HTTPbis M. Bishop
Internet-Draft Akamai
Intended status: Standards Track January 9, 2018
Expires: July 13, 2018

The "SNI" Alt-Svc Parameter
draft-bishop-httpbis-sni-altsvc-01

Abstract

HTTP Alternative Services provides a mechanism for an origin to
declare that its content is accessible via some other combination of
host, port, and protocol. In the process of using such an
alternative, an observer can identify that the client is requesting
resources from a particular hostname.

This document extends HTTP Alternative Services, in combination with
Secondary Certificate Authentication, to enable clients not to
disclose the origin to which they intend to connect.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on July 13, 2018.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
1. Introduction

Confidentiality and authentication during communication are primary
goals of using TLS to secure traffic on the Internet. However, due
to the nature of TLS, certain information is inherently not
confidential - notably, the hostname and the corresponding
certificate of the origin to which the client is connecting are
transferred unencrypted in the Server Name Indication extension [SNI]
and the server’s Certificate message [TLS12].

While the client identity can be obscured by using TLS renegotiation
immediately after the handshake (in TLS 1.2) or by using TLS 1.3
[TLS13], the server is not afforded such privacy considerations.

Servers may also have wildcard certificates which do not enumerate
specific subdomains, but clients will disclose the first subdomain
used on a connection via the SNI extension when establishing the
connection.

[SNIEncryption] discusses a potential solution to these issues in
Section 3, HTTP Co-Tenancy Fronting, but notes both discoverability
and server authentication issues with that approach. This document
provides a mechanism to address both limitations.
1.1. Usage

In [AltSvc], once a client has received a validated Alternative Service record for an origin, it "SHOULD use that alternative service for all requests to the associated origin as soon as it is available, provided the alternative service information is fresh (Section 2.2) and the security properties of the alternative service protocol are desirable, as compared to the existing connection." However, the client "MUST have reasonable assurances that the alternative service is under control of and valid for the whole origin ... established through use of a TLS-based protocol with the certificate checks defined in [RFC2818]." This causes the origin to be disclosed in the SNI extension while connecting to the alternative, and the origin’s certificate to be returned by the alternative, creating the same privacy issues as connecting directly to the origin.

The extension described in Section 2 enables an origin to declare that reasonable assurances should be obtained, not by requesting the desired hostname in the TLS handshake, but by requesting it via [SecondaryCerts]. The validation checks from [RFC2818] are applied to this certificate.

Because the entire exchange happens inside TLS, a passive observer cannot identify the hostname(s) the client might be requesting.

1.2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] when, and only when, they appear in all capitals, as shown here.

The key words "MUST (BUT WE KNOW YOU WON’T)", "SHOULD CONSIDER", "REALLY SHOULD NOT", "OUGHT TO", "WOULD PROBABLY", "MAY WISH TO", "COULD", "POSSIBLE", and "MIGHT" in this document are to be interpreted as described in [RFC6919].

Field definitions are given in Augmented Backus-Naur Form (ABNF), as defined in [RFC5234].

2. The "sni" Alt-Svc Extension

When an origin wishes to nominate a "fronting server", it includes the "sni" parameter in its alternative service entry.

Syntax:
sni = host

"host" is defined in Section 3.2.2 of [RFC3986].

When processing such an alternative, clients SHOULD present the hostname given in the "sni" parameter in the SNI extension during the TLS handshake. If the resulting certificate is also for the origin which published the alternative service, the client MUST validate the certificate in the handshake for authenticity according to [RFC2818].

Otherwise, the client MAY choose not to validate the certificate, but MUST NOT make requests to any origin corresponding to this certificate unless the certificate has been successfully validated. In this case, the client SHOULD send a "CERTIFICATE_REQUEST" frame including an SNI extension indicating the origin which published the alternative service immediately upon connecting. If no corresponding "CERTIFICATE" frame is presented by the server after a reasonable timeout, or if the server’s SETTINGS frame does not include the "SETTINGS_HTTP_CERT_AUTH" setting, the client MUST consider the alternative connection to have failed.

3. Security Considerations

[AltSvc] permits clients to ignore unrecognized parameters. As a result, servers publishing records with the "sni" parameter cannot be assured that clients will not include their origin in the SNI header when connecting to the nominated alternative. If, for security reasons, an origin wishes its identity never to be disclosed when the alternative is being used, an alternative mechanism would be required to ascertain client support before generating the Alt-Svc record.

Clients will need to connect directly to the origin at least once in order to receive the Alt-Svc entry via an HTTP header or "ALTSVC" frame, thus disclosing their use of the origin to the network on the first connection. This could be mitigated by future work defining a way to publish alternative services in a mechanism which can be retrieved confidentially, such as via DNS in combination with [RFC7858] or [DoH].

However, servers which publish Alt-Svc records over unencrypted channels (HTTP connections without TLS) or channels without client authorization (DNS, or publicly accessible HTTP resources) enable active observers to build a map of fronting servers by collecting Alt-Svc advertisements. Servers SHOULD CONSIDER this trade-off in deciding when and how to make Alt-Svc records available to unauthenticated parties.
4. IANA Considerations

The "Hypertext Transfer Protocol (HTTP) Alt-Svc Parameter Registry" defines the name space for parameters, as described in [AltSvc]. It is maintained at http://www.iana.org/assignments/http-alt-svc-parameters [1].

This document registers the following parameter:

Name: "sni"

Specification: This document

5. References

5.1. Normative References

5.2. Informative References

5.3. URIs

Appendix A. Acknowledgements

Conversations with Benjamin Schwartz helped to flesh out this idea.
Author’s Address

Mike Bishop
Akamai

Email: mbishop@evequefou.be