[Docs] [txt|pdf|xml|html] [Tracker] [Email] [Nits]



Network Working Group                                          L. Berger
Internet-Draft                                   LabN Consulting, L.L.C.
Intended status: Standards Track                                C. Hopps
Expires: November 18, 2016                              Deutsche Telekom
                                                               A. Lindem
                                                           Cisco Systems
                                                           D. Bogdanovic
                                                            May 17, 2016


                     Logical Network Element Model
                   draft-rtgyangdt-rtgwg-lne-model-00

Abstract

   This document defines a logical network element module.  This module
   along with the network instance module can be used to manage the
   logical and virtual resource representations that may be present on a
   network device.  Examples of common industry terms for logical
   resource representations are Logical Systems or Logical Routers.
   Examples of of common industry terms for virtual resource
   representations are Virtual Routing and Forwarding (VRF) instances
   and Virtual Switch Instances (VSIs).

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on November 18, 2016.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents



Berger, et al.          Expires November 18, 2016               [Page 1]


Internet-Draft                  LNE Model                       May 2016


   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Status of Work and Open Issues  . . . . . . . . . . . . .   3
   2.  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Logical Network Elements  . . . . . . . . . . . . . . . . . .   6
     3.1.  LNE Management - Host Network Device View . . . . . . . .   6
     3.2.  LNE Management - LNE View . . . . . . . . . . . . . . . .   8
     3.3.  LNE Instantiation . . . . . . . . . . . . . . . . . . . .   8
   4.  Security Considerations . . . . . . . . . . . . . . . . . . .   8
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   8
   6.  Logical Network Element Model . . . . . . . . . . . . . . . .   8
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  10
     7.1.  Normative References  . . . . . . . . . . . . . . . . . .  11
     7.2.  Informative References  . . . . . . . . . . . . . . . . .  11
   Appendix A.  Acknowledgments  . . . . . . . . . . . . . . . . . .  12
   Appendix B.  Contributors . . . . . . . . . . . . . . . . . . . .  13
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  13

1.  Introduction

   This document defines a YANG [RFC6020] module to support the creation
   of logical network elements on a network device.  A logical network
   element (LNE) is an independently managed virtual device made up of
   resources allocated to it from the host, or parent, network device.
   (An LNE running on a host network device conceptually parallels a
   virtual machine running on a host system.)  This document also
   defines the necessary augmentations for allocating host resources to
   a given LNE.  As the interface management model [RFC7223] is the only
   a module that currently defines host resources, this document
   currently defines only a single augmentation to cover the assignment
   of interfaces to an LNE.

   As each LNE is an independently managed device, each will have its
   own set of YANG modeled data that is independent of the host device
   and other LNEs.  For example, multiple LNEs may all have their own
   "Tunnel0" interface defined which will not conflict with each other
   and will not exist in the host's interface model.  An LNE will have
   it's own management interfaces possibly including independent
   instances of netconf/restconf/etc servers to support configuration of



Berger, et al.          Expires November 18, 2016               [Page 2]


Internet-Draft                  LNE Model                       May 2016


   their YANG models.  As an example of this independence, an
   implementation may choose to completely rename assigned interfaces,
   so on the host the assigned interface might be called "Ethernet0/1"
   while within the LNE it might be called "eth1".

   In addition to standard management interfaces, a host device
   implementation may support accessing LNE configuration and
   operational YANG models directly from the host system.  When
   supported, such access is accomplished through a schema-mount mount
   point [I-D.ietf-netmod-schema-mount] under which the root level LNE
   YANG models may be accessed.

   Examples of vendor terminology for an LNE include logical system or
   logical router, and virtual switch, chassis, or fabric.

   This document was motivated by, and derived from, [RTG-DEVICE-MODEL].

1.1.  Status of Work and Open Issues

   The top open issues are:

   1.  This document will need to match the evolution and
       standardization of [I-D.openconfig-netmod-opstate] or
       [I-D.ietf-netmod-opstate-reqs] by the Netmod WG.

