Abstract

This document registers new disposition-types for the Content-Disposition header that apply to the application/3gpp-ims+xml body used by 3GPP. The applicability of these content-disposition values are limited to 3GPP IMS. The application/3gpp-ims+xml body has the following two distinct uses: (1) for redirecting the emergency session to use a different domain (e.g. using a Circuit Switched call), and (2) for delivering user profile specific information from the SIP registrar to an Application Server.
Table of Contents

1. Overall Applicability 3
2. Introduction 3
3. Terminology 3
4. Background for the new disposition-types for the Content-Disposition header 4
 4.1. The application/3gpp-ims+xml MIME type with content disposition 3gpp-alternative-service 4
 4.1.1. Example application/3gpp-ims+xml body 4
 4.2. The application/3gpp-ims+xml MIME type with content disposition 3gpp-service-info 5
 4.2.1. Example application/3gpp-ims+xml body 5
5. Security Considerations 5
6. IANA Considerations 5
7. Acknowledgements 6
8. References 6
 8.1. Normative References 6
 8.2. Informative References 6
Appendix A. Revision Information 6
 A.1. version 00 6
Author’s Address 7
Intellectual Property and Copyright Statements 8
1. Overall Applicability

This document makes certain assumptions regarding network topology and the existence of transitive trust. These assumptions are generally NOT APPLICABLE in the Internet as a whole. The mechanism specified here was designed to satisfy the requirements specified by the 3rd Generation Partnership Project for IP multimedia subsystem (IMS) for which either no general-purpose solution was found, where insufficient operational experience was available to understand if a general solution is needed, or where a more general solution is not yet mature.

2. Introduction

New disposition-types for the Content-Disposition header can only be registered with IANA according to procedures defined in Section 9 of [1].

The 3rd Generation Partnership Project (3GPP) (http://www.3gpp.org) is specifying the IP multimedia subsystem (IMS) where SIP is the protocol used to establish media sessions across different participants.

This document registers new disposition-types for the Content-Disposition header: 3gpp-alternative-service and 3gpp-service-info, to address specific requirements of the IMS. The new disposition-types may not be applicable to the general Internet. The new disposition types are applicable to the "application/3gpp-ims+xml" MIME type [5].

3. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [2].

The term "Application Server" (AS) is introduced in this document.

An "Application Server" as referred to here is a SIP network server that performs network based functions. The AS can act as a SIP Proxy as defined in [3] or a back-to-back UA (B2BUA) as defined in [3] based on the functions it needs to perform. There can be one or more ASes involved in a SIP session.
4. Background for the new disposition-types for the Content-Disposition header

4.1. The application/3gpp-ims+xml MIME type with content disposition 3gpp-alternative-service

In the IMS it is possible that a UA attempts to place an emergency call when the IMS network does not support emergency services. The edge proxy detects the emergency call and can redirect the UE using a SIP 380 (Alternative Service) to place the emergency call using another domain (e.g. using a Circuit Switched network).

Section 21.3.5 of [3] specifies that, for the SIP 380 (Alternative Service) response, alternative services are described in the message body of the response. In IMS, for the purpose of indicating alternative domains, a SIP 380 (Alternative Service) response will include a MIME body and a Content-Type header field set to "application/3gpp-ims+xml".

The "application/3gpp-ims+xml" MIME type with content disposition 3gpp-alternative-service is applicable in the following circumstances:

- Where the invitee UA originates a SIP request containing in the R-URI a URI that identifies this request as an emergency session request;
- The network also contains intermediate network SIP servers that are trusted;
- The edge proxy has knowledge of the network’s capability or policy to handle the requested (type of) emergency session.

Such configurations are generally not applicable to the internet as a whole where such trust relationships do not exist.

In addition security issues have only been considered for networks which are trusted and use hop by hop security mechanisms with transitive trust and security issues with usage of this mechanism in the general internet have not been evaluated.

4.1.1. Example application/3gpp-ims+xml body

```xml
<3gpp-ims version="1">
  <alternative-service>
    <type>
```

Bakker Expires February 8, 2009 [Page 4]
4.2. The application/3gpp-ims+xml MIME type with content disposition 3gpp-service-info

In 3GPP IMS the SIP registrar (S-CSCF) can perform a third party registration to an AS. The SIP registrar downloads User Profile information and can transparently transfer User Profile specific information to the AS using a body of MIME type "application/3gpp-ims+xml" in a SIP REGISTER request. In the example in Section 4.2.1, an International Mobile Subscriber Identity (IMSI) is transferred.

4.2.1. Example application/3gpp-ims+xml body

 <3gpp-ims version="1">
 <service-info>
 262013564857956
 </service-info>
 </3gpp-ims>

5. Security Considerations

It is necessary to protect the messages between proxies; implementation SHOULD use a transport that provides integrity and confidentially between the signaling hops. The Transport Layer Security (TLS) [4] based signaling in SIP can be used to provide this protection.

Security issues have only been considered for networks which are trusted and use hop by hop security mechanisms with transitive trust and security issues with usage of this mechanism in the general internet have not been evaluated.

6. IANA Considerations

This document registers new disposition-types for the Content-Disposition header that apply to the "application/3gpp-ims+xml" body used by 3GPP and are to be registered in the IANA registry for Mail ContentDisposition Values and Parameters:
7. Acknowledgements

The author would like to thank Andrew Allen, Dean Willis, Cullen Jennings for their guidance and comments that contributed to the progression of this work.

8. References

8.1. Normative References

8.2. Informative References

[5] 3GPP, "IP Multimedia Call Control Protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3 (Release 5)", 3GPP TS 24.229 V8.4.1, June 2008.

Appendix A. Revision Information

A.1. version 00
1. 2008-02-12, Initial version
2. 2008-07-02, Updated reference and further aligned 3GPP TS 24.229 and this document
Author’s Address

John-Luc Bakker (editor)
Research in Motion (RIM)
5000 Riverside Drive, building 6, suite 100
Irving, Texas 75039
USA

Email: jbakker@rim.com
Full Copyright Statement

Copyright (C) The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.