[Docs] [txt|pdf] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]

Versions: (draft-nitinb-mpls-tp-on-demand-cv) 00 01 02 03 04 05 06 07 RFC 6426

Network Working Group                                         N. Bahadur
Internet-Draft                                               R. Aggarwal
Intended status: Standards Track                  Juniper Networks, Inc.
Expires: April 28, 2011                                       S. Boutros
                                                     Cisco Systems, Inc.
                                                                 E. Gray
                                                                Ericsson
                                                        October 25, 2010


       MPLS On-demand Connectivity Verification and Route Tracing
                   draft-ietf-mpls-tp-on-demand-cv-01

Abstract

   LSP-Ping is an existing and widely deployed OAM mechanism for MPLS
   LSPs.  This document describes extensions to LSP-Ping so that LSP-
   Ping can be used for On-demand Connectivity Verification of MPLS-TP
   LSPs.  This document also clarifies procedures to be used for
   processing the related OAM packets.  Further, it describes procedures
   for using LSP-Ping to perform Connectivity Verification and Route
   Tracing functions in MPLS-TP networks.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 28, 2011.

Copyright Notice

   Copyright (c) 2010 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of



Bahadur, et al.          Expires April 28, 2011                 [Page 1]


Internet-Draft  MPLS On-demand Connectivity Verification    October 2010


   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.


Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
     1.1.  Conventions used in this document  . . . . . . . . . . . .  3
     1.2.  On-demand CV for MPLS-TP LSPs using IP encapsulation . . .  3
     1.3.  On-demand CV for MPLS-TP LSPs using non-IP
           encapsulation  . . . . . . . . . . . . . . . . . . . . . .  4
   2.  LSP-Ping Extensions  . . . . . . . . . . . . . . . . . . . . .  4
     2.1.  New address type for Downstream Mapping TLV  . . . . . . .  4
     2.2.  Source Address TLV . . . . . . . . . . . . . . . . . . . .  4
     2.3.  MEP and MIP Identifier . . . . . . . . . . . . . . . . . .  5
     2.4.  Identifying Statically provisioned LSPs and PWs  . . . . .  5
       2.4.1.  Static LSP Sub-TLV . . . . . . . . . . . . . . . . . .  5
       2.4.2.  Static Pseudowire Sub-TLV  . . . . . . . . . . . . . .  6
   3.  Performing On-demand CV over MPLS-TP LSPs  . . . . . . . . . .  7
     3.1.  LSP-Ping with IP encapsulation . . . . . . . . . . . . . .  7
     3.2.  On-demand CV with IP encapsulation, over ACH . . . . . . .  7
     3.3.  Non-IP based On-demand CV, using ACH . . . . . . . . . . .  8
     3.4.  Reverse path Connectivity verification . . . . . . . . . .  8
     3.5.  P2MP Considerations  . . . . . . . . . . . . . . . . . . .  9
     3.6.  Operation of On-demand CV with Static MPLS-TP  . . . . . .  9
   4.  Performing on-demand Route Tracing over MPLS-TP LSPs . . . . .  9
     4.1.  On-demand LSP Route Tracing with IP encapsulation  . . . . 10
     4.2.  Non-IP based On-demand LSP Route Tracing, using ACH  . . . 10
       4.2.1.  Ingress node procedure for sending echo request
               packets  . . . . . . . . . . . . . . . . . . . . . . . 10
       4.2.2.  Ingress node procedure for receiving echo response
               packets  . . . . . . . . . . . . . . . . . . . . . . . 10
       4.2.3.  Transit and egress node procedure  . . . . . . . . . . 10
     4.3.  P2MP Considerations  . . . . . . . . . . . . . . . . . . . 11
     4.4.  ECMP Considerations  . . . . . . . . . . . . . . . . . . . 11
   5.  Applicability  . . . . . . . . . . . . . . . . . . . . . . . . 11
   6.  Security Considerations  . . . . . . . . . . . . . . . . . . . 11
   7.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 11
   8.  Contributing Authors . . . . . . . . . . . . . . . . . . . . . 12
   9.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 12
     9.1.  Normative References . . . . . . . . . . . . . . . . . . . 12
     9.2.  Informative References . . . . . . . . . . . . . . . . . . 12
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 13




