[Docs] [txt|pdf] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]

Versions: 00 01 02 RFC 2875

Internet Draft                               Hemma Prafullchandra (XETI)
Expires in 6 months                               Jim Schaad (Microsoft)
August 12, 1999

               Diffie-Hellman Proof-of-Possession Algorithms
                      <draft-ietf-pkix-dhpop-01.txt>


Status of this Memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026. Internet-Drafts are working
   documents of the Internet Engineering Task Force (IETF), its areas,
   and its working groups. Internet-Drafts are working documents of the
   Internet Engineering Task Force (IETF), its areas, and its working
   groups.  Note that other groups MAY also distribute working
   documents as Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six
   months and MAY be updated, replaced, or obsoleted by other documents
   at any time.  It is inappropriate to use Internet-Drafts as
   reference material or to cite them other than as "work in progress."


   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.


   To learn the current status of any Internet-Draft, please check the
   "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
   Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
   munari.oz.au Pacific Rim), ds.internic.net (US East Coast), or
   ftp.isi.edu (US West Coast).

Abstract

   This document describes two methods for producing a signature from a
   Diffie-Hellman key pair.  This behavior is needed for such
   operations as creating a signature of a PKCS #10 certification
   request.  These algorithms are designed to provide a proof-of-
   possession rather than general purpose signing.

1. Introduction

   PKCS #10 [RFC2314] defines a syntax for certification requests. It
   assumes that the public key being requested for certification
   corresponds to an algorithm that is capable of signing/encrypting.
   Diffie-Hellman (DH) is a key agreement algorithm and as such cannot
   be directly used for signing or encryption.

   This document describes two new signing algorithms using the Diffie-
   Hellman key agreement process to provide a shared secret as the
   basis of the signature.  In the first signature algorithm, the
   signature is constructed for a specific recipient/verifier by using
   a public key of that verifier.  In the second signature algorithm,
   the signature is constructed for arbitrary verifiers.  This is done
   by creating an appropriate D-H key pair and encoding them as part of
   the signature value.

Prafullchandra, Schaad                                               1
Internet Draft                                             August 1999


2. Terminology

   The following definitions will be used in this document

   DH certificate = a certificate whose SubjectPublicKey is a DH public
   value and is signed with any signature algorithm (e.g. rsa or dsa).

3. DH Signature Process

   The steps for creating a DH signature are:

   1. An entity (E) chooses the group parameters for a DH key
      agreement.

      In many cases this is done simply by selecting the group
      parameters from a certificate for the recipient of the signature
      process (static DH signatures) but they may be computed for other
      methods (ephemeral DH signatures).

      In the ephemeral DH signature scheme, a temporary DH key-pair is
      generated using the group parameters, which may be computed or
      acquired by some out-of-band means.  In the static DH signature
      scheme, a certificate with the correct group parameters has to be
      available. Let these common DH parameters be g and p; and let
      this DH key-pair be known as the Recipient key pair (Rpub and
      Rpriv).

      Rpub = g^x mod p         (where x=Rpriv, the private DH value and
      ^ denotes exponentiation)

   2. The entity generates a DH public/private key-pair using the
      parameters from step 1.

      For an entity E:
         Epriv = DH private value = y
         Epub  = DH public value  = g^y mod p

   3. The signature computation process will then consist of:

      a) The value to be signed is obtained. (For a RFC2314 object, the
         value is the DER encoded certificationRequestInfo field
         represented as an octet string.) This will be the `text'
         referred to in [RFC2104], the data to which HMAC-SHA1 is
         applied.

      b) A shared DH secret is computed, as follows,

                shared secret = ZZ = g^xy mod p

         [This is done by the entity E as g^(y.Rpub) and by the
         Recipient as g^(x.Epub), where Rpub is retrieved from the
         Recipient's DH certificate (or is the one that was locally


Prafullchandra, Schaad                                               2
Internet Draft                                             August 1999

         generated by the Entity) and Epub is retrieved from the actual
         certification request. ]

      c) A temporary key K is derived from the shared secret ZZ as
         follows:

            K = SHA1(LeadingInfo | ZZ | TrailingInfo),
               where "|" means concatenation.

      d) Compute HMAC-SHA1 over the data `text' as per [RFC2104] as:

            SHA1(K XOR opad, SHA1(K XOR ipad, text))

         where,
            opad (outer pad) = the byte 0x36 repeated 64 times and
            ipad (inner pad) = the byte 0x5C repeated 64 times.

         Namely,
          (1)  Append zeros to the end of K to create a 64 byte string
            (e.g., if K is of length 16 bytes it will be appended with
            48 zero bytes 0x00).
          (2)  XOR (bitwise exclusive-OR) the 64 byte string computed
            in step (1) with ipad.
          (3)  Append the data stream `text' to the 64 byte string
            resulting from step (2).
          (4)  Apply SHA1 to the stream generated in step (3).
          (5)  XOR (bitwise exclusive-OR) the 64 byte string computed
            in step (1) with opad.
          (6)  Append the SHA1 result from step (4) to the 64 byte
            string resulting from step (5).
          (7)  Apply SHA1 to the stream generated in step (6) and
            output the result.

         Sample code is also provided in [RFC2104].

      e) The output of (d) is encoded as a BIT STRING (the Signature
         value).

   The signature verification process requires the Recipient to carry
   out steps (a) through (d) and then simply compare the result of step
   (d) with what it received as the signature component. If they match
   then the following can be concluded:

      a) The Entity possesses the private key corresponding to the
         public key in the certification request because it needed the
         private key to calculate the shared secret; and
      b) For the static signature scheme, that only the Recipient that
         the entity sent the request to could actually verify the
         request because they would require their own private key to
         compute the same shared secret. In the case where the
         recipient is a Certification Authority, this protects the
         Entity from rogue CAs.

