[Docs] [txt|pdf] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]
Versions: (draft-oki-pce-inter-layer-req) 00
01 02 03 04 05 06 07 08 09 10 11 12
13 14 15 RFC 6457
Network Working Group T. Takeda (Ed.)
Internet Draft NTT
Category: Informational A. Farrel
Old Dog Consulting
Expires: March 29, 2011 September 29, 2010
PCC-PCE Communication and PCE Discovery Requirements for
Inter-Layer Traffic Engineering
draft-ietf-pce-inter-layer-req-13.txt
Abstract
The Path Computation Element (PCE) provides functions of path
computation in support of traffic engineering in Multi-Protocol Label
Switching (MPLS) and Generalized MPLS (GMPLS) controlled networks.
MPLS and GMPLS networks may be constructed from layered client/server
networks. It is advantageous for overall network efficiency to
provide end-to-end traffic engineering across multiple network
layers. PCE is a candidate solution for such requirements.
Generic requirements for a communication protocol between Path
Computation Clients (PCCs) and PCEs are presented in "PCE
Communication Protocol Generic Requirements". Generic requirements
for PCE discovery protocol are presented in "Requirements for Path
Computation Element (PCE) Discovery".
This document complements the generic requirements and presents
detailed sets of PCC-PCE communication protocol requirements and PCE
discovery protocol requirements for inter-layer traffic engineering.
Status of this Memo
This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.
Takeda and Farrel Expires March 2011 [Page 1]
Internet Draft draft-ietf-pce-inter-layer-req-13.txt September 2010
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
Table of Contents
1. Introduction...................................................3
1.1. Terminology..................................................3
2. Motivation for PCE-Based Inter-Layer Path Computation..........4
3. PCC-PCE Communication and Discovery Requirements for Inter-
Layer Traffic Engineering......................................5
3.1. PCC-PCE Communication........................................5
3.1.1. Control of Inter-Layer Path Computation....................5
3.1.2. Control of The Type of Path to be Computed.................5
3.1.3. Communication of Inter-Layer Constraints...................7
3.1.4. Adaptation Capability......................................7
3.1.5. Cooperation Between PCEs...................................7
3.1.6. Inter-Layer Diverse paths..................................7
3.2. Capabilities Advertisements for PCE Discovery................8
3.3. Supported Network Models.....................................8
4. Manageability considerations...................................8
4.1. Control of Function and Policy...............................8
4.2. Information and Data Models..................................9
4.3. Liveness Detection and Monitoring............................9
4.4. Verifying Correct Operation..................................9
4.5. Requirements on Other Protocols and Functional Components....9
4.6. Impact on Network Operation.................................10
5. Security Considerations.......................................10
6. IANA Considerations...........................................10
7. Acknowledgments...............................................11
8. References....................................................11
8.1. Normative References........................................11
8.2. Informative References......................................11
9. Authors' Addresses............................................12
Takeda and Farrel Expires March 2011 [Page 2]
Internet Draft draft-ietf-pce-inter-layer-req-13.txt September 2010
1. Introduction
The Path Computation Element (PCE) defined in [RFC4655] is an entity
that is capable of computing a network path or route based on a
network graph, and applying computational constraints.
A network may comprise multiple layers. These layers may represent
separation of technologies (e.g., packet switch capable (PSC), time
division multiplex (TDM), lambda switch capable (LSC)) into GMPLS
regions [RFC3945], separation of data plane switching granularity
levels (e.g., PSC-1 and PSC-2, or VC4 and VC12) into GMPLS layers
[RFC5212], or a distinction between client and server networking
roles (e.g., commercial or administrative separation of client and
server networks). In this multi-layer network, Label Switched Paths
(LSPs) in lower layers are used to carry upper-layer LSPs. The
network topology formed by lower-layer LSPs and advertised to the
higher layer is called a Virtual Network Topology (VNT) [RFC5212].
In layered networks under the operation of Multiprotocol Label
Switching Traffic Engineering (MPLS-TE) and Generalized MPLS (GMPLS)
protocols, it is important to provide mechanisms to allow global
optimization of network resources. That is, to take into account all
layers, rather than optimizing resource utilization at each layer
independently. This allows better network efficiency to be achieved.
This is what we call Inter-layer traffic engineering. This includes
mechanisms allowing computation of end-to-end paths across layers
(known as inter-layer path computation), and mechanisms for control
and management of the VNT by setting up and releasing LSPs in the
lower layers [RFC5212].
