Using GOST R 34.10-2012 and GOST R 34.11-2012 algorithms with the Internet X.509 Public Key Infrastructure
draft-deremin-rfc4491-bis-00

Abstract

This document updates RFC 3279 and RFC 4491. It describes encoding formats, identifiers, and parameter formats for the algorithms GOST R 34.10-2012 and GOST R 34.11-2012 for use in Internet X.509 Public Key Infrastructure (PKI).

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 1, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must...
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction ... 2
 1.1. Requirements Language 3
2. Signature algorithm support 3
3. Hash functions support 4
4. Subject Public Keys Information Fields 4
 4.1. Public Key identifiers 4
 4.2. Public Key parameters 5
 4.3. Public Key encoding 6
 4.4. Key usage extension 6
5. Qualified certificates extensions 7
 5.1. Distinguished Name additions 7
 5.2. Certificate policies 8
 5.3. Subject Sign Tool 8
 5.4. Issuer Sign Tool 8
6. IANA Considerations 9
7. Security Considerations 9
8. References ... 9
 8.1. Normative References 9
 8.2. Informative References 10
Appendix A. GostR3410-2012-PKISyntax 10
Appendix B. Public key parameters 13
Appendix C. Test Examples 13
 C.1. GOST R 34.10-2001 Test parameters (256 bit private key
 length) ... 13
 C.1.1. Certificate request 14
 C.1.2. Certificate 15
 C.1.3. Certificate Revocation List 16
 C.2. GOST R 34.10-2012 TC26-256-A parameters (256 bit private
 key length) 17
 C.3. GOST R 34.10-2012 Test parameters (512 bit private key
 length) .. 17
 C.3.1. Certificate request 18
 C.3.2. Certificate 19
 C.3.3. Certificate Revocation List 21
Appendix D. Contributors 21
Authors’ Addresses 22

1. Introduction

This document supplements [RFC3279]. It describes the conventions
for using the GOST R 34.10-2012 [GO3410-2012] (see [RFC7091])
signature algorithm and GOST R 34.11-2012 [GO3411-2012] (see
Internet-Draft PKIX: GOST R 34.10-2012, GOST R 34.11-2012 October 2019

([RFC6986]) hash function in the Internet X.509 Public Key Infrastructure (PKI) ([RFC5280]).

This specification defines the contents of the signatureAlgorithm, signatureValue, signature, and subjectPublicKeyInfo fields within X.509 Certificates and CRLs. For each algorithm, the appropriate alternatives for the keyUsage certificate extension are provided.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Signature algorithm support

Conforming CAs MAY use GOST R 34.10-2012 signature algorithm to sign certificates and CRLs. This signature algorithm MUST always be used with GOST R 34.11-2012 hash function. It may use keys length of either 256 bits or 512 bits.

The ASN.1 object identifier used to identify GOST R 34.10-2012 signature algorithm with 256-bit key length and GOST R 34.11-2012 hash function with 256-bit hash code is:

id-tc26-signwithdigest-gost3410-12-256 OBJECT IDENTIFIER ::= { iso(1) member-body(2) ru(643) rosstandart(7) tc26(1) algorithms(1) signwithdigest(3) gost3410-12-256(2)}.

GOST R 34.10-2012 signature algorithm with 256-bit key length generates a digital signature in the form of two 256-bit numbers, r and s. Its octet string representation consists of 64 octets, where the first 32 octets contain the big-endian representation of s and the second 32 octets contain the big-endian representation of r.

The ASN.1 object identifier used to identify GOST R 34.10-2012 signature algorithm with 512-bit key length and GOST R 34.11-2012 hash function with 512-bit hash code is:

id-tc26-signwithdigest-gost3410-12-512 OBJECT IDENTIFIER ::= { iso(1) member-body(2) ru(643) rosstandart(7) tc26(1) algorithms(1) signwithdigest(3) gost3410-12-512(3)}.

GOST R 34.10-2012 signature algorithm with 512-bit key length generates a digital signature in the form of two 512-bit numbers, r and s. Its octet string representation consists of 128 octets, where the first 64 octets contain the big-endian representation of s and the second 64 octets contain the big-endian representation of r.
When either of these OID are used as the algorithm field in an AlgorithmIdentifier structure, the encoding MUST omit the parameters field.

