[Docs] [txt|pdf] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]
Versions: (draft-nikander-hip-dns) 00 01 02
03 04 05 06 07 08 09 RFC 5205
Network Working Group P. Nikander
Internet-Draft Ericsson Research Nomadic Lab
Expires: June 19, 2006 J. Laganier
DoCoMo Euro-Labs
December 16, 2005
Host Identity Protocol (HIP) Domain Name System (DNS) Extensions
draft-ietf-hip-dns-04
Status of this Memo
By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware
have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
This Internet-Draft will expire on June 19, 2006.
Copyright Notice
Copyright (C) The Internet Society (2005).
Abstract
This document specifies a new resource record (RR) for the Domain
Name System (DNS), and how to use it with the Host Identity Protocol
(HIP.) This RR allows a HIP node to store in the DNS its Host
Identity (HI, the public component of the node public-private key
pair), Host Identity Tag (HIT, a truncated hash of its public key),
and the Domain Names of its rendezvous servers (RVS.)
Nikander & Laganier Expires June 19, 2006 [Page 1]
Internet-Draft HIP DNS Extensions December 2005
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Conventions used in this document . . . . . . . . . . . . . . 4
3. Usage Scenarios . . . . . . . . . . . . . . . . . . . . . . . 5
3.1. Simple static singly homed end-host . . . . . . . . . . . 6
3.2. Mobile end-host . . . . . . . . . . . . . . . . . . . . . 7
3.3. Mixed Scenario . . . . . . . . . . . . . . . . . . . . . . 8
4. Overview of using the DNS with HIP . . . . . . . . . . . . . . 11
4.1. Storing HI, HIT and RVS in DNS . . . . . . . . . . . . . . 11
4.2. Initiating connections based on DNS names . . . . . . . . 11
5. HIP RR Storage Format . . . . . . . . . . . . . . . . . . . . 12
5.1. HIT length format . . . . . . . . . . . . . . . . . . . . 12
5.2. PK algorithm format . . . . . . . . . . . . . . . . . . . 12
5.3. PK length format . . . . . . . . . . . . . . . . . . . . . 13
5.4. HIT format . . . . . . . . . . . . . . . . . . . . . . . . 13
5.5. Public key format . . . . . . . . . . . . . . . . . . . . 13
5.6. Rendezvous servers format . . . . . . . . . . . . . . . . 13
6. HIP RR Presentation Format . . . . . . . . . . . . . . . . . . 14
7. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8. Security Considerations . . . . . . . . . . . . . . . . . . . 16
8.1. Attacker tampering with an insecure HIP RR . . . . . . . . 16
8.2. Hash and HITs Collisions . . . . . . . . . . . . . . . . . 17
8.3. DNSSEC . . . . . . . . . . . . . . . . . . . . . . . . . . 17
9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 18
10. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 19
11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 20
11.1. Normative references . . . . . . . . . . . . . . . . . . . 20
11.2. Informative references . . . . . . . . . . . . . . . . . . 21
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 22
Intellectual Property and Copyright Statements . . . . . . . . . . 23
Nikander & Laganier Expires June 19, 2006 [Page 2]
Internet-Draft HIP DNS Extensions December 2005
1. Introduction
This document specifies a new resource record (RR) for the Domain
Name System (DNS) [RFC1034], and how to use it with the Host Identity
Protocol (HIP) [I-D.ietf-hip-base]. This RR allows a HIP node to
store in the DNS its Host Identity (HI, the public component of the
node public-private key pair), Host Identity Tag (HIT, a truncated
hash of its HI), and the Domain Names of its rendezvous servers
(RVS.) [I-D.ietf-hip-rvs]
Currently, most of the Internet applications that need to communicate
with a remote host first translate a domain name (often obtained via
user input) into one or more IP address(es). This step occurs prior
to communication with the remote host, and relies on a DNS lookup.
