[Docs] [txt|pdf|xml] [Tracker] [Email] [Diff1] [Diff2] [Nits]

Versions: 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Network Working Group                                       T. Dreibholz
Internet-Draft                                Simula Research Laboratory
Intended status: Experimental                                    X. Zhou
Expires: January 6, 2016                               Hainan University
                                                           July 05, 2015


  Definition of a Delay Measurement Infrastructure and Delay-Sensitive
             Least-Used Policy for Reliable Server Pooling
                 draft-dreibholz-rserpool-delay-16.txt

Abstract

   This document contains the definition of a delay measurement
   infrastructure and a delay-sensitive Least-Used policy for Reliable
   Server Pooling.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 6, 2016.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.



Dreibholz & Zhou         Expires January 6, 2016                [Page 1]


Internet-Draft           Delay-Sensitive Policy                July 2015


Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Scope . . . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.2.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   2
     1.3.  Conventions . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Delay-Measurement Infrastructure  . . . . . . . . . . . . . .   3
     2.1.  Quantification of Distance  . . . . . . . . . . . . . . .   3
     2.2.  Distance Measurement Environment  . . . . . . . . . . . .   3
   3.  Distance-Sensitive Least-Used Policy  . . . . . . . . . . . .   4
     3.1.  Description . . . . . . . . . . . . . . . . . . . . . . .   4
     3.2.  ENRP Server Considerations  . . . . . . . . . . . . . . .   4
     3.3.  Pool User Considerations  . . . . . . . . . . . . . . . .   4
     3.4.  Pool Member Selection Policy Parameter  . . . . . . . . .   5
   4.  Reference Implementation  . . . . . . . . . . . . . . . . . .   5
   5.  Testbed Platform  . . . . . . . . . . . . . . . . . . . . . .   6
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .   6
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   6
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   6
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .   6
     8.2.  Informative References  . . . . . . . . . . . . . . . . .   7
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   8

1.  Introduction

   Reliable Server Pooling defines protocols for providing highly
   available services.  PEs of a pool may be distributed over a large
   geographical area, in order to provide redundancy in case of
   localized disasters.  But the current pool policies defined in
   [RFC5356] do not incorporate the fact of distances (i.e. delay)
   between PU and PE.  This leads to a low performance for delay-
   sensitive applications.

1.1.  Scope

   This draft defines a delay measurement infrastructure for ENRP
   servers to add delay information into the handlespace.  Furthermore,
   a delay-sensitive Least-Used policy is defined.  Performance
   evaluations can be found in [KiVS2007].

1.2.  Terminology

   The terms are commonly identified in related work and can be found in
   the Aggregate Server Access Protocol and Endpoint Handlespace
   Redundancy Protocol Common Parameters document [RFC5354].






Dreibholz & Zhou         Expires January 6, 2016                [Page 2]


Internet-Draft           Delay-Sensitive Policy                July 2015


1.3.  Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  Delay-Measurement Infrastructure

   This section describes the necessary delay measurement infrastructure
   for the policy later defined in Section 3.  It has to be provided as
   part of the ENRP servers.

2.1.  Quantification of Distance

   Measuring delay for SCTP associations is easy: the SCTP protocol
   [RFC4960] already calculates a smoothed round-trip time (RTT) for the
   primary path.  This RTT only has to be queried via the standard SCTP
   API as defined in [RFC6458].  By default, the calculated RTT has a
   small restriction: a SCTP endpoint waits up to 200ms before
   acknowledging a packet, in order to piggyback the acknowledgement
   chunk with payload data.  In this case, the RTT would include this
   latency.  By using the option SCTP_DELAYED_SACK (see [RFC6458]), the
   maximum delay before acknowledging a packet can be set to 0ms (i.e.
   "acknowledge as soon as possible").  After that, the RTT
   approximately consists of the network latency only.  Then, using the
   RTT, the end-to-end delay between two associated components is
   approximately 0.5*RTT.

   In real networks, there may be negligible delay differences: for
   example, the delay between a PU and PE #1 is 5ms and the latency
   between the PU and PE #2 is 6ms.  From the service user's
   perspective, such minor delay differences may be ignored and are
   furthermore unavoidable in Internet scenarios.  Therefore, the
   distance parameter between two components A and B is defined as
   follows:

   Distance = DistanceStep * round( (0.5*RTT) / DistanceStep )

   That is, the distance parameter is defined as the nearest integer
   multiple of the constant DistanceStep for the measured delay (i.e.
   0.5*RTT).