The described definition of a signature value is directly usable in CMS [RFC5652], where such values are represented as octet strings. However, signature values in certificates and CRLs [RFC5280] are represented as bit strings, and thus the octet string representation must be converted.

To convert an octet string signature value to a bit string, the most significant bit of the first octet of the signature value SHALL become the first bit of the bit string, and so on through the least significant bit of the last octet of the signature value, which SHALL become the last bit of the bit string.

3. Hash functions support

The ASN.1 object identifier used to identify GOST R 34.11-2012 hash function with 256-bit hash code is:

id-tc26-digest-gost3411-12-256 OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) ru(643) rosstandart(7) tc26(1)
 algorithms(1) digest(2) gost3411-12-256(2)}.

The ASN.1 object identifier used to identify GOST R 34.11-2012 hash function with 512-bit hash code is:

id-tc26-digest-gost3411-12-512 OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) ru(643) rosstandart(7) tc26(1)
 algorithms(1) digest(2) gost3411-12-512(3)}.

When either of these OID are used as the algorithm field in an AlgorithmIdentifier structure, the encoding MUST omit the parameters field.

4. Subject Public Keys Information Fields

4.1. Public Key identifiers

GOST R 34.10-2012 public keys with 256 bits private key length are identified by the following OID:

id-tc26-gost3410-12-256 OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) ru(643) rosstandart(7) tc26(1)
 algorithms(1) sign(1) gost3410-12-256(1)}.
GOST R 34.10-2012 public keys with 512 bits private key length are identified by the following OID:

```
id-tc26-gost3410-12-512 OBJECT IDENTIFIER ::=  
{ iso(1) member-body(2) ru(643) rosstandart(7) tc26(1)  
    algorithms(1) sign(1) gost3410-12-512(2)}.
```

4.2. Public Key parameters

When either of these identifiers appear as algorithm field in SubjectPublicKeyInfo.algorithm.algorithm field, parameters field MUST have the following structure:

```
GostR3410-2012-PublicKeyParameters ::= SEQUENCE
{
    publicKeyParamSet OBJECT IDENTIFIER,  
    digestParamSet OBJECT IDENTIFIER OPTIONAL  
}
```

where:

- **publicKeyParamSet** - public key parameters identifier for GOST R 34.10-2012 (see Sections 5.1 and 5.2 of [RFC7836] or Appendix B) or GOST R 34.10-2001 (see Section 8.4 of [RFC4357]) parameters.

- **digestParamSet** - parameter identifier for corresponding GOST R 34.11-2012 (See Section 3).

The field `digestParamSet`:

- SHOULD be omitted if GOST R 34.10-2012 signature algorithm is used with 512-bit key length;

- MUST be present and must be equal to `id-tc26-digest-gost3411-12-256` id one of the following values is used as `publicKeyParamSet`:

 * "id-GostR3410-2001-CryptoPro-A-ParamSet",
 * "id-GostR3410-2001-CryptoPro-B-ParamSet",
 * "id-GostR3410-2001-CryptoPro-C-ParamSet",
 * "id-GostR3410-2001-CryptoPro-XchA-ParamSet",
 * "id-GostR3410-2001-CryptoPro-XchB-ParamSet";
4.3. Public Key encoding

The GOST R 34.10-2012 public key MUST be ASN.1 DER encoded as an OCTET STRING. This encoding SHALL be used as the content (i.e., the value) of the subjectPublicKey field (a BIT STRING) of SubjectPublicKeyInfo structure.

GostR3410-2012-256-PublicKey ::= OCTET STRING (64),
GostR3410-2012-512-PublicKey ::= OCTET STRING (128).

"GostR3410-2012-256-PublicKey" MUST contain 64 octets, where the first 32 octets contain the little-endian representation of "x" and the second 32 octets contains the little-endian representation of "y" coordinates of the public key.

"GostR3410-2012-512-PublicKey" MUST contain 128 octets, where the first 64 octets contain the little-endian representation of "x" and the second 64 octets contains the little-endian representation of "y" coordinates of the public key.

4.4. Key usage extension

If the KeyUsage extension is present in a certificate with GOST R 34.10-2012 public key, the following values MAY be present:

- "digitalSignature" (0),
- "contentCommitment" (1),
- "keyAgreement" (4),
- "keyCertSign" (5),
- "cRLSign" (6),
o "encipherOnly" (7),
o "decipherOnly" (8).