Inter-layer traffic engineering is included in the scope of the PCE
architecture [RFC4655], and PCE can provide a suitable mechanism for
resolving inter-layer path computation issues. The applicability of
the PCE-based path computation architecture to inter-layer traffic
engineering is described in [RFC5623].
This document presents sets of requirements for communication between
path computation clients (PCCs) and PCEs using the PCE communication
protocol (PCEP), and for PCE discovery for inter-layer traffic
engineering. It supplements the generic requirements documented in
[RFC4657] and [RFC4674].
1.1. Terminology
LSP: Label Switched Path.
LSR: Label Switching Router.
Takeda and Farrel Expires March 2011 [Page 3]
Internet Draft draft-ietf-pce-inter-layer-req-13.txt September 2010
PCC: Path Computation Client, any client entity (component,
application or network node) requesting a path computation to be
performed by a Path Computation Element.
PCE: Path Computation Element, an entity that is capable of computing
a network path or route based on a network graph and applying
computational constraints.
PCEP: PCE Communication Protocol, a protocol for communication
between PCCs and PCEs.
Although this requirements document is an informational document not
a protocol specification, the key words "MUST", "MUST NOT",
"REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 [RFC2119] for clarity of
requirement specification.
2. Motivation for PCE-Based Inter-Layer Path Computation
[RFC4206] defines a way to signal an MPLS or a GMPLS LSP with an
explicit route in a higher layer of a network that includes hops
traversed by LSPs in lower layers of the network. The computation of
end-to-end paths across layers is called Inter-Layer Path
Computation.
An LSR in the higher layer might not have information on the topology
of lower layers, particularly in an overlay or augmented model, and
hence might not be able to compute an end-to-end path across layers.
PCE-based inter-layer path computation consists of relying on one or
more PCEs to compute an end-to-end path across layers. This could
rely on a single PCE path computation where the PCE has topology
information about multiple layers and can directly compute an end-to-
end path across layers considering the topology of all of the layers.
Alternatively, the inter-layer path computation could be performed as
a multiple PCE computation where each member of a set of PCEs has
information about the topology of one or more layers, but not all
layers, and collaborate to compute an end-to-end path.
Consider a two-layer network where the higher-layer network is a
packet-based IP/MPLS or GMPLS network and the lower-layer network is
a GMPLS-controlled optical network. An ingress LSR in the higher-
layer network tries to set up an LSP to an egress LSR also in the
higher-layer network across the lower-layer network, and needs a path
in the higher-layer network. However, suppose that there is no TE
link between border LSRs, which are located on the boundary between
the higher-layer and lower-layer networks, and that the ingress LSR
Takeda and Farrel Expires March 2011 [Page 4]
Internet Draft draft-ietf-pce-inter-layer-req-13.txt September 2010
does not have topology visibility in the lower layer. If a single-
layer path computation is applied for the higher layer, the path
computation fails. On the other hand, inter-layer path computation is
able to provide a route in the higher layer and a suggestion that a
lower-layer LSP be setup between border LSRs, considering both layers
as TE topologies.
Further discussion of the application of PCE to inter-layer path
computation can be found in [RFC5623].
3. PCC-PCE Communication and Discovery Requirements for Inter-Layer
Traffic Engineering
This section sets out additional requirements specific to the
problems of multi-layer TE that are not covered in [RFC4657] or
[RFC4674].
3.1. PCC-PCE Communication
PCEP MUST allow requests and replies for inter-layer path
computation.
This requires no additional messages, but implies the following
additional constraints to be added to PCEP.
3.1.1. Control of Inter-Layer Path Computation
A request from a PCC to a PCE MUST support the inclusion of an
optional indication of whether inter-layer path computation is
allowed. In the absence of such an indication, the default is that
inter-layer path computation is not allowed.
3.1.2. Control of The Type of Path to be Computed
The PCE computes and returns a path to the PCC that the PCC can use
to build a higher-layer or lower-layer LSP once converted to an
Explicit Route Object (ERO) for use in RSVP-TE signaling. There are
two options [RFC5623].
- Option 1: Mono-layer path. The PCE computes a "mono layer" path,
i.e., a path that includes only TE links from the same layer.
- Option 2: Multi-layer path. The PCE computes a "multi-layer" path,
i.e., a path that includes TE links from distinct layers [RFC4206].