4. Static DH Signature

Prafullchandra, Schaad                                               3
Internet Draft                                             August 1999


   In the static DH Signature scheme, the public key used in the key
   agreement process of step 2 is obtained from the entity that will be
   verifying the signature (i.e. the recipient).  In the case of a
   certification request, the public key would normally be extracted
   from a certificate issued to the CA with the appropriate key
   parameters.

   The values used in step 3c for "LeadingInfo" and the "TrailingInfo"
   are:

      LeadingInfo ::= Subject Distinguished Name from certificate
      TrailingInfo ::= Issuer Distinguished Name from certificate

   The ASN.1 structures associated with the static Diffie-Hellman
   signature algorithms are:

      id-dhPop-static-HMAC-SHA1 OBJECT IDENTIFIER ::= { id-pkix
         id-alg(6) 3}

      DhPopStatic ::= SEQUENCE {
         issuerAndSerial IssuerAndSerialNumber OPTIONAL,
         hashValue       MessageDigest
      }

     issuerAndSerial is the issuer name and serial number of the
     certificate from which the public key was obtained.  The
     issuerAndSerial field is omitted if the public key did not come
     from a certificate.

     hashValue contains the result of the SHA-1 HMAC operation in step
     3d.

   DhPopStatic is encoded as a BIT STRING and is the signature value
   (i.e. encodes the above sequence instead of the raw output from 3d).

5. Discrete Logarithm Signature

   The use of a single set of parameters for an entire public key
   infrastructure allows all keys in the group to be attacked together.

   For this reason we need to create a proof of possession for Diffie-
   Hellman keys that does not require the use of a common set of
   parameters.

   The method outlined in this document is the same as used by the
   Digital Signature Algorithm, but we have removed the restrictions
   imposed by the [FIPS-186] standard.  The use of this method does
   impose some additional restrictions on the set of keys that may be
   used, however if the key generation algorithm documented in [DH-
   X9.42] is used the required restrictions are met.  The additional
   restrictions are the requirement for the existence of a q parameter.
   Adding the q parameter is generally accepted as a good practice as
   it allows for checking of small group attacks.

Prafullchandra, Schaad                                               4
Internet Draft                                             August 1999


   The following definitions are used in the rest of this section:

      p is a large prime
      g = h(p-1)/q mod p ,
         where h is any integer 1 < h < p-1 such that h(p-1) mod q > 1
         (g has order q mod p)
      q is a large prime
      j is a large integer such that p = qj + 1

      x is a randomly or pseudo-randomly generated integer with
         1 < x < q
      y = g^x mod p

   Note: These definitions match the ones in [DH-X9.42].

5.1 Expanding the Digest Value

   Besides the addition of a q parameter, [FIPS-186] also imposes size
   restrictions on the parameters.  The length of q must be 160-bits
   (matching output of the SHA-1 digest algorithm) and length of p must
   be 1024-bits.  The size restriction on p is eliminated in this
   document, but the size restriction on q is replaced with the
   requirement that q must be at least 160-bits.  (The size restriction
   on q is identical with that in [DH-X9.42].)

   Given that there is not a random length-hashing algorithm, a hash
   value of the message will need to be derived such that the hash is
   in the range from 0 to q-1.  If the length of q is greater than 160-
   bits then a method must be provided to expand the hash length.

   The method for expanding the digest value used in this section does
   not add any additional security beyond the 160-bits provided by SHA.
   The value being signed is increased mainly to enhance the difficulty
   of reversing the signature process.

   This algorithm produces m the value to be signed.

   Let L = the size of q (i.e. 2^L <= q < 2^(L+1)).
   Let M be the original message to be signed.

   1. Compute d = SHA-1(M), the SHA-1 digest of the original message.

   2. If L == 160 then m = d.

   3. If L @ 160 then follow steps (a) through (d) below.

      a) Set n = L / 160, where / represents integer division,
         consequently, if L = 200, n = 1.
      b) Set m = d, the initial computed digest value.
      c) For i = 0 to n - 1
            m = m | SHA(m),  where "|" means concatenation.
      d) m = LEFTMOST(m, L-1), where LEFTMOST returns the L-1 left most
            bits of m.

Prafullchandra, Schaad                                               5
Internet Draft                                             August 1999


   Thus the final result of the process meets the criteria that 0 <= m
   < q.

5.2 Signature Computation Algorithm

   The signature algorithm produces the pair of values (r, s), which is
   the signature. The signature is computed as follows:

   Given m, the value to be signed, as well as the parameters defined
   earlier in section 5.

   1. Generate a random or pseudorandom integer k, such that 0 < k^-1 <
      q.

   2. Compute r = (g^k mod p) mod q.

   3. If r is zero, repeat from step 1.

   4. Compute s = (k^-1 (m + xr)) mod q.

   5. If s is zero, repeat from step 1.

5.3 Signature Verification Algorithm

   The signature verification process is far more complicated than is
   normal for the Digital Signature Algorithm, as some assumptions
   about the validity of parameters cannot be taken for granted.

   Given a message m to be validated, the signature value pair (r, s)
   and the parameters for the key.

   1. Perform a strong verification that p is a prime number.

   2. Perform a strong verification that q is a prime number.

   3. Verify that q is a factor of p-1, if any of the above checks fail
      then the signature cannot be verified and must be considered a
      failure.

   4. Verify that r and s are in the range [1, q-1].

   5. Compute w = (s^-1) mod q.

   6. Compute u1 = m*w mod q.

   7. Compute u2 = r*w mod q.

   8. Compute v = ((g^u1 * y^u2) mod p) mod q.

   9. Compare v and r, if they are the same then the signature verified
      correctly.

5.4 ASN Encoding

Prafullchandra, Schaad                                               6
Internet Draft                                             August 1999


   The signature is encoded using

      id-alg-dhPOP OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 4}

   The parameters for id-alg-dhPOP are encoded as DomainParameters
   (imported from [PROFILE]).  The parameters may be omitted in the
   signature, as they must exist in the associated key request.

   The signature value pair r and s are encoded using Dss-Sig-Value
   (imported from [PROFILE]).

