[Docs] [txt|pdf|xml|html] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]

Versions: 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

LAMPS WG                                                   P. Kampanakis
Internet-Draft                                             Cisco Systems
Intended status: Standards Track                                 Q. Dang
Expires: April 22, 2019                                             NIST
                                                        October 19, 2018


     Internet X.509 Public Key Infrastructure: Additional Algorithm
  Identifiers for RSASSA-PSS and ECDSA using SHAKEs as Hash Functions
                     draft-ietf-lamps-pkix-shake-03

Abstract

   Digital signatures are used to sign messages, X.509 certificates and
   CRLs (Certificate Revocation Lists).  This document describes the
   conventions for using the SHAKE family of hash functions in the
   Internet X.509 as one-way hash functions with the RSA Probabilistic
   Signature Scheme and ECDSA signature algorithms.  The conventions for
   the associated subject public keys are also described.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 22, 2019.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must



Kampanakis & Dang        Expires April 22, 2019                 [Page 1]


Internet-Draft         SHAKE identifiers in X.509           October 2018


   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Change Log  . . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4
   4.  Identifiers . . . . . . . . . . . . . . . . . . . . . . . . .   4
   5.  Use in PKIX . . . . . . . . . . . . . . . . . . . . . . . . .   5
     5.1.  Signatures  . . . . . . . . . . . . . . . . . . . . . . .   5
       5.1.1.  RSASSA-PSS Signatures . . . . . . . . . . . . . . . .   5
       5.1.2.  Deterministic ECDSA Signatures  . . . . . . . . . . .   6
     5.2.  Public Keys . . . . . . . . . . . . . . . . . . . . . . .   7
       5.2.1.  RSASSA-PSS Public Keys  . . . . . . . . . . . . . . .   7
       5.2.2.  ECDSA Public Keys . . . . . . . . . . . . . . . . . .   8
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   8
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .   9
   8.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   9
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   9
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .   9
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  10
   Appendix A.  ASN.1 module . . . . . . . . . . . . . . . . . . . .  11
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  16

1.  Change Log

   [ EDNOTE: Remove this section before publication. ]

   o  draft-ietf-lamps-pkix-shake-03:

      *  Updates based on suggestions and clarifications by Jim.

      *  Added ASN.1.

   o  draft-ietf-lamps-pkix-shake-02:

      *  Significant reorganization of the sections to simplify the
         introduction, the new OIDs and their use in PKIX.

      *  Added new OIDs for RSASSA-PSS that hardcode hash, salt and MGF,
         according the WG consensus.

      *  Updated Public Key section to use the new RSASSA-PSS OIDs and
         clarify the algorithm identifier usage.

      *  Removed the no longer used SHAKE OIDs from section 3.1.



Kampanakis & Dang        Expires April 22, 2019                 [Page 2]


Internet-Draft         SHAKE identifiers in X.509           October 2018


      *  Consolidated subsection for message digest algorithms.

      *  Text fixes.

   o  draft-ietf-lamps-pkix-shake-01:

      *  Changed titles and section names.

      *  Removed DSA after WG discussions.

      *  Updated shake OID names and parameters, added MGF1 section.

      *  Updated RSASSA-PSS section.

      *  Added Public key algorithm OIDs.

      *  Populated Introduction and IANA sections.

   o  draft-ietf-lamps-pkix-shake-00:

      *  Initial version

2.  Introduction

   This document describes several cryptographic algorithm identifiers
   for several cryptographic algorithms which use variable length output
   SHAKE functions introduced in [SHA3] which can be used with the
   Internet X.509 Certificate and CRL profile [RFC5280].

