
TLS Working Group A. Langley
Internet-Draft Google
Intended status: Experimental N. Modadugu
Expires: May 14, 2015 Independent
 B. Moeller
 Google
 November 10, 2014

 Transport Layer Security (TLS) False Start
 draft-bmoeller-tls-falsestart-01

Abstract

 This document specifies an optional behavior of TLS implementations,
 dubbed False Start. It affects only protocol timing, not on-the-wire
 protocol data, and can be implemented unilaterally. The TLS False
 Start feature leads to a latency reduction of one round trip for
 certain handshakes.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 14, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Langley, et al. Expires May 14, 2015 [Page 1]

https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
http://datatracker.ietf.org/drafts/current/
https://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TLS False Start November 2014

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Requirements Notation . 2
 2. Introduction . 2
 3. False Start Compatibility 5
 4. Client-side False Start 5
 5. Server-side False Start 6
 6. Security Considerations 7
 6.1 . Symmetric Cipher . 7
 6.2 . Protocol Version . 8
 6.3 . Key Exchange and Client Certificate Type 8
 7. Acknowledgments . 9
 8. IANA Considerations . 9
 9. References . 9
 9.1 . Normative References 9
 9.2 . Informative References 10
 Appendix A . Implementation Notes 10
 Authors’ Addresses . 10

1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Introduction

 A full TLS handshake as specified in [RFC5246] requires two full
 protocol rounds (four flights) before the handshake is complete and
 the protocol parties may begin to send application data. Thus, using
 TLS can add a latency penalty of two network round-trip times for
 application protocols in which the client sends data first, such as
 HTTP [RFC2616]. An abbreviated handshake (resuming an earlier TLS
 session) is complete after three flights, thus adding just one round-
 trip time if the client sends application data first.

Langley, et al. Expires May 14, 2015 [Page 2]

https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc2616

Internet-Draft TLS False Start November 2014

 Client Server

 ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <-------> Application Data

 Figure 1 [RFC5246]. Message flow for a full handshake

Langley, et al. Expires May 14, 2015 [Page 3]

https://tools.ietf.org/pdf/rfc5246

Internet-Draft TLS False Start November 2014

 Client Server

 ClientHello -------->
 ServerHello
 [ChangeCipherSpec]
 <-------- Finished
 [ChangeCipherSpec]
 Finished -------->
 Application Data <-------> Application Data

 Figure 2 [RFC5246]. Message flow for an abbreviated handshake

 This document describes a technique that alleviates the latency
 burden imposed by TLS: the TLS False Start. If certain conditions
 are met, application data can be sent when the handshake is only
 partially complete -- i.e., when the sender has sent its own
 "ChangeCipherSpec" and "Finished" messages (thus having updated its
 TLS Record Protocol write state as negotiated in the handshake), but
 has yet to receive the other side’s "ChangeCipherSpec" and "Finished"
 messages. (By section 7.4.9 of [RFC5246] , each party would have to
 delay sending application data until it has received and validated
 the other side’s "Finished" message.) This achieves an improvement
 of one round-trip time

 o for full handshakes if the client sends application data first,

 o for abbreviated handshakes if the server sends application data
 first.

 Accordingly, the latency penalty for using TLS with HTTP can be kept
 at one round-trip time regardless of whether a full handshake or an
 abbreviated handshake takes place.

 In a False Start, when a party sends application data before it has
 received and verified the other party’s "Finished" message, there are
 two possible outcomes:

 o The handshake completes successfully: Once both "Finished"
 messages have been received and verified, this retroactively
 validates the handshake. In this case, the transcript of protocol
 data carried over the transport underlying TLS will look as usual,
 apart from the different timing.

 o The handshake fails: If a party does not receive the other side’s
 "Finished" message, or if the "Finished" message’s contents are
 not correct, the handshake never gets validated. This means that
 an attacker may have removed, changed, or injected handshake

Langley, et al. Expires May 14, 2015 [Page 4]

https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc5246#section-7.4.9

Internet-Draft TLS False Start November 2014

 messages. In this case, data has been sent over the underlying
 transport that would not have been sent without the False Start.

