Abstract

This document describes the Application Data Model (ADM) for the configuration of licklider transmission protocol (LTP) in ION in compliance with the template provided by [I-D.birrane-dtn-adm].

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 12, 2019.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
1. Introduction

An Application Data Model (ADM) provides a guaranteed interface for the management of an application or protocol in accordance with the Asynchronous Management Architecture (AMA) defined in [I-D.birrane-dtn-ama]. The ADM described in this document complies with the ADM Template provided in [I-D.birrane-dtn-adm] as encoded using the JSON syntax.

The ION Licklider Transmission Protocol (LTP) Administration ADM contains all of the functionality that is required to properly configure LTP in ION in accordance with [RFC5326]. LTP is a convergence layer protocol. There is no flow control or congestion control in LTP. LTP must run either over UDP or directly over a link layer protocol. Because of this, LTP cannot be used in every situation. This LTP Admin ADM provides the set of information necessary to provide retransmission based reliability on challenged networks, focusing on the information that are needed to manage LTP properly on the network.

1.1. Technical Notes

- This document describes Version 0.0 of the ION LTP Admin ADM.

- The AMM Resource Identifier (ARI) for this ADM is NOT correctly set. A sample ARI is used in this version of the specification and MAY change in future versions of this ADM until an ARI registry is established. This notice will be removed at that time.

- Agent applications MAY choose to ignore the name, description, or other annotative information associated with the component.
definitions within this ADM where such items are only used to provide human-readable information or are otherwise not necessary to manage a device.

1.2. Scope

This ADM specifies those components of the Asynchronous Management Model (AMM) common to the configuration of LTP in ION.

Any Manager software implementing this ADM MUST perform the responsibilities of an AMA Manager as outlined in [I-D.birrane-dtn-adm] as they relate to the objects included in this document.

Any Agent software implementing this ADM MUST perform the responsibilities of an AMA Agent as outlined in [I-D.birrane-dtn-adm] as they relate to the objects included in this document.

1.3. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

2. Structure and Design of this ADM

The LTP Admin ADM’s structure is in accordance to [I-D.birrane-dtn-adm]. This ADM contains metadata, table templates, and controls. Table Templates are column templates that will be followed by any instance of this table available in the network. They may not be created dynamically within the network by Managers. Controls are predefined and sometimes parameterized opcodes that can be run on an Agent. Controls are preconfigured in Agents and Managers as part of ADM support. There are no variables, report templates, macros, edd, constants, or operators in this ADM at this time. The contents of this ADM are derived from the main functions and data that are needed to manage LTP RFC 5326 [RFC5326].

All ADMs have metadata that includes the name, namespace, and version of the ADM as well as the name of the organization that is issuing that particular ADM. This is important for identification purposes of the ADMs and to ensure version control.

The main idea identified in LTP that is present in this ADM is a span of potential LTP data interchange between engines(nodes on a network that use LTP).
3. Naming and Identification

This section outlines the namespaces used to uniquely identify ADM objects in this specification.

3.1. Namespace and Nicknames

In accordance with [I-D.birrane-dtn-adm], every ADM is assigned a moderated Namespace. In accordance with [I-D.birrane-dtn-amp], these namespaces may be enumerated for compactness. The namespace and ADM identification for these objects is defined as follows.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namespace</td>
<td>DTN/ION/ltpadmin</td>
</tr>
<tr>
<td>ADM Enumeration</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 1: Namespace Information

Given the above ADM enumeration, in accordance with [I-D.birrane-dtn-amp], the following AMP nicknames are defined.
<table>
<thead>
<tr>
<th>Nickname</th>
<th>Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>DTN/ION/ltpadmin//Const</td>
</tr>
<tr>
<td>181</td>
<td>DTN/ION/ltpadmin//Ctrl</td>
</tr>
<tr>
<td>182</td>
<td>DTN/ION/ltpadmin//Edd</td>
</tr>
<tr>
<td>183</td>
<td>DTN/ION/ltpadmin//Mac</td>
</tr>
<tr>
<td>184</td>
<td>DTN/ION/ltpadmin//Oper</td>
</tr>
<tr>
<td>185</td>
<td>DTN/ION/ltpadmin//Rptt</td>
</tr>
<tr>
<td>187</td>
<td>DTN/ION/ltpadmin//Tblt</td>
</tr>
<tr>
<td>189</td>
<td>DTN/ION/ltpadmin//Var</td>
</tr>
<tr>
<td>190</td>
<td>DTN/ION/ltpadmin//Mdat</td>
</tr>
<tr>
<td>191-199</td>
<td>DTN/ION/ltpadmin//Reserved</td>
</tr>
</tbody>
</table>