Bahadur, et al.          Expires April 28, 2011                 [Page 2]


Internet-Draft  MPLS On-demand Connectivity Verification    October 2010


1.  Introduction

   LSP-Ping [RFC4379] is an OAM mechanism for MPLS LSPs.  This document
   describes extensions to LSP-Ping so that LSP-Ping can be used for on-
   demand monitoring of MPLS-TP LSPs.  It also clarifies the procedures
   to be used for processing the OAM packets.  This document describes
   how LSP-Ping can be used for on-demand Connectivity Verification
   (Section 3) and Route Tracing (Section 4) functions required in
   [RFC5860] and specified in [I-D.ietf-mpls-tp-oam-framework].

1.1.  Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   In addition, there is considerable opportunity for confusion in use
   of the terms "on-demand connectivity verification" (CV), "on-demand
   route tracing" and "LSP-Ping."  In this document, we try to use the
   terms consistently as follows:

   LSP-Ping: refers to the mechanism - particularly as defined and used
   in referenced material;

   On-demand CV: refers to on-demand connectivity verification and -
   where both apply equally - on-demand route tracing as implemmented
   using the LSP-Ping mechanism as extended for support of MPLS-TP;

   On-demand route tracing: used in those cases where the LSP-Ping
   mechanism (as extended) is used exclusively for route tracing.

1.2.  On-demand CV for MPLS-TP LSPs using IP encapsulation

   LSP-Ping requires IP addressing on the egress and transit LSRs for
   performing OAM on MPLS signaled LSPs and pseudowires.  In particular,
   in these cases the LSP-Ping packets generated by an ingress LSR are
   encapsulated in an IP/UDP header with the destination address from
   the 127/8 range and then encapsulated in the MPLS label stack
   ([RFC4379] , [RFC5884]).  Egress LSRs use the presence of the 127/8
   destination address to identify the OAM packets and rely further on
   the UDP port number to determine whether the packet is a LSP-Ping
   packet.  It is to be noted that this determination does not require
   IP forwarding capabilities.  It requires the presence of an IP host
   stack which enables egress LSRs to process packets with a destination
   address from the 127/8 range.  [RFC1122] allocates the 127/8 range as
   "Internal host loopback address" and [RFC1812] states that "a router
   SHOULD NOT forward, except over a loopback interface, any packet that
   has a destination address on network 127".



Bahadur, et al.          Expires April 28, 2011                 [Page 3]


Internet-Draft  MPLS On-demand Connectivity Verification    October 2010


1.3.  On-demand CV for MPLS-TP LSPs using non-IP encapsulation

   In certain MPLS-TP deployment scenarios IP addressing might not be
   available or it may be preferred to use some form of non-IP
   encapsulation for On-demand CV, route tracing and BFD packets.  In
   such scenarios, On-demand CV and/or route tracing SHOULD be run
   without IP addressing, using the ACH channel type specified in
   [I-D.ietf-mpls-tp-lsp-ping-bfd-procedures].

   Section 3.3 and Section 4.2 describe the theory of operation for
   performing On-demand CV over MPLS-TP LSPs with any non-IP
   encapsulation.


2.  LSP-Ping Extensions

2.1.  New address type for Downstream Mapping TLV

   [RFC4379] defines the Downstream Mapping TLV.  This document defines
   the following new Address type which is added to the Downstream
   Mapping TLV:

         Type #        Address Type           K Octets
         ------        --------------         --------
             0         Not Applicable                8


             Figure 1: Downstream Mapping TLV new address type

   The new address type indicates that no address is present in the
   Downstream Mapping TLV.  Multipath type SHOULD be set to 0 (no
   multipath) when using this address type.

   When this address type is used, on receipt of a LSP-Ping echo
   request, interface verification MUST be bypassed.  Thus the receiving
   node SHOULD only perform mpls label control-plane/data-plane
   consistency checks.

   The new address type is also applicable to the Detailed Downstream
   Mapping TLV defined in [I-D.ietf-mpls-lsp-ping-enhanced-dsmap].

