[Docs] [txt|pdf] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits] [IPR]

Versions: 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 RFC 7579

Network Working Group                                      G. Bernstein
Internet Draft                                        Grotto Networking
Intended status: Standards Track                                 Y. Lee
Expires: June 2015                                                D. Li
                                                                 Huawei
                                                             W. Imajuku
                                                                    NTT


                                                      February 23, 2015

     General Network Element Constraint Encoding for GMPLS Controlled
                                 Networks


             draft-ietf-ccamp-general-constraint-encode-20.txt


Abstract

   Generalized Multiprotocol Label Switching can be used to control a
   wide variety of technologies. In some of these technologies, network
   elements and links may impose additional routing constraints such as
   asymmetric switch connectivity, non-local label assignment, and
   label range limitations on links.

   This document provides efficient, protocol-agnostic encodings for
   general information elements representing connectivity and label
   constraints as well as label availability. It is intended that
   protocol-specific documents will reference this memo to describe how
   information is carried for specific uses.



Status of this Memo

   This Internet-Draft is submitted to IETF in full conformance with
   the provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six
   months and may be updated, replaced, or obsoleted by other documents
   at any time.  It is inappropriate to use Internet-Drafts as
   reference material or to cite them other than as "work in progress."



Bernstein and Lee       Expires June 23, 2015                  [Page 1]


Internet-Draft General Network Element Constraint Encoding February
2015


   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html

   This Internet-Draft will expire on June 23, 2015.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document. Please review these documents
   carefully, as they describe your rights and restrictions with
   respect to this document.  Code Components extracted from this
   document must include Simplified BSD License text as described in
   Section 4.e of the Trust Legal Provisions and are provided without
   warranty as described in the Simplified BSD License.



Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC-2119 [RFC2119].

Table of Contents


   1. Introduction...................................................3
      1.1. Node Switching Asymmetry Constraints......................4
      1.2. Non-Local Label Assignment Constraints....................4
   2. Encoding.......................................................5
      2.1. Connectivity Matrix Field.................................5
      2.2. Port Label Restriction Field..............................7
         2.2.1. SIMPLE_LABEL.........................................8
         2.2.2. CHANNEL_COUNT........................................9
         2.2.3. LABEL_RANGE..........................................9



Bernstein and Lee       Expires June 23, 2015                  [Page 2]


Internet-Draft General Network Element Constraint Encoding February
2015


         2.2.4. SIMPLE_LABEL & CHANNEL_COUNT........................10
         2.2.5. Link Label Exclusivity..............................10
      2.3. Link Set Field...........................................11
      2.4. Available Labels Field...................................13
      2.5. Shared Backup Labels Field...............................14
      2.6. Label Set Field..........................................14
         2.6.1. Inclusive/Exclusive Label Lists.....................15
         2.6.2. Inclusive/Exclusive Label Ranges....................16
         2.6.3. Bitmap Label Set....................................17
   3. Security Considerations.......................................17
   4. IANA Considerations...........................................18
   5. Acknowledgments...............................................18
   APPENDIX A: Encoding Examples....................................19
      A.1. Link Set Field...........................................19
      A.2. Label Set Field..........................................19
      A.3. Connectivity Matrix......................................20
      A.4. Connectivity Matrix with Bi-directional Symmetry.........23
      A.5. Priority Flags in Available/Shared Backup Labels.........25
   6. References....................................................27
      6.1. Normative References.....................................27
      6.2. Informative References...................................28
   7. Contributors..................................................29
   Authors' Addresses...............................................30

1. Introduction

   Some data plane technologies that wish to make use of a GMPLS
   control plane contain additional constraints on switching capability
   and label assignment. In addition, some of these technologies must
   perform non-local label assignment based on the nature of the
   technology, e.g., wavelength continuity constraint in Wavelength
   Switched Optical Networks (WSON) [RFC6163]. Such constraints can
   lead to the requirement for link by link label availability in path
   computation and label assignment.

   This document provides efficient encodings of information needed by
   the routing and label assignment process in technologies such as
   WSON and are potentially applicable to a wider range of
   technologies. Such encodings can be used to extend GMPLS signaling
   and routing protocols. In addition these encodings could be used by
   other mechanisms to convey this same information to a path
   computation element (PCE).






Bernstein and Lee       Expires June 23, 2015                  [Page 3]


Internet-Draft General Network Element Constraint Encoding February
2015


     1.1. Node Switching Asymmetry Constraints

   For some network elements, the ability of a signal or packet on a
   particular input port to reach a particular output port may be
   limited. In addition, in some network elements the connectivity
   between some input ports and output ports may be fixed, e.g., a
   simple multiplexer. To take into account such constraints during
   path computation, we model this aspect of a network element via a
   connectivity matrix.