With HIP, IP addresses are intended to be used mostly for on-the-wire
communication between end hosts, while most ULPs and applications use
HIs or HITs instead (ICMP might be an example of an ULP not using
them.) Consequently, we need a means to translate a domain name into
an HI. Using the DNS for this translation is pretty straightforward:
We define a new HIP resource record. Upon query by an application or
ULP for a FQDN -> IP lookup, the resolver would then additionally
perform an FQDN -> HI lookup, and use it to construct the resulting
HI -> IP mapping (which is internal to the HIP layer.) The HIP layer
uses the HI -> IP mapping to translate HIs and HITs into IP addresses
and vice versa.
The HIP rendezvous extensions [I-D.ietf-hip-rvs] proposal allows a
HIP node to be reached via the IP address(es) of a third party, the
node's rendezvous server (RVS.) An initiator willing to establish a
HIP association with a responder served by a RVS would typically
initiate a HIP exchange by sending an I1 towards the RVS IP address
rather than towards the responder IP address. Consequently, we need
a means to translate a domain name into the rendezvous server's
domain name.
This draft introduces the new HIP DNS Resource Record to store
Rendezvous Server (RVS), Host Identity (HI) and Host Identity Tag
(HIT) information.
Nikander & Laganier Expires June 19, 2006 [Page 3]
Internet-Draft HIP DNS Extensions December 2005
2. Conventions used in this document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC2119 [RFC2119].
Nikander & Laganier Expires June 19, 2006 [Page 4]
Internet-Draft HIP DNS Extensions December 2005
3. Usage Scenarios
In this section, we briefly introduce a number of usage scenarios
where the DNS is useful with the Host Identity Protocol.
With HIP, most application and ULPs are unaware of the IP addresses
used to carry packets on the wire. Consequently, a HIP node could
take advantage of having multiple IP addresses for fail-over,
redundancy, mobility, or renumbering, in a manner which is
transparent to most ULPs and applications (because they are bound to
HIs, hence they are agnostic to these IP address changes.)
In these situations, a node wishing to be reachable by reference to
its FQDN should store the following information in the DNS:
o A set of IP address(es) through A and AAAA RRs.
o A Host Identity (HI), Host Identity Tag (HIT) and possibly a set
of rendezvous server(s) (RVS) through HIP RRs.
When a HIP node wants to initiate a communication with another HIP
node, it first needs to perform a HIP base exchange to set-up a HIP
association towards its peer. Although such an exchange can be
initiated opportunistically, i.e., without prior knowledge of the
responder's HI, by doing so both nodes knowingly risk man-in-the-
middle attacks on the HIP exchange. To prevent these attacks, it is
recommended that the initiator first obtain the HI of the responder,
and then initiate the exchange. This can be done, for example,
through manual configuration or DNS lookups. Hence, a new HIP RR is
introduced.
When a HIP node is frequently changing its IP address(es), the
dynamic DNS update latency may prevent it from publishing its new IP
address(es) in the DNS. For solving this problem, the HIP
architecture introduces rendezvous servers (RVS.) A HIP host uses a
rendezvous server as a rendezvous point, to maintain reachability
with possible HIP initiators. Such a HIP node would publish in the
DNS its RVS domain name(s) in a HIP RR, while keeping its RVS up-to-
date with its current set of IP addresses.
When a HIP node wants to initiate a HIP exchange with a responder it
will perform a number of DNS lookups. Depending on the type of the
implementation, the order in which those lookups will be issued may
vary. For instance, implementations using IP address in APIs may
typically first query for A and/or AAAA records at the responder
FQDN, while those using HIT in APIS may typically first query for HIP
RRs.
Nikander & Laganier Expires June 19, 2006 [Page 5]
Internet-Draft HIP DNS Extensions December 2005
In the following we assume that the initiator first queries for A
and/or AAAA records at the responder FQDN.
If the query for the A and/or AAAA was responded to with a DNS answer
with RCODE=3 (Name Error), then the responder's information is not
present in the DNS and further queries SHOULD NOT be made.
In case the query for the address records returned a DNS answer with
RCODE=0 (No Error), then the initiator sends out one more query for
for the HIP type at the responder's FQDN.
Depending on the combinations of answer the situations described in
Section 3.1, Section 3.2 and Section 3.3 can occur.
Note that storing HIP RR information in the DNS at a FQDN which is
assigned to a non-HIP node might have ill effects on its reachability
by HIP nodes.
