[Docs] [txt|pdf|xml|html] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]
Versions: (draft-korhonen-dime-qos-parameters)
00 01 02 03 04 05 06 07 08 09 10 11
RFC 5624
Diameter Maintenance and J. Korhonen, Ed.
Extensions (DIME) TeliaSonera
Internet-Draft H. Tschofenig
Intended status: Standards Track Nokia Siemens Networks
Expires: May 5, 2009 November 1, 2008
Quality of Service Parameters for Usage with the AAA Framework
draft-ietf-dime-qos-parameters-07.txt
Status of this Memo
By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware
have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
This Internet-Draft will expire on May 5, 2009.
Abstract
This document defines a number of Quality of Service (QoS) parameters
that can be reused for conveying QoS information within RADIUS and
Diameter.
The payloads used to carry these QoS parameters are opaque for the
AAA client and the AAA server itself and interpreted by the
respective Resource Management Function.
Korhonen & Tschofenig Expires May 5, 2009 [Page 1]
Internet-Draft QoS Parameters November 2008
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Terminology and Abbreviations . . . . . . . . . . . . . . . . 3
3. Parameter Overview . . . . . . . . . . . . . . . . . . . . . . 3
3.1. Traffic Model Parameter . . . . . . . . . . . . . . . . . 3
3.2. Constraints Parameters . . . . . . . . . . . . . . . . . . 3
3.3. Traffic Handling Directives . . . . . . . . . . . . . . . 5
3.4. Traffic Classifiers . . . . . . . . . . . . . . . . . . . 5
4. Parameter Encoding . . . . . . . . . . . . . . . . . . . . . . 5
4.1. Parameter Header . . . . . . . . . . . . . . . . . . . . . 5
4.2. TMOD-1 Parameter . . . . . . . . . . . . . . . . . . . . . 5
4.3. TMOD-2 Parameter . . . . . . . . . . . . . . . . . . . . . 6
4.4. Path Latency Parameter . . . . . . . . . . . . . . . . . . 7
4.5. Path Jitter Parameter . . . . . . . . . . . . . . . . . . 7
4.6. Path PLR Parameter . . . . . . . . . . . . . . . . . . . . 8
4.7. Path PER Parameter . . . . . . . . . . . . . . . . . . . . 8
4.8. Slack Term Parameter . . . . . . . . . . . . . . . . . . . 8
4.9. Preemption Priority amp; Defending Priority Parameters . . 9
4.10. Admission Priority Parameter . . . . . . . . . . . . . . . 9
4.11. Application-Level Resource Priority (ALRP) Parameter . . . 10
4.12. Excess Treatment Parameter . . . . . . . . . . . . . . . . 11
4.13. PHB Class Parameter . . . . . . . . . . . . . . . . . . . 12
4.13.1. Case 1: Single PHB . . . . . . . . . . . . . . . . . 12
4.13.2. Case 2: Set of PHBs . . . . . . . . . . . . . . . . . 12
4.13.3. Case 3: Experimental or Local Use PHBs . . . . . . . 13
4.14. DSTE Class Type Parameter . . . . . . . . . . . . . . . . 13
4.15. Y.1541 QoS Class Parameter . . . . . . . . . . . . . . . . 14
5. Extensibility . . . . . . . . . . . . . . . . . . . . . . . . 14
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 15
6.1. QoS Profile . . . . . . . . . . . . . . . . . . . . . . . 15
6.2. Parameter ID . . . . . . . . . . . . . . . . . . . . . . . 15
6.3. Excess Treatment Parameter . . . . . . . . . . . . . . . . 16
7. Security Considerations . . . . . . . . . . . . . . . . . . . 17
8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 17
9. References . . . . . . . . . . . . . . . . . . . . . . . . . . 17
9.1. Normative References . . . . . . . . . . . . . . . . . . . 17
9.2. Informative References . . . . . . . . . . . . . . . . . . 18
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 19
Intellectual Property and Copyright Statements . . . . . . . . . . 20
Korhonen & Tschofenig Expires May 5, 2009 [Page 2]
Internet-Draft QoS Parameters November 2008
1. Introduction
This document defines a number of Quality of Service (QoS) parameters
that can be reused for conveying QoS information within RADIUS and
Diameter.
The payloads used to carry these QoS parameters are opaque for the
AAA client and the AAA server itself and interpreted by the
respective Resource Management Function.