   The connectivity matrix (ConnectivityMatrix) represents either the
   potential connectivity matrix for asymmetric switches or fixed
   connectivity for an asymmetric device such as a multiplexer. Note
   that this matrix does not represent any particular internal blocking
   behavior but indicates which input ports and labels (e.g.,
   wavelengths) could possibly be connected to a particular output port
   and label pair. Representing internal state dependent blocking for a
   node is beyond the scope of this document and, due to its highly
   implementation-dependent nature, would most likely not be subject to
   standardization in the future. The connectivity matrix is a
   conceptual M*m by N*n matrix where M represents the number of input
   ports each with m labels and N the number of output ports each with
   n labels.

     1.2. Non-Local Label Assignment Constraints

   If the nature of the equipment involved in a network results in a
   requirement for non-local label assignment, we can have constraints
   based on limits imposed by the ports themselves and those that are
   implied by the current label usage. Note that constraints such as
   these only become important when label assignment has a non-local
   character. For example, in MPLS an LSR may have a limited range of
   labels available for use on an output port, and a set of labels
   already in use on that port, and hence unavailable for use. This
   information, however, does not need to be shared unless there is
   some limitation on the LSR's label swapping ability. For example, if
   a TDM node lacks the ability to perform time-slot interchange, or a
   WSON lacks the ability to perform wavelength conversion, then the
   label assignment process is not local to a single node. In this
   case, it may be advantageous to share the label assignment
   constraint information for use in path computation.

   Port label restrictions (PortLabelRestriction) model the label
   restrictions that the network element (node) and link may impose on
   a port. These restrictions tell us what labels may or may not be



Bernstein and Lee       Expires June 23, 2015                  [Page 4]


Internet-Draft General Network Element Constraint Encoding February
2015


   used on a link and are intended to be relatively static. More
   dynamic information is contained in the information on available
   labels. Port label restrictions are specified relative to the port
   in general or to a specific connectivity matrix for increased
   modeling flexibility. Reference [Switch] gives an example where both
   switch and fixed connectivity matrices are used and both types of
   constraints occur on the same port.

2. Encoding

   This section provides encodings for the information elements defined
   in [RWA-Info] that have applicability to WSON.  The encodings are
   designed to be suitable for use in the GMPLS routing protocols OSPF
   [RFC4203] and IS-IS [RFC5307] and in the PCE protocol (PCEP)
   [RFC5440]. Note that the information distributed in [RFC4203] and
   [RFC5307] is arranged via the nesting of sub-TLVs within TLVs and
   this document defines elements to be used within such constructs.
   Specific constructs of sub-TLVs and the nesting of sub-TLVs of the
   information element defined by this document will be defined in the
   respective protocol enhancement documents.

     2.1. Connectivity Matrix Field

   The Connectivity Matrix Field represents how input ports are
   connected to output ports for network elements. The switch and fixed
   connectivity matrices can be compactly represented in terms of a
   minimal list of input and output port set pairs that have mutual
   connectivity. As described in [Switch], such a minimal list
   representation leads naturally to a graph representation for path
   computation purposes that involves the fewest additional nodes and
   links.

   The Connectivity Matrix is uniquely identified only by the
   advertising node. There may be more than one Field associated with a
   node as a node can partition the switch matrix into several sub-
   matrices. This partitioning is primarily to limit the size of any
   individual information element used to represent the matrix and to
   enable incremental updates. When the matrix is partitioned into sub-
   matrices, each sub-matrix will be mutually exclusive to one another
   in representing which ports/labels are associated with each sub-
   matrix. This implies that two matrices will not have the same {src
   port, src label, dst port, dst label}.






Bernstein and Lee       Expires June 23, 2015                  [Page 5]


Internet-Draft General Network Element Constraint Encoding February
2015


   Each sub-matrix is identified via a different Matrix ID which MUST
   represent a unique combination of {src port, src label, dst port,
   dst label}.

   A TLV encoding of this list of link set pairs is:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Conn  |   MatrixID    |            Reserved                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Link Set A #1                         |
      :                               :                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Link Set B #1                         :
      :                               :                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Additional Link set pairs as needed     |
      :                     to specify connectivity                   :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   Where

   Connectivity (Conn) (4 bit) is the device type.

         0 -- the device is fixed

         1 -- the device is switched (e.g., ROADM/OXC)

   MatrixID represents the ID of the connectivity matrix and is an 8
   bit integer. The value of 0xFF is reserved for use with port label
   constraints and should not be used to identify a connectivity matrix.

   Link Set A #1 and Link Set B #1 together represent a pair of link
   sets. See Section 2.3. for a detail description of the link set
   field. There are two permitted combinations for the link set field
   parameter "dir" for Link Set A and B pairs:

   o  Link Set A dir=input, Link Set B dir=output

     In this case, the meaning of the pair of link sets A and B in this
     case is that any signal that inputs a link in set A can be
     potentially switched out of an output link in set B.




