[Docs] [txt|pdf|xml|html] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]

Versions: (draft-pascual-bfcpbis-bfcp-websocket) 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 Draft is active
In: MissingRef
BFCPBIS Working Group                                         V. Pascual
Internet-Draft                                                    Oracle
Intended status: Standards Track                                A. Roman
Expires: June 23, 2017                                            Quobis
                                                              S. Cazeaux
                                                   France Telecom Orange
                                                            G. Salgueiro
                                                         R. Ravindranath
                                                       S. Garcia Murillo
                                                       December 20, 2016

   The WebSocket Protocol as a Transport for the Binary Floor Control
                            Protocol (BFCP)


   The WebSocket protocol enables two-way realtime communication between
   clients and servers.  This document specifies a new WebSocket sub-
   protocol as a reliable transport mechanism between Binary Floor
   Control Protocol (BFCP) entities to enable usage of BFCP in new

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on June 23, 2017.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Pascual, et al.           Expires June 23, 2017                 [Page 1]

Internet-Draft      WebSocket as a Transport for BFCP      December 2016

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
     2.1.  Definitions . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  The WebSocket Protocol  . . . . . . . . . . . . . . . . . . .   4
   4.  The WebSocket BFCP Sub-Protocol . . . . . . . . . . . . . . .   4
     4.1.  Handshake . . . . . . . . . . . . . . . . . . . . . . . .   5
     4.2.  BFCP Encoding . . . . . . . . . . . . . . . . . . . . . .   5
   5.  Transport Reliability . . . . . . . . . . . . . . . . . . . .   6
   6.  SDP Considerations  . . . . . . . . . . . . . . . . . . . . .   6
     6.1.  Transport Negotiation . . . . . . . . . . . . . . . . . .   6
     6.2.  SDP Media Attributes  . . . . . . . . . . . . . . . . . .   7
   7.  SDP Offer/Answer Procedures . . . . . . . . . . . . . . . . .   7
     7.1.  General . . . . . . . . . . . . . . . . . . . . . . . . .   7
     7.2.  Example Usage of 'wss-uri' SDP Attribute  . . . . . . . .   7
   8.  Authentication  . . . . . . . . . . . . . . . . . . . . . . .   8
   9.  Security Considerations . . . . . . . . . . . . . . . . . . .   9
   10. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  10
     10.1.  Registration of the WebSocket BFCP Sub-Protocol  . . . .  10
     10.2.  Registration of the 'TCP/WS/BFCP' and 'TCP/WSS/BFCP' SDP
            'proto' Values . . . . . . . . . . . . . . . . . . . . .  10
   11. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  10
   12. References  . . . . . . . . . . . . . . . . . . . . . . . . .  10
     12.1.  Normative References . . . . . . . . . . . . . . . . . .  11
     12.2.  Informative References . . . . . . . . . . . . . . . . .  12
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  12

1.  Introduction

   The WebSocket [RFC6455] protocol enables two-way message exchange
   between clients and servers on top of a persistent TCP connection,
   optionally secured with Transport Layer Security (TLS) [RFC5246].
   The initial protocol handshake makes use of Hypertext Transfer
   Protocol (HTTP) [RFC7230] semantics, allowing the WebSocket protocol
   to reuse existing HTTP infrastructure.

Pascual, et al.           Expires June 23, 2017                 [Page 2]

Internet-Draft      WebSocket as a Transport for BFCP      December 2016

   The Binary Floor Control Protocol (BFCP) is a protocol to coordinate
   access to shared resources in a conference.  It is defined in
   [I-D.ietf-bfcpbis-rfc4582bis] and is used between floor participants
   and floor control servers, and between floor chairs (i.e.,
   moderators) and floor control servers.

   Modern web browsers include a WebSocket client stack complying with
   the WebSocket API [WS-API] as specified by the W3C.  It is expected
   that other client applications (those running in personal computers
   and devices such as smartphones) will also make a WebSocket client
   stack available.  This document extends the applicability of
   [I-D.ietf-bfcpbis-rfc4582bis] and [I-D.ietf-bfcpbis-rfc4583bis] to
   enable the usage of BFCP in these scenarios.

