A YANG model to manage the optical interface parameters for an external transponder in a WDM network
draft-dharini-ccamp-dwdm-if-yang-00

Abstract

This memo defines a Yang model that translates the SNMP mib module defined in draft-galikunze-ccamp-dwdm-if-snmp-mib for managing single channel optical interface parameters of DWDM applications. This model is to support the optical parameters specified in ITU-T G.698.2 [ITU.G698.2] and application identifiers specified in ITU-T G.874.1 [ITU.G874.1]. Note that G.874.1 encompasses vendor-specific codes, which if used would make the interface a single vendor IaDI and could still be managed.

The Yang model defined in this memo can be used for Optical Parameters monitoring and/or configuration of the endpoints of the multi-vendor IaDI optical link.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 18, 2016.

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction .. 3
2. The Internet-Standard Management Framework 4
3. Conventions ... 4
4. Overview ... 4
 4.1. Optical Parameters Description 5
 4.1.1. Rs-Ss Configuration 6
 4.1.2. Table of Application Codes 7
4.2. Use Cases ... 7
4.3. Optical Interface for external transponder in a WDM network 7
5. Structure of the Yang Module 8
6. Yang Module ... 8
7. Security Considerations 13
8. IANA Considerations 13
9. Acknowledgements 13
10. Contributors .. 13
11. References ... 14
 11.1. Normative References 14
 11.2. Informative References 16
Appendix A. Change Log 17
Appendix B. Open Issues 17
Authors’ Addresses 17
1. Introduction

This memo defines a Yang model that translates the SNMP mib module defined in `draft-galikunze-ccamp-dwdm-if-snmp-mib` for managing single channel optical interface parameters of DWDM applications, using the approach specified in G.698.2. This model is to support the optical parameters specified in ITU-T G.698.2 [ITU.G698.2], application identifiers specified in ITU-T G.874.1 [ITU.G874.1] and the Optical Power at Transmitter and Receiver side. Note that G.874.1 encompasses vendor-specific codes, which if used would make the interface a single vendor IaDI and could still be managed.

[Editor’s note: In G.698.2 this corresponds to the optical path from point S to R; network media channel is also used and explained in `draft-ietf-ccamp-flexi-grid-fwk-02`]

Management will be performed at the edges of the network media channel (i.e., at the transmitters and receivers attached to the S and R reference points respectively) for the relevant parameters specified in G.698.2 [ITU.G698.2], G.798 [ITU.G798], G.874 [ITU.G874], and the performance parameters specified in G.7710/Y.1701 [ITU-T G.7710] and G.874.1 [ITU.G874.1].

G.698.2 [ITU.G698.2] is primarily intended for metro applications that include optical amplifiers. Applications are defined in G.698.2 [ITU.G698.2] using optical interface parameters at the single-channel connection points between optical transmitters and the optical multiplexer, as well as between optical receivers and the optical demultiplexer in the DWDM system. This Recommendation uses a methodology which does not explicitly specify the details of the optical network between reference point Ss and Rs, e.g., the passive and active elements or details of the design. The Recommendation currently includes unidirectional DWDM applications at 2.5 and 10 Gbit/s (with 100 GHz and 50 GHz channel frequency spacing). Work is still under way for 40 and 100 Gbit/s interfaces. There is possibility for extensions to a lower channel frequency spacing. This document specifically refers to the "application code" defined in the G.698.2 [ITU.G698.2] and included in the Application Identifier defined in G.874.1 [ITU.G874.1] and G.872 [ITU.G872], plus a few optical parameters not included in the G.698.2 application code specification.

This draft refers and supports the `draft-kdkgall-ccamp-dwdm-if-mng-ctrl-fwk`

The building of a yang model describing the optical parameters defined in G.698.2 [ITU.G698.2], and reflected in G.874.1 [ITU.G874.1], allows the different vendors and operator to retrieve,
provision and exchange information across the G.698.2 multi-vendor IaDI in a standardized way. In addition to the parameters specified in ITU recommendations the Yang models support also the "vendor specific application identifier", the Tx and Rx power at the Ss and Rs points and the channel frequency.