Note that "contentCommitment" was named "nonRepudiation" in previous versions of X.509.

If the key is going to be used for key agreement, flag "keyAgreement" MUST be present in "KeyUsage" extension with "encipherOnly" and "decipherOnly" flags being optional. However flags "encipherOnly" and "decipherOnly" flags MUST NOT be present simultaneously.

5. Qualified certificates extensions

This section defines additional object identifiers (OIDs) for use in qualified certificates for checking digital signatures.

5.1. Distinguished Name additions

OGRN is the main state registration number of juridical entities.

OGRN ::= NUMERIC STRING 13

Corresponding OID is "1.2.643.100.1".

SNILS is the individual insurance account number.

SNILS ::= NUMERIC STRING 11

Corresponding OID is "1.2.643.100.3".

OGRNIP is the main state registration number of individual entrepreneurs.

OGRNIP ::= NUMERIC STRING 15

Corresponding OID is "1.2.643.100.5".

INN is the individual taxpayer number (ITN).

INN ::= NUMERIC STRING 12

Corresponding OID is "1.2.643.3.131.1.1".
5.2. Certificate policies

Russian national regulation body for cryptography defines several security levels of cryptographic tools. Depending on the class of cryptographic token used by certificate owner the following OIDs must be included into certificate policies. Certificate should include OIDs starting from the lowest one (KC1) up to the strongest applicable.

- "1.2.643.100.113.1" - class KC1,
- "1.2.643.100.113.2" - class KC2,
- "1.2.643.100.113.3" - class KC3,
- "1.2.643.100.113.4" - class KB1,
- "1.2.643.100.113.5" - class KB2,
- "1.2.643.100.113.6" - class KA1.

5.3. Subject Sign Tool

To denote the token or software type used by certificate owner following non-critical "SubjectSignTool" extension with OID "1.2.643.100.111" should be included. It is defined as

SubjectSignTool ::= UTF8String SIZE(1..200) .

5.4. Issuer Sign Tool

To denote the tools used to generate key pair and tools used by CA to sign certificate following non-critical "IssuerSignTool" extension with OID "1.2.643.100.112" should be included. It is defined as

IssuerSignTool ::= SEQUENCE {
 signTool UTF8String SIZE(1..200),
 cATool UTF8String SIZE(1..200),
 signToolCert UTF8String SIZE(1..100),
 cAToolCert UTF8String SIZE(1..100) },

where:

- "signTool" identifies tools used to create key pair,
- "cATool" identifies tools used by certificate authority,
6. IANA Considerations

This memo includes no request to IANA.

7. Security Considerations

It is RECOMMENDED that applications verify signature values and subject public keys to conform to [RFC7091] standard prior to their use.

It is RECOMMENDED that CAs and applications make sure that the private key for creating signatures is not used for more than its allowed validity period (typically 15 months for GOST R 34.10-2012 algorithm).

For security discussion concerning use of algorithm parameters, see [ANS17] and the Security Considerations sections in [RFC4357], [RFC7836].

8. References

8.1. Normative References

8.2. Informative References

Appendix A. GostR3410-2012-PKISyntax

GostR3410-2012-PKISyntax
 { iso(1) member-body(2) ru(643) rosstandart(7)
 tc26(1) modules(0) gostR3411-2012-PKISyntax(2) }

DEFINITIONS ::= BEGIN
 -- EXPORTS All --
-- ASN.1 TC 26 root
id-tc26 OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) ru(643) rosstandart(7) tc26(1) }

-- Signature algorithm
id-tc26-sign OBJECT IDENTIFIER ::=
 { id-tc26 algorithms(1) sign(1) }

-- Signature algorithm parameters
id-tc26-sign-constants OBJECT IDENTIFIER ::=
 { id-tc26-sign-constants sign(1) }

-- GOST R 34.10-2012 / 256 bits signature algorithm parameters
id-tc26-gost-3410-2012-256-constants OBJECT IDENTIFIER ::=
 { id-tc26-sign-constants gost-3410-2012-256(1) }

-- GOST R 34.10-2012 / 512 bits signature algorithm parameters
id-tc26-gost-3410-2012-512-constants OBJECT IDENTIFIER ::=
 { id-tc26-sign-constants gost-3410-2012-512(2) }

