[Docs] [txt|pdf] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]

Versions: 00 01 02 03 04 05 RFC 2618

RADIUS Working Group                                       Bernard Aboba
INTERNET-DRAFT                                                 Microsoft
Category: Standards Track                                      Glen Zorn
<draft-ietf-radius-auth-clientmib-05.txt>                      Microsoft
31 March 1999


                    RADIUS Authentication Client MIB


1.  Status of this Memo

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups.  Note that other groups
may also distribute working documents as Internet-Drafts.  Internet-
Drafts are draft documents valid for a maximum of six months and may be
updated, replaced, or obsoleted by other documents at any time.  It is
inappropriate to use Internet-Drafts as reference material or to cite
them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

The distribution of this memo is unlimited.  It is filed as <draft-ietf-
radius-auth-clientmib-05.txt>, and  expires October 1, 1999. Please send
comments to the authors.


2.  Copyright Notice

Copyright (C) The Internet Society (1999).  All Rights Reserved.


3.  Abstract

This memo defines a set of extensions which instrument RADIUS
authentication client functions. These extensions represent a portion of
the Management Information Base (MIB) for use with network management
protocols in the Internet community.  Using these extensions IP-based
management stations can manage RADIUS authentication clients.








Aboba & Zorn                 Standards Track                    [Page 1]


INTERNET-DRAFT      RADIUS Authentication Client MIB       31 March 1999


4.  Introduction

This memo defines a portion of the Management Information Base (MIB) for
use with network management protocols in the Internet community.  In
particular, it describes managed objects used for managing RADIUS
authentication clients.

Today a wide range of network devices, including routers and NASes, act
as RADIUS authentication clients in order to provide authentication and
authorization services. As a result, the effective management of RADIUS
authentication clients is of considerable importance.


5.  The SNMP Management Framework

The SNMP Management Framework presently consists of five major
components:

    o   An overall architecture, described in RFC 2271 [1].

    o   Mechanisms for describing and naming objects and events for the
        purpose of management. The first version of this Structure of
        Management Information (SMI) is called SMIv1 and described in
        RFC 1155 [2], RFC 1212 [3] and RFC 1215 [4]. The second version,
        called SMIv2, is described in RFC 1902 [5], RFC 1903 [6] and RFC
        1904 [7].

    o   Message protocols for transferring management information. The
        first version of the SNMP message protocol is called SNMPv1 and
        described in RFC 1157 [8]. A second version of the SNMP message
        protocol, which is not an Internet standards track protocol, is
        called SNMPv2c and described in RFC 1901 [9] and RFC 1906 [10].
        The third version of the message protocol is called SNMPv3 and
        described in RFC 1906 [10], RFC 2272 [11] and RFC 2274 [12].

    o   Protocol operations for accessing management information. The
        first set of protocol operations and associated PDU formats is
        described in RFC 1157 [8]. A second set of protocol operations
        and associated PDU formats is described in RFC 1905 [13].

    o   A set of fundamental applications described in RFC 2273 [14] and
        the view-based access control mechanism described in RFC 2275
        [15].

Managed objects are accessed via a virtual information store, termed the
Management Information Base or MIB.  Objects in the MIB are defined
using the mechanisms defined in the SMI.




Aboba & Zorn                 Standards Track                    [Page 2]


INTERNET-DRAFT      RADIUS Authentication Client MIB       31 March 1999


This memo specifies a MIB module that is compliant to the SMIv2. A MIB
conforming to the SMIv1 can be produced through the appropriate
translations. The resulting translated MIB must be semantically
equivalent, except where objects or events are omitted because no
translation is possible (use of Counter64). Some machine readable
information in SMIv2 will be converted into textual descriptions in
SMIv1 during the translation process. However, this loss of machine
readable information is not considered to change the semantics of the
MIB.


