[Docs] [txt|pdf|xml|html] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]

Versions: (draft-mirsky-ippm-stamp-option-tlv) 00 01 02

Network Working Group                                          G. Mirsky
Internet-Draft                                                    X. Min
Intended status: Standards Track                               ZTE Corp.
Expires: May 3, 2020                                           H. Nydell
                                                       Accedian Networks
                                                                R. Foote
                                                                   Nokia
                                                             A. Masputra
                                                              Apple Inc.
                                                              E. Ruffini
                                                                  OutSys
                                                        October 31, 2019


     Simple Two-way Active Measurement Protocol Optional Extensions
                  draft-ietf-ippm-stamp-option-tlv-02

Abstract

   This document describes optional extensions to Simple Two-way Active
   Measurement Protocol (STAMP) which enable measurement performance
   metrics in addition to ones supported by the STAMP base
   specification.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 3, 2020.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents



Mirsky, et al.             Expires May 3, 2020                  [Page 1]


Internet-Draft              STAMP Extensions                October 2019


   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Conventions used in this document . . . . . . . . . . . . . .   3
     2.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   3
     2.2.  Requirements Language . . . . . . . . . . . . . . . . . .   3
   3.  Theory of Operation . . . . . . . . . . . . . . . . . . . . .   3
   4.  TLV Extensions to STAMP . . . . . . . . . . . . . . . . . . .   4
     4.1.  Extra Padding TLV . . . . . . . . . . . . . . . . . . . .   6
     4.2.  Location TLV  . . . . . . . . . . . . . . . . . . . . . .   6
     4.3.  Timestamp Information TLV . . . . . . . . . . . . . . . .   8
     4.4.  Class of Service TLV  . . . . . . . . . . . . . . . . . .   9
     4.5.  Direct Measurement TLV  . . . . . . . . . . . . . . . . .  10
     4.6.  Access Report TLV . . . . . . . . . . . . . . . . . . . .  11
     4.7.  Follow-up Telemetry TLV . . . . . . . . . . . . . . . . .  13
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  14
     5.1.  STAMP TLV Registry  . . . . . . . . . . . . . . . . . . .  14
     5.2.  Synchronization Source Sub-registry . . . . . . . . . . .  15
     5.3.  Timestamping Method Sub-registry  . . . . . . . . . . . .  16
     5.4.  Access ID Sub-registry  . . . . . . . . . . . . . . . . .  17
     5.5.  Return Code Sub-registry  . . . . . . . . . . . . . . . .  17
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  18
   7.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  18
   8.  Contributors  . . . . . . . . . . . . . . . . . . . . . . . .  18
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  19
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  19
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  19
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  20

1.  Introduction

   Simple Two-way Active Measurement Protocol (STAMP)
   [I-D.ietf-ippm-stamp] supports the use of optional extensions that
   use Type-Length-Value (TLV) encoding.  Such extensions are to enhance
   the STAMP base functions, such as measurement of one-way and round-
   trip delay, latency, packet loss, as well as ability to detect packet
   duplication and out-of-order delivery of the test packets.  This
   specification provides definitions of optional STAMP extensions,
   their formats, and theory of operation.




Mirsky, et al.             Expires May 3, 2020                  [Page 2]


Internet-Draft              STAMP Extensions                October 2019


2.  Conventions used in this document

2.1.  Terminology

   STAMP - Simple Two-way Active Measurement Protocol

   DSCP - Differentiated Services Code Point

   ECN - Explicit Congestion Notification

   NTP - Network Time Protocol

   PTP - Precision Time Protocol

   HMAC Hashed Message Authentication Code

   TLV Type-Length-Value

   BITS Building Integrated Timing Supply

   SSU Synchronization Supply Unit

   GPS Global Positioning System

   GLONASS Global Orbiting Navigation Satellite System

   LORAN-C Long Range Navigation System Version C

   MBZ Must Be Zeroed

   CoS Class of Service

   PMF Performance Measurement Function

2.2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  Theory of Operation

   STAMP Session-Sender transmits test packets to STAMP Session-
   Reflector.  STAMP Session-Reflector receives Session-Sender's packet
   and acts according to the configuration and optional control
   information communicated in the Session-Sender's test packet.  STAMP



Mirsky, et al.             Expires May 3, 2020                  [Page 3]


Internet-Draft              STAMP Extensions                October 2019


   defines two different test packet formats, one for packets
   transmitted by the STAMP-Session-Sender and one for packets
   transmitted by the STAMP-Session-Reflector.  STAMP supports two
   modes: unauthenticated and authenticated.  Unauthenticated STAMP test
   packets are compatible on the wire with unauthenticated TWAMP-Test
   [RFC5357] packet formats.