   The transport over which BFCP entities exchange messages depends on
   how the clients obtain information to contact the floor control
   server (e.g. using an Session Description Protocol (SDP) offer/answer
   exchange per [I-D.ietf-bfcpbis-rfc4583bis] or the procedure described
   in RFC5018 [RFC5018]).  [I-D.ietf-bfcpbis-rfc4582bis] defines two
   transports for BFCP: TCP and UDP.  This specification defines a new
   WebSocket sub-protocol (as defined in Section 1.9 in [RFC6455]) for
   transporting BFCP messages between a WebSocket client and server.
   This sub-protocol provides a reliable and boundary preserving
   transport for BFCP when run on top of TCP.  Since WebSocket provides
   a reliable transport, the extensions defined in
   [I-D.ietf-bfcpbis-rfc4582bis] for sending BFCP over unreliable
   transports are not applicable.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   document are to be interpreted as described in [RFC2119].

2.1.  Definitions

   BFCP WebSocket Client:  Any BFCP entity capable of opening outbound
         connections to WebSocket servers and communicating using the
         WebSocket BFCP sub-protocol as defined by this document.

   BFCP WebSocket Server:  Any BFCP entity capable of listening for
         inbound connections from WebSocket clients and communicating
         using the WebSocket BFCP sub-protocol as defined by this

Pascual, et al.           Expires June 23, 2017                 [Page 3]

Internet-Draft      WebSocket as a Transport for BFCP      December 2016

3.  The WebSocket Protocol

   The WebSocket protocol [RFC6455] is a transport layer on top of TCP
   (optionally secured with TLS [RFC5246]) in which both client and
   server exchange message units in both directions.  The protocol
   defines a connection handshake, WebSocket sub-protocol and extensions
   negotiation, a frame format for sending application and control data,
   a masking mechanism, and status codes for indicating disconnection

   The WebSocket connection handshake is based on HTTP [RFC7230] and
   utilizes the HTTP GET method with an "Upgrade" request.  This is sent
   by the client and then answered by the server (if the negotiation
   succeeded) with an HTTP 101 status code.  Once the handshake is
   completed the connection upgrades from HTTP to the WebSocket
   protocol.  This handshake procedure is designed to reuse the existing
   HTTP infrastructure.  During the connection handshake, client and
   server agree on the application protocol to use on top of the
   WebSocket transport.  Such an application protocol (also known as a
   "WebSocket sub-protocol") defines the format and semantics of the
   messages exchanged by the endpoints.  This could be a custom protocol
   or a standardized one (as the WebSocket BFCP sub-protocol defined in
   this document).  Once the HTTP 101 response is processed both client
   and server reuse the underlying TCP connection for sending WebSocket
   messages and control frames to each other.  Unlike plain HTTP, this
   connection is persistent and can be used for multiple message

   The WebSocket protocol defines message units to be used by
   applications for the exchange of data, so it provides a message
   boundary-preserving transport layer.  These message units can contain
   either UTF-8 text or binary data, and can be split into multiple
   WebSocket text/binary transport frames as needed by the WebSocket

      The WebSocket API [WS-API] for web browsers only defines callbacks
      to be invoked upon receipt of an entire message unit, regardless
      of whether it was received in a single WebSocket frame or split
      across multiple frames.

4.  The WebSocket BFCP Sub-Protocol

   The term WebSocket sub-protocol refers to an application-level
   protocol layered on top of a WebSocket connection.  This document
   specifies the WebSocket BFCP sub-protocol for carrying BFCP messages
   over a WebSocket connection.

Pascual, et al.           Expires June 23, 2017                 [Page 4]

Internet-Draft      WebSocket as a Transport for BFCP      December 2016

4.1.  Handshake

   The BFCP WebSocket Client and BFCP WebSocket Server negotiate usage
   of the WebSocket BFCP sub-protocol during the WebSocket handshake
   procedure as defined in Section 1.3 of [RFC6455].  The Client MUST
   include the value "bfcp" in the Sec-WebSocket-Protocol header in its
   handshake request.  The 101 reply from the Server MUST contain "BFCP"
   in its corresponding Sec-WebSocket-Protocol header.