2. Terminology and Abbreviations
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC2119 [RFC2119].
3. Parameter Overview
3.1. Traffic Model Parameter
The Traffic Model (TMOD) parameter is a container consisting of four
sub-parameters:
o rate (r)
o bucket size (b)
o peak rate (p)
o minimum policed unit (m)
All four sub-parameters MUST be included in the TMOD parameter. The
TMOD parameter is a mathematically complete way to describe the
traffic source. If, for example, TMOD is set to specify bandwidth
only, then set r = peak rate = p, b = large, m = large. As another
example if TMOD is set for TCP traffic, then set r = average rate, b
= large, p = large.
3.2. Constraints Parameters
<Path Latency>, <Path Jitter>, <Path PLR>, and <Path PER> are QoS
parameters describing the desired path latency, path jitter and path
error rate respectively.
The <Path Latency> parameter refers to the accumulated latency of the
packet forwarding process associated with each QoS aware node along
the path, where the latency is defined to be the mean packet delay
added by each such node. This delay results from speed-of-light
propagation delay, from packet processing limitations, or both. The
mean delay reflects the variable queuing delay that may be present.
Korhonen & Tschofenig Expires May 5, 2009 [Page 3]
Internet-Draft QoS Parameters November 2008
The purpose of this parameter is to provide a minimum path latency
for use with services which provide estimates or bounds on additional
path delay [RFC2212].
The procedures for collecting path latency information are outside
the scope of this document.
The <Path Jitter> parameter refers to the accumulated jitter of the
packet forwarding process associated with each QoS aware node along
the path, where the jitter is defined to be the nominal jitter added
by each such node. IP packet jitter, or delay variation, is defined
in Section 3.4 of RFC 3393 [RFC3393], (Type-P-One-way-ipdv), and
where the selection function includes the packet with minimum delay
such that the distribution is equivalent to 2-point delay variation
in [Y.1540]. The suggested evaluation interval is 1 minute. This
jitter results from packet processing limitations, and includes any
variable queuing delay which may be present. The purpose of this
parameter is to provide a nominal path jitter for use with services
that provide estimates or bounds on additional path delay [RFC2212].
The procedures for collecting path jitter information are outside the
scope of this document.
The <Path PLR> parameter refers to the accumulated packet loss rate
(PLR) of the packet forwarding process associated with each QoS aware
node along the path where the path PLR is defined to be the PLR added
by each such node.
The <Path PER> parameter refers to the accumulated packet error rate
(PER) of the packet forwarding process associated with each QoS aware
node, where the path PER is defined to be the PER added by each such
node.
The <Slack Term> parameter refers to the difference between desired
delay and delay obtained by using bandwidth reservation, and which is
used to reduce the resource reservation for a flow [RFC2212].
The <Preemption Priority> parameter refers to the priority of the new
flow compared with the <Defending Priority> of previously admitted
flows. Once a flow is admitted, the preemption priority becomes
irrelevant. The <Defending Priority> parameter is used to compare
with the preemption priority of new flows. For any specific flow,
its preemption priority MUST always be less than or equal to the
defending priority. <Admission Priority> and <RPH Priority> provide
an essential way to differentiate flows for emergency services, ETS,
E911, etc., and assign them a higher admission priority than normal
priority flows and best-effort priority flows.
Korhonen & Tschofenig Expires May 5, 2009 [Page 4]
Internet-Draft QoS Parameters November 2008
3.3. Traffic Handling Directives
The <Excess Treatment> parameter describes how a QoS aware node will
process excess traffic, that is, out-of-profile traffic. Dopping,
shaping or remarking are possible actions.
3.4. Traffic Classifiers
Resource reservations might refer to a packet processing with a
particular DiffServ per-hop behavior (PHB) [RFC2475] or to a
particular QoS class, e.g., Y.1541 QoS class or DiffServ-aware MPLS
traffic engineering (DSTE) class type [RFC3564], [RFC4124].
4. Parameter Encoding
4.1. Parameter Header
Each QoS parameter is encoded in TLV format.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| Parameter ID |r|r|r|r| Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M Flag: When set indicates the subsequent parameter MUST be
interpreted. If the M flag is set and the parameter is not
understood then it leads to an error. If the M flag is not
set and then not understood then it can be ignored.
The r bits are reserved.
Parameter ID: Assigned to each individual QoS parameter
Length: Indicates the length of the subsequent data in 32-bit words.
