DNS X-Proxied-For

draft-bellis-dnsop-xpf-02

Abstract

It is becoming more commonplace to install front end proxy devices in front of DNS servers to provide (for example) load balancing or to perform transport layer conversions.

This document defines a meta resource record that allows a DNS server to receive information about the client’s original transport protocol parameters when supplied by trusted proxies.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 4, 2018.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect
1. Introduction

It is becoming more commonplace to install front end proxy devices in front of DNS servers [RFC1035] to provide load balancing or to perform transport layer conversions (e.g. to add DNS over TLS [RFC7858] to a DNS server that lacks native support).

This has the unfortunate side effect of hiding the clients’ source IP addresses from the server, making it harder to employ server-side technologies that rely on knowing those addresses (e.g. ACLs, DNS Response Rate Limiting, etc).

This document defines a DNS meta resource record (RR) that allows a DNS server to receive information about the client’s original transport protocol parameters when supplied by trusted proxies.

Whilst in some circumstances it would be possible to re-use the Client Subnet EDNS Option [RFC7871] to carry a subset of this information, a new RR is defined to allow both this feature and the Client Subnet Option to co-exist in the same packet.
2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

The word "proxy" in this document means a network component that sits on the inbound query path in front of a recursive or authoritative DNS server, receiving DNS queries from clients and dispatching them to local servers. This is to distinguish these from a "forwarder" since that term is usually understood to describe a network component that sits on the outbound query path of a client.

3. Description

The XPF RR contains the entire 5-tuple of (protocol, source address, destination address, source port and destination port) of the packet received from the client by the proxy.

The presence of the source address supports use of ACLs based on the client’s IP address.

The source port allows for ACLs to support Carrier Grade NAT whereby different end-users might share a single IP address.

The destination address supports scenarios where the server behaviour depends upon the packet destination (e.g. BIND view’s "match-destinations" option)

The protocol and destination port fields allow server behaviour to vary depending on whether DNS over TLS [RFC7858] or DNS over DTLS [RFC8094] are in use.

3.1. Proxy Processing

Proxies MUST append this RR to the Additional Section of each request packet received (and update the ARCOUNT field accordingly) before sending it to the intended DNS server.

If this RR is already present in an incoming request it MUST be stripped from the request unless the request was received from an upstream proxy that is itself white-listed by the receiving proxy (i.e. if the proxies are configured in a multi-tier architecture), in which case the original value the RRs MUST be preserved.
Where multiple XPF RRs to appear in a request their ordering MUST also be preserved.

<< TODO: what about truncation on the client -> server path? >>

3.2. Server Processing

When this RR is received from a white-listed client the DNS server SHOULD use the transport information contained therein in preference to the packet’s own transport information for any data processing logic (e.g. ACLs) that would otherwise depend on the latter.

If this RR is received from a non-white-listed client the server MUST return a REFUSED response.

If a server finds this RR anywhere other than in the Additional Section of a request it MUST return a REFUSED response.

If the value of the RR’s IP version field is not understood by the server it MUST return a REFUSED response.

If the length of the IP addresses contained in the RR are not consistent with that expected for the given IP version then the server MUST return a FORMERR response.

Servers MUST NOT send this RR in DNS responses.

3.3. Wire Format

The XPF RR is formatted like any standard RR, but none of the fields except RDLENGTH and RDATA have any meaning in this specification. All multi-octet fields are transmitted in network order (i.e. big-endian).

The required values of the RR header fields are as follows:

NAME: MUST contain a single 0 octet (i.e. the root domain).

TYPE: MUST contain TBD1 (XPF).

CLASS: MUST contain 1 (IN).

TTL: MUST contain 0 (zero).

RDLENGTH: specifies the length in octets of the RDATA field.

The RDATA of the XPF RR is as follows:
Unused: Currently reserved. These bits MUST be zero unless redefined in a subsequent specification.

IP Version: The IP protocol version number used by the client, as defined in the IANA IP Version Number Registry [IANA-IP]. Implementations MUST support IPv4 (4) and IPv6 (6).

Protocol: The Layer 4 protocol number (e.g. UDP or TCP) as defined in the IANA Protocol Number Registry [IANA-PROTO].

Source Address: The source IP address of the client.

Destination Address: The destination IP address of the request, i.e. the IP address of the proxy on which the request was received.

Source Port: The source port used by the client.

Destination Port: The destination port of the request.

The length of the Source Address and Destination Address fields will be variable depending on the IP Version in use.

3.4. Presentation Format

Since this is a "meta" RR that cannot appear in master format zone files no presentation format is defined.
3.5. Signed DNS Requests

Any XPF RRs found in a packet MUST be ignored for the purposes of verifying any signatures used for Secret Key Transaction Authentication for DNS [RFC2845] or DNS Request and Transaction Signatures (SIG(0)) [RFC2931].

Similarly, if either TSIG or SIG(0) are configured between the proxy and server then any XPF RRs MUST be ignored when the proxy calculates the packet signature.

4. Security Considerations

If the white-list of trusted proxies is implemented as a list of IP addresses, the server administrator MUST have the ability to selectively disable this feature for any transport where there is a possibility of the proxy’s source address being spoofed.

This does not mean to imply that use over UDP is impossible - if for example the network architecture keeps all proxy-to-server traffic on a dedicated network and clients have no direct access to the servers then the proxies’ source addresses can be considered unspoofable.

5. Privacy Considerations

Used incorrectly, this RR could expose internal network information, however it is not intended for use on proxy / forwarder devices that sit on the client-side of a DNS request.

This specification is only intended for use on server-side proxy devices that are under the same administrative control as the DNS servers themselves. As such there is no change in the scope within which any private information might be shared.

Use other than as described above would be contrary to the principles of [RFC6973].

6. IANA Considerations

<< a copy of the RFC 6895 IANA RR TYPE application template will appear here >>

7. Acknowledgements

Mark Andrews, Robert Edmonds, Duane Wessels
8. References

8.1. Normative References


[IANA-PROTO] IANA, "IANA Protocol Number Registry", n.d., 

[RFC1035] Mockapetris, P., "Domain names - implementation and 
specification", STD 13, RFC 1035, DOI 10.17487/RFC1035, 

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 
Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/ 

[RFC2845] Vixie, P., Gudmundsson, O., Eastlake 3rd, D., and B. 
Wellington, "Secret Key Transaction Authentication for DNS 
(TSIG)", RFC 2845, DOI 10.17487/RFC2845, May 2000, 

[RFC2931] Eastlake 3rd, D., "DNS Request and Transaction Signatures 
(SIG(0)s)", RFC 2931, DOI 10.17487/RFC2931, September 

[RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J., 
Morris, J., Hansen, M., and R. Smith, "Privacy 
Considerations for Internet Protocols", RFC 6973, DOI 

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

8.2. Informative References

and P. Hoffman, "Specification for DNS over Transport 


Authors’ Addresses

Ray Bellis
Internet Systems Consortium, Inc.
950 Charter Street
Redwood City CA 94063
USA
Phone: +1 650 423 1200
Email: ray@isc.org

Peter van Dijk
PowerDNS.COM B.V.
Den Haag
The Netherlands
Email: peter.van.dijk@powerdns.com

Remi Gacogne
PowerDNS.COM B.V.
Den Haag
The Netherlands
Email: remi.gacogne@powerdns.com