2.2.  Distance Measurement Environment

   In order to define a distance-aware policy, it is first necessary to
   define a basic rule: PEs and PUs choose "nearby" ENRP servers.  Since
   the operation scope of RSerPool is restricted to a single




Dreibholz & Zhou         Expires January 6, 2016                [Page 3]


Internet-Draft           Delay-Sensitive Policy                July 2015


   organization, this condition can be met easily by appropriately
   locating ENRP servers.

   o  A Home ENRP server can measure the delay of the ASAP associations
      to its PE.  As part of its ENRP updates to other ENRP servers, it
      can report this measured delay together with the PE information.

   o  A non-Home-ENRP server receiving such an update simply adds the
      delay of the ENRP association with the Home ENRP server to the
      PE's reported delay.

   Now, each ENRP server can approximate the distance to every PE in the
   operation scope using the equation in Section 2.1.

   Note, that delay changes are propagated to all ENRP servers upon PE
   re-registrations, i.e. the delay information (and the approximated
   distance) dynamically adapts to the state of the network.

3.  Distance-Sensitive Least-Used Policy

   In this section, a distance-sensitive Least Used policy is defined,
   based on the delay-measurement infrastructure introduced in
   Section 2.

3.1.  Description

   The Least Used with Distance Penalty Factor (LU-DPF) policy uses load
   information provided by the pool elements to select the lowest-loaded
   pool elements within the pool.  If there are multiple elements having
   lowest load, the nearest PE should be chosen.

3.2.  ENRP Server Considerations

   The ENRP server SHOULD select at most the requested number of pool
   elements.  Their load values SHOULD be the lowest possible ones
   within the pool and their distances also SHOULD be lowest.  Each
   element MUST NOT be reported more than once to the pool user.  If
   there is a choice of equal-loaded and equal-distanced pool elements,
   round robin selection SHOULD be made among these elements.  The
   returned list of pool elements MUST be sorted by load value in
   ascending order (1st key) and distance in ascending order (2nd key).

3.3.  Pool User Considerations

   The pool user should try to use the pool elements returned from the
   list in the order returned by the ENRP server.  A subsequent call for
   handle resolution may result in the same list.  Therefore, it is




Dreibholz & Zhou         Expires January 6, 2016                [Page 4]


Internet-Draft           Delay-Sensitive Policy                July 2015


   RECOMMENDED for a pool user to request multiple entries in order to
   have a sufficient amount of feasible backup entries available.

3.4.  Pool Member Selection Policy Parameter

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Parameter Type = 0x6     |         Length = 0x14          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Policy Type = 0x40000010                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                            Load                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          Load DPF                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          Distance                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   o  Load: Current load of the pool element.

   o  Load DPF: The LoadDPF setting of the PE.

   o  Distance: The approximated distance in milliseconds.

      *  Between PE and Home ENRP server: The distance SHOULD be set to
         0.

      *  Between Non-Home ENRP server and Home ENRP server: The delay
         measured on the ASAP association between Home ENRP server and
         PE.

      *  Between ENRP server and PU: The sums of the measured delays on
         the ASAP association and the ENRP association to the Home ENRP
         server.

4.  Reference Implementation

   The RSerPool reference implementation RSPLIB can be found at
   [RSerPool-Website].  It supports the functionalities defined by
   [RFC5351], [RFC5352], [RFC5353], [RFC5354] and [RFC5356] as well as
   the options [I-D.dreibholz-rserpool-asap-hropt],
   [I-D.dreibholz-rserpool-enrp-takeover] and of course the option
   defined by this document.  An introduction to this implementation is
   provided in [Dre2006].






Dreibholz & Zhou         Expires January 6, 2016                [Page 5]


Internet-Draft           Delay-Sensitive Policy                July 2015


5.  Testbed Platform

   A large-scale and realistic Internet testbed platform with support
   for the multi-homing feature of the underlying SCTP protocol is
   NorNet.  A description of NorNet is provided in [PAMS2013-NorNet],
   some further information can be found on the project website
   [NorNet-Website].

6.  Security Considerations

   Security considerations for RSerPool systems are described by
   [RFC5355].

7.  IANA Considerations

   This document does not require additional IANA actions beyond those
   already identified in the ENRP and ASAP protocol specifications.

8.  References

8.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC4960]  Stewart, R., "Stream Control Transmission Protocol", RFC
              4960, September 2007.

   [RFC5351]  Lei, P., Ong, L., Tuexen, M., and T. Dreibholz, "An
              Overview of Reliable Server Pooling Protocols", RFC 5351,
              September 2008.

   [RFC5352]  Stewart, R., Xie, Q., Stillman, M., and M. Tuexen,
              "Aggregate Server Access Protocol (ASAP)", RFC 5352,
              September 2008.