The Yang Model, reporting the Optical parameters and their values, characterizes the features and the performances of the optical components and allow a reliable link design in case of multi vendor optical networks.

Although RFC 3591 [RFC3591], which draft-galikunze-ccamp-DWDM-if-snmp-mib is extending, describes and defines the SNMP MIB of a number of key optical parameters, alarms and Performance Monitoring, as this RFC is over a decade old, it is primarily pre-OTN, and a more complete and up-to-date description of optical parameters and processes can be found in the relevant ITU-T Recommendations. The same considerations can be applied to the RFC 4054 [RFC4054].

2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

This memo specifies a Yang model for optical interfaces.

3. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119] In the description of OIDs the convention: Set (S) Get (G) and Trap (T) conventions will describe the action allowed by the parameter.

4. Overview
Figure 1 shows a set of reference points, for single-channel connection between transmitters (Tx) and receivers (Rx). Here the DWDM network elements include an OM and an OD (which are used as a pair with the opposing element), one or more optical amplifiers and may also include one or more OADMs.

---+ | DWDM Network Elements | +--+
 Ss | | Rs
 +---+ | | | +---+ | | +---+
 Tx L1-- |-> | +++++ | | +---- | | --|--->Rx L1
 +---- | | | +---- | | | +----
 Tx L2-- |-> | OM | -->| ------ |-->| OADM | --> | OD | --> | Rx L2
 +---- | | | +---- | | | +----
 Tx L3-- |-> | / | DWDM | | ^ | DWDM | | \ | --> | Rx L3
 +---- | | | / | Link | ---- | ---- | Link | | \ | +----
 +----------+ | | +----------+
 Rs v | Ss
 +-----+ +-----
 | RxLx | TxLx
 +-----+ +-----

Ss = reference point at the DWDM network element tributary output
Rs = reference point at the DWDM network element tributary input
Lx = Lambda x
OM = Optical Mux
OD = Optical Demux
OADM = Optical Add Drop Mux

from Fig. 5.1/G.698.2

Figure 1: External transponder in WDM networks

4.1. Optical Parameters Description

The link between the external transponders through a WDM network media channels are managed at the edges, i.e. at the transmitters (Tx) and receivers (Rx) attached to the S and R reference points respectively. The set of parameters that could be managed are defined by the "application code" notation.

The definitions of the optical parameters are provided below to increase the readability of the document, where the definition is...
ended by (R) the parameter can be retrieve with a read, when (W) it can be provisioned by a write, (R,W) can be either read or written.

4.1.1. Rs-Ss Configuration

The Rs-Ss configuration table allows configuration of Central Frequency, Power and Application codes as described in [ITU.G698.2] and G.694.1 [ITU.G694.1]
This parameter report the current Transceiver Output power, it can be either a setting and measured value (G, S).

Central frequency (see G.694.1 Table 1) (see G.694.1 Table 1):
This parameter indicates the Central frequency value that Ss and Rs will be set to work (in THz). See the details in Section 6 / G.694.1 (G, S).

Single-channel application codes(see G.698.2):
This parameter indicates the transceiver application code at Ss and Rs as defined in [ITU.G698.2] Chapter 5.4 - this parameter can be called Optical Interface Identifier OII as per [draft-martinelli-wson-interface-class](G).

Number of Single-channel application codes Supported
This parameter indicates the number of Single-channel application codes supported by this interface (G).

Current Laser Output power:
This parameter report the current Transceiver Output power, it can be either a setting and measured value (G, S).

Current Laser Input power:
This parameter report the current Transceiver Input power (G).

