Extensions to OSPF for Temporal LSP
draft-chen-ospf-tts-03.txt

Abstract

This document specifies extensions to OSPF for distributing Traffic Engineering (TE) information on a link in a sequence of time intervals.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 4, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must

Table of Contents

1. Introduction .. 3
2. Terminology ... 3
3. Conventions Used in This Document 3
4. Representation of TE Information 4
 4.1. TE Information in Absolute Time 4
 4.2. TE Information in Relative Time 5
5. Extensions to OSPF ... 6
 5.1. TE LSA .. 6
 5.2. TTS Link TLV ... 7
6. Security Considerations 10
7. IANA Considerations ... 10
8. Acknowledgement .. 10
9. References .. 10
 9.1. Normative References 10
 9.2. Informative References 10
Authors’ Addresses ... 11
1. Introduction

Once an existing multiprotocol label switching (MPLS) traffic engineering (TE) label switched path (LSP) is set up, it is assumed to carry traffic forever until it is down. When an MPLS TE LSP tunnel is up, it is assumed that the LSP consumes its reserved network resources forever even though the LSP may only use network resources during some period of time. As a result, the network resources are not used efficiently. Moreover, a tunnel service cannot be reserved or booked in advance for a period of time.

This document specifies extensions to OSPF for supporting the setup of an MPLS TE LSP in a period of time called a time interval or a sequence of time intervals. It is assumed that the LSP carries traffic during this time interval or each of these time intervals. Thus the network resources are efficiently used. More importantly, some new services can be provided. For example, a consumer can book a tunnel service in advance for a time interval or a sequence of time intervals. Tunnel services may be scheduled.

2. Terminology

A Time Interval: a time period from time Ta to time Tb.

LSP: Label Switched Path. An LSP is a P2P (point-to-point) LSP or a P2MP (point-to-multipoint) LSP.

LSP in a time interval: LSP that carries traffic in the time interval.

LSP in a sequence of time intervals: LSP that carries traffic in each of the time intervals.

Temporal LSP: LSP in a time interval or LSP in a sequence of time intervals.

TEDB: Traffic Engineering Database.

This document uses terminologies defined in RFC2328 and RFC3630.

3. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC2119.
4. Representation of TE Information

The existing Open Shortest Path First (OSPF) Traffic Engineering (TE) distributes an unreserved bandwidth B_i at each of eight priority levels for a link at one point of time, for example, at the current time.

```
Bandwidth
^             ____________________________
|                                   |<-----------------------> Time
|__________________________________|

This means that the link has bandwidth $B_i$ at a priority level from now to forever until there is a change to it. This TE information on the link is stored in TEDB.

Thus, a temporal LSP (i.e., an LSP in a time interval) cannot be set up using the information in the TEDB and the bandwidth cannot be reserved in advance for the LSP in the time interval.

To support temporal LSPs, we should extend OSPF to distribute TE information on a link in a series of time intervals.

4.1. TE Information in Absolute Time

Suppose that the amount of the unreserved bandwidth at a priority level on a link is $B_j$ in a time interval from time $T_j$ to $T_k$ (where $j = 0, 1, 2, ...$). The unreserved bandwidth on the link can be represented as

$[T_0, B_0], [T_1, B_1], [T_2, B_2], [T_3, B_3], ...$

This is an absolute time representation of bandwidths on a link. Time $T_j$ ($j = 0, 1, 2, ...$) MUST be a synchronized time among all network nodes.
If an LSP is deleted or down at time T and uses bandwidth B, then for every time interval/period (after time T) during which bandwidth B is reserved for the LSP on a link attached to a network node, the network node adds B to the link for that interval/period.

If an LSP is set up at time T and uses bandwidth B, then for every time interval/period (after time T) during which bandwidth B is reserved for the LSP on a link attached to a network node, the network node subtracts bandwidth B from the link for that interval/period.

If there are significant changes to the bandwidths on a link attached to a network node, the network node distributes the bandwidths on the link to other network nodes. That is that a updated \([T_0, B_0], [T_1, B_1], [T_2, B_2], [T_3, B_3], \ldots\) are distributed to other network nodes in the network. Each of the other network nodes can construct or determine the bandwidth for a series of time intervals/periods on a link after receiving the information.

4.2. TE Information in Relative Time

Alternatively, a relative time representation of bandwidths on a link can be used. For example, the amount of the unreserved bandwidth at a priority level on a link is \(B_j\) during a series of time intervals/periods can be expressed as

\[ [P_0, B_0], [P_1, B_1], [P_2, B_2], [P_3, B_3], \ldots, \]

where

\[ P_j = T_k - T_j, \quad k = (j+1) \quad \text{and} \quad j = 0, 1, 2, 3, \ldots \]

In this representation, every time \(T_j\) \((j = 0, 1, 2, \ldots)\) can be a local time. A timer may expire after every unit of time (e.g., every second) and trigger --P0, which decrements P0. When P0 = 0, P1 becomes P0, P2 becomes p1, and so on.
If there are significant changes to the bandwidths on a link attached to a node, the node distributes the bandwidths on the link to other nodes. That is that a updated \([P0, B0], [P1, B1], [P2, B2], [P3, B3], \ldots\), are distributed to other network nodes in the network. On each of the other network nodes, a timer may expire for every unit of time (e.g., every second) and trigger --–P0, which decrements P0. When P0 = 0, P1 becomes P0, P2 becomes P1, and so on.

An advantage of using relative time representation is that the times or clocks on all the network nodes can be different.

5. Extensions to OSPF

This section describes the extensions to OSPF for supporting the setup of temporal LSPs.

5.1. TE LSA

An opaque LSA of type 10 is originated by a network node to distribute TE information such as the bandwidth of a link that is attached to the network node.