 The latter scenario makes it necessary to restrict when a False Start
 is allowed, as described in this document. Section 3 considers basic
 requirements for using False Start. Section 4 and Section 5 specify
 the behavior for clients and servers, respectively, referring to
 important security considerations in Section 6 .

3. False Start Compatibility

 TLS False Start as described in detail in the subsequent sections, if
 implemented, is an optional feature.

 A TLS implementation (not necessarily offering the False Start option
 itself) is defined to be "False Start compatible" if it tolerates
 receiving TLS records on the transport connection early, before the
 protocol has reached the state to process these. To successfully use
 False Start in a TLS connection, the other side has to be False Start
 compatible. Out-of-band knowledge that the peer is False Start
 compatible may be available, e.g. if this is mandated by specific
 application profile standards. As discussed in Appendix A , the
 requirement for False Start compatibility does not pose a hindrance
 in practice.

4. Client-side False Start

 This section specifies a change to the behavior of TLS client
 implementations in full TLS handshakes.

 When the client has sent its "ChangeCipherSpec" and "Finished"
 messages, its default behavior following [RFC5246] is to not send
 application data until it has received the server’s
 "ChangeCipherSpec" and "Finished" messages, which completes the
 handshake. With the False Start protocol modification, the client
 MAY send application data earlier (under the new Cipher Spec) if each
 of the following conditions is satisfied:

 o The application layer has requested the TLS False Start option.

 o The symmetric cipher defined by the cipher suite negotiated in
 this handshake has been whitelisted for use with False Start
 according to the Security Considerations in Section 6.1 .

 o The protocol version chosen by ServerHello.server_version has been
 whitelisted for use with False Start according to the Security
 Considerations in Section 6.2 .

Langley, et al. Expires May 14, 2015 [Page 5]

https://tools.ietf.org/pdf/rfc5246

Internet-Draft TLS False Start November 2014

 o The key exchange method defined by the cipher suite negotiated in
 this handshake has been whitelisted for use with False Start
 according to the Security Considerations in Section 6.3 .

 o In the case of a handshake with client authentication, the client
 certificate type has been whitelisted for use with False Start
 according to the Security Considerations in Section 6.3 .

 The rules for receiving application data from the server remain
 unchanged.

 Note that the TLS client cannot infer the presence of an
 authenticated server until all handshake messages have been received.
 With False Start, unlike with the default handshake behavior,
 applications are able to send data before this point has been
 reached: from an application point of view, being able to send data
 does not imply that an authenticated peer is present. Accordingly,
 it is recommended that TLS implementations allow the application
 layer to query whether the handshake has completed.

5. Server-side False Start

 This section specifies a change to the behavior of TLS server
 implementations in abbreviated TLS handshakes.

 When the server has sent its "ChangeCipherSpec" and "Finished"
 messages, its default behavior following [RFC5246] is not to send
 application data until it has received the client’s
 "ChangeCipherSpec" and "Finished" messages, which completes the
 handshake. With the False Start protocol modification, the server
 MAY send application data earlier (under the new Cipher Spec) if each
 of the following conditions is satisfied:

 o The application layer has requested the TLS False Start option.

 o The symmetric cipher defined by the cipher suite of the session
 being resumed has been whitelisted for use with False Start
 according to the Security Considerations in Section 6.1 .

 The rules for receiving application data from the client remain
 unchanged.

 Note that the TLS server cannot infer the presence of an
 authenticated client until all handshake messages have been received.
 With False Start, unlike with the default handshake behavior,
 applications are able to send data before this point has been
 reached: from an application point of view, being able to send data
 does not imply that an authenticated peer is present. Accordingly,

Langley, et al. Expires May 14, 2015 [Page 6]

https://tools.ietf.org/pdf/rfc5246

Internet-Draft TLS False Start November 2014

 it is recommended that TLS implementations allow the application
 layer to query whether the handshake has completed.

