[Docs] [txt|pdf] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]

Versions: 00 01 02 03 04 05 06 07 08 RFC 4993

Network Working Group                                          A. Newton
Internet-Draft                                            VeriSign, Inc.
Expires: November 26, 2006                                  May 25, 2006


   A Lightweight UDP Transfer Protocol for the the Internet Registry
                          Information Service
                      draft-ietf-crisp-iris-lwz-06

Status of this Memo

   By submitting this Internet-Draft, each author represents that any
   applicable patent or other IPR claims of which he or she is aware
   have been or will be disclosed, and any of which he or she becomes
   aware will be disclosed, in accordance with Section 6 of BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on November 26, 2006.

Copyright Notice

   Copyright (C) The Internet Society (2006).

Abstract

   This document describes a lightweight UDP transfer protocol for the
   Internet Registry Information Service (IRIS).  This transfer protocol
   uses a single packet for every request and response, and optionally
   employs compression over the contents of the packet.







Newton                  Expires November 26, 2006               [Page 1]


Internet-Draft                  iris-lwz                        May 2006


Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
   2.  Document Terminology . . . . . . . . . . . . . . . . . . . . .  4
   3.  Packet Format  . . . . . . . . . . . . . . . . . . . . . . . .  5
     3.1.  Payload Descriptor . . . . . . . . . . . . . . . . . . . .  5
       3.1.1.  Payload Request Descriptor . . . . . . . . . . . . . .  5
       3.1.2.  Payload Response Descriptor  . . . . . . . . . . . . .  6
       3.1.3.  Payload Header . . . . . . . . . . . . . . . . . . . .  7
       3.1.4.  Payload Types  . . . . . . . . . . . . . . . . . . . .  7
       3.1.5.  Version Information  . . . . . . . . . . . . . . . . .  8
       3.1.6.  Size Information . . . . . . . . . . . . . . . . . . .  9
       3.1.7.  Other Information  . . . . . . . . . . . . . . . . . .  9
   4.  Interactions . . . . . . . . . . . . . . . . . . . . . . . . . 11
   5.  Internationalization Considerations  . . . . . . . . . . . . . 12
   6.  IRIS Transport Mapping Definitions . . . . . . . . . . . . . . 13
     6.1.  URI Scheme . . . . . . . . . . . . . . . . . . . . . . . . 13
     6.2.  Application Protocol Label . . . . . . . . . . . . . . . . 13
   7.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 14
     7.1.  Registrations  . . . . . . . . . . . . . . . . . . . . . . 14
       7.1.1.  URI Scheme Registration  . . . . . . . . . . . . . . . 14
       7.1.2.  Well-known UDP Port Registration . . . . . . . . . . . 14
       7.1.3.  S-NAPTR Registration . . . . . . . . . . . . . . . . . 15
   8.  Security Considerations  . . . . . . . . . . . . . . . . . . . 16
   9.  Normative References . . . . . . . . . . . . . . . . . . . . . 16
   Appendix A.  Examples  . . . . . . . . . . . . . . . . . . . . . . 17
   Appendix B.  Contributors  . . . . . . . . . . . . . . . . . . . . 22
   Author's Address . . . . . . . . . . . . . . . . . . . . . . . . . 23
   Intellectual Property and Copyright Statements . . . . . . . . . . 24






















Newton                  Expires November 26, 2006               [Page 2]


Internet-Draft                  iris-lwz                        May 2006


1.  Introduction

   Using S-NAPTR [4], IRIS has the ability to define the use of multiple
   application transports or transfer protocols for different types of
   registry services, all at the descretion of the server operator.  The
   UDP transfer protocol defined in this document is completely modular
   and may be used by any registry types.

   The binding of this UDP transfer protocol to IRIS is called IRIS-LWZ
   (for IRIS Lightweight using Compression).  Its message exchange
   pattern is simple: a client sends a request in one UDP packet, and a
   server responds with an answer in one UDP packet.

   IRIS-LWZ packets are composed of two parts, a binary payload
   descriptor and an request/response transaction payload.  The request/
   response transaction payload may be compressed using the DEFLATE [1]
   algorithm.


































