Abstract

In-situ Operations, Administration, and Maintenance (IOAM) records operational and telemetry information in the packet while the packet traverses a path between two points in the network. This document outlines how IOAM data fields are encapsulated in VXLAN-GPE.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
1. Introduction

In-situ OAM (IOAM) records OAM information within the packet while the packet traverses a particular network domain. The term "in-situ" refers to the fact that the IOAM data fields are added to the data packets rather than being sent within packets specifically dedicated to OAM. This document defines how IOAM data fields are transported as part of the VXLAN-GPE [I-D.ietf-nvo3-vxlan-gpe] encapsulation. The IOAM data fields are defined in [I-D.ietf-ippm-ioam-data]. An implementation of IOAM which leverages VXLAN-GPE to carry the IOAM data fields is defined in this document.
data is available from the FD.io open source software project [FD.io].

2. Conventions

2.1. Requirement Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2.2. Abbreviations

Abbreviations used in this document:

IOAM: In-situ Operations, Administration, and Maintenance

OAM: Operations, Administration, and Maintenance

VXLAN-GPE: Virtual eXtensible Local Area Network, Generic Protocol Extension

3. IOAM Data Field Encapsulation in VXLAN-GPE

VXLAN-GPE is defined in [I-D.ietf-nvo3-vxlan-gpe]. IOAM data fields are carried in VXLAN-GPE using a next protocol value of TBD_IOAM. An IOAM header is added containing the different IOAM data fields defined in [I-D.ietf-ippm-ioam-data]. In an administrative domain where IOAM is used, insertion of the IOAM header in VXLAN-GPE is enabled at the VXLAN-GPE tunnel endpoints, which also serve as IOAM encapsulating/decapsulating nodes by means of configuration.
The VXLAN-GPE header and fields are defined in [I-D.ietf-nvo3-vxlan-gpe]. The VXLAN Next Protocol value for IOAM is TBD_IOAM.

The IOAM related fields in VXLAN-GPE are defined as follows:

IOAM-Type: 8-bit field defining the IOAM Option type, as defined in Section 7.2 of [I-D.ietf-ippm-ioam-data].

IOAM HDR len: 8-bit unsigned integer. Length of the IOAM HDR in 4-octet units not including the first 4 octets.

Reserved: 8-bit reserved field MUST be set to zero upon transmission and ignored upon receipt.

Next Protocol: 8-bit unsigned integer that determines the type of header following IOAM protocol. The value is from the IANA.
registry setup for VXLAN GPE Next Protocol defined in
[I-D.ietf-nvo3-vxlan-gpe].

IOAM Option and Data Space: IOAM option header and data is present
as specified by the IOAM-Type field, and is defined in Section 4
of [I-D.ietf-ippm-ioam-data].

Multiple IOAM options MAY be included within the VXLAN-GPE
encapsulation. For example, if a VXLAN-GPE encapsulation contains
two IOAM options before a data payload, the Next Protocol field of
the first IOAM option will contain the value of TBD_IOAM, while the
Next Protocol field of the second IOAM option will contain the VXLAN
"Next Protocol" number indicating the type of the data payload.

4. Considerations

This section summarizes a set of considerations on the overall
approach taken for IOAM data encapsulation in VXLAN-GPE, as well as
deployment considerations.

4.1. Discussion of the encapsulation approach

This section is to support the working group discussion in selecting
the most appropriate approach for encapsulating IOAM data fields in
VXLAN-GPE.

An encapsulation of IOAM data fields in VXLAN-GPE should be friendly
to an implementation in both hardware as well as software forwarders.
Hardware forwarders benefit from an encapsulation that minimizes
iterative look-ups of fields within the packet: Any operation which
looks up the value of a field within the packet, based on which
another lookup is performed, consumes additional gates and time in an
implementation - both of which are desired to be kept to a minimum.
This means that flat TLV structures are to be preferred over nested
TLV structures. IOAM data fields are grouped into three option
categories: Trace, proof-of-transit, and edge-to-edge. Each of these
three options defines a TLV structure. A hardware-friendly
encapsulation approach avoids grouping these three option categories
into yet another TLV structure, but would rather carry the options as
a serial sequence.

Two approaches for encapsulating IOAM data fields in VXLAN-GPE could
be considered:

1. Use a single GPE protocol type for all IOAM types: IOAM would
receive a single GPE protocol type code point. A "sub-type"
field would then specify what IOAM options type (trace, proof-of-
transit, edge-to-edge) is carried.
2. Use one GPE protocol type per IOAM options type: Each IOAM data field option (trace, proof-of-transit, and edge-to-edge) would be specified by its own "next protocol", i.e. each IOAM options type becomes its own GPE protocol type with a dedicated code point. This implies that in case additional IOAM option types would be added in the future, additional GPE protocol type code points would need to be allocated.

The first option has been chosen here. Multiple back-to-back IOAM options can be encoded as a succession of IOAM headers, with the same single GPE protocol type appearing as the next protocol before each IOAM header, but different sub-types within each IOAM header.

4.2. IOAM and the use of the VXLAN O-bit

[I-D.ietf-nvo3-vxlan-gpe] defines an "O bit" for OAM packets. Per [I-D.ietf-nvo3-vxlan-gpe] the O bit indicates that the packet contains an OAM message instead of data payload. Packets that carry IOAM data fields in addition to regular data payload / customer traffic must not set the O bit. Packets that carry only IOAM data fields without any payload must set the O bit.