4.2. TMOD-1 Parameter
<TMOD-1> = <r> <b> <p> <m> [RFC2210] , [RFC2215]
The above notation means that the 4 <TMOD-1> sub-parameters must be
carried in the <TMOD-1> parameter. The coding for the <TMOD-1>
parameter is as follows:
Korhonen & Tschofenig Expires May 5, 2009 [Page 5]
Internet-Draft QoS Parameters November 2008
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 1 |r|r|r|r| 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TMOD Rate-1 [r] (32-bit IEEE floating point number) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TMOD Size-1 [b] (32-bit IEEE floating point number) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Peak Data Rate-1 [p] (32-bit IEEE floating point number) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Minimum Policed Unit-1 [m] (32-bit unsigned integer) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The <TMOD> parameters are represented by three floating point numbers
in single-precision IEEE floating point format followed by one 32-bit
integer in network byte order. The first floating point value is the
rate (r), the second floating point value is the bucket size (b), the
third floating point is the peak rate (p), and the first unsigned
integer is the minimum policed unit (m).
When r, b, and p terms are represented as IEEE floating point values,
the sign bit MUST be zero (all values MUST be non-negative).
Exponents less than 127 (i.e., 0) are prohibited. Exponents greater
than 162 (i.e., positive 35) are discouraged, except for specifying a
peak rate of infinity. Infinity is represented with an exponent of
all ones (255) and a sign bit and mantissa of all zeroes.
4.3. TMOD-2 Parameter
A description of the semantic of the parameter values can be found in
[RFC2215]. The <TMOD-2> parameter may be needed in a DiffServ
environment. The coding for the <TMOD-2> parameter is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 2 |r|r|r|r| 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TMOD Rate-2 [r] (32-bit IEEE floating point number) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TMOD Size-2 [b] (32-bit IEEE floating point number) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Peak Data Rate-2 [p] (32-bit IEEE floating point number) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Minimum Policed Unit-2 [m] (32-bit unsigned integer) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Korhonen & Tschofenig Expires May 5, 2009 [Page 6]
Internet-Draft QoS Parameters November 2008
When r, b, and p terms are represented as IEEE floating point values,
the sign bit MUST be zero (all values MUST be non-negative).
Exponents less than 127 (i.e., 0) are prohibited. Exponents greater
than 162 (i.e., positive 35) are discouraged, except for specifying a
peak rate of infinity. Infinity is represented with an exponent of
all ones (255) and a sign bit and mantissa of all zeroes.
4.4. Path Latency Parameter
A description of the semantic of the parameter values can be found in
[RFC2210],[RFC2215]. The coding for the <Path Latency> parameter is
as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 3 |r|r|r|r| 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Path Latency (32-bit integer) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Path Latency is a single 32-bit integer in network byte order.
The composition rule for the <Path Latency> parameter is summation
with a clamp of (2**32 - 1) on the maximum value. The latencies are
average values reported in units of one microsecond. A system with
resolution less than one microsecond MUST set unused digits to zero.
4.5. Path Jitter Parameter
The coding for the <Path Jitter> parameter is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 4 |r|r|r|r| 4 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Path Jitter STAT1(variance) (32-bit integer) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Path Jitter STAT2(99.9%-ile) (32-bit integer) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Path Jitter STAT3(minimum Latency) (32-bit integer) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Path Jitter STAT4(Reserved) (32-bit integer) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Korhonen & Tschofenig Expires May 5, 2009 [Page 7]
Internet-Draft QoS Parameters November 2008
The Path Jitter is a set of four 32-bit integers in network byte
order. The Path Jitter parameter is the combination of four
statistics describing the Jitter distribution with a clamp of (2**32
- 1) on the maximum of each value. The jitter STATs are reported in
units of one microsecond.
4.6. Path PLR Parameter
The coding for the <Path PLR> parameter is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 5 |r|r|r|r| 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Path Packet Loss Ratio (32-bit floating point) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Path PLR is a single 32-bit single precision IEEE floating point
number in network byte order. The PLRs are reported in units of
10^-11. A system with resolution less than one microsecond MUST set
unused digits to zero.
4.7. Path PER Parameter
The coding for the <Path PER> parameter is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 6 |r|r|r|r| 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Path Packet Error Ratio (32-bit floating point) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Path PER is a single 32-bit single precision IEEE floating point
number in network byte order. The PERs are reported in units of
10^-11. A system with resolution less than one microsecond MUST set
unused digits to zero.