6.  Overview

The RADIUS authentication protocol, described in [16], distinguishes
between the client function and the server function. In RADIUS
authentication, clients send Access-Requests, and servers reply with
Access-Accepts, Access-Rejects, and Access-Challenges.  Typically NAS
devices implement the client function, and thus would be expected to
implement the RADIUS authentication client MIB, while RADIUS
authentication servers implement the server function, and thus would be
expected to implement the RADIUS authentication server MIB.

However, it is possible for a RADIUS authentication entity to perform
both client and server functions. For example, a RADIUS proxy may act as
a server to one or more RADIUS authentication clients, while
simultaneously acting as an authentication client to one or more
authentication servers. In such situations, it is expected that RADIUS
entities combining client and server functionality will support both the
client and server MIBs.


6.1.  Selected objects
This MIB module contains two scalars as well as a single table:

(1)  the RADIUS Authentication Server Table contains one row for each
     RADIUS authentication server that the client shares a secret with.

Each entry in the RADIUS Authentication Server Table includes fifteen
columns presenting a view of the activity of the RADIUS authentication
client.


7.  Definitions

RADIUS-AUTH-CLIENT-MIB DEFINITIONS ::= BEGIN

IMPORTS
       MODULE-IDENTITY, OBJECT-TYPE, OBJECT-IDENTITY,



Aboba & Zorn                 Standards Track                    [Page 3]


INTERNET-DRAFT      RADIUS Authentication Client MIB       31 March 1999


       Counter32, Integer32, Gauge32,
       IpAddress, TimeTicks             FROM SNMPv2-SMI
       SnmpAdminString                  FROM SNMP-FRAMEWORK-MIB
       MODULE-COMPLIANCE, OBJECT-GROUP  FROM SNMPv2-CONF
       mib-2                            FROM RFC1213-MIB;


radiusAuthClientMIB MODULE-IDENTITY
       LAST-UPDATED "9903290000Z" -- 29 Mar 1999
       ORGANIZATION "IETF RADIUS Working Group."
       CONTACT-INFO
              " Bernard Aboba
                Microsoft
                One Microsoft Way
                Redmond, WA  98052
                US

                Phone: +1 425 936 6605
                EMail: bernarda@microsoft.com"
       DESCRIPTION
             "The MIB module for entities implementing the client side of
              the Remote Access Dialin User Service (RADIUS) authentication
              protocol."
       REVISION "9903290000Z"    -- 29 Mar 1999
       DESCRIPTION "Initial version as published in RFC xxxx"
                                 -- RCC xxxx to be assigned by IANA
       ::= { radiusAuthentication 2 }

radiusMIB OBJECT-IDENTITY
       STATUS  current
       DESCRIPTION
             "The OID assigned to RADIUS MIB work by the IANA."
        ::= { mib-2 xxx } -- To be assigned by IANA

radiusAuthentication  OBJECT IDENTIFIER ::= {radiusMIB 1}

radiusAuthClientMIBObjects     OBJECT IDENTIFIER ::= { radiusAuthClientMIB 1 }

radiusAuthClient  OBJECT IDENTIFIER ::= { radiusAuthClientMIBObjects 1 }

radiusAuthClientInvalidServerAddresses OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of RADIUS Access-Response packets
             received from unknown addresses."
      ::= { radiusAuthClient 1 }



Aboba & Zorn                 Standards Track                    [Page 4]


INTERNET-DRAFT      RADIUS Authentication Client MIB       31 March 1999


radiusAuthClientIdentifier OBJECT-TYPE
      SYNTAX SnmpAdminString
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
             "The NAS-Identifier of the RADIUS authentication client.
             This is not necessarily the same as sysName in MIB II."
      ::= { radiusAuthClient 2 }

radiusAuthServerTable OBJECT-TYPE
      SYNTAX     SEQUENCE OF RadiusAuthServerEntry
      MAX-ACCESS not-accessible
      STATUS     current
      DESCRIPTION
            "The (conceptual) table listing the RADIUS authentication
             servers with which the client shares a secret."
      ::= { radiusAuthClient 3 }

radiusAuthServerEntry OBJECT-TYPE
      SYNTAX     RadiusAuthServerEntry
      MAX-ACCESS not-accessible
      STATUS     current
      DESCRIPTION
            "An entry (conceptual row) representing a RADIUS
             authentication server with which the client shares a secret."
      INDEX      { radiusAuthServerIndex }
      ::= { radiusAuthServerTable 1 }