2.2.  Source Address TLV

   When sending On-demand CV packets using ACH, without IP
   encapsulation, there MAY be a need to identify the source address of
   the packet.  This source address will be specified via the Source
   Address TLV, being defined in [I-D.ietf-mpls-tp-ach-tlv].  A On-
   demand CV packet MUST NOT include more than 1 source address TLV.



Bahadur, et al.          Expires April 28, 2011                 [Page 4]


Internet-Draft  MPLS On-demand Connectivity Verification    October 2010


   The source address MUST specify the address of the originator of the
   packet.  If more than 1 such TLV is present in a On-demand CV request
   packet, then an error of 1 (Malformed echo request received, Section
   3.1 [RFC4379]) MUST be returned, if it is possible to unambiguously
   identify the source of the packet.

2.3.  MEP and MIP Identifier

   When sending On-demand CV packets using ACH, there MAY be a need to
   identify the maintenance end point (MEP) and/or the maintenance
   intermediate point (MIP) targetted for the transport path monitored
   (see [I-D.ietf-mpls-tp-rosetta-stone]).  MEP/MIP identifiers defined
   in [I-D.ietf-mpls-tp-identifiers] MAY be included in the ACH for this
   purpose.  The ACH TLV (see [I-D.ietf-mpls-tp-ach-tlv]) MUST NOT
   include more than one targetted MEP/MIP identifier.  The MEP/MIP
   identifier associated with the packet MUST be checked for the MPLS-TP
   transport path that is being monitored.  If the identifier does not
   match, then the packet MUST be dropped.

2.4.  Identifying Statically provisioned LSPs and PWs

   [RFC4379] specifies how an MPLS LSP under test may be identified in
   an echo request.  A Target FEC Stack TLV is used to identify the LSP.
   In order to identify a statically provisioned LSP and PW, new target
   FEC stack sub-TLVs are being defined.  The new sub-TLVs are assigned
   sub-type identifiers as follows, and are described in the following
   sections.

         Type #   Sub-Type #       Length        Value Field
         ------   ----------       ------        -----------
           1         17              24          Static LSP
           1         18              24          Static Pseudowire

                    Figure 2: New target FEC sub-types

2.4.1.  Static LSP Sub-TLV

   The format of the Static LSP sub-TLV value field is specified in the
   following figure.  The value fields are taken from the definitions in
   [I-D.ietf-mpls-tp-identifiers].











Bahadur, et al.          Expires April 28, 2011                 [Page 5]


Internet-Draft  MPLS On-demand Connectivity Verification    October 2010


        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                       Source Global ID                        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                        Source Node ID                         |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |     Source Tunnel Number      |        LSP Number             |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                    Destination Global ID                      |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                     Destination Node ID                       |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Destination Tunnel Number   |        Must be Zero           |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                     Figure 3: Static LSP FEC Sub-TLV

   The Source global ID and Destination Global ID MAY be set to 0.  When
   set to zero, the field is not applicable.

2.4.2.  Static Pseudowire Sub-TLV

   The format of the Static PW sub-TLV value field is specified in the
   following figure.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                       Source Global ID                        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                        Source Node ID                         |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                         Source AC-ID                          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                    Destination Global ID                      |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                     Destination Node ID                       |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                     Destination AC-ID                         |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                      Figure 4: Static PW FEC Sub-TLV

   The Source global ID and Destination Global ID MAY be set to 0.  When
   set to zero, the field is not applicable.  The Global ID and Node ID



Bahadur, et al.          Expires April 28, 2011                 [Page 6]


Internet-Draft  MPLS On-demand Connectivity Verification    October 2010


   fields are taken from the definitions in
   [I-D.ietf-mpls-tp-identifiers].  The AC-ID definitions are taken from
   [RFC5003].