Bernstein and Lee       Expires June 23, 2015                  [Page 6]


Internet-Draft General Network Element Constraint Encoding February
2015


   o  Link Set A dir=bidirectional, Link Set B dir=bidirectional

      The meaning of the pair of link sets A and B in this case is that
      any signal that inputs on the links in set A can potentially
      output on a link in set B, and any input signal on the links in
      set B can potentially output on a link in set A. If link set A is
      an input and link set B is an output for a signal, then it
      implies that link set A is an output and link set B is an input
      for that signal.

   See Appendix A for both types of encodings as applied to a ROADM
   example.


     2.2. Port Label Restriction Field

   Port Label Restriction Field tells us what labels may or may not be
   used on a link.

   The port label restriction can be encoded as follows: More than one
   of these fields may be needed to fully specify a complex port
   constraint. When more than one of these fields are present, the
   resulting restriction is the union of the restrictions expressed in
   each field. The use of the reserved value of 0xFF for the MatrixID
   indicates that a restriction applies to the port, and not to a
   specific connectivity matrix.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   MatrixID    |    RstType    |  SwitchingCap |     Encoding  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Additional Restriction Parameters per Restriction Type   |
     :                                                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   Where:

   MatrixID: either is the value in the corresponding Connectivity
   Matrix field or takes the value 0xFF to indicate the restriction
   applies to the port regardless of any Connectivity Matrix.

   RstType (Restriction Type) can take the following values and
   meanings:



Bernstein and Lee       Expires June 23, 2015                  [Page 7]


Internet-Draft General Network Element Constraint Encoding February
2015


         0: SIMPLE_LABEL (Simple label selective restriction; See
         Section 2.2.1 for details)

         1: CHANNEL_COUNT (Channel count restriction; See Section 2.2.2
         for details)

         2: LABEL_RANGE (Label range device with a movable center label
         and width; See Section 2.2.3 for details)

         3: SIMPLE_LABEL & CHANNEL_COUNT (Combination of SIMPLE_LABEL
         and CHANNEL_COUNT restriction. The accompanying label set and
         channel count indicate labels permitted on the port and the
         maximum number of channels that can be simultaneously used on
         the port; See Section 2.2.4 for details)

         4: LINK_LABEL_EXCLUSIVITY (A label may be used at most once
         amongst a set of specified ports; See Section 2.2.5 for
         details)

   SwitchingCap (Switching Capability) is defined in [RFC4203] and
   Encoding in [RFC3471]. The combination of these fields defines the
   type of labels used in specifying the port label restrictions as
   well as the interface type to which these restrictions apply.

   Additional Restriction Parameters per RestrictionType field is an
   optional field that describes additional restriction parameters for
   each RestrictionType pertaining to specific protocols.

   2.2.1.                         SIMPLE_LABEL

   In the case of the SIMPLE_LABEL, The format is given by:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | MatrixID      | RstType = 0   |  SwitchingCap |   Encoding    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Label Set Field                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   In this case the accompanying label set indicates the labels
   permitted on the port/matrix.

   See Section 2.6 for the definition of label set.



Bernstein and Lee       Expires June 23, 2015                  [Page 8]


Internet-Draft General Network Element Constraint Encoding February
2015



   2.2.2.                         CHANNEL_COUNT

   In the case of the CHANNEL_COUNT, the format is given by:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | MatrixID      | RstType = 1   | SwitchingCap  |   Encoding    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        MaxNumChannels                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   In this case the accompanying MaxNumChannels indicates the maximum
   number of channels (labels) that can be simultaneously used on the
   port/matrix.

   MaxNumChannels is a 32-bit integer.


   2.2.3.                         LABEL_RANGE

   In the case of the LABEL_RANGE, the format is given by:


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | MatrixID      | RstType = 2   | Switching Cap |  Encoding     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          MaxLabelRange                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Label Set Field                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   This is a generalization of the waveband device. The MaxLabelRange
   indicates the maximum width of the waveband in terms of the channels
   spacing given in the Label Set Field. The corresponding label set is
   used to indicate the overall tuning range.

   MaxLabelRange is a 32-bit integer.



   See Section 2.6.2 for the explanation of label range.



Bernstein and Lee       Expires June 23, 2015                  [Page 9]


Internet-Draft General Network Element Constraint Encoding February
2015



   2.2.4.                         SIMPLE_LABEL & CHANNEL_COUNT

   In the case of the SIMPLE_LABEL & CHANNEL_COUNT the format is given
   by:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | MatrixID      | RstType = 3   |  SwitchingCap |   Encoding    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        MaxNumChannels                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Label Set Field                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   In this case the accompanying label set and MaxNumChannels indicate
   labels permitted on the port and the maximum number of labels that
   can be simultaneously used on the port.