RadiusAuthServerEntry ::= SEQUENCE {
      radiusAuthServerIndex                           Integer32,
      radiusAuthServerAddress                         IpAddress,
      radiusAuthClientServerPortNumber                Integer32,
      radiusAuthClientRoundTripTime                   TimeTicks,
      radiusAuthClientAccessRequests                  Counter32,
      radiusAuthClientAccessRetransmissions           Counter32,
      radiusAuthClientAccessAccepts                   Counter32,
      radiusAuthClientAccessRejects                   Counter32,
      radiusAuthClientAccessChallenges                Counter32,
      radiusAuthClientMalformedAccessResponses        Counter32,
      radiusAuthClientBadAuthenticators               Counter32,
      radiusAuthClientPendingRequests                   Gauge32,
      radiusAuthClientTimeouts                        Counter32,
      radiusAuthClientUnknownTypes                    Counter32,
      radiusAuthClientPacketsDropped                  Counter32
}

radiusAuthServerIndex OBJECT-TYPE
      SYNTAX     Integer32



Aboba & Zorn                 Standards Track                    [Page 5]


INTERNET-DRAFT      RADIUS Authentication Client MIB       31 March 1999


      MAX-ACCESS not-accessible
      STATUS     current
      DESCRIPTION
             "A number uniquely identifying each RADIUS
             Authentication server with which this client
             communicates."
      ::= { radiusAuthServerEntry 1 }

radiusAuthServerAddress OBJECT-TYPE
      SYNTAX     IpAddress
      MAX-ACCESS read-only
      STATUS     current
      DESCRIPTION
            "The IP address of the RADIUS authentication server
             referred to in this table entry."
      ::= { radiusAuthServerEntry 2 }

radiusAuthClientServerPortNumber  OBJECT-TYPE
      SYNTAX Integer32 (0..65535)
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The UDP port the client is using to send requests to
             this server."
      ::= { radiusAuthServerEntry 3 }

radiusAuthClientRoundTripTime  OBJECT-TYPE
      SYNTAX TimeTicks
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The time interval (in hundredths of a second) between
             the most recent Access-Reply/Access-Challenge and the
             Access-Request that matched it from this RADIUS
             authentication server."
      ::= { radiusAuthServerEntry 4 }

-- Request/Response statistics
--
-- TotalIncomingPackets = Accepts + Rejects + Challenges + UnknownTypes
--
-- TotalIncomingPackets - MalformedResponses - BadAuthenticators -
-- UnknownTypes - PacketsDropped = Successfully received
--
-- AccessRequests + PendingRequests + ClientTimeouts = Successfully Received
--
--




Aboba & Zorn                 Standards Track                    [Page 6]


INTERNET-DRAFT      RADIUS Authentication Client MIB       31 March 1999


radiusAuthClientAccessRequests OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of RADIUS Access-Request packets sent
             to this server. This does not include retransmissions."
      ::= { radiusAuthServerEntry 5 }

radiusAuthClientAccessRetransmissions OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of RADIUS Access-Request packets
             retransmitted to this RADIUS authentication server."
      ::= { radiusAuthServerEntry 6 }

radiusAuthClientAccessAccepts OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of RADIUS Access-Accept packets
             (valid or invalid) received from this server."
      ::= { radiusAuthServerEntry 7 }

radiusAuthClientAccessRejects OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of RADIUS Access-Reject packets
             (valid or invalid) received from this server."
      ::= { radiusAuthServerEntry  8 }

radiusAuthClientAccessChallenges OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of RADIUS Access-Challenge packets
             (valid or invalid) received from this server."
      ::= { radiusAuthServerEntry 9 }