   The SHA-3 family of one-way hash functions is specified in [SHA3].
   In the SHA-3 family, two extendable-output functions (SHAKEs):
   SHAKE128 and SHAKE256, are defined.  Four other hash function
   instances, SHA3-224, SHA3-256, SHA3-384, and SHA3-512 are also
   defined but are out of scope for this document.  A SHAKE is a
   variable length hash function.  The output length, in bits, of a
   SHAKE is defined by the d parameter.  The corresponding collision and
   second preimage resistance strengths for SHAKE128 are min(d/2,128)
   and min(d,128) bits respectively.  And, the corresponding collision
   and second preimage resistance strengths for SHAKE256 are
   min(d/2,256) and min(d,256) bits respectively.

   A SHAKE can be used as the message digest function (to hash the
   message to be signed) in RSASSA-PSS and ECDSA and as the hash in the
   mask generating function in RSASSA-PSS.  In Section 4, we define four
   new OIDs for RSASSA-PSS and ECDSA when SHAKE128 and SHAKE256 are
   used.  The same algorithm identifiers are used for identifying a
   public key, and identifying a signature.




Kampanakis & Dang        Expires April 22, 2019                 [Page 3]


Internet-Draft         SHAKE identifiers in X.509           October 2018


3.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

4.  Identifiers

   The new identifiers for RSASSA-PSS signatures using SHAKEs are below.

     id-RSASSA-PSS-SHAKE128  OBJECT IDENTIFIER  ::=  { TBD }

     id-RSASSA-PSS-SHAKE256  OBJECT IDENTIFIER  ::=  { TBD }

     [ EDNOTE: "TBD" will be specified by NIST later. ]

   The new algorithm identifiers of ECDSA signatures using SHAKEs are
   below.



     id-ecdsa-with-shake128 OBJECT IDENTIFIER  ::=  { joint-iso-ccitt(2)
               country(16) us(840) organization(1) gov(101)
               csor(3) algorithms(4) id-ecdsa-with-shake(3)
               TBD }



     id-ecdsa-with-shake256 OBJECT IDENTIFIER  ::=  { joint-iso-ccitt(2)
               country(16) us(840) organization(1) gov(101)
               csor(3) algorithms(4) id-ecdsa-with-shake(3)
               TBD }

     [ EDNOTE: "TBD" will be specified by NIST later. ]

   The parameters for these four identifiers above MUST be absent.  That
   is, the identifier SHALL be a SEQUENCE of one component, the OID.

   Section 5.1.1 and Section 5.1.2 specify the required output length
   for each use of SHAKE128 or SHAKE256 in RSASSA-PSS and ECDSA.  In
   summary, when hashing messages to be signed, output lengths of
   SHAKE128 and SHAKE256 are 256 and 512 bits respectively.  When the
   SHAKEs are used as mask generation functions, their output lengths
   are (n - 264) or (n - 520) bits respectively, where n is a RSA
   modulus size in bits.






Kampanakis & Dang        Expires April 22, 2019                 [Page 4]


Internet-Draft         SHAKE identifiers in X.509           October 2018


5.  Use in PKIX

5.1.  Signatures

   Signatures can be placed in a number of different ASN.1 structures.
   The top level structure for an X.509 certificate, to illustrate how
   signatures are frequently encoded with an algorithm identifier and a
   location for the signature, is

      Certificate  ::=  SEQUENCE  {
         tbsCertificate       TBSCertificate,
         signatureAlgorithm   AlgorithmIdentifier,
         signatureValue       BIT STRING  }

   The identifiers defined in Section 4 can be used as the
   AlgorithmIdentifier in the signatureAlgorithm field in the sequence
   Certificate and the signature field in the sequence tbsCertificate in
   X.509 [RFC5280].

   Conforming CA implementations MUST specify the algorithms explicitly
   by using the OIDs specified in Section 4 when encoding RSASSA-PSS and
   ECDSA with SHAKE signatures in certificates and CRLs.  Encoding rules
   for RSASSA-PSS and ECDSA signature values are specified in [RFC4055]
   and [RFC5480] respectively.

   Conforming client implementations that process RSASSA-PSS and ECDSA
   with SHAKE signatures when processing certificates and CRLs MUST
   recognize the corresponding OIDs.