   It will also make use of emerging YANG functionality supported by
   YANG Schema Mount This document is expected to use whatever Schema
   Mount solution is agreed upon by the Netmod Working Group.

2.  Overview

   In this document, we consider network devices that support protocols
   and functions defined within the IETF Routing Area, e.g, routers,
   firewalls and hosts.  Such devices may be physical or virtual, e.g.,
   a classic router with custom hardware or one residing within a
   server-based virtual machine implementing a virtual network function
   (VNF).  Each device may sub-divide their resources into logical
   network elements (LNEs) each of which provides a managed logical
   device.  Examples of vendor terminology for an LNE include logical
   system or logical router, and virtual switch, chassis, or fabric.
   Each LNE may also support virtual routing and forwarding (VRF) and
   virtual switching instance (VSI) functions, which are referred to
   below as a network instances (NIs).  This breakdown is represented in
   Figure 1.







Berger, et al.          Expires November 18, 2016               [Page 3]


Internet-Draft                  LNE Model                       May 2016


              ,''''''''''''''''''''''''''''''''''''''''''''''`.
              |      Network Device (Physical or Virtual)     |
              | .....................   ..................... |
              | :  Logical Network  :   :  Logical Network  : |
              | :      Element      :   :      Element      : |
              | :+-----+-----+-----+:   :+-----+-----+-----+: |
              | :| Net | Net | Net |:   :| Net | Net | Net |: |
              | :|Inst.|Inst.|Inst.|:   :|Inst.|Inst.|Inst.|: |
              | :+-----+-----+-----+:   :+-----+-----+-----+: |
              | :  | |   | |   | |  :   :  | |   | |   | |  : |
              | :..|.|...|.|...|.|..:   :..|.|...|.|...|.|..: |
              |    | |   | |   | |         | |   | |   | |    |
               `'''|'|'''|'|'''|'|'''''''''|'|'''|'|'''|'|'''''
                   | |   | |   | |         | |   | |   | |
                      Interfaces              Interfaces

   Figure 1: Module Element Relationships

   A model for LNEs is described in Section 3 and the model for network
   instances is covered in [NI-MODEL].  For more information on how
   these models may be used within an overall device model structure,
   see [RTG-DEVICE-MODEL].

   The interface management model [RFC7223] is and existing model that
   is impacted by the definition of LNEs and network instances.  This
   document and [NI-MODEL] define augmentations to the interface module
   to support LNEs and NIs.  Similar elements, although perhaps only for
   LNEs, may also need to be included as part of the definition of the
   future hardware and QoS modules.

   Interfaces are a crucial part of any network device's configuration
   and operational state.  They generally include a combination of raw
   physical interfaces, link-layer interfaces, addressing configuration,
   and logical interfaces that may not be tied to any physical
   interface.  Several system services, and layer 2 and layer 3
   protocols may also associate configuration or operational state data
   with different types of interfaces (these relationships are not shown
   for simplicity).  The interface management model is defined by
   [RFC7223].

   The logical-network-element and network-instance modules augment the
   existing interface management model in two ways: The first, by the
   logical-network-element module, adds an identifier which is used on
   physical interface types to identify an associated LNE.  The second,
   by the network-instance module, adds a name which is used on
   interface or sub-interface types to identify an associated network
   instance.  Similarly, this name is also added for IPv4 and IPv6
   types, as defined in [RFC7277].



Berger, et al.          Expires November 18, 2016               [Page 4]


Internet-Draft                  LNE Model                       May 2016


   The interface related augmentations are as follows:

       module: ietf-logical-network-element
       augment /if:interfaces/if:interface:
          +--rw bind-lne-name?   string

       augment /if:interfaces/if:interface:
          +--rw bind-network-instance-name?   string
       augment /if:interfaces/if:interface/ip:ipv4:
          +--rw bind-network-instance-name?   string
       augment /if:interfaces/if:interface/ip:ipv6:
          +--rw bind-network-instance-name?   string

   The following is an example of envisioned combined usage.  The
   interfaces container includes a number of commonly used components as
   examples:

