[Docs] [txt|pdf] [Tracker] [WG] [Email] [Nits]

Versions: 00 01

Network Working Group                                             J. Moy
Internet Draft                                   Sycamore Networks, Inc.
Expiration Date: May 2001                                  November 2000
File name: draft-ietf-ospf-ppp-flood-00.txt


              Flooding over parallel point-to-point links
                    draft-ietf-ospf-ppp-flood-00.txt



Status of this Memo

    This document is an Internet-Draft and is in full conformance with
    all provisions of Section 10 of RFC2026.

    Internet-Drafts are working documents of the Internet Engineering
    Task Force (IETF), its areas, and its working groups.  Note that
    other groups may also distribute working documents as Internet-
    Drafts.

    Internet-Drafts are draft documents valid for a maximum of six
    months and may be updated, replaced, or obsoleted by other documents
    at any time.  It is inappropriate to use Internet- Drafts as
    reference material or to cite them other than as "work in progress."

    The list of current Internet-Drafts can be accessed at
    http://www.ietf.org/ietf/1id-abstracts.txt

    The list of Internet-Draft Shadow Directories can be accessed at
    http://www.ietf.org/shadow.html.

Abstract

    The OSPF routing protocol synchronizes its link-state database over
    all links. However, when multiple point-to-point links connect a
    pair of OSPF routers, it is only necessary to flood over one of the
    parallel links. This can be done in a backward-compatible fashion,
    without requiring negotiation between neighboring routers, as
    described in this memo.











Moy                                                             [Page 1]


Internet Draft        Flooding over parallel links         November 2000


Table of Contents

    1        Overview ............................................... 2
    2        Implementation ......................................... 3
    2.1      Whether to become adjacent ............................. 3
    2.2      Lost adjacencies ....................................... 4
    2.3      Next hop calculation ................................... 4
    2.4      MTU check .............................................. 4
    3        Backward compatibility ................................. 5
    4        Example ................................................ 5
    5        Notes .................................................. 5
             References ............................................. 6
             Security Considerations ................................ 7
             Authors' Addresses ..................................... 7

1.  Overview

    When multiple "equivalent" links connect a pair of OSPF routers,
    database synchronization (both initial via the Database Exchange
    process and ongoing via flooding, also called adjacency formation
    and maintenance) need only be performed over one of the links. The
    key reason for this is that remote routers only care that at least
    one link is advertised in the two routers' router-LSAs;
    advertisement of additional links is redundant.

    The definition of "equivalent" links is as follows. A set of links
    are equivalent if they (a) are all point-to-point links, (b) all
    connect the same pair of OSPF routers, and (c) all belong to the
    same OSPF area.

    The organization of this memo is as follows. Section 2 describes the
    implementation in detail. In a nutshell, the changes required to
    implement the reduction in adjacencies are: (Section 2.1) The router
    with the higher OSPF router ID chooses which of the equivalent links
    to form adjacencies over; the remaining equivalent links stay in
    state 2-Way. (Section 2.2) When an existing adjacency is lost, the
    router with the higher Router ID froms an adjacency over one of the
    other equivalent links. (Section 2.3) The routing calculation in the
    routers at either end of t he equivalent links is modified to
    include the 2-Way links as next hops. (Section 2.4) The MTU check is
    performed as part of Hello processing, since it is now required on
    2-Way links as well as adjacencies.

    Section 3 addresses backward compatibility with implementations of
    the OSPF specification [Ref1]. A simple example of the adjacency
    reduction is given in Section 4. Additional information concerning
    the adjacency reduction, including anomalies and possible
    enhancements, are provided in Section 5.



Moy                                                             [Page 2]


Internet Draft        Flooding over parallel links         November 2000


2.  Implementation

    This section discusses the implementation of the adjacency reduction
    in detail, identifying the sections of the base OSPF protocol [Ref1]
    which must be modified.