   See Section 2.6 for the definition of label set.

   2.2.5.                         Link Label Exclusivity

   In the case of the Link Label Exclusivity the format is given by:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | MatrixID      | RstType = 4   |  SwitchingCap |   Encoding    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Link Set Field                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   In this case the accompanying link set indicates that a label may be
   used at most once among the ports in the link set field. See Section
   2.3 for the definition of link set.









Bernstein and Lee       Expires June 23, 2015                 [Page 10]


Internet-Draft General Network Element Constraint Encoding February
2015


     2.3. Link Set Field

   We will frequently need to describe properties of groups of links.
   To do so efficiently we can make use of a link set concept similar
   to the label set concept of [RFC3471]. This Link Set Field is used
   in the <ConnectivityMatrix>, which is defined in Section 2.1.  The
   information carried in a Link Set is defined by:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    Action     |Dir|  Format   |         Length                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Link Identifier 1                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                               :                               :
      :                               :                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Link Identifier N                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


     Action: 8 bits

         0 - Inclusive List

   Indicates that one or more link identifiers are included in the Link
   Set. Each identifies a separate link that is part of the set.

         1 - Inclusive Range

   Indicates that the Link Set defines a range of links.  It contains
   two link identifiers. The first identifier indicates the start of
   the range. The second identifier indicates the end of the range. All
   links with numeric values between the bounds are considered to be
   part of the set. A value of zero in either position indicates that
   there is no bound on the corresponding portion of the range. Note
   that the Action field can be set to 0x01 (Inclusive Range) only when
   identifier for unnumbered link is used.

     Dir: Directionality of the Link Set (2 bits)

         0 -- bidirectional

         1 -- input



Bernstein and Lee       Expires June 23, 2015                 [Page 11]


Internet-Draft General Network Element Constraint Encoding February
2015


         2 -- output

   For example, in optical networks we think in terms of unidirectional
   as well as bidirectional links. For example, label restrictions or
   connectivity may be different for an input port, than for its
   "companion" output port if one exists. Note that "interfaces" such
   as those discussed in the Interfaces MIB [RFC2863] are assumed to be
   bidirectional. This also applies to the links advertised in various
   link state routing protocols.

     Format: The format of the link identifier (6 bits)

         0 -- Link Local Identifier

   Indicates that the links in the Link Set are identified by link
   local identifiers. All link local identifiers are supplied in the
   context of the advertising node.

         1 -- Local Interface IPv4 Address

         2 -- Local Interface IPv6 Address

   Indicates that the links in the Link Set are identified by Local
   Interface IP Address.

         Others -- Reserved for future use.

   Note that all link identifiers in the same list must be of the same
   type.

     Length: 16 bits

   This field indicates the total length in bytes of the Link Set field.

     Link Identifier: length is dependent on the link format

   The link identifier represents the port which is being described
   either for connectivity or label restrictions. This can be the link
   local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS OSPF
   routing, and [RFC5307] IS-IS GMPLS routing. The use of the link
   local identifier format can result in more compact encodings when
   the assignments are done in a reasonable fashion.






Bernstein and Lee       Expires June 23, 2015                 [Page 12]


Internet-Draft General Network Element Constraint Encoding February
2015


     2.4. Available Labels Field

   The Available Labels Field consists of priority flags, and a single
   variable length label set field as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     PRI       |              Reserved                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Label Set Field                           |
     :                                                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   Where

   PRI (Priority Flags, 8 bits): A bitmap used to indicate which
   priorities are being advertised.  The bitmap is in ascending order,
   with the leftmost bit representing priority level 0 (i.e., the
   highest) and the rightmost bit representing priority level 7 (i.e.,
   the lowest).  A bit MUST be set (1) corresponding to each priority
   represented in the sub-TLV, and MUST NOT be set (0) when the
   corresponding priority is not represented. If a label is available
   at priority M it MUST be advertised available at each priority N <
   M. At least one priority level MUST be advertised.

   The PRI field indicates the availability of the labels for use in
   LSP set up and pre-emption as described in [RFC3209].

   When a label is advertised as available for priorities 0, 1, ... M
   it may be used by any LSP of priority N <= M. When a label is in use
   by an LSP of priority M it may be used by an LSP of priority N < M
   if LSP preemption is supported.

   When a label was initially advertised as available for priorities,
   0, 1, ... M and once a label is used for an LSP at a priority, say N
   (N<=M), then this label is advertised as available for 0, ... N-1.

   Note that Label Set Field is defined in Section 2.6. See Appendix
   A.5. for illustrative examples.