-- GOST R 34.10-2012 / 256 bits signature algorithm
id-tc26-gost3410-2012-256 OBJECT IDENTIFIER ::=
 { id-tc26-sign gost3410-2012-256(1) }

-- GOST R 34.10-2012 / 512 bits signature algorithm
id-tc26-gost3410-2012-512 OBJECT IDENTIFIER ::=
 { id-tc26-sign gost3410-2012-512(2) }

-- Signature & hash algorithm GOST R 34.10-2012 / 256 bits
-- with GOST R 34.11-2012
id-tc26-signwithdigest-gost3410-2012-256 OBJECT IDENTIFIER ::=
 { id-tc26-signwithdigest gost3410-2012-256(2) }

-- Signature & hash algorithm GOST R 34.10-2012 / 512 bits
-- with GOST R 34.11-2012
id-tc26-signwithdigest-gost3410-2012-512 OBJECT IDENTIFIER ::=
 { id-tc26-signwithdigest gost3410-2012-512(3) }

-- GOST R 34.10-2012 / 256 bits Signature algorithm parameters ID:
-- "Set A"
id-tc26-gost-3410-2012-256-paramSetA OBJECT IDENTIFIER ::=
 { id-tc26-gost-3410-2012-256-constants paramSetA(1) }

-- GOST R 34.10-2012 / 256 bits signature algorithm parameters ID:
-- "Set B"
id-tc26-gost-3410-2012-256-paramSetB OBJECT IDENTIFIER ::=
 { id-tc26-gost-3410-2012-256-constants paramSetB(2) }
-- GOST R 34.10-2012 / 256 bits signature algorithm parameters ID:
-- "Set C"
id-tc26-gost-3410-2012-256-paramSetC OBJECT IDENTIFIER ::=
 { id-tc26-gost-3410-2012-256-constants paramSetC(3) }

-- GOST R 34.10-2012 / 256 bits signature algorithm parameters ID:
-- "Set D"
id-tc26-gost-3410-2012-256-paramSetD OBJECT IDENTIFIER ::=
 { id-tc26-gost-3410-2012-256-constants paramSetD(4) }

-- GOST R 34.10-2012 / 512 bits signature algorithm parameters ID:
-- "Test set"
id-tc26-gost-3410-2012-512-paramSetTest OBJECT IDENTIFIER ::=
 { id-tc26-gost-3410-2012-512-constants paramSetTest(0) }

-- GOST R 34.10-2012 / 512 bits signature algorithm parameters ID:
-- "Set A"
id-tc26-gost-3410-2012-512-paramSetA OBJECT IDENTIFIER ::=
 { id-tc26-gost-3410-2012-512-constants paramSetA(1) }

-- GOST R 34.10-2012 / 512 bits signature algorithm parameters ID:
-- "Set B"
id-tc26-gost-3410-2012-512-paramSetB OBJECT IDENTIFIER ::=
 { id-tc26-gost-3410-2012-512-constants paramSetB(2) }

-- GOST R 34.10-2012 / 512 bits signature algorithm parameters ID:
-- "Set C"
id-tc26-gost-3410-2012-512-paramSetC OBJECT IDENTIFIER ::=
 { id-tc26-gost-3410-2012-512-constants paramSetC(3) }

-- Public key GOST R 34.10-2012 / 256 bits
GostR3410-2012-256-PublicKey ::= OCTET STRING (SIZE (64))
-- Public key GOST R 34.10-2012 / 512 bits
GostR3410-2012-512-PublicKey ::= OCTET STRING (SIZE (128))
-- Public key GOST R 34.10-2012
GostR3410-PublicKey ::= OCTET STRING (SIZE (64 | 128))

-- Public key parameters GOST R 34.10-2012
GostR3410-2012-PublicKeyParameters ::=
 SEQUENCE {
 publicKeyParamSet OBJECT IDENTIFIER,
 digestParamSet OBJECT IDENTIFIER OPTIONAL
 }
Appendix B. Public key parameters

Here we define three new object identifiers for three existing public key parameter sets defined in [RFC4357]. These object identifiers MUST be used with GOST R 34.10-2012 public keys only.

id-tc26-gost-3410-2012-256-paramSetB OBJECT IDENTIFIER ::= { iso(1) member-body(2) ru(643) rosstandart(7) tc26(1) ru(643) rosstandart(7) tc26(1) constants(2) sign-constants(1) gost-3410-12-256-constants(1) paramSetB(2) }.

