Abstract

This document describes a common strategy to extend the end-to-end cryptographic protections provided by PGP/MIME, etc. to protect message headers in addition to message bodies. In addition to protecting the authenticity and integrity of headers via signatures, it also describes how to preserve the confidentiality of the Subject header.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 May 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Table of Contents

1. Introduction
 1.1. Requirements Language
 1.2. Terminology
 1.2.1. User-Facing Headers
 1.2.2. Structural Headers

2. Protected Headers Summary

3. Cryptographic MIME Message Structure
 3.1. Cryptographic Layers
 3.1.1. PGP/MIME Signing Cryptographic Layer (multipart/signed)
 3.1.2. PGP/MIME Encryption Cryptographic Layer (multipart/encrypted)
 3.2. Cryptographic Envelope
 3.3. Cryptographic Payload
 3.3.1. Simple Cryptographic Payloads
 3.3.2. Multilayer Cryptographic Envelopes
 3.3.3. A Baroque Example
 3.4. Exposed Headers are Outside

4. Message Composition
 4.1. Copying All Headers
 4.2. Confidential Subject
 4.3. Obscured Headers
 4.4. Message Composition without Protected Headers
 4.5. Message Composition with Protected Headers

5. Legacy Display
 5.1. Message Generation: Including a Legacy Display Part
 5.1.1. Legacy Display Transformation
 5.1.2. When to Generate Legacy Display
5.2. Message Rendering: Omitting a Legacy Display Part

5.2.1. Legacy Display Detection Algorithm

5.3. Legacy Display is Decorative and Transitional

6. Message Interpretation

6.1. Reverse-Copying

6.2. Signature Invalidation

6.3. The Legacy Display Part

6.4. Replying to a Message with Obscured Headers

7. Common Pitfalls and Guidelines

7.1. Misunderstood Obscured Subjects

7.2. Reply/Forward Losing Subjects

7.3. Usability Impact of Reduced Metadata

7.4. Usability Impact of Obscured Message-ID

7.5. Usability Impact of Obscured From/To/Cc

7.6. Mailing List Header Modifications

8. Comparison with Other Header Protection Schemes

8.1. S/MIME 3.1 Header Protection

8.2. The Content-Type Property "forwarded=no" (forwarded=no)

8.3. pEp Header Protection

8.4. DKIM

8.5. S/MIME "Secure Headers"

8.6. Triple-Wrapping

9. Test Vectors

9.1. Signed Message with Protected Headers

9.2. Signed and Encrypted Message with Protected Headers

9.3. Signed and Encrypted Message with Protected Headers and Legacy Display Part

9.4. Multilayer Message with Protected Headers
1. Introduction

E-mail end-to-end security with OpenPGP and S/MIME standards can provide integrity, authentication, non-repudiation and confidentiality to the body of a MIME e-mail message. However, PGP/MIME ([RFC3156]) alone does not protect message headers. And the structure to protect headers defined in S/MIME 3.1 ([RFC3851]) has not seen widespread adoption.

This document defines a scheme, "Protected Headers for Cryptographic E-mail", which has been adopted by multiple existing e-mail clients in order to extend the cryptographic protections provided by PGP/MIME to also protect the message headers.

This document describes how these protections can be applied to cryptographically signed messages, and also discusses some of the challenges of encrypting many transit-oriented headers.

It offers guidance for protecting the confidentiality of non-transit-oriented headers like Subject, and also offers a means to preserve backwards compatibility so that an encrypted Subject remains available to recipients using software that does not implement support for the Protected Headers scheme.
The document also discusses some of the compatibility constraints and usability concerns which motivated the design of the scheme, as well as limitations and a comparison with other proposals.

While the document (and the authors') focus is primarily PGP/MIME, we believe the technique is broadly applicable and would also apply to other MIME-compatible cryptographic e-mail systems, including S/MIME ([RFC8551]). Furthermore, this technique has already proven itself as a useful building block for other improvements to cryptographic e-mail, such as the Autocrypt Level 1.1 ([Autocrypt]) "Gossip" mechanism.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 ([RFC2119]) when, and only when, they appear in all capitals, as shown here.

1.2. Terminology

For the purposes of this document, we define the following concepts:

- **MUA** is short for Mail User Agent; an e-mail client.
- **Protection** of message data refers to cryptographic encryption and/or signatures, providing confidentiality, authenticity or both.
- **Cryptographic Layer**, **Cryptographic Envelope** and **Cryptographic Payload** are defined in Section 3
- **Original Headers** are the message headers as known to the sending MUA at the time of message composition.
- **Protected Headers** are any headers protected by the scheme described in this document.
- **Exposed Headers** are any headers outside the Cryptographic Payload (protected or not).
- **Obscured Headers** are any Protected Headers which have been modified or removed from the set of Exposed Headers.
- **Legacy Display Part** is a MIME construct which provides visibility for users of legacy clients of data from the Original Headers which may have been removed or obscured from the Exposed Headers. It is defined in Section 5.
- **User-Facing Headers** are explained and enumerated in Section 1.2.1.
- **Structural Headers** are documented in Section 1.2.2.

1.2.1. User-Facing Headers

Of all the headers that an e-mail message may contain, only a handful are typically presented directly to the user. The user-facing headers are:

- **Subject**
- **From**
- **To**
The above is a complete list. No other headers are considered "user-facing".

Other headers may affect the visible rendering of the message (e.g., References and In-Reply-To may affect the placement of a message in a threaded discussion), but they are not directly displayed to the user and so are not considered "user-facing" for the purposes of this document.

1.2.2. Structural Headers

A message header whose name begins with `Content-` is referred to in this document as a "structural" header.

These headers indicate something about the specific MIME part they are attached to, and cannot be transferred or copied to other parts without endangering the readability of the message.

This includes (but is not limited to):

- `Content-Type`
- `Content-Transfer-Encoding`
- `Content-Disposition`

Note that no "user-facing" headers (Section 1.2.1) are also "structural" headers. Of course, many headers are neither "user-facing" nor "structural".

FIXME: are there any non-Content-* headers we should consider as structural?

2. Protected Headers Summary

The Protected Headers scheme relies on three backward-compatible changes to a cryptographically-protected e-mail message:

- Headers known to the composing MUA at message composition time are (in addition to their typical placement as Exposed Headers on the outside of the message) also present in the MIME header of the root of the Cryptographic Payload. These Protected Headers share cryptographic properties with the rest of the Cryptographic Payload.
- When the Cryptographic Envelope includes encryption, any Exposed Header MAY be obscured by a transformation (including deletion).
- If the composing MUA intends to obscure any user-facing headers, it MAY add a decorative "Legacy Display" MIME part to the Cryptographic Payload which additionally duplicates the original values of the obscured user-facing headers.
When a composing MUA encrypts a message, it SHOULD obscure the `Subject:` header, by using the literal string `...` (three U+002E FULL STOP characters) as the value of the exposed `Subject:` header.