3.1. Simple static singly homed end-host
A HIP node (R) with a single static network attachment, wishing to be
reachable by reference to its FQDN (www.example.com), would store in
the DNS, in addition to its IP address(es) (IP-R), its Host Identity
(HI-R) and Host Identity Tag (HIT-R) in a HIP resource record.
An initiator willing to associate with a node would typically issue
the following queries:
QNAME=www.example.com, QTYPE=A
(QCLASS=IN is assumed and omitted from the examples)
Which returns a DNS packet with RCODE=0 and one or more A RRs A with
the address of the responder (e.g. IP-R) in the answer section.
QNAME=www.example.com, QTYPE=HIP
Which returns a DNS packet with RCODE=0 and one or more HIP RRs with
the HIT and HI (e.g. HIT-R and HI-R) of the responder in the answer
section, but no RVS.
Nikander & Laganier Expires June 19, 2006 [Page 6]
Internet-Draft HIP DNS Extensions December 2005
Caption: In the remainder of this document, for the sake of keeping
diagrams simple and concise, several DNS queries and answers
are represented as one single transaction, while in fact
there are several queries and answers flowing back and
forth, as described in the textual examples.
[A? HIP? ]
[www.example.com] +-----+
+-------------------------------->| |
| | DNS |
| +-------------------------------| |
| | [A? HIP? ] +-----+
| | [www.example.com]
| | [A IP-R ]
| | [HIP HIT-R HI-R ]
| v
+-----+ +-----+
| |--------------I1------------->| |
| I |<-------------R1--------------| R |
| |--------------I2------------->| |
| |<-------------R2--------------| |
+-----+ +-----+
The initiator would then send an I1 to the responder's IP addresses
(IP-R.)
3.2. Mobile end-host
A mobile HIP node (R) wishing to be reachable by reference to its
FQDN (www.example.com) would store in the DNS, possibly in addition
to its IP address(es) (IP-R), its HI (HI-R), HIT (HIT-R) and the
domain name(s) of its rendezvous server(s) (rvs.example.com) in HIP
resource record(s). The mobile HIP node also needs to notify its
rendezvous servers of any change in its set of IP address(es).
An initiator willing to associate with such mobile node would
typically issue the following queries:
QNAME=www.example.com, QTYPE=A
Which returns a DNS packet with RCODE=0 and an empty answer section.
QNAME=www.example.com, QTYPE=HIP
Which returns a DNS packet with RCODE=0 and one or more HIP RRs with
the HIT, HI and RVS domain name(s) (e.g. HIT-R, HI-R, and
rvs.example.com) of the responder in the answer section.
Nikander & Laganier Expires June 19, 2006 [Page 7]
Internet-Draft HIP DNS Extensions December 2005
QNAME=rvs.example.com, QTYPE=A
[A? HIP? ]
[www.example.com]
[A? ]
[RVS.example.com] +-----+
+----------------------------------------->| |
| | DNS |
| +----------------------------------------| |
| | [A? HIP? ] +-----+
| | [www.example.com ]
| | [HIP HIT-R HI-R rvs.example.com]
| |
| | [A? ]
| | [rvs.example.com]
| | [A IP-RVS ]
| |
| | +-----+
| | +------I1----->| RVS |-----I1------+
| | | +-----+ |
| | | |
| | | |
| v | v
+-----+ +-----+
| |<---------------R1------------| |
| I |----------------I2----------->| R |
| |<---------------R2------------| |
+-----+ +-----+
The initiator would then send an I1 to the RVS IP address (IP-RVS.)
Following, the RVS will relay the I1 up to the mobile node's IP
address (IP-R), which will complete the HIP exchange.
3.3. Mixed Scenario
A HIP node might be configured with more than one IP address (multi-
homed), or rendezvous server (multi-reachable.) In these cases, it
is possible that the DNS returns multiple A or AAAA RRs, as well as
HIP RRs containing one or multiple rendezvous servers. In addition
to its set of IP address(es) (IP-R1, IP-R2), a multi-homed end-host
would store in the DNS its HI (HI-R), HIT (HIT-R) and domain name(s)
of its RVS(s) (rvs.example.com) in HIP RRs.