5. Security Considerations

   All the security in this system is provided by the secrecy of the
   private keying material. If either sender or recipient private keys
   are disclosed, all messages sent or received using that key are
   compromised. Similarly, loss of the private key results in an
   inability to read messages sent using that key.

   Selection of parameters can be of paramount importance.  In the
   selection of parameters one must take into account the community/
   group of entities that one wishes to be able to communicate with.
   In choosing a set of parameters one must also be sure to avoid small
   groups.  [FIPS-186] Appendixes 2 and 3 contain information on the
   selection of parameters.  The practices outlined in this document
   will lead to better selection of parameters.

6. References

   [FIPS-186]  Federal Information Processing Standards Publication
               (FIPS PUB) 186, "Digital Signature Standard",
               1994 May 19.

   [RFC2314]   B. Kaliski, "PKCS #10: Certification Request Syntax
               v1.5", RFC 2314, October 1997

   [RFC2104]   H. Krawczyk, M. Bellare, R. Canetti, "HMAC: Keyed-
               Hashing for Message Authentication", RFC 2104,
               February 1997.

   [PROFILE]   R. Housley, W. Ford, W. Polk, D. Solo, "Internet
               X.509 Public Key Infrastructure: Certificate and CRL
               Profile", RFC 2459, January 1999.

   [DH-X9.42]  E. Rescorla, "Diffie-Hellman Key Agreement Method".
               RFC 2631, June 1999.

7. Author's Addresses

   Hemma Prafullchandra
   XETI Inc.
   5150 El Camino Real, #A-32
   Los Altos, CA 94022

Prafullchandra, Schaad                                               7
Internet Draft                                             August 1999

   (640) 694-6812
   hemma@xeti.com

   Jim Schaad
   Microsoft Corporation
   One Microsoft Way
   Redmond, WA 98052-6399
   (425) 936-3101
   jimsch@microsoft.com


Prafullchandra, Schaad                                               8
Internet Draft                                             August 1999


Appendix A.  ASN.1 Module

   DH-Sign DEFINITIONS IMPLICIT TAGS ::=

   BEGIN
   --EXPORTS ALL
   -- The types and values defined in this module are exported for use
   in
   -- the other ASN.1 modules. Other applications may use them for
   their
   -- own purposes.

   IMPORTS
      IssuerAndSerialNumber, MessageDigest
      FROM CryptographicMessageSyntax { iso(1) member-body(2)
           us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
           modules(0) cms(1) }

      Dss-Sig-Value, DomainParameters
      FROM PKIX1Explicit88 {iso(1) identified-organization(3) dod(6)
           internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
           id-pkix1-explicit-88(1)};

      id-dh-sig-hmac-sha1 OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 3}

      DhSigStatic ::= SEQUENCE {
          IssuerAndSerial IssuerAndSerialNumber OPTIONAL,
          hashValue       MessageDigest
      }

      id-alg-dh-pop OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 4}

   END


Prafullchandra, Schaad                                               9
Internet Draft                                             August 1999


Appendix B. Example of Static DH Signature

   The following example follows the steps described earlier in section
   3.

   Step 1: Establishing common Diffie-Hellman parameters. Assume the
   parameters are as in the DER encoded certificate. The certificate
   contains a DH public key signed by a CA with a DSA signing key.

  0 30  792: SEQUENCE {
  4 30  725:   SEQUENCE {
  8 A0    3:     [CONTEXT-SPECIFIC 0] {
 10  2    1:       INTEGER 2
           :       }
 13  2    6:     INTEGER
           :       00 D9 AD EE 9C FC
 21 30   11:     SEQUENCE {
 23  6    7:       OBJECT IDENTIFIER '1 2 840 10040 4 3'
 32  5    0:       NULL
           :       }
 34 30   72:     SEQUENCE {
 36 31   11:       SET {
 38 30    9:         SEQUENCE {
 40  6    3:           OBJECT IDENTIFIER countryName (2 5 4 6)
 45 13    2:           PrintableString 'US'
           :           }
           :         }
 49 31   17:       SET {
 51 30   15:         SEQUENCE {
 53  6    3:           OBJECT IDENTIFIER organizationName (2 5 4 10)
 58 13    8:           PrintableString 'XETI Inc'
           :           }
           :         }
 68 31   12:       SET {
 70 30   10:         SEQUENCE {
 72  6    3:           OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
 77 13    3:           PrintableString 'JSD'
           :           }
           :         }
 82 31   24:       SET {
 84 30   22:         SEQUENCE {
 86  6    3:           OBJECT IDENTIFIER commonName (2 5 4 3)
 91 13   15:           PrintableString 'Root DSA TestCA'
           :           }
           :         }
           :       }


Prafullchandra, Schaad                                              10
Internet Draft                                             August 1999

108 30   30:     SEQUENCE {
110 17   13:       UTCTime '990817213959Z'
125 17   13:       UTCTime '000816213959Z'
           :       }
140 30   82:     SEQUENCE {
142 31   11:       SET {
144 30    9:         SEQUENCE {
146  6    3:           OBJECT IDENTIFIER countryName (2 5 4 6)
151 13    2:           PrintableString 'US'
           :           }
           :         }
155 31   17:       SET {
157 30   15:         SEQUENCE {
159  6    3:           OBJECT IDENTIFIER organizationName (2 5 4 10)
164 13    8:           PrintableString 'XETI Inc'
           :           }
           :         }
174 31   12:       SET {
176 30   10:         SEQUENCE {
178  6    3:           OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
183 13    3:           PrintableString 'JSD'
           :           }
           :         }
188 31   34:       SET {
190 30   32:         SEQUENCE {
192  6    3:           OBJECT IDENTIFIER commonName (2 5 4 3)
197 13   25:           PrintableString 'JKIX DiffieHellman TestCA'
           :           }
           :         }
           :       }
224 30  421:     SEQUENCE {
228 30  282:       SEQUENCE {
232  6    9:         OBJECT IDENTIFIER dhKeyAgreement (1 2 840 113549 1
3 1)
243 30  267:         SEQUENCE {
247  2  129:           INTEGER
           :            00 88 E1 F2 64 6D 5D F2 97 5E 86 00 DF BD 1F B8
           :            E1 07 B5 27 42 C1 6A 02 C5 26 74 F0 A6 53 BF 8C
           :            58 1C B6 77 C0 59 6B 3E A5 E8 7C 64 25 0E B3 FC
           :            29 EE C4 1A 93 F3 48 76 7B C5 DA F7 E5 02 29 11
           :            E8 83 AD A6 A0 AE A4 EA 0F 3A EB 3A 35 67 62 30
           :            7F EE 22 55 18 41 1F 28 25 8D 87 15 68 4B C4 BC
           :            B7 15 1C 4E 78 11 D8 30 2B 0B 54 47 18 1F AA 4E
           :            DC 65 FE FB 21 A6 2F 94 03 EA B6 13 82 A5 22 07
           :            C9
379  2  128:           INTEGER