It may be necessary or desirable for a PCC to control the type of
path that is produced by a PCE. For example, a PCC may know that it
is not possible for technological or policy reasons to signal a
Takeda and Farrel Expires March 2011 [Page 5]
Internet Draft draft-ietf-pce-inter-layer-req-13.txt September 2010
multi-layer path and that a mono-layer path is required, or the PCC
may know that it does not wish the layer border node to have control
of path computation. In order to make this level of control possible,
PCEP MUST allow the PCC to select the path types to be computed, and
that may be returned, by choosing one or more from the following
list:
- A mono-layer path that is specified by strict hop(s). The path may
include virtual TE link(s).
- A mono-layer path that includes loose hop(s).
- A multi-layer path that can include the path (as strict or loose
hops) of one or more lower-layer LSPs not yet established.
The path computation response from a PCE to a PCC MUST report the
type of path computed, and where a multi-layer path is returned, PCEP
MUST support the inclusion, as part of end-to-end path, of the path
of the lower-layer LSPs to be established.
If a response message from a PCE to PCC carries a mono-layer path
that is specified by strict hops but includes virtual TE link(s), or
includes loose hop(s), or carries a multi-layer path that can include
the complete path of one or more lower-layer LSPs not yet
established, the signaling of the higher-layer LSP may trigger the
establishment of the lower-layer LSPs (triggered signaling). The
triggered signaling may increase the higher-layer connection setup
latency. An ingress LSR for the higher-layer LSP, or a PCC, needs to
know whether triggered signaling is required or not.
A request from a PCC to a PCE MUST allow indicating whether triggered
signaling is acceptable or not.
A response from a PCE to a PCC MUST allow indicating whether the
computed path requires triggered signaling or not.
Note that a PCE may not be able to distinguish virtual TE links from
regular TE links. In such cases, even if a request from a PCC to a
PCE indicates that triggered signaling is not acceptable, a PCE may
choose virtual TE links in path computation. Therefore, when a
network uses virtual TE links and a PCE is not able to distinguish
virtual TE links from regular TE links, it MUST be understood that a
PCE may choose virtual TE links even if a request from a PCC to a PCE
indicates triggered signaling is not acceptable.
Also note that an ingress LSR may be present in multiple layers.
Thus, when a mono-layer path is requested or supplied, PCEP MUST be
able to indicate the required/provided path layer.
Takeda and Farrel Expires March 2011 [Page 6]
Internet Draft draft-ietf-pce-inter-layer-req-13.txt September 2010
3.1.3. Communication of Inter-Layer Constraints
A request from a PCC to a PCE MUST support the inclusion of
constraints for a multi-layer path. This includes control over which
network layers may, must, or must not be included in the computed
path. Such control may be expressed in terms of the switching types
of the layer networks.
Furthermore, it may be desirable to constrain the number of layer
boundaries crossed (i.e., the number of adaptations performed on the
end-to-end path), so PCEP SHOULD include a constraint or objective
function to minimize or cap the number of adaptations on a path, and
a mechanism to report that number when a path is supplied.
The path computation request MUST also allow for different objective
functions to be applied within different network layers. For example,
the path in a packet-network may need to be optimized for least delay
using the IGP metric as a measure of delay, while the path in an
under-lying TDM network might be optimized for fewest hops.
3.1.4. Adaptation Capability
It MUST be possible for the path computation request to indicate the
desired adaptation function at the end points of the lower-layer LSP
that is being computed. This will be particularly important where the
ingress and egress LSR participate in more than one layer network but
may not be capable of all associated adaptations.
3.1.5. Cooperation Between PCEs
When each layer is in scope of a different PCE, which only has access
to the topology information of its layer, the PCEs of each layer need
to cooperate to perform inter-layer path computation. In this case,
communication between PCEs is required for inter-layer path
computation. A PCE that behaves as a client is defined as a PCC
[RFC4655].
PCEP MUST allow requests and replies for multiple PCE inter-layer
path computation.
3.1.6. Inter-Layer Diverse paths
PCEP MUST allow for the computation of diverse inter-layer paths. A
request from a PCC to a PCE MUST support the inclusion of multiple
path requests, with the desired level of diversity at each layer
(link, node, SRLG).
Takeda and Farrel Expires March 2011 [Page 7]
Internet Draft draft-ietf-pce-inter-layer-req-13.txt September 2010
3.2. Capabilities Advertisements for PCE Discovery
In the case where there are several PCEs with distinct capabilities
available, a PCC has to select one or more appropriate PCEs. For that
purpose, the PCE discovery mechanism MAY support the disclosure of
some detailed PCE capabilities. A PCE MAY (to be consistent with the
above text and RFC4674) be able to advertise the following inter-
layer-path-computation-related PCE capabilities:
- Support for inter-layer path computation
- Support for mono-layer/multi-layer paths
- Support for inter-layer constraints
- Support for adaptation capability
- Support for inter-PCE communication
- Support for inter-layer diverse path computation
3.3. Supported Network Models
PCEP SHOULD allow several architectural alternatives for interworking
between MPLS and GMPLS-controlled networks: overlay, integrated and
augmented models [RFC3945], [RFC5145], [RFC5146].