Nikander & Laganier Expires June 19, 2006 [Page 8]
Internet-Draft HIP DNS Extensions December 2005
An initiator willing to associate with such mobile node would
typically issue the following queries:
QNAME=www.example.com, QTYPE=A
Which returns a DNS packet with RCODE=0 and one or more A or AAAA RRs
containing IP address(es) (e.g. IP-R1 and IP-R2) in the answer
section.
QNAME=www.example.com, QTYPE=HIP
Which returns a DNS packet with RCODE=0 and one or more HIP RRs with
the HIT, HI and RVS domain name(s) (e.g. HIT-R, HI-R, and
rvs.example.com) of the responder in the answer section.
QNAME=rvs.example.com, QTYPE=A
[A? HIP? ]
[www.example.com]
[A? ]
[RVS.example.com] +-----+
+----------------------------------------->| |
| | DNS |
| +----------------------------------------| |
| | [A? HIP? ] +-----+
| | [www.example.com ]
| | [A IP-R ]
| | [HIP HIT-R HI-R rvs.example.com]
| |
| | [A? ]
| | [rvs.example.com]
| | [A IP-RVS ]
| |
| | +-----+
| | +------I1----->| RVS |-----I1------+
| | | +-----+ |
| | | |
| | | |
| v | v
+-----+ +-----+
| |----------------I1----------->| |
| |<---------------R1------------| |
| I |----------------I2----------->| R |
| |<---------------R2------------| |
+-----+ +-----+
Nikander & Laganier Expires June 19, 2006 [Page 9]
Internet-Draft HIP DNS Extensions December 2005
The initiator would then typically send the same I1 to both the RVS
and the responder's IP addresses (IP-RVS and IP-R.)
Nikander & Laganier Expires June 19, 2006 [Page 10]
Internet-Draft HIP DNS Extensions December 2005
4. Overview of using the DNS with HIP
4.1. Storing HI, HIT and RVS in DNS
Any conforming implementation may store a Host Identity (HI) and its
associated Host Identity Tag (HIT) in a DNS HIP RDATA format. If a
particular form of an HI does not already have a specified RDATA
format, a new RDATA-like format SHOULD be defined for the HI. HI and
HIT are defined in Section 3 of [I-D.ietf-hip-base].
Upon return of a HIP RR, a host MUST always calculate the HI-
derivative HIT to be used in the HIP exchange, as specified in
Section 3 of the HIP base specification [I-D.ietf-hip-base], while
the HIT possibly embedded along SHOULD only be used as an
optimization (e.g. table lookup.)
The HIP resource record may also contains one or more domain name(s)
of rendezvous server(s) towards which HIP I1 packets might be sent to
trigger the establishment of an association with the entity named by
this resource record [I-D.ietf-hip-rvs].
An RVS receiving such an I1 would then relay it to the appropriate
responder (the owner of the I1 receiver HIT.) The responder will
then complete the exchange with the initiator, typically without
ongoing help from the RVS.
4.2. Initiating connections based on DNS names
On a HIP node, a Host Identity Protocol exchange SHOULD be initiated
whenever an Upper Layer Protocol attempt to communicate with an
entity and the DNS lookup returns HIP resource records.
Nikander & Laganier Expires June 19, 2006 [Page 11]
Internet-Draft HIP DNS Extensions December 2005
5. HIP RR Storage Format
The RDATA for a HIP RR consists of a public key algorithm type, the
HIT length, a HIT, a public key, and optionnally one or more
rendezvous server(s).
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| HIT length | PK algorithm | PK length | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
~ HIT ~
| |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+-+-+-+-+-+-+-+-+-+-+-+ +
| Public Key |
~ ~
| |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
~ Rendezvous Servers ~
| |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+-+-+-+-+-+-+-+
The HIT length, PK algorithm, PK length, HIT and Public Key field are
REQUIRED. The Rendezvous Servers field is OPTIONAL.
5.1. HIT length format
The HIT length indicates the length in bytes of the HIT field.
