Segment Routing IPv6 (SRv6) allows for a flexible definition of end-to-end paths within various topologies by encoding paths as sequences of topological or functional sub-paths, called "segments". These segments are advertised by the various protocols such as BGP, ISIS and OSPFv3.

BGP Link-state (BGP-LS) address-family solution for SRv6 is similar to BGP-LS for SR for MPLS dataplane. This draft defines extensions to the BGP-LS to advertise SRv6 Segments along with there functions and other attributes via BGP.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute
1. Introduction

SRv6 refers to Segment Routing instantiated on the IPv6 dataplane [I-D.ietf-spring-segment-routing]. Segment Identifier (SID) is often used as a shorter reference for "SRv6 Segment".

The network programming paradigm [I-D.filsfils-spring-srv6-network-programming] is central to SRv6. It describes how different functions can be bound to their SIDs and how a network program can be expressed as a combination of SIDs.

An SRv6-capable node N maintains a "My Local SID Table" (refer [I-D.filsfils-spring-srv6-network-programming]). This table contains all the local segments explicitly instantiated at node N.

The ISIS ([I-D.bashandy-isis-srv6-extensions]) and OSPFv3 ([I-D.li-ospf-ospfv3-srv6-extensions]) link-state routing protocols have been extended to advertise some of these SRv6 SIDs and SRv6-related information. BGP ([I-D.dawra-idr-srv6-vpn]) has been extended to advertise some of these SRv6 SIDs for VPN services. Certain other SRv6 SIDs may be instantiated on a node via other mechanisms for topological or service functionalities.

The advertisement of SR related information along with the topology for the MPLS dataplane instantiation is specified in [I-D.ietf-idr-bgp-ls-segment-routing-ext] and [I-D.ietf-idr-bgpls-segment-routing-epe]. On the similar lines, introducing the SRv6 related information in BGP-LS allows it’s consumer applications that require topological visibility to also receive the "My Local SID Table" from nodes across a domain or even across Autonomous Systems (AS), as required. This allows applications to leverage the SRv6 capabilities for network programming.

The identifying key of each Link-State object, namely a node, link, or prefix, is encoded in the NLRI and the properties of the object are encoded in the BGP-LS attribute [RFC7752].

This document describes extensions to BGP-LS attribute to advertise the SRv6 "My Local SID Table" and other SRv6 information from a node in the network and when sourced from link-state routing protocols from all the SRv6 capable nodes in the domain.

2. BGP-LS extensions for SRv6

BGP-LS[RFC7752] defines the BGP Node and Link attributes. All non-VPN link, node, and prefix information SHALL be encoded using AFI 16388 / SAFI 71. VPN link, node, and prefix information SHALL be
This draft does not introduce any new descriptor TLVs for any BGP-LS NLRI types and the usage of the descriptor TLVs and other attributes SHALL follow [RFC7752] for ISIS and OSPFv3 protocols and [I-D.ietf-idr-bgpls-segment-routing-epe] for BGP protocol.

This document defines SRv6 extensions to BGP-LS Node attribute TLVs in Section 2.1 and Link attribute TLVs in Section 2.2.

2.1. SRv6 Node Attributes

Node Attribute TLVs are used for the SRv6 capabilities of the node and for all SRv6 SIDs instantiated on the node which are not specific to any link. Examples of such node level functions that are signalled as Node Attributes are END and END.T. The list of these functions at the time of publishing this document are described in [I-D.filsfils-spring-srv6-network-programming].

The following Node Attribute TLVs are defined for SRv6:

<table>
<thead>
<tr>
<th>TLV Code</th>
<th>Description</th>
<th>Length</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>SRv6 Capabilities</td>
<td>variable</td>
<td>Section 2.1.1</td>
</tr>
<tr>
<td>TBD</td>
<td>SRv6 SID Node Attribute</td>
<td>variable</td>
<td>Section 2.1.2</td>
</tr>
</tbody>
</table>

These TLVs can ONLY be added to the Node Attribute associated with the local node that is SRv6 capable and for SRv6 SIDs that are in that local node’s "My Local SID Table".