    2.1.  Whether to become adjacent

        The decision as to whether to become adjacent with a neighbor is
        covered by Section 10.4, "Whether to become adjacent", of the
        OSPF specification [Ref1]. That section must be modified to
        implement the following idea: "When there are multiple
        equivalent links attaching a pair of OSPF Routers, the Router
        with the higher OSPF Router ID decides which links will form
        adjacencies".

        In particular, if Section 10.4 of [Ref1] indicates that the
        router should form an adjacency with a neighbor (transitioning
        the neighbor from 2-Way to ExStart state), the router should
        execute additional steps as follows:

        (1) If the interface type is other than point-to-point, start
            forming the adjacency.

        (2) If the neighbor is asking to form an adjacency (that is,
            we're running the logic in Section 10.4 of [Ref1] because we
            have received a Database Description packet from the
            neighbor), start forming the adjacency. This is necessary
            for backward compatibility.

        (3) Otherwise, we're running Section 10.4 of [Ref1] because
            either (i) we've just received a bidirectional Hello from
            the neighbor, (ii) there was an error in the previous
            Database Exchange over this link or (iii) an adjacency over
            an equivalent link has been lost (see Section 2.2). In this
            case:

            (a) If the router has a smaller Router ID than the neighbor,
                leave the neighbor in state 2-Way. The neighbor will
                decide over which of the equivalent links adjacencies
                should form.

            (b) If the router's Router ID is larger, examine all the
                equivalent links to the neighbor. If one or more of them
                are adjacent (neighbor state Full) or are in the process
                of becoming adjacent (neighbor state greater than or
                equal to ExStart) leave the neighbor state on the
                current link in state 2-Way. Otherwise, start forming



Moy                                                             [Page 3]


Internet Draft        Flooding over parallel links         November 2000


                the adjacency by transitioning the neighbor state to
                ExStart.

    2.2.  Lost adjacencies

        If the router with the higher OSPF Router ID notices that the
        single adjacency in a collection of equivalent links has gone
        down, it must replace it by forming an adjacency one another of
        the equivalent links.

        To be more precise, Section 10.3 of [Ref1] must be modified as
        follows.  If a neighbor in state ExStart or greater transitions
        to a state of 2-Way or lower, and (a) the router has a larger
        OSPF Router ID than the neighbor, (b) the link associated with
        the failed adjacency is one of a collection of equivalent links,
        and (c) none of the other equivalent links are in state ExStart
        or greater, then the router must start forming an adjacency on
        one of the equivalent 2-Way links (if any) by transitioning that
        link's neighbor's state to ExStart, which starts the Database
        Exchange process on that link.

    2.3.  Next hop calculation

        We must change routing calculation in the routers at the end of
        the equivalent links, allowing 2-Way interfaces to be installed
        as next hops as long as at least one equivalent link is fully
        adjacent (neighbor state Full).

        To this effect, Section 16.1.1 of [Ref1] is changed as follows.
        When installing a next hop to a directly connected router,
        through a point-to-point interface, all equivalent links with
        neighbors in state 2-Way should be added as equal-cost next
        hops.

    2.4.  MTU check

        Since you are now adding certain 2-way, but non-adjacent, links
        as next hops in the routing table entries (Section 2.3), the MTU
        mismatch detection must be implemented in OSPF Hello packets
        sent over point-to-point links. To this end, Hello packets sent
        over point-to-point links (Section 9.5 of [Ref1]) have their
        Designated Router field set to the MTU of the point-to-point
        interface.  Upon receiving an Hello on a point-to-point
        interface (Section 10.5 of [Ref1]), the new MTU field is
        examined. If it is greater than the interface's MTU, the Hello
        is discarded, preventing the neighbor relationship from forming
        and the interface from being installed as a next hop in the
        routing table (see Section G.9 of [Ref3] for more details on MTU



Moy                                                             [Page 4]


Internet Draft        Flooding over parallel links         November 2000


        mismatches).

3.  Backward compatibility

    This memo is backward compatible with implementations of the OSPF
    specification in [Ref1]. No negotiation between neighbors is
    required. If the neighbor runs [Ref1] but not the enhancements in
    this memo, adjacencies will form over all links, because of Step 2
    in Section 2.1.