Prafullchandra, Schaad                                              11
Internet Draft                                             August 1999

           :            38 7B DB FC 78 24 71 C9 2E 04 BA 71 67 07 8B 29
           :            BA 7C E0 2E 66 C9 CB 5A 20 51 01 17 0B D3 E8 4A
           :            2B 00 DA 8D C7 A1 E3 90 A4 86 3C F6 E5 5E 0B 6C
           :            49 6A C2 9B A5 A8 21 4E 08 01 21 3C B2 70 FD C1
           :            0E 94 0D 66 83 0C 77 7E 62 29 16 82 C7 77 F5 6D
           :            2E 0B 70 D5 52 E5 3A 66 B7 D0 6A AA 21 2A C4 23
           :            A5 52 5D D9 D4 D3 EC 9B FE C1 36 90 E7 35 11 0E
           :            A7 02 ED CC B4 F2 98 3D 3B BC 30 44 27 BF D8 52
510  2    2:           INTEGER 256
           :           }
           :         }
514  3  132:       BIT STRING 0 unused bits
           :         02 81 80 51 7C DA 1D AB 78 53 3A 0E E9 D3 D2 8F
           :         50 1F 13 B0 C7 14 DA 5C E3 46 7F 3C 67 D5 BA 52
           :         1D 11 91 26 9B 8D 5A 12 82 B1 9A 09 C9 14 4B 9B
           :         03 EE A0 10 A2 5B 74 FC C6 51 43 77 0C F6 6D 21
           :         67 72 5D 37 BD 3B 69 FB 1F 80 B0 E3 10 AB 8B 19
           :         7B 62 C6 08 20 FD 97 2F 9A D6 16 CC 29 D4 39 36
           :         E3 B5 5B C1 8F 4D F3 CE 47 2E A1 43 A1 39 6D E7
           :         72 B7 7E B5 9D 32 78 F4 26 3D C2 E1 C8 B3 56 A7
           :         79 60 D1
           :       }
649 A3   82:     [CONTEXT-SPECIFIC 3] {
651 30   80:       SEQUENCE {
653 30   29:         SEQUENCE {
655  6    3:           OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29
14)
660  4   22:           OCTET STRING
           :            04 14 81 B3 74 2E F3 40 F4 71 A9 7A FA FF 5A 99
           :            E8 6A 70 8E 02 D6
           :           }
684 30   31:         SEQUENCE {
686  6    3:           OBJECT IDENTIFIER authorityKeyIdentifier (2 5 29
35)
691  4   24:           OCTET STRING
           :            30 16 80 14 62 D9 21 FE E9 78 ED CA 33 06 A0 52
           :            A3 47 7B 8C D1 78 E9 35
           :           }
717 30   14:         SEQUENCE {
719  6    3:           OBJECT IDENTIFIER keyUsage (2 5 29 15)
724  1    1:           BOOLEAN TRUE
727  4    4:           OCTET STRING
           :             03 02 01 06
           :           }
           :         }
           :       }
           :     }


Prafullchandra, Schaad                                              12
Internet Draft                                             August 1999

733 30   11:   SEQUENCE {
735  6    7:     OBJECT IDENTIFIER '1 2 840 10040 4 3'
744  5    0:     NULL
           :     }
746  3   48:   BIT STRING 0 unused bits
           :     30 2D 02 15 00 85 21 8B 45 F0 EC 4A 5F 45 5A 0C
           :     C0 C5 A7 1A 2B B8 AB 5C 78 02 14 40 C1 E9 A5 86
           :     6E 61 51 0E FB 5D E0 9C 75 66 CD CF AE FD B2
           :   }


   Step 2. End Entity/User generates a Diffie-Hellman key-pair using
   the parameters from the CA certificate.

   EE DH public key: SunJCE Diffie-Hellman Public Key:

y:
    07a52fbf b2e5d03a e60b0de4 6f60b9c0
    123d4572 7752c36e e498652a b39b0923
    f5332495 8b5b007d 79b6690c 93625288
    d92d9db0 f60f2325 659a5d58 945c9757
    da92af59 794514b4 a03b5cda 8c288b18
    0447c7aa 3724cffd 3f51f2a8 abe3453a
    c64ca006 8194f868 4be5d008 06b34bbc
    8dd6afe6 89ec5735 821ff9ed 4eccd34a
p:
    88e1f264 6d5df297 5e8600df bd1fb8e1
    07b52742 c16a02c5 2674f0a6 53bf8c58
    1cb677c0 596b3ea5 e87c6425 0eb3fc29
    eec41a93 f348767b c5daf7e5 022911e8
    83ada6a0 aea4ea0f 3aeb3a35 6762307f
    ee225518 411f2825 8d871568 4bc4bcb7
    151c4e78 11d8302b 0b544718 1faa4edc
    65fefb21 a62f9403 eab61382 a52207c9
g:
    387bdbfc 782471c9 2e04ba71 67078b29
    ba7ce02e 66c9cb5a 20510117 0bd3e84a
    2b00da8d c7a1e390 a4863cf6 e55e0b6c
    496ac29b a5a8214e 0801213c b270fdc1
    0e940d66 830c777e 62291682 c777f56d
    2e0b70d5 52e53a66 b7d06aaa 212ac423
    a5525dd9 d4d3ec9b fec13690 e735110e
    a702edcc b4f2983d 3bbc3044 27bfd852
l:
    256