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>Get/Set</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central frequency Value</td>
<td>G,S</td>
<td>G.694.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.6</td>
</tr>
<tr>
<td>Single-channel application codes</td>
<td>G</td>
<td>G.698.2</td>
</tr>
<tr>
<td>Number of Single-channel application codes Supported</td>
<td>G</td>
<td>N.A.</td>
</tr>
<tr>
<td>Current Output Power</td>
<td>G,S</td>
<td>N.A.</td>
</tr>
<tr>
<td>Current Input Power</td>
<td>G</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Table 1: Rs-Ss Configuration
4.1.2. Table of Application Codes

This table has a list of Application codes supported by this interface at point R are defined in G.698.2.

Application code Identifier:
The Identifier for the Application code.

Application code Type:
This parameter indicates the transceiver type of application code at Ss and Rs as defined in [ITU.G874.1], that is used by this interface Standard = 0, PROPRIETARY = 1
The first 6 octets of the printable string will be the OUI (organizationally unique identifier) assigned to the vendor whose implementation generated the Application Identifier Code.

Application code Length:
The number of octets in the Application Code.

Application code:
This is the application code that is defined in G.698.2 or the vendor generated code which has the OUI.

4.2. Use Cases

The use cases are described in draft-kdkgall-ccamp-dwdm-if-mng-ctrl-fwk

4.3. Optical Interface for external transponder in a WDM network

The ietf-ext-xponder-wdm-if is an augment to the ietf-interface. It allows the user to set the application code/vendor transceiver class/Central frequency and the output power. The module can also be used to get the list of supported application codes/transceiver class and also the Central frequency/output power/input power of the interface.
module: ietf-ext-xponder-wdm-if
augment /if:interfaces/if:interface:
 +--rw optIfOChRsSs
 +--rw if-current-application-code
 | +--rw application-code-id uint8
 | +--rw application-code-type uint8
 | +--rw application-code-length uint8
 | +--rw application-code? string
 +--ro if-supported-application-codes
 | +--ro number-application-codes-supported? uint32
 | +--ro application-codes-list* [application-code-id]
 | +--ro application-code-id uint8
 | +--rw application-code-type uint8
 | +--rw application-code-length uint8
 | +--ro application-code? string
 +--rw output-power? int32
 +--ro input-power? int32
 +--rw central-frequency? uint32

notifications:
 +---n opt-if-och-central-frequency-change
 | +--ro if-name? leafref
 | +--ro new-central-frequency
 | +--ro central-frequency? uint32
 +---n opt-if-och-application-code-change
 | +--ro if-name? leafref
 | +--ro new-application-code
 | +--ro application-code-id? uint8
 | +--rw application-code-type uint8
 | +--rw application-code-length uint8
 | +--ro application-code? string

5. Structure of the Yang Module

 ietf-ext-xponder-wdm-if is a top level model for the support of this feature.

6. Yang Module

 The ietf-ext-xponder-wdm-if is defined as an extension to ietf interfaces.
module ietf-ext-xponder-wdm-if {
 namespace "urn:ietf:params:xml:ns:yang:ietf-ext-xponder-wdm-if";
 prefix ietf-ext-xponder-wdm-if;

 import ietf-interfaces {
 prefix if;
 }

 organization
 "IETF CCAMP
 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/ccamp/>;
 WG List: <mailto:ccamp@ietf.org>

 Editor: Dharini Hiremagalur
 <mailto:dharinih@juniper.net>";

description
 "This module contains a collection of YANG definitions for
 configuring Optical interfaces.

