The source and sink attributes for the Session Description Protocol

STATUS OF THIS MEMO

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress".

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

To view the list Internet-Draft Shadow Directories, see http://www.ietf.org/shadow.html.

Abstract

This document defines two media level SDP attributes, namely source and sink. They are intended to be used to invoke services that involve media manipulation, such as transcoding services.
Table of Contents

1. Introduction .. 3
1.1 Terminology .. 3
2 Applicability 3
3 Syntax of source and sink 3
4 SDP example ... 4
5 Use of Source and Sink with SIP 4
6 Open Issue .. 5
7 IANA considerations 5
8 Acknowledgements 5
9 Authors’ Addresses 5
10 Normative References 5
11 Informative References 6
1 Introduction

Servers performing media manipulations, such as transcoding or mixing, take the contents of one or several media streams as input and send their output over another media stream. A client requesting this type of service from a server needs to identify which media streams are to be used as input and which ones will be used to send the output of the media manipulation process. This document defines two SDP media level attributes, namely source and sink, that can be used to explicitly convey this information in an SDP session description.

1.1 Terminology

In this document, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as described in RFC 2119 [1] and indicate requirement levels for compliant SIP implementations.

2 Applicability

A server that provides simple media manipulation services between a single unidirectional input (recvonly) stream and a single unidirectional output (sendonly) stream, such as a text-to-speech server, does not need to specify source and sink attributes in the SDP. However, a server that needs to correlate more than the simple media manipulation service needs a mechanism to specify which media descriptions refer to which directionality of the input streams.

Thus, servers that use SDP [2] to provide more complex services that involve more media streams (like some of the ones described by [5]) SHOULD make use of the source and sink attributes.

The source and sink attributes MUST NOT be used to perform media alignment between SIP [3] user agents. The nth matching rules defined by the offer/answer model [4] must be used regardless of the presence or absence of the sink and source attributes.

3 Syntax of source and sink

We define the following media level SDP attributes:

```
source-attribute = "a=source:" identification-tag
sink-attribute   = "a=sink:" identification-tag
identification-tag = token
```
An SDP session description that contains a media stream with a particular identification tag in a source attribute MUST have the same identification tag in, at least, one sink attribute. An SDP session description that contains a media stream with a particular identification tag in a sink attribute MUST have the same identification tag in, at least, one source attribute.

If an entity receives a session description that breaks the rules stated above, it MUST act as if it had received a malformed session description.

4 SDP example

The SDP session description below sent to a server indicates that incoming audio from the first stream has to be sent over the second audio stream and over the text stream. Incoming text has to be sent over the first audio stream (but not over the second one). The exact media manipulations to be applied are typically identified by the URI that identifies the service [6] (e.g., sip:texttospeech@domain.com).

```
   m=audio 40000 RTP/AVP 0
   c=IN IP4 B.domain.com
   a=source:1
   a=sink:2
   m=audio 20000 RTP/AVP 0
   c=IN IP4 A.domain.com
   a=recvonly
   a=sink:1
   m=text 20002 RTP/AVP t140
   c=IN IP4 A.domain.com
   a=source:2
   a=sink:1
```

5 Use of Source and Sink with SIP

A user agent that wishes to use the source and sink attributes adds them to an offer. The answerer SHOULD copy the same source and sink attributes in its answer for all the streams that were accepted (i.e., their port number is different than zero).

An answerer that understand the source and sink attributes MUST NOT add or remove any of them from a stream that was accepted. The offerer knows whether the answerer understands these attributes because the answer will contain source and sink attributes. If the
answerer does not understand them, the answer will not contain source and sink attributes.

6 Open Issue

Right now, an offerer discovers whether or not the answerer supports source and sink by checking if there are source and sink attributes in the answer. If the answerer did not support source and sink, the offerer can send a BYE right away.

If such a behavior is not acceptable, we could define a SIP option tag to be used in the Require header field associated with source and sink.

7 IANA considerations

This document defines two media level SDP attributes: "source" and "sink".

8 Acknowledgements

Jeff Van Dyke provided useful comments on this document.

9 Authors’ Addresses

Gonzalo Camarillo
Ericsson
Advanced Signalling Research Lab.
FIN-02420 Jorvas
Finland
electronic mail: Gonzalo.Camarillo@ericsson.com

Henning Schulzrinne
Dept. of Computer Science
Columbia University
1214 Amsterdam Avenue
New York, NY 10027
USA
electronic mail: schulzrinne@cs.columbia.edu

Eric W. Burger
SnowShore Networks, Inc.
Chelmsford, MA
USA
electronic mail: eburger@snowshore.com

10 Normative References

11 Informative References

Full Copyright Statement

Copyright (c) The Internet Society (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.