When a receiving MUA encounters a message with a Cryptographic Envelope, it treats the headers of the Cryptographic Payload as belonging to the message itself, not just the subpart. In particular, when rendering a header for any such message, the renderer SHOULD prefer the header's Protected value over its Exposed value.

A receiving MUA that understands Protected Headers and discovers a Legacy Display part SHOULD hide the Legacy Display part when rendering the message.

The following sections contain more detailed discussion.

3. Cryptographic MIME Message Structure

Implementations use the structure of an e-mail message to protect the headers. This section establishes some conventions about how to think about message structure.

3.1. Cryptographic Layers

"Cryptographic Layer" refers to a MIME substructure that supplies some cryptographic protections to an internal MIME subtree. The internal subtree is known as the "protected part" though of course it may itself be a multipart object.

For PGP/MIME [RFC3156] there are two forms of Cryptographic Layers, signing and encryption.

In the diagrams below, "↧" (DOWNWARDS ARROW FROM BAR, U+21A7) is used to indicate "decrypts to".

3.1.1. PGP/MIME Signing Cryptographic Layer (multipart/signed)

```
multipart/signed
├── [protected part]
│   └── application/pgp-signature
```

3.1.2. PGP/MIME Encryption Cryptographic Layer (multipart/encrypted)

```
multipart/encrypted
├── application/pgp-encrypted
│   └── application/octet-stream
│       ┼ (decrypts to)
│       │   └── [protected part]
```
3.2. Cryptographic Envelope

The Cryptographic Envelope is the largest contiguous set of Cryptographic Layers of an e-mail message starting with the outermost MIME type (that is, with the Content-Type of the message itself).

If the Content-Type of the message itself is not a Cryptographic Layer, then the message has no cryptographic envelope.

"Contiguous" in the definition above indicates that if a Cryptographic Layer is the protected part of another Cryptographic Layer, the layers together comprise a single Cryptographic Envelope.

Note that if a non-Cryptographic Layer intervenes, all Cryptographic Layers within the non-Cryptographic Layer are not part of the Cryptographic Envelope (see the example in Section 3.3.3).

Note also that the ordering of the Cryptographic Layers implies different cryptographic properties. A signed-then-encrypted message is different than an encrypted-then-signed message.

3.3. Cryptographic Payload

The Cryptographic Payload of a message is the first non-Cryptographic Layer - the "protected part" - within the Cryptographic Envelope. Since the Cryptographic Payload itself is a MIME part, it has its own set of headers.

Protected headers are placed on (and read from) the Cryptographic Payload, and should be considered to have the same cryptographic properties as the message itself.

3.3.1. Simple Cryptographic Payloads

As described above, if the "protected part" identified in Section 3.1.1 or Section 3.1.2 is not itself a Cryptographic Layer, that part is the Cryptographic Payload.

If the application wants to generate a message that is both encrypted and signed, it MAY use the simple MIME structure from Section 3.1.2 by ensuring that the [RFC4880] Encrypted Message within the application/octet-stream part contains an [RFC4880] Signed Message.

3.3.2. Multilayer Cryptographic Envelopes

It is possible to construct a Cryptographic Envelope consisting of multiple layers for PGP/MIME, typically of the following structure:
When handling such a message, the properties of the Cryptographic Envelope are derived from the series A, E.

As noted in Section 3.3.1, PGP/MIME applications also have a simpler MIME construction available with the same cryptographic properties.

3.3.3. A Baroque Example

Consider a message with the following overcomplicated structure:

The 3 Cryptographic Layers in such a message are rooted in parts H, L, and N. But the Cryptographic Envelope of the message consists only of the properties derived from the series H, L. The Cryptographic Payload of the message is part M.

It is NOT RECOMMENDED to generate messages with such complicated structures. Even if a receiving MUA can parse this structure properly, it is nearly impossible to render in a way that the user can reason about the cryptographic properties of part O compared to part Q.

3.4. Exposed Headers are Outside

The Cryptographic Envelope fully encloses the Cryptographic Payload, whether the message is signed or encrypted or both. The Exposed Headers are considered to be outside of both.

4. Message Composition

This section describes the composition of a cryptographically-protected message with Protected Headers.
We document legacy composition of cryptographically-protected messages (without protected headers) in Section 4.4, and then describe a revised version of that algorithm in Section 4.5 that produces conformant Protected Headers.

4.1. Copying All Headers

All non-structural headers known to the composing MUA are copied to the MIME header of the Cryptographic Payload. The composing MUA SHOULD protect all known non-structural headers in this way.

If the composing MUA omits protection for some of the headers, the receiving MUA will have difficulty reasoning about the integrity of the headers (see Section 11.2).

4.2. Confidential Subject

When a message is encrypted, the Subject should be obscured by replacing the Exposed Subject with three periods: ...

This value (...) was chosen because it is believed to be language agnostic and avoids communicating any potentially misleading information to the recipient (see Section 7.1 for a more detailed discussion).

4.3. Obscured Headers

Due to compatibility and usability concerns, a Mail User Agent SHOULD NOT obscure any of: From, To, Cc, Message-ID, References, Reply-To, In-Reply-To, (FIXME: MORE?) unless the user has indicated they have security constraints which justify the potential downsides (see Section 7 for a more detailed discussion).

Aside from that limitation, this specification does not at this time define or limit the methods a MUA may use to convert Exposed Headers into Obscured Headers.

4.4. Message Composition without Protected Headers

This section roughly describes the steps that a legacy MUA might use to compose a cryptographically-protected message without Protected Headers.

The message composition algorithm takes three parameters:

- **origbody**: the traditional unprotected message body as a well-formed MIME tree (possibly just a single MIME leaf part). As a well-formed MIME tree, origbody already has structural headers present (see Section 1.2.2).
- **origheaders**: the intended non-structural headers for the message, represented here as a table mapping from header names to header values. For example, origheaders['From'] refers to the value of the From header that the composing MUA would typically place on the message before sending it.
- **crypto**: The series of cryptographic protections to apply (for example, "sign with the secret key corresponding to OpenPGP certificate X, then encrypt to OpenPGP certificates X and Y").
This is a routine that accepts a MIME tree as input (the Cryptographic Payload), wraps
the input in the appropriate Cryptographic Envelope, and returns the resultant MIME tree as
output.

The algorithm returns a MIME object that is ready to be injected into the mail system:

- Apply crypto to origbody, yielding MIME tree output
- For header name h in origheaders:
 - Set header h of output to origheaders[h]
- Return output

4.5. Message Composition with Protected Headers

A reasonable sequential algorithm for composing a message with protected headers takes two
more parameters in addition to origbody, origheaders, and crypto:

- obscures: a table of headers to be obscured during encryption, mapping header names to
 their obscuring values. For example, this document recommends only obscuring the subject,
 so that would be represented by the single-entry table obscures = {'Subject': '...'}.
 If header Foo is to be deleted entirely, obscures['Foo'] should be set to the special value
 null.
- legacy: a boolean value, indicating whether any recipient of the message is believed to have
 a legacy client (that is, a MUA that is capable of decryption, but does not understand
 protected headers).

