[Docs] [txt|pdf] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]
Versions: (draft-price-rohc-sigcomp-torture-tests)
00 01 02 03 RFC 4465
Robust Header Compression A. Surtees
Internet-Draft M. West
Expires: August 15, 2005 Siemens/Roke Manor Research
February 14, 2005
SigComp Torture Tests
draft-price-rohc-sigcomp-torture-tests-02.txt
Status of this Memo
This document is an Internet-Draft and is subject to all provisions
of section 3 of RFC 3667. By submitting this Internet-Draft, each
author represents that any applicable patent or other IPR claims of
which he or she is aware have been or will be disclosed, and any of
which he or she become aware will be disclosed, in accordance with
RFC 3668.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
This Internet-Draft will expire on August 15, 2005.
Copyright Notice
Copyright (C) The Internet Society (2005).
Abstract
This document provides a set of "torture tests" for implementers of
the SigComp protocol. The torture tests check each of the SigComp
Universal Decompressor Virtual Machine instructions in turn, focusing
in particular on the boundary and error cases that are not generally
encountered when running well-behaved compression algorithms. Tests
are also provided for other SigComp entities such as the dispatcher
and the state handler.
Surtees & West Expires August 15, 2005 [Page 1]
Internet-Draft SigComp Torture Tests February 2005
Change history
Changes relative to <draft-price-rohc-sigcomp-torture-tests-02.txt>:
1. Changed name to draft-ietf-rohc-sigcomp-torture-tests-00.txt
2. Addition of test for state creation and self modifying code.
3. Addition of test for reference of static dictionary RFC-3485 [3].
Changes relative to <draft-price-rohc-sigcomp-torture-tests-01.txt>:
1. Added a test for the SigComp dispatcher (covering the case where
input is requested that lies beyond the end of a message).
2. Fixed a typo in the input for Section 2.16.
Changes relative to <draft-price-rohc-sigcomp-torture-tests-00.txt>:
1. Added tests for the SigComp dispatcher (covering the SigComp
Useful Values, the SigComp header for message-based transports,
and the record marking scheme for stream-based transports).
2. Added tests for the SigComp state handler (covering the SigComp
feedback mechanism, the state memory management and the
interaction between multiple compartments).
3. Updated the cost of the sorting instructions based on the new
values used in SigComp RFC-3320 [2].
4. Updated the stack manipulation test to work correctly when the
decompression_memory_size is only 2048 bytes.
Surtees & West Expires August 15, 2005 [Page 2]
Internet-Draft SigComp Torture Tests February 2005
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Torture tests for UDVM . . . . . . . . . . . . . . . . . . . 5
2.1 Bit manipulation . . . . . . . . . . . . . . . . . . . . . 5
2.2 Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 SHA-1 . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 LOAD and MULTILOAD . . . . . . . . . . . . . . . . . . . . 10
2.6 COPY . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 COPY-LITERAL and COPY-OFFSET . . . . . . . . . . . . . . . 12
2.8 MEMSET . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.10 INPUT-BITS . . . . . . . . . . . . . . . . . . . . . . . 14
2.11 INPUT-HUFFMAN . . . . . . . . . . . . . . . . . . . . . 15
2.12 INPUT-BYTES . . . . . . . . . . . . . . . . . . . . . . 16
2.13 Stack manipulation . . . . . . . . . . . . . . . . . . . 17
2.14 Program flow . . . . . . . . . . . . . . . . . . . . . . 19
2.15 State creation . . . . . . . . . . . . . . . . . . . . . 20
2.16 STATE-ACCESS . . . . . . . . . . . . . . . . . . . . . . 22
3. Torture tests for dispatcher . . . . . . . . . . . . . . . . 24
3.1 Useful Values . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Message-based transport . . . . . . . . . . . . . . . . . 26
3.3 Stream-based transport . . . . . . . . . . . . . . . . . . 28
3.4 Input past the end of a message . . . . . . . . . . . . . 30
4. Torture tests for state handler . . . . . . . . . . . . . . 32
4.1 SigComp feedback mechanism . . . . . . . . . . . . . . . . 32
4.2 State memory management . . . . . . . . . . . . . . . . . 35
4.3 Multiple compartments . . . . . . . . . . . . . . . . . . 38
4.4 Accessing RFC 3485 State . . . . . . . . . . . . . . . . . 42
4.5 Bytecode state creation . . . . . . . . . . . . . . . . . 43
5. Security considerations . . . . . . . . . . . . . . . . . . 45
6. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 45
7. References . . . . . . . . . . . . . . . . . . . . . . . . . 45
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . 46
A. UDVM bytecode for the torture tests . . . . . . . . . . . . 46
A.1 Instructions . . . . . . . . . . . . . . . . . . . . . . . 47
A.1.1 Bit manipulation . . . . . . . . . . . . . . . . . . . 47
A.1.2 Arithmetic . . . . . . . . . . . . . . . . . . . . . . 47
A.1.3 Sorting . . . . . . . . . . . . . . . . . . . . . . . 47
A.1.4 SHA-1 . . . . . . . . . . . . . . . . . . . . . . . . 47
A.1.5 LOAD and MULTILOAD . . . . . . . . . . . . . . . . . . 47
A.1.6 COPY . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.1.7 COPY-LITERAL and COPY-OFFSET . . . . . . . . . . . . . 48
A.1.8 MEMSET . . . . . . . . . . . . . . . . . . . . . . . . 48
A.1.9 CRC . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.1.10 INPUT-BITS . . . . . . . . . . . . . . . . . . . . . 48
A.1.11 INPUT-HUFFMAN . . . . . . . . . . . . . . . . . . . 48
Surtees & West Expires August 15, 2005 [Page 3]
Internet-Draft SigComp Torture Tests February 2005
A.1.12 INPUT-BYTES . . . . . . . . . . . . . . . . . . . . 48
A.1.13 Stack Manipulation . . . . . . . . . . . . . . . . . 48
A.1.14 Program Flow . . . . . . . . . . . . . . . . . . . . 49
A.1.15 State creation . . . . . . . . . . . . . . . . . . . 49
A.1.16 STATE-ACCESS . . . . . . . . . . . . . . . . . . . . 49
A.2 Dispatcher tests . . . . . . . . . . . . . . . . . . . . . 50
A.2.1 Useful Values . . . . . . . . . . . . . . . . . . . . 50
A.2.2 Message-based transport . . . . . . . . . . . . . . . 50
A.2.3 Stream-based transport . . . . . . . . . . . . . . . . 50
A.2.4 Input past the end of a message . . . . . . . . . . . 50
A.3 State handler tests . . . . . . . . . . . . . . . . . . . 50
A.3.1 SigComp feedback mechanism . . . . . . . . . . . . . . 50
A.3.2 State memory management . . . . . . . . . . . . . . . 50
A.3.3 Multiple compartments . . . . . . . . . . . . . . . . 51
A.3.4 Accessing RFC 3485 State . . . . . . . . . . . . . . . 51
A.3.5 Bytecode state creation . . . . . . . . . . . . . . . 51
Intellectual Property and Copyright Statements . . . . . . . 52
Surtees & West Expires August 15, 2005 [Page 4]
Internet-Draft SigComp Torture Tests February 2005
1. Introduction
This document provides a set of torture tests for implementers of the
SigComp protocol RFC-3320 [2]. The idea behind SigComp is to
standardize a Universal Decompressor Virtual Machine (UDVM) that can
be programmed to understand the output of many well-known compressors
including DEFLATE and LZW. The bytecode for the chosen decompressor
is uploaded to the UDVM as part of the SigComp message flow.
The SigComp User Guide [1] offers a number of different algorithms
that can be used by the SigComp protocol. However, the bytecode for
the corresponding decompressors is relatively well behaved and does
not test the boundary and error cases that may potentially be
exploited by malicious SigComp messages.
The draft is divided into a number of sections, each containing a
piece of code designed to test a particular function of one of the
SigComp entities (UDVM, dispatcher and state handler). The specific
boundary and error cases tested by the bytecode are also listed, as
is the expected output of the code.
2. Torture tests for UDVM
The following sections each provide code to test one or more UDVM
instructions. In the interests of readability the code is given
using the SigComp assembly language: a description of how to convert
this assembly code into UDVM bytecode can be found in the SigComp
User Guide [1].
The raw UDVM bytecode for each torture test is given in Appendix A.
Each section also lists the number of UDVM cycles required to execute
the code. Note that this figure only takes into account the cost of
executing each UDVM instruction (in particular it ignores the fact
that the UDVM can gain extra cycles as a result of inputting more
data).
2.1 Bit manipulation
This section gives assembly code to test the AND, OR, NOT, LSHIFT and
RSHIFT instructions. When the instructions have a multitype operand
the code tests the case where the multitype contains a fixed integer
value, and the case where it contains a memory address at which the
2-byte operand value can be found. In addition the code is designed
to test that the following boundary cases have been correctly
implemented:
1. The instructions overwrite themselves with the result of the bit
Surtees & West Expires August 15, 2005 [Page 5]
Internet-Draft SigComp Torture Tests February 2005
manipulation operation.
2. The LSHIFT or RSHIFT instructions shift bits beyond the 2-byte
boundary, in which case the bits must be discarded.