5.2. PK algorithm format
The PK algorithm field indicates the public key cryptographic
algorithm and the implied public key field format. This document
reuses the values defined for the 'algorithm type' of the IPSECKEY RR
[RFC4025] 'gateway type' field.
The presently defined values are shown here for reference:
Nikander & Laganier Expires June 19, 2006 [Page 12]
Internet-Draft HIP DNS Extensions December 2005
1 A DSA key is present, in the format defined in RFC2536
[RFC2536].
2 A RSA key is present, in the format defined in RFC3110
[RFC3110].
5.3. PK length format
The PK length indicates the length in bytes of the Public key field.
5.4. HIT format
The HIT is stored, as a binary value, in network byte order.
5.5. Public key format
Both of the public key types defined in this document (RSA and DSA)
reuse the public key formats defined for the IPSECKEY RR [RFC4025]
(which in turns contains the algorithm-specific portion of the KEY RR
RDATA, all of the KEY RR DATA after the first four octets,
corresponding to the same portion of the KEY RR that must be
specified by documents that define a DNSSEC algorithm.)
In the future, if a new algorithm is to be used both by IPSECKEY RR
and HIP RR, it should use the same public key encoding for both RRs.
Unless specified otherwise, the HIP RR public key field SHOULD use
the same public key format as the IPSECKEY RR RDATA for the
corresponding algorithm.
The DSA key format is defined in RFC2536 [RFC2536].
The RSA key format is defined in RFC3110 [RFC3110] and the RSA key
size limit (4096 bits) is relaxed in the IPSECKEY RR [RFC4025]
specification.
5.6. Rendezvous servers format
The Rendezvous servers field indicates one or more variable length
wire-encoded domain names rendezvous server(s), as described in
Section 3.3 of RFC1035 [RFC1035]. The wire-encoded format is self-
describing, so the length is implicit. The domain names MUST NOT be
compressed. The rendezvous server(s) are listed in order of
preference (i.e. first rendezvous server(s) are preferred).
Nikander & Laganier Expires June 19, 2006 [Page 13]
Internet-Draft HIP DNS Extensions December 2005
6. HIP RR Presentation Format
This section specifies the representation of the HIP RR in a zone
data master file.
The HIT length field is not represented as it is implicitly known
thanks to the HIT field representation.
The PK algorithm field is represented as unsigned integers.
The PK length field is not represented as it is implicitly known
thanks to the Public key field representation.
The HIT field is represented as the Base16 encoding [RFC3548] (a.k.a.
hex or hexadecimal) of the HIT. The encoding MUST NOT contain
whitespace(s).
The Public Key field is represented as the Base64 encoding [RFC3548]
of the public key. The encoding MAY contain whitespace(s), and such
whitespace(s) MUST be ignored.
The Rendezvous servers field is represented by one or more
uncompressed domain name(s)
The complete representation of the HPIHI record is:
IN HIP ( pk-algorithm
base16-encoded-hit
base64-encoded-public-key
rendezvous-server[1]
...
rendezvous-server[n] )
Nikander & Laganier Expires June 19, 2006 [Page 14]
Internet-Draft HIP DNS Extensions December 2005
7. Examples
Example of a node with HI and HIT but no RVS:
www.example.com IN HIP ( 2 2A20E0FF0FE8A52422D059FFFEA938A1
AB3NzaC1kc3MAAACBAOBhKn
TCPOuFBzZQX/N3O9dm9P9iv
UIMoId== )
Example of a node with a HI, HIT and one RVS:
www.example.com IN HIP ( 2 2A20E0FF0FE8A52422D059FFFEA938A1
AB3NzaC1kc3MAAACBAOBhKn
TCPOuFBzZQX/N3O9dm9P9iv
UIMoId==
rvs.example.com )
Example of a node with a HI, HIT and two RVS:
www.example.com IN HIP ( 2 2A20E0FF0FE8A52422D059FFFEA938A1
AB3NzaC1kc3MAAACBAOBhKn
TCPOuFBzZQX/N3O9dm9P9iv
UIMoId==
rvs1.example.com
rvs2.example.com )
Nikander & Laganier Expires June 19, 2006 [Page 15]
Internet-Draft HIP DNS Extensions December 2005
8. Security Considerations
Though the security considerations of the HIP DNS extensions still
need to be more investigated and documented, this section contains a
description of the known threats involved with the usage of the HIP
DNS extensions.