   Below is an example of a WebSocket handshake in which the Client
   requests the WebSocket BFCP sub-protocol support from the Server:

     GET / HTTP/1.1
     Host: bfcp-ws.example.com
     Upgrade: websocket
     Connection: Upgrade
     Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
     Origin: http://www.example.com
     Sec-WebSocket-Protocol: BFCP
     Sec-WebSocket-Version: 13

   The handshake response from the Server accepting the WebSocket BFCP
   sub-protocol would look as follows:

     HTTP/1.1 101 Switching Protocols
     Upgrade: websocket
     Connection: Upgrade
     Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
     Sec-WebSocket-Protocol: BFCP

   Once the negotiation has been completed, the WebSocket connection is
   established and can be used for the transport of BFCP messages.  The
   WebSocket messages transmitted over this connection MUST conform to
   the negotiated WebSocket sub-protocol.

4.2.  BFCP Encoding

   BFCP messages use a TLV (Type-Length-Value) binary encoding,
   therefore BFCP WebSocket Clients and BFCP WebSocket Servers MUST be
   transported in unfragmented binary WebSocket frames
   (FIN:1,opcode:%x2) to exchange BFCP messages.  The WebSocket frame
   data MUST be a valid BCFP message, so the length of the payload of
   the WebSocket frame MUST be lower than the maximum size allowed (2^16
   +12 bytes) for a BCFP message as described in
   [I-D.ietf-bfcpbis-rfc4582bis].  In addition, the encoding rules for
   reliable protocols defined in [I-D.ietf-bfcpbis-rfc4582bis] MUST be

Pascual, et al.           Expires June 23, 2017                 [Page 5]

Internet-Draft      WebSocket as a Transport for BFCP      December 2016

   While this specification assumes that BFCP encoding is only TLV
   binary, future documents may define other mechanisms like JSON

5.  Transport Reliability

   WebSocket [RFC6455] provides a reliable transport and therefore the
   BFCP WebSocket sub-protocol defined by this document also provides
   reliable BFCP transport.  Thus, client and server transactions using
   WebSocket for transport MUST follow the procedures for reliable
   transports as defined in [I-D.ietf-bfcpbis-rfc4582bis] and

   BFCP WebSocket clients cannot receive incoming WebSocket connections
   initiated by any other peer.  This means that a BFCP WebSocket client
   MUST actively initiate a connection towards a BFCP WebSocket server.
   The BFCP server is a server on the Internet and thus does not require
   ICE as clients always initiate connections to it.

   Each BFCP message MUST be carried within a single WebSocket message,
   and a WebSocket message MUST NOT contain more than one BFCP message.

6.  SDP Considerations

6.1.  Transport Negotiation

   Rules to generate an 'm' line for a BFCP stream are described in
   [I-D.ietf-bfcpbis-rfc4583bis], Section 3

   New values are defined for the transport field: TCP/WS/BFCP and

      TCP/WS/BFCP is used when BFCP runs on top of WS, which in turn
      runs on top of TCP.

      TCP/WSS/BFCP is used when BFCP runs on top of WSS, which in turn
      runs on top of TLS and TCP.

   When TCP is used as the transport, the port field is set following
   the rules in Section 3 and Section 8.1 of
   [I-D.ietf-bfcpbis-rfc4583bis].  Depending on the value of the SDP
   'setup' attribute defined in [RFC4145], the port field contains the
   port to which the remote endpoint will direct BFCP messages or is
   irrelevant (i.e., the endpoint will initiate the connection towards
   the remote endpoint) and should be set to a value of 9, which is the
   discard port.  Connection attribute and port MUST follow the rules of

Pascual, et al.           Expires June 23, 2017                 [Page 6]

Internet-Draft      WebSocket as a Transport for BFCP      December 2016

   Some web browsers do not allow non-secure WebSocket connections to be
   made.  So, while the recommendation to use Secure WebSockets (i.e.
   TCP/WSS) is for security reasons, it is also to achieve maximum
   compatibility among clients.