4. Manageability considerations
4.1. Control of Function and Policy
An individual PCE MAY elect to support inter-layer computations and
advertise its capabilities as described in the previous sections. PCE
implementations MAY provide a configuration switch to allow support
of inter-layer path computations to be enabled or disabled. When the
level of support is changed, this SHOULD be re-advertised.
However, a PCE MAY also elect to support inter-layer computations,
but not to advertise the fact, so that only those PCCs configured to
know of the PCE and its capabilities can use it.
Support for, and advertisement of support for, inter-layer path
computation MAY be subject to policy and a PCE MAY hide its inter-
layer capabilities from certain PCCs by not advertising them through
the discovery protocol, and not reporting them to the specific PCCs
in any PCEP capabilities exchange. Further, a PCE MAY be directed by
policy to refuse an inter-layer path computation request for any
reason including, but not limited to, the identity of the PCC that
makes the request.
Takeda and Farrel Expires March 2011 [Page 8]
Internet Draft draft-ietf-pce-inter-layer-req-13.txt September 2010
4.2. Information and Data Models
PCEP extensions to support inter-layer computations MUST be
accompanied by MIB objects for the control and monitoring of the
protocol and of the PCE that performs the computations. The MIB
objects MAY be provided in the same MIB module as used for general
PCEP control and monitoring [PCEP-MIB] or MAY be provided in a new
MIB module.
The MIB objects MUST provide the ability to control and monitor all
aspects of PCEP relevant to inter-layer path computation.
4.3. Liveness Detection and Monitoring
No changes are necessary to the liveness detection and monitoring
requirements as already embodied in [RFC4657]. It should be noted,
however, that inter-layer path computations might require extended
cooperation between PCEs (as is also the case for inter-AS and inter-
area computations) and so the liveness detection and monitoring
SHOULD be applied to each PCEP communication and aggregated to report
the behavior of an individual PCEP request to the originating PCC.
In particular, where a request is forwarded between multiple PCEs
neither the PCC nor the first PCE can monitor the liveness of all
PCE-PCE connections or of the PCEs themselves. In this case, suitable
performance of the original PCEP request relies on each PCE operating
correct monitoring procedures and correlating any failures back to
the PCEP requests that are outstanding. These requirements are no
different from those for any cooperative PCE usage, and are expected
to be already covered by general, and by inter-AS and inter-area
implementations. Such a procedure is specified in [RFC5441]. In
addition, [RFC5886] specifies mechanisms to gather various state
metrics along the path computation chain.
4.4. Verifying Correct Operation
There are no additional requirements beyond those expressed in
[RFC4657] for verifying the correct operation of the PCEP. Note that
verification of the correct operation of the PCE and its algorithms
is out of scope for the protocol requirements, but a PCC MAY send the
same request to more than one PCE and compare the results.
4.5. Requirements on Other Protocols and Functional Components
A PCE operates on a topology graph that may be built using
information distributed by TE extensions to the routing protocol
operating within the network. In order that the PCE can select a
suitable path for the signaling protocol to use to install the inter-
Takeda and Farrel Expires March 2011 [Page 9]
Internet Draft draft-ietf-pce-inter-layer-req-13.txt September 2010
layer LSP, the topology graph must include information about the
inter-layer signaling and forwarding (i.e. adaptation) capabilities
of each LSR in the network.
Whatever means are used to collect the information to build the
topology graph, the graph MUST include the requisite information. If
the TE extensions to the routing protocol are used, these SHOULD
satisfy the requirements as described in [RFC5212].
4.6. Impact on Network Operation
The use of a PCE to compute inter-layer paths is not expected to have
significant impact on network operations if the upper layer Traffic
Engineering practices are aware of the frequent changes that might
occur in the VNT. It should also be noted that the introduction of
inter-layer support to a PCE that already provides mono-layer path
computation might change the loading of the PCE and that might have
an impact on the network behavior especially during recovery periods
immediately after a network failure.
On the other hand, it is envisioned that the use of inter-layer path
computation will have significant benefits to the operation of a
multi-layer network including improving the network resource usage
and enabling a greater number of higher-layer LSPs to be supported.
