[Docs] [txt|pdf] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]

Versions: 00 01 02 03 04 05 06 07 08 09 10 11 12 RFC 4703

DHC Working Group                                               M. Stapp
Internet-Draft                                       Cisco Systems, Inc.
Expires: May 2, 2003                                    November 1, 2002


          Resolution of DNS Name Conflicts Among DHCP Clients
                <draft-ietf-dhc-ddns-resolution-05.txt>

Status of this Memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups. Note that
   other groups may also distribute working documents as
   Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six
   months and may be updated, replaced, or obsoleted by other documents
   at any time. It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on May 2, 2003.

Copyright Notice

   Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

   DHCP provides a powerful mechanism for IP host configuration.
   However, the configuration capability provided by DHCP does not
   include updating DNS(RFC1034[1], RFC1035[2]), and specifically
   updating the name to address and address to name mappings maintained
   in the DNS.

   The "Client FQDN Option"[3] specifies the client FQDN option,
   through which DHCP clients and servers can exchange information
   about client FQDNs.  This document describes techniques for the
   resolution of DNS name conflicts among DHCP clients.





Stapp                     Expires May 2, 2003                   [Page 1]


Internet-Draft        Resolution of Name Conflicts         November 2002


Table of Contents

   1.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  3
   2.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
   3.  Issues with DNS Update in DHCP Environments  . . . . . . . . .  3
   3.1 Client Mis-Configuration . . . . . . . . . . . . . . . . . . .  4
   3.2 Multiple DHCP Servers  . . . . . . . . . . . . . . . . . . . .  5
   4.  Use of the DHCID RR  . . . . . . . . . . . . . . . . . . . . .  5
   5.  DNS RR TTLs  . . . . . . . . . . . . . . . . . . . . . . . . .  6
   6.  Procedures for performing DNS updates  . . . . . . . . . . . .  6
   6.1 Adding A RRs to DNS  . . . . . . . . . . . . . . . . . . . . .  6
   6.2 Adding PTR RR Entries to DNS . . . . . . . . . . . . . . . . .  7
   6.3 Removing Entries from DNS  . . . . . . . . . . . . . . . . . .  7
   6.4 Updating Other RRs . . . . . . . . . . . . . . . . . . . . . .  8
   7.  Security Considerations  . . . . . . . . . . . . . . . . . . .  8
   8.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . .  9
       References . . . . . . . . . . . . . . . . . . . . . . . . . .  9
       Author's Address . . . . . . . . . . . . . . . . . . . . . . . 10
       Full Copyright Statement . . . . . . . . . . . . . . . . . . . 11
































Stapp                     Expires May 2, 2003                   [Page 2]


Internet-Draft        Resolution of Name Conflicts         November 2002


1. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119[4].

2. Introduction

   "The Client FQDN Option"[3] includes a description of the operation
   of DHCP[5] clients and servers that use the client FQDN option.
   Through the use of the client FQDN option, DHCP clients and servers
   can negotiate the client's FQDN and the allocation of responsibility
   for updating the DHCP client's A RR.  This document identifies
   situations in which conflicts in the use of FQDNs may arise among
   DHCP clients, and describes a strategy for the use of the DHCID DNS
   resource record[6] in resolving those conflicts.

   In any case, whether a site permits all, some, or no DHCP servers
   and clients to perform DNS updates into the zones that it controls
   is entirely a matter of local administrative policy. This document
   does not require any specific administrative policy, and does not
   propose one. The range of possible policies is very broad, from
   sites where only the DHCP servers have been given credentials that
   the DNS servers will accept, to sites where each individual DHCP
   client has been configured with credentials that allow the client to
   modify its own domain name. Compliant implementations MAY support
   some or all of these possibilities. Furthermore, this specification
   applies only to DHCP client and server processes: it does not apply
   to other processes that initiate DNS updates.