6.2.  SDP Media Attributes

   [I-D.ietf-bfcpbis-sdp-ws-uri] defines a new SDP attribute to indicate
   the connection Uniform Resource Identifier (URI) for the WebSocket
   Client.  The SDP attribute 'ws-uri' defined in Section 3.1 of
   [I-D.ietf-bfcpbis-sdp-ws-uri] MUST be used when BFCP runs on top of
   WS, which in turn runs on top of TCP.  The SDP attribute 'wss-uri'
   defined in Section 3.2 of [I-D.ietf-bfcpbis-sdp-ws-uri] MUST be used
   when BFCP runs on top of WSS, which in turn runs on top of TLS and
   TCP.  When the 'ws-uri' or 'wss-uri' attribute is present in the
   media section of the SDP, the IP and port information provided in the
   'c' lines SHALL be ignored and the full URI SHALL be used instead to
   open the WebSocket connection.  The port provided in the 'm' line
   SHALL be ignored too, as the a=ws-uri or a=wss-uri SHOULD provide
   port number when needed.

7.  SDP Offer/Answer Procedures

7.1.  General

   An endpoint (i.e., both the offerer and the answerer) MUST create an
   SDP media description ("m=" line) for each BFCP-over-WebSocket media
   stream and MUST assign either TCP/WSS/BFCP or TCP/WS/BFCP value to
   the "proto" field of the "m=" line depending on whether the endpoint
   wishes to use secure WebSocket or WebSocket.  Furthermore, the server
   side, which could be either the offerer or answerer, MUST add an
   "a=ws-uri" or "a=wss-uri" attribute in the media section depending on
   whether it wishes to use WebSocket or secure WebSocket.  This new
   attribute MUST follow the syntax defined in
   [I-D.ietf-bfcpbis-sdp-ws-uri].  Additionally, the SDP Offer/Answer
   procedures defined in Section 4 of [I-D.ietf-bfcpbis-sdp-ws-uri] MUST
   be followed for the "m=" line associated with a BFCP-over-WebSocket
   media stream.

7.2.  Example Usage of 'wss-uri' SDP Attribute

   The following is an example of an "m=" line for a BFCP connection.
   In this example, the offerer sends the SDP with the "proto" field
   having a value of TCP/WSS/BFCP * indicating that the offerer wishes
   to use secure WebSocket as a transport for the media stream.

Pascual, et al.           Expires June 23, 2017                 [Page 7]

Internet-Draft      WebSocket as a Transport for BFCP      December 2016

   Offer (browser):
   m=application 9 TCP/WSS/BFCP *
   m=audio 55000 RTP/AVP 0
   m=video 55002 RTP/AVP 31

   Answer (server):
   m=application 50000 TCP/WSS/BFCP *
   a=floorid:1 m-stream:10
   a=floorid:2 m-stream:11
   m=audio 50002 RTP/AVP 0
   m=video 50004 RTP/AVP 31

   It is possible that an endpoint (e.g., a browser) sends an offerless
   INVITE to the server.  In such cases the server will act as SDP
   offerer.  The server MUST assign the SDP "setup" attribute with a
   value of "passive".  The server MUST have an "a=ws-uri" or "a=wss-
   uri" attribute in the media section depending on whether the server
   wishes to use WebSocket or secure WebSocket.  This attribute MUST
   follow the syntax defined in Section 3.  For BFCP application, the
   "proto" value in the "m=" line MUST be TCP/WSS/BFCP if WebSocket is
   over TLS, else it MUST be TCP/WS/BFCP.

8.  Authentication

   Section 9 of [I-D.ietf-bfcpbis-rfc4582bis] states that BFCP clients
   and floor control servers SHOULD authenticate each other prior to
   accepting messages, and RECOMMENDS that mutual TLS/DTLS
   authentication be used.  However, browser-based WebSocket clients
   have no control over the use of TLS in the WebSocket API [WS-API], so
   it is RECOMMENDED that standard Web-based methods for client and
   server authentication are used, as follows.