             +--rw interfaces
             |  +--rw interface* [name]
             |     +--rw name                       string
             |     +--rw lne:bind-lne-name?         string
             |     +--rw ethernet
             |     |  +--rw ni:bind-network-instance-name? string
             |     |  +--rw aggregates
             |     |  +--rw rstp
             |     |  +--rw lldp
             |     |  +--rw ptp
             |     +--rw vlans
             |     +--rw tunnels
             |     +--rw ipv4
             |     |  +--rw ni:bind-network-instance-name? string
             |     |  +--rw arp
             |     |  +--rw icmp
             |     |  +--rw vrrp
             |     |  +--rw dhcp-client
             |     +--rw ipv6
             |        +--rw ni:bind-network-instance-name? string
             |        +--rw vrrp
             |        +--rw icmpv6
             |        +--rw nd
             |        +--rw dhcpv6-client

   The [RFC7223] defined interface model is structured to include all
   interfaces in a flat list, without regard to logical or virtual
   instances (e.g., VRFs) supported on the device.  The bind-lne-name
   and bind-network-instance-name leaves provide the association between
   an interface and its associated LNE and NI (e.g., VRF or VSI).




Berger, et al.          Expires November 18, 2016               [Page 5]


Internet-Draft                  LNE Model                       May 2016


3.  Logical Network Elements

   A logical network element is a network-device which is contained
   within another network-device.  Using host-virtualization terminology
   one could refer to an LNE as a "Guest", and the containing network-
   device as the "Host".  While LNEs may be implemented via host-
   virtualization technologies this is not a requirement.

   Logical network elements represent the capability of some devices to
   partition resources into independent logical routers and/or switches.
   Device support for multiple logical network elements is
   implementation specific.  Systems without such capabilities need not
   include support for the logical-network-element module.  In physical
   devices, some hardware features are shared across partitions, but
   control plane (e.g., routing) protocol instances, tables, and
   configuration are managed separately.  For example, in virtual
   routers or VNFs, this may correspond to establishing multiple logical
   instances using a single software installation.  The model supports
   configuration of multiple instances on a single device by creating a
   list of logical network elements, each with their own configuration
   and operational state related to routing and switching protocols, as
   shown below:

       module: ietf-logical-network-element
          +--rw logical-network-inventory
             +--rw logical-network-element* [name]
                +--rw name?   string
                +--rw description? string
                +--rw managed?     boolean
                +--rw root?        schema-mount
       augment /if:interfaces/if:interface:
          +--rw bind-lne-name?     string

   `name` identifies the logical network element.  `managed` indicates
   if the host network device is able to manage the LNE via the `root`
   structure.

3.1.  LNE Management - Host Network Device View

   There are multiple implementation approaches possible to enable a
   network device to support the logical-network-element module and
   multiple LNEs.  Some approaches will allow the management functions
   operating at network device level to access LNE configuration and
   operation information, while others will not.  Similarly, even when
   LNE management from the network device is supported by the
   implementation, it may be prohibited by user policy.





Berger, et al.          Expires November 18, 2016               [Page 6]


Internet-Draft                  LNE Model                       May 2016


   The `managed` boolean mentioned above is used to indicate when LNE
   management from the network device context is possible.  When the
   `managed` boolean is `false`, the LNE cannot be managed by the host
   system and can only be managed from within the context of the LNE as
   described in the next section, Section 3.2.

   When the `managed` boolean is `true`, the LNE can be managed from
   both the context of the LNE and the host network device.  In this
   case, the same information that is available from within the LNE
   context is made available via the `root` element, with paths modified
   as described in [I-D.ietf-netmod-schema-mount].