5.1.1.  RSASSA-PSS Signatures

   The RSASSA-PSS algorithm is defined in [RFC8017].  When id-RSASSA-
   PSS-SHAKE128 or id-RSASSA-PSS-SHAKE256 specified in Section 4 is
   used, the encoding MUST omit the parameters field.  That is, the
   AlgorithmIdentifier SHALL be a SEQUENCE of one component, id-RSASSA-
   PSS-SHAKE128 or id-RSASSA-PSS-SHAKE256.

   The hash algorithm to hash a message being signed and the hash
   algorithm as the mask generation function "MGF(H, emLen - hLen - 1)"
   [RFC8017] used in RSASSA-PSS MUST be the same, SHAKE128 or SHAKE256
   respectively.  The output-length of the hash algorithm which hashes
   the message SHALL be 32 or 64 bytes respectively.

   In RSASSA-PSS, a mask generation function takes an octet string of
   variable length and a desired output length as input, and outputs an
   octet string of the desired length.  In RSASSA-PSS with SHAKES, the
   SHAKEs MUST be used natively as the MGF function, instead of the MGF1
   algorithm that uses the hash function in multiple iterations as



Kampanakis & Dang        Expires April 22, 2019                 [Page 5]


Internet-Draft         SHAKE identifiers in X.509           October 2018


   specified in Section B.2.1 of [RFC8017].  In other words, the MGF is
   defined as

       SHAKE128(mgfSeed, maskLen)

   and

       SHAKE256(mgfSeed, maskLen)

   respectively for id-RSASSA-PSS-SHAKE128 and id-RSASSA-PSS-SHAKE256.
   The mgfSeed is the seed from which mask is generated, an octet
   string.  The maskLen for SHAKE128 or SHAKE256 being used as the MGF
   is (n - 264)/8 or (n - 520)/8 bytes respectively, where n is the RSA
   modulus in bits.  For example, when RSA modulus n is 2048, the output
   length of SHAKE128 or SHAKE256 as the MGF will be 223 or 191 when id-
   RSASSA-PSS-SHAKE128 or id-RSASSA-PSS-SHAKE256 is used respectively.

   The RSASSA-PSS saltLength MUST be 32 or 64 bytes respectively.
   Finally, the trailerField MUST be 1, which represents the trailer
   field with hexadecimal value 0xBC [RFC8017].

5.1.2.  Deterministic ECDSA Signatures

   The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in
   [X9.62].  When the id-ecdsa-with-SHAKE128 or id-ecdsa-with-SHAKE256
   (specified in Section 4) algorithm identifier appears, the respective
   SHAKE function (SHAKE128 or SHAKE256) is used as the hash.  The
   encoding MUST omit the parameters field.  That is, the
   AlgorithmIdentifier SHALL be a SEQUENCE of one component, the OID id-
   ecdsa-with-SHAKE128 or id-ecdsa-with-SHAKE256.

   For simplicity and compliance with the ECDSA standard specification,
   the output size of the hash function must be explicitly determined.
   The output size, d, for SHAKE128 or SHAKE256 used in ECDSA MUST be
   256 or 512 bits respectively.

   Conforming CA implementations that generate ECDSA with SHAKE
   signatures in certificates or CRLs MUST generate such signatures with
   a deterministicly generated, non-random k in accordance with all the
   requirements specified in [RFC6979].  They MAY also generate such
   signatures in accordance with all other recommendations in [X9.62] or
   [SEC1] if they have a stated policy that requires conformance to
   these standards.  These standards may have not specified SHAKE128 and
   SHAKE256 as hash algorithm options.  However, SHAKE128 and SHAKE256
   with output length being 32 and 64 octets respectively are
   subtitutions for 256 and 512-bit output hash algorithms such as
   SHA256 and SHA512 used in the standards.




