[Docs] [txt|pdf|xml|html] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]

Versions: (draft-nottingham-httpbis-origin-frame) 00 01 02 03 04

HTTP Working Group                                         M. Nottingham
Internet-Draft
Intended status: Standards Track                               E. Nygren
Expires: February 24, 2018                                        Akamai
                                                         August 23, 2017


                        The ORIGIN HTTP/2 Frame
                   draft-ietf-httpbis-origin-frame-04

Abstract

   This document specifies the ORIGIN frame for HTTP/2, to indicate what
   origins are available on a given connection.

Note to Readers

   Discussion of this draft takes place on the HTTP working group
   mailing list (ietf-http-wg@w3.org), which is archived at
   https://lists.w3.org/Archives/Public/ietf-http-wg/.

   Working Group information can be found at http://httpwg.github.io/;
   source code and issues list for this draft can be found at
   https://github.com/httpwg/http-extensions/labels/origin-frame.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on February 24, 2018.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.





Nottingham & Nygren     Expires February 24, 2018               [Page 1]


Internet-Draft                ORIGIN Frames                  August 2017


   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Notational Conventions  . . . . . . . . . . . . . . . . .   3
   2.  The ORIGIN HTTP/2 Frame . . . . . . . . . . . . . . . . . . .   3
     2.1.  Syntax  . . . . . . . . . . . . . . . . . . . . . . . . .   3
     2.2.  Processing ORIGIN Frames  . . . . . . . . . . . . . . . .   3
     2.3.  The Origin Set  . . . . . . . . . . . . . . . . . . . . .   4
     2.4.  Authority, Push and Coalescing with ORIGIN  . . . . . . .   5
   3.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   6
   4.  Security Considerations . . . . . . . . . . . . . . . . . . .   6
   5.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   7
     5.1.  Normative References  . . . . . . . . . . . . . . . . . .   7
     5.2.  Informative References  . . . . . . . . . . . . . . . . .   8
   Appendix A.  Non-Normative Processing Algorithm . . . . . . . . .   8
   Appendix B.  Operational Considerations for Servers . . . . . . .   9
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  10

1.  Introduction

   HTTP/2 [RFC7540] allows clients to coalesce different origins
   [RFC6454] onto the same connection when certain conditions are met.
   However, in certain cases, a connection is not usable for a coalesced
   origin, so the 421 (Misdirected Request) status code ([RFC7540],
   Section 9.1.2) was defined.

   Using a status code in this manner allows clients to recover from
   misdirected requests, but at the penalty of adding latency.  To
   address that, this specification defines a new HTTP/2 frame type,
   "ORIGIN", to allow servers to indicate what origins a connection is
   usable for.

   Additionally, experience has shown that HTTP/2's requirement to
   establish server authority using both DNS and the server's
   certificate is onerous.  This specification relaxes the requirement
   to check DNS when the ORIGIN frame is in use.  Doing so has
   additional benefits, such as removing the latency associated with
   some DNS lookups.



Nottingham & Nygren     Expires February 24, 2018               [Page 2]


Internet-Draft                ORIGIN Frames                  August 2017


1.1.  Notational Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  The ORIGIN HTTP/2 Frame

   The ORIGIN HTTP/2 frame ([RFC7540], Section 4) allows a server to
   indicate what origin(s) [RFC6454] the server would like the client to
   consider as members of the Origin Set (Section 2.3) for the
   connection it occurs within.

2.1.  Syntax

   The ORIGIN frame type is 0xc (decimal 12), and contains zero to many
   Origin-Entry.

   +-------------------------------+-------------------------------+
   |         Origin-Entry (*)                                    ...
   +-------------------------------+-------------------------------+

   An Origin-Entry is a length-delimited string:

   +-------------------------------+-------------------------------+
   |         Origin-Len (16)       | ASCII-Origin?               ...
   +-------------------------------+-------------------------------+

   Specifically:

   Origin-Len:  An unsigned, 16-bit integer indicating the length, in
      octets, of the ASCII-Origin field.

   Origin:  An OPTIONAL sequence of characters containing the ASCII
      serialization of an origin ([RFC6454], Section 6.2) that the
      sender believes this connection is or could be authoritative for.

   The ORIGIN frame does not define any flags.  However, future updates
   to this specification MAY define flags.  See Section 2.2.

2.2.  Processing ORIGIN Frames

   The ORIGIN frame is a non-critical extension to HTTP/2.  Endpoints
   that do not support this frame can safely ignore it upon receipt.