Newton                  Expires November 26, 2006               [Page 3]


Internet-Draft                  iris-lwz                        May 2006


2.  Document Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC2119 [6].

   Octet fields with numberic values are given according to the
   conventions in RFC 1166 [8]: the left most bit of the whole field is
   the most significant bit; when a multi-octet quantity is transmitted
   the most significant octet is transmitted first.  Bits signifying
   flags in an octet are numbered according to the conventions of RFC
   1166 [8]: bit 0 is the most significant bit and bit 7 is the least
   significant bit.  When a diagram describes a group of octets, the
   order of tranmission for the octets starts from the left.





































Newton                  Expires November 26, 2006               [Page 4]


Internet-Draft                  iris-lwz                        May 2006


3.  Packet Format

   The UDP packet format for IRIS-LWZ is as follows:

         +------+------+----------+--------+------------+---------+
   field | src  | dest | checksum |  UDP   |  payload   | payload |
         | port | port |          | length | descriptor |         |
         +------+------+----------+--------+------------+---------+
   octets    2     2        2         2     3 or 6..261*    0..n

     * In request packets, the payload descriptor can vary in length
       from 6 to 261 octets (i.e. 6..261).  In response packets, the
       payload descriptor is always 3 octets.

   (where "src port" means source port and "dest port" means destination
   port).

   Each IRIS-LWZ query or response is contained in a single UDP packet.
   Servers MUST be prepared to accepted packets as large as 4000 octets,
   and clients MUST NOT send packets larger than 4000 octets.

3.1.  Payload Descriptor

   The payload descriptor has two different formats, one for a request
   and one for a response.  However, each format shares a common 1 octet
   payload header described in Section 3.1.3.

3.1.1.  Payload Request Descriptor

   The payload descriptor for request packets varies from 6 to 261
   octets in lenght and has the following format:

         +--------+-------------+----------+-----------+-----------+
   field | header | transaction | maximum  | authority | authority |
         |        |     ID      | response |  length   |           |
         |        |             | length   |           |           |
         +--------+-------------+----------+-----------+-----------+
   octets    1           2           2           1         0..255

   These fields have the following meanings:

      header - as described in Section 3.1.3.

      transaction ID - a 16 bit value identifying the transaction.  This
      value will be returned in the payload response descriptor
      (Section 3.1.2) and can be used by clients to match requests with
      responses.  Clients SHOULD pick the value randomly and SHOULD NOT
      use sequences of 16 bit values.  Clients MUST NOT set all the bits



Newton                  Expires November 26, 2006               [Page 5]


Internet-Draft                  iris-lwz                        May 2006


      in this value to 1 (i.e. use a value of 0xFFFF).

      maximum response length - the total length of the UDP packet (i.e.
      UDP header length + payload descriptor length + XML payload
      length) that should not be exceeded when responding to this
      request.  If the server cannot provide a response that is equal to
      or less than this value, then it MUST respond with size
      information (Section 3.1.6).

      authority length - the length of the authority field in this
      payload descriptor.

      authority - a string of octets describing the authority against
      wich this request is to be executed.  See [3] for the definition
      and description of an authority.  The number of octets in this
      string MUST be no more and no less than the number specified by
      the authority length.

3.1.2.  Payload Response Descriptor

   The payload descriptor for response packets is always 3 octets and
   consists of a payload header (Section 3.1.3) and a transaction ID.

         +--------+-------------+
   field | header | transaction |
         |        |     ID      |
         +--------+-------------+
   octets    1           2

   The purpose of the transaction ID is to allow clients to match
   requests to responses.  A value of 0xFFFF is reserved for server use.
   The value of the transaction ID is as follows:

   1.  If the transaction ID in the corresponding request could not be
       read due to truncation, servers MUST use a transaction ID with
       all bits set to 1 (i.e. a value of OxFFFF) and send a descriptor
       error (see Section 3.1.7).