The revised algorithm for applying cryptographic protection to a message is as follows:

- if crypto contains encryption, and legacy is true, and obscures contains any user-facing
 headers (see Section 1.2.1), wrap orig in a structure that carries a Legacy Display part:

 ◦ Create a new MIME leaf part legacydisplay with header Content-Type: text/rfc822-
 headers; protected-headers="v1"
 ◦ For each obscured header name obh in obscures:
 - If obh is user-facing:
 - Add obh: origheaders[ob] to the body of legacydisplay. For example, if
 origheaders['Subject'] is lunch plans?, then add the line Subject: lunch
 plans? to the body of legacydisplay
 ◦ Construct a new MIME part wrapper with Content-Type: multipart/mixed
 ◦ Give wrapper exactly two subarts: legacydisplay and origbody, in that order.
 ◦ Let payload be MIME part wrapper
• Otherwise:
 ◦ Let payload be MIME part origbody
• For each header name h in origheaders:
 ◦ Set header h of MIME part payload to origheaders[h]
• FIXME: Enigmail adds protected-headers="v1" parameter to payload here. Is this necessary?
• Apply crypto to payload, producing MIME tree output
 • If crypto contains encryption:
 ◦ For each obscured header name obh in obscurcs:
 • If obscurcs[obh] is null:
 • Drop obh from origheaders
 • Else:
 • Set origheaders[obh] to obscurcs[obh]
 • For each header name h in origheaders:
 ◦ Set header h of output to origheaders[h]
 • return output

Note that both new parameters, obscured and legacy, are effectively ignored if crypto does not contain encryption. This is by design, because they are irrelevant for signed-only cryptographic protections.

5. Legacy Display

MUAs typically display user-facing headers (Section 1.2.1) directly to the user. An encrypted message may be read by a decryption-capable legacy MUA that is unaware of this standard. The user of such a legacy client risks losing access to any obscured headers.

This section presents a workaround to mitigate this risk by restructuring the Cryptographic Payload before encrypting to include a "Legacy Display" part.

5.1. Message Generation: Including a Legacy Display Part

A generating MUA that wants to make an Obscured Subject (or any other user-facing header) visible to a recipient using a legacy MUA SHOULD modify the Cryptographic Payload by wrapping the intended body of the message in a multipart/mixed MIME part that prefixes the intended body with a Legacy Display part.
The Legacy Display part MUST be of Content-Type text/rfc822-headers, and MUST contain a protected-headers parameter whose value is v1. It SHOULD be marked with Content-Disposition: inline to encourage recipients to render it.

The contents of the Legacy Display part MUST be only the user-facing headers that the sending MUA intends to obscure after encryption.

The original body (now a subpart) SHOULD also be marked with Content-Disposition: inline to discourage legacy clients from presenting it as an attachment.

5.1.1. Legacy Display Transformation

Consider a message whose Cryptographic Payload, before encrypting, that would have a traditional multipart/alternative structure:

```
X ┌ multipart/alternative
  │   └ text/plain
  Z └ text/html
```

When adding a Legacy Display part, this structure becomes:

```
V ┌ multipart/mixed
  │   └ text/rfc822-headers ("Legacy Display" part)
  W └ text/plain
  X └ multipart/alternative ("original body")
  Y └ text/plain
  Z └ text/html
```

Note that with the inclusion of the Legacy Display part, the Cryptographic Payload is the multipart/mixed part (part V in the example above), so Protected Headers should be placed at that part.

5.1.2. When to Generate Legacy Display

A MUA SHOULD transform a Cryptographic Payload to include a Legacy Display part only when:

- The message is going to be encrypted, and
- At least one user-facing header (see Section 1.2.1) is going to be obscured

Additionally, if the sender knows that the recipient's MUA is capable of interpreting Protected Headers, it SHOULD NOT attempt to include a Legacy Display part. (Signalling such a capability is out of scope for this document)

5.2. Message Rendering: Omitting a Legacy Display Part

A MUA that understands Protected Headers may receive an encrypted message that contains a Legacy Display part. Such an MUA SHOULD avoid rendering the Legacy Display part to the user at all, since it is aware of and can render the actual Protected Headers.
If a Legacy Display part is detected, the Protected Headers should still be pulled from the Cryptographic Payload (part V in the example above), but the body of message SHOULD be rendered as though it were only the original body (part X in the example above).

5.2.1. Legacy Display Detection Algorithm

A receiving MUA acting on a message SHOULD detect the presence of a Legacy Display part and the corresponding "original body" with the following simple algorithm:

- Check that all of the following are true for the message:
 - The Cryptographic Envelope must contain an encrypting Cryptographic Layer
 - The Cryptographic Payload must have a Content-Type of `multipart/mixed`
 - The Cryptographic Payload must have exactly two subparts
 - The first subpart of the Cryptographic Payload must have a Content-Type of `text/rfc822-headers`
 - The first subpart of the Cryptographic Payload’s Content-Type must contain a property of `protected-headers`, and its value must be `$v1$`.
 - If all of the above are true, then the first subpart is the Legacy Display part, and the second subpart is the "original body". Otherwise, the message does not have a Legacy Display part.

5.3. Legacy Display is Decorative and Transitional

As the above makes clear, the Legacy Display part is strictly decorative, for the benefit of legacy decryption-capable MUAs that may handle the message. As such, the existence of the Legacy Display part and its `multipart/mixed` wrapper are part of a transition plan.

As the number of decryption-capable clients that understand Protected Headers grows in comparison to the number of legacy decryption-capable clients, it is expected that some senders will decide to stop generating Legacy Display parts entirely.

A MUA developer concerned about accessiblity of the Subject header for their users of encrypted mail when Legacy Display parts are omitted SHOULD implement the Protected Headers scheme described in this document.

6. Message Interpretation

This document does not currently provide comprehensive recommendations on how to interpret Protected Headers. This is deliberate; research and development is still ongoing. We also recognize that the tolerance of different user groups for false positives (benign conditions misidentified as security risks), vs. their need for strong protections varies a great deal and different MUAs will take different approaches as a result.

Some common approaches are discussed below.
6.1. Reverse-Copying

One strategy for interpreting Protected Headers on an incoming message is to simply ignore any Exposed Header for which a Protected counterpart is available. This is often implemented as a copy operation (copying header back out of the Cryptographic Payload into the main message header) within the code which takes care of parsing the message.

A MUA implementing this strategy should pay special attention to any user facing headers (Section 1.2.1). If a message has Protected Headers, and a user-facing header is among the Exposed Headers but missing from the Protected Headers, then an MUA implementing this strategy SHOULD delete the identified Exposed Header before presenting the message to the user.

This strategy does not risk raising a false alarm about harmless deviations, but conversely it does nothing to inform the user if they are under attack. This strategy does successfully mitigate and thwart some attacks, including signature replay attacks (Section 11.2) and participant modification attacks (Section 11.3).