The elliptic curve of this parameter set is the same as of id-GostR3410-2001-CryptoPro-A-ParamSet which can be found in [RFC4357].

id-tc26-gost-3410-2012-256-paramSetC OBJECT IDENTIFIER ::= { iso(1) member-body(2) ru(643) rosstandart(7) tc26(1) ru(643) rosstandart(7) tc26(1) constants(2) sign-constants(1) gost-3410-12-256-constants(1) paramSetC(3) }.

The elliptic curve of this parameter set is the same as of id-GostR3410-2001-CryptoPro-B-ParamSet which can be found in [RFC4357].

id-tc26-gost-3410-2012-256-paramSetD OBJECT IDENTIFIER ::= { iso(1) member-body(2) ru(643) rosstandart(7) tc26(1) ru(643) rosstandart(7) tc26(1) constants(2) sign-constants(1) gost-3410-12-256-constants(1) paramSetD(4) }.

The elliptic curve of this parameter set is the same as of id-GostR3410-2001-CryptoPro-C-ParamSet which can be found in [RFC4357].

Appendix C. Test Examples

C.1. GOST R 34.10-2001 Test parameters (256 bit private key length)

This example uses curve defined in Section 7.1 of [RFC7091].

Private key is

d = 0x7A929ADE789BB9BE10ED359DD39A72C11B60961F49397EEE1D19CE9891EC3B28

Public key is

X = 0x7F2B49E270DB6D90D8595BEC458B50C58585BA1D4E9B788F6689DBD8E56FD80B
Y = 0x26F1B489D6701D185C8413A977B3CBBABF64D1C593D266627DFFB101A87FF77DA
C.1.1. Certificate request

```
-----BEGIN CERTIFICATE REQUEST-----
MIHTMIGBAgEAMBIxEDAOBgNVBAMTB0V4YW1wbGUwZjAfBggrBgEFBQcDQYJKoZIh
hQMCAwIBAQR7DH5gQHgFQAcgNDAARAC9hv5djb1WiPeJtOHbqPhcVQi0XsW1nYgB
coOJK3/ad/7Hg7dSiF0F0Svuzx7HpBy1XRHv6WiBtXjQAMAoGCCqFACwC
AQMCAL0PqXuqIXD1AmBeZfi2FV1TlfLJwvL1j2fz3rMoBqijS8asUgoDN
ntVv7aQ2dAU1VQnZ7g60EF9OdEkw==
-----END CERTIFICATE REQUEST-----
```

0 211: SEQUENCE {
 3 129: SEQUENCE {
 6 1: INTEGER 0
 9 18: SEQUENCE {
 1 16: SET {
 13 14: SEQUENCE {
 15 3: OBJECT IDENTIFIER commonName (2 5 4 3)
 20 7: PrintableString 'Example'
 : : }
 : : }
 29 102: SEQUENCE {
 31 31: SEQUENCE {
 33 8: OBJECT IDENTIFIER '1 2 643 7 1 1 1 1'
 43 19: SEQUENCE {
 45 7: OBJECT IDENTIFIER testSignParams (1 2 643 2 2 35 0)
 54 8: OBJECT IDENTIFIER '1 2 643 7 1 1 2 2'
 : : : }
 : : : }
 64 67: BIT STRING, encapsulates {
 67 64: OCTET STRING
 : 0B D8 6F E5 D8 DB 89 66 8F 78 9B 4E 1D BA 85 85
 : C5 50 8B 45 EC 5B 59 D8 90 6D DB 70 E2 49 2B 7F
 : DA 77 FF 87 1A 10 FB DF 27 66 D2 93 C5 D1 64 AF
 : BB 3C 7B 97 3A 41 C8 85 D1 1D 70 D6 89 B4 F1 26
 : }
 : : : }
 133 0: [0] { }
 : : }
135 10: SEQUENCE {
137 8: OBJECT IDENTIFIER '1 2 643 7 1 1 3 2'
 : : }
147 65: BIT STRING
 : 6A AA B3 8E 35 D4 AA A5 17 94 03 01 79 91 22 D8
 : 55 48 4F 57 9F 4C BB 96 D6 3C DF DF 3A CC 43 2A
 : 41 AA 28 D2 F1 AB 14 82 80 CD 9E D5 6F ED A4 19
 : 74 05 35 54 A4 27 67 B8 3A D0 43 FD 39 DC 04 93
 : : : }