   When a BFCP WebSocket client connects to a BFCP WebSocket server, it
   SHOULD use TCP/WSS as its transport.  The WebSocket client MUST
   follow the procedures in [RFC7525] while setting up TLS connection
   with webSocket server.  The BFCP client validates the server by means
   of verifying the server certificate.  This means the wss-uri MUST

Pascual, et al.           Expires June 23, 2017                 [Page 8]

Internet-Draft      WebSocket as a Transport for BFCP      December 2016

   contain a hostname.  The verification process does not use

      Since the WebSocket API does not distinguish between certificate
      errors and other kinds of failure to establish a connection, it is
      expected that browser vendors will warn end users directly of any
      kind of problem with the server certificate.

   A floor control server that receives a message over TCP/WS can
   request the use of TCP/WSS by generating an Error message, as
   described in Section 13.8 of [I-D.ietf-bfcpbis-rfc4582bis], with an
   Error code with a value of 9 (use TLS).

   Prior to sending BFCP requests, a BFCP WebSocket client connects to a
   BFCP WebSocket server and performs the connection handshake.  As
   described in Section 3 the handshake procedure involves a HTTP GET
   method request from the client and a response from the server
   including an HTTP 101 status code.

   In order to authorize the WebSocket connection, the BFCP WebSocket
   server SHOULD inspect any cookie [RFC6265] headers present in the
   HTTP GET request.  For many web applications the value of such a
   cookie is provided by the web server once the user has authenticated
   themselves to the web server, which could be done by many existing
   mechanisms.  As an alternative method, the BFCP WebSocket Server
   could request HTTP authentication by replying to the Client's GET
   method request with a HTTP 401 status code.  The WebSocket protocol
   [RFC6455] covers this usage in Section 4.1:

      If the status code received from the server is not 101, the
      WebSocket client stack handles the response per HTTP [RFC7230]
      procedures, in particular the client might perform authentication
      if it receives 401 status code.

9.  Security Considerations

   Considerations from [I-D.ietf-bfcpbis-rfc4582bis],
   [I-D.ietf-bfcpbis-rfc4583bis] and RFC5018 [RFC5018] apply.

   BFCP relies on lower-layer security mechanisms to provide replay and
   integrity protection and confidentiality.  It is RECOMMENDED that the
   BFCP traffic transported over a WebSocket communication be protected
   by using a secure WebSocket connection (using TLS [RFC5246] over
   TCP).  The security considerations in [RFC6455] apply for BFCP over
   WebSocket as well.  The security model here is a typical webserver-
   client model where the client validates the server certificate and
   then connects to the server.

Pascual, et al.           Expires June 23, 2017                 [Page 9]

Internet-Draft      WebSocket as a Transport for BFCP      December 2016

10.  IANA Considerations

10.1.  Registration of the WebSocket BFCP Sub-Protocol

   This specification requests IANA to register the WebSocket BFCP sub-
   protocol under the "WebSocket Subprotocol Name" Registry with the
   following data:

   Subprotocol Identifier:  bfcp

   Subprotocol Common Name:  WebSocket Transport for BFCP (Binary Floor
      Control Protocol)

   Subprotocol Definition:  RFCXXXX

   [[NOTE TO RFC EDITOR: Please change XXXX to the number assigned to
   this specification, and remove this paragraph on publication.]]

10.2.  Registration of the 'TCP/WS/BFCP' and 'TCP/WSS/BFCP' SDP 'proto'

   This document defines two new values for the SDP 'proto' field under
   the Session Description Protocol (SDP) Parameters registry.  The
   resulting entries are shown in Figure 1 below:

                    Value                    Reference
                  ----------                -----------
                 TCP/WS/BFCP                 RFCXXXX;
                 TCP/WSS/BFCP                RFCXXXX;

                Figure 1: Values for the SDP 'proto' Field

   [[NOTE TO RFC EDITOR: Please change XXXX to the number assigned to
   this specification, and remove this paragraph on publication.]]