Kampanakis & Dang        Expires April 22, 2019                 [Page 6]


Internet-Draft         SHAKE identifiers in X.509           October 2018


   In Section 3.2 "Generation of k" of [RFC6979], HMAC is used to derive
   the deterministic k.  Conforming implementations that generate
   deterministic ECDSA with SHAKE signatures in X.509 MUST use KMAC with
   SHAKE128 or KMAC with SHAKE256 as specfied in [SP800-185] when
   SHAKE128 or SHAKE256 is used as the message hashing algorithm,
   respectively.  In this situation, KMAC with SHAKE128 and KMAC with
   SHAKE256 have 256-bit and 512-bit outputs respectively, and the
   optional customization bit string S is an empty string.

5.2.  Public Keys

   Certificates conforming to [RFC5280] can convey a public key for any
   public key algorithm.  The certificate indicates the algorithm
   through an algorithm identifier.  This algorithm identifier is an OID
   and optionally associated parameters.

   In the X.509 certificate, the subjectPublicKeyInfo field has the
   SubjectPublicKeyInfo type, which has the following ASN.1 syntax:

     SubjectPublicKeyInfo  ::=  SEQUENCE  {
          algorithm         AlgorithmIdentifier,
          subjectPublicKey  BIT STRING
     }

   The fields in SubjectPublicKeyInfo have the following meanings:

   o  algorithm is the algorithm identifier and parameters for the
      public key.

   o  subjectPublicKey contains the byte stream of the public key.  The
      algorithms defined in this document always encode the public key
      as an exact multiple of 8-bits.

   Conforming CA implementations MUST specify the algorithms explicitly
   by using the OIDs specified in Section 4 when encoding RSASSA-PSS and
   ECDSA with SHAKE public keys in certificates and CRLs.  The
   conventions for RSASSA-PSS and ECDSA public keys algorithm
   identifiers are as specified in [RFC3279], [RFC4055] and [RFC5480] ,
   but we include them below for convenience.

5.2.1.  RSASSA-PSS Public Keys

   [RFC3279] defines the following OID for RSA AlgorithmIdentifier in
   the SubjectPublicKeyInfo with NULL parameters.

     rsaEncryption OBJECT IDENTIFIER ::=  { pkcs-1 1}





Kampanakis & Dang        Expires April 22, 2019                 [Page 7]


Internet-Draft         SHAKE identifiers in X.509           October 2018


   Additionally, when the RSA private key owner wishes to limit the use
   of the public key exclusively to RSASSA-PSS, the AlgorithmIdentifiers
   for RSASSA-PSS defined in Section 4 can be used as the algorithm
   field in the SubjectPublicKeyInfo sequence [RFC5280].  The identifier
   parameters, as explained in section Section 4, MUST be absent.

   Regardless of what public key algorithm identifier is used, the RSA
   public key, which is composed of a modulus and a public exponent,
   MUST be encoded using the RSAPublicKey type [RFC4055].  The output of
   this encoding is carried in the certificate subjectPublicKey.

     RSAPublicKey ::= SEQUENCE {
           modulus INTEGER, -- n
           publicExponent INTEGER  -- e
     }

5.2.2.  ECDSA Public Keys

   For ECDSA, the public key identifier defined in [RFC5480] is

     id-ecPublicKey OBJECT IDENTIFIER ::= {
          iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }

   Additionally, the mandatory EC SubjectPublicKey is defined in
   Section 2.1.1 and its syntax is in Section 2.2 of [RFC5480].  We also
   include them here for convenience:

   The id-ecPublicKey parameters MUST be present and are defined as

     ECParameters ::= CHOICE {
         namedCurve         OBJECT IDENTIFIER
         -- implicitCurve   NULL
         -- specifiedCurve  SpecifiedECDomain
      }

   The ECParameters associated with the ECDSA public key in the signer's
   certificate SHALL apply to the verification of the signature.