5. Security Considerations
Inter-layer traffic engineering with PCE may raise new security
issues when PCE-PCE communication is done between different layer
networks for inter-layer path computation. Security issues may also
exist when a single PCE is granted full visibility of TE information
that applies to multiple layers.
The formal introduction of a VNT Manager component as described in
[RFC5623] provides the basis for the application of inter-layer
security and policy.
It is expected that solutions for inter-layer protocol extensions
will address these issues in detail.
6. IANA Considerations
This Informational document makes no requests for IANA action.
Takeda and Farrel Expires March 2011 [Page 10]
Internet Draft draft-ietf-pce-inter-layer-req-13.txt September 2010
7. Acknowledgments
We would like to thank Kohei Shiomoto, Ichiro Inoue, Dean Cheng,
Meral Shirazipour, and Julien Meuric for their useful comments.
Thanks to members of ITU-T Study Group 15 Question 14 for their
constructive comments during the liaison process.
8. References
8.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to indicate
requirements levels", RFC 2119, March 1997.
[RFC3945] Mannie, E., "Generalized Multi-Protocol Label Switching
Architecture", RFC 3945, October 2004.
[RFC4206] Kompella, K., and Rekhter, Y., "Label Switched Paths (LSP)
Hierarchy with Generalized Multi-Protocol Label Switching
(GMPLS) Traffic Engineering (TE)", RFC 4206, October 2005.
8.2. Informative References
[RFC4655] A. Farrel, JP. Vasseur and J. Ash, "A Path Computation
Element (PCE)-Based Architecture", RFC 4655, September
2006.
[RFC4657] J. Ash, J.L Le Roux et al., " Path Computation Element
(PCE) Communication Protocol Generic Requirements", RFC
4657, September 2006.
[RFC4674] JL Le Roux et al., "Requirements for Path Computation
Element (PCE) Discovery", RFC 4674, September 2006.
[RFC5145] K. Shiomoto, "Framework for MPLS-TE to GMPLS Migration",
RFC 5145, March 2008.
[RFC5146] K. Kumaki et al., "Interworking Requirements to Support
Operation of MPLS-TE over GMPLS Networks", RFC 5146, March
2008.
[RFC5212] K. Shiomoto et al., "Requirements for GMPLS-Based Multi-
Region and Multi-Layer Networks (MRN/MLN)", RFC 5212, July
2008.
[RFC5623] E. Oki et al., "Framework for PCE-Based Inter-Layer MPLS
and GMPLS Traffic Engineering", RFC 5623, September 2009.
Takeda and Farrel Expires March 2011 [Page 11]
Internet Draft draft-ietf-pce-inter-layer-req-13.txt September 2010
[PCEP-MIB] A. Koushik, and E. Stephan, "PCE communication protocol
(PCEP) Management Information Base", draft-ietf-pce-pcep-
mib (work in progress).
[RFC5441] JP. Vasseur (Ed.), "A Backward-Recursive PCE-Based
Computation (BRPC) Procedure to Compute Shortest
Constrained Inter-Domain Traffic Engineering Label Switched
Paths", RFC 5441, April 2009.
[RFC5886] JP. Vasseur (Ed.), "A Set of Monitoring Tools for Path
Computation Element (PCE)-Based Architecture", RFC 5886,
June 2010.
9. Authors' Addresses
Eiji Oki
University of Electro-Communications
Tokyo, Japan
Email: oki@ice.uec.ac.jp
Jean-Louis Le Roux
France Telecom R&D,
Av Pierre Marzin,
22300 Lannion, France
Email: jeanlouis.leroux@orange-ftgroup.com
Kenji Kumaki
KDDI Corporation
Garden Air Tower
Iidabashi, Chiyoda-ku,
Tokyo 102-8460, JAPAN
Email: ke-kumaki@kddi.com
Adrian Farrel
Old Dog Consulting
Email: adrian@olddog.co.uk
Tomonori Takeda
NTT
3-9-11 Midori-cho,
Musashino-shi, Tokyo 180-8585, Japan
Email: takeda.tomonori@lab.ntt.co.jp
Takeda and Farrel Expires March 2011 [Page 12]
Internet Draft draft-ietf-pce-inter-layer-req-13.txt September 2010
Full Copyright Statement
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info)
in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components
extracted from this document must include Simplified BSD License
text as described in Section 4.e of the Trust Legal Provisions and
are provided without warranty as described in the Simplified BSD
License.
Takeda and Farrel Expires March 2011 [Page 13]
Html markup produced by rfcmarkup 1.129d, available from
https://tools.ietf.org/tools/rfcmarkup/