[Docs] [txt|pdf] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]

Versions: 00 01 02 03 04 05 06 RFC 4572

Multiparty Multimedia Session                                  J. Lennox
Control                                                      Columbia U.
Internet-Draft                                             June 16, 2005
Expires: December 18, 2005


 Connection-Oriented Media Transport over the Transport Layer Security
        (TLS) Protocol in the Session Description Protocol (SDP)
                    draft-ietf-mmusic-comedia-tls-03

Status of this Memo

   By submitting this Internet-Draft, each author represents that any
   applicable patent or other IPR claims of which he or she is aware
   have been or will be disclosed, and any of which he or she becomes
   aware will be disclosed, in accordance with Section 6 of BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on December 18, 2005.

Copyright Notice

   Copyright (C) The Internet Society (2005).

Abstract

   This document specifies how to establish secure connection-oriented
   media transport sessions over the Transport Layer Security (TLS)
   protocol using the Session Description Protocol (SDP).  It defines a
   new protocol identifier, TCP/TLS.  It also defines the syntax and
   semantics for an SDP "fingerprint" attribute that identifies the
   certificate which will be presented for the TLS session.  This
   mechanism allows media transport over TLS connections to be



Lennox                  Expires December 18, 2005               [Page 1]


Internet-Draft           Comedia over TLS in SDP               June 2005


   established securely, so long as the integrity of session
   descriptions is assured.

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
   2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  4
   3.  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
     3.1   SDP Operational Modes  . . . . . . . . . . . . . . . . . .  4
     3.2   Threat Model . . . . . . . . . . . . . . . . . . . . . . .  4
     3.3   The Need For Self-Signed Certificates  . . . . . . . . . .  5
     3.4   Example SDP Description For TLS Connection . . . . . . . .  6
   4.  Protocol Identifiers . . . . . . . . . . . . . . . . . . . . .  6
   5.  Fingerprint Attribute  . . . . . . . . . . . . . . . . . . . .  7
   6.  Endpoint Identification  . . . . . . . . . . . . . . . . . . .  8
     6.1   Certificate Choice . . . . . . . . . . . . . . . . . . . .  8
     6.2   Certificate Presentation . . . . . . . . . . . . . . . . .  9
   7.  Security Considerations  . . . . . . . . . . . . . . . . . . . 10
   8.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 11
   A.  Changes From Earlier Versions  . . . . . . . . . . . . . . . . 11
     A.1   Changes From Draft -02 . . . . . . . . . . . . . . . . . . 11
     A.2   Changes From Draft -01 . . . . . . . . . . . . . . . . . . 11
     A.3   Changes From Draft -00 . . . . . . . . . . . . . . . . . . 12
   9.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 12
     9.1   Normative References . . . . . . . . . . . . . . . . . . . 12
     9.2   Informative References . . . . . . . . . . . . . . . . . . 13
       Author's Address . . . . . . . . . . . . . . . . . . . . . . . 14
       Intellectual Property and Copyright Statements . . . . . . . . 15























Lennox                  Expires December 18, 2005               [Page 2]


Internet-Draft           Comedia over TLS in SDP               June 2005


1.  Introduction

   The Session Description Protocol (SDP) [1] provides a general purpose
   format for describing multimedia sessions in announcements or
   invitations.  For many applications, it is desirable to establish, as
   part of a multimedia session, a media stream which uses a connection-
   oriented transport.  The document Connection-Oriented Media Transport
   in the Session Description Protocol (SDP) [2] specifies a general
   mechanism for describing and establishing such connection-oriented
   streams; however, the only transport protocol it directly supports is
   TCP.  In many cases, session participants wish to provide
   confidentiality, data integrity, and authentication for their media
   sessions.  This document therefore extends the Connection-Oriented
   Media specification to allow session descriptions to describe media
   sessions that use the Transport Layer Security (TLS) protocol [3].

   The TLS protocol allows applications to communicate over a channel
   which provides privacy and data integrity.  The TLS specification,
   however, does not specify how specific protocols establish and use
   this secure channel; particularly, TLS leaves the question of how to
   interpret and validate authentication certificates as an issue for
   the protocols which run over TLS.  This document specifies such usage
   for the case of connection-oriented media transport.