3. The UDVM registers byte_copy_left and byte_copy_right are used to
store the results of the bit manipulation operations. Since no byte
copying is taking place these registers should behave in exactly the
same manner as ordinary UDVM memory addresses.
at (64)
:a pad (2)
:b pad (2)
at (128)
JUMP (start)
at (255)
:start
AND ($start, 21845)
OR ($a, 42)
NOT ($b)
LSHIFT ($a, 3)
RSHIFT ($b, 65535)
OUTPUT (64, 4)
AND ($a, $start)
OR ($a, $a)
NOT ($a)
LSHIFT ($b, $a)
RSHIFT ($a, $b)
OUTPUT (64, 4)
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
The expected output of the code is 0x0150 0000 febf 0000. Executing
the code should cost a total of 22 UDVM cycles.
2.2 Arithmetic
This section gives assembly code to test the ADD, SUBTRACT, MULTIPLY,
Surtees & West Expires August 15, 2005 [Page 6]
Internet-Draft SigComp Torture Tests February 2005
DIVIDE and REMAINDER instructions. The code is designed to test that
the following boundary cases have been correctly implemented:
1. The instructions overwrite themselves with the result of the
arithmetic operation.
2. The result does not lie between 0 and 2^16 - 1 inclusive, in
which case it must be taken modulo 2^16.
3. The divisor in the DIVIDE or REMAINDER instructions is 0 (in
which case decompression failure should occur).
at (64)
:a pad (2)
:b pad (2)
:type pad (1)
:type_lsb pad (1)
at (128)
INPUT-BYTES (1, type_lsb, !)
SUBTRACT ($type, 1)
JUMP (start)
at (255)
:start
ADD ($start, 63809)
SUBTRACT ($a, 1)
MULTIPLY ($a, 1001)
DIVIDE ($a, 101)
REMAINDER ($a, 11)
OUTPUT (64, 4)
ADD ($b, $start)
SUBTRACT ($b, $type)
MULTIPLY ($b, $b)
DIVIDE ($a, $b)
REMAINDER ($b, $type)
OUTPUT (64, 4)
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
Surtees & West Expires August 15, 2005 [Page 7]
Internet-Draft SigComp Torture Tests February 2005
If the compressed message is 0x00 then the expected output of the
code is 0x0000 0000 0000 0004 and the execution cost should be 25
UDVM cycles. However, if the compressed message is 0x01 or 0x02 then
decompression failure should occur.
2.3 Sorting
This section gives assembly code to test the SORT-ASCENDING and SORT-
DESCENDING instructions. The code is designed to test that the
following boundary cases have been correctly implemented:
1. The sorting instructions sort integers with the same value, in
which case the original ordering of the integers must be preserved.
at (128)
SORT-DESCENDING (256, 2, 23)
SORT-ASCENDING (256, 2, 23)
OUTPUT (302, 45)
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
at (256)
word (10, 10, 17, 7, 22, 3, 3, 3, 19, 1, 16, 14, 8, 2, 13, 20, 18,
23, 15, 21, 12, 6, 9)
word (28263, 8297, 30057, 8308, 26996, 11296, 31087, 29991, 8275,
18031, 28263, 24864, 30066, 29284, 28448, 29807, 28206, 11776, 28773,
28704, 28276, 29285, 28265)
The expected output of the code is 0x466f 7264 2c20 796f 7527 7265
2074 7572 6e69 6e67 2069 6e74 6f20 6120 7065 6e67 7569 6e2e 2053 746f
7020 6974 2e, and the expected number of cycles required is 371.
N.B. This uses the corrected cost for the sorting instructions,
which is 1 + k * (ceiling(log2(k)) + n) not 1 + k * ceiling(log2(k)).
2.4 SHA-1
This section gives assembly code to test the SHA-1 instruction. The
code performs four tests on the SHA-1 algorithm itself, and
additionally checks the following boundary cases specific to the
UDVM:
1. The input string for the SHA-1 hash is obtained by byte copying
over an area of the UDVM memory.
Surtees & West Expires August 15, 2005 [Page 8]
Internet-Draft SigComp Torture Tests February 2005
2. The SHA-1 hash overwrites its own input string.
at (64)
:byte_copy_left pad (2)
:byte_copy_right pad (2)
:hash_value pad (20)
at (128)
SHA-1 (test_one, 3, hash_value)
OUTPUT (hash_value, 20)
SHA-1 (test_two, 56, hash_value)
OUTPUT (hash_value, 20)
LOAD (byte_copy_left, test_three)
LOAD (byte_copy_right, test_four)
SHA-1 (test_three, 65535, hash_value)
OUTPUT (hash_value, 20)
LOAD (byte_copy_left, test_four)
LOAD (byte_copy_right, test_end)
SHA-1 (test_four, 640, test_four)
OUTPUT (test_four, 20)
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
:test_one
byte (97, 98, 99)
:test_two
byte (97, 98, 99, 100, 98, 99, 100, 101, 99, 100, 101, 102, 100, 101,
102, 103, 101, 102, 103, 104, 102, 103, 104, 105, 103, 104, 105, 106,
104, 105, 106, 107, 105, 106, 107, 108, 106, 107, 108, 109, 107, 108,
109, 110, 108, 109, 110, 111, 109, 110, 111, 112, 110, 111, 112, 113)
:test_three
byte (97)
:test_four
Surtees & West Expires August 15, 2005 [Page 9]
Internet-Draft SigComp Torture Tests February 2005
byte (48, 49, 50, 51, 52, 53, 54, 55)
:test_end
The expected output of the code is as follows:
0xa999 3e36 4706 816a ba3e 2571 7850 c26c 9cd0 d89d
0x8498 3e44 1c3b d26e baae 4aa1 f951 29e5 e546 70f1
0xe1d0 a18d 43d3 a689 af08 8e15 6bd0 434a a0c8 31fc
0x4f46 0452 ebb5 6393 4f46 0452 ebb5 6393 4f46 0452
Executing the code is expected to cost a total of 66327 UDVM cycles.
2.5 LOAD and MULTILOAD
This section gives assembly code to test the LOAD and MULTILOAD
instructions. The code is designed to test the following boundary
cases:
1. The MULTILOAD instruction overwrites itself, any of its operands,
or any memory addresses referenced by its operands (in which case
decompression failure should occur).
at (64)
:start pad (1)
:start_lsb pad (1)
at (128)
set (location_a, 128)
set (location_b, 132)
LOAD (128, 132)
LOAD (130, $location_a)
LOAD ($location_a, 134)
LOAD ($location_b, $location_b)
OUTPUT (128, 8)
INPUT-BYTES (1, start_lsb, !)
MULTIPLY ($start, 2)
ADD ($start, 60)
MULTILOAD ($start, 3, overlap_start, overlap_end, 128)
Surtees & West Expires August 15, 2005 [Page 10]
Internet-Draft SigComp Torture Tests February 2005
:position
set (overlap_start, (position - 7))
MULTILOAD ($start, 4, 42, 128, $location_a, $location_b)
:end
set (overlap_end, (end - 1))
OUTPUT (128, 8)
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
If the compressed message is 0x00 then the expected output of the
code is 0x0084 0084 0086 0086 002a 0080 002a 002a, and the expected
cost of executing the code is 36 UDVM cycles. However, if the
compressed message is 0x01 or 0x02 then decompression failure is
expected to occur while executing the second MULTILOAD instruction.
2.6 COPY
This section gives assembly code to test the COPY instruction. The
code is designed to test that the following boundary cases have been
correctly implemented:
1. The COPY instruction copies data from both outside the circular
buffer and inside the circular buffer within the same operation.
2. The COPY instruction performs byte-by-byte copying (i.e. some of
the later bytes to be copied are themselves written into the UDVM
memory by the COPY instruction currently being executed).
3. The COPY instruction overwrites itself.
4. The COPY instruction overwrites the UDVM registers byte_copy_left
and byte_copy_right.
at (64)
:byte_copy_left pad (2)
:byte_copy_right pad (2)
at (128)
LOAD (32, 16384)
LOAD (byte_copy_left, 64)
Surtees & West Expires August 15, 2005 [Page 11]
Internet-Draft SigComp Torture Tests February 2005
LOAD (byte_copy_right, 128)
COPY (32, 128, 33)
LOAD (64, 16640)
COPY (64, 76, 65)
OUTPUT (32, 109)
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
The expected output of the code is 32 consecutive instances of 0x40
(the ASCII character "@") followed by 77 consecutive instances of
0x41 (the ASCII character "A"). Executing the code should cost a
total of 321 UDVM cycles.
2.7 COPY-LITERAL and COPY-OFFSET
This section gives assembly code to test the COPY-LITERAL and COPY-
OFFSET instructions. The code is designed to test similar boundary
cases to the code for the COPY instruction, as well as the following
condition specific to COPY-LITERAL and COPY-OFFSET:
1. The COPY-LITERAL or COPY-OFFSET instruction overwrites the value
of its destination or offset operand.
at (64)
:byte_copy_left pad (2)
:byte_copy_right pad (2)
:destination pad (2)
:offset pad (2)
at (128)
LOAD (32, 16384)
LOAD (byte_copy_left, 64)
LOAD (byte_copy_right, 128)
LOAD (destination, 33)
COPY-LITERAL (32, 128, $destination)
COPY-LITERAL (68, 8, $destination)
LOAD (byte_copy_left, 66)
LOAD (byte_copy_right, 74)
COPY-OFFSET (8, 6, $destination)
Surtees & West Expires August 15, 2005 [Page 12]
Internet-Draft SigComp Torture Tests February 2005
LOAD ($offset, 1)
COPY-OFFSET ($offset, 5, $destination)
OUTPUT (32, 48)
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
The expected output of the code is 32 instances of 0x40 followed by
0x0042 004a 0074 4040 4040 004a 0074 4040. The expected cost of
executing the code is 208 UDVM cycles.
