Len |  POT type = 0 |P|  reserved   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+
   |                           Random                              |  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  P
   |                        Random(contd)                          |  O
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  T
   |                         Cumulative                            |  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
   |                         Cumulative (contd)                    |  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+



   Option Type:  8-bit identifier of the type of option.

   Opt Data Len:  8-bit unsigned integer.  Length of the Option Data
      field of this option, in octets.

   POT Type:  8-bit identifier of a particular POT variant that dictates
      the POT data that is included.  This document defines POT Type 0:

      0: POT data is a 16 Octet field as described below.

   Profile to use (P):  1-bit.  Indicates which POT-profile is used to
      generate the Cumulative.  Any node participating in POT will have
      a maximum of 2 profiles configured that drive the computation of
      cumulative.  The two profiles are numbered 0, 1.  This bit conveys
      whether profile 0 or profile 1 is used to compute the Cumulative.

   Reserved:  7-bit.  Reserved for future use.

   Random:  64-bit Per packet Random number.

   Cumulative:  64-bit Cumulative that is updated at specific nodes by
      processing per packet Random number field and configured
      parameters.




Brockners, et al.          Expires May 3, 2017                 [Page 17]


Internet-Draft          In-situ OAM Data Formats            October 2016


   Note: Larger or smaller sizes of "Random" and "Cumulative" data are
   feasible and could be required for certain deployments (e.g.  in case
   of space constraints in the transport protocol used).  Future
   versions of this document will address different sizes of data for
   "proof of transit".

3.3.  In-situ OAM Edge-to-Edge Option

   The in-situ OAM Edge-to-Edge Option is to carry data which is to be
   interpreted only by the in-situ OAM encapsulating and in-situ OAM
   decapsulating node, but not by in-situ OAM transit nodes.

   Currently only sequence numbers use the in-situ OAM Edge-to-Edge
   option.  In order to detect packet loss, packet reordering, or packet
   duplication in an in-situ OAM-domain, sequence numbers can be added
   to packets of a particular tube (see
   [I-D.hildebrand-spud-prototype]).  Each tube leverages a dedicated
   namespace for its sequence numbers.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Option Type  |  Opt Data Len | OAM-E2E-Type  |    reserved   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      E2E Option data format determined by iOAM-E2E-Type       ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   Option Type:  8-bit identifier of the type of option.

   Opt Data Len:  8-bit unsigned integer.  Length of the Option Data
      field of this option, in octets.

   OAM-E2E-Type:  8-bit identifier of a particular in situ OAM E2E
      variant.

         0: E2E option data is a 64-bit sequence number added to a
         specific tube which is used to identify packet loss and
         reordering for that tube.

   Reserved:  8-bit.  (Reserved Octet) Reserved octet for future use.

4.  In-situ OAM Data Export

   In-situ OAM nodes collect information for packets traversing a domain
   that supports in-situ OAM.  The device at the domain edge (which
   could also be an end-host) which receives a packet with in-situ OAM
   information chooses how to process the in-situ OAM data collected



Brockners, et al.          Expires May 3, 2017                 [Page 18]


Internet-Draft          In-situ OAM Data Formats            October 2016


   within the packet.  This decapsulating node can simply discard the
   information collected, can process the information further, or export
   the information using e.g., IPFIX.

   The discussion of in-situ OAM data processing and export is left for
   a future version of this document.

5.  IANA Considerations

   IANA considerations will be added in a future version of this
   document.

6.  Manageability Considerations

   Manageability considerations will be addressed in a later version of
   this document..

7.  Security Considerations

   Security considerations will be addressed in a later version of this
   document.  For a discussion of security requirements of in-situ OAM,
   please refer to [I-D.brockners-inband-oam-requirements].

8.  Acknowledgements

   The authors would like to thank Eric Vyncke, Nalini Elkins, Srihari
   Raghavan, Ranganathan T S, Karthik Babu Harichandra Babu, Akshaya
   Nadahalli, LJ Wobker, Erik Nordmark, and Andrew Yourtchenko for the
   comments and advice.  This document leverages and builds on top of
   several concepts described in [I-D.kitamura-ipv6-record-route].  The
   authors would like to acknowledge the work done by the author Hiroshi
   Kitamura and people involved in writing it.