   2.  If the transaction ID in the corresponding request is a value of
       0xFFFF, servers MUST us a transaction ID of 0xFFFF and send a
       descriptor error (see Section 3.1.7).

   3.  Otherwise, the transaction ID MUST be the value of the
       transaction ID of the corresponding request.







Newton                  Expires November 26, 2006               [Page 6]


Internet-Draft                  iris-lwz                        May 2006


3.1.3.  Payload Header

   The bits of the payload header are ordered according to RFC 1166 [8],
   where bit 0 is the most significant and bit 7 is the least
   significant.  Each bit in the one octet payload header has the
   following meaning:

      bits 0 and 1 - version number ('V' field) - If 0 (both bits are
      zero), the protocol is the version defined in this document.
      Otherwise, the rest of the bits in the header and the payload may
      be interpreted as another version.

      bit 2 - request/response flag ('RR' flag) - If 0, this packet is a
      request (Section 3.1.1) packet.  If 1, this packet is a response
      (Section 3.1.2) packet.

      bits 3 - payload deflated ('PD' flag) - If 1, the payload is
      compressed using the DEFLATE [1] algorithm.

      bit 4 - deflate supported ('DS' flag) - If 1, the sender of this
      packet supports compression using the DEFLATE algorithm.  When
      this bit is 0 in a request, the payload of the response MUST NOT
      be compressed with DEFLATE.

      bit 5 - reserved - This MUST be 0.

      bits 6 and 7 - The value of these bits indicate payload types
      (Section 3.1.4) ('PT' field).

3.1.4.  Payload Types

   A payload type indicates the type of content in the UDP packet
   following the payload descriptor.  Some payload types have no meaning
   in request packets, and some payload types differ in meaning between
   requests and responses.  Some payload types indicate an empty
   payload.

   The payload type values in binary are as follows:

      00 - xml payload ('xml' type).  The payload is either an IRIS-
      based XML request or an IRIS-based XML response.

      01 - version info ('vi' type).  In a request packet, this payload
      type indicates that the server is to respond with version
      information (Section 3.1.5), and that the payload is empty.  In a
      response packet, this payload type indicates that the payload is
      version information (Section 3.1.5).




Newton                  Expires November 26, 2006               [Page 7]


Internet-Draft                  iris-lwz                        May 2006


      10 - size info ('si' type).  This payload type has no meaning in a
      request packet and is a descriptor error.  In a response packet,
      this payload type indicates that the payload is size information
      (Section 3.1.6).

      11 - other info ('oi' type).  This payload type has no meaning in
      a request packet and is a descriptor error.  In a response packet,
      this payload type indicates that the payload is other information
      (Section 3.1.7).

3.1.5.  Version Information

   A payload type with version information ('vi') MUST be comformant to
   the XML defined in [7] and use the <versions> element as the root
   element.

   In the context of IRIS-LWZ, the protocol identifiers for these
   elements are as follows:

      <transferProtocol> - the value "iris.lwz1" to indicate the
      protocol specified in this document.

      <application> - the XML namespace identifier for IRIS [3].

      <dataModel> - the XML namespace identifier for IRIS registries.

   This document defines no extension identifiers and no authentication
   mechanism identifiers.

   Servers SHOULD send version information in the following cases:

   1.  In response to a version information request (i.e. the PT flag is
       set to 'vi').

   2.  The version in a payload descriptor header does not match a
       version the server supports.

   3.  The IRIS-based XML payload does not match a version the server
       supports.

   The protocols identified by the <transferProtocol> element MUST only
   indicate protocols running on the same socket as the sender of the
   corresponding request.  In other words, while a server operator may
   also be running IRIS-XPC, this XML instance is only intended to
   describe version negotiation for IRIS-LWZ.

   The definition of octet size for the 'requestSizeOctets' and
   'responseSizeOctets' attributes of the <tranferProtocol> element are



Newton                  Expires November 26, 2006               [Page 8]


Internet-Draft                  iris-lwz                        May 2006


   defined in Section 3.1.6.

3.1.6.  Size Information

   A payload type with size information ('si') MUST be comformant to the
   XML defined in [7] and use the <size> element as the root element.