C.1.2. Certificate

-----BEGIN CERTIFICATE-----
MIIBGDCBxqADAgECAgEKMAoGCCqFAwcBAQMCMBiXEDA OBgNVBA MTB0V4YW1wbGUwIBcNMDEwMTAxMDAwMDAwWWhgPMjAI MDEyMzEwMDAwMDBaMBIXEDA OBgNVBA MTB0V4Y W1wbGUwZjAfBg gzhQMHAQEBATATBgcqhQMCAiMA BgghQMHAQE CA qNDAARAC9hv5djobWapE jToHbgFhcV Qi0X w1nYkG3bcOJJK3/ad/+H GhD73ydm0pPF0WS vuxz7lzpB yIXRHX D wbTxjJAKB gghQMHAQE DAgNBAEOGD1x BQFcTP Hx1E pISzpCT8mas l1Fb idKjqGC2u+ Qaco0v GrFIKA z7Vb+2kGXF N VSK J2e40t BD/TncB J M=
-----END CERTIFICATE-----

0 280: SEQUENCE {
4 198: SEQUENCE {
7 3: [0] {
9 1: INTEGER 2
 : }
12 1: INTEGER 10
15 10: SEQUENCE {
17 8: OBJECT IDENTIFIER ’1 2 643 7 1 1 3 2’
 : }
27 18: SEQUENCE {
29 16: SET {
31 14: SEQUENCE {
33 3: OBJECT IDENTIFIER commonName (2 5 4 3)
38 7: PrintableString ’Example’
 : }
 : }
47 32: SEQUENCE {
49 13: UTCTime 01/01/2001 00:00:00 GMT
64 15: GeneralizedTime 31/12/2050 00:00:00 GMT
 : }
81 18: SEQUENCE {
83 16: SET {
85 14: SEQUENCE {
87 3: OBJECT IDENTIFIER commonName (2 5 4 3)
92 7: PrintableString ’Example’
 : }
 : }
101 102: SEQUENCE {
103 31: SEQUENCE {
105 8: OBJECT IDENTIFIER ’1 2 643 7 1 1 1 1’
115 19: SEQUENCE {
117 7: OBJECT IDENTIFIER testSignParams (1 2 643 2 2 35 0)
126 8: OBJECT IDENTIFIER ’1 2 643 7 1 1 2 2’
 : }
 : }

Eremin-Solenikov, et al. Expires May 1, 2020
C.1.3. Certificate Revocation List
C.2. GOST R 34.10-2012 TC26-256-A parameters (256 bit private key length)

[[Q1: Provide examples using Edwards curve. --DES]]

C.3. GOST R 34.10-2012 Test parameters (512 bit private key length)

This example uses curve [[Q2: Define the curve or reference a document. --DES]]

Private key is

d = 0x0BA6048AADA241BA40936D47756D7C93091A0E8514669700EE7508E508B1020\72E8123B2200A0563322DAD2B72714A2636B7BFD18AADFC62967821FA18DD4
Public key is:

\[
\begin{align*}
X &= 0x115DC5BC96760C7B48598D8AB9E740D4C4A85A65BE33C1815B5C320C854621DD \\
&\quad 5A515B56D13314AF69B5C5B924C8B4DDFF75C45415C1D9DD9D33612CD530EFE1 \\
Y &= 0x37C7C90CD40BF05621DC3AC1B751CFA0E2634FA0503B3D52639F5D7FB2AFD61 \\
&\quad EA199441D943FF70C70A2759A3CDB84C114E1F9339FDF2F35ECA93677BEEC
\end{align*}
\]