Bernstein and Lee       Expires June 23, 2015                 [Page 13]


Internet-Draft General Network Element Constraint Encoding February
2015


     2.5. Shared Backup Labels Field

   The Shared Backup Labels Field consists of priority flags, and
   single variable length label set field as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     PRI         |            Reserved                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Label Set Field                           |
     :                                                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   Where

   PRI (Priority Flags, 8 bits): A bitmap used to indicate which
   priorities are being advertised.  The bitmap is in ascending order,
   with the leftmost bit representing priority level 0 (i.e., the
   highest) and the rightmost bit representing priority level 7 (i.e.,
   the lowest).  A bit MUST be set (1) corresponding to each priority
   represented in the sub-TLV, and MUST NOT be set (0) when the
   corresponding priority is not represented. If a label is available
   at priority M it MUST be advertised available at each priority N <
   M. At least one priority level MUST be advertised.

   The same LSP set up and pre-emption rules specified in Section 2.4
   apply here.

   Note that Label Set Field is defined in Section 2.6. See Appendix
   A.5. for illustrative examples.

     2.6. Label Set Field

   Label Set Field is used within the <AvailableLabels> or the
   <SharedBackupLabels>, which is defined in Sections 2.4. and 2.5.,
   respectively. It is also used within the <SIMPLE_LABEL>,
   <LABEL_RANGE>, <SIMPLE_LABEL> or <CHANNEL_COUNT>, which is defined
   in Sections 2.1.1. - 2.1.4., respectively.

   The general format for a label set is given below. This format uses
   the Action concept from [RFC3471] with an additional Action to
   define a "bit map" type of label set. Labels are variable in length.
   Action specific fields are defined below.



Bernstein and Lee       Expires June 23, 2015                 [Page 14]


Internet-Draft General Network Element Constraint Encoding February
2015








      0                   1                   2                   3

      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Action|    Num Labels = N       |           Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          Base Label                           |
     |                             . . .                             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      (Action specific fields)                 |
     |                              . . . .                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




   Action:

         0  - Inclusive List

         1  - Exclusive List

         2  - Inclusive Range

         3  - Exclusive Range

         4  - Bitmap Set

   Num Labels is generally the number of labels. It has a specific
   meaning depending on the action value. See Sections 2.6.1 - 2.6.3
   for details. Num Labels is a 12 bit integer.

   Length is the length in bytes of the entire label set field.

   2.6.1.                         Inclusive/Exclusive Label Lists

   In the case of the inclusive/exclusive lists the wavelength set
   format is given by:




Bernstein and Lee       Expires June 23, 2015                 [Page 15]


Internet-Draft General Network Element Constraint Encoding February
2015


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0 or 1 | Num Labels = 2        |          Length               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         Label #1                              |
     |                            . . .                              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     :                                                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         Label #N                              |
     |                            . . .                              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   Where:

   Label #1 is the first Label to be included/excluded and Label #N is
   the last Label to be included/excluded. Num Labels MUST match with
   N.

   2.6.2.                         Inclusive/Exclusive Label Ranges

   In the case of inclusive/exclusive ranges the label set format is
   given by:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |2 or 3 | Num Labels          |               Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    Start Label                                |
     |                       . . .                                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     End Label                                 |
     |                       . . .                                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



   Note that Start Label is the first Label in the range to be
   included/excluded and End Label is the last label in the same range.
   Num Labels MUST be two.





Bernstein and Lee       Expires June 23, 2015                 [Page 16]


Internet-Draft General Network Element Constraint Encoding February
2015


   2.6.3.                         Bitmap Label Set

   In the case of Action = 4, the bitmap the label set format is given
   by:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  4    |   Num Labels          |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         Base Label                            |
     |                            . . .                              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Bit Map Word #1 (Lowest numerical labels)                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     :                                                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Bit Map Word #N (Highest numerical labels)                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   Where Num Labels in this case tells us the number of labels
   represented by the bit map. Each bit in the bit map represents a
   particular label with a value of 1/0 indicating whether the label is
   in the set or not. Bit position zero represents the lowest label and
   corresponds to the base label, while each succeeding bit position
   represents the next label logically above the previous.

   The size of the bit map is Num Labels bits, but the bit map is
   padded out to a full multiple of 32 bits so that the field is a
   multiple of four bytes. Bits that do not represent labels (i.e.,
   those in positions (Num Labels) and beyond) SHOULD be set to zero
   and MUST be ignored.





3. Security Considerations

   This document defines protocol-independent encodings for WSON
   information and does not introduce any security issues.

   However, other documents that make use of these encodings within
   protocol extensions need to consider the issues and risks associated



Bernstein and Lee       Expires June 23, 2015                 [Page 17]


Internet-Draft General Network Element Constraint Encoding February
2015


   with inspection, interception, modification, or spoofing of any of
   this information. It is expected that any such documents will
   describe the necessary security measures to provide adequate
   protection. A general discussion on security in GMPLS networks can
   be found in [RFC5920].