3.  Performing On-demand CV over MPLS-TP LSPs

   This section specifies how On-demand CV can be used in the context of
   MPLS-TP LSPs.  The On-demand CV function meets the On-demand
   Connectivity Verification requirements specified in [RFC5860],
   section 2.2.3.  This function SHOULD NOT be performed except in the
   on-demand mode.  This function SHOULD be performed between End Points
   (MEPs) and Intermediate Points (MIPs) of PWs and LSPs, and between
   End Points of PWs, LSPs and Sections.  In order for the On-demand CV
   packet to be processed at the desired MIP, the TTL of the MPLS label
   should be set such that it expires at the MIP to be probed.

3.1.  LSP-Ping with IP encapsulation

   LSP-Ping packets, as specified in [RFC4379], are sent over the MPLS
   LSP for which OAM is being performed and contain an IP/UDP packet
   within them.  The IP header is not used for forwarding (since LSP
   forwarding is done using MPLS label switching).  The IP header is
   used mainly for addressing and can be used in the context of MPLS-TP
   LSPs.  This form of On-demand CV OAM MUST be supported for MPLS-TP
   LSPs when IP addressing is in use.

   The On-demand CV echo response message MUST be sent on the reverse
   path of the LSP.  The reply MUST contain IP/UDP headers followed by
   the On-demand CV payload.  The destination address in the IP header
   MUST be set to that of the sender of the echo request message.  The
   source address in the IP address MUST be set to a valid address of
   the replying node.

3.2.  On-demand CV with IP encapsulation, over ACH

   IP encapsulated On-demand CV packets MAY be sent over the MPLS LSP
   using control channel (ACH)
   ([I-D.ietf-mpls-tp-lsp-ping-bfd-procedures]).  IP ACH type specified
   in [RFC4385] MUST be used in such a case.  The IP header is used
   mainly for addressing and can be used in the context of MPLS-TP LSPs.

   The On-demand CV echo response message SHOULD be sent on the reverse
   path of the LSP using ACH and SHOULD be IP encapsulated.  The
   destination address in the IP header MUST be set to that of the
   sender of the echo request message.  The source address in the IP
   address MUST be set to a valid address of the replying node.




Bahadur, et al.          Expires April 28, 2011                 [Page 7]


Internet-Draft  MPLS On-demand Connectivity Verification    October 2010


3.3.  Non-IP based On-demand CV, using ACH

   The OAM procedures defined in [RFC4379] require the use of IP
   addressing, and in some cases IP routing, to perform OAM functions.
   When the ACH header is used, IP addressing and routing is not needed.
   This section describes procedures for performing on-demand CV without
   a dependency on IP addressing and routing.

   When using On-demand CV via LSP-Ping with the ACH header
   ([I-D.ietf-mpls-tp-lsp-ping-bfd-procedures]), the LSP-Ping Reply mode
   [RFC4379] in the LSP-Ping echo request MUST be set to 4 (Reply via
   application level control channel).

   Note that the application level control channel in this case is the
   reverse path of the LSP (or Pseudowire) using ACH.

   The requesting node MAY attach a Source Address TLV (Section 2.2) to
   identify the node originating the request.

   The On-demand CV reply message MUST be sent on the reverse path of
   the LSP using ACH.  The On-demand CV payload MUST directly follow the
   ACH header (and any ACH TLVs) and no IP and/or UDP headers MUST be
   attached.  The responding node MAY attach a Source Address TLV to
   identify the node sending the response.

   If a node receives an MPLS echo request packet over ACH, without IP/
   UDP headers, with a reply mode of 4, and if that node does not have a
   return MPLS LSP path to the echo request source, then the node SHOULD
   drop the echo request packet and not attempt to send a response.

   If a node receives an MPLS echo request with a reply mode other than
   4 (reply via application level control channel), and if the node
   supports that reply mode, then it MAY respond using that reply mode.
   If the node does not suppor the reply mode requested, or is unable to
   reply using the requested reply mode in any specific instance, the it
   MUST drop the echo request packet and not attempt to send a response.

3.4.  Reverse path Connectivity verification

   TODO: Need a couple of things here: Firstly, we need a flag to tell
   the egress to send back reverse path FEC info.  Secondly, we need a
   new TLV type to indicate that the FEC is the reverse-path FEC.  Also
   need a new error code for the egress to indicate that there is no
   reverse path for the LSP.