2.1.1. SRv6 Capability Attribute TLV

This TLV is used to announce the SRv6 capability of the node and to indicate the nature of its support for the SRH operations. A single instance of this TLV MUST be included in the BGP-LS attribute for each SRv6 capable node.
Where:

- **Type**: 16 bit field. TBD

- **Length**: 16 bit field. Length of Capability TLV + length of Sub-TLVs

- **Flags**: 16 bit field. The following flags are defined:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>+-------------------------+</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>O</td>
</tr>
</tbody>
</table>

 * **E-flag**: If set, then router is able to apply "T.Encap" operation as specified in [I-D.filsfils-spring-srv6-network-programming]
 * **O-flag**: If set, then router is capable of supporting SRH O-bit Flags, as specified in [I-D.ietf-6man-segment-routing-header].

The following sections define the supported sub-TLVs.

2.1.1.1. Maximum SL sub-TLV

The Maximum Segments Left sub-TLV specifies the maximum value of the "SL" field in the Segment Routing IPv6 Header (SRH) [I-D.ietf-6man-segment-routing-header] of a received packet before applying the function associated with a SID.
2.1.1.2. Maximum End Pop SRH sub-TLV

The Maximum End Pop SRH sub-TLV specifies the maximum number of SIDs in the top SRH in an SRH stack to which the router can apply "PSP" or "USP" flavors as specified in [I-D.ietf-6man-segment-routing-header].

- Type: 2
- Length: 1
- Max-End-Pop-SRH Value: 1 octet
- An 8 bit unsigned integer.

If the value is 0 or the sub-TLV is not advertised by an SRv6 capable router, then it MUST be considered that the router cannot apply PSP or USP flavors.
2.1.1.3. Maximum T.Insert SRH sub-TLV

The Maximum T.Insert SRH sub-sub-TLV specifies the maximum number of SIDs that can be inserted as part of the "T.insert" behavior as specified in [I-D.filsfils-spring-srv6-network-programming].

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|               Type            |          Length               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max-T.Insert  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

- Type: 3
- Length: 1
- Max-T.Insert Value: 1 octet
- An 8 bit unsigned integer.

If the value is 0 or the sub-TLV is not advertised by an SRv6 capable router, then it MUST be considered that the router does not support any variation of the "T.insert" behavior.

2.1.1.4. Maximum T.Encap SRH sub-TLV

The Maximum T.Encap SRH sub-sub-TLV specifies the maximum number of SIDs that can be included as part of the "T.Encap" behavior as specified in [I-D.filsfils-spring-srv6-network-programming].

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|               Type            |          Length               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max-T.Encap  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

- Type: 4
- Length: 1
- Max-T.Encap Value: 1 octet
2.1.1.5. Maximum End D SRH sub-TLV

The Maximum End D SRH sub-TLV specifies the maximum number of SIDs in an SRH when applying "End.DX6" and "End.DT6" functions.

<table>
<thead>
<tr>
<th>Max-End-D</th>
</tr>
</thead>
</table>

- Type: 5
- Length: 1
- Max End D Value: 1 octet
- An 8 bit unsigned integer.

If this value is zero or the sub-TLV is not advertised by an SRv6 capable router, then it MUST be considered that the router cannot apply "End.DX6" or "End.DT6" functions if the extension header right underneath the outer IPv6 header is an SRH.

2.1.2. SRv6 SID Node Attribute TLV

This TLV is used for advertising the SRv6 SIDs associated with the node and its function (e.g. END, END.T, etc). Multiple instances of this TLV, one for each SRv6 SID, MAY be advertised in the BGP-LS Attribute for a given Node NLRI.
Figure 1: SRv6 SID Node TLV

Where:

Type: 16 bit field. TBD

Length: 16 bit field. The total length of the value portion of the TLV.