   Octet counts provided by this information are defined as the total
   length of the UDP packet (i.e.  UDP header length + payload
   descriptor length + XML payload length).

3.1.7.  Other Information

   A payload type with other information ('oi') MUST be comformant to
   the XML defined in [7] and use the <other> element as the root
   element.

   The values for the 'type' attribute of <other> are as follows:

      'descriptor-error' - indicates there was an error decoding the
      descriptor.  Servers SHOULD send a descriptor error in the
      following cases:

      1.  When a request is received with a payload type indicating size
          information (i.e. the PT flag is 'si').

      2.  When a request is received with a payload type indicating
          other information (i.e. the PT flag is 'oi').

      3.  When a request is sent with a transaction ID of 0xFFFF (which
          is reserved for server use).

      4.  When a request is received with an incomplete or truncated
          payload descriptor.

      5.  When reserved bits in the payload descriptor are set to values
          other than zero.

      'payload-error' - indicates there was an error interpretting the
      payload.  Servers MUST send a payload error if they receive XML
      (i.e. the PT flag is set to 'xml') and the XML cannot be parsed.

      'system-error' - indicates that the receiver cannot process the
      request due to a condition not related to this protocol.  Servers
      SHOULD send a system-error when they are capable of responding to
      requests but not capable of processing requests.





Newton                  Expires November 26, 2006               [Page 9]


Internet-Draft                  iris-lwz                        May 2006


      'authority-error' - indicates that the intended authority
      specified in the corresponding request is not served by the
      receiver.  Servers SHOULD send an authority error when they
      receive a request directed to an authority other than those they
      serve.

      'no-inflation-support-error' - indicates that the receiver does
      not support payloads that have been compressed with DEFLATE [1].
      Servers MUST send this error when they receive a request that has
      been compressed with DEFLATE but they do not support inflation.









































Newton                  Expires November 26, 2006              [Page 10]


Internet-Draft                  iris-lwz                        May 2006


4.  Interactions

   The intent of IRIS-LWZ is to utilize UDP for IRIS requests and
   responses when UDP is appropriate.  Not all IRIS requests and
   responses will be able to utilize UDP and may require the use of
   other transfer protocols (i.e.  IRIS-XPC and/or BEEP).  The following
   strategy SHOULD be used:

   1.  If a request requires authentication, confidentiality, or other
       security, use another transfer protocol.

   2.  If a request is less than or equal to 4000 octets, send it
       uncompressed.

   3.  If a request can be compressed to a size less than or equal to
       4000 octets, send the request using compression.  Otherwise use
       another transfer protocol.

   4.  If a request yields a size error, send the request with another
       transfer protocol.































Newton                  Expires November 26, 2006              [Page 11]


Internet-Draft                  iris-lwz                        May 2006


5.  Internationalization Considerations

   XML processors are obliged to recognize both UTF-8 and UTF-16 [2]
   encodings.  Use of the XML defined by [7] MUST NOT use any other
   character encodings other than UTF-8 or UTF-16.














































Newton                  Expires November 26, 2006              [Page 12]


Internet-Draft                  iris-lwz                        May 2006


6.  IRIS Transport Mapping Definitions

   This section lists the definitions required by IRIS [3] for transport
   mappings.

6.1.  URI Scheme

   See Section 7.1.1.

6.2.  Application Protocol Label

   See Section 7.1.3.







































Newton                  Expires November 26, 2006              [Page 13]


Internet-Draft                  iris-lwz                        May 2006


7.  IANA Considerations

7.1.  Registrations

7.1.1.  URI Scheme Registration

   URL scheme name: iris.lwz

   URL scheme syntax: defined in Section 6.1 and [3].

   Character encoding considerations: as defined in RFC2396 [5].

   Intended usage: identifies an IRIS entity made available using XML
   over UDP

   Applications using this scheme: defined in IRIS [3].

   Interoperability considerations: n/a

   Security Considerations: defined in Section 8.

   Relevant Publications: IRIS [3].