6.2. Signature Invalidation

An alternate strategy for interpreting Protected Headers is to consider the cryptographic signature on a message to be invalid if the Exposed Headers deviate from their Protected counterparts.

This state should be presented to the user using the same interface as other signature verification failures.

A MUA implementing this strategy MAY want to make a special exception for the Subject: header, to avoid invalidating the signature on any signed and encrypted message with a confidential subject.

Note that simple signature invalidation may be insufficient to defend against a participant modification attack (Section 11.3).

6.3. The Legacy Display Part

This part is purely decorative, for the benefit of any recipient using a legacy decryption-capable MUA. See Section 5.2 for details and recommendations on how to handle the Legacy Display part.

6.4. Replying to a Message with Obscured Headers

When replying to a message, many MUAs copy headers from the original message into their reply.
When replying to an encrypted message, users expect the replying MUA to generate an encrypted message if possible. If encryption is not possible, and the reply will be cleartext, users typically want the MUA to avoid leaking previously-encrypted content into the cleartext of the reply.

For this reason, an MUA replying to an encrypted message with Obscured Headers SHOULD NOT leak the cleartext of any Obscured Headers into the cleartext of the reply, whether encrypted or not.

In particular, the contents of any Obscured Protected Header from the original message SHOULD NOT be placed in the Exposed Headers of the reply message.

7. Common Pitfalls and Guidelines

Among the MUA authors who already implemented most of this specification, several alternative or more encompassing specifications were discussed and sometimes tried out in practice. This section highlights a few "pitfalls" and guidelines based on these discussions and lessons learned.

7.1. Misunderstood Obscured Subjects

There were many discussions around what text phrase to use to obscure the Subject: Text phrases such as Encrypted Message were tried but resulted in both localization problems and user confusion.

If the natural language phrase for the obscured Subject: is not localized (e.g. just English Encrypted Message), then it may be incomprehensible to a non-English-speaking recipient who uses a legacy MUA that renders the obscured Subject: directly.

On the other hand, if it is localized based on the sender's MUA language settings, there is no guarantee that the recipient prefers the same language as the sender (consider a German speaker sending English text to an Anglophone). There is no standard way for a sending MUA to infer the language preferred by the recipient (aside from statistical inference of language based on the composed message, which would in turn leak information about the supposedly-confidential message body).

Furthermore, implementors found that the phrase Encrypted Message in the subject line was sometimes understood by users to be an indication from the MUA that the message was actually encrypted. In practice, when some MUA failed to encrypt a message in a thread that started off with an obscured Subject:, the value Re: Encrypted Message was retained even on those cleartext replies, resulting in user confusion.

In contrast, using ... as the obscured Subject: was less likely to be seen as an indicator from the MUA of message encryption, and it also neatly sidesteps the localization problems.
7.2. Reply/Forward Losing Subjects

When the user of a legacy MUA replies to or forwards a message where the Subject has been obscured, it is likely that the new subject will be Fwd: ... or Re: ... (or the localized equivalent). This breaks an important feature: people are used to continuity of subject within a thread. It is especially unfortunate when a new participant is added to a conversation who never saw the original subject.

At this time, there is no known workaround for this problem. The only solution is to upgrade the MUA to support Protected Headers.

The authors consider this to be only a minor concern in cases where encryption is being used because confidentiality is important. However, in more opportunistic cases, where encryption is being used routinely regardless of the sensitivity of message contents, this cost becomes higher.

7.3. Usability Impact of Reduced Metadata

Many mail user agents maintain an index of message metadata (including header data), which is used to rapidly construct mailbox overviews and search result listings. If the process which generates this index does not have access to the encrypted payload of a message, or does not implement Protected Headers, then the index will only contain the obscured versions Exposed Headers, in particular an obscured Subject of

For sensitive message content, especially in a hosted MUA-as-a-service situation ("webmail") where the metadata index is maintained and stored by a third party, this may be considered a feature as the subject is protected from the third-party. However, for more routine communications, this harms usability and goes against user expectations.

Two simple workarounds exist for this use case:

1. If the metadata index is considered secure enough to handle confidential data, the protected content may be stored directly in the index once it has been decrypted.
2. If the metadata index is not trusted, the protected content could be re-encrypted and encrypted versions stored in the index instead, which are then decrypted by the client at display time.

In both cases, the process which decrypts the message and processes the Protected Headers must be able to update the metadata index.

FIXME: add notes about research topics and other non-simple workarounds, like oblivious server-side indexing, or searching on encrypted data.
7.4. **Usability Impact of Obscured Message-ID**

Current MUA implementations rely on the outermost Message-ID for message processing and indexing purposes. This processing often happens before any decryption is even attempted. Attempting to send a message with an obscured Message-ID header would result in several MUAs not correctly processing the message, and would likely be seen as a degradation by users.

Furthermore, a legacy MUA replying to a message with an obscured Message-ID: would be likely to produce threading information (References:, In-Reply-To:) that would be misunderstood by the original sender. Implementors generally disapprove of breaking threads.

7.5. **Usability Impact of Obscured From/To/Cc**

The impact of obscuring From:, To:, and Cc: headers has similar issues as discussed with obscuring the Message-ID: header in Section 7.4.

In addition, obscuring these headers is likely to cause difficulties for a legacy client attempting to formulate a correct reply (or "reply all") to a given message.

7.6. **Mailing List Header Modifications**

Some popular mailing-list implementations will modify the Exposed Headers of a message in specific, benign ways. In particular, it is common to add markers to the Subject line, and it is also common to modify either From or Reply-To in order to make sure replies go to the list instead of directly to the author of an individual post.

Depending on how the MUA resolves discrepancies between the Protected Headers and the Exposed Headers of a received message, these mailing list "features" may either break or the MUA may incorrectly interpret them as a security breach.

Implementors may for this reason choose to implement slightly different strategies for resolving discrepancies, if a message is known to come from such a mailing list. MUAs should at the very least avoid presenting false alarms in such cases.

8. **Comparison with Other Header Protection Schemes**

Other header protection schemes have been proposed (in the IETF and elsewhere) that are distinct from this mechanism. This section documents the differences between those earlier mechanisms and this one, and hypothesizes why it has seen greater interoperable adoption.

The distinctions include:

- backward compatibility with legacy clients
- compatibility across PGP/MIME and S/MIME
- protection for both confidentiality and signing
8.1. S/MIME 3.1 Header Protection

S/MIME 3.1 ([RFC3851]) introduces header protection via message/rfc822 header parts.

The problem with this mechanism is that many legacy clients encountering such a message were likely to interpret it as either a forwarded message, or as an unreadable substructure.

For signed messages, this is particularly problematic - a message that would otherwise have been easily readable by a client that knows nothing about signed messages suddenly shows up as a message-within-a-message, just by virtue of signing. This has an impact on all clients, whether they are cryptographically-capable or not.

For encrypted messages, whose interpretation only matters on the smaller set of cryptographically-capable legacy clients, the resulting message rendering is awkward at best.