   When received by an implementing client, it is used to initialise and
   manipulate the Origin Set (see Section 2.3), thereby changing how the
   client establishes authority for origin servers (see Section 2.4).



Nottingham & Nygren     Expires February 24, 2018               [Page 3]


Internet-Draft                ORIGIN Frames                  August 2017


   The origin frame MUST be sent on stream 0; an ORIGIN frame on any
   other stream is invalid and MUST be ignored.

   Likewise, the ORIGIN frame is only valid on connections with the "h2"
   protocol identifier, or when specifically nominated by the protocol's
   definition; it MUST be ignored when received on a connection with the
   "h2c" protocol identifier.

   This specification does not define any flags for the ORIGIN frame,
   but future updates might use them to change its semantics.  The first
   four flags (0x1, 0x2, 0x4 and 0x8) are reserved for backwards-
   incompatible changes, and therefore when any of them are set, the
   ORIGIN frame containing them MUST be ignored by clients conforming to
   this specification, unless the flag's semantics are understood.  The
   remaining flags are reserved for backwards-compatible changes, and do
   not affect processing by clients conformant to this specification.

   The ORIGIN frame describes a property of the connection, and
   therefore is processed hop-by-hop.  An intermediary MUST NOT forward
   ORIGIN frames.  Clients configured to use a proxy MUST ignore any
   ORIGIN frames received from it.

   Each ASCII-Origin field in the frame's payload MUST be parsed as an
   ASCII serialisation of an origin ([RFC6454], Section 6.2).  If
   parsing fails, the field MUST be ignored.

   See Appendix A for an illustrative algorithm for processing ORIGIN
   frames.

2.3.  The Origin Set

   The set of origins (as per [RFC6454]) that a given connection might
   be used for is known in this specification as the Origin Set.

   By default, the Origin Set for a connection is uninitialised.  When
   an ORIGIN frame is first received and successfully processed by a
   client, the connection's Origin Set is defined to contain an initial
   origin.  The initial origin is composed from:

   o  Scheme: "https"

   o  Host: the value sent in Server Name Indication (SNI, [RFC6066]
      Section 3), converted to lower case

   o  Port: the remote port of the connection (i.e., the server's port)






Nottingham & Nygren     Expires February 24, 2018               [Page 4]


Internet-Draft                ORIGIN Frames                  August 2017


   The contents of that ORIGIN frame (and subsequent ones) allows the
   server to incrementally add new origins to the Origin Set, as
   described in Section 2.2.

   The Origin Set is also affected by the 421 (Misdirected Request)
   response status code, defined in [RFC7540] Section 9.1.2.  Upon
   receipt of a response with this status code, implementing clients
   MUST create the ASCII serialisation of the corresponding request's
   origin (as per [RFC6454], Section 6.2) and remove it from the
   connection's Origin Set, if present.

   Note:  When sending an ORIGIN frame to a connection that is
      initialised as an Alternative Service [RFC7838], the initial
      origin set Section 2.3 will contain an origin with the appropriate
      scheme and hostname (since Alternative Services specifies that the
      origin's hostname be sent in SNI).  However, it is possible that
      the port will be different than that of the intended origin, since
      the initial origin set is calculated using the actual port in use,
      which can be different for the alternative service.  In this case,
      the intended origin needs to be sent in the ORIGIN frame
      explicitly.

      For example, a client making requests for "https://example.com" is
      directed to an alternative service at ("h2", "x.example.net",
      "8443").  If this alternative service sends an ORIGIN frame, the
      initial origin will be "https://example.com:8443".  The client
      will not be able to use the alternative service to make requests
      for "https://example.com" unless that origin is explicitly
      included in the ORIGIN frame.

2.4.  Authority, Push and Coalescing with ORIGIN

   [RFC7540], Section 10.1 uses both DNS and the presented TLS
   certificate to establish the origin server(s) that a connection is
   authoritative for, just as HTTP/1.1 does in [RFC7230].

   Furthermore, [RFC7540] Section 9.1.1 explicitly allows a connection
   to be used for more than one origin server, if it is authoritative.
   This affects what requests can be sent on the connection, both in
   HEADERS frame by the client and as PUSH_PROMISE frames from the
   server ([RFC7540], Section 8.2.2).