N.B. This uses the corrected cost for COPY-OFFSET, which is 1 +
length not 1 + length + offset.
2.8 MEMSET
This section gives assembly code to test the MEMSET instruction. The
code is designed to test that the following boundary cases have been
correctly implemented:
1. The MEMSET instruction overwrites the registers byte_copy_left
and byte_copy_right.
2. The output values of the MEMSET instruction do not lie between 0
and 255 inclusive (in which case they must be taken modulo 2^8).
at (64)
:byte_copy_left pad (2)
:byte_copy_right pad (2)
at (128)
LOAD (byte_copy_left, 128)
LOAD (byte_copy_right, 129)
MEMSET (64, 129, 0, 1)
MEMSET (129, 15, 64, 15)
OUTPUT (128, 16)
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
The expected output of the code is 0x8040 4f5e 6d7c 8b9a a9b8 c7d6
e5f4 0312. Executing the code is expected to cost 166 UDVM cycles.
Surtees & West Expires August 15, 2005 [Page 13]
Internet-Draft SigComp Torture Tests February 2005
2.9 CRC
This section gives assembly code to test the CRC instruction. The
code does not test any specific boundary cases (as there do not
appear to be any) but focuses instead on verifying the CRC algorithm.
at (64)
:byte_copy_left pad (2)
:byte_copy_right pad (2)
:crc_value pad (2)
:crc_string_a pad (24)
:crc_string_b pad (20)
at (128)
MEMSET (crc_string_a, 24, 1, 1)
MEMSET (crc_string_b, 20, 128, 1)
INPUT-BYTES (2, crc_value, !)
CRC ($crc_value, crc_string_a, 44, !)
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
If the compressed message is 0x62cb then the code should successfully
terminate with no output, and with a total execution cost of 95 UDVM
cycles. For different 2-byte compressed messages the code should
terminate with a decompression failure.
2.10 INPUT-BITS
This section gives assembly code to test the INPUT-BITS instruction.
The code is designed to test that the following boundary cases have
been correctly implemented:
1. The INPUT-BITS instruction changes between any of the four
possible bit orderings defined by the input_bit_order register.
2. The INPUT-BITS instruction inputs 0 bits.
3. The INPUT-BITS instruction requests data that lies beyond the end
of the compressed message.
at (64)
Surtees & West Expires August 15, 2005 [Page 14]
Internet-Draft SigComp Torture Tests February 2005
:byte_copy_left pad (2)
:byte_copy_right pad (2)
:input_bit_order pad (2)
:result pad (2)
at (128)
:start
INPUT-BITS ($input_bit_order, result, end_of_message)
OUTPUT (result, 2)
ADD ($input_bit_order, 1)
REMAINDER ($input_bit_order, 7)
ADD ($input_bit_order, 1)
JUMP (start)
:end_of_message
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
An example compressed message is 0x932e ac71, which decompresses to
give the output 0x0000 0002 0002 0013 0000 0003 001a 0038. Executing
the code should cost 66 UDVM cycles.
2.11 INPUT-HUFFMAN
This section gives assembly code to test the INPUT-HUFFMAN
instruction. The code is designed to test that the following
boundary cases have been correctly implemented:
1. The INPUT-HUFFMAN instruction changes between any of the four
possible bit orderings defined by the input_bit_order register.
2. The INPUT-HUFFMAN instruction inputs 0 bits.
3. The INPUT-HUFFMAN instruction requests data that lies beyond the
end of the compressed message.
at (64)
:byte_copy_left pad (2)
:byte_copy_right pad (2)
:input_bit_order pad (2)
:result pad (2)
Surtees & West Expires August 15, 2005 [Page 15]
Internet-Draft SigComp Torture Tests February 2005
at (128)
:start
INPUT-HUFFMAN (result, end_of_message, 2, $input_bit_order, 0,
$input_bit_order, $input_bit_order, $input_bit_order, 0, 65535, 0)
OUTPUT (result, 2)
ADD ($input_bit_order, 1)
REMAINDER ($input_bit_order, 7)
ADD ($input_bit_order, 1)
JUMP (start)
:end_of_message
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
An example compressed message is 0x932e ac71 66d8 6f, which
decompresses to give the output 0x0000 0003 0008 04d7 0002 0003 0399
30fe. Executing the code should cost 84 UDVM cycles.
2.12 INPUT-BYTES
This section gives assembly code to test the INPUT-BYTES instruction.
The code is designed to test that the following boundary cases have
been correctly implemented:
1. The INPUT-BYTES instruction inputs 0 bytes.
2. The INPUT-BYTES instruction requests data that lies beyond the
end of the compressed message.
3. The INPUT-BYTES instruction is used after part of a byte has been
inputted (e.g. by the INPUT-BITS instruction).
at (64)
:byte_copy_left pad (2)
:byte_copy_right pad (2)
:input_bit_order pad (2)
:result pad (2)
:output_start pad (4)
:output_end
at (128)
Surtees & West Expires August 15, 2005 [Page 16]
Internet-Draft SigComp Torture Tests February 2005
LOAD (byte_copy_left, output_start)
LOAD (byte_copy_right, output_end)
:start
INPUT-BITS ($input_bit_order, result, end_of_message)
OUTPUT (result, 2)
ADD ($input_bit_order, 2)
REMAINDER ($input_bit_order, 7)
INPUT-BYTES ($input_bit_order, output_start, end_of_message)
OUTPUT (output_start, $input_bit_order)
ADD ($input_bit_order, 1)
JUMP (start)
:end_of_message
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
An example compressed message is 0x932e ac71 66d8 6fb1 592b dc9a 9734
d847 a733 874e 1bcb cd51 b5dc 9659 9d6a, which decompresses to give
the output 0x0000 932e 0001 b166 d86f b100 1a2b 0003 9a97 34d8 0007
0001 3387 4e00 08dc 9651 b5dc 9600 599d 6a. Executing the code
should cost 130 UDVM cycles.
2.13 Stack manipulation
This section gives assembly code to test the PUSH, POP, CALL and
RETURN instructions. The code is designed to test that the following
boundary cases have been correctly implemented:
1. The stack manipulation instructions overwrite the UDVM register
stack_location.
2. The stack manipulation instructions overwrite themselves.
3. The CALL instruction specifies a reference operand rather than an
absolute value.
4. The PUSH instruction pushes the value contained in stack_fill
onto the stack.
5. The stack_location register contains an odd integer.
Surtees & West Expires August 15, 2005 [Page 17]
Internet-Draft SigComp Torture Tests February 2005
at (64)
:byte_copy_left pad (2)
:byte_copy_right pad (2)
:input_bit_order pad (2)
:stack_location pad (2)
:next_address pad (2)
at (128)
LOAD (stack_location, 64)
PUSH (2)
PUSH ($64)
PUSH (66)
OUTPUT (64, 8)
POP (64)
POP ($stack_location)
POP (stack_location)
OUTPUT (64, 8)
JUMP (address_a)
at (192)
:address_a
LOAD (stack_location, 32)
LOAD (next_address, address_c)
SUBTRACT ($next_address, address_b)
CALL (address_b)
at (256)
:address_b
CALL ($next_address)
at (320)
:address_c
LOAD (stack_location, 383)
LOAD (383, 26)
MULTILOAD (432, 3, 1, 49153, 32768)
RETURN
Surtees & West Expires August 15, 2005 [Page 18]
Internet-Draft SigComp Torture Tests February 2005
at (448)
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
The expected output of the code is 0x0003 0002 0001 0042 0042 0000
0001 0001, and a total of 40 UDVM cycles are expected to be used.
2.14 Program flow
This section gives assembly code to test the JUMP, COMPARE and SWITCH
instructions. The code is designed to test that the following
boundary cases have been correctly implemented:
1. The address operands are specified as references to memory
addresses rather than as absolute values.
at (64)
:next_address pad (2)
:counter pad (1)
:counter_lsb pad (1)
:switch_counter pad (2)
at (128)
LOAD (switch_counter, 4)
:address_a
LOAD (next_address, address_c)
SUBTRACT ($next_address, address_b)
OUTPUT (counter_lsb, 1)
:address_b
JUMP ($next_address)
:address_c
ADD ($counter, 1)
LOAD (next_address, address_a)
SUBTRACT ($next_address, address_d)
OUTPUT (counter_lsb, 1)
:address_d
Surtees & West Expires August 15, 2005 [Page 19]
Internet-Draft SigComp Torture Tests February 2005
COMPARE ($counter, 6, $next_address, address_c, address_e)
:address_e
SUBTRACT ($switch_counter, 1)
LOAD (next_address, address_a)
SUBTRACT ($next_address, address_f)
OUTPUT (counter_lsb, 1)
:address_f
SWITCH (4, $switch_counter, address_g, $next_address, address_c,
address_e)
:address_g
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
The expected output of the code is 0x0001 0102 0203 0304 0405 0506
0707 0708 0808 0909, and a total of 131 UDVM cycles are expected to
be used.
2.15 State creation
This section gives assembly code to test the STATE-CREATE and STATE-
FREE instructions. The code is designed to test that the following
boundary cases have been correctly implemented:
1. An item of state is created that duplicates an existing state
item.