4. IANA Considerations

   This document provides general protocol independent information
   encodings.  There is no IANA allocation request for the information
   elements defined in this document. IANA allocation requests will be
   addressed in protocol specific documents based on the encodings
   defined here.



5. Acknowledgments

   This document was prepared using 2-Word-v2.0.template.dot.



























Bernstein and Lee       Expires June 23, 2015                 [Page 18]


Internet-Draft General Network Element Constraint Encoding February
2015


APPENDIX A: Encoding Examples

   Here we give examples of the general encoding extensions applied to
   some simple ROADM network elements and links.

A.1. Link Set Field

   Suppose that we wish to describe a set of input ports that are have
   link local identifiers number 3 through 42. In the link set field we
   set the Action = 1 to denote an inclusive range; the Dir = 1 to
   denote input links; and, the Format = 0 to denote link local
   identifiers. In particular we have:

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=1     |0 1|0 0 0 0 0 0|             Length = 12       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #3                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #42               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


A.2. Label Set Field

   Example:

   A 40 channel C-Band DWDM system with 100GHz spacing with lowest
   frequency 192.0THz (1561.4nm) and highest frequency 195.9THz
   (1530.3nm). These frequencies correspond to n = -11, and n = 28
   respectively. Now suppose the following channels are available:

   Frequency (THz)       n Value      bit map position
   --------------------------------------------------
      192.0             -11                  0
      192.5              -6                  5
      193.1               0                 11
      193.9               8                 19
      194.0               9                 20
      195.2              21                 32
      195.8              27                 38

   Using the label format defined in [RFC6205], with the Grid value set
   to indicate an ITU-T A/2 [G.694.1] DWDM grid, C.S. set to indicate
   100GHz this lambda bit map set would then be encoded as follows:




Bernstein and Lee       Expires June 23, 2015                 [Page 19]


Internet-Draft General Network Element Constraint Encoding February
2015




      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  4    | Num Labels = 40       |    Length = 16 bytes          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |      Reserved   | n  for lowest frequency = -11 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1 0 0 0 0 0 1 0|   Not used in 40 Channel system (all zeros)   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   To encode this same set as an inclusive list we would have:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  0    | Num Labels = 7        |    Length = 32 bytes          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |      Reserved   | n  for lowest frequency = -11 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |      Reserved   | n  for lowest frequency = -6  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |      Reserved   | n  for lowest frequency = -0  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |      Reserved   | n  for lowest frequency = 8   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |      Reserved   | n  for lowest frequency = 9   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |      Reserved   | n  for lowest frequency = 21  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |      Reserved   | n  for lowest frequency = 27  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




A.3. Connectivity Matrix

   Example:

   Suppose we have a typical 2-degree 40 channel ROADM. In addition to
   its two line side ports it has 80 add and 80 drop ports. The picture



Bernstein and Lee       Expires June 23, 2015                 [Page 20]


Internet-Draft General Network Element Constraint Encoding February
2015


   below illustrates how a typical 2-degree ROADM system that works
   with bi-directional fiber pairs is a highly asymmetrical system
   composed of two unidirectional ROADM subsystems.



                         (Tributary) Ports #3-#42
                     Input added to    Output dropped from
                     West Line Output    East Line Input
                           vvvvv          ^^^^^
                          | |||.|        | |||.|
                    +-----| |||.|--------| |||.|------+
                    |    +----------------------+     |
                    |    |                      |     |
        Output      |    | Unidirectional ROADM |     |    Input
   -----------------+    |                      |     +--------------
   <=====================|                      |===================<
   -----------------+    +----------------------+     +--------------
                    |                                 |
        Port #1     |                                 |   Port #2
   (West Line Side) |                                 |(East Line Side)
   -----------------+    +----------------------+     +--------------
   >=====================|                      |===================>
   -----------------+    | Unidirectional ROADM |     +--------------
          Input     |    |                      |     |    Output
                    |    |              _       |     |
                    |    +----------------------+     |
                    +-----| |||.|--------| |||.|------+
                          | |||.|        | |||.|
                           vvvvv          ^^^^^
                     (Tributary) Ports #43-#82
                Output dropped from    Input added to
                West Line Input      East Line Output


   Referring to the figure we see that the Input direction of ports #3-
   #42 (add ports) can only connect to the output on port #1. While the
   Input side of port #2 (line side) can only connect to the output on
   ports #3-#42 (drop) and to the output on port #1 (pass through).
   Similarly, the input direction of ports #43-#82 can only connect to
   the output on port #2 (line). While the input direction of port #1
   can only connect to the output on ports #43-#82 (drop) or port #2
   (pass through). We can now represent this potential connectivity
   matrix as follows. This representation uses only 29 32-bit words.