   Complicating this issue, endpoints exchanging media will often be
   unable to obtain authentication certificates signed by a well-known
   root certificate authority (CA).  Most certificate authorities charge
   for signed certificates, particularly host-based certificates;
   additionally, there is a substantial administrative overhead to
   obtaining signed certificates, as certificate authorities must be
   able to confirm that they are issuing the signed certificates to the
   correct party.  Furthermore, in many cases endpoints' IP addresses
   and host names are dynamic: they may be obtained from DHCP, for
   example.  It is impractical to obtain a CA-signed certificate valid
   for the duration of a DHCP lease.  For such hosts, self-signed
   certificates are usually the only option.  This specification defines
   a mechanism which allows self-signed certificates can be used
   securely, provided that the integrity of the SDP description is
   assured.  It provides for endpoints to include a secure hash of their
   certificate, known as the "certificate fingerprint", within the
   session description.  Provided the fingerprint of the offered
   certificate matches the one in the session description, end hosts can
   trust even self-signed certificates.

   The rest of this document is laid out as follows.  An overview of the
   problem and threat model is given in Section 3.  Section 4 gives the
   basic mechanism for establishing TLS-based connected-oriented media
   in SDP.  Section 5 describes the SDP fingerprint attribute, which,



Lennox                  Expires December 18, 2005               [Page 3]


Internet-Draft           Comedia over TLS in SDP               June 2005


   assuming the integrity of SDP content is assured, allows the secure
   use of self-signed certificates.  Section 6 describes which X.509
   certificates are presented, and how they are used in TLS.  Section 7
   discusses additional security considerations.

2.  Terminology

   In this document, the key words "MUST", "MUST NOT", "REQUIRED",
   "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
   and "OPTIONAL" are to be interpreted as described in RFC 2119 [4] and
   indicate requirement levels for compliant implementations.

3.  Overview

   This section discusses the threat model which motivates TLS transport
   for connection-oriented media streams.  It also discusses in more
   detail the need for end systems to use self-signed certificates.

3.1  SDP Operational Modes

   There are two principal operational modes for multimedia sessions:
   advertised and offer-answer.  Advertised sessions are the simpler
   mode.  In this mode, a server publishes, in some manner, an SDP
   session description describing a multimedia session it is making
   available.  The classic example of this mode of operation is the
   Session Announcment Protocol (SAP) [14], in which SDP session
   descriptions are periodically transmitted to a well-known multicast
   group.  Traditionally, these descriptions involve multicast
   conferences, but unicast sessions are also possible.  (Connection-
   oriented media, obviously, cannot use multicast.)  Recipients of a
   session description connect to the addresses published in the session
   description.  These recipients may not previously have been known to
   the advertiser of the session description.

   Alternatively, SDP conferences can operate in offer-answer mode [5].
   This mode allows two participants in a multimedia session to
   negotiate the multimedia session between them.  In this model, one
   participant offers the other a description of the desired session
   from its perspective, and the other participant answers with the
   desired session from its own perspective.  In this mode, each of the
   participants in the session has knowledge of the other one.  This is
   the mode of operation used by the Session Initiation Protocol (SIP)
   [15].

3.2  Threat Model

   Participants in multimedia conferences often wish to guarantee
   confidentiality, data integrity, and authentication for their media



Lennox                  Expires December 18, 2005               [Page 4]


Internet-Draft           Comedia over TLS in SDP               June 2005


   sessions.  This section describes various types of attackers and the
   ways they attempt to violate these guarantees.  It then describes how
   the TLS protocol can be used to thwart the attackers.

   The simplest type of attacker is one who listens passively to the
   traffic associated with a multimedia session.  This attacker might,
   for example, be on the same local-area or wireless network as one of
   the participants in a conference.  This sort of attacker does not
   threaten a connection's data integrity or authentication, and almost
   any operational mode of TLS can provide media stream confidentiality.