   Once an Origin Set has been initialised for a connection, clients
   that implement this specification use it to help determine what the
   connection is authoritative for.  Specifically, such clients MUST NOT
   consider a connection to be authoritative for an origin not present
   in the Origin Set, and SHOULD use the connection for all requests to




Nottingham & Nygren     Expires February 24, 2018               [Page 5]


Internet-Draft                ORIGIN Frames                  August 2017


   origins in the Origin Set for which the connection is authoritative,
   unless there are operational reasons for opening a new connection.

   Note that for a connection to be considered authoritative for a given
   origin, the client is still required to obtain a certificate that
   passes suitable checks; see [RFC7540] Section 9.1.1 for more
   information.  This includes verifying that the host matches a
   "dNSName" value from the certificate "subjectAltName" field (using
   the wildcard rules defined in [RFC2818]; see also [RFC5280]
   Section 4.2.1.6).

   Additionally, clients MAY avoid consulting DNS to establish the
   connection's authority for new requests; however, those that do so
   face new risks, as explained in Section 4

   Because ORIGIN can change the set of origins a connection is used for
   over time, it is possible that a client might have more than one
   viable connection to an origin open at any time.  When this occurs,
   clients SHOULD not emit new requests on any connection whose Origin
   Set is a proper subset of another connection's Origin Set, and SHOULD
   close it once all outstanding requests are satisfied.

   The Origin Set is unaffected by any alternative services [RFC7838]
   advertisements made by the server.  Advertising an alternative
   service does not affect whether a server is authoritative.

3.  IANA Considerations

   This specification adds an entry to the "HTTP/2 Frame Type" registry.

   o  Frame Type: ORIGIN

   o  Code: 0xc

   o  Specification: [this document]

4.  Security Considerations

   Clients that blindly trust the ORIGIN frame's contents will be
   vulnerable to a large number of attacks.  See Section 2.4 for
   mitigations.

   Relaxing the requirement to consult DNS when determining authority
   for an origin means that an attacker who possesses a valid
   certificate no longer needs to be on-path to redirect traffic to
   them; instead of modifying DNS, they need only convince the user to
   visit another Web site in order to coalesce connections to the target
   onto their existing connection.



Nottingham & Nygren     Expires February 24, 2018               [Page 6]


Internet-Draft                ORIGIN Frames                  August 2017


   As a result, clients opting not to consult DNS ought to employ some
   alternative means to increase confidence that the certificate is
   legitimate.  Examples of mechanisms that can give additional
   confidence in a certificate include checking for a Signed Certificate
   Timestamp [RFC6929] and performing certificate revocation checks.

   Clients opting not to consult DNS ought to do so only if they have a
   high degree of confidence that the certificate is legitimate.  For
   instance, clients might skip consulting DNS only if they receive
   proof of inclusion in a Certificate Transparency log [RFC6929] or
   they have a recent OCSP response [RFC6960] (possibly using the
   "status_request" TLS extension [RFC6066]) showing that the
   certificate was not revoked.

   The Origin Set's size is unbounded by this specification, and thus
   could be used by attackers to exhaust client resources.  To mitigate
   this risk, clients can monitor their state commitment and close the
   connection if it is too high.

5.  References

5.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
              editor.org/info/rfc2119>.

   [RFC2818]  Rescorla, E., "HTTP Over TLS", RFC 2818,
              DOI 10.17487/RFC2818, May 2000, <https://www.rfc-
              editor.org/info/rfc2818>.

   [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
              <https://www.rfc-editor.org/info/rfc5280>.

   [RFC6066]  Eastlake 3rd, D., "Transport Layer Security (TLS)
              Extensions: Extension Definitions", RFC 6066,
              DOI 10.17487/RFC6066, January 2011, <https://www.rfc-
              editor.org/info/rfc6066>.

   [RFC6454]  Barth, A., "The Web Origin Concept", RFC 6454,
              DOI 10.17487/RFC6454, December 2011, <https://www.rfc-
              editor.org/info/rfc6454>.





Nottingham & Nygren     Expires February 24, 2018               [Page 7]


Internet-Draft                ORIGIN Frames                  August 2017


   [RFC7540]  Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
              Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
              DOI 10.17487/RFC7540, May 2015, <https://www.rfc-
              editor.org/info/rfc7540>.

5.2.  Informative References

   [RFC5988]  Nottingham, M., "Web Linking", RFC 5988,
              DOI 10.17487/RFC5988, October 2010, <https://www.rfc-
              editor.org/info/rfc5988>.