Table 2: ION BP ADM Nicknames

4. ION LTP Admin ADM JSON Encoding

```json
{
  "Mdat": [{
    "name": "name",
    "type": "STR",
    "value": "ion_ltp_admin",
    "description": "The human-readable name of the ADM."
  },
  { "name": "namespace",
    "type": "STR",
    "value": "DTN/ION/ltpadmin",
    "description": "The namespace of the ADM."
  },
  { "name": "version",
    "type": "STR",
    "value": "v0.0",
    "description": "The version of the ADM."
  }
}
```
{
 "name": "organization",
 "type": "STR",
 "value": "JHUAPL",
 "description": "The name of the issuing organization of the
 ADM."
}
],
"Edd": [{
 "name": "ion_version",
 "type": "STR",
 "description": "This is the version of ION that is currently
 installed."
}],
"Tblt": [{
 "name": "spans",
 "columns": [{
 "type": "UVAST",
 "name": "peer_engine_nbr"
 },{
 "type": "UINT",
 "name": "max_export_sessions"
 },{
 "type": "UINT",
 "name": "max_import_sessions"
 },{
 "type": "UINT",
 "name": "max_segment_size"
 },{
 "type": "UINT",
 "name": "aggregation_size_limit"
 },{
 "type": "UINT",
 "name": "aggregation_time_limit"
 },{
 "type": "STR",
 "name": "lso_control"
 },{
 "type": "UINT",
 "name": "queueing_latency"
 }],
 "description": "This table lists all spans of potential LTP data
 interchange that exists between the local LTP
 engine and the indicated (neighboring) LTP engine."
}],
"Ctrl": [{
 "name": "manage_heap",
 "parmspec": [{

"type": "UINT",
"name": "max_database_heap_per_block"
],
"description": "This control declares the maximum number of bytes of SDR heap space that will be occupied by the acquisition of any single LTP block. All data acquired in excess of this limit will be written to a temporary file pending extraction and dispatching of the acquired block. Default is the minimum allowed value (560 bytes), which is the approximate size of a ZCO file reference object; this is the minimum SDR heap space occupancy in the event that all acquisition is into a file."
},
{
"name": "manage_max_ber",
"parmspec": [{
"type": "REAL32",
"name": "max_expected_bit_error_rate"
}],
"description": "This control sets the expected maximum bit error rate (BER) that LTP should provide for in computing the maximum number of transmission efforts to initiate in the transmission of a given block. (Note that this computation is also sensitive to data segment size and to the size of the block that is to be transmitted.) The default value is .0001 (10^-4)."
},
{
"name": "manage_own_queue_time",
"parmspec": [{
"type": "UINT",
"name": "own_queing_latency"
}],
"description": "This control sets the number of seconds of predicted additional latency attributable to processing delay within the local engine itself that should be included whenever LTP computes the nominal round-trip time for an exchange of data with any remote engine. The default value is 1."
},
{
"name": "manage_screening",
"parmspec": [{
"type": "UINT",
"name": "screening_level"
}],
"description": "This control sets the level of screening to be applied to all data acquired by LTP. Higher values indicate more stringent screening, which can result in reduced data quality but also reduced bandwidth usage. The default value is 0.

The "screening" control specifies the level of screening to be applied to all data acquired by LTP. This mechanism is used to reduce the amount of data that is transmitted, potentially improving efficiency and reducing bandwidth usage. However, it is important to balance this with the need for sufficient data to be transmitted for accurate and reliable analysis or processing.