   More sophisticated is an attacker who can send his own data traffic
   over the network, but who cannot modify or redirect valid traffic.
   In SDP's 'advertised' operational mode, this can barely be considered
   an attack; media sessions are expected to be initiated from anywhere
   on the network.  In SDP's offer-answer mode, however, this type of
   attack is more serious.  An attacker could initiate a connection to
   one or both of the endpoints of a session, thus impersonating an
   endpoint, or acting as a man in the middle to listen in on their
   communications.  To thwart these attacks, TLS uses endpoint
   certificates.  So long as the certificates' private keys have not
   been compromised, the endpoints have an external trusted mechanism
   (most commonly, a mutually-trusted certificate authority) to validate
   certificates, and the endpoints know what certificate identity to
   expect, endpoints can be certain that such an attack has not taken
   place.

   Finally, the most serious type of attacker is one who can modify or
   redirect session descriptions: for example, a compromised or
   malicious SIP proxy server.  Neither TLS itself, nor any mechanisms
   which use it, can protect an SDP session against such an attacker.
   Instead, the SDP description itself must be secured through some
   mechanism; SIP, for example, defines how S/MIME [16] can be used to
   secure session descriptions.

3.3  The Need For Self-Signed Certificates

   SDP session descriptions are created by any endpoint that needs to
   participate in a multimedia session.  In many cases, such as SIP
   phones, such endpoints have dynamically-configured IP addresses and
   host names, and must be deployed with nearly zero configuration.  For
   such an endpoint, it is for practical purposes impossible to obtain a
   certificate signed by a well-known certificate authority.

   If two endpoints have no prior relationship, self-signed certificates
   cannot generally be trusted, as there is no guarantee that an
   attacker is not launching a man-in-the-middle attack.  Fortunately,
   however, if the integrity of SDP session descriptions can be assured,



Lennox                  Expires December 18, 2005               [Page 5]


Internet-Draft           Comedia over TLS in SDP               June 2005


   it is possible to consider those SDP descriptions themselves as a
   prior relationship: certificates can be securely described in the
   session description itself.  This is done by providing a secure hash
   of a certificate, or "certificate fingerprint", as an SDP attribute;
   this mechanism is described in Section 5.

3.4  Example SDP Description For TLS Connection

   Figure 1 illustrates an SDP offer which signals the availability of a
   T.38 fax session over TLS.  For the purpose of brevity, the main
   portion of the session description is omitted in the example, showing
   only the m= line and its attributes.  (This example is the same as
   the first one in [2], except for the proto parameter and the
   fingerprint attribute.)  See the subsequent sections for explanations
   of the example's TLS-specific attributes.

   (Note: due to RFC formatting conventions, this draft splits SDP
   across lines whose content would exceed 72 characters.  A backslash
   character marks where this line folding has taken place.  This
   backslash and its trailing CRLF and whitespace would not appear in
   actual SDP content.)

   m=image 54111 TCP/TLS t38
   c=IN IP4 192.0.2.2
   a=setup:passive
   a=connection:new
   a=fingerprint:SHA-1 \
          4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB

       Figure 1: Example SDP Description Offering a TLS Media Stream


4.  Protocol Identifiers

   The m= line in SDP specifies, among other items, the transport
   protocol to be used for the media in the session.  See the "Media
   Descriptions" section of SDP [1] for a discussion on transport
   protocol identifiers.

   This specification defines a new protocol identifier, TCP/TLS, which
   indicates that the media described will use the Transport Layer
   Security protocol [3] over TCP.  (Using TLS over other transport
   protocols is not discussed by this document.)  The TCP/TLS protocol
   identifier describes only the transport protocol, not the upper-layer
   protocol.  An m= line that specifies TCP/TLS MUST further qualify the
   protocol using a fmt identifier, to indicate the application being
   run over TLS.




Lennox                  Expires December 18, 2005               [Page 6]


Internet-Draft           Comedia over TLS in SDP               June 2005


   As TLS sessions are connection-oriented, media sessions described in
   this manner follow the procedures defined in the connection-oriented
   media specification [2].  They also use the attributes defined in
   that specification, "a=setup" and "a=connection".