In a manner similar to the IPSECKEY RR [RFC4025], the HIP DNS
Extensions allows to provision two HIP nodes with the public keying
material (HI) of their peer. These HIs will be subsequently used in
a key exchange between the peers. Hence, the HIP DNS Extensions
introduce the same kind of threats that IPSECKEY does, plus threats
caused by the possibility given to a HIP node to initiate or accept a
HIP exchange using "opportunistic" or "unpublished initiator HI"
modes.
A HIP node SHOULD obtain HIP RRs from a trusted party trough a secure
channel insuring proper data integrity of the RRs. DNSSEC [RFC2065]
provides such a secure channel.
In the absence of a proper secure channel, both parties are
vulnerable to MitM and DoS attacks, and unrelated parties might be
subject to DoS attacks as well. These threats are described in the
following sections.
8.1. Attacker tampering with an insecure HIP RR
The HIP RR contains public keying material in the form of the named
peer's public key (the HI) and its secure hash (the HIT.) Both of
these are not sensitive to attacks where an adversary gains knowledge
of them. However, an attacker that is able to mount an active attack
on the DNS, i.e., tampers with this HIP RR (e.g. using DNS spoofing)
is able to mount Man-in-the-Middle attacks on the cryptographic core
of the eventual HIP exchange (responder's HIP RR rewritten by the
attacker.)
The HIP RR may contain a rendezvous server domain name resolved into
a destination IP address where the named peer is reachable by an I1
(HIP Rendezvous Extensions IPSECKEY RR [I-D.ietf-hip-rvs].) Thus, an
attacker able to tamper with this RR is able to redirect I1 packets
sent to the named peer to a chosen IP address, for DoS or MitM
attacks. Note that this kind of attack is not specific to HIP and
exists independently to whether or not HIP and the HIP RR are used.
Such an attacker might tamper with A and AAAA RRs as well.
An attacker might obviously use these two attacks in conjunction: It
will replace the responder's HI and RVS IP address by its owns in a
spoofed DNS packet sent to the initiator HI, then redirect all
Nikander & Laganier Expires June 19, 2006 [Page 16]
Internet-Draft HIP DNS Extensions December 2005
exchanged packets to him and mount a MitM on HIP. In this case HIP
won't provide confidentiality nor initiator HI protection from
eavesdroppers.
8.2. Hash and HITs Collisions
As many cryptographic algorithm, some secure hashes (e.g. SHA1, used
by HIP to generate a HIT from an HI) eventually become insecure,
because an exploit has been found in which an attacker with a
reasonable computation power breaks one of the security features of
the hash (e.g. its supposed collision resistance.) This is why a HIP
end-node implementation SHOULD NOT authenticate its HIP peers based
solely on a HIT retrieved from DNS, but SHOULD rather use HI-based
authentication.
8.3. DNSSEC
In the absence of DNSSEC, the HIP RR is subject to the threats
described in RFC 3833 [RFC3833].
Nikander & Laganier Expires June 19, 2006 [Page 17]
Internet-Draft HIP DNS Extensions December 2005
9. IANA Considerations
IANA should allocate one new RR type code for the HIP RR from the
standard RR type space.
IANA does not need to open a new registry for public key algorithms
of the HIP RR because the HIP RR reuses "algorithms types" defined
for the IPSECKEY RR [RFC4025]. The presently defined values are
shown here for reference:
0 is reserved
1 is RSA
2 is DSA
Nikander & Laganier Expires June 19, 2006 [Page 18]
Internet-Draft HIP DNS Extensions December 2005
10. Acknowledgments
As usual in the IETF, this document is the result of a collaboration
between many people. The authors would like to thanks the author
(Michael Richardson), contributors and reviewers of the IPSECKEY RR
[RFC4025] specification, which this document was framed after. The
authors would also like to thanks the following people, who have
provided thoughtful and helpful discussions and/or suggestions, that
have helped improving this document: Rob Austein, Hannu Flinck, Tom
Henderson, Olaf Kolkman, Miika Komu, Andrew McGregor, Erik Nordmark,
and Gabriel Montenegro. Some parts of this draft stem from
[I-D.ietf-hip-base].
