S2L Name Identification for Point-to-Multipoint TE LSPs
draft-ali-mpls-rsvp-te-s2l-name-00.txt

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

This Internet-Draft will expire on August 23, 2007.

Copyright Notice

Copyright (C) The IETF Trust (2007).

Abstract

One of the management requirements for point-to-multipoint (P2MP) Label Switched Paths (LSPs) in Multi-Protocol Label Switching (MPLS) and Generalized MPLS (GMPLS) networks is the ability to
identify source-to-leaf (S2L) sub-lsp by name. This document provides a minor extension to RSVP-TE for P2MP TE LSPs [RSVP-TE-P2MP] to signal name for S2L sub-lsp.

Conventions used in this document

In examples, “C:” and “S:” indicate lines sent by the client and server respectively.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119.

Table of Contents

1. Introduction..2
2. S2L Attribute Object..3
 2.1. Path Message Processing...............................4
3. Security Considerations.......................................4
4. IANA Considerations..4
5. References..4
 5.1. Normative References..................................4
 5.2. Informative References................................5
Author’s Addresses...5
Intellectual Property Statement...............................5
Disclaimer of Validity..6

1. Introduction

Session name attribute of the SESSION_ATTRIBUTE object [RSVP-TE] is widely used by the Service Providers to identify an LSP in network, usually for management operations. However, in the case of P2MP LSP, a Path message can be used to signal one or more S2L sub-LSPs. Session name attribute cannot be used to identify an S2L by name in a network. This is a considerable limitation for network management, as service providers like to use meaningful names not only at the LSP level, but also at the S2L level.

This document addresses the above-mentioned requirement by adding an optional object cal

led S2L_ATTRIBUTE object to the sub-LSP descriptor define in [RSVP-TE-P2MP]. Specifically, it proposes to use the < <S2L_SUB_LSP>, [EXPLICIT_ROUTE], [S2L_ATTRIBUTE] > tuple to represents the S2L sub-LSP being signaled in the Path message.
The document defines "S2L name" as an attribute of S2L_ATTRIBUTE object. If needed, the S2L_ATTRIBUTE object can be extended to include other S2L scoped attributes.

2. S2L Attribute Object

The S2L_ATTRIBUTE object can optionally appear in a Path message as part of sub-LSP descriptor define in [RSVP-TE-P2MP]. Specifically, [RSVP-TE-P2MP] enhances path message to signal one or more S2L sub-LSPs by including the S2L sub-LSP descriptor list in the Path. This document extends the definition of S2L sub-LSP descriptor to optionally include S2L_ATTRIBUTE object as follows, where the syntax follows the augmented Backus-Naur Form (BNF) form.

\[
\text{<S2L sub-LSP descriptor> ::= <S2L_SUB_LSP>}
\]

\[
\quad \quad \quad \quad \quad \quad \quad \text{[<P2MP SECONDARY_EXPLICIT_ROUTE>]}
\]

\[
\quad \quad \quad \quad \quad \quad \quad \text{[<S2L_ATTRIBUTE>]}
\]

S2L_ATTRIBUTE object has a class number TBA by IANA (of type 11bbbbbb), C-Type of TBD. The format is given below.

```
+-----------------------+---------------------+---------------------+
| Name Length | Flags | Reserved |
+-----------------------+---------------------+---------------------+
```

Where,

Name Length:

The length of the display string before padding, in bytes.
S2L sub-lsp Name:

A null padded string of characters communicating a meaningful name associated with the S2L.

Reserved (Res)

This field is reserved. It MUST be set to zero on transmission and MUST be ignored on receipt.

2.1. Path Message Processing

As specified in it [RSVP-TE-P2MP] it is possible to signal S2L sub-LSPs for a given P2MP LSP in one or more Path messages and a given Path message can contain one or more S2L sub-LSPs. In either case, the < [EXPLICIT_ROUTE] [S2L_SUB_LSP] [S2L_ATTRIBUTE] > or the < [P2MP SECONDARY_EXPLICIT_ROUTE] [S2L_SUB_LSP] [S2L_ATTRIBUTE] > tuple is used to specify an S2L sub-LSP, where S2L sub-lsp name is specified in the S2L_ATTRIBUTE object. The session name field of the SESSION_ATTRIBUTE object can optionally be used to describe name of the P2MP LSP, as described in [RSVP-TE]. Rest of the handling of <S2L sub-LSP descriptor> follows the procedure specified in [RSVP-TE-P2MP].

3. Security Considerations

This document does not introduce any new security issues above those identified in [RSVP-TE], [RFC3473], [RFC4206] and [RSVP-TE-P2MP].

4. IANA Considerations

New Class Number and type for S2L_ATTRIBUTE object defined in this document needs to be assigned.

5. References

5.1. Normative References

5.2. Informative References

Author’s Addresses

Zafar Ali
Cisco Systems, Inc.
Email: zali@cisco.com

Robert Sawaya
Cisco Systems, Inc.
Email: rsawaya@cisco.com

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required...
to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

Copyright (C) The IETF Trust (2007).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.