SID Flags: 8 bit field which define the flags associated with the SID

* When the originating protocol is ISIS, the flags correspond to the flags in the SRv6 SID TLV as defined in [I-D.bashandy-isis-srv6-extensions]

* When the originating protocol is OSPFv3, the flags correspond to the flags in the SRv6 SID TLV as defined in [I-D.li-ospf-ospfv3-srv6-extensions]

* When the originating protocol is BGP, the flags are not defined and SHOULD be set to 0 and MUST be ignored on receipt.

Function Flags: 8 bit field which define the flags associated with the function.

* When the originating protocol is ISIS, the flags correspond to the function flags in the SRv6 SID TLV as defined in [I-D.bashandy-isis-srv6-extensions]

* When the originating protocol is OSPFv3, the flags correspond to the function flags in the SRv6 SID TLV as defined in [I-D.li-ospf-ospfv3-srv6-extensions]
* When the originating protocol is BGP, the flags are not defined and SHOULD be set to 0 and MUST be ignored on receipt.

Function Code: 16 bit field. The function code point for this SRv6 SID as defined in [I-D.filsfils-spring-srv6-network-programming].

SID Size: 8 bit field. Number of bits in the SID field.

SID: 1-16 octets. This field encodes the advertised SRv6 SID. The "SID-size" field can have the values 1-128 and indicates the number of bits in the SID. The SRv6 SID is encoded in the minimal number of octets for the given number of bits.

Sub-TLVs: currently none defined. Used to advertise sub-TLVs that provide additional attributes for the given SRv6 SID.

2.2. SRv6 Link Attributes

Link Attribute TLVs are used for all SRv6 SIDs instantiated corresponding to a specific link on the node. Examples of such link level functions that are signalled as Link Attributes is END.X that are signaled via ISIS and OSPFv3 and Egress Peer Engineering [I-D.ietf-spring-segment-routing-central-epe] related SIDs that are advertised for BGP Peering SIDs for SRv6 equivalent to their SR/MPLS SIDs as defined in [I-D.ietf-idr-bgpls-segment-routing-epe]. These SIDs are instantiated in the "My Local SID Table" on the node and are used to associate the function to one or more specific links on that node. The list of these functions at the time of publishing this document are described in [I-D.filsfils-spring-srv6-network-programming].

The following Link Attribute TLVs are defined for SRv6:

<table>
<thead>
<tr>
<th>TLV Code Point</th>
<th>Description</th>
<th>Length</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>SRv6 SID Link Attribute</td>
<td>variable</td>
<td>Section 2.2.1</td>
</tr>
<tr>
<td>TBD</td>
<td>SRv6 SID LAN Link Attribute</td>
<td>variable</td>
<td>Section 2.2.2</td>
</tr>
<tr>
<td>TBD</td>
<td>SRv6 Peer Node END.X SID</td>
<td>variable</td>
<td>Section 2.2.3</td>
</tr>
<tr>
<td>TBD</td>
<td>SRv6 Peer Set END.X SID</td>
<td>variable</td>
<td>Section 2.2.4</td>
</tr>
</tbody>
</table>
These TLVs can ONLY be added to the Link Attribute associated with the link for the local node that is SRv6 capable and for that link’s SRv6 SIDs that are in that local node’s "My Local SID Table".

2.2.1. SRv6 SID Link Attribute TLV

The SRv6 SID Link Attribute TLV is used to advertise the SRv6 SIDs like the END.X functions that correspond to a point-to-point or point-to-multipoint link or adjacency of the local node for ISIS and OSPFv3 protocols. This TLV can also be used to advertise the END.X function SRv6 SID corresponding to the underlying layer-2 member links for a layer-3 bundle interface using L2 Bundle Member Attribute TLV as specified in .

For BGP protocol, this TLV is used to advertise the BGP Peer Adjacency SID for SRv6 on the same lines as specified for SR/MPLS in [I-D.ietf-idr-bgpls-segment-routing-epe]. The END.X SRv6 SID for the Peer Adjacency indicates the cross-connect to a specific layer-3 link to the specific BGP session peer (neighbor).