   For bi-directional LSPs, when the egress sends the echo response, the
   egress MAY attach the target FEC stack TLV [RFC4379] in the echo
   response.  The requesting node (on receipt of the response) can use



Bahadur, et al.          Expires April 28, 2011                 [Page 8]


Internet-Draft  MPLS On-demand Connectivity Verification    October 2010


   the FEC stack TLV to perform reverse path connectivity verification.
   For co-routed bi-directional LSPs, the target FEC stack used for On-
   demand CV will be the same in both the forward and reverse path of
   the LSP.  For associated bi-directional LSPs, the target FEC stack
   will be different for the reverse path.

   On receipt of the echo response, the requesting node MUST perform the
   following checks:

   1.  Perform interface and label-stack validation to ensure that the
       packet is received on the reverse path of the bi-directional LSP
   2.  If the target FEC stack is present in the echo response, then
       perform FEC validation.
   If any of the validations fail, then the requesting node MUST drop
   the echo response and report an error.

3.5.  P2MP Considerations

   [I-D.ietf-mpls-p2mp-lsp-ping] describes how LSP-Ping can be used for
   OAM on P2MP LSPs with IP encapsulation.  This MUST be supported for
   MPLS-TP P2MP LSPs when IP addressing is used.  When IP addressing is
   not used, then the procedures described in Section 3.3 can be applied
   to P2MP MPLS-TP LSPs as well.

3.6.  Operation of On-demand CV with Static MPLS-TP

   Support for static MPLS-TP LSP, or Pseudowire, usage and on-demand
   CV, requires manageable objects necessary to, for instance, configure
   operating parameters such as duration and periodicity of an on-demand
   connectivity test.

   The specifics of this manageability requirement are out-of-scope in
   this document and SHOULD be addressed in an appropriate management
   specification.


4.  Performing on-demand Route Tracing over MPLS-TP LSPs

   This section specifies how On-demand CV traceroute can be used in the
   context of MPLS-TP LSPs.  The On-demand CV traceroute function meets
   the Route Tracing requirement specified in [RFC5860], section 2.2.4.
   This function SHOULD be performed on-demand.  This function SHOULD be
   performed between End Points and Intermediate Points of PWs and LSPs,
   and between End Points of PWs, LSPs and Sections.

   When performing On-demand CV traceroute, the requesting node inserts
   a Downstream Mapping TLV to get the downstream node information and
   to enable LSP verification along the transit nodes.  The Downstream



Bahadur, et al.          Expires April 28, 2011                 [Page 9]


Internet-Draft  MPLS On-demand Connectivity Verification    October 2010


   Mapping TLV can be used as is for performing the traceroute.  If IP
   addressing is not in use, then the Address Type field in the
   Downstream Mapping TLV can be set to "Not applicable" (Section 2.1).
   The Downstream Mapping TLV address type field can be extended to
   include other address types as need be.

4.1.  On-demand LSP Route Tracing with IP encapsulation

   The mechanics of On-demand CV traceroute are similar to those
   described for ping in Section 3.1.  On-demand Route Tracing packets
   sent by the LSP ingress MUST follow procedures described in
   [RFC4379].  This form of On-demand CV OAM MUST be supported for
   MPLS-TP LSPs, when IP addressing is used.

4.2.  Non-IP based On-demand LSP Route Tracing, using ACH

   This section describes procedures for performing LSP traceroute when
   using LSP-Ping with the ACH header
   ([I-D.ietf-mpls-tp-lsp-ping-bfd-procedures]) and without any
   dependency on IP addressing.  The procedures specified in Section 3.3
   with regards to Source Address TLV, MEP/MIP identifiers apply to LSP
   traceroute as well.

4.2.1.  Ingress node procedure for sending echo request packets

   On-demand Route Tracing packets sent by the LSP ingress MUST adhere
   to the format described in Section 3.3.  MPLS-TTL expiry (as
   described in [RFC4379]) will be used to direct the packets to
   specific nodes along the LSP path.

4.2.2.  Ingress node procedure for receiving echo response packets

   The On-demand CV traceroute responses will be received on the LSP
   itself and the presence of an ACH header with channel type of On-
   demand CV is an indicator that the packet contains On-demand CV
   payload.