Furthermore, Formulating a reply to such a message on a legacy client can also leave the user with badly-structured quoted and attributed content.

Additionally, a message deliberately forwarded in its own right (without preamble or adjacent explanatory notes) could potentially be confused with a message using the declared structure.

The mechanism described here allows cryptographically-incapable legacy MUAs to read and handle cleartext signed messages without any modifications, and permits cryptographically-capable legacy MUAs to handle encrypted messages without any modifications.

In particular, the Legacy Display part described in [#legacy-display] makes it feasible for a conformant MUA to generate messages with obscured Subject lines that nonetheless give access to the obscured Subject header for recipients with legacy MUAs.

8.2. The Content-Type Property "forwarded=no" {forwarded=no}

[I-D.draft-ietf-lamps-header-protection-requirements-00] contains a proposal that attempts to mitigate one of the drawbacks of the scheme described in S/MIME 3.1 (Section 8.1).

In particular, it allows non-legacy clients to distinguish between deliberately forwarded messages and those intended to use the defined structure for header protection.

However, this fix has no impact on the confusion experienced by legacy clients.

8.3. pEp Header Protection

[I-D.draft-luck-lamps-pep-header-protection-03] is applicable only to signed+encrypted mail, and does not contemplate protection of signed-only mail.

In addition, the pEp header protection involved for "pEp message format 2" has an additional multipart/mixed layer designed to facilitate transfer of OpenPGP Transferable Public Keys, which seems orthogonal to the effort to protect headers.
Finally, that draft suggests that the exposed Subject header be one of "=?utf-8?Q?p=E2=89=A1p?=", "pEp", or "Encrypted message". "pEp" is a mysterious choice for most users, and see Section 7.1 for more commentary on why "Encrypted message" is likely to be problematic.

8.4. DKIM

[RFC6736] offers DKIM, which is often used to sign headers associated with a message.

DKIM is orthogonal to the work described in this document, since it is typically done by the domain operator and not the end user generating the original message. That is, DKIM is not "end-to-end" and does not represent the intent of the entity generating the message.

Furthermore, a DKIM signer does not have access to headers inside an encrypted Cryptographic Layer, and a DKIM verifier cannot effectively use DKIM to verify such confidential headers.

8.5. S/MIME "Secure Headers"

The mechanism proposed in that draft is undefined for use with PGP/MIME. While all S/MIME clients must be able to handle CMS and ASN.1 as well as MIME, a standard that works at the MIME layer itself should be applicable to any MUA that can work with MIME, regardless of whether end-to-end security layers are provided by S/MIME or PGP/MIME.

That mechanism also does not propose a means to provide confidentiality protection for headers within an encrypted-but-not-signed message.

Finally, that mechanism offers no equivalent to the Legacy Display described in Section 5. Instead, sender and receiver are expected to negotiate in some unspecified way to ensure that it is safe to remove or modify Exposed Headers in an encrypted message.

8.6. Triple-Wrapping

[RFC2634] defines "Triple Wrapping" as a means of providing cleartext signatures over signed and encrypted material. This can be used in combination with the mechanism described in [RFC7508] to authenticate some headers for transport using S/MIME.

But it does not offer confidentiality protection for the protected headers, and the signer of the outer layer of a triple-wrapped message may not be the originator of the message either.

In practice on today's Internet, DKIM ([RFC6736] provides a more widely-accepted cryptographic header-verification-for-transport mechanism than triple-wrapped messages.

9. Test Vectors

The subsections below provide example messages that implement the Protected Header scheme.
The secret keys and OpenPGP certificates from [I-D.draft-bre-openpgp-samples-00] can be used to decrypt and verify them.

They are provided in textual source form as [RFC2822] messages.

9.1. Signed Message with Protected Headers

This shows a cleartext signed message. Its MIME message structure is:

```
multipart/signed
  └╴text/plain → Cryptographic Payload
  └╴application/pgp-signature
```

Note that if this message had been generated without Protected Headers, then an attacker with access to it could modify the Subject without invalidating the signature. Such an attacker could cause Bob to think that Alice wanted to cancel the contract with BarCorp instead of FooCorp.
9.2. Signed and Encrypted Message with Protected Headers

This shows a simple encrypted message with protected headers. The encryption also contains an signature in the OpenPGP Message structure. Its MIME message structure is:

```
multipart/encrypted
   application/pgp-encrypted
   application/octet-stream
      (decrypts to)
   text/plain ← Cryptographic Payload
```

The Subject: header is successfully obscured.
Note that if this message had been generated without Protected Headers, then an attacker with access to it could have read the Subject. Such an attacker would know details about Alice and Bob's business that they wanted to keep confidential.

The protected headers also protect the authenticity of subject line as well.

The session key for this message's crypto layer is an AES-256 key with value 8df4b2d27d5637138ac6de46415661be0bd01ed12ecf8c1db22a33cf3ede82f2 (in hex).

If Bob's MUA is capable of interpreting these protected headers, it should render the Subject: of this message as BarCorp contract signed, let's go!
Unwrapping the Cryptographic Layer yields the following content:

w4D4R2b2udXyHrYSAQdAk4rw/q9TK6d1Bm42jf6Z7z34KmNIAK4Fv4f90n5l0w8OGtmhIyUu320H5bc8FCb/jAQ03cggIae40dzQy/m9eLEDXezfyMSuFbtap6xbwCDMA3wqk35PDeayQaWf6lExRxt1aZLca293d10pY03oZS5KvMNxd+wEEZNCt
rJBOFNLhek5/9/nkATG10BAK0su5o99Y0dfkMAV07YxWzuxMgUn7Vp6f0X2l3dghYt
KVqEHeOTXzprBdz764pLe0VosQ0PZ2CvTLjbcv0/+7z314mnW858vZI7QVUj
DxubkqkyP3ylJ6L0G0Acw851sXdK4CB4nrous2JF3Y3zv7c0tPKHEG8HkmV70r
tl0Q0Ak6Hfw0gq4rpe6183FA9e8EU7088R1kIY8e1TaPmKp8ULWs5sba1kJH3J
rS9q8zkAFFd/A6G8ws/jvHp6H6u+NBGW3/DQ0nRmHq5Jfu/Tnue6TFLDNd1EyZk/L
Nlr4Ysh6E8V8BiH4u6kY/SwhHCv/F0jItHYYsSeIez810lVnh28H6HLMV5SD0fofjP
fBqIf8ZJ1nqzFpLphVpk0mcI7JHExExERPq/M5LmmvJ9srYHbKbJ0L7T79A7FNzB
LHRa/ple2znjpxTrYU2qZoSahA50M1TwpicDRH2V1n8Z9V5KblqiJ6ZH3t0zq8
EAF6Lar5613v/VwhjMpqf/plvZqjgDa0cWkBqyqwOpCwvKaeC70wqnZ9BFm/F
RefFysiU7fWpvBbktbc9hl9b3aetWK19uAvsaublswlgZG4Z4D2hr2hfVaX72/8O
3oJoulvJ591r5a1lItyU8ctNGT2qbbKp60gVzqm8BOhy0s1ayjMNU0VjS3sn
BJ061rctk5yQdukA3vlf/sagyq2Q0dhFqol60/7haacAQ+w+Wy9PW/n0oNAuugv
4wizsCSB9167wR900eEe3F7Lxgu6rcGDU3J0N5X7+gQH7+jzuyGdmB5MTxd
UcT89ekk9dXqR2k0rjHgO1Ue15znWk5B6VGKwZ2k2pzu1AvxS5lbi10k/trHx
UtpU9ghwv041WCPULFA6xlNKL9RmLiJerZ2k9g92yosznE1Hdpj+wiisW86NRSZ/tjIw
qZvN1gkvqz17/8au525rQ0uQI10k+tvJykYlrZ0rvEeyWdObAZCLdxSdcq
pY4ckpu/ymboxfXX21ynYKQdCOp77lRkuZBYLYGAv4w/lPKQCMZrQxtSmu9PnU5XG7
Au4yYdZVMkCjL0QkmKte/CCX4bX8AeF/AJ5DFEfxW3CT8FbVhdK02rLkw76b
0jBdnT3noMHytc4bO8B70J3Mmu6uAaw7cD4INR8Edt+Vr8ukqsnwKFi3Jnq10i/4
PppJ2zAABRy990Io4a343Pn3goWzvm80EfNy0Zn7n6qOA0sB8Fghr0Y2I1Mtp+
YEkvEjS50owgEJi/zcHts1pOwczY/AfVI2sLkCT8FqsNlfPpEbdR04q+CEav/M52
A+CS0s7jlgklNfNd
=87qA
----- END PGP MESSAGE-----