3. Issues with DNS Update in DHCP Environments

   There are two DNS update situations that require special
   consideration in DHCP environments: cases where more than one DHCP
   client has been configured with the same FQDN, and cases where more
   than one DHCP server has been given authority to perform DNS updates
   in a zone. In these cases, it is possible for DNS records to be
   modified in inconsistent ways unless the updaters have a mechanism
   that allows them to detect anomolous situations. If DNS updaters can
   detect these situations, site administrators can configure the
   updaters' behavior so that the site's policies can be enforced. We
   use the term "Name Conflict" to refer to cases where more than one
   DHCP client wishes to be associated with a single FQDN. This
   specification describes a mechanism designed to allow updaters to
   detect these situations, and suggests that DHCP implementations use
   this mechanism by default.





Stapp                     Expires May 2, 2003                   [Page 3]


Internet-Draft        Resolution of Name Conflicts         November 2002


3.1 Client Mis-Configuration

   At many (though not all) sites, administrators wish to maintain a
   one-to-one relationship between active DHCP clients and domain
   names, and to maintain consistency between a host's A and PTR RRs.
   Hosts that are not represented in the DNS, or hosts which
   inadvertently share an FQDN with another host may encounter
   inconsistent behavior or may not be able to obtain access to network
   resources. Whether each DHCP client is configured with a domain name
   by its administrator or whether the DHCP server is configured to
   distribute the clients' names, the consistency of the DNS data is
   entirely dependent on the accuracy of the configuration procedure.
   Sites that deploy Secure DNS[9] may configure credentials for each
   host and its assigned name in a way that is more error-resistant,
   but this level of pre-configuration is still rare in DHCP
   environments.

   Consider an example in which two DHCP clients in the "org.nil"
   network are both configured with the name "foo". The clients are
   permitted to perform their own DNS updates. The first client, client
   A, is configured via DHCP. It adds an A RR to "foo.org.nil", and its
   DHCP server adds a PTR RR corresponding to its IP address lease.
   When the second client, client B, boots, it is also configured via
   DHCP, and it also begins to update "foo.org.nil".

   At this point, the "org.nil" administrators may wish to establish
   some policy about DHCP clients' DNS names. If the policy is that
   each client that boots should replace any existing A RR that matches
   its name, Client B can proceed, though Client A may encounter
   problems. In this example, Client B replaces the A RR associated
   with "foo.org.nil". Client A must have some way to recognize that
   the RR associated with "foo.org.nil" now contains information for
   Client B, so that it can avoid modifying the RR. When Client A's
   lease expires, for example, it should not remove an RR that reflects
   Client B's DHCP lease.

   If the policy is that the first DHCP client with a given name should
   be the only client associated with that name, Client B needs to be
   able to determine that it is not the client associated with
   "foo.org.nil". It could be that Client A booted first, and that
   Client B should choose another name. Or it could be that B has
   booted on a new subnet, and received a new lease. It must either
   retain persistent state about the last lease it held (in addition to
   its current lease) or it must have some other way to detect that it
   was the last updater of "foo.org.nil" in order to implement the
   site's policy.





Stapp                     Expires May 2, 2003                   [Page 4]


Internet-Draft        Resolution of Name Conflicts         November 2002


3.2 Multiple DHCP Servers

   At many sites, the difficulties with distributing DNS update
   credentials to all of the DHCP clients lead to the desire for the
   DHCP servers to perform A RR updates on behalf of their clients. If
   a single DHCP server managed all of the DHCP clients at a site, it
   could maintain some database of the DNS names that it was managing,
   and check that database before initiating a DNS update for a client.
   Such a database is necessarily proprietary, however, and that
   approach does not work once more than one DHCP server is deployed.

   Consider an example in which DHCP Client A boots, obtains a DHCP
   lease from Server S1, presenting the hostname "foo" in a Client FQDN
   option[3] in its DHCPREQUEST message. Server S1 updates its domain
   name, "foo.org.nil", adding an A RR that matches Client A's lease.
   The client then moves to another subnet, served by Server S2. When
   Client A boots on the new subnet, Server S2 will issue it a new
   lease, and will attempt to add an A RR matching the new lease to
   "foo.org.nil". At this point, without some communication mechanism
   which S2 can use to ask S1 (and every other DHCP server that updates
   the zone) about the client, S2 has no way to know whether Client A
   is currently associated with the domain name, or whether A is a
   different client configured with the same hostname. If the servers
   cannot distinguish between these situations, they cannot enforce the
   site's naming policies.