6.  IANA Considerations

   [ EDNOTE: Update here only if there are OID allocations by IANA. ]

   This document has no IANA actions.








Kampanakis & Dang        Expires April 22, 2019                 [Page 8]


Internet-Draft         SHAKE identifiers in X.509           October 2018


7.  Security Considerations

   The SHAKEs are deterministic functions.  Like any other deterministic
   functions, executing each function with the same input multiple times
   will produce the same output.  Therefore, users should not expect
   unrelated outputs (with the same or different output lengths) from
   excuting a SHAKE function with the same input multiple times.The
   shorter one of any 2 outputs produced from a SHAKE with the same
   input is a prefix of the longer one.  It is a similar situation as
   truncating a 512-bit output of SHA-512 by taking its 256 left-most
   bits.  These 256 left-most bits are a prefix of the 512-bit output.

   Implementations must protect the signer's private key.  Compromise of
   the signer's private key permits masquerade.

   Implementations must randomly generate one-time values, such as the k
   value when generating a ECDSA signature.  In addition, the generation
   of public/private key pairs relies on random numbers.  The use of
   inadequate pseudo-random number generators (PRNGs) to generate such
   cryptographic values can result in little or no security.  The
   generation of quality random numbers is difficult.  [RFC4086] offers
   important guidance in this area, and [SP800-90A] series provide
   acceptable PRNGs.

   Implementers should be aware that cryptographic algorithms may become
   weaker with time.  As new cryptanalysis techniques are developed and
   computing power increases, the work factor or time required to break
   a particular cryptographic algorithm may decrease.  Therefore,
   cryptographic algorithm implementations should be modular allowing
   new algorithms to be readily inserted.  That is, implementers should
   be prepared to regularly update the set of algorithms in their
   implementations.

8.  Acknowledgements

   We would like to thank Sean Turner and Jim Schaad for his valuable
   contributions to this document.

9.  References

9.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.





Kampanakis & Dang        Expires April 22, 2019                 [Page 9]


Internet-Draft         SHAKE identifiers in X.509           October 2018


   [RFC4055]  Schaad, J., Kaliski, B., and R. Housley, "Additional
              Algorithms and Identifiers for RSA Cryptography for use in
              the Internet X.509 Public Key Infrastructure Certificate
              and Certificate Revocation List (CRL) Profile", RFC 4055,
              DOI 10.17487/RFC4055, June 2005,
              <https://www.rfc-editor.org/info/rfc4055>.

   [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
              <https://www.rfc-editor.org/info/rfc5280>.

   [RFC5480]  Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
              "Elliptic Curve Cryptography Subject Public Key
              Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,
              <https://www.rfc-editor.org/info/rfc5480>.

   [RFC8017]  Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
              "PKCS #1: RSA Cryptography Specifications Version 2.2",
              RFC 8017, DOI 10.17487/RFC8017, November 2016,
              <https://www.rfc-editor.org/info/rfc8017>.

   [SHA3]     National Institute of Standards and Technology, "SHA-3
              Standard - Permutation-Based Hash and Extendable-Output
              Functions FIPS PUB 202", August 2015,
              <https://www.nist.gov/publications/sha-3-standard-
              permutation-based-hash-and-extendable-output-functions>.

9.2.  Informative References

   [RFC3279]  Bassham, L., Polk, W., and R. Housley, "Algorithms and
              Identifiers for the Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 3279, DOI 10.17487/RFC3279, April
              2002, <https://www.rfc-editor.org/info/rfc3279>.

   [RFC4086]  Eastlake 3rd, D., Schiller, J., and S. Crocker,
              "Randomness Requirements for Security", BCP 106, RFC 4086,
              DOI 10.17487/RFC4086, June 2005,
              <https://www.rfc-editor.org/info/rfc4086>.

   [RFC6979]  Pornin, T., "Deterministic Usage of the Digital Signature
              Algorithm (DSA) and Elliptic Curve Digital Signature
              Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
              2013, <https://www.rfc-editor.org/info/rfc6979>.