   As an example, consider the case where an LNE with a `name` of "one"
   is defined on a network device.  In this case the following structure
   might be made available:

 .......................................................................
                                                  (network-device state)

 +--rw yanglib:modules-state        [I-D.ietf-netconf-yang-library]
 +--rw lne:logical-network-elements [I-D.rtgyangdt-rtgwg-lne-model]
     +--rw logical-network-element* [name]
         +--rw name="one"           string
         +--rw manged=true          boolean
         +--rw root                 schema-mount
            |
 .......................................................................
            |                        (exposed LNE state if managed=true)
            |
            +--rw yanglib:modules-state  [I-D.ietf-netconf-yang-library]
            +--rw if:intefaces           [RFC7223]
            +--rw hardware
            +--rw qos
            +--rw system-management
            +--rw network-services
            +--rw oam-protocols
            +--rw rt:routing             [I-D.ietf-netmod-routing-cfg]
            +--rw mpls
            +--rw ieee-dot1Q
            +--rw ni:network-instances   [I-D.rtgyangdt-rtgwg-ni-model]

   As an LNE is a network device itself, all modules that may be present
   at the top level network device may also be present for the LNE, be
   made available under `root`, and be accessible via paths modified per
   [I-D.ietf-netmod-schema-mount].  The list of available modules is
   expected to be implementation dependent.  As is the method used by an
   implementation to support LNEs.




Berger, et al.          Expires November 18, 2016               [Page 7]


Internet-Draft                  LNE Model                       May 2016


   Resources assigned to the LNE will be represented in that LNE's
   resource modules. e.g., an LNE's interfaces module will contain the
   interfaces assigned to that LNE from the containing network-device.

3.2.  LNE Management - LNE View

   Management functions operating with the context of an LNE are
   accessed through standard LNE's management interfaces, e.g., NETCONF
   and SNMP.  When accessing an LNE via an LNE's management interface, a
   network-device representation will be presented, but its scope will
   be limited to the specific LNE.  Normal YANG/NETCONF mechanisms,
   together with yang library [I-D.ietf-netconf-yang-library], can be
   used to identify the available modules.  Each supported module will
   be presented as a top level module.  Only LNE associated resources
   will be reflected in resource related modules, e.g., interfaces,
   hardware and perhaps QoS.  From the management perspective, there
   will be no difference between the available LNE view (information)
   and an a physical network device.

   Multiple implementation approaches are possible to provide LNE views,
   and these are outside the scope of this document.

3.3.  LNE Instantiation

   TBD -- need to resolve if instantiation is based on new list entry
   creation per the pending Schema Mount solution definition.

4.  Security Considerations

   LNE portion is TBD

   NI portion is TBD

5.  IANA Considerations

   This YANG model currently uses a temporary ad-hoc namespace.  If it
   is placed or redirected for the standards track, an appropriate
   namespace URI will be registered in the "IETF XML Registry"
   [RFC3688].  The YANG structure modules will be registered in the
   "YANG Module Names" registry [RFC6020].

6.  Logical Network Element Model

   The structure of the model defined in this document is described by
   the YANG module below.

 <CODE BEGINS> file "ietf-logical-network-element@2016-05-01.yang"
 module ietf-logical-network-element {



Berger, et al.          Expires November 18, 2016               [Page 8]


Internet-Draft                  LNE Model                       May 2016


   yang-version "1";

   // namespace
   namespace "urn:ietf:params:xml:ns:yang:ietf-logical-network-element";

   prefix "lne";

   // import some basic types
   import ietf-interfaces {
     prefix if;
   }

   // meta
   organization "IETF RTG YANG Design Team Collaboration
                 with OpenConfig";

   contact
       "Routing Area YANG Architecture Design Team -
        <rtg-dt-yang-arch@ietf.org>";

   description
     "This module is used to support multiple logical network
      elements on a single physical or virtual system.";

   revision "2016-05-01" {
     description
       "IETF Routing YANG Design Team Meta-Model";
     reference "TBD";
   }

   // feature statements
   feature bind-lne-name {
     description
       "Logical network element to which an interface is bound";
   }

   // top level device definition statements
   container logical-network-elements {
     description "Allows a network device to support multiple logical
                  network element (device) instances";
     list logical-network-element {
       key name;
       description "List of logical network elements";
       leaf name {
         type string;
         description "Device-wide unique identifier for the
                      logical network element";
       }



Berger, et al.          Expires November 18, 2016               [Page 9]