-- "Access-Response" includes an Access-Accept, Access-Challenge
-- or Access-Reject




Aboba & Zorn                 Standards Track                    [Page 7]


INTERNET-DRAFT      RADIUS Authentication Client MIB       31 March 1999


radiusAuthClientMalformedAccessResponses OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of malformed RADIUS Access-Response
             packets received from this server.
             Malformed packets include packets with
             an invalid length. Bad authenticators or
             Signature attributes or unknown types are not
             included as malformed access responses."
      ::= { radiusAuthServerEntry 10 }

radiusAuthClientBadAuthenticators OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of RADIUS Access-Response packets
             containing invalid authenticators or Signature
             attributes received from this server."
      ::= { radiusAuthServerEntry 11 }

radiusAuthClientPendingRequests OBJECT-TYPE
      SYNTAX Gauge32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of RADIUS Access-Request packets
             destined for this server that have not yet timed out
             or received a response. This variable is incremented
             when an Access-Request is sent and decremented due to
             receipt of an Acess-Accept, Access-Reject or Access-Challenge,
             a timeout or retransmission."
      ::= { radiusAuthServerEntry 12 }

radiusAuthClientTimeouts OBJECT-TYPE
     SYNTAX Counter32
     MAX-ACCESS read-only
     STATUS current
     DESCRIPTION
            "The number of authentication timeouts to this server.
             After a timeout the client may retry to the same
             server, send to a different server, or
             give up. A retry to the same server is counted as a
             retransmit as well as a timeout. A send to a different
             server is counted as a Request as well as a timeout."
      ::= { radiusAuthServerEntry  13 }



Aboba & Zorn                 Standards Track                    [Page 8]


INTERNET-DRAFT      RADIUS Authentication Client MIB       31 March 1999


radiusAuthClientUnknownTypes OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of RADIUS packets of unknown type which
             were received from this server on the authentication port."
      ::= { radiusAuthServerEntry  14 }

radiusAuthClientPacketsDropped OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of RADIUS packets of which were
             received from this server on the authentication port
             and dropped for some other reason."
      ::= { radiusAuthServerEntry  15 }


-- conformance information

radiusAuthClientMIBConformance
             OBJECT IDENTIFIER ::= { radiusAuthClientMIB 2 }
radiusAuthClientMIBCompliances
             OBJECT IDENTIFIER ::= { radiusAuthClientMIBConformance 1 }
radiusAuthClientMIBGroups
             OBJECT IDENTIFIER ::= { radiusAuthClientMIBConformance 2 }


-- compliance statements

radiusAuthClientMIBCompliance MODULE-COMPLIANCE
     STATUS  current
     DESCRIPTION
           "The compliance statement for authentication clients
            implementing the RADIUS Authentication Client MIB."
     MODULE  -- this module
            MANDATORY-GROUPS { radiusAuthClientMIBGroup }

     ::= { radiusAuthClientMIBCompliances 1 }


-- units of conformance

radiusAuthClientMIBGroup OBJECT-GROUP
     OBJECTS { radiusAuthClientIdentifier,
               radiusAuthClientInvalidServerAddresses,



Aboba & Zorn                 Standards Track                    [Page 9]


INTERNET-DRAFT      RADIUS Authentication Client MIB       31 March 1999


               radiusAuthServerAddress,
               radiusAuthClientServerPortNumber,
               radiusAuthClientRoundTripTime,
               radiusAuthClientAccessRequests,
               radiusAuthClientAccessRetransmissions,
               radiusAuthClientAccessAccepts,
               radiusAuthClientAccessRejects,
               radiusAuthClientAccessChallenges,
               radiusAuthClientMalformedAccessResponses,
               radiusAuthClientBadAuthenticators,
               radiusAuthClientPendingRequests,
               radiusAuthClientTimeouts,
               radiusAuthClientUnknownTypes,
               radiusAuthClientPacketsDropped
            }
     STATUS  current
     DESCRIPTION
           "The basic collection of objects providing management of
            RADIUS Authentication Clients."
     ::= { radiusAuthClientMIBGroups 1 }

END


8.  References


[1]  Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for
     Describing SNMP Management Frameworks", RFC 2271, Cabletron
     Systems, Inc., BMC Software, Inc., IBM T. J. Watson Research,
     January 1998.