   Contact Information: Andrew Newton <andy@hxr.us>

   Author/Change controller: the IESG

7.1.2.  Well-known UDP Port Registration

   Protocol Number: UDP

   UDP Port Number: TBD by IANA

   Message Formats, Types, Opcodes, and Sequences: defined in Section 3
   and Section 3.1.

   Functions: defined in IRIS [3].

   Use of Broadcast/Multicast: none

   Proposed Name: IRIS-LWZ

   Short name: iris.lwz

   Contact Information: Andrew Newton <andy@hxr.us>






Newton                  Expires November 26, 2006              [Page 14]


Internet-Draft                  iris-lwz                        May 2006


7.1.3.  S-NAPTR Registration

   Application Protocol Label (see [4]): iris.lwz

   Intended usage: identifies an IRIS server using XML over UDP

   Interoperability considerations: n/a

   Security Considerations: defined in Section 8.

   Relevant Publications: IRIS [3].

   Contact Information: Andrew Newton <andy@hxr.us>

   Author/Change controller: the IESG




































Newton                  Expires November 26, 2006              [Page 15]


Internet-Draft                  iris-lwz                        May 2006


8.  Security Considerations

   IRIS-LWZ is intended for serving public data; it provides no in-band
   mechanisms for authentication or encryption.  Any application with
   this need must provide out of band mechanisms to provide it (e.g.,
   IPSec), or use the IRIS transfer protocols that provides such
   capabilities.

   Because IRIS-LWZ is a UDP based protocol, it is possible for servers
   using IRIS-LWZ to be used in a type of distributed denial of service
   attack known as a reflection attack.  This type of attack affects
   other types of UDP using protocols, such as DNS.  Server operators
   should be prepared to apply the same methods used for mitigating
   reflection attacks with other protocols, such as DNS, when using
   IRIS-LWZ.

9.  Normative References

   [1]  Deutsch, P., "DEFLATE Compressed Data Format Specification
        version 1.3", RFC 1951, May 1996.

   [2]  The Unicode Consortium, "The Unicode Standard, Version 3",
        ISBN 0-201-61633-5, 2000, <The Unicode Standard, Version 3>.

   [3]  Newton, A. and M. Sanz, "Internet Registry Information Service",
        RFC 3891, January 2004.

   [4]  Daigle, L. and A. Newton, "Domain-Based Application Service
        Location Using SRV RRs and the Dynamic Delegation Discovery
        Service (DDDS)", RFC 3958, January 2005.

   [5]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
        Resource Identifiers (URI): Generic Syntax", RFC 2396,
        August 1998.

   [6]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", RFC 2119, BCP 14, March 1997.

   [7]  Newton, A., "A Common Schema for Internet Registry Information
        Service Transfer Protocols",
        draft-ietf-crips-iris-common-transport-00 (work in progress),
        April 2005.

   [8]  Kirkpatrick, S., Stahl, M., and M. Recker, "Internet numbers",
        RFC 1166, July 1990.






Newton                  Expires November 26, 2006              [Page 16]


Internet-Draft                  iris-lwz                        May 2006


Appendix A.  Examples

   This section gives examples of IRIS-LWZ exchanges.  Lines beginning
   with "C:" denote data sent by the client to the server, and lines
   beginning with "S:" denote data sent by the server to the client.
   Following the "C:" or "S:", the line either contains octet values in
   hexadecimal notation with comments or XML fragments.  No line
   contains both octet values with comments and XML fragments.  Comments
   are contained within parenthesis.

   The following example demonstrates an IRIS client requesting a lookup
   of 'AUP' in the 'local' entity class of a 'dreg1' registry.  The
   client passes a bag with the search request.  The server responds
   with a 'nameNotFound' response and an explanation.





