2. An item of state is freed when the state has not been created.
3. An item of state is created and then freed by the same message.
4. The STATE-FREE instruction frees a state item by sending fewer
bytes of state_identifier than the minimum_access_length.
at (64)
:byte_copy_left pad (2)
:byte_copy_right pad (2)
:states pad (1)
:states_lsb pad (1)
set (state_length, 10)
Surtees & West Expires August 15, 2005 [Page 20]
Internet-Draft SigComp Torture Tests February 2005
at (128)
INPUT-BYTES (1, states_lsb, !)
:test_one
LSHIFT ($states, 13)
COMPARE ($states, 32768, test_two, create_state_a, create_state_a)
:create_state_a
STATE-CREATE (state_length, state_address, 0, 20, 0)
:test_two
LSHIFT ($states, 1)
COMPARE ($states, 32768, test_three, free_state, free_state)
:free_state
STATE-FREE (state_identifier, 6)
:test_three
LSHIFT ($states, 1)
COMPARE ($states, 32768, end, create_state_b, create_state_b)
:create_state_b
END-MESSAGE (0, 0, state_length, state_address, 0, 20, 0)
:end
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
at (512)
:state_address
byte (34, 162, 6, 4, 22, 224, 116, 101, 115, 116)
:state_identifier
byte (32, 84, 55, 65, 83, 248, 254, 122, 106, 151, 203, 121, 224, 24,
194, 221, 214, 143, 254, 155)
Upon reaching the END-MESSAGE instruction the UDVM does not output
Surtees & West Expires August 15, 2005 [Page 21]
Internet-Draft SigComp Torture Tests February 2005
any decompressed data, but instead may make one or more state
creation or state free requests to the state handler. Assuming that
the application does not veto the state creation request (and that
sufficient state memory is available) the code should result in
either 0 or 1 new state items being created in the chosen
compartment.
The following table lists eight different 1-byte compressed messages
and whether the message should cause a new state item to be created
in the compartment. The number of UDVM cycles required to execute
the code is also given:
Compressed message: State item in compartment: UDVM cycles:
0x00 No 9
0x01 Yes 19
0x02 No 10
0x03 Yes 20
0x04 Yes 20
0x05 Yes 30
0x06 No 21
0x07 Yes 31
2.16 STATE-ACCESS
This section gives assembly code to test the STATE-ACCESS
instruction. The code is designed to test that the following
boundary cases have been correctly implemented:
1. A subset of the bytes contained in a state item is copied to the
UDVM memory.
2. Bytes are copied from beyond the end of the state value.
3. The state_instruction operand is set to 0.
4. The state cannot be accessed because the partial state identifier
is too short.
5. The state identifier is overwritten by the state item being
accessed.
The code assumes that the state item created in the previous section
is available to the state handler.
Surtees & West Expires August 15, 2005 [Page 22]
Internet-Draft SigComp Torture Tests February 2005
at (64)
:byte_copy_left pad (2)
:byte_copy_right pad (2)
:type pad (1)
:type_lsb pad (1)
:state_value pad (4)
at (128)
INPUT-BYTES (1, type_lsb, !)
COMPARE ($type, 1, execute_state, extract_state, error_conditions)
:execute_state
STATE-ACCESS (state_identifier, 20, 0, 0, 0, 512)
:extract_state
STATE-ACCESS (state_identifier, 20, 6, 4, state_value, 0)
OUTPUT (state_value, 4)
JUMP (end)
:error_conditions
COMPARE ($type, 3, state_not_found, id_too_short, state_too_short)
:state_not_found
STATE-ACCESS (128, 20, 0, 0, 0, 0)
JUMP (end)
:id_too_short
STATE-ACCESS (state_identifier, 19, 6, 4, state_value, 0)
JUMP (end)
:state_too_short
STATE-ACCESS (state_identifier, 20, 6, 5, state_value, 0)
JUMP (end)
at (484)
:end
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
Surtees & West Expires August 15, 2005 [Page 23]
Internet-Draft SigComp Torture Tests February 2005
at (512)
:state_identifier
byte (32, 84, 55, 65, 83, 248, 254, 122, 106, 151, 203, 121, 224, 24,
194, 221, 214, 143, 254, 155)
If the compressed message is 0x00 then the expected output of the
code is 0x7465 7374 and a total of 21 UDVM cycles are expected to be
used. If the compressed message is 0x01 then the code should also
output 0x7465 7374 but in this case using a total of 15 UDVM cycles.
If the compressed message is 0x02, 0x03 or 0x04 then decompression
failure should occur.
3. Torture tests for dispatcher
The following sections give code to test the various functions of the
SigComp dispatcher.
3.1 Useful Values
This section gives assembly code to test that the SigComp "Useful
Values" are correctly initialized in the UDVM memory. It also tests
that the UDVM is correctly terminated if the bytecode uses too many
UDVM cycles or tries to write beyond the end of the available memory.
The code tests that the following boundary cases have been correctly
implemented:
1. The bytecode uses exactly as many UDVM cycles as are available
(in which case no problems should arise) or one cycle too many (in
which case decompression failure should occur).
2. The bytecode writes to the highest memory address available (in
which case no problems should arise) or to the memory address
immediately following the highest available address (in which case
decompression failure should occur).
:udvm_memory_size pad (2)
:cycles_per_bit pad (2)
:sigcomp_version pad (2)
:partial_state_id_length pad (2)
:state_length pad (2)
at (64)
Surtees & West Expires August 15, 2005 [Page 24]
Internet-Draft SigComp Torture Tests February 2005
:byte_copy_left pad (2)
:byte_copy_right pad (2)
:remaining_cycles pad (2)
:check_memory pad (1)
:check_memory_lsb pad (1)
:check_cycles pad (1)
:check_cycles_lsb pad (1)
at (128)
LOAD (byte_copy_left, 32)
LOAD (byte_copy_right, 33)
:test_version
COMPARE ($sigcomp_version, 1, !, test_state_access, !)
:test_state_access
COMPARE ($partial_state_id_length, 0, !, test_length_equals_zero,
test_state_length)
:test_length_equals_zero
COMPARE ($state_length, 0, !, end, !)
:test_state_length
COMPARE ($state_length, 960, !, test_udvm_memory, !)
:test_udvm_memory
INPUT-BYTES (1, check_memory_lsb, !)
ADD ($check_memory, $udvm_memory_size)
SUBTRACT ($check_memory, 1)
COPY (32, 1, $check_memory)
:test_udvm_cycles
INPUT-BYTES (1, check_cycles_lsb, !)
; total_UDVM_cycles = cycles_per_bit * (8 * message_size + 1000)
;
; = cycles_per_bit * (8 * (partial_state_id_length + 3) + 1000)
LOAD (remaining_cycles, $partial_state_id_length)
ADD ($remaining_cycles, 3)
MULTIPLY ($remaining_cycles, 8)
Surtees & West Expires August 15, 2005 [Page 25]
Internet-Draft SigComp Torture Tests February 2005
ADD ($remaining_cycles, 1000)
MULTIPLY ($remaining_cycles, $cycles_per_bit)
ADD ($remaining_cycles, $check_cycles)
set (cycles_used_by_bytecode, 982)
SUBTRACT ($remaining_cycles, cycles_used_by_bytecode)
COPY (32, $remaining_cycles, 32)
:end
END-MESSAGE (0, 0, 960, 64, 128, 6, 0)
The bytecode must be executed a total of four times in order to fully
test the SigComp Useful Values. In the first case the bytecode
should be uploaded as part of the SigComp message (no compressed data
is required in this case). This should cause the UDVM to request
creation of a new state item, and should use a total of 966 UDVM
cycles.
Subsequent tests should access this state by uploading the state
identifier as part of the SigComp message. Note that the SigComp
message should not contain a returned feedback item (as this would
cause the bytecode to calculate the total number of available UDVM
cycles incorrectly).
A 2-byte compressed message is required for the second and subsequent
cases: if the message is 0x0000 then the UDVM should successfully
terminate using exactly the number of available UDVM cycles.
However, if the message is 0x0001 then the UDVM should use too many
cycles and hence terminate with decompression failure. Furthermore
if the message is 0x0100 then decompression failure should occur
because the UDVM attempts to write beyond its available memory.
3.2 Message-based transport
This section provides a set of messages to test the SigComp header
over a message-based transport such as UDP. The messages test that
the following boundary cases have been correctly implemented:
1. The UDVM bytecode is copied to different areas of the UDVM
memory.
2. The decompression memory size is set to an incorrect value.
3. The SigComp message is too short.
Surtees & West Expires August 15, 2005 [Page 26]
Internet-Draft SigComp Torture Tests February 2005
4. The destination address is invalid.
The basic version of the code used in the test is given below. Note
that the code is designed to calculate the decompression memory size
based on the Useful Values provided to the UDVM:
:udvm_memory_size pad (2)
:cycles_per_bit pad (2)
:sigcomp_version pad (2)
:partial_state_id_length pad (2)
:state_length pad (2)
at (128)
:code_start
ADD ($udvm_memory_size, total_message_size)
OUTPUT (udvm_memory_size, 2)
END-MESSAGE (0, 0, 0, 0, 0, 0, 1)
:code_end
set (header_size, 3)
set (code_size, (code_end - code_start))
set (total_message_size, (header_size + code_size))
A number of complete SigComp messages are given below, each
containing some or all of the above code. In each case it is
indicated whether the message should successfully output the
decompression memory size or whether it should cause a decompression
failure to occur (together with the reason for the failure):
SigComp message: Effect:
0xf8 Fails (message too short)
0xf800 Fails (message too short)
0xf800 e106 0011 2200 0223 Outputs the decompression_memory_size
0x0000 0000 0000 01
0xf800 f106 0011 2200 0223 Fails (message too short)
0x0000 0000 0000 01
Surtees & West Expires August 15, 2005 [Page 27]
Internet-Draft SigComp Torture Tests February 2005
0xf800 e006 0011 2200 0223 Fails (invalid destination address)
0x0000 0000 0000 01
0xf800 ee06 0011 2200 0223 Outputs the decompression_memory_size
0x0000 0000 0000 01
The messages should be decompressed in the order given to check that
an error in one message does not interfere with the successful
decompression of subsequent messages.