   EE DH private key: SunJCE Diffie-Hellman Private Key:



Prafullchandra, Schaad                                              13
Internet Draft                                             August 1999

x:
    a41aa1b0 a8b60012 b296d9e4 fa280942
    b20b226f 29140796 ffb095e1 bfd6e269
p:
    88e1f264 6d5df297 5e8600df bd1fb8e1
    07b52742 c16a02c5 2674f0a6 53bf8c58
    1cb677c0 596b3ea5 e87c6425 0eb3fc29
    eec41a93 f348767b c5daf7e5 022911e8
    83ada6a0 aea4ea0f 3aeb3a35 6762307f
    ee225518 411f2825 8d871568 4bc4bcb7
    151c4e78 11d8302b 0b544718 1faa4edc
    65fefb21 a62f9403 eab61382 a52207c9
g:
    387bdbfc 782471c9 2e04ba71 67078b29
    ba7ce02e 66c9cb5a 20510117 0bd3e84a
    2b00da8d c7a1e390 a4863cf6 e55e0b6c
    496ac29b a5a8214e 0801213c b270fdc1
    0e940d66 830c777e 62291682 c777f56d
    2e0b70d5 52e53a66 b7d06aaa 212ac423
    a5525dd9 d4d3ec9b fec13690 e735110e
    a702edcc b4f2983d 3bbc3044 27bfd852
l:
    256


   Step 3. Compute K and the signature.

   LeadingInfo: DER encoded Subject/Requestor DN (as in the generated
   Certificate Signing Request)

  30 4A 31 0B 30 09 06 03 55 04 06 13 02 55 53 31
  11 30 0F 06 03 55 04 0A 13 08 58 45 54 49 20 49
  6E 63 31 0C 30 0A 06 03 55 04 0B 13 03 4A 53 44
  31 1A 30 18 06 03 55 04 03 13 11 50 4B 49 58 20
  45 78 61 6D 70 6C 65 20 55 73 65 72



   TrailingInfo: DER encoded Issuer/Recipient DN (from the certificate
   described in step 1)

  30 52 31 0B 30 09 06 03 55 04 06 13 02 55 53 31
  11 30 0F 06 03 55 04 0A 13 08 58 45 54 49 20 49
  6E 63 31 0C 30 0A 06 03 55 04 0B 13 03 4A 53 44
  31 22 30 20 06 03 55 04 03 13 19 4A 4B 49 58 20
  44 69 66 66 69 65 48 65 6C 6C 6D 61 6E 20 54 65
  73 74 43 41



Prafullchandra, Schaad                                              14
Internet Draft                                             August 1999

   K:
  B4 4C 51 FF 73 00 FF 6D 7A 88 EB 45 82 42 05 34
  11 F9 BE 73


   TBS: the "text" for computing the SHA-1 HMAC.

  30 82 01 F8 02 01 00 30 4A 31 0B 30 09 06 03 55
  04 06 13 02 55 53 31 11 30 0F 06 03 55 04 0A 13
  08 58 45 54 49 20 49 6E 63 31 0C 30 0A 06 03 55
  04 0B 13 03 4A 53 44 31 1A 30 18 06 03 55 04 03
  13 11 50 4B 49 58 20 45 78 61 6D 70 6C 65 20 55
  73 65 72 30 82 01 A5 30 82 01 1A 06 09 2A 86 48
  86 F7 0D 01 03 01 30 82 01 0B 02 81 81 00 88 E1
  F2 64 6D 5D F2 97 5E 86 00 DF BD 1F B8 E1 07 B5
  27 42 C1 6A 02 C5 26 74 F0 A6 53 BF 8C 58 1C B6
  77 C0 59 6B 3E A5 E8 7C 64 25 0E B3 FC 29 EE C4
  1A 93 F3 48 76 7B C5 DA F7 E5 02 29 11 E8 83 AD
  A6 A0 AE A4 EA 0F 3A EB 3A 35 67 62 30 7F EE 22
  55 18 41 1F 28 25 8D 87 15 68 4B C4 BC B7 15 1C
  4E 78 11 D8 30 2B 0B 54 47 18 1F AA 4E DC 65 FE
  FB 21 A6 2F 94 03 EA B6 13 82 A5 22 07 C9 02 81
  80 38 7B DB FC 78 24 71 C9 2E 04 BA 71 67 07 8B
  29 BA 7C E0 2E 66 C9 CB 5A 20 51 01 17 0B D3 E8
  4A 2B 00 DA 8D C7 A1 E3 90 A4 86 3C F6 E5 5E 0B
  6C 49 6A C2 9B A5 A8 21 4E 08 01 21 3C B2 70 FD
  C1 0E 94 0D 66 83 0C 77 7E 62 29 16 82 C7 77 F5
  6D 2E 0B 70 D5 52 E5 3A 66 B7 D0 6A AA 21 2A C4
  23 A5 52 5D D9 D4 D3 EC 9B FE C1 36 90 E7 35 11
  0E A7 02 ED CC B4 F2 98 3D 3B BC 30 44 27 BF D8
  52 02 02 01 00 03 81 84 00 02 81 80 07 A5 2F BF
  B2 E5 D0 3A E6 0B 0D E4 6F 60 B9 C0 12 3D 45 72
  77 52 C3 6E E4 98 65 2A B3 9B 09 23 F5 33 24 95
  8B 5B 00 7D 79 B6 69 0C 93 62 52 88 D9 2D 9D B0
  F6 0F 23 25 65 9A 5D 58 94 5C 97 57 DA 92 AF 59
  79 45 14 B4 A0 3B 5C DA 8C 28 8B 18 04 47 C7 AA
  37 24 CF FD 3F 51 F2 A8 AB E3 45 3A C6 4C A0 06
  81 94 F8 68 4B E5 D0 08 06 B3 4B BC 8D D6 AF E6
  89 EC 57 35 82 1F F9 ED 4E CC D3 4A