The default level of screening is 0, indicating no screening. Screening levels above 0 are available, with higher values indicating more stringent screening. The implementation of screening mechanisms should be optimized to minimize the impact on data quality while maximizing efficiency.

In summary, the "manage_screening" control provides a mechanism for adjusting the level of screening applied to acquired data, allowing for customization based on specific requirements and constraints.

[Page 7]
"name": "new_state"
},
"description": "This control enables or disables the screening of received LTP segments per the periods of scheduled reception in the node’s contact graph. By default, screening is disabled. When screening is enabled, such segments are silently discarded. Note that when screening is enabled the ranges declared in the contact graph must be accurate and clocks must be synchronized; otherwise, segments will be arriving at times other than the scheduled contact intervals and will be discarded."
},
{ "name": "span_add",
 "parmspec": [{
 "type": "UVAST",
 "name": "peer_engine_number"
 },
 { "type": "UINT",
 "name": "max_export_sessions"
 },
 { "type": "UINT",
 "name": "max_import_sessions"
 },
 { "type": "UINT",
 "name": "max_segment_size"
 },
 { "type": "UINT",
 "name": "aggregation_size_limit"
 },
 { "type": "UINT",
 "name": "aggregation_time_limit"
 },
 { "type": "STR",
 "name": "lso_control"
 },
 { "type": "UINT",
 "name": "queuing_latency"
 }],
 "description": "This control declares that a span of potential LTP data interchange exists between the local LTP engine and the indicated (neighboring) LTP engine."},
"paramspec": [{
 "type": "UVAST",
 "name": "peer_engine_number"
}, {
 "type": "UINT",
 "name": "max_export_sessions"
}, {
 "type": "UINT",
 "name": "max_import_sessions"
}, {
 "type": "UINT",
 "name": "max_segment_size"
}, {
 "type": "UINT",
 "name": "aggregation_size_limit"
}, {
 "type": "UINT",
 "name": "aggregation_time_limit"
}, {
 "type": "STR",
 "name": "lso_control"
}, {
 "type": "UINT",
 "name": "queuing_latency"
}],
"description": "This control sets the indicated span’s configuration parameters to the values provided as arguments."
},

{name: "span_del",
paramspec: [{
 "type": "UVAST",
 "name": "peer_engine_number"
}],
"description": "This control deletes the span identified by peerEngineNumber. The control will fail if any outbound segments for this span are pending transmission or any inbound blocks from the peer engine are incomplete."
},

{name: "stop",
"description": "This control stops all link service input and output tasks for the local LTP engine."
},

{name: "watch_set",}
"parmspec": [{
 "type": "STR",
 "name": "activity"
}],
"description": "This control enables and disables production of a continuous stream of user-selected LTP activity indication characters. Activity parameter of 1 selects all LTP activity indication characters; 0 de-selects all LTP activity indication characters; any other activitySpec such as df[] selects all activity indication characters in the string, de-selecting all others. LTP will print each selected activity indication character to stdout every time a processing event of the associated type occurs: d bundle appended to block for next session, e segment of block is queued for transmission, f block has been fully segmented for transmission, g segment popped from transmission queue, h positive ACK received for block and session ended, s segment received, t block has been fully received, @ negative ACK received for block and segments retransmitted, = unacknowledged checkpoint was retransmitted, + unacknowledged report segment was retransmitted, { export session canceled locally (by sender), } import session canceled by remote sender, [import session canceled locally (by receiver),] export session canceled by remote receiver"}
}
}

5. IANA Considerations

At this time, this protocol has no fields registered by IANA.

6. References

6.1. Informative References

[I-D.birrane-dtn-ama]

6.2. Normative References

[I-D.birrane-dtn-adm]
[I-D.birrane-dtn-amp]

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,

DOI 10.17487/RFC5326, September 2008,

Authors’ Addresses

Edward J. Birrane
Johns Hopkins Applied Physics Laboratory

Email: Edward.Birrane@jhuapl.edu

Evana DiPietro
Johns Hopkins Applied Physics Laboratory

Email: Evana.DiPietro@jhuapl.edu

David Linko
Johns Hopkins Applied Physics Laboratory

Email: David.Linko@jhuapl.edu