The two messages that successfully decompress should each use a total
of 5 UDVM cycles.
3.3 Stream-based transport
This section provides a byte stream to test the SigComp header and
delimiters over a stream-based transport such as TCP. The byte
stream tests all of the boundary cases covered in Section 3.2, as
well as the following cases specific to stream-based transports:
1. Quoted bytes are used by the record marking scheme.
2. Multiple delimiters are used between the same pair of messages.
3. Unnecessary delimiters are included at the start of the stream.
The basic version of the code used in the test is given below. Note
that the code is designed to calculate the decompression memory size
based on the Useful Values provided to the UDVM:
:udvm_memory_size pad (2)
:cycles_per_bit pad (2)
:sigcomp_version pad (2)
:partial_state_id_length pad (2)
:state_length pad (2)
at (128)
MULTIPLY ($udvm_memory_size, 2)
OUTPUT (udvm_memory_size, 2)
OUTPUT (test_record_marking, 5)
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
:test_record_marking
byte (255, 255, 255, 255, 255)
Surtees & West Expires August 15, 2005 [Page 28]
Internet-Draft SigComp Torture Tests February 2005
The above assembly code has been compiled and used to generate the
following byte stream:
0xffff f801 7108 0002 2200 0222 a092 0523 0000 0000 0000 00ff 00ff
0x03ff ffff ffff ffff f801 7e08 0002 2200 0222 a3d2 0523 0000 0000
0x0000 00ff 04ff ffff ffff ffff ffff ff
Note that this byte stream can be divided into five distinct portions
(two SigComp messages and three sets of delimiters) as illustrated
below:
Portion of byte stream: Meaning:
0xffff Delimiter
0xf801 7108 0002 2200 0222 a092 0523 First message
0x0000 0000 0000 00ff 00ff 03ff ffff
0xffff ffff Delimiter
0xf801 7e08 0002 2200 0222 a3d2 0523 Second message
0x0000 0000 0000 00ff 04ff ffff ff
0xffff ffff ffff Delimiter
When the complete byte stream is supplied to the decompressor
dispatcher, the record marking scheme should use the delimiters to
partition the stream into two distinct SigComp messages. Both of
these messages should successfully output the decompression memory
size (as a 2-byte value), followed by five consecutive 0xff bytes to
test that the record marking scheme is working correctly. A total of
11 UDVM cycles should be used in each case.
It must also be checked that the dispatcher can handle the same error
cases as covered in Section 3.2. Each of the following byte streams
should cause a decompression failure to occur for the reason stated:
Byte stream: Reason for failure:
0xf8ff ff Message too short
0xf800 ffff Message too short
Surtees & West Expires August 15, 2005 [Page 29]
Internet-Draft SigComp Torture Tests February 2005
0xf801 8108 0002 2200 0222 a092 0523 ffff Message too short
0x0000 0000 0000 00ff 00ff 03ff ffff
0xf801 7008 0002 2200 0222 a092 0523 ffff Invalid destination
0x0000 0000 0000 00ff 04ff ffff ff
Note that when a decompression failure occurs it is an implementation
decision whether to close the entire stream or whether to ignore the
error and attempt to decompress subsequent messages in the stream.
3.4 Input past the end of a message
This section gives assembly code to test that the implementation
correctly handles input past the end of a SigComp message. The code
is designed to test that the following boundary cases have been
correctly implemented:
1. An INPUT instruction requests data that lies beyond the end of
the message. In this case the dispatcher should not return any data
to the UDVM. Moreover, the message bytes held by the dispatcher
should still be available for retrieval by subsequent INPUT
instructions.
2. The INPUT-BYTES instruction is used after part of a byte has been
inputted (e.g. by the INPUT-BITS instruction). In this case the
remaining partial byte should be discarded, even if the INPUT-BYTES
instruction requests data that lies beyond the end of the message.
at (64)
:byte_copy_left pad (2)
:byte_copy_right pad (2)
:input_bit_order pad (2)
:result pad (1)
:result_lsb pad (6)
:right
at (128)
LOAD (byte_copy_left, result)
LOAD (byte_copy_right, right)
:start
; Input bits to ensure that the remaining message is not byte aligned
Surtees & West Expires August 15, 2005 [Page 30]
Internet-Draft SigComp Torture Tests February 2005
INPUT-BITS (9, result, !)
; Attempt to read 7 bytes
INPUT-BYTES (7, result, next_bytes)
OUTPUT (result, 7)
JUMP (bits)
:next_bytes
; Read 7 bits - this should remove the byte alignment of the message
; If the bits have not been thrown away where they should then the
; message will be 1 byte longer than necessary
INPUT-BITS (7, result, !)
; Read 2 bytes
INPUT-BYTES (2, result, !)
OUTPUT (result, 2)
:bits
; Attempt to read 16 bits
INPUT-BITS (16, result, next_bits)
OUTPUT (result, 2)
JUMP (end_message)
:next_bits
; Read 8 bits
INPUT-BITS (8, result, !)
OUTPUT (result_lsb, 1)
:end_message
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
If the compressed message is 0xfffa 0068 6921 then the code is
expected to terminate successfully with the output 0x6869 21, and a
total of 23 UDVM cycles should be used. However, if the compressed
message is 0xfffa 0068 69 then decompression failure is expected to
occur (after outputting the message 0x6869).
Surtees & West Expires August 15, 2005 [Page 31]
Internet-Draft SigComp Torture Tests February 2005
4. Torture tests for state handler
The following sections give code to test the various functions of the
SigComp state handler.
4.1 SigComp feedback mechanism
This section gives assembly code to test the SigComp feedback
mechanism. The code is designed to test that the following boundary
cases have been correctly implemented:
1. Both the short and the long versions of the SigComp feedback item
are used.
2. The chain of returned SigComp parameters is terminated by a non-
zero value.
at (64)
:type pad (1)
:type_lsb pad (1)
:requested_feedback_location pad (1)
:requested_feedback_length pad (1)
:requested_feedback_bytes pad (127)
:returned_parameters_location pad (2)
:length_of_partial_state_id_a pad (1)
:partial_state_identifier_a pad (6)
:length_of_partial_state_id_b pad (1)
:partial_state_identifier_b pad (12)
:length_of_partial_state_id_c pad (1)
:partial_state_identifier_c pad (20)
:terminate_returned_parameters pad (1)
align (128)
set (q_bit, 1)
set (s_bit, 0)
set (i_bit, 0)
set (flags, (((4 * q_bit) + (2 * s_bit)) + i_bit))
INPUT-BYTES (1, type_lsb, !)
COMPARE ($type, 1, short_feedback_item, long_feedback_item, !)
:short_feedback_item
Surtees & West Expires August 15, 2005 [Page 32]
Internet-Draft SigComp Torture Tests February 2005
set (requested_feedback_data, 127)
set (short_feedback_value, ((flags * 256) + requested_feedback_data))
LOAD (requested_feedback_location, short_feedback_value)
JUMP (return_sigcomp_parameters)
:long_feedback_item
set (requested_feedback_field, 255)
set (long_feedback_value, ((flags * 256) + requested_feedback_field))
LOAD (requested_feedback_location, long_feedback_value)
MEMSET (requested_feedback_bytes, 127, 1, 1)
:return_sigcomp_parameters
set (cpb, 0)
set (dms, 1)
set (sms, 0)
set (sigcomp_version, 1)
set (parameters_msb, (((64 * cpb) + (8 * dms)) + sms))
set (sigcomp_parameters, ((256 * parameters_msb) + sigcomp_version))
LOAD (returned_parameters_location, sigcomp_parameters)
LOAD (length_of_partial_state_id_a, 1536)
LOAD (length_of_partial_state_id_b, 3072)
LOAD (length_of_partial_state_id_c, 5120)
LOAD (terminate_returned_parameters, 5376)
MEMSET (partial_state_identifier_a, 6, 0, 1)
MEMSET (partial_state_identifier_b, 12, 0, 1)
MEMSET (partial_state_identifier_c, 20, 0, 1)
END-MESSAGE (requested_feedback_location,
returned_parameters_location, 0, 0, 0, 0, 0)
When the above code is executed it supplies a requested feedback item
to the state handler. If the compressed message is 0x00 then the
short (1-byte) version of the feedback is used. Assuming that the
feedback request is successful the feedback item should be returned
in the first SigComp message to be sent in the reverse direction.
The SigComp message returning the feedback should begin as follows:
+---+---+---+---+---+---+---+---+
Surtees & West Expires August 15, 2005 [Page 33]
Internet-Draft SigComp Torture Tests February 2005
| 1 1 1 1 1 1 | X | first header byte
+---+---+---+---+---+---+---+---+
| 0 | 127 | returned feedback field
+---+---+---+---+---+---+---+---+
So the first 2 bytes of the returning SigComp message should be
0xfn7f where n = c, d, e or f (the choice of n is determined by the
compressor generating the returning SigComp message, which is not
under the control of the above code). Executing the bytecode in this
case should cost a total of 52 UDVM cycles.