4. Use of the DHCID RR

   A solution to both of these problems is for the updater (a DHCP
   client or DHCP server) to be able to determine which DHCP client has
   been associated with a DNS name, in order to offer administrators
   the opportunity to configure updater behavior.

   For this purpose, a DHCID RR, specified in [6], is used to associate
   client identification information with a DNS name and the A or PTR
   RR associated with that name. When either a client or server adds an
   A or PTR RR for a client, it also adds a DHCID RR that specifies a
   unique client identity, based on data from the client's DHCPREQUEST
   message. In this model, only one A RR is associated with a given DNS
   name at a time.

   By associating this ownership information with each DNS name,
   cooperating DNS updaters may determine whether their client is
   currently associated with a particular DNS name and implement the
   appropriately configured administrative policy. In addition, DHCP
   clients which currently have domain names may move from one DHCP
   server to another without losing their DNS names.

   The specific algorithms utilizing the DHCID RR to signal client


Stapp                     Expires May 2, 2003                   [Page 5]


Internet-Draft        Resolution of Name Conflicts         November 2002


   ownership are explained below.  The algorithms only work in the case
   where the updating entities all cooperate -- this approach is
   advisory only and is not a substitute for DNS security, nor is it
   replaced by DNS security.

5. DNS RR TTLs

   RRs associated with DHCP clients may be more volatile than
   statically configured RRs. DHCP clients and servers that perform
   dynamic updates should attempt to specify resource record TTLs which
   reflect this volatility, in order to minimize the possibility that
   there will be stale records in resolvers' caches.

   A reasonable basis for RR TTLs is the lease duration itself. The RR
   TTL on a DNS record added for with a DHCP lease SHOULD NOT exceed
   1/3 of the lease time, and SHOULD be at least 10 minutes. We
   recognize that individual administrators will have varying
   requirements: DHCP servers and clients SHOULD allow administrators
   to configure TTLs, either as an absolute time interval or as a
   percentage of the lease time. In general, the TTLs or RRs added as a
   result of DHCP lease activity SHOULD be less than the initial lease
   time.

6. Procedures for performing DNS updates

6.1 Adding A RRs to DNS

   When a DHCP client or server intends to update an A RR, it first
   prepares a DNS UPDATE query that includes as a prerequisite the
   assertion that the name does not exist.  The update section of the
   query attempts to add the new name and its IP address mapping (an A
   RR), and the DHCID RR with its unique client-identity.

   If this update operation succeeds, the updater can conclude that it
   has added a new name whose only RRs are the A and DHCID RR records.
   The A RR update is now complete (and a client updater is finished,
   while a server might proceed to perform a PTR RR update).

   If the first update operation fails with YXDOMAIN, the updater can
   conclude that the intended name is in use.  The updater then
   attempts to confirm that the DNS name is not being used by some
   other host. The updater prepares a second UPDATE query in which the
   prerequisite is that the desired name has attached to it a DHCID RR
   whose contents match the client identity.  The update section of
   this query deletes the existing A records on the name, and adds the
   A record that matches the DHCP binding and the DHCID RR with the
   client identity.

   If this query succeeds, the updater can conclude that the current


Stapp                     Expires May 2, 2003                   [Page 6]


Internet-Draft        Resolution of Name Conflicts         November 2002


   client was the last client associated with the domain name, and that
   the name now contains the updated A RR. The A RR update is now
   complete (and a client updater is finished, while a server would
   then proceed to perform a PTR RR update).

   If the second query fails with NXRRSET, the updater must conclude
   that the client's desired name is in use by another host.  At this
   juncture, the updater can decide (based on some administrative
   configuration outside of the scope of this document) whether to let
   the existing owner of the name keep that name, and to (possibly)
   perform some name disambiguation operation on behalf of the current
   client, or to replace the RRs on the name with RRs that represent
   the current client. If the configured policy allows replacement of
   existing records, the updater submits a query that deletes the
   existing A RR and the existing DHCID RR, adding A and DHCID RRs that
   represent the IP address and client-identity of the new client.