   By default, STAMP uses symmetrical packets, i.e., the size of the
   packet transmitted by Session-Reflector equals the size of the packet
   received by the Session-Reflector.

4.  TLV Extensions to STAMP

   Figure 1 displays the format of STAMP Session-Sender test packet in
   unauthenticated mode that includes a TLV.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Sequence Number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Timestamp                            |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Error Estimate        |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
      |                                                               |
      |                                                               |
      |                         MBZ (30 octets)                       |
      |                                                               |
      |                                                               |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |           Length              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                            Value                              ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

       Figure 1: STAMP Session-Sender test packet format with TLV in
                           unauthenticated mode

   The MBZ (Must Be Zeroed) field of a test packet transmitted by a
   STAMP Session-Sender MUST be 30 octets long.  A STAMP Session-Sender
   test packet MUST NOT use the Reflect Octets capability defined in
   [RFC6038].





Mirsky, et al.             Expires May 3, 2020                  [Page 4]


Internet-Draft              STAMP Extensions                October 2019


   TLVs (Type-Length-Value tuples) have the two octets long Type field,
   two octets long Length field that is the length of the Value field in
   octets.  Type values, see Section 5.1, less than 32768 identify
   mandatory TLVs that MUST be supported by an implementation.  Type
   values greater than or equal to 32768 identify optional TLVs that
   SHOULD be ignored if the implementation does not understand or
   support them.  If a Type value for TLV or sub-TLV is in the range for
   Vendor Private Use, the Length MUST be at least 4, and the first four
   octets MUST be that vendor's the Structure of Management Information
   (SMI) Private Enterprise Number, in network octet order.  The rest of
   the Value field is private to the vendor.  Following sections
   describe the use of TLVs for STAMP that extend STAMP capability
   beyond its base specification.

   Figure 2 displays the format of STAMP Session-Reflector test packet
   in unauthenticated mode that includes a TLV.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sequence Number                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                          Timestamp                            |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Error Estimate        |           MBZ                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                          Receive Timestamp                    |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                 Session-Sender Sequence Number                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                  Session-Sender Timestamp                     |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Session-Sender Error Estimate |           MBZ                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |Ses-Sender TTL |                  MBZ2                         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |           Length              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                            Value                              ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 2: STAMP Session-Reflector test packet format with TLV in
                           unauthenticated mode





Mirsky, et al.             Expires May 3, 2020                  [Page 5]


Internet-Draft              STAMP Extensions                October 2019


   The MBZ2 field of a test packet transmitted by a STAMP Session-
   Reflector MUST be 3 octets long.

   A STAMP node, whether Session-Sender or Session-Reflector, receiving
   a test packet MUST determine whether the packet is a base STAMP
   packet or includes one or more TLVs.  The node MUST compare the value
   in the Length field of the UDP header and the length of the base
   STAMP test packet in the mode, unauthenticated or authenticated based
   on the configuration of the particular STAMP test session.  If the
   difference between the two values is larger than the length of UDP
   header, then the test packet includes one or more STAMP TLVs that
   immediately follow the base STAMP test packet.

4.1.  Extra Padding TLV

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Extra Padding Type       |           Length              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      ~                         Extra Padding                         ~
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 3: Extra Padding TLV

   where fields are defined as the following:

   o  Extra Padding Type - TBA1 allocated by IANA Section 5.1

   o  Length - two octets long field equals length on the Extra Padding
      field in octets.

   o  Extra Padding - a pseudo-random sequence of numbers.  The field
      MAY be filled with all zeroes.

   The Extra Padding TLV is similar to the Packet Padding field in
   TWAMP-Test packet [RFC5357].  The in STAMP the Packet Padding field
   is used to ensure symmetrical size between Session-Sender and
   Session-Reflector test packets.  Extra Padding TLV MUST be used to
   create STAMP test packets of larger size.