\subsection{C.3.1. Certificate request}

-----BEGIN CERTIFICATE REQUEST-----
MIIBTzCBvAIBADASMRa0DgYDVQDEwFeFxGx1MIGmBcGCCqFAwcBAQECMAAsGCSqFAwcBAgECAAObhAAEgYDh7zDVLGe23dmHvBvz3302LTJJbvmGmFDPRVII0RWT0OHroUMmLx0bcEzvmVaqMTUQ0eio12SHsMdp8a8xV0R7L53NqnsNX/y/TmTH04RTLjNo1knCsfw5/92UGUGephe/Sq3f12fI1I901CgT2PioM99t8E63CFDwvUoMnH63AMAOGCCqFAwcBAQMDA4GBAEM7HWzkC1Lh5XNt+sWqixoOcmkBnZEn4hJg/J1qWf2HyTvTibUnWlhwkgdagumTq9YHnt/xwvP9LI0x6HRVgyhvpgveJGJipedeV4ePGie5RKjyC7c3JKphjuqPysO1SSVYSGg8cnsGXYQaZhQjgyTvLzZxcMxfk0Thc642-----END CERTIFICATE REQUEST-----

0 335: SEQUENCE {
4 188: SEQUENCE {
7 1: INTEGER 0
10 18: SEQUENCE {
12 16: SET {
14 14: SEQUENCE {
16 3: OBJECT IDENTIFIER commonName (2 5 4 3)
21 7: PrintableString 'Example'
}
30 160: SEQUENCE {
33 23: SEQUENCE {
35 8: OBJECT IDENTIFIER '1.2.643.7.1.1.2'
45 11: SEQUENCE {
47 9: OBJECT IDENTIFIER '1.2.643.7.1.2.2.0'
}
58 132: BIT STRING, encapsulates {
62 128: OCTET STRING :
E1 EF 30 D5 2C 61 33 DD D9 9D 1D 5C 41 45 5C F7 :
DF 8B 92 5B BC 69 AF 14 33 D1 56 58 51 5A :
DD 21 46 85 DC 32 5C 5B 81 C1 33 BE 65 5A A8 C4 :
D4 40 E7 B9 8A 8D 59 48 7B 0C 76 96 BC 5C 5D 11 :
EC BE 77 36 A9 EC 35 7F F2 FD 39 93 1F 4E 11 4C :
B8 CD A3 59 27 0A C7 F0 E7 FF 43 D9 41 94 19 EA :
61 FD 2A B7 7F 5D 9F 63 52 3D 3B 50 A0 4F 63 E2 :
A0 CF 51 B7 C1 3A DC 21 56 0F 0B D4 0C 59 C7 37

Eremín-Soleníkov, et al. Expires May 1, 2020
C.3.2. Certificate

-----BEGIN CERTIFICATE-----
MIIBITCQgAwIBAgIBAgIBAzaAKBggqhQMHAQEDAzASMRAwDgYDVQQDEwdFeGFltcGxl
MCAXDTAxMDswNDAwMDAwNFoYDzIwMTAwMDAwM

48 32: SEQUENCE {
50 13: UTCTime 01/01/2001 00:00:00 GMT
65 15: GeneralizedTime 31/12/2050 00:00:00 GMT
 : }
82 18: SEQUENCE {
84 16: SET {
86 14: SEQUENCE {
88 3: OBJECT IDENTIFIER commonName (2 5 4 3)
93 7: PrintableString 'Example'
 : }
 : }
102 160: SEQUENCE {
105 23: SEQUENCE {
107 8: OBJECT IDENTIFIER '1 2 643 7 1 1 1 2'
117 11: SEQUENCE {
119 9: OBJECT IDENTIFIER '1 2 643 7 1 2 1 2 0'
 : }
 : }
130 132: BIT STRING, encapsulates {
134 128: OCTET STRING
 : E1 EF 30 D5 2C 61 33 DD D9 9D 1D 5C 41 45 5C F7
 : DF 4D 8B 4C 92 5B BC 69 AF 14 33 D1 56 58 51 5A
 : DD 21 46 85 0C 32 5C 5B 81 C1 33 BE 65 5A A8 C4
 : D4 40 E7 B9 8A 8D 59 48 7B 0C 76 96 BC C5 5D 11
 : EC BE 77 36 A9 EC 35 7F F2 FD 39 93 1F 4E 11 4C
 : B8 CD A3 59 27 0A C7 F0 E7 FF 43 D9 41 94 19 EA
 : 61 FD 2A B7 7F 5D 9F 63 52 3D 3B 50 A0 4F 63 E2
 : A0 CF 51 B7 C1 3A DC 21 56 0F 0B D4 0C C9 C7 37
 : }
 : }
265 10: SEQUENCE {
267 8: OBJECT IDENTIFIER '1 2 643 7 1 1 3 3'
 : }
277 129: BIT STRING
 : 3D 55 DE 6D 87 C3 D5 F8 4E E8 46 8E 8E 8B 2D 96
 : E0 34 12 E7 E7 A7 62 7D A0 83 E7 C5 76 74 26 DB
 : 6A F6 31 53 72 19 15 32 0A 3D A1 F9 A3 46 33 BA
 : FC ED 0E F6 04 F7 2F 1B E5 2F 37 A2 18 12 92 6C
 : 2F 86 FA 60 A0 81 09 1A 23 DD 79 5E 1E 3C 68 9E
 : E5 12 A3 C8 2E E0 DC C2 64 3C 78 EE A8 FC AC D3
 : 54 92 55 84 86 B2 0F 1C 9E C1 97 C9 06 99 85 02
 : 60 C9 3B CB CD 9C 5C 33 17 E1 93 44 E1 73 AE 36
 : }
C.3.3. Certificate Revocation List