      DISCUSSION:
      The updating entity may be configured to allow the existing DNS
      records on the domain name to remain unchanged, and to perform
      disambiguation on the name of the current client in order to
      attempt to generate a similar but unique name for the current
      client. In this case, once another candidate name has been
      generated, the updater should restart the process of adding an A
      RR as specified in this section.

6.2 Adding PTR RR Entries to DNS

   The DHCP server submits a DNS query that deletes all of the PTR RRs
   associated with the lease IP address, and adds a PTR RR whose data
   is the client's (possibly disambiguated) host name. The server MAY
   also add a DHCID RR as specified in Section 4.

6.3 Removing Entries from DNS

   The most important consideration in removing DNS entries is be sure
   that an entity removing a DNS entry is only removing an entry that
   it added, or for which an administrator has explicitly assigned it
   responsibility.

   When a lease expires or a DHCP client issues a DHCPRELEASE request,
   the DHCP server SHOULD delete the PTR RR that matches the DHCP
   binding, if one was successfully added. The server's update query
   SHOULD assert that the name in the PTR record matches the name of
   the client whose lease has expired or been released.

   The entity chosen to handle the A record for this client (either the
   client or the server) SHOULD delete the A record that was added when


Stapp                     Expires May 2, 2003                   [Page 7]


Internet-Draft        Resolution of Name Conflicts         November 2002


   the lease was made to the client.

   In order to perform this delete, the updater prepares an UPDATE
   query that contains two prerequisites.  The first prerequisite
   asserts that the DHCID RR exists whose data is the client identity
   described in Section 4. The second prerequisite asserts that the
   data in the A RR contains the IP address of the lease that has
   expired or been released.

   If the query fails, the updater MUST NOT delete the DNS name.  It
   may be that the client whose lease on has expired has moved to
   another network and obtained a lease from a different server, which
   has caused the client's A RR to be replaced. It may also be that
   some other client has been configured with a name that matches the
   name of the DHCP client, and the policy was that the last client to
   specify the name would get the name. In these cases, the DHCID RR
   will no longer match the updater's notion of the client-identity of
   the host pointed to by the DNS name.

6.4 Updating Other RRs

   The procedures described in this document only cover updates to the
   A and PTR RRs. Updating other types of RRs is outside the scope of
   this document.

7. Security Considerations

   Unauthenticated updates to the DNS can lead to tremendous confusion,
   through malicious attack or through inadvertent misconfiguration.
   Administrators should be wary of permitting unsecured DNS updates to
   zones that are exposed to the global Internet. Both DHCP clients and
   servers SHOULD use some form of update request authentication (e.g.,
   TSIG[12]) when performing DNS updates.

   Whether a DHCP client may be responsible for updating an FQDN to IP
   address mapping, or whether this is the responsibility of the DHCP
   server is a site-local matter. The choice between the two
   alternatives may be based on the security model that is used with
   the Dynamic DNS Update protocol (e.g., only a client may have
   sufficient credentials to perform updates to the FQDN to IP address
   mapping for its FQDN).

   Whether a DHCP server is always responsible for updating the FQDN to
   IP address mapping (in addition to updating the IP to FQDN mapping),
   regardless of the wishes of an individual DHCP client, is also a
   site-local matter. The choice between the two alternatives may be
   based on the security model that is being used with dynamic DNS
   updates. In cases where a DHCP server is performing DNS updates on
   behalf of a client, the DHCP server should be sure of the DNS name


Stapp                     Expires May 2, 2003                   [Page 8]


Internet-Draft        Resolution of Name Conflicts         November 2002


   to use for the client, and of the identity of the client.

   Currently, it is difficult for DHCP servers to develop much
   confidence in the identities of their clients, given the absence of
   entity authentication from the DHCP protocol itself. There are many
   ways for a DHCP server to develop a DNS name to use for a client,
   but only in certain relatively rare circumstances will the DHCP
   server know for certain the identity of the client. If DHCP
   Authentication[13] becomes widely deployed this may become more
   customary.