[2]  Rose, M., and K. McCloghrie, "Structure and Identification of
     Management Information for TCP/IP-based Internets", RFC 1155,
     Performance Systems International, Hughes LAN Systems, May 1990.

[3]  Rose, M., and K. McCloghrie, "Concise MIB Definitions", RFC 1212,
     Performance Systems International, Hughes LAN Systems, March 1991.

[4]  M. Rose, "A Convention for Defining Traps for use with the SNMP",
     RFC 1215, Performance Systems International, March 1991.

[5]  Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Structure
     of Management Information for Version 2 of the Simple Network
     Management Protocol (SNMPv2)", RFC 1902, SNMP Research,Inc., Cisco
     Systems, Inc., Dover Beach Consulting, Inc., International Network
     Services, January 1996.




Aboba & Zorn                 Standards Track                   [Page 10]


INTERNET-DRAFT      RADIUS Authentication Client MIB       31 March 1999


[6]  Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Textual
     Conventions for Version 2 of the Simple Network Management Protocol
     (SNMPv2)", RFC 1903, SNMP Research, Inc., Cisco Systems, Inc.,
     Dover Beach Consulting, Inc., International Network Services,
     January 1996.

[7]  Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Conformance
     Statements for Version 2 of the Simple Network Management Protocol
     (SNMPv2)", RFC 1904, SNMP Research, Inc., Cisco Systems, Inc.,
     Dover Beach Consulting, Inc., International Network Services,
     January 1996.

[8]  Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple Network
     Management Protocol", RFC 1157, SNMP Research, Performance Systems
     International, Performance Systems International, MIT Laboratory
     for Computer Science, May 1990.

[9]  Case, J., McCloghrie, K., Rose, M., and S. Waldbusser,
     "Introduction to Community-based SNMPv2", RFC 1901, SNMP Research,
     Inc., Cisco Systems, Inc., Dover Beach Consulting, Inc.,
     International Network Services, January 1996.

[10] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Transport
     Mappings for Version 2 of the Simple Network Management Protocol
     (SNMPv2)", RFC 1906, SNMP Research, Inc., Cisco Systems, Inc.,
     Dover Beach Consulting, Inc., International Network Services,
     January 1996.

[11] Case, J., Harrington D., Presuhn R., and B. Wijnen, "Message
     Processing and Dispatching for the Simple Network Management
     Protocol (SNMP)", RFC 2272, SNMP Research, Inc., Cabletron Systems,
     Inc., BMC Software, Inc., IBM T. J. Watson Research, January 1998.

[12] Blumenthal, U., and B. Wijnen, "User-based Security Model (USM) for
     version 3 of the Simple Network Management Protocol (SNMPv3)", RFC
     2274, IBM T. J. Watson Research, January 1998.

[13] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Protocol
     Operations for Version 2 of the Simple Network Management Protocol
     (SNMPv2)", RFC 1905, SNMP Research, Inc., Cisco Systems, Inc.,
     Dover Beach Consulting, Inc., International Network Services,
     January 196.

[14] Levi, D., Meyer, P., and B. Stewart, "SNMPv3 Applications", RFC
     2273, SNMP Research, Inc., Secure Computing Corporation, Cisco
     Systems, January 1998





Aboba & Zorn                 Standards Track                   [Page 11]


INTERNET-DRAFT      RADIUS Authentication Client MIB       31 March 1999


[15] Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based Access
     Control Model (VACM) for the Simple Network Management Protocol
     (SNMP)", RFC 2275, IBM T. J. Watson Research, BMC Software, Inc.,
     Cisco Systems, Inc., January 1998

[16] Rigney, C., Rubens, A., Simpson W., and S. Willens, "Remote
     Authentication Dial In User Service (RADIUS)", RFC 2138, April
     1997.


