Abstract

This document describes extensions to the BGP-LS for IDs allocation. The IDs are SIDs for segment routing for IPv6 (SRv6). They are distributed to their domains if needed.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction .. 2
2. Terminology ... 2
3. Protocol Extensions .. 3
 3.1. Node NLRI for IDs Allocation 3
 3.2. Link NLRI for IDs Allocation 6
4. IANA Considerations .. 9
5. Security Considerations 9
6. Acknowledgements .. 9
7. References ... 9
 7.1. Normative References 9
 7.2. Informative References 11
Authors’ Addresses ... 11

1. Introduction

In a network with a central controller, the controller has the link state information of the network, including traffic engineering information. In addition, the controller allocates and manages the resources of the network in general. It is natural and beneficial for the controller to allocate and manage IDs as a kind of network resources.

This document proposes extensions to the BGP-LS as a controller for allocating Segment Identifiers (SIDs) for segment routing for IPv6 (SRv6). If needed, some SIDs will be distributed into their network domains.

2. Terminology

The following terminology is used in this document.

SR: Segment Routing.

SRv6: SR for IPv6

SID: Segment Identifier.

IID: Indirection Identifier.

SR-Path: Segment Routing Path.
SR-Tunnel: Segment Routing Tunnel.

RR: Route Reflector.

MPP: MPLS Path Programming.

NAI: Node or Adjacency Identifier.

GTID: Global Tunnel Identifier. It is used to identify a tunnel in a network.

TED: Traffic Engineering Database.

3. Protocol Extensions

This section defines a new Protocol-ID, called IDs-Allocation (IDA), in the Protocol-ID field of Link State NLRI. The use of the new Protocol-ID allows separation and differentiation between the NLRIs carrying IDs Allocation information from the NLRIs carrying IGP link-state information defined in [RFC7752].

3.1. Node NLRI for IDs Allocation

The Node NLRI with the new Protocol-ID is used for allocating the IDs associated with a node. It has the same format (refer to the Figure below) as that defined in [RFC7752] and may contain the descriptor and attributes defined in [RFC7752].

```
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       IDs-Allocation   |  Protocol-ID                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          Identifier                         |
|                              (64 bits)                         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~                      Local Node Descriptor                    ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~                       Node IDs Allocation                     ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Where:

Protocol-ID: set to IDs-Allocation, a new Protocol-ID.

Local Node Descriptor: defined in [RFC7752], can be reused.
Node IDs Allocation: TLVs or sub-TLVs for IDs associated with the node given by the Local Node Descriptor.

Node IDs Allocation field may contain some of the followings:

SR-Capabilities TLV (1034): It contains the Segment Routing Global Base (SRGB) range(s) allocated for the node.

SR Local Block TLV (1036): The SR Local Block (SRLB) TLV contains the range(s) of SIDs/labels allocated to the node for local SIDs.

The format of SRv6 SID Node TLV is illustrated below.

```
+-----------------+-----------------+
|             Type (TBD1)              |
|                      Length             |
|-----------------+-----------------+-----------------|
|     Reserved    |     Flags      |     SRv6 Endpoint Function |
|-----------------+-----------------+-----------------|
|     SRv6 Identifier (128 bits)       |
|-----------------+-----------------+-----------------|
|     ~~~~~~~~~~~|     Optional sub-TLVs |
|-----------------+-----------------+-----------------|
```

SRv6 Node SID TLV

Type: TBD1 for SRv6 Node SID TLV is to be assigned by IANA.

Length: Variable.

Flags: 1 octet. No flags are defined now.

SRv6 Endpoint Function: 2 octets. The function associated with SRv6 SID.

SRv6 Identifier: 16 octets. IPv6 address representing SRv6 SID.
Reserved: MUST be set to 0 while sending and ignored on receipt.

SRv6 node SID inherits the topology and algorithm from its locator.

The format of SRv6 locator TLV is illustrated below.

```
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          Type (TBD2)          |             Length              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|R|R|R|R|          MT-ID        |   Algorithm   |     Flags     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                             Metric                             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Locator-Size | Locator (variable)...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
~                        Optional sub-TLVs                      ~
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

SRv6 Locator TLV

Type: TBD2 for SRv6 Locator TLV is to be assigned by IANA.

Length: Variable.

MT-ID: Multitopology Identifier as defined in [RFC5120].

Algorithm: 1 octet. Associated algorithm.

Flags: 1 octet. As described in [I-D.bashandy-isis-srv6-extensions].

Metric: 4 octets. As described in [RFC5305].

Locator-Size: 1 octet. Number of bits in the Locator field (1 to 128).

Locator: 1 to 16 octets. SRv6 Locator encoded in the minimum number of octets for the given Locator-Size.