--bcde3ce988--
Hi Bob!

I just signed the contract with BarCorp and they've set us up with an account on their system for testing.

The account information is:

- Site: https://barcorp.example/
- Username: examplecorptest
- Password: correct-horse-battery-staple

Please get the account set up and apply the test harness.

Let me know when you've got some results.

Thanks, Alice

Alice Lovelace
President
OpenPGP Example Corp

9.3. Signed and Encrypted Message with Protected Headers and Legacy Display Part

If Alice's MUA wasn't sure whether Bob's MUA would know to render the obscured Subject: header correctly, it might include a legacy display part in the cryptographic payload.

This message is structured in the following way:

```
multipart/encrypted
  application/pgp-encrypted
    application/octet-stream
      (decrypts to)
        multipart/mixed ← Cryptographic Payload
          text/rfc822-headers ← Legacy Display Part
          text/plain
```

The example below shows the same message as Section 9.2.

If Bob's MUA is capable of handling protected headers, the two messages should render in the same way as the message in Section 9.2, because it will know to omit the Legacy Display part as documented in Section 5.2.

But if Bob's MUA is capable of decryption but is unaware of protected headers, it will likely render the Legacy Display part for him so that he can at least see the originally-intended Subject: line.
For this message, the session key is an AES-256 key with value
95a71b0e344c043a4dd52c5fd01e0e5118290bf0792a8a733c653a12d223e (in hex).

Unwrapping the Cryptographic Layer yields the following content:

```
--73c8655345
content-type: application/pgp-encrypted
Version: 1

-----BEGIN PGP MESSAGE-----
w4D4R2b2udXyHrYSAqdAS0G0tRGi0cGe2INISST7xsSb5e1ieezXzXuFoRaal1fWgw
JK32KLaTnHegKvEBV/cdMLMEeqS6bKktxtC94YNskeKJ0TmPPhr+YWlrwRmz0Akw
wcDMA3wvkg35PDeyAqV6a3qf0ne2jVFah+o5tUEoX/BlenaWJfpIgu9Ev5SUYLmg
tNHJ1LWbK4H7yKQHp/hNy0eNeVfmgkus8cPZMtpce+eZEP9FaeD069Cqkb9Cnqt4Hs2q
yNk14ec0ktl9/b5iP4xrV8Fw5q0i50bmsTVKs1p4UggPNN9UPH5J5j4smdpW
w+GlKx5UKLs137Q1il0marMaw54iK7/MN+GbjzlMduw/VuLV8BYdgt4l96ExJ+1
u7s6/TKXyUSuxG1W0+3tCepy+hTkEsS8Myj9U80YVF5to+TCmznC1Ebewdb4A1Id
54bt4Qs/G+xA/saFRMrn208zq2D5sy+Mzp4dG6w/9fAhIt9mp8W/6Vn+CgY8kJ
0dHy3pSnDwvavnmsBqzyOuaf4/xAdL3ZQbzyR+9UWyguYufc2N6VHkXor+530Lh5k3O
BNMkgKcaULFLHQLstXETFXMjzpuUYSH99ZTeYvNfP/e1i9CByQteN9U5h08R
QyWmEpTvYe1/vJNCdBqT0sLxAtfxt/HF/K4hemQDq3D3E/zsE2PpaVbStHmd2rzv
XIsdOY7ZnEOL3J/zE3jA5CayUOHz5rdt/Ri5qwD2a7ziRbP8RNAVyk93InQueseX7
mhGAkt9ldNTWumil8dpvm/ChXoRKvqj57V7mHdpBiL0D4JKpZTGAPieEp4fF71iYw
4E+nVwiZKIDSiyMUEJwA3U7t+nM9iElcKRAcrrPZkr60E58JywwiRdewzroMw10w
HoNlJ4E0zi5jr3f6dfA4A3Hw3Hu8rdcqrKwK2DhlL+as1ZC/AA8ZD909t97v/A/t
b6jWjWvMclgYv9wI4acNi6q9hdwPFZ0aLvgvskGATG35vk1AuIMogWP2Iv
T0guamz2b177yH5ShotwLTZ6NSD5W7rShybdHAPKRWFCyzjzZb97UzWh1Ts21HglJ
5mUpbT1iE31JF0n1WcvLtuQToB2Nz7lwVv00oM9l5DcgUmrS04qBDEax1v+PoxKXyA
Q0zzeH6EDwz0xYwZhiBjygwor2qgmU1EqjBa+5q10MrzBk+7yK0k1kgaPik0BeYBeY
jc/170us+51703F0jx4K5XP72/MRC09crr//9q9tRB0G1k8yvicy0Gbt5SgsNqul
57OtvLrecw+3204MQRGCjmXneslamdekLisFBeOeELBx/tjkxyixeXeh5oidy
99vY/utqu03o06xnTwxajxjYoufsw5A2zw/NJnRFquO8VMqVzD/jwNvsVETQCBzj
GPKYoP+i1PnheqQs4tNqij8Q3zyxtXz51lLp26qTs4gul+8tqagk56z6L1x5SHMQ
VullmToAt5KB0fr0n4jGUAIzeR2RqT4YHELZvphL1E8y7l3y8W8B8d1f0XZ1mg
rgntqnxu8hTrCtisqgVBVY7zHvrcQ0jGsnAsqgj0jPVB5n0PgyCorKEVqDF4ibPBz
y2bRkKPR4es6advuevKVGAhULhz0V2651sz8h9Me160+d28veStHng++2DsmCrdpSv
EatA
=mx0Q
-----END PGP MESSAGE-----

--73c8655345--
```
Content-Type: multipart/mixed; boundary="6ae0cc9247"
From: Alice Lovelace <alice@openpgp.example>
To: Bob Babbage <bob@openpgp.example>
Date: Mon, 21 Oct 2019 07:18:11 -0700
Subject: BarCorp contract signed, let's go!
Message-ID: <signed+encrypted+legacy-display@protected-headers.example>

--6ae0cc9247
Content-Type: text/rfc822-headers; charset="us-ascii"; protected-headers="v1"
Content-Disposition: inline

Subject: BarCorp contract signed, let's go!