4.8. Slack Term Parameter
A description of the semantic of the parameter values can be found in
[RFC2212], [RFC2215]. The coding for the <Slack Term> parameter is
as follows:
Korhonen & Tschofenig Expires May 5, 2009 [Page 8]
Internet-Draft QoS Parameters November 2008
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 7 |r|r|r|r| 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Slack Term [S] (32-bit integer) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Slack Term parameter S is a 32-bit integer value in network byte
order and is measured in microseconds. S is represented as a 32-bit
integer.
4.9. Preemption Priority amp; Defending Priority Parameters
A description of the semantic of the parameter values can be found in
[RFC3181].
The coding for the <Preemption Priority> & <Defending Priority> sub-
parameters is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 8 |r|r|r|r| 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Preemption Priority | Defending Priority |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Preemption Priority: The priority of the new flow compared with the
defending priority of previously admitted flows. Higher values
represent higher priority.
Defending Priority: Once a flow is admitted, the preemption priority
becomes irrelevant. Instead, its defending priority is used to
compare with the preemption priority of new flows.
As specified in [RFC3181], <Preemption Priority> & <Defending
Priority> are 16-bit integer values. They are represented in network
byte order.
4.10. Admission Priority Parameter
The coding for the <Admission Priority> parameter is as follows:
Korhonen & Tschofenig Expires May 5, 2009 [Page 9]
Internet-Draft QoS Parameters November 2008
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 9 |r|r|r|r| 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Admis.Priority| (Reserved) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The 'Admis.Priority' field is a 8 bit unsigned integer in network
byte order.
The admission control priority of the flow, in terms of access to
network bandwidth in order to provide higher probability of call
completion to selected flows. Higher values represent higher
priority. A given Admission Priority is encoded in this information
element using the same value as when encoded in the Admission
Priority parameter defined in Section 6.2.9 of [I-D.ietf-nsis-qspec],
or in the Admission Priority parameter defined in Section 3.1 of
[I-D.ietf-tsvwg-emergency-rsvp]. In other words, a given value
inside the Admission Priority information element defined in the
present document, inside the [I-D.ietf-nsis-qspec] Admission Priority
parameter or inside the [I-D.ietf-tsvwg-emergency-rsvp] Admission
Priority parameter, refers to the same Admission Priority.
4.11. Application-Level Resource Priority (ALRP) Parameter
A description of the semantic of the parameter values can be found in
[RFC4412] and in [I-D.ietf-tsvwg-emergency-rsvp]. The coding for
parameter is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 10 |r|r|r|r| 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ALRP Namespace | (Reserved) | ALRP Priority |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The ALRP Namespace field is a 16 bits long unsigned integer in
network byte order and the ALRP Priority field is an 8 bit long
unsigned integer in network byte order containing the specific
priority value.
[RFC4412] defines a resource priority header and established the
initial registry; the encoding of the values in that registry was
later extended by [I-D.ietf-tsvwg-emergency-rsvp].
Korhonen & Tschofenig Expires May 5, 2009 [Page 10]
Internet-Draft QoS Parameters November 2008
4.12. Excess Treatment Parameter
The coding for the <Excess Treatment> parameter is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 11 |r|r|r|r| 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Excess Trtmnt | Remark Value | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Excess Treatment (8 bit unsigned integer value in network byte
order): Indicates how the QoS aware node should process out-of-
profile traffic, that is, traffic not covered by the <Traffic>
parameter. Allowed values are as follows:
0: drop
1: shape
2: remark
3: no metering or policing is permitted
Further values can be registered as described in Section 6.3.
The default excess treatment in case that none is specified is that
there are no guarantees to excess traffic, i.e., a QoS aware node can
do what it finds suitable.
When excess treatment is set to 'drop', all marked traffic MUST be
dropped by a QoS aware node.
When excess treatment is set to 'shape', it is expected that the QoS
Desired object carries a TMOD parameter. Excess traffic is to be
shaped to this TMOD. When the shaping causes unbounded queue growth
at the shaper traffic can be dropped.
When excess treatment is set to 'remark', the excess treatment
parameter MUST carry the remark value. For example, packets may be
remarked to drop remarked to pertain to a particular QoS class. In
the latter case, remarking relates to a DiffServ-type model, where
packets arrive marked as belonging to a certain QoS class, and when
they are identified as excess, they should then be remarked to a
different QoS Class.