4.2.  Location TLV

   STAMP session-sender MAY include the Location TLV to request
   information from the session-reflector.  The session-sender SHOULD
   NOT fill any information fields except for Type and Length.  The



Mirsky, et al.             Expires May 3, 2020                  [Page 6]


Internet-Draft              STAMP Extensions                October 2019


   session-reflector MUST validate the Length value against the address
   family of the transport encapsulating the STAMP test packet.  If the
   value of the Length field is invalid, the session-reflector MUST zero
   all fields and MUST NOT return any information to the session-sender.
   The session-reflector MUST ignore all other fields of the received
   Location TLV.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Location Type        |           Length              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Source MAC                           |
      +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                               |           Reserved A          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                    Destination IP Address                     ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                       Source IP Address                       ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Dest.port   |   Src.Port    |          Reserved B           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 4: Session-Reflector Location TLV

   where fields are defined as the following:

   o  Location Type - TBA2 allocated by IANA Section 5.1

   o  Length - two octets long field equals length on the Value field in
      octets.  Length field value MUST be 20 octets for the IPv4 address
      family.  For the IPv6 address family value of the Length field
      MUST be 44 octets.  All other values are invalid.

   o  Source MAC - 6 octets 48 bits long field.  The session-reflector
      MUST copy Source MAC of received STAMP packet into this field.

   o  Reserved A - two octets long field.  MUST be zeroed on
      transmission and ignored on reception.

   o  Destination IP Address - IPv4 or IPv6 destination address of the
      received by the session-reflector STAMP packet.

   o  Source IP Address - IPv4 or IPv6 source address of the received by
      the session-reflector STAMP packet.

   o  Dest.port - one octet long UDP destination port number of the
      received STAMP packet.



Mirsky, et al.             Expires May 3, 2020                  [Page 7]


Internet-Draft              STAMP Extensions                October 2019


   o  Src.port - one octet long UDP source port number of the received
      STAMP packet.

   o  Reserved B - two octets long field.  MUST be zeroed on
      transmission and ignored on reception.

   The Location TLV MAY be used to determine the last-hop addressing for
   STAMP packets including source and destination IP addresses as well
   as the MAC address of the last-hop router.  Last-hop MAC address MAY
   be monitored by the Session-Sender whether there has been a path
   switch on the last hop, closest to the Session-Reflector.  The IP
   addresses and UDP port will indicate if there is a NAT router on the
   path, and allows the Session-Sender to identify the IP address of the
   Session-Reflector behind the NAT, detect changes in the NAT mapping
   that could cause sending the STAMP packets to the wrong Session-
   Reflector.

4.3.  Timestamp Information TLV

   STAMP session-sender MAY include the Timestamp Information TLV to
   request information from the session-reflector.  The session-sender
   SHOULD NOT fill any information fields except for Type and Length.
   The session-reflector MUST validate the Length value of the STAMP
   test packet.  If the value of the Length field is invalid, the
   session-reflector MUST zero all fields and MUST NOT return any
   information to the session-sender.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Timestamp Information Type   |           Length              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Sync. Src In | Timestamp In  | Sync. Src Out | Timestamp Out |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 5: Timestamp Information TLV

   where fields are defined as the following:

   o  Timestamp Information Type - TBA3 allocated by IANA Section 5.1

   o  Length - two octets long field, equals four octets.

   o  Sync Src In - one octet long field that characterizes the source
      of clock synchronization at the ingress of Session-Reflector.
      There are several of methods to synchronize the clock, e.g.,
      Network Time Protocol (NTP) [RFC5905], Precision Time Protocol
      (PTP) [IEEE.1588.2008], Synchronization Supply Unit (SSU) or



Mirsky, et al.             Expires May 3, 2020                  [Page 8]


Internet-Draft              STAMP Extensions                October 2019


      Building Integrated Timing Supply (BITS), or Global Positioning
      System (GPS), Global Orbiting Navigation Satellite System
      (GLONASS) and Long Range Navigation System Version C (LORAN-C).
      The value is one of the listed in Table 4.

   o  Timestamp In - one octet long field that characterizes the method
      by which the ingress of Session-Reflector obtained the timestamp
      T2.  A timestamp may be obtained with hardware assist, via
      software API from a local wall clock, or from a remote clock (the
      latter referred to as "control plane").  The value is one of the
      listed in Table 6.

   o  Sync Src Out - one octet long field that characterizes the source
      of clock synchronization at the egress of Session-Reflector.  The
      value is one of the listed in Table 4.

   o  Timestamp Out - one octet long field that characterizes the method
      by which the egress of Session-Reflector obtained the timestamp
      T3.  The value is one of the listed in Table 6.