If the compressed message is 0x01 then the long version of the
feedback item is used. In this case the SigComp message returning
the feedback should begin as follows:
+---+---+---+---+---+---+---+---+
| 1 1 1 1 1 1 | X | first header byte
+---+---+---+---+---+---+---+---+
| 1 | 127 | returned feedback length
+---+---+---+---+---+---+---+---+
| 1 | ^
+---+---+---+---+---+---+---+---+ |
| 2 | |
+---+---+---+---+---+---+---+---+
| 3 | returned feedback field
+---+---+---+---+---+---+---+---+
So the first 129 bytes of the SigComp message should be 0xfnff 0102
0304 ... 7e7f where n = c, d, e or f. Executing the bytecode in this
case should cost a total of 179 UDVM cycles.
As well as testing the requested and returned feedback items, the
above code also announces values for each of the SigComp parameters.
The supplied version of the code announces only the minimum possible
values for the cycles_per_bit, decompression_memory_size,
state_memory_size and SigComp_version (although this can easily be
adjusted to test different values for these parameters).
The code should also announce the availability of state items with
the following partial state identifiers:
0x0001 0203 0405 0x0001 0203 0405 0607 0809 0a0b 0x0001 0203 0405
0607 0809 0a0b 0c0d 0e0f 1011 1213
Note that different implementations may make use of the announcement
information in different ways. It is a valid implementation choice
to simply ignore all of the announcement data and use only the
Surtees & West Expires August 15, 2005 [Page 34]
Internet-Draft SigComp Torture Tests February 2005
minimum resources that are guaranteed to be available to all
endpoints. However the above code is useful for checking that an
endpoint interprets the announcement data correctly (in particular
ensuring that it does not mistakenly use resources that have not in
fact been announced).
4.2 State memory management
The following section gives assembly code to test the memory
management features of the state handler. The code checks that the
correct states are retained by the state handler when insufficient
memory is available to store all of the requested states.
The code is designed to test that the following boundary cases have
been correctly implemented:
1. A state item is created that exceeds the total state_memory_size
for the compartment.
2. States are created with a non-zero state_retention_priority.
3. A new state item is created that has a lower
state_retention_priority than existing state items in the
compartment.
For the duration of this test it is assumed that all states will be
saved in a single compartment with a state_memory_size of 2048 bytes.
at (64)
:byte_copy_left pad (2)
:byte_copy_right pad (2)
:order pad (2)
:type pad (1)
:type_lsb pad (1)
:state_length pad (2)
:state_retention_priority pad (2)
at (128)
MULTILOAD (byte_copy_left, 2, state_start, order_data)
INPUT-BYTES (1, type_lsb, !)
COMPARE ($type, 5, general_test, large_state, verify_state)
:general_test
Surtees & West Expires August 15, 2005 [Page 35]
Internet-Draft SigComp Torture Tests February 2005
COMPARE ($type, 3, start, state_present, state_not_present)
:start
MULTIPLY ($type, 6)
ADD ($type, order_data)
LOAD (order, $type)
ADD ($type, 6)
:loop
COPY ($order, 2, state_retention_priority)
COMPARE ($order, $type, continue, end, !)
:continue
LOAD (state_length, $state_retention_priority)
MULTIPLY ($state_length, 256)
STATE-CREATE ($state_length, state_start, 0, 6,
$state_retention_priority)
ADD ($order, 2)
JUMP (loop)
:state_present
STATE-ACCESS (state_identifier_a, 6, 0, 0, 0, 0)
STATE-ACCESS (state_identifier_b, 6, 0, 0, 0, 0)
STATE-ACCESS (state_identifier_c, 6, 0, 0, 0, 0)
STATE-ACCESS (state_identifier_e, 6, 0, 0, 0, 0)
JUMP (end)
:state_not_present
STATE-ACCESS (state_identifier_d, 6, 0, 0, 0, 0)
JUMP (end)
:large_state
STATE-CREATE (2048, state_start, 0, 6, 0)
JUMP (end)
:verify_state
STATE-ACCESS (large_state_identifier, 6, 0, 0, 0, 0)
JUMP (end)
:end
Surtees & West Expires August 15, 2005 [Page 36]
Internet-Draft SigComp Torture Tests February 2005
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
at (512)
:state_start
byte (116, 101, 115, 116)
:order_data
word (0, 1, 2, 3, 4, 3, 2, 1, 0)
:state_identifier_a
byte (142, 234, 75, 67, 167, 135)
:state_identifier_b
byte (249, 1, 14, 239, 86, 123)
:state_identifier_c
byte (35, 154, 52, 107, 21, 166)
:state_identifier_d
byte (180, 15, 192, 228, 77, 44)
:state_identifier_e
byte (212, 162, 33, 71, 230, 10)
:large_state_identifier
byte (239, 242, 188, 15, 182, 175)
The above code must be executed a total of 7 times in order to
complete the test. Each time the code is executed a 1-byte
compressed message should be provided, taking the values 0x00 to 0x06
in ascending order (so the compressed message should be 0x00 the
first time the code is run, 0x01 the second and so on).
When the compressed message is 0x00, 0x01 or 0x02 the code makes
three state creation requests per message, establishing a total of
nine states in the compartment. Note however that as new states are
created some of the existing states should be pushed out of the
compartment due to lack of memory.
Surtees & West Expires August 15, 2005 [Page 37]
Internet-Draft SigComp Torture Tests February 2005
When the compressed message is 0x03 the code checks that the correct
state items remain in the compartment. Decompression should
successfully terminate in this case.
When the compressed message is 0x04 the code attempts to access a
state that has been pushed out of the compartment by states of higher
priority. Decompression failure should occur in this case because
the relevant state is no longer available.
When the compressed message is 0x05 the code attempts to create a
state that is larger than the entire compartment. In this case the
state handler should save only the first part of the requested state.
When the compressed message is 0x06 the code verifies that the first
part of the large state item created by the previous message has been
successfully saved.
The cost in UDVM cycles for each compressed message is given below
(except for message 0x04 where decompression failure should occur):
Compressed message: 0x00 0x01 0x02 0x03 0x04 0x05 0x06
Cost in UDVM cycles: 811 2603 811 1805 N/A 2057 1993
4.3 Multiple compartments
This section gives assembly code to test the interaction between
multiple SigComp compartments. The code is designed to test that the
following boundary cases have been correctly implemented:
1. The same state item is saved in more than one compartment.
2. A state item stored in multiple compartments has the same state
identifier but a different state_retention_priority in each case.
3. A state item is deleted from one compartment but still belongs to
a different compartment.
4. A state item belonging to multiple compartments is deleted from
every compartment to which it belongs.
The test requires a total of three compartments to be available,
which will be referred to as Compartment 0, Compartment 1 and
Compartment 2. Each of the three compartments should have a
state_memory_size of 2048 bytes.
The assembly code for the test is given below:
Surtees & West Expires August 15, 2005 [Page 38]
Internet-Draft SigComp Torture Tests February 2005
at (64)
:byte_copy_left pad (2)
:byte_copy_right pad (2)
:type pad (1)
:type_lsb pad (1)
at (128)
MULTILOAD (byte_copy_left, 2, state_start, state_end)
INPUT-BYTES (1, type_lsb, !)
COMPARE ($type, 3, create_state, overwrite_state, temp)
:temp
COMPARE ($type, 5, overwrite_state, access_state, error_conditions)
:create_state
ADD ($type, state_start)
STATE-CREATE (448, $type, 0, 6, 0)
:duplicate_state
ADD ($type, 3)
STATE-CREATE (448, $type, 0, 6, 0)
SUBTRACT ($type, temp_one)
REMAINDER ($type, 3)
ADD ($type, temp_two)
STATE-CREATE (448, $type, 0, 6, 0)
:common_state
STATE-CREATE (448, temp_three, 0, 6, $type)
JUMP (end)
:overwrite_state
STATE-CREATE (1984, 32, 0, 6, 0)
JUMP (end)
:access_state
STATE-ACCESS (state_identifier_c, 6, 0, 0, 0, 0)
STATE-ACCESS (state_identifier_d, 6, 0, 0, 0, 0)
STATE-ACCESS (state_identifier_f, 6, 0, 0, 0, 0)
Surtees & West Expires August 15, 2005 [Page 39]
Internet-Draft SigComp Torture Tests February 2005
STATE-ACCESS (state_identifier_g, 6, 0, 0, 0, 0)
:end
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
:error_conditions
COMPARE ($type, 7, access_a, access_b, access_e)
:access_a
STATE-ACCESS (state_identifier_a, 6, 0, 0, 0, 0)
JUMP (end)
:access_b
STATE-ACCESS (state_identifier_b, 6, 0, 0, 0, 0)
JUMP (end)
:access_e
STATE-ACCESS (state_identifier_e, 6, 0, 0, 0, 0)
JUMP (end)
at (512)
:state_start
byte (0, 1, 2, 3, 4, 5, 6)
:state_end
set (temp_one, (state_start + 2))
set (temp_two, (state_start + 3))
set (temp_three, (state_end - 1))
:state_identifier_a
byte (172, 166, 11, 142, 178, 131)
:state_identifier_b
byte (157, 191, 175, 198, 61, 210)
:state_identifier_c
byte (52, 197, 217, 29, 83, 97)
Surtees & West Expires August 15, 2005 [Page 40]
Internet-Draft SigComp Torture Tests February 2005
:state_identifier_d
byte (189, 214, 186, 42, 198, 90)
:state_identifier_e
byte (71, 194, 24, 20, 238, 7)
:state_identifier_f
byte (194, 117, 148, 29, 215, 161)
:state_identifier_g
byte (72, 135, 156, 141, 233, 14)
The above code must be executed a total of 9 times in order to
complete the test. Each time the code is executed a 1-byte
compressed message N should be provided, taking the values 0x00 to
0x08 in ascending order (so the compressed message should be 0x00 the
first time the code is run, 0x01 the second and so on).