The TLV has the following format:

```
<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID-Flags</td>
<td>Function-Flags</td>
</tr>
<tr>
<td>Function Code</td>
<td></td>
</tr>
<tr>
<td>SID-size</td>
<td>SID (variable) ...</td>
</tr>
<tr>
<td>Sub-TLVs (variable) . .</td>
<td></td>
</tr>
</tbody>
</table>
```

Where:

- Type is TBD
- Length: 16 bit field. The total length of the value portion of the TLV.
- SID Flags: 8 bit field which define the flags associated with the SID

* When the originating protocol is ISIS, the flags correspond to the flags in the SRv6 SID TLV as defined in [I-D.bashandy-isis-srv6-extensions]
* When the originating protocol is OSPFv3, the flags correspond to the flags in the SRv6 SID TLV as defined in [I-D.li-ospf-ospfv3-srv6-extensions]
* When the originating protocol is BGP, the flags are not defined and SHOULD be set to 0 and MUST be ignored on receipt.

Function Flags: 8 bit field which define the flags associated with the function.

* When the originating protocol is ISIS, the flags correspond to the function flags in the SRv6 SID TLV as defined in [I-D.bashandy-isis-srv6-extensions]
* When the originating protocol is OSPFv3, the flags correspond to the function flags in the SRv6 SID TLV as defined in [I-D.li-ospf-ospfv3-srv6-extensions]
* When the originating protocol is BGP, the flags are not defined and SHOULD be set to 0 and MUST be ignored on receipt.

Function Code: 16 bit field. The function code point for this SRv6 SID as defined in [I-D.filipsils-spring-srv6-network-programming].

SID-size: Number of bits in the SID field.

SID: 1-16 octets. This field encodes the advertised SRv6 SID. The "SID-size" field can have the values 1-128 and indicates the number of bits in the SID. The SRv6 SID is encoded in the minimal number of octets for the given number of bits.

Sub-TLVs: currently none defined. Used to advertise sub-TLVs that provide additional attributes for the given SRv6 END.X SID.

2.2.2. SRv6 SID LAN Link Attribute TLV

For a LAN interface, normally a node only announces its adjacency to the IS-IS pseudo-node (or the equivalent OSPF Designated Router). The SRv6 SID LAN Link Attribute TLV allows a node to announce SRv6 SID corresponding to functions like END.X for its adjacencies to all other (i.e. non-DIS or non-DR) nodes attached to the LAN in a single instance of the BGP-LS Link NLRI. Without this TLV, the corresponding BGP-LS link NLRI would need to be originated for each additional adjacency in order to advertise the SRv6 SID Link Attribute TLVs for these neighbor adjacencies.

The SRv6 SID LAN Link Attribute TLV has the following format:
o Type: TBD

o Length: 16 bit value. Variable

o SID Flags: 8 bit field which define the flags associated with the SID

* When the originating protocol is ISIS, the flags correspond to the flags in the SRv6 SID TLV as defined in [I-D.bashandy-isis-srv6-extensions]

* When the originating protocol is OSPFv3, the flags correspond to the flags in the SRv6 SID TLV as defined in [I-D.li-ospf-ospfv3-srv6-extensions]

o Function Flags: 8 bit field which define the flags associated with the function.

* When the originating protocol is ISIS, the flags correspond to the function flags in the SRv6 SID TLV as defined in [I-D.bashandy-isis-srv6-extensions]

* When the originating protocol is OSPFv3, the flags correspond to the function flags in the SRv6 SID TLV as defined in [I-D.li-ospf-ospfv3-srv6-extensions]

* When the originating protocol is BGP, the flags are not defined and SHOULD be set to 0 and MUST be ignored on receipt.

o Function Code: 16 bit field. The function code point for this SRv6 SID as defined in [I-D.filsfils-spring-srv6-network-programming].
o SID Size : 8 bit field. Number of bits in the SID field.

o SID : 1-16 octets. This field encodes the advertised SRv6 SID. The "SID-size" field can have the values 1-128 and indicates the number of bits in the SID. The SRv6 SID is encoded in the minimal number of octets for the given number of bits.

o Neighbor ID : 6 octets of ISIS System ID of the neighbor when protocol is ISIS or 4 octets of OSPFv3 Router-id of the neighbor when protocol is OSPFv3

o Sub-TLVs : currently none defined. Used to advertise sub-TLVs that provide additional attributes for the given SRv6 SID.