Kampanakis & Dang        Expires April 22, 2019                [Page 10]


Internet-Draft         SHAKE identifiers in X.509           October 2018


   [SEC1]     Standards for Efficient Cryptography Group, "SEC 1:
              Elliptic Curve Cryptography", May 2009,
              <http://www.secg.org/sec1-v2.pdf>.

   [SP800-185]
              National Institute of Standards and Technology, "SHA-3
              Derived Functions: cSHAKE, KMAC, TupleHash and
              ParallelHash. NIST SP 800-185", December 2016,
              <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
              NIST.SP.800-185.pdf>.

   [SP800-90A]
              National Institute of Standards and Technology,
              "Recommendation for Random Number Generation Using
              Deterministic Random Bit Generators. NIST SP 800-90A",
              June 2015,
              <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
              NIST.SP.800-90Ar1.pdf>.

   [X9.62]    American National Standard for Financial Services (ANSI),
              "X9.62-2005 Public Key Cryptography for the Financial
              Services Industry: The Elliptic Curve Digital Signature
              Standard (ECDSA)", November 2005.

Appendix A.  ASN.1 module

   This appendix includes the ASN.1 modules for SHAKEs in X.509.  This
   module does not come from any existing RFC.

    PKIXAlgsForSHAKE-2018 { iso(1) identified-organization(3) dod(6)
      internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
      id-mod-pkix1-shake-2018(TBD) }

    DEFINITIONS EXPLICIT TAGS ::=

    BEGIN

    -- EXPORTS ALL;

    IMPORTS

    -- FROM [RFC5912]

    PUBLIC-KEY, SIGNATURE-ALGORITHM, DIGEST-ALGORITHM, MAC-ALGORITHM,
                                                       SMIME-CAPS
    FROM AlgorithmInformation-2009
      { iso(1) identified-organization(3) dod(6) internet(1) security(5)
        mechanisms(5) pkix(7) id-mod(0)



Kampanakis & Dang        Expires April 22, 2019                [Page 11]


Internet-Draft         SHAKE identifiers in X.509           October 2018


        id-mod-algorithmInformation-02(58) }

    -- FROM [RFC5912]

    id-RSASSA-PSS, RSAPublicKey, rsaEncryption, id-ecPublicKey,
                                        ECPoint, ECDSA-Sig-Value
    FROM PKIXAlgs-2009 { iso(1) identified-organization(3) dod(6)
         internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
         id-mod-pkix1-algorithms2008-02(56) }

    --
    -- One-Way Hash Functions
    -- SHAKE128
    mda-shake128 DIGEST-ALGORITHM ::= {
      IDENTIFIER id-shake128  -- with output length 32 bytes.
    }
    id-shake128 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
                                        us(840) organization(1) gov(101)
                                        csor(3) nistAlgorithm(4)
                                        hashAlgs(2) 11 }

    -- SHAKE-256
    mda-shake256 DIGEST-ALGORITHM ::= {
      IDENTIFIER id-shake256  -- with output length 64 bytes.
    }
    id-shake256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
                                        us(840) organization(1) gov(101)
                                        csor(3) nistAlgorithm(4)
                                        hashAlgs(2) 12 }

    --
    -- Public Key (pk-) Algorithms
    --
    PublicKeys PUBLIC-KEY ::= {
      ...,
          pk-rsaSSA-PSS-SHAKE128 |
      pk-rsaSSA-PSS-SHAKE256 |
      pk-ec,
          ...
    }

    -- From [RFC5912] - Here so it compiles.

    pk-rsa PUBLIC-KEY ::= {
     IDENTIFIER rsaEncryption
     KEY RSAPublicKey
     PARAMS TYPE NULL ARE absent
     -- Private key format not in this module --



Kampanakis & Dang        Expires April 22, 2019                [Page 12]