If 'no metering or policing is permitted' is signaled, the QoS aware
node should accept the excess treatment parameter set by the sender
Korhonen & Tschofenig Expires May 5, 2009 [Page 11]
Internet-Draft QoS Parameters November 2008
with special care so that excess traffic should not cause a problem.
To request the Null Meter [RFC3290] is especially strong, and should
be used with caution.
The Remark Value is an 8 bit unsigned integer value in network byte
order.
4.13. PHB Class Parameter
A description of the semantic of the parameter values can be found in
[RFC3140]. The registries needed for usage with [RFC3140] already
exist and hence no new registry needs to be created by this document.
The coding for the <PHB Class> parameter is as follows and three
different cases need to be differentiated. The header format is
shown in the subsequent figure below and is used by all three cases
defined in the subsequent sub-sections.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 12 |r|r|r|r| 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
4.13.1. Case 1: Single PHB
As prescribed in [RFC3140], the encoding for a single PHB is the
recommended DSCP value for that PHB, left-justified in the 16 bit
field, with bits 6 through 15 set to zero.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| DSCP |0 0 0 0 0 0 0 0 0 0| (Reserved) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
4.13.2. Case 2: Set of PHBs
The encoding for a set of PHBs is the numerically smallest of the set
of encodings for the various PHBs in the set, with bit 14 set to 1.
(Thus for the AF1x PHBs, the encoding is that of the AF11 PHB, with
bit 14 set to 1.)
Korhonen & Tschofenig Expires May 5, 2009 [Page 12]
Internet-Draft QoS Parameters November 2008
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| DSCP |0 0 0 0 0 0 0 0 1 0| (Reserved) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
4.13.3. Case 3: Experimental or Local Use PHBs
PHBs not defined by standards action, i.e., experimental or local use
PHBs as allowed by [RFC2474]. In this case an arbitrary 12 bit PHB
identification code, assigned by the IANA, is placed left-justified
in the 16 bit field. Bit 15 is set to 1, and bit 14 is zero for a
single PHB or 1 for a set of PHBs. Bits 12 and 13 are zero.
Bits 12 and 13 are reserved either for expansion of the PHB
identification code, or for other use, at some point in the future.
In both cases, when a single PHBID is used to identify a set of PHBs
(i.e., bit 14 is set to 1), that set of PHBs MUST constitute a PHB
Scheduling Class (i.e., use of PHBs from the set MUST NOT cause
intra-microflow traffic reordering when different PHBs from the set
are applied to traffic in the same microflow). The set of AF1x PHBs
[RFC2597] is an example of a PHB Scheduling Class. Sets of PHBs that
do not constitute a PHB Scheduling Class can be identified by using
more than one PHBID.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PHD ID CODE |0 0 1 0| (Reserved) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
4.14. DSTE Class Type Parameter
A description of the semantic of the parameter values can be found in
[RFC4124]. The coding for the <DSTE Class Type> parameter is as
follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 13 |r|r|r|r| 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|DSTE Cls. Type | (Reserved) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Korhonen & Tschofenig Expires May 5, 2009 [Page 13]
Internet-Draft QoS Parameters November 2008
DSTE Class Type: Indicates the DSTE class type. Values currently
allowed are 0, 1, 2, 3, 4, 5, 6, 7. A value of 255 (all 1's) means
that the <DSTE Class Type> parameter is not used.
4.15. Y.1541 QoS Class Parameter
A description of the semantic of the parameter values can be found in
[Y.1541]. The coding for the <Y.1541 QoS Class> parameter is as
follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 14 |r|r|r|r| 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Y.1541 QoS Cls.| (Reserved) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Y.1541 QoS Class: Indicates the Y.1541 QoS Class. Values currently
allowed are 0, 1, 2, 3, 4, 5, 6, 7. A value of 255 (all 1's) means
that the <Y.1541 QoS Class> parameter is not used.
5. Extensibility
This document is designed with extensibility in mind given that
different organizations and groups are used to define their own
Quality of Service parameters. This document provides an initial QoS
profile with common set of parameters. Ideally, these parameters
should be used whenever possible but there are cases where additional
parameters might be needed, or where the parameters specified in this
document are used with a different semantic. In this case it is
advisable to define a new QoS profile that may consist of new
parameters in addition to parameters defined in this document or an
entirely different set of parameters.