Julien Laganier is partly funded by Ambient Networks, a research
project supported by the European Commission under its Sixth
Framework Program. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of the Ambient Networks project or the European
Commission.
Nikander & Laganier Expires June 19, 2006 [Page 19]
Internet-Draft HIP DNS Extensions December 2005
11. References
11.1. Normative references
[RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
STD 13, RFC 1034, November 1987.
[RFC1035] Mockapetris, P., "Domain names - implementation and
specification", STD 13, RFC 1035, November 1987.
[RFC2065] Eastlake, D. and C. Kaufman, "Domain Name System Security
Extensions", RFC 2065, January 1997.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2536] Eastlake, D., "DSA KEYs and SIGs in the Domain Name System
(DNS)", RFC 2536, March 1999.
[RFC3110] Eastlake, D., "RSA/SHA-1 SIGs and RSA KEYs in the Domain
Name System (DNS)", RFC 3110, May 2001.
[RFC3363] Bush, R., Durand, A., Fink, B., Gudmundsson, O., and T.
Hain, "Representing Internet Protocol version 6 (IPv6)
Addresses in the Domain Name System (DNS)", RFC 3363,
August 2002.
[RFC3548] Josefsson, S., "The Base16, Base32, and Base64 Data
Encodings", RFC 3548, July 2003.
[RFC3596] Thomson, S., Huitema, C., Ksinant, V., and M. Souissi,
"DNS Extensions to Support IP Version 6", RFC 3596,
October 2003.
[RFC4025] Richardson, M., "A Method for Storing IPsec Keying
Material in DNS", RFC 4025, March 2005.
[I-D.ietf-hip-base]
Moskowitz, R., "Host Identity Protocol",
draft-ietf-hip-base-04 (work in progress), October 2005.
[I-D.ietf-hip-rvs]
Laganier, J. and L. Eggert, "Host Identity Protocol (HIP)
Rendezvous Extension", draft-ietf-hip-rvs-04 (work in
progress), October 2005.
Nikander & Laganier Expires June 19, 2006 [Page 20]
Internet-Draft HIP DNS Extensions December 2005
11.2. Informative references
[I-D.ietf-hip-arch]
Moskowitz, R. and P. Nikander, "Host Identity Protocol
Architecture", draft-ietf-hip-arch-03 (work in progress),
August 2005.
[I-D.ietf-hip-mm]
Nikander, P., "End-Host Mobility and Multihoming with the
Host Identity Protocol", draft-ietf-hip-mm-02 (work in
progress), July 2005.
[RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 2434,
October 1998.
[RFC3833] Atkins, D. and R. Austein, "Threat Analysis of the Domain
Name System (DNS)", RFC 3833, August 2004.
Nikander & Laganier Expires June 19, 2006 [Page 21]
Internet-Draft HIP DNS Extensions December 2005
Authors' Addresses
Pekka Nikander
Ericsson Research Nomadic Lab
JORVAS FIN-02420
FINLAND
Phone: +358 9 299 1
Email: pekka.nikander@nomadiclab.com
Julien Laganier
DoCoMo Communications Laboratories Europe GmbH
Landsberger Strasse 312
Munich 80687
Germany
Phone: +49 89 56824 231
Email: julien.ietf@laposte.net
URI: http://www.docomolab-euro.com/
Nikander & Laganier Expires June 19, 2006 [Page 22]
Internet-Draft HIP DNS Extensions December 2005
Intellectual Property Statement
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Disclaimer of Validity
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Copyright Statement
Copyright (C) The Internet Society (2005). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.
Acknowledgment
Funding for the RFC Editor function is currently provided by the
Internet Society.
Nikander & Laganier Expires June 19, 2006 [Page 23]
Html markup produced by rfcmarkup 1.129d, available from
https://tools.ietf.org/tools/rfcmarkup/