2.2.3. SRv6 Peer Node END.X SID TLV

The SRv6 Peer Node END.X SID TLV is used to advertise the BGP Peer Node SID for SRv6 on the same lines as specified for SR/MPLS in [I-D.ietf-idr-bgppls-segment-routing-ep]. The END.X SRv6 SID for the Peer Node indicates the cross-connect to the layer-3 paths to the specific BGP session peer (neighbor).

The TLV has the following format:

```
 0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|               Type            |          Length               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   SID-Flags   | Function-Flags|           Function Code       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    SID-size   |    SID (variable) ...  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Sub-TLVs (variable) . .  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Where:

Type is TBD

Length: 16 bit field. The total length of the value portion of the TLV.

SID Flags: 8 bit field which define the flags associated with the SID. No flags are currently defined and SHOULD be set to 0 and MUST be ignored on receipt.
Function Flags: 8 bit field which define the flags associated with the function. No flags are currently defined and SHOULD be set to 0 and MUST be ignored on receipt.

Function Code: 16 bit field. The function code point for this SRv6 SID as defined in [I-D.filsfils-spring-srv6-network-programming].

SID-size: Number of bits in the SID field.

SID: 1-16 octets. This field encodes the advertised SRv6 SID. The "SID-size" field can have the values 1-128 and indicates the number of bits in the SID. The SRv6 SID is encoded in the minimal number of octets for the given number of bits.

Sub-TLVs: currently none defined. Used to advertise sub-TLVs that provide additional attributes for the given SRv6 END.X SID.

2.2.4. SRv6 Peer Set END.X SID TLV

The SRv6 Peer Node END.X SID TLV is used to advertise the BGP Peer Node SID for SRv6 on the same lines as specified for SR/MPLS in [I-D.ietf-idr-bgpls-segment-routing-epe]. The END.X SRv6 SID for the Peer Set indicates forwarding towards the group of BGP session peers (neighbor) to which the SRv6 Peer Set END.X SID is associated with.

The TLV has the following format:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|               Type            |          Length               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   SID-Flags   | Function-Flags|           Function Code       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    SID-size   |    SID (variable) ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Sub-TLVs (variable) . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Where:

Type is TBD

Length: 16 bit field. The total length of the value portion of the TLV.
SID Flags: 8 bit field which define the flags associated with the SID. No flags are currently defined and SHOULD be set to 0 and MUST be ignored on receipt.

Function Flags: 8 bit field which define the flags associated with the function. No flags are currently defined and SHOULD be set to 0 and MUST be ignored on receipt.

Function Code: 16 bit field. The function code point for this SRv6 SID as defined in [I-D.filsfils-spring-srv6-network-programming].

SID-size: Number of bits in the SID field.

SID: 1-16 octets. This field encodes the advertised SRv6 SID. The "SID-size" field can have the values 1-128 and indicates the number of bits in the SID. The SRv6 SID is encoded in the minimal number of octets for the given number of bits.

Sub-TLVs: currently none defined. Used to advertise sub-TLVs that provide additional attributes for the given SRv6 END.X SID.

3. IANA Considerations