To enable the definition of new QoS profiles a 8 octet registry is
defined field that is represented by a 4-octet vendor and 4-octet
specifier field. The vendor field indicates the type as either
standards-specified or vendor-specific. If the four octets of the
vendor field are 0x00000000, then the value is standards-specified
and the registry is maintained by IANA as Enterprise Numbers defined
in [RFC2578], and any other value represents a vendor-specific Object
Identifier (OID). IANA created registry is split into two value
ranges; one range uses the "Standards Action" and the second range
uses "Specification Required" allocation policy. The latter range is
meant to be used by organizations outside the IETF.
Korhonen & Tschofenig Expires May 5, 2009 [Page 14]
Internet-Draft QoS Parameters November 2008
6. IANA Considerations
This section defines the registries and initial codepoint
assignments, in accordance with BCP 26 RFC 5226 [RFC5226]. It also
defines the procedural requirements to be followed by IANA in
allocating new codepoints.
IANA is requested to create the following registries listed in the
subsections below.
6.1. QoS Profile
The QoS Profile refers to a 64 bit long field that is represented by
a 4-octet vendor and 4-octet specifier field. The vendor field
indicates the type as either standards-specified or vendor-specific.
If the four octets of the vendor field are 0x00000000, then the value
is standards-specified and the registry is maintained by IANA, and
any other value represents a vendor-specific Object Identifier (OID).
The specifier field indicates the actual QoS profile. The vendor
field 0x00000000 is reserved to indicate that the values in the
specifier field are maintained by IANA. This document requests IANA
to create such a registry and to allocate the value zero (0) for the
QoS profile defined in this document.
For any other vendor field, the specifier field is maintained by the
vendor.
For the IANA maintained QoS profiles the following allocation policy
is defined:
1 to 511: Standards Action
512 to 4095: Specification Required
Standards action is required to depreciate, delete, or modify
existing QoS profile values in the range of 0-511 and a specification
is required to depreciate, delete, or modify existing QoS profile
values in the range of 512-4095.
6.2. Parameter ID
The Parameter ID refers to a 12 bit long field.
The following values are allocated by this specification.
Korhonen & Tschofenig Expires May 5, 2009 [Page 15]
Internet-Draft QoS Parameters November 2008
(0): <TMOD-1>
(1): <TMOD-2>
(2): <Path Latency>
(3): <Path Jitter>
(4): <Path PLR>
(5): <Path PER>
(6): <Slack Term>
(7): <Preemption Priority> & <Defending Priority>
(8): <Admission Priority>
(9): <ALRP>
(10): <Excess Treatment>
(11): <PHB Class>
(12): <DSTE Class Type>
(13): <Y.1541 QoS Class>
The allocation policies for further values are as follows:
14-127: Standards Action
128-255: Private/Experimental Use
255-4095: Specification Required
A standards track document is required to depreciate, delete, or
modify existing Parameter IDs.
6.3. Excess Treatment Parameter
The Excess Treatment parameter refers to an 8 bit long field.
The following values are allocated by this specification:
Excess Treatment Value 0: drop
Excess Treatment Value 1: shape
Excess Treatment Value 2: remark
Excess Treatment Value3: no metering or policing is permitted
Excess Treatment Values 4-63: Standards Action
Excess Treatment Value 64-255: Reserved
The 8 bit Remark Value allocation policies are as follows:
0-63: Specification Required
64-127: Private/Experimental Use
128-255: Reserved
The ALRP Namespace and ALRP Priority field inside the ALRP Parameter
take their values from the registry created by [RFC4412] and extended
with [I-D.ietf-tsvwg-emergency-rsvp] No additional actions are
required by IANA by this specification.
Korhonen & Tschofenig Expires May 5, 2009 [Page 16]
Internet-Draft QoS Parameters November 2008
7. Security Considerations
This document does not raise any security concerns as it only defines
QoS parameters.
8. Acknowledgements
The authors would like to thank the NSIS QSPEC [I-D.ietf-nsis-qspec]
authors (Cornelia Kappler, Jerry Ash, Attila Bader, Dave Oran), the
NSIS working group chairs (John Loughney and Martin Stiemerling) and
the former Transport Area Directors (Allison Mankin, Jon Peterson)
for their help.