5.  Fingerprint Attribute

   Parties to a TLS session indicate their identities by presenting
   authentication certificates as part of the TLS handshake procedure.
   Authentication certificates are X.509 [6] certificates, as profiled
   by RFC 3279 [7] and RFC 3280 [8].

   In order to associate media streams with connections, and to prevent
   unauthorized barge-in attacks on the media streams, endpoints MAY
   provide a certificate fingerprint.  If the X.509 certificate
   presented for the TLS connection matches the fingerprint presented in
   the SDP, the endpoint can be confident that the author of the SDP is
   indeed the initiator of the connection.

   A certificate fingerprint is a secure one-way hash of the DER
   (distinguished encoding rules) form of the certificate.  (Certificate
   fingerprints are widely supported by tools which manipulate X.509
   certificates; for instance, the command "openssl x509 -fingerprint"
   causes the command-line tool of the openssl package to print a
   certificate fingerprint, and the certificate managers for Mozilla and
   Internet Explorer display them when viewing the details of a
   certificate.)

   A fingerprint is represented in SDP as an attribute (an "a=" line).
   It consists of the name of the hash function used, followed by the
   hash value itself.  The hash value is represented as a sequence of
   upper-case hexadecimal bytes, separated by colons.  The number of
   bytes is defined by the hash function.  (This is the syntax used by
   openssl and by the browsers' certificate managers.  It is different
   from the syntax used to represent hash values in, e.g., HTTP digest
   authentication [17], which uses unseparated lower-case hexadecimal
   bytes.  It was felt that consistency with other applications of
   fingerprints was more important.)

   The formal syntax of the fingerprint attribute is given in Augmented
   Backus-Naur Form [9] in Figure 2.  This syntax extends the BNF syntax
   of SDP [1].









Lennox                  Expires December 18, 2005               [Page 7]


Internet-Draft           Comedia over TLS in SDP               June 2005


   attribute              =/ fingerprint-attribute

   fingerprint-attribute  =  "fingerprint" ":" hash-func SP fingerprint

   hash-func              =  "sha-1" / "md5" / "md2" / token
                             ; Additional hash functions can only come
                             ; from updates to RFC 3279

   fingerprint            =  2UHEX *(":" 2UHEX)
                             ; Each byte in upper-case hex, separated
                             ; by colons.

   UHEX                   =  DIGIT / %x41-46 ; A-F uppercase

   Figure 2: Augmented Backus-Naur Syntax for the Fingerprint Attribute

   A certificate fingerprint SHOULD be computed using the same one-way
   hash function as is used in the certificate's signature algorithm.
   (This guarantees that the fingerprint will be usable by the other
   endpoint, so long as the certificate itself is.)  Following RFC 3279
   [7], therefore, the defined hash functions are SHA-1 [10] [18], MD5
   [11], and MD2 [12], with SHA-1 preferred.  Additional hash functions
   can be defined only by standards-track RFCs which update or obsolete
   RFC 3279 [7].  Self-signed certificates (for which legacy
   certificates are not a consideration) MUST use SHA-1 in their
   signature algorithm, and thus also MUST use it to calculate
   certificate fingerprints.

   The fingerprint attribute may be either a session-level or a media-
   level SDP attribute.  If it is a session-level attribute, it applies
   to all TLS sessions for which no media-level fingerprint attribute is
   defined.

6.  Endpoint Identification

6.1  Certificate Choice

   X.509 certificates certify identities.  The certificate provided for
   a TLS connection needs to certify an appropriate identity for the
   connection.  Identity matching is performed using the matching rules
   specified by RFC 3280 [8].  If more than one identity of a given type
   is present in the certificate (e.g., more than one dNSName name), a
   match in any one of the set is considered acceptable.

   If an endpoint does not provide a certificate fingerprint in its SDP,
   its certificate MUST correspond to one of the following identities,
   and MUST be signed by a certificate authority known to the other
   endpoint.