   [RFC5353]  Xie, Q., Stewart, R., Stillman, M., Tuexen, M., and A.
              Silverton, "Endpoint Handlespace Redundancy Protocol
              (ENRP)", RFC 5353, September 2008.

   [RFC5354]  Stewart, R., Xie, Q., Stillman, M., and M. Tuexen,
              "Aggregate Server Access Protocol (ASAP) and Endpoint
              Handlespace Redundancy Protocol (ENRP) Parameters", RFC
              5354, September 2008.







Dreibholz & Zhou         Expires January 6, 2016                [Page 6]


Internet-Draft           Delay-Sensitive Policy                July 2015


   [RFC5355]  Stillman, M., Gopal, R., Guttman, E., Sengodan, S., and M.
              Holdrege, "Threats Introduced by Reliable Server Pooling
              (RSerPool) and Requirements for Security in Response to
              Threats", RFC 5355, September 2008.

   [RFC5356]  Dreibholz, T. and M. Tuexen, "Reliable Server Pooling
              Policies", RFC 5356, September 2008.

   [RFC6458]  Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.
              Yasevich, "Sockets API Extensions for the Stream Control
              Transmission Protocol (SCTP)", RFC 6458, December 2011.

   [I-D.dreibholz-rserpool-asap-hropt]
              Dreibholz, T., "Handle Resolution Option for ASAP", draft-
              dreibholz-rserpool-asap-hropt-16 (work in progress),
              January 2015.

   [I-D.dreibholz-rserpool-enrp-takeover]
              Dreibholz, T. and X. Zhou, "Takeover Suggestion Flag for
              the ENRP Handle Update Message", draft-dreibholz-rserpool-
              enrp-takeover-13 (work in progress), January 2015.

8.2.  Informative References

   [Dre2006]  Dreibholz, T., "Reliable Server Pooling - Evaluation,
              Optimization and Extension of a Novel IETF Architecture",
              March 2007, <https://duepublico.uni-duisburg-
              essen.de/servlets/DerivateServlet/Derivate-16326/
              Dre2006_final.pdf>.

   [KiVS2007]
              Dreibholz, T. and E. Rathgeb, "On Improving the
              Performance of Reliable Server Pooling Systems for
              Distance-Sensitive Distributed Applications", Proceedings
              of the 15. ITG/GI Fachtagung Kommunikation in Verteilten
              Systemen (KiVS) Pages 39-50, ISBN 978-3-540-69962-0,
              DOI 10.1007/978-3-540-69962-0_4, February 2007,
              <https://www.wiwi.uni-due.de/fileadmin/fileupload/I-
              TDR/ReliableServer/Publications/KiVS2007.pdf>.












Dreibholz & Zhou         Expires January 6, 2016                [Page 7]


Internet-Draft           Delay-Sensitive Policy                July 2015


   [PAMS2013-NorNet]
              Dreibholz, T. and E. Gran, "Design and Implementation of
              the NorNet Core Research Testbed for Multi-Homed Systems",
              Proceedings of the 3nd International Workshop on Protocols
              and Applications with Multi-Homing Support (PAMS) Pages
              1094-1100, ISBN 978-0-7695-4952-1, DOI 10.1109/
              WAINA.2013.71, March 2013,
              <https://www.simula.no/sites/www.simula.no/files/
              publications/threfereedinproceedingsreference.2012-12-20.7
              643198512.pdf>.

   [RSerPool-Website]
              Dreibholz, T., "Thomas Dreibholz's RSerPool Page", Online:
              http://www.iem.uni-due.de/~dreibh/rserpool/, 2013,
              <http://www.iem.uni-due.de/~dreibh/rserpool/>.

   [NorNet-Website]
              Dreibholz, T., "NorNet -- A Real-World, Large-Scale Multi-
              Homing Testbed", Online: https://www.nntb.no/, 2014,
              <https://www.nntb.no/>.

Authors' Addresses

   Thomas Dreibholz
   Simula Research Laboratory, Network Systems Group
   Martin Linges vei 17
   1364 Fornebu, Akershus
   Norway

   Phone: +47-6782-8200
   Fax:   +47-6782-8201
   Email: dreibh@simula.no
   URI:   http://www.iem.uni-due.de/~dreibh/


   Xing Zhou
   Hainan University, College of Information Science and Technology
   Renmin Avenue 58
   570228 Haikou, Hainan
   China

   Phone: +86-898-66279141
   Email: zhouxing@hainu.edu.cn
   URI:   http://www.hainu.edu.cn/stm/xinxi/2011330/10409758.shtml







Dreibholz & Zhou         Expires January 6, 2016                [Page 8]


Html markup produced by rfcmarkup 1.129b, available from https://tools.ietf.org/tools/rfcmarkup/