9.  Security considerations

There are no management objects defined in this MIB that have a MAX-
ACCESS clause of read-write and/or read-create.  So, if this MIB is
implemented correctly, then there is no risk that an intruder can alter
or create any management objects of this MIB via direct SNMP SET
operations.

There are a number of managed objects in this MIB that may contain
sensitive information. These are:

radiusAuthServerAddress
          This can be used to determine the address of the RADIUS
          authentication server with which the client is communicating.
          This information could be useful in mounting an attack on the
          authentication server.

radiusAuthClientServerPortNumber
          This can be used to determine the port number on which the
          RADIUS authentication client is sending. This information
          could be useful in impersonating the client in order to send
          data to the authentication server.

It is thus important to control even GET access to these objects and
possibly to even encrypt the values of these object when sending them
over the network via SNMP.  Not all versions of SNMP provide features
for such a secure environment.

SNMPv1 by itself is not a secure environment. Even if the network itself
is secure (for example by using IPSec), there is no control as to who on
the secure network is allowed to access and GET/SET
(read/change/create/delete) the objects in this MIB.

It is recommended that the implementers consider the security features
as provided by the SNMPv3 framework. Specifically, the use of the User-
based Security Model RFC 2274 [12] and the View-based Access Control
Model RFC 2275 [15] is recommended.  Using these security features,
customer/users can give access to the objects only to those principals



Aboba & Zorn                 Standards Track                   [Page 12]


INTERNET-DRAFT      RADIUS Authentication Client MIB       31 March 1999


(users) that have legitimate rights to GET or SET (change/create/delete)
them.


10.  Acknowledgments

The authors acknowledge the contributions of the RADIUS Working Group in
the development of this MIB.  Thanks to Narendra Gidwani of Microsoft,
Allan C. Rubens of MERIT, Carl Rigney of Livingston and Peter Heitman of
American Internet Corporation for useful discussions of this problem
space.


11.  Authors' Addresses

Bernard Aboba
Microsoft Corporation
One Microsoft Wy
Redmond, WA 98052

Phone: 425-936-6605
EMail: bernarda@microsoft.com

Glen Zorn
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Phone: 425-703-1559
EMail: glennz@microsoft.com


12.  Intellectural Property Statement

The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to  pertain
to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or
might not be available; neither does it represent that it has made any
effort to identify any such rights.  Information on the IETF's
procedures with respect to rights in standards-track and standards-
related documentation can be found in BCP-11.  Copies of claims of
rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by
implementors or users of this specification can be obtained from the
IETF Secretariat.




Aboba & Zorn                 Standards Track                   [Page 13]


INTERNET-DRAFT      RADIUS Authentication Client MIB       31 March 1999


The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary rights
which may cover technology that may be required to practice this
standard.  Please address the information to the IETF Executive
Director.


13.  Full Copyright Statement

Copyright (C) The Internet Society (1999).  All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or
assist in its implmentation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are included
on all such copies and derivative works.  However, this document itself
may not be modified in any way, such as by removing the copyright notice
or references to the Internet Society or other Internet organizations,
except as needed for the purpose of developing Internet standards in
which case the procedures for copyrights defined in the Internet
Standards process must be followed, or as required to translate it into
languages other than English.  The limited permissions granted above are
perpetual and will not be revoked by the Internet Society or its
successors or assigns.  This document and the information contained
herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE
INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.


14.  Expiration Date

This memo is filed as <draft-ietf-radius-auth-clientmib-05.txt>, and
expires October 1, 1999.
















Aboba & Zorn                 Standards Track                   [Page 14]


Html markup produced by rfcmarkup 1.114, available from https://tools.ietf.org/tools/rfcmarkup/