Internet-Draft         SHAKE identifiers in X.509           October 2018


     CERT-KEY-USAGE {digitalSignature, nonRepudiation,
     keyEncipherment, dataEncipherment, keyCertSign, cRLSign}
    }

    -- The hashAlgorithm is mda-shake128
    -- The maskGenAlgorithm is mda-shake128
    -- Mask Gen Algorithm is SHAKE128 with output length
    -- (n - 264)/8, where n is the RSA modulus in bits.
    -- the saltLength is 32
    -- the trailerField is 1
    pk-rsaSSA-PSS-SHAKE128 PUBLIC-KEY ::= {
        IDENTIFIER id-RSASSA-PSS-SHAKE128
        KEY RSAPublicKey
        PARAMS TYPE NULL ARE absent
         -- Private key format not in this module --
        CERT-KEY-USAGE { nonRepudiation, digitalSignature,
                             keyCertSign, cRLSign }
    }

    -- The hashAlgorithm is mda-shake256
    -- The maskGenAlgorithm is mda-shake256
    -- Mask Gen Algorithm is SHAKE256 with output length
    -- (n - 520)/8, where n is the RSA modulus in bits.
    -- the saltLength is 64
    -- the trailerField is 1
    pk-rsaSSA-PSS-SHAKE256 PUBLIC-KEY ::= {
        IDENTIFIER id-RSASSA-PSS-SHAKE256
        KEY RSAPublicKey
        PARAMS TYPE NULL ARE absent
         -- Private key format not in this module --
        CERT-KEY-USAGE { nonRepudiation, digitalSignature,
                             keyCertSign, cRLSign }
    }

    pk-ec PUBLIC-KEY ::= {
      IDENTIFIER id-ecPublicKey
      KEY ECPoint
      PARAMS TYPE ECParameters ARE required
      -- Private key format not in this module --
      CERT-KEY-USAGE { digitalSignature, nonRepudiation, keyAgreement,
                       keyCertSign, cRLSign }
    }
    ECParameters ::= CHOICE {
     namedCurve      CURVE.&id({NamedCurve})
     -- implicitCurve   NULL
       -- implicitCurve MUST NOT be used in PKIX
     -- specifiedCurve  SpecifiedCurve
       -- specifiedCurve MUST NOT be used in PKIX



Kampanakis & Dang        Expires April 22, 2019                [Page 13]


Internet-Draft         SHAKE identifiers in X.509           October 2018


       -- Details for specifiedCurve can be found in [X9.62]
       -- Any future additions to this CHOICE should be coordinated
       -- with ANSI X.9.
    }

    --
    -- Signature Algorithms (sa-)
    --
    SignatureAlgs SIGNATURE-ALGORITHM ::= {
      ...,
      -- This expands SignatureAlgorithms from [RFC5912]
      sa-rsassapssWithSHAKE128 |
      sa-rsassapssWithSHAKE256 |
      sa-ecdsaWithSHAKE128 |
      sa-ecdsaWithSHAKE256
    }

    --
    -- SMIME Capabilities (sa-)
    --
    SMimeCaps SMIME-CAPS ::= {
      ...,
      -- The expands SMimeCaps from [RFC5912]
      sa-rsassapssWithSHAKE128.&smimeCaps |
      sa-rsassapssWithSHAKE256.&smimeCaps |
      sa-ecdsaWithSHAKE128.&smimeCaps |
      sa-ecdsaWithSHAKE256.&smimeCaps
      }

    -- RSASSA-PSS with SHAKE128
    sa-rsassapssWithSHAKE128 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-RSASSA-PSS-SHAKE128
       PARAMS TYPE NULL ARE absent
          -- The hashAlgorithm is mda-shake128
          -- The maskGenAlgorithm is mda-shake128
          -- Mask Gen Algorithm is SHAKE128 with output length
          -- (n - 264)/8, where n is the RSA modulus in bits.
          -- the saltLength is 32
          -- the trailerField is 1
           HASHES {mda-shake128} -- omitting mda-shake128-params
       PUBLIC-KEYS { pk-rsa | pk-rsaSSA-PSS-SHAKE128 }
       SMIME-CAPS { IDENTIFIED BY id-RSASSA-PSS-SHAKE128 }
    }
    id-RSASSA-PSS-SHAKE128  OBJECT IDENTIFIER  ::=  { TBD }