-----BEGIN X509 CRL-----
MIHTMEECAQEwCgYIKoUDBwEBAwwgEjEQMA4GA1UEAxMHRXhhbXbsZcNMTQwMTAx
MDAwMDAwWhcNMTQwMTAyMDAwMDAwWjAKBggqhQMQHAQEDAwObgQA6/t67ntV1oT72
E3z8x2ZgkXMu7NpCh/Ax+ik7uoIMHIkJU3AmGxGcHs/vkx69c6jQ1nH1ZVMc5/z
q77ZBR9NL4b6YKCBCoj3X1eHjxonuUSo8gu4NzCZDx47qj8rNNUk1WEhrIPlHJ7B
18kGmYUCYMK7y82cXDMX4ZNE4XOuNg==
-----END X509 CRL-----

0 211: SEQUENCE {
 3 65: SEQUENCE {
 5 1: INTEGER 1
 8 10: SEQUENCE {
 10 8: OBJECT IDENTIFIER '1 2 643 7 1 1 3 3'
 : }
 20 18: SEQUENCE {
 22 16: SET {
 24 14: SEQUENCE {
 26 3: OBJECT IDENTIFIER commonName (2 5 4 3)
 31 7: PrintableString 'Example'
 : }
 : }
 : }
 40 13: UTCTime 01/01/2014 00:00:00 GMT
 55 13: UTCTime 02/01/2014 00:00:00 GMT
 : }
 70 10: SEQUENCE {
 72 8: OBJECT IDENTIFIER '1 2 643 7 1 1 3 3'
 : }
 82 129: BIT STRING
 : 3A 13 FB 7A EC DB 55 60 EE F6 13 7C FC 5D D6 46
 : 91 73 2E BF B3 69 0A 1F C0 C7 E8 A4 EE EA 08 30
 : 7D 64 8D 4D C0 98 6C 46 A8 7B 3F BE 4C 7A F4 2E
 : A3 43 59 C7 95 95 4C A3 9F F3 AB BE D9 05 1F 4D
 : 2F 86 FA 60 A0 81 09 1A 23 DD 79 5E 1E 3C 68 9E
 : E5 12 A3 C8 2E E0 DC C2 64 3C 78 EE A8 FC AC D3
 : 54 92 55 84 86 B2 0F 1C 9E C1 97 C9 06 99 85 02
 : 60 C9 3B CB CD 9C 5C 33 17 E1 93 44 EE 73 AE 36
 : }

Appendix D. Contributors

- Semen Pianov
 InfoTeCS JSC
 Semen.Pianov@infotecs.ru
Authors’ Addresses

Dmitry Eremin-Solenikov (editor)
Mentor Graphics (Ireland) Ltd.
Pevchesky lane, 12
Saint-Petersburg 197046
Russian Federation

Email: dbaryshkov@gmail.com

Vasily Nikolaev
CryptoPro
18, Suschevsky val
Moscow 127018
Russian Federation

Phone: +7 (495) 995-48-20
Email: nikolaev@cryptopro.ru

Aleksandr Chelpanov
InfoTeCS JSC
Bldg. 1, 1/23, Stary Petrovsko-Razumovskiy Proezd
Moscow 127287
Russian Federation

Phone: +7 (495) 737-61-92
Email: Aleksandr.Chelpanov@infotecs.ru