4.4.  Class of Service TLV

   The STAMP session-sender MAY include Class of Service (CoS) TLV in
   the STAMP test packet.  If the CoS TLV is present in the STAMP test
   packet and the value of the DSCP1 field is zero, then the STAMP
   session-reflector MUST copy the values of Differentiated Services
   Code Point (DSCP) ECN fields from the received STAMP test packet into
   DSCP2 and ECN fields respectively of the CoS TLV of the reflected
   STAMP test packet.  If the value of the DSCP1 field is non-zero, then
   the STAMP session-reflector MUST use DSCP1 value from the CoS TLV in
   the received STAMP test packet as DSCP value of STAMP reflected test
   packet and MUST copy DSCP and ECN values of the received STAMP test
   packet into DSCP2 and ECN fields of Class of Service TLV in the STAMP
   reflected a packet.  The Session-Sender, upon receiving the reflected
   packet, will save the DSCP and ECN values for analysis of the CoS in
   the reverse direction.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Class of Service Type    |           Length              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   DSCP1   |   DSCP2   |ECN|            Reserved               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 6: Class of Service TLV

   where fields are defined as the following:



Mirsky, et al.             Expires May 3, 2020                  [Page 9]


Internet-Draft              STAMP Extensions                October 2019


   o  Class of Service Type - TBA4 allocated by IANA Section 5.1

   o  Length - two octets long field, equals four octets.

   o  DSCP1 - The Differentiated Services Code Point (DSCP) intended by
      the Session-Sender.  To be used as the return DSCP from the
      Session-Reflector.

   o  DSCP2 - The received value in the DSCP field at the Session-
      Reflector in the forward direction.

   o  ECN - The received value in the ECN field at the Session-Reflector
      in the forward direction.

   o  Reserved - 18 bits long field, must be zeroed in transmission and
      ignored on receipt.

   A STAMP Session-Sender that includes the CoS TLV sets the value of
   the DSCP1 field and zeroes the value of the DSCP2 field.  A STAMP
   Session-Reflector that received the test packet with the CoS TLV MUST
   include the CoS TLV in the reflected test packet.  Also, the Session-
   Reflector MUST copy the value of the DSCP field of the IP header of
   the received STAMP test packet into the DSCP2 field in the reflected
   test packet.  And, at last, the Session-Reflector MUST set the value
   of the DSCP field in the IP header of the reflected test packet equal
   to the value of the DSCP1 field of the test packet it has received.

   Re-mapping of CoS in some use cases, for example, in mobile backhaul
   networks is used to provide multiple services, i.e., 2G, 3G, LTE,
   over the same network.  But if it is misconfigured, then it is often
   difficult to diagnose the root cause of the problem that is viewed as
   an excessive packet drop of higher level service while packet drop
   for lower service packets is at a normal level.  Using CoS TLV in
   STAMP test helps to troubleshoot the existing problem and also verify
   whether DiffServ policies are processing CoS as required by the
   configuration.

4.5.  Direct Measurement TLV

   The Direct Measurement TLV enables collection of "in profile" IP
   packets that had been transmitted and received by the Session-Sender
   and Session-Reflector respectfully.  The definition of "in-profile
   packet" is outside the scope of this document.