Lennox                  Expires December 18, 2005               [Page 8]


Internet-Draft           Comedia over TLS in SDP               June 2005


   o  If the connection address for the media description is specified
      as an IP address, the endpoint MAY use a certificate with an
      iPAddress subjectAltName which exactly matches the IP in the
      connection-address in the session description's c= line.
   o  If the connection address for the media description is specified
      as a fully-qualified domain name, the endpoint MAY use a
      certificate with a dNSName subjectAltName matching the specified
      c= line connection-address exactly.  (Wildcard patterns MUST NOT
      be used.)
   o  If the SDP session description describing the session was
      transmitted over an end-to-end secure protocol which uses X.509
      certificates, the endpoint MAY use the same certificate to certify
      the media connection.  For example, an SDP description sent over
      HTTP/TLS [19] or secured by S/MIME [16] MAY use the same
      certificate to secure the media connection.  (Note, however, that
      the sips protocol [15] (SIP over TLS) provides only hop-by-hop
      security, so its TLS certificates do not satisfy this criterion.)
      In this case, the certificate must be one that is allowed in this
      context by the transmitting protocol.

   In those cases where an endpoint provides a certificate fingerprint,
   the certificate MAY be self-signed.  The certificate MUST be well-
   formed (and thus MUST include a syntactically valid SubjectAltName),
   but no further requirements are imposed upon this field's contents.
   To support the use of certificate caches, however, as described in
   Section 7, endpoints SHOULD consistently provide the same certificate
   for each identity they support.

6.2  Certificate Presentation

   In all cases, an endpoint acting as the TLS server, i.e., one taking
   the a=setup:passive role, in the terminology of connection-oriented
   media, MUST present a certificate during TLS initiation, following
   the rules presented in Section 6.1.  If the certificate does not
   match the original fingerprint, or, if there is no fingerprint, the
   certificate identity is incorrect, the client endpoint MUST either
   notify the user, if possible, or terminate the media connection with
   a bad certificate error.

   If the SDP offer/answer model [5] is being used, the client (the
   endpoint with the setup:active role) MUST also present a certificate
   following the rules of Section 6.1.  The server MUST request a
   certificate, and if the client does not provide one, if the
   certificate does not match the provided fingerprint, or, if there was
   no fingerprint, the certificate identity is incorrect, the server
   endpoint MUST either notify the user or terminate the media
   connection with a bad certificate error.




Lennox                  Expires December 18, 2005               [Page 9]


Internet-Draft           Comedia over TLS in SDP               June 2005


   Note that when the offer/answer model is being used, it is possible
   for a media connection to outrace the answer back to the offerer.
   Thus, if the offerer has offered a setup:passive or setup:actpass
   role, it MUST (as specified in the Connection-Oriented Media
   specification [2]) begin listening for an incoming connection as soon
   as it sends its offer.  However, because its peer's media connection
   may outrace its answer, it SHOULD NOT definitively accept or reject
   the peer's certificate until it has received and processed the SDP
   answer.

   If offer/answer is not being used (e.g., if the SDP was sent over the
   Session Announcement Protocol [14]), the TLS server typically has no
   external knowledge of what the TLS client's identity ought to be.  In
   this case, no client certificate need be presented, and no
   certificate validation can be performed, unless the server has
   knowledge of valid clients through some external means.

7.  Security Considerations

   This entire document concerns itself with security.  The problem to
   be solved is addressed in Section 1, and a high-level overview is
   presented in Section 3.  See the SDP specification [1] for security
   considerations applicable to SDP in general.

   Like all SDP messages, SDP messages describing TLS streams are
   conveyed in an encapsulating application protocol (e.g., SIP, MGCP,
   etc.).  It is the responsibility of the encapsulating protocol to
   ensure the integrity and confidentiality of the SDP security
   descriptions.  Therefore, the application protocol SHOULD either
   invoke its own security mechanisms (e.g., secure multiparts) or
   alternatively utilize a lower-layer security service (e.g., TLS or
   IPSec).  This security service SHOULD provide strong message
   authentication and packet-payload encryption as well as effective
   replay protection.