Newton                  Expires November 26, 2006              [Page 17]


Internet-Draft                  iris-lwz                        May 2006


   C:           (request packet)
   C: 0x08      (header: V=0,RR=request,PD=no,DS=yes,PT=xml)
   C: 0x03 0xA4 (transaction ID=932)
   C: 0x05 0xDA (maximum response size=1498)
   C: 0x09      (authority length=9)
   C:           (authority="localhost")
   C: 0x6c 0x6f 0x63 0x61 0x6c 0x68 0x6f 0x73 0x74
   C:           (IRIS XML request)
   C: <request xmlns="urn:ietf:params:xml:ns:iris1"
   C:    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
   C:    <searchSet>
   C:      <bag>
   C:        <simpleBag xmlns="http://example.com/">
   C:          <salt>127.0.0.1:3434</salt>
   C:          <md5>4LnQ1KdCahzyvwBqJis5rw==</md5>
   C:        </simpleBag>
   C:      </bag>
   C:      <lookupEntity
   C:        registryType="dreg1"
   C:        entityClass="local"
   C:        entityName="AUP" />
   C:    </searchSet>
   C: </request>

   S:           (response packet)
   S: 0x20      (header: V=0,RR=response,PD=no,DS=no,PT=xml)
   S: 0x03 0xA4 (transaction ID=932)
   S:           (IRIS XML response)
   S: <iris:response xmlns:iris="urn:ietf:params:xml:ns:iris1">
   S: <iris:resultSet><iris:answer></iris:answer>
   S: <iris:nameNotFound><iris:explanation language="en-US">
   S: The name 'AUP' is not found in 'local'.</iris:explanation>
   S: </iris:nameNotFound></iris:resultSet></iris:response>

   Figure 4: Example 1

   The following example demonstrates an IRIS client requesting domain
   availability information for 'milo.example.com'.  The server responds
   that the domain is assigned and active.












Newton                  Expires November 26, 2006              [Page 18]


Internet-Draft                  iris-lwz                        May 2006


   C:           (request packet)
   C: 0x00      (header: V=0,RR=request,PD=no,DS=no,PT=xml)
   C: 0x0B 0xE7 (transaction ID=3047)
   C: 0x0F 0xA0 (maximum response size=4000)
   C: 0x0B      (authority length=11)
   C:           (authority="example.com")
   C: 0x65 0x78 0x61 0x6D 0x70 0x6C 0x65 0x23 0x63 0x6F 0x6D
   C:           (IRIS XML request)
   C: <request xmlns="urn:ietf:params:xml:ns:iris1"
   C:   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   C:   xsi:schemaLocation="urn:ietf:params:xml:ns:iris1 iris.xsd" >
   C:   <searchSet>
   C:     <lookupEntity
   C:       registryType="urn:ietf:params:xml:ns:dchk1"
   C:       entityClass="domain-name"
   C:       entityName="milo.example.com" />
   C:   </searchSet>
   C: </request>

   S:           (response packet)
   S: 0x20      (header: V=0,RR=response,PD=no,DS=no,PT=xml)
   S: 0x0B 0xE7 (transaction ID=3047)
   S:           (IRIS XML response)
   S: <iris:response xmlns:iris="urn:ietf:params:xml:ns:iris1">
   S: <iris:resultSet><iris:answer><domain
   S: authority="example.com" registryType="dchk1"
   S: entityClass="domain-name" entityName="tcs-com-1"
   S: temporaryReference="true"
   S: xmlns="urn:ietf:params:xml:ns:dchk1"><domainName>
   S: milo.example.com</domainName><status><assignedAndActive/>
   S: </status></domain></iris:answer>
   S: </iris:resultSet></iris:response>

   Figure 5: Example 2

   The following example demonstrates an IRIS client requesting domain
   availability information for felix.example.net, hobbes.example.net,
   and daffy.example.net.  The client does not support responses
   compressed with DEFLATE and the maximum UDP packet it can safely
   receive is 498 octets.  The server responds with size information
   indicating that it would take 1211 octets to provide an answer.