   Certification Request:

  0 30  633: SEQUENCE {
  4 30  504:   SEQUENCE {
  8  2    1:     INTEGER 0
 11 30   74:     SEQUENCE {


Prafullchandra, Schaad                                              15
Internet Draft                                             August 1999

 13 31   11:       SET {
 15 30    9:         SEQUENCE {
 17  6    3:           OBJECT IDENTIFIER countryName (2 5 4 6)
 22 13    2:           PrintableString 'US'
           :           }
           :         }
 26 31   17:       SET {
 28 30   15:         SEQUENCE {
 30  6    3:           OBJECT IDENTIFIER organizationName (2 5 4 10)
 35 13    8:           PrintableString 'XETI Inc'
           :           }
           :         }
 45 31   12:       SET {
 47 30   10:         SEQUENCE {
 49  6    3:           OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
 54 13    3:           PrintableString 'JSD'
           :           }
           :         }
 59 31   26:       SET {
 61 30   24:         SEQUENCE {
 63  6    3:           OBJECT IDENTIFIER commonName (2 5 4 3)
 68 13   17:           PrintableString 'PKIX Example User'
           :           }
           :         }
           :       }
 87 30  421:     SEQUENCE {
 91 30  282:       SEQUENCE {
 95  6    9:         OBJECT IDENTIFIER dhKeyAgreement (1 2 840 113549 1
3 1)
106 30  267:         SEQUENCE {
110  2  129:           INTEGER
           :            00 88 E1 F2 64 6D 5D F2 97 5E 86 00 DF BD 1F B8
           :            E1 07 B5 27 42 C1 6A 02 C5 26 74 F0 A6 53 BF 8C
           :            58 1C B6 77 C0 59 6B 3E A5 E8 7C 64 25 0E B3 FC
           :            29 EE C4 1A 93 F3 48 76 7B C5 DA F7 E5 02 29 11
           :            E8 83 AD A6 A0 AE A4 EA 0F 3A EB 3A 35 67 62 30
           :            7F EE 22 55 18 41 1F 28 25 8D 87 15 68 4B C4 BC
           :            B7 15 1C 4E 78 11 D8 30 2B 0B 54 47 18 1F AA 4E
           :            DC 65 FE FB 21 A6 2F 94 03 EA B6 13 82 A5 22 07
           :            C9
242  2  128:           INTEGER
           :            38 7B DB FC 78 24 71 C9 2E 04 BA 71 67 07 8B 29
           :            BA 7C E0 2E 66 C9 CB 5A 20 51 01 17 0B D3 E8 4A
           :            2B 00 DA 8D C7 A1 E3 90 A4 86 3C F6 E5 5E 0B 6C
           :            49 6A C2 9B A5 A8 21 4E 08 01 21 3C B2 70 FD C1
           :            0E 94 0D 66 83 0C 77 7E 62 29 16 82 C7 77 F5 6D


Prafullchandra, Schaad                                              16
Internet Draft                                             August 1999

           :            2E 0B 70 D5 52 E5 3A 66 B7 D0 6A AA 21 2A C4 23
           :            A5 52 5D D9 D4 D3 EC 9B FE C1 36 90 E7 35 11 0E
           :            A7 02 ED CC B4 F2 98 3D 3B BC 30 44 27 BF D8 52
373  2    2:           INTEGER 256
           :           }
           :         }
377  3  132:       BIT STRING 0 unused bits
           :         02 81 80 07 A5 2F BF B2 E5 D0 3A E6 0B 0D E4 6F
           :         60 B9 C0 12 3D 45 72 77 52 C3 6E E4 98 65 2A B3
           :         9B 09 23 F5 33 24 95 8B 5B 00 7D 79 B6 69 0C 93
           :         62 52 88 D9 2D 9D B0 F6 0F 23 25 65 9A 5D 58 94
           :         5C 97 57 DA 92 AF 59 79 45 14 B4 A0 3B 5C DA 8C
           :         28 8B 18 04 47 C7 AA 37 24 CF FD 3F 51 F2 A8 AB
           :         E3 45 3A C6 4C A0 06 81 94 F8 68 4B E5 D0 08 06
           :         B3 4B BC 8D D6 AF E6 89 EC 57 35 82 1F F9 ED 4E
           :         CC D3 4A
           :       }
           :     }
512 30   12:   SEQUENCE {
514  6    8:     OBJECT IDENTIFIER '1 3 6 1 5 5 7 6 3'
524  5    0:     NULL
           :     }
526  3  109:   BIT STRING 0 unused bits
           :     30 6A 30 52 30 48 31 0B 30 09 06 03 55 04 06 13
           :     02 55 53 31 11 30 0F 06 03 55 04 0A 13 08 58 45
           :     54 49 20 49 6E 63 31 0C 30 0A 06 03 55 04 0B 13
           :     03 4A 53 44 31 18 30 16 06 03 55 04 03 13 0F 52
           :     6F 6F 74 20 44 53 41 20 54 65 73 74 43 41 02 06
           :     00 D9 AD EE 9C FC 04 14 5F B4 B7 DA 2E 00 80 30
           :     C8 30 9B 5D AA 81 C3 83 6B 30 87 6B
           :   }




   Signature verification requires CA's private key, the CA certificate
   and the generated Certification Request.