   However, such integrity protection is not always possible.  For these
   cases, end systems SHOULD maintain a cache of certificates which
   other parties have previously presented using this mechanism.  If
   possible, users SHOULD be notified when an unsecured certificate
   associated with a previously unknown end system is presented, and
   SHOULD be strongly warned if a different and unauthenticated
   certificate is presented by a party with which they have communicated
   in the past.  In this way, even in the absence of integrity
   protection for SDP, the security of this document's mechanism is
   equivalent to that of the Secure Shell (ssh) protocol [20], which is
   vulnerable to man-in-the-middle attacks when two parties first
   communicate, but can detect ones that occur subsequently.  (Note that
   a precise definition of the "other party" depends on the application



Lennox                  Expires December 18, 2005              [Page 10]


Internet-Draft           Comedia over TLS in SDP               June 2005


   protocol carrying the SDP message.)

   TLS is not always the most appropriate choice for secure connection-
   oriented media; in some cases, a higher- or lower-level security
   protocol may be appropriate.

   This document does not define any mechanism for securely transporting
   RTP and RTCP packets over a connection-oriented channel.  There was
   no consensus in the working group as to whether it would be better to
   send Secure RTP packets [21] over a connection-oriented transport
   [22], or whether it would be better to send standard unsecured RTP
   packets over TLS using the mechanisms described in this document.
   The group consensus was to wait until a use-case requiring secure
   connection-oriented RTP was presented.

8.  IANA Considerations

   This document defines an SDP proto value: TCP/TLS.  Its format is
   defined in Section 4.  This proto value should be registered by IANA
   on http://www.iana.org/assignments/sdp-parameters under "proto".

   This document defines an SDP session and media level attribute:
   fingerprint.  Its format is defined in Section 5.  This attribute
   should be registered by IANA on
   http://www.iana.org/assignments/sdp-parameters under "att-field (both
   session and media level)".

   Specifications defining new proto values, like this one, must define
   the rules by which their media format (fmt) namespace is managed.
   For the TCP/TLS protocol, new formats SHOULD have an associated MIME
   registration.  Use of an existing MIME subtype for the format is
   encouraged.  If no MIME subtype exists, it is RECOMMENDED that a
   suitable one be registered through the IETF process [13] by
   production of, or reference to, a standards-track RFC that defines
   the transport protocol for the format.

Appendix A.  Changes From Earlier Versions

Appendix A.1  Changes From Draft -02

   None, other than IPR boilerplate and reference updates.  Draft -03
   was a resubmission to refresh the draft's presence in the Internet-
   Drafts repository.

Appendix A.2  Changes From Draft -01






Lennox                  Expires December 18, 2005              [Page 11]


Internet-Draft           Comedia over TLS in SDP               June 2005


   o  Made the use of SHA-1 fingerprints mandatory in self-signed
      certificates.
   o  Aligned with version -09 of draft-ietf-mmusic-comedia [2], also
      drawing some wording changes from that document.
   o  Forbid the use of wildcards for the dNS subjectAltName.
   o  Eliminated requirements on identities provided with self-signed
      certificates.
   o  Recommended the use of a certificate cache when SDP integrity
      protection cannot be assured.
   o  Explained that there is no currently supported mechanism for
      securely sending RTP over connection-oriented media.
   o  Described the procedure for establishing media formats for TCP/
      TLS.

Appendix A.3  Changes From Draft -00

   o  Significantly expanded  introduction and motivation sections.
   o  Significant clarifications to other sections.
   o  Aligned with version -07 of draft-ietf-mmusic-comedia [2].
      Protocol identifier changed from TLS to TCP/TLS at that document's
      recommendation.

9.  References

9.1  Normative References

   [1]   Handley, M., "SDP: Session Description Protocol",
         draft-ietf-mmusic-sdp-new-24 (work in progress), February 2005.

   [2]   Yon, D., "Connection-Oriented Media Transport in the Session
         Description Protocol  (SDP)", draft-ietf-mmusic-sdp-comedia-10
         (work in progress), November 2004.

   [3]   Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
         RFC 2246, January 1999.