```
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| LS age | Options | LS Type=10 |
+-+
| 1 | Opaque ID |
+-+
| Advertising Router |
+-+
| LS sequence number |
+-+
| LS checksum | length |
+-+
| |
| TLVs |
+-+
```

The opaque LSA comprises a link-state (LS) age field, an options field, an LS type field, an opaque identifier (ID) field, an advertising router field, an LS sequence number field, an LS checksum field, a length field, and one or more TLVs.

The LS age field indicates the time since the LSA was originated in seconds. The options field indicates the optional capabilities...
supported by the described portion of the routing domain. The LS
type field indicates the type of the LSA. The opaque ID field is a
number used to maintain multiple opaque LSAs. The advertising router
field indicates the Router ID of the router that originated the LSA.
The LS sequence number field is used to detect old or duplicate LSAs.
Successive instances of an LSA are given successive LS sequence
numbers. The LS checksum field indicates the Fletcher checksum of
the complete contents of the LSA, including the LSA header but
excluding the LS age field. The length field indicates the length of
the LSA in bytes.

5.2. TTS Link TLV

In addition to existing router address TLV and link TLV, TLVs fields
may comprise a new temporal tunnel service (TTS) link TLV.

```plaintext
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type (5) | Length (variable) |
+-+
| Reserved (0) | Segment-Number |
+-+
| sub TLVs |
+-+
```

The TTS link TLV comprises a type field, a length field, a reserved
field, a segment-number field, and a sub TLVs field.

The type field may comprise a value assigned by the Internet Assigned
Number Authority (IANA) to indicate that the TLV is a TTS link TLV.
For example, the type field may comprise a value of 5. The length
field may indicate the length of the values in the TTS link TLV in
bytes.

The segment-number indicates a segment of the TTS link TLV. The
information on a link may be too big to fit into one TTS link TLV.
In this case, the information may be split into a few of segments,
each of which is put into a TTS link TLV and identified by a segment
number.

The sub TLV field comprises a link type sub-TLV and a link ID sub-
TLV. It may further comprise a local address sub-TLV, a remote
address sub-TLV, a TE metric sub-TLV, a maximum bandwidth sub-TLV, a
maximum reservable bandwidth sub-TLV, an unreserved bandwidth sub-
TLV, an administrator group sub-TLV, a relative TTS unreserved
bandwidth sub-TLV, an absolute TTS unreserved bandwidth sub-TLV, and any other suitable sub-TLVs.

The format of an absolute TTS unreserved bandwidth sub-TLV is shown below.

```
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type (21) | Length (36+36*n) |
+-+
| T0 |
+-+
| | |
+-+
| T1 |
+-+
| | |
+-+
| | |
+-+
| Tn |
+-+
| | |
+-+
| B0[8] |
+-+
| | |
+-+
| B1[8] |
+-+
| | |
+-+
| Bn[8] |
+-+
```

It comprises a type field, a length field, absolute time fields, and unreserved bandwidth fields.

The type field may comprise a value assigned by the IANA to indicate that the sub-TLV is an absolute TTS unreserved bandwidth sub-TLV. For example, the type field may comprise a value of 21.

The length field may indicate the length of the values in the absolute TTS unreserved bandwidth sub-TLV in bytes.

The absolute time fields and the unreserved bandwidth fields may be in pairs such as

```
[T0, B0[8]], [T1, B1[8]], ..., [Tn, Bn[8]],
```
where T0, T1, ..., Tn are the times synchronized among all the nodes and Bj[8] (j=0, 1, ..., n) are the amount of unreserved bandwidth at eight priority levels in the time interval/period from Tj to Tk (k=j+1).

The format of a relative TTS unreserved bandwidth sub-TLV is illustrated as follows.

```
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type (22) | Length (36+36*n) |
+-+
| P0 |
+-+
| B0[8] |
+-+
| P1 |
+-+
| B1[8] |
+-+
| |
+-+
| Pn |
+-+
| Bn[8] |
+-+
```

It comprises a type field, a length field, relative time fields, and unreserved bandwidth fields.

The type field may comprise a value assigned by the IANA to indicate that the sub-TLV is a relative TTS unreserved bandwidth sub-TLV. For example, the type field may comprise a value of 22.

The length field may indicate the length of the values in the relative TTS unreserved bandwidth sub-TLV in bytes.

The relative time fields and the unreserved bandwidth fields may be in pairs such as

```
[P0, B0[8]], [P1, B1[8]], ..., [Pn, Bn[8]],
```
where \( P_j \) \((j=0, 1, \ldots, n)\) is the time period during which the unreserved bandwidth is \( B_j[8] \), containing the amount of unreserved bandwidth at eight priority levels.

6. Security Considerations

The mechanism described in this document does not raise any new security issues for the OSPF protocols.

7. IANA Considerations

This section specifies requests for IANA allocation.

8. Acknowledgement

The author would like to thank people for their valuable comments on this draft.

9. References

9.1. Normative References


9.2. Informative References


Authors’ Addresses

Huaimo Chen
Futurewei
Boston, MA
US

Email: huaimo.chen@futurewei.com

Mehmet Toy
Verizon
USA

Email: mehmet.toy@verizon.com

Vic Liu
China Mobile
No.32 Xuanwumen West Street, Xicheng District
Beijing, 100053
China

Email: liu.cmri@gmail.com

Lei Liu
Fujitsu
USA

Email: lliu@us.fujitsu.com