6. Security Considerations

 In a TLS handshake, the "Finished" messages serve to validate the
 entire handshake. These messages are based on a hash of the
 handshake so far processed by a PRF keyed with the new master secret
 (serving as a MAC), and are also sent under the new Cipher Spec with
 its keyed MAC, where the MAC key again is derived from the master
 secret. The protocol design relies on the assumption that any server
 and/or client authentication done during the handshake carries over
 to this. While an attacker could, for example, have changed the
 cipher suite list sent by the client to the server and thus
 influenced cipher suite selection (presumably towards a less secure
 choice) or could have made other modifications to handshake messages
 in transmission, the attacker would not be able to round off the
 modified handshake with a valid "Finished" message: every TLS cipher
 suite is presumed to key the PRF appropriately to ensure
 unforgeability. Once the handshake has been validated by verifying
 the "Finished" messages, this confirms that the handshake has not
 been tampered with, thus bootstrapping secure encryption (using
 algorithms as negotiated) from secure authentication.

 Using False Start interferes with this approach of bootstrapping
 secure encryption from secure authentication, as application data may
 have already been sent before "Finished" validation confirms that the
 handshake has not been tampered with -- so there is generally no hope
 to be sure that communication with the expected peer is indeed taking
 place during the False Start. Instead, the security goal is to
 ensure that if anyone at all can decrypt the application data sent in
 a False Start, this must be the legitimate peer: while an attacker
 could be influencing the handshake (restricting cipher suite
 selection, modifying key exchange messages, etc.), the attacker
 should not be able to benefit from this. The TLS protocol already
 relies on such a security property for authentication -- with False
 Start, the same is needed for encryption. This motivates the
 following rules.

6.1 . Symmetric Cipher

 Clients and servers MUST NOT use the False Start protocol
 modification in a handshake unless the cipher suite uses a symmetric
 cipher that is considered cryptographically strong.

 Implementations may have their own classification of ciphers (and may
 additionally allow the application layer to provide a
 classification), but generally only symmetric ciphers with an

Langley, et al. Expires May 14, 2015 [Page 7]

Internet-Draft TLS False Start November 2014

 effective key length of 128 bits or more can be considered strong.
 Also, various ciphers specified for use with TLS are known to have
 cryptographic weaknesses regardless of key length (none of the
 ciphers specified in [RFC4492] and [RFC5246] can be recommended for
 use with False Start). The AES_128_GCM_SHA256 or AES_256_GCM_SHA384
 ciphers specified in [RFC5288] and [RFC5289] can be considered
 sufficiently strong for most uses. Implementations that support
 additional cipher suites have to be careful to whitelist only
 suitable symmetric ciphers; if in doubt, False Start should not be
 used with a given symmetric cipher.

 While an attacker can change handshake messages to force a downgrade
 to a less secure symmetric cipher than otherwise would have been
 chosen, this rule ensures that in such a downgrade attack no
 application data will be sent under an insecure symmetric cipher.
 With respect to server-side False Start, if a client has negotiated a
 TLS session using weak symmetric cryptography, this rule prevents
 attackers from seeing the server encrypt more data under this session
 than normally (if an attacker makes up a "ClientHello" message asking
 to resume such a session, no False Start will happen).

6.2 . Protocol Version

 Clients MUST NOT use the False Start protocol modification in a
 handshake unless the protocol version chosen by
 ServerHello.server_version has been whitelisted for this use.

 Generally, implementations should whitelist only the protocol
 version(s) for which they would not send TLS_FALLBACK_SCSV
 [downgrade-scsv].

 The details of nominally identical cipher suites can differ between
 protocol versions, so this reinforces Section 6.1 .

6.3 . Key Exchange and Client Certificate Type

 Clients MUST NOT use the False Start protocol modification in a
 handshake unless the cipher suite uses a key exchange method that has
 been whitelisted for this use. Furthermore, when using client
 authentication, clients MUST NOT use the False Start protocol
 modification unless the client certificate type has been whitelisted
 for this use.