If the code makes a state creation request then the state must be
saved in Compartment (N modulo 3).
When the compressed message is 0x00, 0x01 or 0x02 the code makes four
state creation requests in compartments 0, 1 and 2 respectively.
This creates a total of seven distinct state items referred to as
State A through to State G. The states should be distributed amongst
the three compartments as illustrated in Figure 1 (note that some
states belong to more than one compartment).
When the compressed message is 0x03 or 0x04 the code overwrites all
of the states in compartments 0 and 1 respectively. This means that
states A, B and E should be unavailable because they are no longer
present in any of the three compartments.
When the compressed message is 0x05 the code checks that the states
C, D, F and G are still available. Decompression should successfully
terminate in this case.
When the compressed message is 0x06, 0x07 or 0x08 the code attempts
to access states A, B and E respectively. Decompression failure
should occur in this case because the relevant states are no longer
available.
The cost in UDVM cycles for each compressed message is given below
Surtees & West Expires August 15, 2005 [Page 41]
Internet-Draft SigComp Torture Tests February 2005
(except for messages 0x06, 0x07 and 0x08 where decompression failure
is expected to occur):
Compressed message: 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08
Cost in UDVM cycles: 1809 1809 1809 1993 1994 1804 N/A N/A N/A
+-----------------------------+
| Compartment 0 |
| |
| |
| State A |
| |
| +-------------------+---------+
| | | |
| | | |
| | State D | |
| | | |
| | | |
+---------+---------+---------+ | |
| | | | | |
| | | | | |
| | State E | State G | | State C |
| | | | | |
| | | | | |
| +---------+---------+---------+ |
| | | |
| | | |
| State B | State F | |
| | | |
| | | Compartment 2 |
| +---------+-------------------+
| |
| |
| |
| |
| Compartment 1 |
+-----------------------------+
Figure 1: States created in the three compartments
4.4 Accessing RFC 3485 State
This section gives assembly code to test accessing SIP-SDP static
dictionary state [3]. The code first accesses the state and then
outputs result.
Surtees & West Expires August 15, 2005 [Page 42]
Internet-Draft SigComp Torture Tests February 2005
at (32)
:input pad (1)
:input2 pad (1)
:input3 pad (1)
at (128)
STATE-ACCESS (sip_dictionary, 20, 0xcfe, 1, input, 0)
STATE-ACCESS (sip_dictionary, 6, 0xcff, 1, input2, 0)
STATE-ACCESS (sip_dictionary, 12, 0xd00, 1, input3, 0)
OUTPUT (input, 3)
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
:sip_dictionary
byte (0xfb, 0xe5, 0x07, 0xdf, 0xe5, 0xe6)
byte (0xaa, 0x5a, 0xf2, 0xab, 0xb9, 0x14)
byte (0xce, 0xaa, 0x05, 0xf9, 0x9c, 0xe6)
byte (0x1b, 0xa5)
The expected output of the code is 0x5349 50, and a total of 11 UDVM
cycles are expected to be used.
4.5 Bytecode state creation
This section gives assembly code to test storing bytecode using
END-MESSAGE and later loading the bytecode using a partial state
identifier within the SigComp header. The assembly code is designed
so that it includes testing self-modifying byte code, loading byte
code in special memory areas, and correct initialization order of the
UDVM.
1. Three items of bytecode state are created.
2. The bytecode is loaded using partial state identifier.
3. The bytecode is loaded using partial state identifier. Part of
the loaded memory is reserved area, which is overwritten after
loading the bytecode.
4. The byte loading fails because partial state identifier is too
short.
at (30)
:save_area1
set (saved_instr1, (save_area1 + (code_start2 - start_saved)))
Surtees & West Expires August 15, 2005 [Page 43]
Internet-Draft SigComp Torture Tests February 2005
at (80)
:save_area2
set (saved_instr2, (save_area2 + (code_start2 - start_saved)))
at (128)
:code_start
COPY (start_saved, saved_len, save_area1)
set (modify1, (save_area1 + 5))
LOAD (modify1, 0x1e03)
STATE-CREATE (saved_len, save_area1, saved_instr1, 6, 10)
COPY (start_saved, saved_len, save_area2)
STATE-CREATE (saved_len, save_area2, saved_instr2, 20, 10)
OUTPUT (ok1, 3)
END-MESSAGE (0, 0, saved_len, save_area2, saved_instr2, 12, 10)
:ok1
byte (0x4f, 0x4b, 0x31)
set (saved_len, (end_saved - start_saved))
:start_saved
byte (0x4f, 0x4b, 0x32)
:code_start2
; OUTPUT (save_area2, 3)
byte (0x22, 0xa0, 0x50, 0x03)
; END-MESSAGE (0, 0, 0, 0, 0, 0, 0)
byte (0x23)
:end_saved
The expected output of the first message is 0x4f4b 31, and a total of
50 UDVM cycles are expected to be used.
The second message consists of SigComp header and partial state
identifier: 0xfb24 63cd ff5c f8c7 6df6 a289 ff. The expected output
from the second message is 0x4f4b 31, and a total of 5 UDVM cycles
are expected to be used.
The third message consists of SigComp header and partial state
Surtees & West Expires August 15, 2005 [Page 44]
Internet-Draft SigComp Torture Tests February 2005
identifier: 0xf95b 4b43 d567 83. The expected output from the third
message is 0x0000 31, and a total of 5 UDVM cycles are expected to be
used.
The fourth message consists of SigComp header and partial state
identifier: 0xf9de 8126 1199 1f. Loading of the bytecode should fail
because the partial state ID length is too short (6, when 20 bytes is
required).
First message:
0xf803 6112 a0ae 081e 0e23 be03 2008 1e21 060a 12a0 ae08 a050 2008
0xa050 a053 140a 22a0 ab03 2300 0008 a050 a053 0c0a 4f4b 314f 4b32
0x22a0 5003 23
Second message:
0xfbf8 07bf 971e f697 c3e3 5894 86
Third message:
0xf95b 4b43 d567 83
Fourth message:
0xf9de 8126 1199 1f
5. Security considerations
This draft describes torture tests for the SigComp protocol RFC-3320
[2]. Consequently the security considerations for this draft match
those of SigComp.
6. Acknowledgements
Thanks to Pekka Pessi and Richard Price for test contributions.
7 References
[1] Surtees, A. and M. West, "SigComp User Guide",
draft-ietf-rohc-sigcomp-userguide-01.txt (work in progress),
February 2004.
[2] Price, R., Borman, C., Christoffersson, J., Hannu, H., Liu, Z.
and J. Rosenberg, "Signaling Compression (SigComp)", RFC 3320,
January 2003.
[3] Garcia-Martin, M., Ott, J., Borman, C., Price, R. and A. Roach,
Surtees & West Expires August 15, 2005 [Page 45]
Internet-Draft SigComp Torture Tests February 2005
"The Session Initiation Protocol (SIP) and Session Description
Protocol (SDP) Static Dictionary for Signaling Compression
(SigComp)", RFC 3485, February 2003.
[4] Bradner, S., "IETF Rights in Contributions", BCP 78, RFC 3667,
February 2004.
[5] Bradner, S., "Intellectual Property Rights in IETF Technology",
BCP 79, RFC 3668, February 2004.
Authors' Addresses
Abigail Surtees
Siemens/Roke Manor Research
Roke Manor Research Ltd.
Romsey, Hants SO51 0ZN
UK
Phone: +44 (0)1794 833131
EMail: abigail.surtees@roke.co.uk
URI: http://www.roke.co.uk
Mark A. West
Siemens/Roke Manor Research
Roke Manor Research Ltd.
Romsey, Hants SO51 0ZN
UK
Phone: +44 (0)1794 833311
EMail: mark.a.west@roke.co.uk
URI: http://www.roke.co.uk
Appendix A. UDVM bytecode for the torture tests
The following sections list the raw UDVM bytecode generated for each
test. The bytecode is presented in the form of a complete SigComp
message, including the appropriate header and any compressed message
required by the code.
In some cases the test is designed to be run several times with
different compressed messages appended to the code; for each of these
tests the first compressed message is always supplied.
Note that the different assemblers can output different bytecode for
the same piece of assembly code, so a valid assembler can produce
results different from those presented below. However, the following
Surtees & West Expires August 15, 2005 [Page 46]
Internet-Draft SigComp Torture Tests February 2005
bytecode should always generate the same results on any UDVM.