   [RFC6929]  DeKok, A. and A. Lior, "Remote Authentication Dial In User
              Service (RADIUS) Protocol Extensions", RFC 6929,
              DOI 10.17487/RFC6929, April 2013, <https://www.rfc-
              editor.org/info/rfc6929>.

   [RFC6960]  Santesson, S., Myers, M., Ankney, R., Malpani, A.,
              Galperin, S., and C. Adams, "X.509 Internet Public Key
              Infrastructure Online Certificate Status Protocol - OCSP",
              RFC 6960, DOI 10.17487/RFC6960, June 2013,
              <https://www.rfc-editor.org/info/rfc6960>.

   [RFC7230]  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
              Protocol (HTTP/1.1): Message Syntax and Routing",
              RFC 7230, DOI 10.17487/RFC7230, June 2014,
              <https://www.rfc-editor.org/info/rfc7230>.

   [RFC7838]  Nottingham, M., McManus, P., and J. Reschke, "HTTP
              Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
              April 2016, <https://www.rfc-editor.org/info/rfc7838>.

Appendix A.  Non-Normative Processing Algorithm

   The following algorithm illustrates how a client could handle
   received ORIGIN frames:

   1.  If the client is configured to use a proxy for the connection,
       ignore the frame and stop processing.

   2.  If the connection is not identified with the "h2" protocol
       identifier or another protocol that has explicitly opted into
       this specification, ignore the frame and stop processing.

   3.  If the frame occurs upon any stream except stream 0, ignore the
       frame and stop processing.

   4.  If any of the flags 0x1, 0x2, 0x4 or 0x8 are set, ignore the
       frame and stop processing.



Nottingham & Nygren     Expires February 24, 2018               [Page 8]


Internet-Draft                ORIGIN Frames                  August 2017


   5.  If no previous ORIGIN frame on the connection has reached this
       step, initialise the Origin Set as per Section 2.3.

   6.  For each "Origin-Entry" in the frame payload:

       1.  Parse "ASCII-Origin" as an ASCII serialization of an origin
           ([RFC6454], Section 6.2) and let the result be
           "parsed_origin".  If parsing fails, skip to the next "Origin-
           Entry".

       2.  Add "parsed_origin" to the Origin Set.

Appendix B.  Operational Considerations for Servers

   The ORIGIN frame allows a server to indicate for which origins a
   given connection ought be used.  The set of origins advertised using
   this mechanism is under control of the server; servers are not
   obligated to use it, or to advertise all origins which they might be
   able to answer a request for.

   For example, it can be used to inform the client that the connection
   is to only be used for the SNI-based origin, by sending an empty
   ORIGIN frame.  Or, a larger number of origins can be indicated by
   including a payload.

   Generally, this information is most useful to send before sending any
   part of a response that might initiate a new connection; for example,
   "Link" headers [RFC5988] in a response HEADERS, or links in the
   response body.

   Therefore, the ORIGIN frame ought be sent as soon as possible on a
   connection, ideally before any HEADERS or PUSH_PROMISE frames.

   However, if it's desirable to associate a large number of origins
   with a connection, doing so might introduce end-user perceived
   latency, due to their size.  As a result, it might be necessary to
   select a "core" set of origins to send initially, expanding the set
   of origins the connection is used for with subsequent ORIGIN frames
   later (e.g., when the connection is idle).

   That said, senders are encouraged to include as many origins as
   practical within a single ORIGIN frame; clients need to make
   decisions about creating connections on the fly, and if the origin
   set is split across many frames, their behaviour might be suboptimal.

   Senders take note that, as per [RFC6454] Section 4, the values in an
   ORIGIN header need to be case-normalised before serialisation.




Nottingham & Nygren     Expires February 24, 2018               [Page 9]


Internet-Draft                ORIGIN Frames                  August 2017


   Finally, servers that host alternative services [RFC7838] will need
   to explicitly advertise their origins when sending ORIGIN, because
   the default contents of the Origin Set (as per Section 2.3) do not
   contain any Alternative Services' origins, even if they have been
   used previously on the connection.

Authors' Addresses

   Mark Nottingham

   Email: mnot@mnot.net
   URI:   https://www.mnot.net/


   Erik Nygren
   Akamai

   Email: nygren@akamai.com

































Nottingham & Nygren     Expires February 24, 2018              [Page 10]


Html markup produced by rfcmarkup 1.124, available from https://tools.ietf.org/tools/rfcmarkup/