    -- RSASSA-PSS with SHAKE256
    sa-rsassapssWithSHAKE256 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-RSASSA-PSS-SHAKE256



Kampanakis & Dang        Expires April 22, 2019                [Page 14]


Internet-Draft         SHAKE identifiers in X.509           October 2018


       PARAMS TYPE NULL ARE absent
          -- The hashAlgorithm is mda-shake256
          -- The maskGenAlgorithm is mda-shake256
          -- Mask Gen Algorithm is SHAKE256 with output length
          -- (n - 520)/8, where n is the RSA modulus in bits.
          -- the saltLength is 64
          -- the trailerField is 1
           HASHES {mda-shake256} -- omitting mda-shake256-params
       PUBLIC-KEYS { pk-rsa | pk-rsaSSA-PSS-SHAKE256 }
       SMIME-CAPS { IDENTIFIED BY id-RSASSA-PSS-SHAKE256 }
    }
    id-RSASSA-PSS-SHAKE256  OBJECT IDENTIFIER  ::=  { TBD }

    -- Determinstic ECDSA with SHAKE128
    -- Generating k by using KMAC with SHAKE128 as the hash
    -- [SP800-185] instead of HMAC with output length 256-bits
    -- that is equal to or slightly less than the elliptic
    -- curve group order. S is set to an empty string.
    sa-ecdsaWithSHAKE128 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-ecdsa-with-shake128
       VALUE ECDSA-Sig-Value
       PARAMS TYPE NULL ARE absent
       HASHES { mda-shake128 }
       PUBLIC-KEYS { pk-ec }
       SMIME-CAPS { IDENTIFIED BY id-ecdsa-with-shake128 }
    }
    id-ecdsa-with-shake128 ::= { joint-iso-itu-t(2) country(16)
                                 us(840) organization(1) gov(101)
                                 csor(3) nistAlgorithm(4)
                                 sigAlgs(3) TBD }

    -- Determinstic ECDSA with SHAKE256
    -- Generating k by using KMAC with SHAKE256 as the hash
    -- [SP800-185] instead of HMAC with output length 512-bits
    -- truncated to equal to or slightly less than the elliptic
    -- curve group order. S is set to an empty string.
    sa-ecdsaWithSHAKE256 SIGNATURE-ALGORITHM ::= {
       IDENTIFIER id-ecdsa-with-shake256
       VALUE ECDSA-Sig-Value
       PARAMS TYPE NULL ARE absent
       HASHES { mda-shake256 }
       PUBLIC-KEYS { pk-ec }
       SMIME-CAPS { IDENTIFIED BY id-ecdsa-with-shake256 }
    }
    id-ecdsa-with-shake256 ::= { joint-iso-itu-t(2) country(16)
                                 us(840) organization(1) gov(101)
                                 csor(3) nistAlgorithm(4)
                                 sigAlgs(3) TBD }



Kampanakis & Dang        Expires April 22, 2019                [Page 15]


Internet-Draft         SHAKE identifiers in X.509           October 2018


    END

Authors' Addresses

   Panos Kampanakis
   Cisco Systems

   Email: pkampana@cisco.com


   Quynh Dang
   NIST
   100 Bureau Drive, Stop 8930
   Gaithersburg, MD  20899-8930
   USA

   Email: quynh.dang@nist.gov


































Kampanakis & Dang        Expires April 22, 2019                [Page 16]


Html markup produced by rfcmarkup 1.129c, available from https://tools.ietf.org/tools/rfcmarkup/