A.1 Instructions
A.1.1 Bit manipulation
0xf80a 7116 a07f 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x01c0 00ff 8055 5502 202a 0321 0420 0305 21ff 2286 0401 20c0 ff02
0x2060 0320 0421 6005 2061 2286 0423
A.1.2 Arithmetic
0xf80a a11c 01a0 459f 9f07 2201 16a0 7600 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x06c0 00ff 9941 0720 0108 20a3 e909 20a0 650a 200b 2286 0406 21c0
0xff07 2162 0821 6109 2061 0a21 6222 8604 2300
A.1.3 Sorting
0xf80d c10c 8802 170b 8802 1722 a12e 2d23 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0a00 0a00 1100 0700 1600 0300 0300 0300 1300 0100 1000 0e00
0x0800 0200 0d00 1400 1200 1700 0f00 1500 0c00 0600 096e 6720 6975
0x6920 7469 742c 2079 6f75 2720 5346 6f6e 6761 2075 7272 646f 2074
0x6f6e 2e2e 0070 6570 206e 7472 656e 69
A.1.4 SHA-1
0xf808 710d a0c3 03a0 4422 a044 140d a0c6 38a0 4422 a044 140e 86a0
0xfe0e a042 a0ff 0da0 feff a044 22a0 4414 0e86 a0ff 0ea0 42a1 070d
0xa0ff a280 a0ff 22a0 ff14 2300 0000 0000 0000 6162 6361 6263 6462
0x6364 6563 6465 6664 6566 6765 6667 6866 6768 6967 6869 6a68 696a
0x6b69 6a6b 6c6a 6b6c 6d6b 6c6d 6e6c 6d6e 6f6d 6e6f 706e 6f70 7161
0x3031 3233 3435 3637
A.1.5 LOAD and MULTILOAD
0xf803 710e 87a0 840e a082 c080 0ec0 80a0 860e c084 c084 2287 081c
Surtees & West Expires August 15, 2005 [Page 47]
Internet-Draft SigComp Torture Tests February 2005
0x01a0 419f 8908 2002 0620 3c0f 6003 a0a3 a0b2 870f 6004 2a87 c080
0xc084 2287 0823 00
A.1.6 COPY
0xf801 e10e 208e 0e86 860e a042 8712 2087 210e 8680 4100 1286 a04c
0xa041 2220 a06d 23
A.1.7 COPY-LITERAL and COPY-OFFSET
0xf802 f10e 208e 0e86 860e a042 870e a044 2113 2087 2213 a044 0822
0x0e86 a042 0ea0 42a0 4a14 0806 220e 6301 1463 0522 2220 3023
A.1.8 MEMSET
0xf801 810e 8687 0ea0 42a0 8115 86a0 8100 0115 a081 0f86 0f22 8710
0x23
A.1.9 CRC
0xf801 a115 a046 1801 0115 a05e 1487 011c 02a0 449f 931b 62a0 462c
0x9f8d 2362 cb
A.1.10 INPUT-BITS
0xf801 511d 62a0 4614 22a0 4602 0622 010a 2207 0622 0116 ee23 932e
0xac71
A.1.11 INPUT-HUFFMAN
0xf801 d11e a046 1c02 6200 6262 6200 ff00 22a0 4602 0622 010a 2207
0x0622 0116 e623 932e ac71 66d8 6f
A.1.12 INPUT-BYTES
0xf802 710e 86a0 480e a042 a04c 1d62 a046 1d22 a046 0206 2202 0a22
0x071c 62a0 480e 22a0 4862 0622 0116 e523 932e ac71 66d8 6fb1 592b
0xdc9a 9734 d847 a733 874e 1bcb cd51 b5dc 9659 9d6a
A.1.13 Stack Manipulation
0xf814 110e a046 8610 0210 6010 a042 2286 0811 8611 6311 a046 2286
0x0816 2800 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 000e a046 200e a048 a140 0724
0x8818 3400 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0018 6400 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
Surtees & West Expires August 15, 2005 [Page 48]
Internet-Draft SigComp Torture Tests February 2005
0x0000 0000 0000 0000 0000 0000 000e a046 a17f 0ea1 7f1a 0fa1 b003
0x0180 c001 8f19 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0023
A.1.14 Program Flow
0xf803 f10e a044 040e 86a0 9207 20a0 9022 a043 0116 6006 2101 0e86
0xa084 0720 a0a1 22a0 4301 1761 0660 f106 0722 010e 86a0 8407 20a0
0xb622 a043 011a 0462 0860 9fdc f123
A.1.15 State creation
0xf819 e11c 01a0 459f 9f04 220d 1762 8f0c 0606 200a 8900 1400 0422
0x0117 628f 0a06 0621 a20a 0604 2201 1762 8f0e 0606 2300 000a 8900
0x1400 2300 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0022 a206
0x0416 e074 6573 7420 5437 4153 f8fe 7a6a 97cb 79e0 18c2 ddd6 8ffe
0x9b00
A.1.16 STATE-ACCESS
0xf819 411c 01a0 459f 9f17 6201 060d 1c1f 8914 0000 0089 1f89 1406
0x04a0 4600 22a0 4604 16a1 4517 6203 0610 1b1f 8714 0000 0000 16a1
0x351f 8913 0604 a046 0016 a12a 1f89 1406 05a0 4600 16a1 1f00 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
Surtees & West Expires August 15, 2005 [Page 49]
Internet-Draft SigComp Torture Tests February 2005
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0023 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0020 5437
0x4153 f8fe 7a6a 97cb 79e0 18c2 ddd6 8ffe 9b00
A.2 Dispatcher tests
A.2.1 Useful Values
0xf805 b10e 8620 0ea0 4221 1742 019f 9808 9f98 1743 009f 9007 0d17
0x4400 fb3d fb17 44a3 c0fc 07fc 1c01 a047 f506 2340 0723 0112 2001
0x631c 01a0 49e6 0ea0 4443 0622 0308 2208 0622 a3e8 0822 4106 2264
0x0722 a3d6 1220 6220 2300 00a3 c086 8706 0000
A.2.2 Message-based transport
The bytecode for this test is given in Section 3.2.
A.2.3 Stream-based transport
The bytecode for this test is given in Section 3.3.
A.2.4 Input past the end of a message
0xf804 010e 86a0 460e a042 a04d 1d09 a046 9f96 1c07 a046 0b22 a046
0x0716 121d 07a0 469f 851c 02a0 469f 7f22 a046 021d 10a0 460b 22a0
0x4602 160c 1d08 a046 9f6a 22a0 4701 23
A.3 State handler tests
A.3.1 SigComp feedback mechanism
0xf805 031c 01a0 419f 1f17 6001 070e 9f19 0ea0 42a4 7f16 0e0e a042
0xa4ff 15a0 44a0 7f01 010e a0c3 a801 0ea0 c5a6 000e a0cc ac00 0ea0
0xd9b4 000e a0ee b500 15a0 c606 0001 15a0 cd0c 0001 15a0 da14 0001
0x23a0 42a0 c300
A.3.2 State memory management
0xf81b a10f 8602 89a2 041c 01a0 479f 9917 6305 08a0 68a0 7017 6303
0x0734 a056 0823 0606 23a2 040e a044 6306 2306 1262 02a0 4a17 6263
0x08a0 589f 710e a048 6508 2488 2064 8900 0665 0622 0216 e31f a216
0x0600 0000 001f a21c 0600 0000 001f a222 0600 0000 001f a22e 0600
0x0000 0016 1e1f a228 0600 0000 0016 1420 8b89 0006 0016 0c1f a234
0x0600 0000 0016 0223 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
Surtees & West Expires August 15, 2005 [Page 50]
Internet-Draft SigComp Torture Tests February 2005
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0074 6573
0x7400 0000 0100 0200 0300 0400 0300 0200 0100 008e ea4b 43a7 87f9
0x010e ef56 7b23 9a34 6b15 a6b4 0fc0 e44d 2cd4 a221 47e6 0aef f2bc
0x0fb6 af00
A.3.3 Multiple compartments
0xf81b 110f 8602 89a2 071c 01a0 459f 9917 6203 0d3d 0617 6205 3786
0xa068 0622 8920 a1c0 6200 0600 0622 0320 a1c0 6200 0600 0722 a202
0x0a22 0306 22a2 0320 a1c0 6200 0600 20a1 c0a2 0600 0662 162b 20a7
0xc020 0006 0016 221f a213 0600 0000 001f a219 0600 0000 001f a225
0x0600 0000 001f a22b 0600 0000 0023 0000 0000 0000 0017 6207 0610
0x1a1f a207 0600 0000 0016 ea1f a20d 0600 0000 0016 e01f a21f 0600
0x0000 0016 9fd6 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0x0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0102
0x0304 0506 aca6 0b8e b283 9dbf afc6 3dd2 34c5 d91d 5361 bdd6 ba2a
0xc65a 47c2 1814 ee07 c275 941d d7a1 4887 9c8d e90e 00
A.3.4 Accessing RFC 3485 State
0xf803 a11f a0a6 14ac fe01 2000 1fa0 a606 acff 0121 001f a0a6 0cad
0x0001 2200 2220 0323 0000 0000 0000 00fb e507 dfe5 e6aa 5af2 abb9
0x14ce aa05 f99c e61b a5
A.3.5 Bytecode state creation
The bytecode for this test is given in Section 4.5.
Surtees & West Expires August 15, 2005 [Page 51]
Internet-Draft SigComp Torture Tests February 2005
Intellectual Property Statement
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Disclaimer of Validity
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Copyright Statement
Copyright (C) The Internet Society (2005). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.
Acknowledgment
Funding for the RFC Editor function is currently provided by the
Internet Society.
This Internet-Draft will expire on August 15, 2005.
Surtees & West Expires August 15, 2005 [Page 52]
Html markup produced by rfcmarkup 1.129d, available from
https://tools.ietf.org/tools/rfcmarkup/