--6ae0cc9247
Content-Type: text/plain; charset="us-ascii"

Hi Bob!
I just signed the contract with BarCorp and they've set us up with an account
on their system for testing.
The account information is:
 Site: https://barcorp.example/
 Username: examplecorptest
 Password: correct-horse-battery-staple

Please get the account set up and apply the test harness.
Let me know when you've got some results.

Thanks, Alice
--
Alice Lovelace
President
OpenPGP Example Corp

--6ae0cc9247--

9.4. Multilayer Message with Protected Headers

Some mailers may generate signed and encrypted messages with a multilayer cryptographic
envelope. We show here how such a mailer might generate the same message as Section 9.2.

A typical message like this has the following structure:

```
multipart/encrypted
    application/pgp-encrypted
    application/octet-stream
      (decrypts to)
    multipart/signed
      text/plain ← Cryptographic Payload
      application/pgp-signature
```
For this message, the session key is an AES-256 key with value
5e67165ed151633daeb32844f88fd75d4a9485a563d14705e41d31fb61a9e9 (in hex).

Unwrapping the encryption Cryptographic Layer yields the following content:

-----BEGIN PGP MESSAGE-----
w4DR2b2udXYhYrSQAQdARQ8apKYo0ciE77vBKgb0dItG06ObizW/veQITrdCxAow
KaoR3ewLgRnuwaEisJWwriA0IHB9+0B5j+gFI6h6WCFqzAfJQxywAZHmzn6k
wcDMA3wvk35PDeXa0V/X3C7HugNH81gAKZ/Kb7+wDbjmHcgskvwvteANQbEBER
/YY0uu5jSxEn1drltrrkhj60F+B1mENGkq/3cXrdT46i1rj5n547b8wypc
saeYJqapx8FdfxryEy0eBj9NCMdm0dawfv+nKEdbfztZ2IUONRqigKfcs+Ppv3e
hoY3KUe47cbiqKw11VFTu2e4+RIPXw4B3/95Erepo+RS0a562d8vJd8mBpt5E06
mEykcYc4d659GOeiyTbtaHNCwWd8jVUobfIkwiwAdcmjXmbPwTjefMCBBoUvy9eBk
72Q0Wbpa39jCmvuWu0d850+su0XoChmqdif5FzqEdcKRFJQ0l+Rt+P5SrBixHb8Tedi
WcxUXetpDvACrjmispKXbBvZAgEU8K71zvBvUPK930ijQjgjsXXW1i5u32gN9ZDfc
enHAANLkVoTGU3M60d0XRMUKYL6+ON1FJL9S1Rm9Fa+wQKc004ZvdeG68QXkt3
Fx6ZvZT/8n3fcIwBpHfs0s10aeSpGJSejaZwVq800QToKqdrJuRnpUB323/ngsC
46mnobydG1JZmmn0d0lbll8bteBUwQwB/rJcc6JsZyRItKejSSXOanYyuCPf0m5r
rpfz18kz8y9K2RTLzeFALMiUuIXC5f6d73/MalsZ2DRYjnu3c9AXEdVv9YVVA
KXY/EcCfBPHxux/ukjUH7LQbogx/A1E41RM2kjEzwnUEA8e0muUN7e05AJjDP0qk
EijIxW5b18BF48v4sB950I3f0HzFaQygB/vwZ8W8K8sPwEycdrKmleu46xt2g7uKx
8idfwqVp4D5EPuOZLRnSnYskTwjIz2nZqRdz/7Z7xUhm4CjjiFt804a
4uuvGvteVQxyQ9fa7a05+cPncN+GucV7k0d70u512+0hQA3jW93tch40Us759
QymPm4sM5yC757dpab481cDQMLIfhBcnnhSzAgILZhcSMVc73ldEABcX
G+zCiITtR+io8PvaVnBq3n38xP0b1r5yp2kbBMBMdh304tityMBp3rjpi81AI
Rm6tymU2aRmxq17TB63b0f0XyQZfizSvuedKSL2dDvkoOS1hVlhaV2zqMhIS54
W2KrWjXkgBCz2ulIyi1/H0+jUO/p8unGnGyY1EEDX5Q5oPev21Qj3eEteIBrDF
sfi9jCehK/Y0XANG4Mt01ukb6cgGqhrKwNyy9KRG/U5T7aaP90d9nu2Lh0pZQj
Bytek33jY/7CScKPSj/c6InnIljy+Za9gsL5CpZ7am1y/E082X4X3307T6EB5RLi
+qzw0Cgu7WTKjKo0PFLfZFLY410rVABC885BleZtXJkBxR5uUrv/71C2xcEZv2/0V
ahdPLY7
=roDI
-----END PGP MESSAGE-----
9.5. Multilayer Message with Protected Headers and Legacy Display Part

And, a mailer that generates a multilayer cryptographic envelope might want to provide a Legacy Display part, if it is unsure of the capabilities of the recipient's MUA. We show here how sucha mailer might generate the same message as Section 9.2.

Such a message might have the following structure:

```
Content-Type: multipart/sixed; boundary="a6b911f1d1"
protocol="application/pgp-signature"; micalg="pgp-sha512"
---a6b911f1d1
Content-Type: text/plain; charset="us-ascii"
From: Alice Lovelace <alice@openpgp.example>
To: Bob Babbage <bob@openpgp.example>
Date: Mon, 21 Oct 2019 07:18:11 -0700
Subject: BarCorp contract signed, let's go!
Message-ID: <multilayer@protected-headers.example>

Hi Bob!

I just signed the contract with BarCorp and they've set us up with an account on their system for testing.

The account information is:

   Site: https://barcorp.example/
   Username: examplecorptest
   Password: correct-horse-battery-staple

Please get the account set up and apply the test harness.

Let me know when you've got some results.

Thanks, Alice
--
Alice Lovelace
President
OpenPGP Example Corp

---a6b911f1d1
content-type: application/pgp-signature

-----BEGIN PGP SIGNATURE-----
wnUEARYKAB0FAl2tvI1W1QTrbtfozp14V6UTmPyMVUMT0fjjgAKCRDyMVUMT0fj
jk5oAQCUl+TDVp2pM0gcDuwnYtYCU9XRaLgG4b2ERZaYf1jOEAj85x09Cjd7dZ
jBU3m8KycHe5P5t0YMw6nSlwWXXgA=
=Vh3K
-----END PGP SIGNATURE-----
---a6b911f1d1--
```

Note the placement of the Protected Headers on the Cryptographic Payload specifically, which is not the immediate child of the encryption Cryptographic Layer.
For this message, the session key is an AES-256 key with value b346a2a50fa0cf62895b74e8c0d2ad9e3ee1f02b5d564c77d879caae7a0aa70 (in hex).
Unwrapping the encryption Cryptographic Layer yields the following content:
Hi Bob!