11.  Acknowledgements

   The authors want to thank Robert Welbourn, from Acme Packet, who made
   significant contributions to the first version of this document.
   This work benefited from the thorough review and constructive
   comments of Charles Eckel, Christer Holmberg, Paul Kyzivat, Dan Wing
   and Alissa Cooper.

12.  References

Pascual, et al.           Expires June 23, 2017                [Page 10]

Internet-Draft      WebSocket as a Transport for BFCP      December 2016

12.1.  Normative References

              Camarillo, G., Drage, K., Kristensen, T., Ott, J., and C.
              Eckel, "The Binary Floor Control Protocol (BFCP)", draft-
              ietf-bfcpbis-rfc4582bis-16 (work in progress), November

              Camarillo, G., Kristensen, T., and P. Jones, "Session
              Description Protocol (SDP) Format for Binary Floor Control
              Protocol (BFCP) Streams", draft-ietf-bfcpbis-rfc4583bis-16
              (work in progress), September 2016.

              R, R. and G. Salgueiro, "Session Description Protocol
              (SDP) WebSocket Connection URI Attribute", draft-ietf-
              bfcpbis-sdp-ws-uri-06 (work in progress), October 2016.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,

   [RFC4145]  Yon, D. and G. Camarillo, "TCP-Based Media Transport in
              the Session Description Protocol (SDP)", RFC 4145,
              DOI 10.17487/RFC4145, September 2005,

   [RFC5018]  Camarillo, G., "Connection Establishment in the Binary
              Floor Control Protocol (BFCP)", RFC 5018,
              DOI 10.17487/RFC5018, September 2007,

   [RFC6455]  Fette, I. and A. Melnikov, "The WebSocket Protocol",
              RFC 6455, DOI 10.17487/RFC6455, December 2011,

   [RFC7525]  Sheffer, Y., Holz, R., and P. Saint-Andre,
              "Recommendations for Secure Use of Transport Layer
              Security (TLS) and Datagram Transport Layer Security
              (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
              2015, <http://www.rfc-editor.org/info/rfc7525>.

Pascual, et al.           Expires June 23, 2017                [Page 11]

Internet-Draft      WebSocket as a Transport for BFCP      December 2016

12.2.  Informative References

   [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246,
              DOI 10.17487/RFC5246, August 2008,

   [RFC6265]  Barth, A., "HTTP State Management Mechanism", RFC 6265,
              DOI 10.17487/RFC6265, April 2011,

   [RFC7230]  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
              Protocol (HTTP/1.1): Message Syntax and Routing",
              RFC 7230, DOI 10.17487/RFC7230, June 2014,

   [WS-API]   W3C and I. Hickson, Ed., "The WebSocket API", May 2012.

Authors' Addresses

   Victor Pascual

   Email: victor.pascual.avila@oracle.com

   Anton Roman

   Email: anton.roman@quobis.com

   Stephane Cazeaux
   France Telecom Orange

   Email: stephane.cazeaux@orange.com

   Gonzalo Salgueiro
   Cisco Systems, Inc.
   7200-12 Kit Creek Road
   Research Triangle Park, NC  27709

   Email: gsalguei@cisco.com

Pascual, et al.           Expires June 23, 2017                [Page 12]

Internet-Draft      WebSocket as a Transport for BFCP      December 2016

   Ram Mohan Ravindranath
   Cisco Systems, Inc.
   Cessna Business Park,
   Kadabeesanahalli Village, Varthur Hobli,
   Sarjapur-Marathahalli Outer Ring Road
   Bangalore, Karnataka  560103

   Email: rmohanr@cisco.com

   Sergio Garcia Murillo

   Email: sergio.garcia.murillo@gmail.com

Pascual, et al.           Expires June 23, 2017                [Page 13]

Html markup produced by rfcmarkup 1.129c, available from https://tools.ietf.org/tools/rfcmarkup/