   CA DH private key: SunJCE Diffie-Hellman Private Key:

x:
    ed182221 639fce64 484ccd8b bfda23b1
    b75185b9 83aba49e f43b63e8 7abecfe0
p:
    88e1f264 6d5df297 5e8600df bd1fb8e1
    07b52742 c16a02c5 2674f0a6 53bf8c58
    1cb677c0 596b3ea5 e87c6425 0eb3fc29
    eec41a93 f348767b c5daf7e5 022911e8


Prafullchandra, Schaad                                              17
Internet Draft                                             August 1999

    83ada6a0 aea4ea0f 3aeb3a35 6762307f
    ee225518 411f2825 8d871568 4bc4bcb7
    151c4e78 11d8302b 0b544718 1faa4edc
    65fefb21 a62f9403 eab61382 a52207c9
g:
    387bdbfc 782471c9 2e04ba71 67078b29
    ba7ce02e 66c9cb5a 20510117 0bd3e84a
    2b00da8d c7a1e390 a4863cf6 e55e0b6c
    496ac29b a5a8214e 0801213c b270fdc1
    0e940d66 830c777e 62291682 c777f56d
    2e0b70d5 52e53a66 b7d06aaa 212ac423
    a5525dd9 d4d3ec9b fec13690 e735110e
    a702edcc b4f2983d 3bbc3044 27bfd852
l:
    256


Prafullchandra, Schaad                                              18
Internet Draft                                             August 1999


Appendix C.  Example of Discrete Log Signature

   Step 1. Generate a Diffie-Hellman Key with length of q being 256-
   bits.

   p:
     94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7 C5
     A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82 F5
     D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21 51
     63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68 5B
     79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72 8A
     F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2 32
     E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02 D7
     B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85 27

   q:
     E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94 B1
     85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30 FB

   g:
     26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
     06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
     64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
     86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
     4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
     47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
     39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
     95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD

   j:
     A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7 B0
     CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D AB
     83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39 40
     9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76 B4
     61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56 68
     47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2 92

   y:
     5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1 E6 A7 01
     4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0 46 79 50
     A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69 B7 11 A1
     C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22 4D 0A 11
     6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF D8 59 92
     C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21 E1 AF 7A
     3A CF 20 0A B4 2C 69 5F CF 79 67 20 31 4D F2 C6
     ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0 8F C5 1A

   seed:
     1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB
     09 E4 98 34

   C:
     00000037

Prafullchandra, Schaad                                              19
Internet Draft                                             August 1999


   x:
     3E 5D AD FD E5 F4 6B 1B 61 5E 18 F9 0B 84 74 a7
     52 1E D6 92 BC 34 94 56 F3 0C BE DA 67 7A DD 7D

   Step 2.  Form the value to be signed and hash with SHA1.  The result
   of the hash for this example is:
     5f a2 69 b6 4b 22 91 22 6f 4c fe 68 ec 2b d1 c6
     d4 21 e5 2c

   Step 3.  The hash value needs to be expanded since |q| = 256.  This
   is done by hashing the hash with SHA1 and appending it to the
   original hash.  The value after this step is:

     5f a2 69 b6 4b 22 91 22 6f 4c fe 68 ec 2b d1 c6
     d4 21 e5 2c 64 92 8b c9 5e 34 59 70 bd 62 40 ad
     6f 26 3b f7 1c a3 b2 cb

   Next the first 255 bits of this value are taken to be the resulting
   "hash" value.  Note in this case a shift of one bit right is done
   since the result is to be treated as an integer:

     2f d1 34 db 25 91 48 91 37 a6 7f 34 76 15 e8 e3
     6a 10 f2 96 32 49 45 e4 af 1a 2c b8 5e b1 20 56

   Step 4.  The signature value is computed.  In this case you get the
   values

   R:
     A1 B5 B4 90 01 34 6B A0 31 6A 73 F5 7D F6 5C 14
     43 52 D2 10 BF 86 58 87 F7 BC 6E 5A 77 FF C3 4B

   S:
     59 40 45 BC 6F 0D DC FF 9D 55 40 1E C4 9E 51 3D
     66 EF B2 FF 06 40 9A 39 68 75 81 F7 EC 9E BE A1

   The encoded signature values is then:

   30 45 02 21 00 A1 B5 B4 90 01 34 6B A0 31 6A 73
   F5 7D F6 5C 14 43 52 D2 10 BF 86 58 87 F7 BC 6E
   5A 77 FF C3 4B 02 20 59 40 45 BC 6F 0D DC FF 9D
   55 40 1E C4 9E 51 3D 66 EF B2 FF 06 40 9A 39 68
   75 81 F7 EC 9E BE A1

   Result:
     30 82 02 c2 30 82 02 67 02 01 00 30 1b 31 19 30
     17 06 03 55 04 03 13 10 49 45 54 46 20 50 4b 49
     58 20 53 41 4d 50 4c 45 30 82 02 41 30 82 01 b6
     06 07 2a 86 48 ce 3e 02 01 30 82 01 a9 02 81 81
     00 94 84 e0 45 6c 7f 69 51 62 3e 56 80 7c 68 e7
     c5 a9 9e 9e 74 74 94 ed 90 8c 1d c4 e1 4a 14 82
     f5 d2 94 0c 19 e3 b9 10 bb 11 b9 e5 a5 fb 8e 21
     51 63 02 86 aa 06 b8 21 36 b6 7f 36 df d1 d6 68
     5b 79 7c 1d 5a 14 75 1f 6a 93 75 93 ce bb 97 72

Prafullchandra, Schaad                                              20
Internet Draft                                             August 1999