Bernstein and Lee       Expires June 23, 2015                 [Page 21]


Internet-Draft General Network Element Constraint Encoding February
2015



     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Conn = 1   |    MatrixID   |      Reserved                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                          Note: adds to line
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=1     |0 1|0 0 0 0 0 0|          Length = 12          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #3                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #42               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=0     |1 0|0 0 0 0 0 0|          Length = 8           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #1                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line to drops
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=0     |0 1|0 0 0 0 0 0|          Length = 8           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #2                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=1     |1 0|0 0 0 0 0 0|          Length = 12          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #3                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #42               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line to line
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=0     |0 1|0 0 0 0 0 0|          Length = 8           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #2                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=0     |1 0|0 0 0 0 0 0|          Length = 8           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #1                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                Note: adds to line
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=1     |0 1|0 0 0 0 0 0|          Length = 12          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #43               |



Bernstein and Lee       Expires June 23, 2015                 [Page 22]


Internet-Draft General Network Element Constraint Encoding February
2015


    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #82               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=0     |1 0|0 0 0 0 0 0|          Length = 8           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #2                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line to drops
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=0     |0 1|0 0 0 0 0 0||          Length = 8          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #1                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=1     |1 0|0 0 0 0 0 0|          Length = 12          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #43               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #82               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line to line
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=0     |0 1|0 0 0 0 0 0|          Length = 8           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #1                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=0     |1 0|0 0 0 0 0 0|          Length = 8           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #2                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


A.4. Connectivity Matrix with Bi-directional Symmetry

   If one has the ability to renumber the ports of the previous example
   as shown in the next figure then we can take advantage of the bi-
   directional symmetry and use bi-directional encoding of the
   connectivity matrix. Note that we set dir=bidirectional in the link
   set fields.










Bernstein and Lee       Expires June 23, 2015                 [Page 23]


Internet-Draft General Network Element Constraint Encoding February
2015


                                (Tributary)
                     Ports #3-42         Ports #43-82
                     West Line Output    East Line Input
                           vvvvv          ^^^^^
                          | |||.|        | |||.|
                    +-----| |||.|--------| |||.|------+
                    |    +----------------------+     |
                    |    |                      |     |
        Output      |    | Unidirectional ROADM |     |    Input
   -----------------+    |                      |     +--------------
   <=====================|                      |===================<
   -----------------+    +----------------------+     +--------------
                    |                                 |
        Port #1     |                                 |   Port #2
   (West Line Side) |                                 |(East Line Side)
   -----------------+    +----------------------+     +--------------
   >=====================|                      |===================>
   -----------------+    | Unidirectional ROADM |     +--------------
        Input     |    |                      |     |    Output
                    |    |              _       |     |
                    |    +----------------------+     |
                    +-----| |||.|--------| |||.|------+
                          | |||.|        | |||.|
                           vvvvv          ^^^^^
                     Ports #3-#42            Ports #43-82
                Output dropped from    Input added to
                West Line Input      East Line Output





















Bernstein and Lee       Expires June 23, 2015                 [Page 24]


Internet-Draft General Network Element Constraint Encoding February
2015


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Conn = 1   |    MatrixID   |      Reserved                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                          Add/Drops #3-42 to Line side #1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=1     |0 0|0 0 0 0 0 0|          Length = 12          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #3                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #42               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=0     |0 0|0 0 0 0 0 0|          Length = 8           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #1                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line #2 to add/drops #43-82
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=0     |0 0|0 0 0 0 0 0|          Length = 8           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #2                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=1     |0 0|0 0 0 0 0 0|          Length = 12          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #43               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #82               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line to line
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=0     |0 0|0 0 0 0 0 0|          Length = 8           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #1                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Action=0     |0 0|0 0 0 0 0 0|          Length = 8           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Link Local Identifier = #2                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


A.5. Priority Flags in Available/Shared Backup Labels

   If one wants to make a set of labels (indicated by Label Set Field
   #1) available only for the highest priority level (Priority Level 0)



Bernstein and Lee       Expires June 23, 2015                 [Page 25]


Internet-Draft General Network Element Constraint Encoding February
2015


   while allowing a set of labels (indicated by Label Set Field #2)
   available to all priority levels, the following encoding will
   express such need.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1 0 0 0 0 0 0 0|              Reserved                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Label Set Field #1                        |
     :                                                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1 1 1 1 1 1 1 1|              Reserved                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Label Set Field #2                        |
     :                                                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+































Bernstein and Lee       Expires June 23, 2015                 [Page 26]


Internet-Draft General Network Element Constraint Encoding February
2015




6. References

     6.1. Normative References

   [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
             MIB", RFC 2863, June 2000.