This document requests assigning code-points from the registry "BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs".

3.1. TLV/Sub-TLV Code Points Summary

This section contains the global table of all TLVs defined in this document.
<table>
<thead>
<tr>
<th>TLV Code Point</th>
<th>Description</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>SRv6 Capabilities TLV</td>
<td>Section 2.1.1</td>
</tr>
<tr>
<td>TBD</td>
<td>SRv6 SID Node Attribute TLV</td>
<td>Section 2.1.2</td>
</tr>
<tr>
<td>TBD</td>
<td>SRv6 SID Link Attribute TLV</td>
<td>Section 2.2.1</td>
</tr>
<tr>
<td>TBD</td>
<td>SRv6 SID LAN Link Attribute TLV</td>
<td>Section 2.2.2</td>
</tr>
<tr>
<td>TBD</td>
<td>SRv6 Peer Node END.X SID TLV</td>
<td>Section 2.2.3</td>
</tr>
<tr>
<td>TBD</td>
<td>SRv6 Peer Set END.X SID TLV</td>
<td>Section 2.2.4</td>
</tr>
</tbody>
</table>

4. Manageability Considerations

This section is structured as recommended in [RFC5706]

5. Operational Considerations

5.1. Operations

Existing BGP and BGP-LS operational procedures apply. No additional operation procedures are defined in this document.

6. Security Considerations

Procedures and protocol extensions defined in this document do not affect the BGP security model. See the ‘Security Considerations’ section of [RFC4271] for a discussion of BGP security. Also refer to [RFC4272] and [RFC6952] for analysis of security issues for BGP.

7. Contributors

Arjun Sreekantiah
Individual
US

Les Ginsberg
Cisco Systems
US
Email: ginsberg@cisco.com
8. References

8.1. Normative References

[I-D.bashandy-isis-srv6-extensions]
Ginsberg, L., Psenak, P., Filsfils, C., Bashandy, A.,
Decraene, B., and Z. Hu, "IS-IS Extensions to Support
Routing over IPv6 Dataplane", draft-bashandy-isis-
srv6-extensions-03 (work in progress), June 2018.

[I-D.dawra-idr-srv6-vpn]
Dawra, G., Filsfils, C., Dukes, D., Brissette, P.,
Camarillo, P., Leddy, J., daniel.voyer@bell.ca, d.,
daniel.bernier@bell.ca, d., Steinberg, D., Raszuk, R.,
Decraene, B., Matsushima, S., and S. Zhuang, "BGP
Signaling of IPv6-Segment-Routing-based VPN Networks",
draft-dawra-idr-srv6-vpn-04 (work in progress), June 2018.

[I-D.filsfils-spring-srv6-network-programming]
Filsfils, C., Camarillo, P., Leddy, J.,
daniel.voyer@bell.ca, d., Matsushima, S., and Z. Li, "SRv6
Network Programming", draft-filsfils-spring-srv6-network-
programming-05 (work in progress), July 2018.

[I-D.ietf-6man-segment-routing-header]
Filsfils, C., Previdi, S., Leddy, J., Matsushima, S., and
d. daniel.voyer@bell.ca, "IPv6 Segment Routing Header
(SRH)", draft-ietf-6man-segment-routing-header-14 (work
in progress), June 2018.

[I-D.ietf-idr-bgp-ls-segment-routing-ext]
Previdi, S., Talaulikar, K., Filsfils, C., Gredler, H.,
and M. Chen, "BGP Link-State extensions for Segment
Routing", draft-ietf-idr-bgp-ls-segment-routing-ext-08
(work in progress), May 2018.

[I-D.ietf-idr-bgpls-segment-routing-epe]
Previdi, S., Filsfils, C., Patel, K., Ray, S., and J.
Dong, "BGP-LS extensions for Segment Routing BGP Egress
Peer Engineering", draft-ietf-idr-bgpls-segment-routing-
epe-15 (work in progress), March 2018.
8.2. Informative References

[I-D.li-ospf-ospfv3-srv6-extensions]

[I-D.ietf-spring-segment-routing]

[I-D.ietf-spring-segment-routing-central-epe]

Authors' Addresses

Gaurav Dawra (editor)
LinkedIn
USA
Email: gdawra.ietf@gmail.com

Clarence Filsfils
Cisco Systems
Belgium
Email: cfilsfil@cisco.com

Ketan Talaulikar (editor)
Cisco Systems
India
Email: ketant@cisco.com

Mach Chen
Huawei
China
Email: mach.chen@huawei.com

Daniel Bernier
Bell Canada
Canada
Email: daniel.bernier@bell.ca

Jim Uttaro
AT&T
USA
Email: ju1738@att.com
Bruno Decraene
Orange
France

Email: bruno.decraene@orange.com

Hani Elmalky
Ericsson
USA

Email: hani.elmalky@gmail.com