     8a f0 0f 23 9d 47 f6 d4 b3 c7 f0 f4 e6 f6 2b c2
     32 e1 89 67 be 7e 06 ae f8 d0 01 6b 8b 2a f5 02
     d7 b6 a8 63 94 83 b0 1b 31 7d 52 1a de e5 03 85
     27 02 81 80 26 a6 32 2c 5a 2b d4 33 2b 5c dc 06
     87 53 3f 90 06 61 50 38 3e d2 b9 7d 81 1c 12 10
     c5 0c 53 d4 64 d1 8e 30 07 08 8c dd 3f 0a 2f 2c
     d6 1b 7f 57 86 d0 da bb 6e 36 2a 18 e8 d3 bc 70
     31 7a 48 b6 4e 18 6e dd 1f 22 06 eb 3f ea d4 41
     69 d9 9b de 47 95 7a 72 91 d2 09 7f 49 5c 3b 03
     33 51 c8 f1 39 9a ff 04 d5 6e 7e 94 3d 03 b8 f6
     31 15 26 48 95 a8 5c de 47 88 b4 69 3a 00 a7 86
     9e da d1 cd 02 21 00 e8 72 fa 96 f0 11 40 f5 f2
     dc fd 3b 5d 78 94 b1 85 01 e5 69 37 21 f7 25 b9
     ba 71 4a fc 60 30 fb 02 61 00 a3 91 01 c0 a8 6e
     a4 4d a0 56 fc 6c fe 1f a7 b0 cd 0f 94 87 0c 25
     be 97 76 8d eb e5 a4 09 5d ab 83 cd 80 0b 35 67
     7f 0c 8e a7 31 98 32 85 39 40 9d 11 98 d8 de b8
     7f 86 9b af 8d 67 3d b6 76 b4 61 2f 21 e1 4b 0e
     68 ff 53 3e 87 dd d8 71 56 68 47 dc f7 20 63 4b
     3c 5f 78 71 83 e6 70 9e e2 92 30 1a 03 15 00 1c
     d5 3a 0d 17 82 6d 0a 81 75 81 46 10 8e 3e db 09
     e4 98 34 02 01 37 03 81 84 00 02 81 80 5f cf 39
     ad 62 cf 49 8e d1 ce 66 e2 b1 e6 a7 01 4d 05 c2
     77 c8 92 52 42 a9 05 a4 db e0 46 79 50 a3 fc 99
     3d 3d a6 9b a9 ad bc 62 1c 69 b7 11 a1 c0 2a f1
     85 28 f7 68 fe d6 8f 31 56 22 4d 0a 11 6e 72 3a
     02 af 0e 27 aa f9 ed ce 05 ef d8 59 92 c0 18 d7
     69 6e bd 70 b6 21 d1 77 39 21 e1 af 7a 3a cf 20
     0a b4 2c 69 5f cf 79 67 20 31 4d f2 c6 ed 23 bf
     c4 bb 1e d1 71 40 2c 07 d6 f0 8f c5 1a a0 00 30
     0c 06 08 2b 06 01 05 05 07 06 04 05 00 03 47 00
     30 44 02 20 54 d9 43 8d 0f 9d 42 03 d6 09 aa a1
     9a 3c 17 09 ae bd ee b3 d1 a0 00 db 7d 8c b8 e4
     56 e6 57 7b 02 20 44 89 b1 04 f5 40 2b 5f e7 9c
     f9 a4 97 50 0d ad c3 7a a4 2b b2 2d 5d 79 fb 38
     8a b4 df bb 88 bc


   Decoded Version of result:

  0 30  707: SEQUENCE {
  4 30  615:   SEQUENCE {
  8 02    1:     INTEGER 0
 11 30   27:     SEQUENCE {
 13 31   25:       SET {
 15 30   23:         SEQUENCE {
 17 06    3:           OBJECT IDENTIFIER commonName (2 5 4 3)
 22 13   16:           PrintableString 'IETF PKIX SAMPLE'
           :           }
           :         }
           :       }
 40 30  577:     SEQUENCE {
 44 30  438:       SEQUENCE {


Prafullchandra, Schaad                                              21
Internet Draft                                             August 1999

 48 06    7:         OBJECT IDENTIFIER dhPublicNumber (1 2 840 10046 2
1)
 57 30  425:         SEQUENCE {
 61 02  129:           INTEGER
           :            00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7
           :            C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82
           :            F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21
           :            51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68
           :            5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72
           :            8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2
           :            32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02
           :            D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85
           :            27
193 02  128:           INTEGER
           :            26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
           :            06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
           :            64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
           :            86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
           :            4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
           :            47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
           :            39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
           :            95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
324 02   33:           INTEGER
           :            00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94
           :            B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30
           :            FB
359 02   97:           INTEGER
           :            00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7
           :            B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D
           :            AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39
           :            40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76
           :            B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56
           :            68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2
           :            92
458 30   26:           SEQUENCE {
460 03   21:             BIT STRING 0 unused bits
           :            1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB
           :            09 E4 98 34
483 02    1:             INTEGER 55
           :             }
           :           }
           :         }
486 03  132:       BIT STRING 0 unused bits
           :         02 81 80 5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1
           :         E6 A7 01 4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0
           :         46 79 50 A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69
           :         B7 11 A1 C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22
           :         4D 0A 11 6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF
           :         D8 59 92 C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21
           :         E1 AF 7A 3A CF 20 0A B4 2C 69 5F CF 79 67 20 31
           :         4D F2 C6 ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0
           :         8F C5 1A
           :       }
621 A0    0:     [0]

Prafullchandra, Schaad                                              22
Internet Draft                                             August 1999

           :     }
623 30   12:   SEQUENCE {
625 06    8:     OBJECT IDENTIFIER '1 3 6 1 5 5 7 6 4'
635 05    0:     NULL
           :     }
637 03   72:   BIT STRING 0 unused bits
           :     30 45 02 21 00 A1 B5 B4 90 01 34 6B A0 31 6A 73
           :     F5 7D F6 5C 14 43 52 D2 10 BF 86 58 87 F7 BC 6E
           :     5A 77 FF C3 4B 02 20 59 40 45 BC 6F 0D DC FF 9D
           :     55 40 1E C4 9E 51 3D 66 EF B2 FF 06 40 9A 39 68
           :     75 81 F7 EC 9E BE A1
           :   }



Prafullchandra, Schaad                                              23


Html markup produced by rfcmarkup 1.129c, available from https://tools.ietf.org/tools/rfcmarkup/