We would like to thank Francois Le Faucheur, John Loughney, Martin
Stiemerling, Dave Oran, An Nguyen, Ken Carlberg, James Polk, Lars
Eggert, and Magnus Westerlund for their help with resolving problems
regarding the Admission Priority and the ALRP parameter.
We would like to thank Dan Romascanu for his detailed Area Director
review comments.
9. References
9.1. Normative References
[I-D.ietf-tsvwg-emergency-rsvp]
Faucheur, F., Polk, J., and K. Carlberg, "Resource
ReSerVation Protovol (RSVP) Extensions for Emergency
Services", draft-ietf-tsvwg-emergency-rsvp-09 (work in
progress), October 2008.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2210] Wroclawski, J., "The Use of RSVP with IETF Integrated
Services", RFC 2210, September 1997.
[RFC2212] Shenker, S., Partridge, C., and R. Guerin, "Specification
of Guaranteed Quality of Service", RFC 2212,
September 1997.
[RFC2215] Shenker, S. and J. Wroclawski, "General Characterization
Parameters for Integrated Service Network Elements",
RFC 2215, September 1997.
[RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
Korhonen & Tschofenig Expires May 5, 2009 [Page 17]
Internet-Draft QoS Parameters November 2008
"Definition of the Differentiated Services Field (DS
Field) in the IPv4 and IPv6 Headers", RFC 2474,
December 1998.
[RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
Schoenwaelder, Ed., "Structure of Management Information
Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.
[RFC2597] Heinanen, J., Baker, F., Weiss, W., and J. Wroclawski,
"Assured Forwarding PHB Group", RFC 2597, June 1999.
[RFC3140] Black, D., Brim, S., Carpenter, B., and F. Le Faucheur,
"Per Hop Behavior Identification Codes", RFC 3140,
June 2001.
[RFC3181] Herzog, S., "Signaled Preemption Priority Policy Element",
RFC 3181, October 2001.
[RFC3393] Demichelis, C. and P. Chimento, "IP Packet Delay Variation
Metric for IP Performance Metrics (IPPM)", RFC 3393,
November 2002.
[RFC4124] Le Faucheur, F., "Protocol Extensions for Support of
Diffserv-aware MPLS Traffic Engineering", RFC 4124,
June 2005.
[RFC4412] Schulzrinne, H. and J. Polk, "Communications Resource
Priority for the Session Initiation Protocol (SIP)",
RFC 4412, February 2006.
[Y.1541] "ITU-T Recommendation Y.1541, Network Performance
Objectives for IP-Based Services", , 2006.
9.2. Informative References
[I-D.ietf-nsis-qspec]
Ash, G., Bader, A., Kappler, C., and D. Oran, "QoS NSLP
QSPEC Template", draft-ietf-nsis-qspec-20 (work in
progress), April 2008.
[RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
and W. Weiss, "An Architecture for Differentiated
Services", RFC 2475, December 1998.
[RFC3290] Bernet, Y., Blake, S., Grossman, D., and A. Smith, "An
Informal Management Model for Diffserv Routers", RFC 3290,
May 2002.
Korhonen & Tschofenig Expires May 5, 2009 [Page 18]
Internet-Draft QoS Parameters November 2008
[RFC3564] Le Faucheur, F. and W. Lai, "Requirements for Support of
Differentiated Services-aware MPLS Traffic Engineering",
RFC 3564, July 2003.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.
[Y.1540] "ITU-T Recommendation Y.1540, Internet Protocol Data
Communication Service - IP Packet Transfer and
Availability Performance Parameters", , December 2002.
Authors' Addresses
Jouni Korhonen (editor)
TeliaSonera
Teollisuuskatu 13
Sonera FIN-00051
Finland
Email: jouni.korhonen@teliasonera.com
Hannes Tschofenig
Nokia Siemens Networks
Linnoitustie 6
Espoo 02600
Finland
Phone: +358 (50) 4871445
Email: Hannes.Tschofenig@gmx.net
URI: http://www.tschofenig.priv.at
Korhonen & Tschofenig Expires May 5, 2009 [Page 19]
Internet-Draft QoS Parameters November 2008
Full Copyright Statement
Copyright (C) The IETF Trust (2008).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Korhonen & Tschofenig Expires May 5, 2009 [Page 20]
Html markup produced by rfcmarkup 1.129d, available from
https://tools.ietf.org/tools/rfcmarkup/