Mirsky, et al.             Expires May 3, 2020                 [Page 10]


Internet-Draft              STAMP Extensions                October 2019


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    Direct Measurement Type    |           Length              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Session-Sender Tx counter  (S_TxC)               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Session-Reflector Rx counter  (R_RxC)             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Session-Reflector Tx counter  (R_TxC)             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 7: Direct Measurement TLV

   where fields are defined as the following:

   o  Direct Measurement Type - TBA5 allocated by IANA Section 5.1

   o  Length - two octets long field equals length on the Value field in
      octets.  Length field value MUST be 12 octets.

   o  Session-Sender Tx counter (S_TxC) is four octets long field.

   o  Session-Reflector Rx counter (R_RxC) is four octets long field.
      MUST be zeroed by the Session-Sender and filled by the Session-
      Reflector.

   o  Session-Reflector Tx counter (R_TxC) is four octets long field.
      MUST be zeroed by the Session-Sender and filled by the Session-
      Reflector.

4.6.  Access Report TLV

   A STAMP Session-Sender MAY include Access Report TLV (Figure 8) to
   indicate changes to the access network status to the Session-
   Reflector.  The definition of an access network is outside the scope
   of this document.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |       Access Report Type      |           Length              |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Access ID   |  Return Code  |          Reserved             |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 8: Access Report TLV




Mirsky, et al.             Expires May 3, 2020                 [Page 11]


Internet-Draft              STAMP Extensions                October 2019


   where fields are defined as follows:

   o  Access Report Type - TBA6 allocated by IANA Section 5.1.

   o  Length - two octets long field, equals four octets.

   o  Access ID - one octet long field that identifies the access
      network, e.g., 3GPP (Radio Access Technologies specified by 3GPP)
      or Non-3GPP (accesses that are not specified by 3GPP) [TS23501].
      The value is one of Section 5.4.

   o  Return Code - one octet long field that identifies the report
      signal, e.g., available, unavailable.  The value is one of
      Section 5.5.

   o  Reserved - two octets long field, must be zeroed on transmission
      and ignored on receipt.

   The STAMP Session-Sender that includes the Access Report TLV sets the
   value of the Access ID field according to the type of access network
   it reports on.  Also, the Session-Sender sets the value of the Return
   Code field to reflect the operational state of the access network.
   The mechanism to determine the state of the access network is outside
   the scope of this specification.  A STAMP Session-Reflector that
   received the test packet with the Access Report TLV MUST include the
   Access Report TLV in the reflected test packet.  The Session-
   Reflector MUST set the value of the Access ID and Return Code fields
   equal to the values of the corresponding fields from the test packet
   it has received.

   The Session-Sender MUST also arm a retransmission timer after sending
   a test packet that includes the Access Report TLV.  This timer MUST
   be disarmed upon the reception of the reflected STAMP test packet
   that includes Access Report TLV.  In the event the timer expires
   before such a packet is received, the Session-Sender MUST retransmit
   the STAMP test packet that contains the Access Report TLV.  This
   retransmission SHOULD be repeated up to four times before the
   procedure is aborted.  Setting the value for the retransmission timer
   is based on local policies, network environment.  The default value
   of the retransmission timer for Access Report TLV SHOULD be three
   seconds.  An implementation MUST provide control of the
   retransmission timer value and the number of retransmissions.

   The Access Report TLV is used by the Performance Measurement Function
   (PMF) components of the Access Steering, Switching and Splitting
   feature for 5G networks [TS23501].  The PMF component in the User
   Equipment acts as the STAMP Session-Sender, and the PMF component in
   the User Plane Function acts as the STAMP Session-Reflector.



Mirsky, et al.             Expires May 3, 2020                 [Page 12]


Internet-Draft              STAMP Extensions                October 2019


4.7.  Follow-up Telemetry TLV

   A Session-Reflector might be able to put in the Timestamp field only
   a "SW Local" (see Table 6) timestamp.  But the hosting system might
   provide the timestamp closer to the start of actual packet
   transmission even though when it is not possible to deliver the
   information to the Session-Sender in the packet itself.  This
   timestamp might nevertheless be important for the Session-Sender, as
   it helps in to improve the accuracy of measuring network delay by
   minimizing the impact of egress queuing delays on the measurement.