4.  Example

    Suppose there are six point-to-point links connecting Routers A and
    B. Router A has the higher OSPF Router ID. The first two links
    (IfIndex 1 and 2 on the Router A end) belong to Area 0.0.0.0. The
    last four (IfIndexes 3-6 in Router A) belong to Area 0.0.0.1. There
    are then two sets of equivalent links, one for each area.

    In all cases, OSPF Hellos will always be sent over all links.
    Assuming the links are all operational, they will all attain a
    neighbor state of 2-Way.

    There are then three cases of interest.

    Case 1:
        A and B running enhancements defined in this memo. In this case,
        B will let A choose one link in each area over which to form an
        adjacency.  Suppose these are the links corresponding to
        IfIndexes 1 and 3. If the link corresponding to IfIndex 3 later
        fails, A will choose a different link (say IfIndex 4) over which
        to form an adjacency.

    Case 2:
        Only A runs the enhancements in this memo. A will receive
        requests to form adjacencies on all links (that is, Database
        Description packets from B) and will cooperate by establishing
        adjacencies over all links.

    Case 3:
        Only B runs the enhancements in this memo. The mirror image of
        Case 2; adjacencies again form over all links.

5.  Notes

    Here is additional information on the enhancements provided by this
    memo.





Moy                                                             [Page 5]


Internet Draft        Flooding over parallel links         November 2000


     (1)   The biggest code change required by this memo is to base the
           decision to form an adjacency on whether a Database
           Description packet has just been seen from the neighbor (Step
           2 of Section 2.1).  However, this distinction is useful for
           other reasons; for example, in rate-limiting the number of
           concurrent Database Exchange sessions (see Section 8.3 of
           [Ref2]).

     (2)   This memo didn't change the logic of router-LSA origination.
           So as a side benefit, you also get compression of the router-
           LSA as it only includes one of each set of equivalent links.

     (3)   If you assign different costs within a set of equivalent
           links, this memo breaks that functionality, as it simply
           advertises the cost associated with the link that becomes
           adjacent. However, if assigning differing costs within a set
           of equivalent links is important, then an implementation can
           either a) advertise the smallest cost of any 2-Way link
           within the set of equivalent links or b) select the link to
           become adjacent based on smallest cost (only works if costs
           are configured symmetricly).

     (4)   Why not include Point-to-MultiPoint links in the equivalent
           links definition? Because they can't be excluded from the
           router-LSA, as they are necessary for the next hop
           calculation.

     (5)   When the single adjacency goes down, packets will not be
           forwarded between the neighbors until a new adjacency is
           formed.  To get around this problem, you can introduce a new
           parameter, NumFloodingLinks, and require that that many
           adjacencies be formed within each set of equivalent links.
           This is equivalent to OSPF's Backup Designated Router on
           broadcast subnets.

     (6)   Whenever you are limiting the number of adjacencies, you
           should timeout adjacencies that are not progressing towards
           Full state. See Section 8.3 of [Ref2] for details.

References

    [Ref1]  Moy, J., "OSPF Version 2", RFC 2328, April 1998.

    [Ref2]  Moy, J., "OSPF Complete Implementation", Addison-Wesley,
            October 2000.

    [Ref3]  Moy, J., "OSPF Version 2", RFC 2178, July 1997.




Moy                                                             [Page 6]


Internet Draft        Flooding over parallel links         November 2000


Security Considerations

    This memo does not create any new security issues for the OSPF
    protocol. Security considerations for the base OSPF protocol are
    covered in [Ref1].

Authors Addresses

    J. Moy
    Sycamore Networks, Inc.
    150 Apollo Drive
    Chelmsford, MA 01824
    Phone: (978) 367-2505
    Fax:   (978) 256-4203
    email: jmoy@sycamorenet.com




































Moy                                                             [Page 7]


Html markup produced by rfcmarkup 1.129d, available from https://tools.ietf.org/tools/rfcmarkup/