4.2.3.  Transit and egress node procedure

   When a echo request reaches the transit or egress, the presence of
   the ACH channel type of On-demand CV will indicate that the packet
   contains On-demand CV data.  The On-demand CV data, the label stack
   and the MEP/MIP identifier should be sufficient to identify the LSP
   associated with the echo request packet.  If there is an error and
   the node is unable to identify the LSP on which the echo response
   would to be sent, the node MUST drop the echo request packet and not
   send any response back.  All responses MUST always be sent on a LSP
   path using the ACH header and ACH channel type of On-demand CV.



Bahadur, et al.          Expires April 28, 2011                [Page 10]


Internet-Draft  MPLS On-demand Connectivity Verification    October 2010


4.3.  P2MP Considerations

   [I-D.ietf-mpls-p2mp-lsp-ping] describes how LSP-Ping can be used for
   OAM on P2MP LSPs.  This MUST be supported for MPLS-TP P2MP LSPs when
   IP addressing is used.  When IP addressing is not used, then the
   procedures described in Section 4.2 can be applied to P2MP MPLS-TP
   LSPs as well.

4.4.  ECMP Considerations

   On-demand CV using ACH SHOULD NOT be used when there is ECMP (equal
   cost multiple paths) for a given LSP.  The addition of the additional
   ACH header may modify the hashing behavior for OAM packets which may
   result in incorrect monitoring of path taken by data traffic.


5.  Applicability

   The procedures specified in this document for non-IP encapsulation
   apply only to MPLS-TP Transport paths.  This includes LSPs and PWs
   when IP encapsulation is not desired.  However, when IP addressing is
   used, as in non MPLS-TP LSPs, procedures specified in [RFC4379] MUST
   be used.


6.  Security Considerations

   The draft does not introduce any new security considerations.  Those
   discussed in [RFC4379] are also applicable to this document.


7.  IANA Considerations

   Section 2.4 defines 2 new sub-TLV types for inclusion within the LSP
   Ping [RFC4379] Target FEC Stack TLV.

   IANA is requested to assign sub-type values to the following sub-TLVs
   from the "Multiprotocol Label Switching Architecture (MPLS) Label
   Switched Paths (LSPs) Parameters - TLVs" registry, "TLVs and sub-
   TLVs" sub-registry.

   - Static LSP            (temporarily assigned 17)
   - Static Pseudowire     (temporarily assigned 18)








Bahadur, et al.          Expires April 28, 2011                [Page 11]


Internet-Draft  MPLS On-demand Connectivity Verification    October 2010


8.  Contributing Authors

   The following individuals also contributed to this document:
   o  Thomas D. Nadeau, BT
   o  Nurit Sprecher, Nokia Siemens Networks
   o  Yaacov Weingarten, Nokia Siemens Networks


9.  References

9.1.  Normative References

   [I-D.ietf-mpls-tp-lsp-ping-bfd-procedures]
              Bahadur, N., Aggarwal, R., Ward, D., Nadeau, T., Sprecher,
              N., and Y. Weingarten, "LSP-Ping and BFD encapsulation
              over ACH", draft-ietf-mpls-tp-lsp-ping-bfd-procedures-01
              (work in progress), August 2010.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC4379]  Kompella, K. and G. Swallow, "Detecting Multi-Protocol
              Label Switched (MPLS) Data Plane Failures", RFC 4379,
              February 2006.

   [RFC4385]  Bryant, S., Swallow, G., Martini, L., and D. McPherson,
              "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for
              Use over an MPLS PSN", RFC 4385, February 2006.

9.2.  Informative References

   [I-D.ietf-mpls-lsp-ping-enhanced-dsmap]
              Bahadur, N., Kompella, K., and G. Swallow, "Mechanism for
              performing LSP-Ping over MPLS tunnels",
              draft-ietf-mpls-lsp-ping-enhanced-dsmap-07 (work in
              progress), October 2010.