   [4]   Bradner, S., "Key words for use in RFCs to Indicate Requirement
         Levels", BCP 14, RFC 2119, March 1997.

   [5]   Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
         Session Description Protocol (SDP)", RFC 3264, June 2002.

   [6]   International Telecommunications Union, "Information technology
         - Open Systems Interconnection - The Directory: Public-key and
         attribute certificate frameworks", ITU-T Recommendation X.509,
         ISO Standard 9594-8, March 2000.

   [7]   Bassham, L., Polk, W., and R. Housley, "Algorithms and



Lennox                  Expires December 18, 2005              [Page 12]


Internet-Draft           Comedia over TLS in SDP               June 2005


         Identifiers for the Internet X.509 Public Key Infrastructure
         Certificate and Certificate Revocation List (CRL) Profile",
         RFC 3279, April 2002.

   [8]   Housley, R., Polk, W., Ford, W., and D. Solo, "Internet X.509
         Public Key Infrastructure Certificate and Certificate
         Revocation List (CRL) Profile", RFC 3280, April 2002.

   [9]   Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
         Specifications: ABNF", RFC 2234, November 1997.

   [10]  National Institute of Standards and Technology, "Secure Hash
         Standard", FIPS PUB 180-1, April 1995,
         <http://www.itl.nist.gov/fipspubs/fip180-1.htm>.

   [11]  Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
         April 1992.

   [12]  Kaliski, B., "The MD2 Message-Digest Algorithm", RFC 1319,
         April 1992.

   [13]  Freed, N., Klensin, J., and J. Postel, "Multipurpose Internet
         Mail Extensions (MIME) Part Four: Registration Procedures",
         BCP 13, RFC 2048, November 1996.

9.2  Informative References

   [14]  Handley, M., Perkins, C., and E. Whelan, "Session Announcement
         Protocol", RFC 2974, October 2000.

   [15]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
         Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
         Session Initiation Protocol", RFC 3261, June 2002.

   [16]  Ramsdell, B., "S/MIME Version 3 Message Specification",
         RFC 2633, June 1999.

   [17]  Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
         Leach, P., Luotonen, A., and L. Stewart, "HTTP Authentication:
         Basic and Digest Access Authentication", RFC 2617, June 1999.

   [18]  Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1 (SHA1)",
         RFC 3174, September 2001.

   [19]  Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

   [20]  Ylonen, T. and C. Lonvick, "SSH Protocol Architecture",
         draft-ietf-secsh-architecture-22 (work in progress),



Lennox                  Expires December 18, 2005              [Page 13]


Internet-Draft           Comedia over TLS in SDP               June 2005


         March 2005.

   [21]  Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
         Norrman, "The Secure Real-time Transport Protocol (SRTP)",
         RFC 3711, March 2004.

   [22]  Lazzaro, J., "Framing RTP and RTCP Packets over Connection-
         Oriented Transport", draft-ietf-avt-rtp-framing-contrans-05
         (work in progress), January 2005.

   [23]  Andreasen, F., "Session Description Protocol Security
         Descriptions for Media Streams",
         draft-ietf-mmusic-sdescriptions-11 (work in progress),
         June 2005.


Author's Address

   Jonathan Lennox
   Columbia University Department of Computer Science
   450 Computer Science
   1214 Amsterdam Ave., M.C. 0401
   New York, NY  10027
   US

   Phone: +1 212 939 7018
   Email: lennox@cs.columbia.edu
























Lennox                  Expires December 18, 2005              [Page 14]


Internet-Draft           Comedia over TLS in SDP               June 2005


Intellectual Property Statement

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.


Disclaimer of Validity

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.


Copyright Statement

   Copyright (C) The Internet Society (2005).  This document is subject
   to the rights, licenses and restrictions contained in BCP 78, and
   except as set forth therein, the authors retain all their rights.


Acknowledgment

   Funding for the RFC Editor function is currently provided by the
   Internet Society.




Lennox                  Expires December 18, 2005              [Page 15]


Html markup produced by rfcmarkup 1.129c, available from https://tools.ietf.org/tools/rfcmarkup/