Newton                  Expires November 26, 2006              [Page 19]


Internet-Draft                  iris-lwz                        May 2006


   C:           (request packet)
   C: 0x00      (header: V=0,RR=request,PD=no,DS=no,PT=xml)
   C: 0x7E 0x8A (transaction ID=32394)
   C: 0x01 0xF2 (maximum response size=498)
   C: 0x0B      (authority length=11)
   C:           (authority="example.net")
   C: 0x65 0x78 0x61 0x6D 0x70 0x6C 0x65 0x23 0x6E 0x65 0x74
   C:           (IRIS XML request)
   C: <request xmlns="urn:ietf:params:xml:ns:iris1"
   C:   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   C:   xsi:schemaLocation="urn:ietf:params:xml:ns:iris1 iris1.xsd">
   C:   <searchSet>
   C:     <lookupEntity registryType="dchk1" entityClass="domain-name"
   C:       entityName="felix.example.net" />
   C:   </searchSet>
   C:   <searchSet>
   C:     <lookupEntity registryType="dchk1" entityClass="domain-name"
   C:       entityName="hobbes.example.net" />
   C:   </searchSet>
   C:   <searchSet>
   C:     <lookupEntity registryType="dchk1" entityClass="domain-name"
   C:       entityName="daffy.example.net" />
   C:   </searchSet>
   C: </request>

   S:           (response packet)
   S: 0x22      (header: V=0,RR=response,PD=no,DS=no,PT=si)
   S: 0x7E 0x8A (transaction ID=32394)
   S:           (Size Information XML response)
   S: <responseSize xmlns="urn:ietf:params:xml:ns:iris-transport">
   S:   <octets>1211</octets>
   S: </responseSize>

   Figure 6: Example 3

   The following example illustrates an IRIS client requesting the
   version information from a server, and the server returning the
   verion information.













Newton                  Expires November 26, 2006              [Page 20]


Internet-Draft                  iris-lwz                        May 2006


   C:           (request packet)
   C: 0x01      (header: V=0,RR=request,PD=no,DS=no,PT=vi)
   C: 0x2E 0x9C (transaction ID=11932)
   C: 0x01 0xF2 (maximum response size=498)
   C: 0x0B      (authority length=11)
   C:           (authority="example.net")
   C: 0x65 0x78 0x61 0x6D 0x70 0x6C 0x65 0x23 0x6E 0x65 0x74

   S:           (response packet)
   S: 0x21      (header: V=0,RR=response,PD=no,DS=no,PT=vi)
   S: 0x2E 0x9C (transaction ID=11932)
   S:           (Version Information XML response)
   S: <versions xmlns="urn:ietf:params:xml:ns:iris-transport">
   S:   <transferProtocol protocolId="iris.lwz1">
   S:     <application protocolId="urn:ietf:params:xml:ns:iris1">
   S:       <dataModel protocolId="urn:ietf:params:xml:ns:dchk1"/>
   S:       <dataModel protocolId="urn:ietf:params:xml:ns:dreg1"/>
   S:     </application>
   S:   </transferProtocol>
   S: </versions>

   Figure 7: Example 4





























Newton                  Expires November 26, 2006              [Page 21]


Internet-Draft                  iris-lwz                        May 2006


Appendix B.  Contributors

   Substantive contributions to this document have been provided by the
   members of the IETF's CRISP Working Group, especially Milena Caires
   and David Blacka.














































Newton                  Expires November 26, 2006              [Page 22]


Internet-Draft                  iris-lwz                        May 2006


Author's Address

   Andrew L. Newton
   VeriSign, Inc.
   21345 Ridgetop Circle
   Sterling, VA  20166
   USA

   Phone: +1 703 948 3382
   Email: andy@hxr.us
   URI:   http://www.verisignlabs.com/








































Newton                  Expires November 26, 2006              [Page 23]


Internet-Draft                  iris-lwz                        May 2006


Intellectual Property Statement

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.


Disclaimer of Validity

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.


Copyright Statement

   Copyright (C) The Internet Society (2006).  This document is subject
   to the rights, licenses and restrictions contained in BCP 78, and
   except as set forth therein, the authors retain all their rights.


Acknowledgment

   Funding for the RFC Editor function is currently provided by the
   Internet Society.




Newton                  Expires November 26, 2006              [Page 24]


Html markup produced by rfcmarkup 1.129b, available from https://tools.ietf.org/tools/rfcmarkup/