   [RFC3209] Awduche, D., et al. "RSVP-TE: Extensions to RSVP for LSP
             Tunnels", RFC 3209, December 2001.

   [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching
             (GMPLS) Signaling Functional Description", RFC 3471,
             January 2003.

   [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM
             applications: DWDM frequency grid", June, 2002.

   [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing
             Extensions in Support of Generalized Multi-Protocol Label
             Switching (GMPLS)", RFC 4202, October 2005

   [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions
             in Support of Generalized Multi-Protocol Label Switching
             (GMPLS)", RFC 4203, October 2005.

   [RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions
             in Support of Generalized Multi-Protocol Label Switching
             (GMPLS)", RFC 5307, October 2008.

   [RFC6205] T. Otani, Ed. and D. Li, Ed., "Generalized Labels for
             Lambda-Switch-Capable (LSC) Label Switching Routers", RFC
             6205, March 2011.











Bernstein and Lee       Expires June 23, 2015                 [Page 27]


Internet-Draft General Network Element Constraint Encoding February
2015




     6.2. Informative References



   [RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
             Element (PCE) communication Protocol (PCEP) - Version 1",
             RFC5440.

   [RFC5920] L. Fang, Ed., "Security Framework for MPLS and GMPLS
             Networks", RFC 5920, July 2010.

   [RFC6163] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS and
             Path Computation Element (PCE) Control of Wavelength
             Switched Optical Networks (WSONs)", RFC 6163, April 2011.

   [Switch] G. Bernstein, Y. Lee, A. Gavler, J. Martensson, "Modeling
             WDM Wavelength Switching Systems for Use in GMPLS and
             Automated Path Computation", Journal of Optical
             Communications and Networking, vol. 1, June, 2009, pp.
             187-195.

   [RWA-Info]  G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and
             Wavelength Assignment Information Model for Wavelength
             Switched Optical Networks", work in progress: draft-ietf-
             ccamp-rwa-info.





















Bernstein and Lee       Expires June 23, 2015                 [Page 28]


Internet-Draft General Network Element Constraint Encoding February
2015


7. Contributors

   Diego Caviglia
   Ericsson
   Via A. Negrone 1/A 16153
   Genoa Italy

   Phone: +39 010 600 3736
   Email: diego.caviglia@ericsson.com

   Anders Gavler
   Acreo AB
   Electrum 236
   SE - 164 40 Kista Sweden

   Email: Anders.Gavler@acreo.se

   Jonas Martensson
   Acreo AB
   Electrum 236
   SE - 164 40 Kista, Sweden

   Email: Jonas.Martensson@acreo.se

   Itaru Nishioka
   NEC Corp.
   1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666
   Japan

   Phone: +81 44 396 3287
   Email: i-nishioka@cb.jp.nec.com

   Rao Rajan
   Infinera

   Email: rrao@infinera.com

   Giovanni Martinelli
   CISCO

   Email: giomarti@cisco.com


   Remi Theillaud




Bernstein and Lee       Expires June 23, 2015                 [Page 29]


Internet-Draft General Network Element Constraint Encoding February
2015


   Marben
   remi.theillaud@marben-products.com


Authors' Addresses

   Greg M. Bernstein (ed.)
   Grotto Networking
   Fremont California, USA

   Phone: (510) 573-2237
   Email: gregb@grotto-networking.com


   Young Lee (ed.)
   Huawei Technologies
   1700 Alma Drive, Suite 100
   Plano, TX 75075
   USA

   Phone: (972) 509-5599 (x2240)
   Email: ylee@huawei.com


   Dan Li
   Huawei Technologies Co., Ltd.
   F3-5-B R&D Center, Huawei Base,
   Bantian, Longgang District
   Shenzhen 518129 P.R.China

   Phone: +86-755-28973237
   Email: danli@huawei.com

   Wataru Imajuku
   NTT Network Innovation Labs
   1-1 Hikari-no-oka, Yokosuka, Kanagawa
   Japan

   Phone: +81-(46) 859-4315
   Email: imajuku.wataru@lab.ntt.co.jp








Bernstein and Lee       Expires June 23, 2015                 [Page 30]


Internet-Draft General Network Element Constraint Encoding February
2015


   Jianrui Han
   Huawei Technologies Co., Ltd.
   F3-5-B R&D Center, Huawei Base,
   Bantian, Longgang District
   Shenzhen 518129 P.R.China

   Phone: +86-755-28972916
   Email: hanjianrui@huawei.com








































Bernstein and Lee       Expires June 23, 2015                 [Page 31]


Html markup produced by rfcmarkup 1.124, available from https://tools.ietf.org/tools/rfcmarkup/