9.  References

9.1.  Normative References

   [I-D.brockners-inband-oam-requirements]
              Brockners, F., Bhandari, S., Dara, S., Pignataro, C.,
              Gredler, H., Leddy, J., and S. Youell, "Requirements for
              In-band OAM", draft-brockners-inband-oam-requirements-01
              (work in progress), July 2016.









Brockners, et al.          Expires May 3, 2017                 [Page 19]


Internet-Draft          In-situ OAM Data Formats            October 2016


   [IEEE1588v2]
              Institute of Electrical and Electronics Engineers,
              "1588-2008 - IEEE Standard for a Precision Clock
              Synchronization Protocol for Networked Measurement and
              Control Systems", IEEE Std 1588-2008, 2008,
              <http://standards.ieee.org/findstds/
              standard/1588-2008.html>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
              RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

9.2.  Informative References

   [I-D.brockners-inband-oam-transport]
              Brockners, F., Bhandari, S., Pignataro, C., Gredler, H.,
              Leddy, J., and S. Youell, "Encapsulations for In-band OAM
              Data", draft-brockners-inband-oam-transport-01 (work in
              progress), July 2016.

   [I-D.hildebrand-spud-prototype]
              Hildebrand, J. and B. Trammell, "Substrate Protocol for
              User Datagrams (SPUD) Prototype", draft-hildebrand-spud-
              prototype-03 (work in progress), March 2015.

   [I-D.kitamura-ipv6-record-route]
              Kitamura, H., "Record Route for IPv6 (PR6) Hop-by-Hop
              Option Extension", draft-kitamura-ipv6-record-route-00
              (work in progress), November 2000.

   [I-D.lapukhov-dataplane-probe]
              Lapukhov, P. and r. remy@barefootnetworks.com, "Data-plane
              probe for in-band telemetry collection", draft-lapukhov-
              dataplane-probe-01 (work in progress), June 2016.

   [RFC7665]  Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
              Chaining (SFC) Architecture", RFC 7665, DOI 10.17487/
              RFC7665, October 2015,
              <http://www.rfc-editor.org/info/rfc7665>.

Authors' Addresses









Brockners, et al.          Expires May 3, 2017                 [Page 20]


Internet-Draft          In-situ OAM Data Formats            October 2016


   Frank Brockners
   Cisco Systems, Inc.
   Hansaallee 249, 3rd Floor
   DUESSELDORF, NORDRHEIN-WESTFALEN  40549
   Germany

   Email: fbrockne@cisco.com


   Shwetha Bhandari
   Cisco Systems, Inc.
   Cessna Business Park, Sarjapura Marathalli Outer Ring Road
   Bangalore, KARNATAKA 560 087
   India

   Email: shwethab@cisco.com


   Carlos Pignataro
   Cisco Systems, Inc.
   7200-11 Kit Creek Road
   Research Triangle Park, NC  27709
   United States

   Email: cpignata@cisco.com


   Hannes Gredler
   RtBrick Inc.

   Email: hannes@rtbrick.com


   John Leddy
   Comcast

   Email: John_Leddy@cable.comcast.com


   Stephen Youell
   JP Morgan Chase
   25 Bank Street
   London  E14 5JP
   United Kingdom

   Email: stephen.youell@jpmorgan.com





Brockners, et al.          Expires May 3, 2017                 [Page 21]


Internet-Draft          In-situ OAM Data Formats            October 2016


   Tal Mizrahi
   Marvell
   6 Hamada St.
   Yokneam  20692
   Israel

   Email: talmi@marvell.com


   David Mozes
   Mellanox Technologies Ltd.

   Email: davidm@mellanox.com


   Petr Lapukhov
   Facebook
   1 Hacker Way
   Menlo Park, CA  94025
   US

   Email: petr@fb.com


   Remy Chang
   Barefoot Networks
   2185 Park Boulevard
   Palo Alto, CA  94306
   US






















Brockners, et al.          Expires May 3, 2017                 [Page 22]


Html markup produced by rfcmarkup 1.129c, available from https://tools.ietf.org/tools/rfcmarkup/