4.3. Transit devices

If IOAM is deployed in domains where UDP port numbers are not controlled and do not have a domain-wide meaning, such as on the global Internet, transit devices MUST NOT attempt to modify the IOAM data contained in the IOAM header following the VXLAN-GPE header. In case UDP port numbers are not controlled there might be UDP packets specifying the same UDP port number that VXLAN-GPE utilizes, i.e. 4790, but with a payload that is not VXLAN-GPE. The scenario and associated reasoning is discussed in [RFC7605] which states that "it is important to recognize that any interpretation of port numbers -- except at the endpoints -- may be incorrect, because port numbers are meaningful only at the endpoints."

5. IANA Considerations

5.1. VXLAN-GPE Next Protocol Value

IANA is requested to allocate a value in the VXLAN-GPE "Next Protocol" registry for IOAM, which is defined in [I-D.ietf-nvo3-vxlan-gpe].
5.2. LISP-GPE Next Protocol Value

IANA is requested to allocate a value in the LISP-GPE "Next Protocol" registry for IOAM, which is defined in [I-D.ietf-lisp-gpe].

6. Security Considerations

The security considerations of VXLAN-GPE are discussed in [I-D.ietf-nvo3-vxlan-gpe], and the security considerations of IOAM in general are discussed in [I-D.ietf-ippm-ioam-data].

IOAM is considered a "per domain" feature, where one or several operators decide on leveraging and configuring IOAM according to their needs. Still, operators need to properly secure the IOAM domain to avoid malicious configuration and use, which could include injecting malicious IOAM packets into a domain.

7. Acknowledgements

The authors would like to thank Eric Vyncke, Nalini Elkins, Srihari Raghavan, Ranganathan T S, Karthik Babu Harichandra Babu, Akshaya Nadahalli, Stefano Previdi, Hemant Singh, Erik Nordmark, LJ Wobker, and Andrew Yourtchenko for the comments and advice.

8. References

8.1. Normative References

[ETYPES] "IANA Ethernet Numbers",
[I-D.ietf-ippm-ioam-data]
Brockners, F., Bhandari, S., Pignataro, C., Gredler, H.,
Leddy, J., Youell, S., Mizrahi, T., Mozes, D., Lapukhov,
P., remy@barefootnetworks.com, r., daniel.bernier@bell.ca,
d., and J. Lemon, "Data Fields for In-situ OAM", draft-

[I-D.ietf-lisp-gpe]
Maino, F., Lemon, J., Agarwal, P., Lewis, D., and M.
Smith, "LISP Generic Protocol Extension", draft-ietf-lisp-
gpe-09 (work in progress), October 2019.

[I-D.ietf-nvo3-vxlan-gpe]
Maino, F., Kreeger, L., and U. Elzur, "Generic Protocol
Extension for VXLAN", draft-ietf-nvo3-vxlan-gpe-08 (work
in progress), October 2019.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,

Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
DOI 10.17487/RFC2784, March 2000,

by an On-line Database", RFC 3232, DOI 10.17487/RFC3232,

[RFC7605] Touch, J., "Recommendations on Using Assigned Transport
Port Numbers", BCP 165, RFC 7605, DOI 10.17487/RFC7605,

8.2. Informative References

Chaining (SFC) Architecture", RFC 7665,
DOI 10.17487/RFC7665, October 2015,
Authors’ Addresses

Frank Brockners
Cisco Systems, Inc.
Hansaallee 249, 3rd Floor
DUESSELDORF, NORDRHEIN-WESTFALEN 40549
Germany

Email: fbrockne@cisco.com

Shwetha Bhandari
Cisco Systems, Inc.
Cessna Business Park, Sarjapura Marathalli Outer Ring Road
Bangalore, KARNATAKA 560 087
India

Email: shwethab@cisco.com

Vengada Prasad Govindan
Cisco Systems, Inc.

Email: venggovi@cisco.com

Carlos Pignataro
Cisco Systems, Inc.
7200-11 Kit Creek Road
Research Triangle Park, NC 27709
United States

Email: cpignata@cisco.com

Hannes Gredler
RtBrick Inc.

Email: hannes@rtbrick.com

John Leddy

Email: john@leddy.net
Stephen Youell
JP Morgan Chase
25 Bank Street
London E14 5JP
United Kingdom

Email: stephen.youell@jpmorgan.com

Tal Mizrahi
Huawei Network.IO Innovation Lab
Israel

Email: tal.mizrahi.phd@gmail.com

Aviv Kfir
Mellanox Technologies, Inc.
350 Oakmead Parkway, Suite 100
Sunnyvale, CA 94085
U.S.A.

Email: avivk@mellanox.com

Barak Gafni
Mellanox Technologies, Inc.
350 Oakmead Parkway, Suite 100
Sunnyvale, CA 94085
U.S.A.

Email: gbarak@mellanox.com

Petr Lapukhov
Facebook
1 Hacker Way
Menlo Park, CA 94025
US

Email: petr@fb.com
Mickey Spiegel
Barefoot Networks
2185 Park Boulevard
Palo Alto, CA 94306
US

Email: mspiegel@barefootnetworks.com