   [I-D.ietf-mpls-p2mp-lsp-ping]
              Yasukawa, S., Farrel, A., Ali, Z., Swallow, G., Nadeau,
              T., and S. Saxena, "Detecting Data Plane Failures in
              Point-to-Multipoint Multiprotocol Label Switching (MPLS) -
              Extensions to LSP Ping", draft-ietf-mpls-p2mp-lsp-ping-12
              (work in progress), October 2010.

   [I-D.ietf-mpls-tp-ach-tlv]
              Boutros, S., Bryant, S., Sivabalan, S., Swallow, G., Ward,
              D., and V. Manral, "Definition of ACH TLV Structure",
              draft-ietf-mpls-tp-ach-tlv-02 (work in progress),



Bahadur, et al.          Expires April 28, 2011                [Page 12]


Internet-Draft  MPLS On-demand Connectivity Verification    October 2010


              March 2010.

   [I-D.ietf-mpls-tp-identifiers]
              Bocci, M. and G. Swallow, "MPLS-TP Identifiers",
              draft-ietf-mpls-tp-identifiers-02 (work in progress),
              July 2010.

   [I-D.ietf-mpls-tp-oam-framework]
              Allan, D., Busi, I., Niven-Jenkins, B., Fulignoli, A.,
              Hernandez-Valencia, E., Levrau, L., Sestito, V., Sprecher,
              N., Helvoort, H., Vigoureux, M., Weingarten, Y., and R.
              Winter, "Operations, Administration and Maintenance
              Framework for MPLS- based Transport Networks",
              draft-ietf-mpls-tp-oam-framework-09 (work in progress),
              October 2010.

   [I-D.ietf-mpls-tp-rosetta-stone]
              Sprecher, N., "A Thesaurus for the Terminology used in
              Multiprotocol Label Switching Transport Profile (MPLS-TP)
              drafts/RFCs and ITU-T's Transport Network
              Recommendations.", draft-ietf-mpls-tp-rosetta-stone-02
              (work in progress), May 2010.

   [RFC1122]  Braden, R., "Requirements for Internet Hosts -
              Communication Layers", STD 3, RFC 1122, October 1989.

   [RFC1812]  Baker, F., "Requirements for IP Version 4 Routers",
              RFC 1812, June 1995.

   [RFC5003]  Metz, C., Martini, L., Balus, F., and J. Sugimoto,
              "Attachment Individual Identifier (AII) Types for
              Aggregation", RFC 5003, September 2007.

   [RFC5860]  Vigoureux, M., Ward, D., and M. Betts, "Requirements for
              Operations, Administration, and Maintenance (OAM) in MPLS
              Transport Networks", RFC 5860, May 2010.

   [RFC5884]  Aggarwal, R., Kompella, K., Nadeau, T., and G. Swallow,
              "Bidirectional Forwarding Detection (BFD) for MPLS Label
              Switched Paths (LSPs)", RFC 5884, June 2010.











Bahadur, et al.          Expires April 28, 2011                [Page 13]


Internet-Draft  MPLS On-demand Connectivity Verification    October 2010


Authors' Addresses

   Nitin Bahadur
   Juniper Networks, Inc.
   1194 N. Mathilda Avenue
   Sunnyvale, CA  94089
   US

   Phone: +1 408 745 2000
   Email: nitinb@juniper.net
   URI:   www.juniper.net


   Rahul Aggarwal
   Juniper Networks, Inc.
   1194 N. Mathilda Avenue
   Sunnyvale, CA  94089
   US

   Phone: +1 408 745 2000
   Email: rahul@juniper.net
   URI:   www.juniper.net


   Sami Boutros
   Cisco Systems, Inc.
   3750 Cisco Way
   San Jose, CA  95134
   US

   Phone:
   Fax:
   Email: sboutros@cisco.com
   URI:


   Eric Gray
   Ericsson
   900 Chelmsford Street
   Lowell, MA  01851
   US

   Phone: +1 978 275 7470
   Fax:
   Email: eric.gray@ericsson.com
   URI:





Bahadur, et al.          Expires April 28, 2011                [Page 14]


Html markup produced by rfcmarkup 1.129c, available from https://tools.ietf.org/tools/rfcmarkup/