Reserved: MUST be set to 0 while sending and ignored on receipt.
3.2. Link NLRI for IDs Allocation

The Link NLRI with the new Protocol-ID is used for allocating the IDs associated with a link. It has the same format (refer to the Figure below) as that defined in in [RFC7752] and may contain the descriptors and attributes defined in [RFC7752].

```
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|IDs-Allocation |  Protocol-ID
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

| Identifier | (64 bits) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

Local Node Descriptor

Remote Node Descriptor

Link Descriptor

Link IDs Allocation

Where:

Protocol-ID: set to IDs-Allocation, a new Protocol-ID.

Node Descriptors: defined in [RFC7752], can be reused.

Link Descriptor: defined in [RFC7752], can be reused.

Link IDs Allocation: TLVs or sub-TLVs for IDs associated with the link given by the Link Descriptor.

Link IDs Allocation field may contain some of the followings:

Adj-SID TLV (1099): It contains the Segment Identifier (SID) allocated for the link/adjacency.

LAN Adj-SID TLV (1100): It contains the Segment Identifier (SID) allocated for the adjacency/link to a non-DR router on a broadcast, NBMA, or hybrid link.


The format of an SRv6 Adj-SID TLV is illustrated below.

```
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type (TBD3) | Length |
+-+
| Weight | Algorithm |B|S|P| Flags |
+-+
| Reserved | SRv6 Endpoint Function |
+-+
| |
| SRv6 Identifier |
| (128 bits) |
| |
| |
| |
| |
| |
| |
| |
| |
| Optional sub-TLVs |
| |
| |
| |
| |
| |
| |
| |
| |
| |
SRv6 Adj-SID TLV

Type: TBD3 for SRv6 Adj-SID TLV is to be assigned by IANA.

Length: Variable.

Weight: 1 octet. The value represents the weight of the SID for the purpose of load balancing.

Algorithm: 1 octet. Associated algorithm.

Flags: 2 octets. Three flags are defined in [I-D.bashandy-isis-srv6-extensions].

SRv6 Endpoint Function: 2 octets. The function associated with SRv6 SID.

SRv6 Identifier: 16 octets. IPv6 address representing SRv6 SID.

Reserved: MUST be set to 0 while sending and ignored on receipt.

The format of an SRv6 LAN Adj-SID TLV is illustrated below.
SRv6 LAN Adj-SID TLV

Type: TBD4 for SRv6 LAN Adj-SID TLV is to be assigned by IANA.

Length: Variable.

Weight: 1 octet. The value represents the weight of the SID for the purpose of load balancing.

Algorithm: 1 octet. Associated algorithm.

Flags: 2 octets. Three flags B, S and P are defined in [I-D.bashandy-isis-srv6-extensions]. Flag O set to 1 indicating OSPF neighbor Router ID of 4 octets, set to 0 indicating IS-IS neighbor System ID of 6 octets.

SRv6 Endpoint Function: 2 octets. The function associated with SRv6 SID.

SRv6 Identifier: 16 octets. IPv6 address representing SRv6 SID.

Reserved: MUST be set to 0 while sending and ignored on receipt.
4. IANA Considerations

This document requests assigning a code-point from the registry "BGP-LS Protocol-IDs" as follows:

+-------------+-----------------------------------+-------------+
| Protocol-ID | Description | Reference |
+-------------+-----------------------------------+-------------+
| TBD | IDs Allocation | Section 3 |

This document requests assigning a code-point from the registry "BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs" as follows:

+----------------+-----------------------------------+-------------+
| TLV Code Point | Description | Reference |
+----------------+-----------------------------------+-------------+
| TBD1 | SRv6 Node SID | Section 3 |
+----------------+-----------------------------------+-------------+
| TBD2 | SRv6 Adj-SID | Section 3 |
+----------------+-----------------------------------+-------------+
| TBD3 | SRv6 LAN Adj-SID | Section 3 |

5. Security Considerations

Protocol extensions defined in this document do not affect the BGP security other than those as discussed in the Security Considerations section of [RFC7752].

6. Acknowledgements

The authors would like to thank Nan Wu, and others for their valuable suggestions and comments on this draft.

7. References

7.1. Normative References

[I-D.bashandy-isis-srv6-extensions]

[I-D.ietf-idr-flowspec-path-redirect]

[I-D.ietf-isis-segment-routing/extensions]

[I-D.ietf-rtgwg-bgp-routing-large-dc]

[I-D.ietf-spring-segment-routing]

[I-D.ietf-spring-segment-routing-ldp-interop]

[I-D.li-ospf-ospfv3-srv6-extensions]

7.2. Informative References

Authors’ Addresses

Huaimo Chen
Huawei
Boston, MA
USA
Email: Huaimo.chen@huawei.com

Zhenbin Li
Huawei
Huawei Bld., No.156 Beiqing Rd.
Beijing 100095
China
Email: lizhenbin@huawei.com
Shunwan Zhuang
Huawei
Huawei Bld., No.156 Beiqing Rd.
Beijing 100095
China

Email: zhuangshunwan@huawei.com