   A STAMP Session-Sender MAY include the Follow-up Telemetry TLV to
   request information from the Session-Reflector.  The Session-Sender
   MUST set the Follow-up Telemetry Type and Length fields to their
   appropriate values.  Sequence Number and Timestamp fields MUST be
   zeroed on transmission by the Session-Sender and ignored by the
   Session-Reflector upon receipt of the STAMP test packet that includes
   the Follow-up Telemetry TLV.  The Session-Reflector MUST validate the
   Length value of the STAMP test packet.  If the value of the Length
   field is invalid, the Session-Reflector MUST zero Sequence Number and
   Timestamp fields.  If the Session-Reflector is in stateless mode
   (defined in Section 4.2 [I-D.ietf-ippm-stamp]), it MUST zero Sequence
   Number and Timestamp fields.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Follow-up Telemetry Type    |           Length              |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                        Sequence Number                        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                          Timestamp                            |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |  Timestamp M  |                     Reserved                  |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 9: Follow-up Telemetry TLV

   where fields are defined as follows:

   o  Follow-up Telemetry Type - TBA7 allocated by IANA Section 5.1.

   o  Length - two octets long field, equals 12 octets.

   o  Sequence Number - four octets long field indicating the sequence
      number of the last packet reflected in the same STAMP-test
      session.  Since the Session-Reflector runs in the stateful mode



Mirsky, et al.             Expires May 3, 2020                 [Page 13]


Internet-Draft              STAMP Extensions                October 2019


      (defined in Section 4.2 [I-D.ietf-ippm-stamp]), it is the Session-
      Reflector's Sequence Number of the previous reflected packet.

   o  Timestamp - eight octets long field, with the format indicated by
      the Z flag of the Error Estimate field as described in Section 4.1
      [I-D.ietf-ippm-stamp].  It carries the timestamp when the
      reflected packet with the specified sequence number was sent..

   o  Timestamp M(ode) - one octet long field that characterizes the
      method by which the entity that transmits a reflected STAMP packet
      obtained the timestamp.  The value is one of the listed in
      Table 6.

   o  Reserved - the field MUST be zeroed on transmission and ignored on
      receipt.

5.  IANA Considerations

5.1.  STAMP TLV Registry

   IANA is requested to create the STAMP TLV Type registry.  All code
   points in the range 1 through 32759 in this registry shall be
   allocated according to the "IETF Review" procedure as specified in
   [RFC8126].  Code points in the range 32760 through 65279 in this
   registry shall be allocated according to the "First Come First
   Served" procedure as specified in [RFC8126].  Remaining code points
   are allocated according to Table 1:

   +---------------+-------------------------+-------------------------+
   | Value         |       Description       | Reference               |
   +---------------+-------------------------+-------------------------+
   | 0             |         Reserved        | This document           |
   | 1- 32767      |      Mandatory TLV,     | IETF Review             |
   |               |        unassigned       |                         |
   | 32768 - 65279 |      Optional TLV,      | First Come First Served |
   |               |        unassigned       |                         |
   | 65280 - 65519 |       Experimental      | This document           |
   | 65520 - 65534 |       Private Use       | This document           |
   | 65535         |         Reserved        | This document           |
   +---------------+-------------------------+-------------------------+

                     Table 1: STAMP TLV Type Registry

   This document defines the following new values in the STAMP TLV Type
   registry:






Mirsky, et al.             Expires May 3, 2020                 [Page 14]


Internet-Draft              STAMP Extensions                October 2019


             +-------+-----------------------+---------------+
             | Value |      Description      | Reference     |
             +-------+-----------------------+---------------+
             | TBA1  |     Extra Padding     | This document |
             | TBA2  |        Location       | This document |
             | TBA3  | Timestamp Information | This document |
             | TBA4  |    Class of Service   | This document |
             | TBA6  |     Access Report     | This document |
             | TBA7  |  Follow-up Telemetry  | This document |
             +-------+-----------------------+---------------+

                           Table 2: STAMP Types

5.2.  Synchronization Source Sub-registry

   IANA is requested to create Synchronization Source sub-registry as
   part of STAMP TLV Type registry.  All code points in the range 1
   through 127 in this registry shall be allocated according to the
   "IETF Review" procedure as specified in [RFC8126].  Code points in
   the range 128 through 239 in this registry shall be allocated
   according to the "First Come First Served" procedure as specified in
   [RFC8126].  Remaining code points are allocated according to Table 1:

          +-----------+--------------+-------------------------+
          | Value     | Description  | Reference               |
          +-----------+--------------+-------------------------+
          | 0         |   Reserved   | This document           |
          | 1- 127    |  Unassigned  | IETF Review             |
          | 128 - 239 |  Unassigned  | First Come First Served |
          | 240 - 249 | Experimental | This document           |
          | 250 - 254 | Private Use  | This document           |
          | 255       |   Reserved   | This document           |
          +-----------+--------------+-------------------------+

               Table 3: Synchronization Source Sub-registry

   This document defines the following new values in the Synchronization
   Source sub-registry:













Mirsky, et al.             Expires May 3, 2020                 [Page 15]


Internet-Draft              STAMP Extensions                October 2019


              +-------+---------------------+---------------+
              | Value |     Description     | Reference     |
              +-------+---------------------+---------------+
              | 1     |         NTP         | This document |
              | 2     |         PTP         | This document |
              | 3     |       SSU/BITS      | This document |
              | 4     | GPS/GLONASS/LORAN-C | This document |
              | 5     |  Local free-running | This document |
              +-------+---------------------+---------------+

                     Table 4: Synchronization Sources

5.3.  Timestamping Method Sub-registry

   IANA is requested to create Timestamping Method sub-registry as part
   of STAMP TLV Type registry.  All code points in the range 1 through
   127 in this registry shall be allocated according to the "IETF
   Review" procedure as specified in [RFC8126].  Code points in the
   range 128 through 239 in this registry shall be allocated according
   to the "First Come First Served" procedure as specified in [RFC8126].
   Remaining code points are allocated according to Table 1:

          +-----------+--------------+-------------------------+
          | Value     | Description  | Reference               |
          +-----------+--------------+-------------------------+
          | 0         |   Reserved   | This document           |
          | 1- 127    |  Unassigned  | IETF Review             |
          | 128 - 239 |  Unassigned  | First Come First Served |
          | 240 - 249 | Experimental | This document           |
          | 250 - 254 | Private Use  | This document           |
          | 255       |   Reserved   | This document           |
          +-----------+--------------+-------------------------+

                 Table 5: Timestamping Method Sub-registry

   This document defines the following new values in the Timestamping
   Methods sub-registry:

                 +-------+---------------+---------------+
                 | Value |  Description  | Reference     |
                 +-------+---------------+---------------+
                 | 1     |   HW Assist   | This document |
                 | 2     |    SW local   | This document |
                 | 3     | Control plane | This document |
                 +-------+---------------+---------------+

                       Table 6: Timestamping Methods




Mirsky, et al.             Expires May 3, 2020                 [Page 16]


Internet-Draft              STAMP Extensions                October 2019


5.4.  Access ID Sub-registry

   IANA is requested to create Access ID sub-registry as part of STAMP
   TLV Type registry.  All code points in the range 1 through 127 in
   this registry shall be allocated according to the "IETF Review"
   procedure as specified in [RFC8126].  Code points in the range 128
   through 239 in this registry shall be allocated according to the
   "First Come First Served" procedure as specified in [RFC8126].
   Remaining code points are allocated according to Table 7:

          +-----------+--------------+-------------------------+
          | Value     | Description  | Reference               |
          +-----------+--------------+-------------------------+
          | 0         |   Reserved   | This document           |
          | 1- 127    |  Unassigned  | IETF Review             |
          | 128 - 239 |  Unassigned  | First Come First Served |
          | 240 - 249 | Experimental | This document           |
          | 250 - 254 | Private Use  | This document           |
          | 255       |   Reserved   | This document           |
          +-----------+--------------+-------------------------+

                      Table 7: Access ID Sub-registry

   This document defines the following new values in the Access ID sub-
   registry:

                  +-------+-------------+---------------+
                  | Value | Description | Reference     |
                  +-------+-------------+---------------+
                  | 1     |     3GPP    | This document |
                  | 2     |   Non-3GPP  | This document |
                  +-------+-------------+---------------+

                            Table 8: Access IDs

5.5.  Return Code Sub-registry

   IANA is requested to create Return Code sub-registry as part of STAMP
   TLV Type registry.  All code points in the range 1 through 127 in
   this registry shall be allocated according to the "IETF Review"
   procedure as specified in [RFC8126].  Code points in the range 128
   through 239 in this registry shall be allocated according to the
   "First Come First Served" procedure as specified in [RFC8126].
   Remaining code points are allocated according to Table 7:







Mirsky, et al.             Expires May 3, 2020                 [Page 17]


Internet-Draft              STAMP Extensions                October 2019


          +-----------+--------------+-------------------------+
          | Value     | Description  | Reference               |
          +-----------+--------------+-------------------------+
          | 0         |   Reserved   | This document           |
          | 1- 127    |  Unassigned  | IETF Review             |
          | 128 - 239 |  Unassigned  | First Come First Served |
          | 240 - 249 | Experimental | This document           |
          | 250 - 254 | Private Use  | This document           |
          | 255       |   Reserved   | This document           |
          +-----------+--------------+-------------------------+

                     Table 9: Return Code Sub-registry

   This document defines the following new values in the Return Code
   sub-registry:

              +-------+---------------------+---------------+
              | Value |     Description     | Reference     |
              +-------+---------------------+---------------+
              | 1     |  Network available  | This document |
              | 2     | Network unavailable | This document |
              +-------+---------------------+---------------+

                          Table 10: Return Codes

6.  Security Considerations

   Use of HMAC in authenticated mode may be used to simultaneously
   verify both the data integrity and the authentication of the STAMP
   test packets.

7.  Acknowledgments

   Authors much appreciate the thorough review and thoughful comments
   received from Tianran Zhou.

8.  Contributors

   The following people contributed text to this document:

      Guo Jun
      ZTE Corporation
      68# Zijinghua Road
      Nanjing, Jiangsu  210012
      P.R.China

      Phone: +86 18105183663
      Email: guo.jun2@zte.com.cn



Mirsky, et al.             Expires May 3, 2020                 [Page 18]


Internet-Draft              STAMP Extensions                October 2019


9.  References

9.1.  Normative References

   [I-D.ietf-ippm-stamp]
              Mirsky, G., Jun, G., Nydell, H., and R. Foote, "Simple
              Two-way Active Measurement Protocol", draft-ietf-ippm-
              stamp-09 (work in progress), October 2019.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC5357]  Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.
              Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",
              RFC 5357, DOI 10.17487/RFC5357, October 2008,
              <https://www.rfc-editor.org/info/rfc5357>.

   [RFC6038]  Morton, A. and L. Ciavattone, "Two-Way Active Measurement
              Protocol (TWAMP) Reflect Octets and Symmetrical Size
              Features", RFC 6038, DOI 10.17487/RFC6038, October 2010,
              <https://www.rfc-editor.org/info/rfc6038>.

   [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", BCP 26,
              RFC 8126, DOI 10.17487/RFC8126, June 2017,
              <https://www.rfc-editor.org/info/rfc8126>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2.  Informative References

   [IEEE.1588.2008]
              "Standard for a Precision Clock Synchronization Protocol
              for Networked Measurement and Control Systems",
              IEEE Standard 1588, March 2008.

   [RFC5905]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
              "Network Time Protocol Version 4: Protocol and Algorithms
              Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
              <https://www.rfc-editor.org/info/rfc5905>.







Mirsky, et al.             Expires May 3, 2020                 [Page 19]


Internet-Draft              STAMP Extensions                October 2019


   [TS23501]  3GPP (3rd Generation Partnership Project), "Technical
              Specification Group Services and System Aspects; System
              Architecture for the 5G System; Stage 2 (Release 16)",
              3GPP TS23501, 2019.

Authors' Addresses

   Greg Mirsky
   ZTE Corp.

   Email: gregimirsky@gmail.com


   Xiao Min
   ZTE Corp.

   Email: xiao.min2@zte.com.cn


   Henrik Nydell
   Accedian Networks

   Email: hnydell@accedian.com


   Richard Foote
   Nokia

   Email: footer.foote@nokia.com


   Adi Masputra
   Apple Inc.
   One Apple Park Way
   Cupertino, CA  95014
   USA

   Email: adi@apple.com


   Ernesto Ruffini
   OutSys
   via Caracciolo, 65
   Milano  20155
   Italy

   Email: eruffini@outsys.org




Mirsky, et al.             Expires May 3, 2020                 [Page 20]


Html markup produced by rfcmarkup 1.129d, available from https://tools.ietf.org/tools/rfcmarkup/