I just signed the contract with BarCorp and they've set us up with an account on their system for testing.

The account information is:

- Site: https://barcorp.example/
- Username: examplecorptest
- Password: correct-horse-battery-staple

Please get the account set up and apply the test harness.

Let me know when you've got some results.

Thanks, Alice

--
Alice Lovelace
President
OpenPGP Example Corp
9.6. An Unfortunately Complex Example

For all of the potential complexity of the Cryptographic Envelope, the Cryptographic Payload itself can be complex. The Cryptographic Envelope in this example is the same as the previous example (Section 9.5). The Cryptographic Payload has protected headers and a legacy display part (also the same as Section 9.5), but in addition Alice’s MUA composes a message with both plaintext and HTML variants, and Alice includes a single attachment as well.

While this message is complex, a modern MUA could also plausibly generate such a structure based on reasonable commands from the user composing the message (e.g., Alice composes the message with a rich text editor, and attaches a file to the message).

The key takeaway of this example is that the complexity of the Cryptographic Payload (which may contain a Legacy Display part) is independent of and distinct from the complexity of the Cryptographic Envelope.

This message has the following structure:

```
multipart/encrypted
    application/pgp-encrypted
    application/octet-stream
      (decrypted to)
    multipart/signed
      multipart/mixed ← Cryptographic Payload
        text/rfc822-headers ← Legacy Display Part
        multipart/mixed
        multipart/alternative
          text/plain
          text/html
          text/x-diff ← attachment
        application/pgp-signature
```

For this message, the session key is an AES-256 key with value 1c489cfad9f3c0bf3214bf34e6da42b7f64005e59726baa1b17ffdefe6ecbb52 (in hex).
Unwrapping the encryption Cryptographic Layer yields the following content:
Hi Bob!

I just signed the contract with BarCorp and they've set us up with an account on their system for testing.

The account information is:

- Site: https://barcorp.example/
- Username: examplecorptest
- Password: correct-horse-battery-staple

Please get the account set up and apply the test harness.

Let me know when you've got some results.

Thanks, Alice

--
Alice Lovelace
President
OpenPGP Example Corp

The account information is:
Please get the account set up and apply the test harness.

Let me know when you've got some results.

Thanks, Alice

Alice Lovelace

President

OpenPGP Example Corp

Please get the account set up and apply the test harness.

Let me know when you've got some results.

Thanks, Alice

Alice Lovelace

President

OpenPGP Example Corp

10. IANA Considerations

FIXME: register content-type parameter for legacy-display part
MAYBE: provide a list of user-facing headers, or a new "user-facing" column in some table of known RFC5322 headers?

MAYBE: provide a comparable indicator for which headers are "structural"?

11. Security Considerations

This document describes a technique that can be used to defend against two security vulnerabilities in traditional end-to-end encrypted e-mail.

11.1. Subject Leak

While e-mail structure considers the Subject header to be part of the message metadata, nearly all users consider the Subject header to be part of the message content.

As such, a user sending end-to-end encrypted e-mail may inadvertently leak sensitive material in the Subject line.

If the user's MUA uses Protected Headers and obscures the Subject header as described in Section 4.2 then they can avoid this breach of confidentiality.

11.2. Signature Replay

A message without Protected Headers may be subject to a signature replay attack, which attempts to violate the recipient's expectations about message authenticity and integrity. Such an attack works by taking a message delivered in one context (e.g., to someone else, at a different time, with a different subject, in reply to a different message), and replaying it with different message headers.

A MUA that generates all its signed messages with Protected Headers gives recipients the opportunity to avoid falling victim to this attack.

Guidance for how a message recipient can use Protected Headers to defend against a signature replay attack are out of scope for this document.

11.3. Participant Modification

A trivial (if detectable) attack by an active network adversary is to insert an additional e-mail address in a To or Cc or Reply-To or From header. This is a staging attack against message confidentiality - it relies on followup action by the recipient.

For an encrypted message that is part of an ongoing discussion where users are accustomed to doing "reply all", such an insertion would cause the replying MUA to encrypt the replying message to the additional party, giving them access to the conversation. If the replying MUA quotes and attributes cleartext from the original message within the reply, then the attacker learns the contents of the encrypted message.
As certificate discovery becomes more automated and less noticeable to the end user, this is an increasing risk.

An MUA that rejects Exposed Headers in favor of Protected Headers should be able to avoid this attack when replying to a signed message.

12. Privacy Considerations

This document only explicitly contemplates confidentiality protection for the Subject header, but not for other headers which may leak associational metadata. For example, From and To and Cc and Reply-To and Date and Message-Id and References and In-Reply-To are not explicitly necessary for messages in transit, since the SMTP envelope carries all necessary routing information, but an encrypted [RFC2822] message as described in this document will contain all this associational metadata in the clear.

Although this document does not provide guidance for protecting the privacy of this metadata directly, it offers a platform upon which thoughtful implementations may experiment with obscuring additional e-mail headers.

13. Document Considerations

[RFC Editor: please remove this section before publication]

This document is currently edited as markdown. Minor editorial changes can be suggested via merge requests at https://github.com/autocrypt/protected-headers or by e-mail to the authors. Please direct all significant commentary to the public IETF LAMPS mailing list: spasm@ietf.org

13.1. Document History

14. Acknowledgements

The set of constructs and algorithms in this document has a previous working title of "Memory Hole", but that title is no longer used as different implementations gained experience in working with it.

These ideas were tested and fine-tuned in part by the loose collaboration of MUA developers known as [Autocrypt].

Additional feedback and useful guidance was contributed by attendees of the OpenPGP e-mail summit ([OpenPGP-Email-Summit-2019]).

The following people have contributed implementation experience, documentation, critique, and other feedback:

- Holger Krekel
- Patrick Brunschwig
15. References

15.1. Normative References

15.2. Informative References

Authors' Addresses

Bjarni Rúnar Einarsson
Mailpile ehf
Baronsstigur
Iceland
Email: bre@mailpile.is

juga
Independent
Email: juga@riseup.net

Daniel Kahn Gillmor
American Civil Liberties Union
125 Broad St.
New York, NY, 10004
United States of America
Email: dkg@fifthhorseman.net