Internet-Draft                  LNE Model                       May 2016


       leaf managed {
         type boolean;
         description
           "True if the host can manage the LNE using the root mount
            point";
       }
       leaf description {
         type string;
         description
           "Description of the logical network element";
       }
       leaf root {
         type schema-mount;
         description "Root for models supported per logical
                      network element";
       }
     }
   }

   // augment statements
   augment "/if:interfaces/if:interface" {
     description
         "Add a node for the identification of the logical network
         element associated with an interface. Applies to interfaces
         that can be assigned on a per logical network element basis.
         A <TBD> error is returned when the interface type cannot be
         assigned.";

     leaf bind-lne-name {
       type string;
       description
         "Logical network element ID to which interface is bound";
     }
   }

   // rpc statements

   // notification statements

 }
 <CODE ENDS>

7.  References








Berger, et al.          Expires November 18, 2016              [Page 10]


Internet-Draft                  LNE Model                       May 2016


7.1.  Normative References

   [I-D.ietf-netmod-schema-mount]
              Bjorklund, M. and L. Lhotka, "YANG Schema Mount", draft-
              ietf-netmod-schema-mount-01 (work in progress), April
              2016.

   [NI-MODEL]
              Berger, L., Hopps, C., Lindem, A., and D. Bogdanovic,
              "Network Instance Model", draft-rtgyangdt-rtgwg-ni-model-
              00.txt (work in progress), May 2016.

   [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004,
              <http://www.rfc-editor.org/info/rfc3688>.

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010,
              <http://www.rfc-editor.org/info/rfc6020>.

   [RFC7223]  Bjorklund, M., "A YANG Data Model for Interface
              Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
              <http://www.rfc-editor.org/info/rfc7223>.

   [RFC7277]  Bjorklund, M., "A YANG Data Model for IP Management",
              RFC 7277, DOI 10.17487/RFC7277, June 2014,
              <http://www.rfc-editor.org/info/rfc7277>.

   [RTG-DEVICE-MODEL]
              Lindem, A., Ed., Berger, L., Ed., Bogdanovic, D., and C.
              Hopps, "Network Device YANG Organizational Models", draft-
              rtgyangdt-rtgwg-device-model-04.txt (work in progress),
              May 2016.

7.2.  Informative References

   [I-D.ietf-netconf-yang-library]
              Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
              Library", draft-ietf-netconf-yang-library-05 (work in
              progress), April 2016.

   [I-D.ietf-netmod-opstate-reqs]
              Watsen, K. and T. Nadeau, "Terminology and Requirements
              for Enhanced Handling of Operational State", draft-ietf-
              netmod-opstate-reqs-03 (work in progress), January 2016.





Berger, et al.          Expires November 18, 2016              [Page 11]


Internet-Draft                  LNE Model                       May 2016


   [I-D.openconfig-netmod-opstate]
              Shakir, R., Shaikh, A., and M. Hines, "Consistent Modeling
              of Operational State Data in YANG", draft-openconfig-
              netmod-opstate-01 (work in progress), July 2015.

Appendix A.  Acknowledgments

   The Routing Area Yang Architecture design team members included Acee
   Lindem, Anees Shaikh, Christian Hopps, Dean Bogdanovic, Lou Berger,
   Qin Wu, Rob Shakir, Stephane Litkowski, and Yan Gang.

   The RFC text was produced using Marshall Rose's xml2rfc tool.







































Berger, et al.          Expires November 18, 2016              [Page 12]


Internet-Draft                  LNE Model                       May 2016


Appendix B.  Contributors

   Contributors' Addresses

      TBD

Authors' Addresses

   Lou Berger
   LabN Consulting, L.L.C.

   Email: lberger@labn.net


   Christan Hopps
   Deutsche Telekom

   Email: chopps@chopps.org


   Acee Lindem
   Cisco Systems
   301 Midenhall Way
   Cary, NC  27513
   USA

   Email: acee@cisco.com


   Dean Bogdanovic

   Email: ivandean@gmail.com



















Berger, et al.          Expires November 18, 2016              [Page 13]


Html markup produced by rfcmarkup 1.121, available from https://tools.ietf.org/tools/rfcmarkup/