   One example of a situation that offers some extra assurances is one
   where the DHCP client is connected to a network through an MCNS
   cable modem, and the CMTS (head-end) of the cable modem ensures that
   MAC address spoofing simply does not occur. Another example of a
   configuration that might be trusted is one where clients obtain
   network access via a network access server using PPP. The NAS itself
   might be obtaining IP addresses via DHCP, encoding a client
   identification into the DHCP client-id option.  In this case, the
   network access server as well as the DHCP server might be operating
   within a trusted environment, in which case the DHCP server could be
   configured to trust that the user authentication and authorization
   processing of the remote access server was sufficient, and would
   therefore trust the client identification encoded within the DHCP
   client-id.

8. Acknowledgements

   Many thanks to Mark Beyer, Jim Bound, Ralph Droms, Robert Elz, Peter
   Ford, Olafur Gudmundsson, Edie Gunter, Andreas Gustafsson, R. Barr
   Hibbs, Kim Kinnear, Stuart Kwan, Ted Lemon, Ed Lewis, Michael Lewis,
   Josh Littlefield, Michael Patton, Glenn Stump, and Bernie Volz for
   their review and comments.

References

   [1]   Mockapetris, P., "Domain names - Concepts and Facilities", RFC
         1034, Nov 1987.

   [2]   Mockapetris, P., "Domain names - Implementation and
         Specification", RFC 1035, Nov 1987.

   [3]   Stapp, M. and Y. Rekhter, "The DHCP Client FQDN Option
         (draft-ietf-dhc-fqdn-option-*.txt)", March 2001.

   [4]   Bradner, S., "Key words for use in RFCs to Indicate
         Requirement Levels", RFC 2119, March 1997.

   [5]   Droms, R., "Dynamic Host Configuration Protocol", RFC 2131,


Stapp                     Expires May 2, 2003                   [Page 9]


Internet-Draft        Resolution of Name Conflicts         November 2002


         March 1997.

   [6]   Stapp, M., Gustafsson, A. and T. Lemon, "A DNS RR for Encoding
         DHCP Information (draft-ietf-dnsext-dhcid-rr-*)", March 2001.

   [7]   Marine, A., Reynolds, J. and G. Malkin, "FYI on Questions and
         Answers to Commonly asked ``New Internet User'' Questions",
         RFC 1594, March 1994.

   [8]   Vixie, P., Thomson, S., Rekhter, Y. and J. Bound, "Dynamic
         Updates in the Domain Name System", RFC 2136, April 1997.

   [9]   Eastlake, D., "Domain Name System Security Extensions", RFC
         2535, March 1999.

   [10]  Wellington, B., "Secure Domain Name System (DNS) Dynamic
         Update", RFC 3007, November 2000.

   [11]  Rivest, R., "The MD5 Message Digest Algorithm", RFC 1321,
         April 1992.

   [12]  Vixie, P., Gudmundsson, O., Eastlake, D. and B. Wellington,
         "Secret Key Transaction Authentication for DNS (TSIG)", RFC
         2845, May 2000.

   [13]  Droms, R. and W. Arbaugh, "Authentication for DHCP Messages",
         RFC 3118, June 2001.


Author's Address

   Mark Stapp
   Cisco Systems, Inc.
   250 Apollo Dr.
   Chelmsford, MA  01824
   USA

   Phone: 978.244.8498
   EMail: mjs@cisco.com












Stapp                     Expires May 2, 2003                  [Page 10]


Internet-Draft        Resolution of Name Conflicts         November 2002


Full Copyright Statement

   Copyright (C) The Internet Society (2002). All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph
   are included on all such copies and derivative works. However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC editor function is currently provided by the
   Internet Society.



















Stapp                     Expires May 2, 2003                  [Page 11]


Html markup produced by rfcmarkup 1.129b, available from https://tools.ietf.org/tools/rfcmarkup/