 Copyright (c) 2016 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Simplified
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).";

revision "2016-03-17" {
 description
 "Initial revision.";
 reference
 "";
}

grouping opt-if-och-application-code {

description "Application code entity.";
leaf application-code-id {
 type uint8 {
 range "1..255";
 }
 description
 "Id for the Application code";
}
leaf application-code-type {
 type uint8 {
 range "0..1";
 }
 description
 "Type for the Application code
 0 - Standard, 1 - Proprietary
 When the Type is Proprietary, then the
 first 6 octets of the application-code
 will be the OUI (organizationally unique
 identifier)";
}
leaf application-code-length {
 type uint8 {
 range "1..255";
 }
 description
 "Number of octets in the Application code";
}
leaf application-code {
 type string {
 length "1..255";
 }
 description "This parameter indicates the
 transceiver application code at Ss and Rs as
 defined in [ITU.G698.2] Chapter 5.3, that
 is/should be used by this interface.
 The optIfOChApplicationsCodeList has all the
 application codes supported by this
 interface.";
}
}

grouping opt-if-och-application-code-list {
 description "List of Application codes group.";
 leaf number-application-codes-supported {
type uint32;
description "Number of Application codes supported by this interface";
}

list application-code-list {
 key "application-code-id";
description "List of the application codes";
uses opt-if-och-application-code;
}

grouping opt-if-och-power {
description "Interface optical Power";
leaf output-power {
 type int32;
 units ".01dbm";
description "The output power for this interface in 0.01 dBm. The setting of the output power is optional";
}
leaf input-power {
 type int32;
 units ".01dbm";
 config false;
description "The current input power of this interface";
}
}

grouping opt-if-och-central-frequency {
description "Interface Central Frequency";
leaf central-frequency {
 type uint32;
description "This parameter indicate This parameter indicates the frequency of this interface";
}
}

notification opt-if-och-central-frequency-change {
description "A change of Central Frequency has been detected.";
leaf "if-name" {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
}

description "Interface name";
}
container opt-if-och-central-frequency {
 description "The new Central Frequency of the interface";
 uses opt-if-och-central-frequency;
}
}
notification opt-if-och-application-code-change {
 description "A change of Application code has been detected.";
 leaf "if-name" {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 description "Interface name";
 }
 container new-application-code {
 description "The new application code for the interface";
 uses opt-if-och-application-code;
 }
}

augment "/if:interfaces/if:interface" {
 description "Parameters for an optical interface";
 container optIfOChRsSs {
 description "RsSs path configuration for an interface";
 container if-current-application-code {
 description "Current Application code of the interface";
 uses opt-if-och-application-code;
 }
 }
 container if-supported-application-codes {
 config false;
 description "Supported Application codes of the interface";
 uses opt-if-och-application-code-list;
 }
 uses opt-if-och-power;
 uses opt-if-och-central-frequency;
7. Security Considerations

The YANG module defined in this memo is designed to be accessed via the NETCONF protocol [RFC6241]. The lowest NETCONF layer is the secure transport layer and the mandatory-to-implement secure transport is SSH [RFC6242]. The NETCONF access control model [RFC6536] provides the means to restrict access for particular NETCONF users to a pre-configured subset of all available NETCONF protocol operation and content.

8. IANA Considerations

This document registers a URI in the IETF XML registry [RFC3688]. Following the format in [RFC3688], the following registration is requested to be made:

Registrant Contact: The IESG.

XML: N/A, the requested URI is an XML namespace.

This document registers a YANG module in the YANG Module Names registry [RFC6020].

This document registers a YANG module in the YANG Module Names registry [RFC6020].

prefix: ietf-ext-xponder-wdm-if reference: RFC XXXX

9. Acknowledgements

Gert Grammel is partly funded by European Union Seventh Framework Programme under grant agreement 318514 CONTENT.

10. Contributors
11. References

11.1. Normative References

11.2. Informative References

Appendix A. Change Log

This optional section should be removed before the internet draft is submitted to the IESG for publication as an RFC.

Note to RFC Editor: please remove this appendix before publication as an RFC.

Appendix B. Open Issues

Note to RFC Editor: please remove this appendix before publication as an RFC.

Authors' Addresses

Gabriele Galimberti (editor)
Cisco
Via Santa Maria Molgora, 48 c
20871 – Vimercate
Italy

Phone: +390392091462
Email: ggalimbe@cisco.com