 Implementations may have their own whitelists of key exchange methods
 and client certificate types (and may additionally allow the
 application layer to specify whitelists). Generally, out of the
 options from [RFC5246] and [RFC4492], the following whitelists are
 recommended:

Langley, et al. Expires May 14, 2015 [Page 8]

https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc5288
https://tools.ietf.org/pdf/rfc5289
https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS False Start November 2014

 o Key exchange methods: DHE_RSA, ECDHE_RSA, DHE_DSS, ECDHE_ECDSA

 o Client certificate types: rsa_sign, dss_sign, ecdsa_sign (or no
 client authentication)

 However, if an implementation that supports only key exchange methods
 from [RFC5246] and [RFC4492] does not support any of the above key
 exchange methods, all of its supported key exchange methods can be
 whitelisted for False Start use. Care is required with any
 additional key exchange methods or client certificate types, as these
 may not have similar properties.

 The recommended whitelists are such that if cryptographic algorithms
 suitable for forward secrecy would possibly be negotiated, no False
 Start will take place if the current handshake fails to provide
 forward secrecy. (Forward secrecy can be achieved using ephemeral
 Diffie-Hellman or ephemeral Elliptic-Curve Diffie-Hellman; there is
 no forward secrecy when a using key exchange method of RSA, RSA_PSK,
 DH_DSS, DH_RSA, ECDH_ECDSA, or ECDH_RSA, or a client certificate type
 of rsa_fixed_dh, dss_fixed_dh, rsa_fixed_ecdh, or ecdsa_fixed_ecdh.)
 As usual, the benefits of forward secrecy may need to be balanced
 against efficiency, and accordingly even implementations that support
 the above key exchange methods might whitelist further key exchange
 methods and client certificate types from [RFC5246] and [RFC4492].

7. Acknowledgments

 The authors wish to thank Wan-Teh Chang, Ben Laurie, Eric Rescorla,
 and Brian Smith for their input.

8. IANA Considerations

 None.

9. References

9.1 . Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 , March 1997.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492 , May 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246 , August 2008.

Langley, et al. Expires May 14, 2015 [Page 9]

https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc5246

Internet-Draft TLS False Start November 2014

 [RFC5288] Salowey, J., Choudhury, A., and D. McGrew, "AES Galois
 Counter Mode (GCM) Cipher Suites for TLS", RFC 5288 ,
 August 2008.

 [RFC5289] Rescorla, E., "TLS Elliptic Curve Cipher Suites with
 SHA-256/384 and AES Galois Counter Mode (GCM)", RFC 5289 ,
 August 2008.

9.2 . Informative References

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616 , June 1999.

 [downgrade-scsv]
 Moeller, B. and A. Langley, "TLS Fallback Signaling Cipher
 Suite Value (SCSV) for Preventing Protocol Downgrade
 Attacks", Work in Progress, draft-ietf-tls-downgrade-
 scsv-01 , November 2014.

Appendix A . Implementation Notes

 TLS False Start is a modification to the TLS protocol, and some
 implementations that conform to [RFC5246] may have problems
 interacting with implementations that use the False Start
 modification. If the peer uses a False Start, application data
 records may be received directly following the peer’s "Finished"
 message, before the TLS implementation has sent its own "Finished"
 message. False Start compatibility as defined in Section 3 ensures
 that these records with application data will simply remain buffered
 for later processing.

 A False Start compatible TLS implementation does not have to be aware
 of the False Start concept, and is certainly not expected to detect
 whether a False Start handshake is currently taking place: thanks to
 transport layer buffering, typical implementations will be False
 Start compatible without having been designed for it.

Authors’ Addresses

 Adam Langley
 Google Inc.
 345 Spear St
 San Francisco, CA 94105
 USA

 Email: agl@google.com

Langley, et al. Expires May 14, 2015 [Page 10]

https://tools.ietf.org/pdf/rfc5288
https://tools.ietf.org/pdf/rfc5289
https://tools.ietf.org/pdf/rfc2616
https://tools.ietf.org/pdf/draft-ietf-tls-downgrade-scsv-01
https://tools.ietf.org/pdf/draft-ietf-tls-downgrade-scsv-01
https://tools.ietf.org/pdf/rfc5246

Internet-Draft TLS False Start November 2014

 Nagendra Modadugu
 Independent

 Email: nagendra@cs.stanford.edu

 Bodo Moeller
 Google Switzerland GmbH
 Brandschenkestrasse 110
 Zurich 8002
 Switzerland

 Email: bmoeller@acm.org

Langley, et al. Expires May 14, 2015 [Page 11]

