Abstract

IANA assigns values to the Path Computation Element (PCE) communication Protocol (PCEP) parameters (messages, objects, TLVs). IANA established a new top-level registry to contain all PCEP codepoints and sub-registries. The allocation policy for each new registry is by IETF Consensus.

This document seeks to mark some codepoints for experimental usage of PCEP.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
1. Introduction

The Path Computation Element communication Protocol (PCEP) provides mechanisms for Path Computation Elements (PCEs) to perform path computations in response to Path Computation Clients (PCCs) requests.

In section 9 of [RFC5440], IANA assigns values to the PCEP protocol parameters (messages, objects, TLVs). IANA established a new top-level registry to contain all PCEP codepoints and sub-registries. The allocation policy for each new registry is by IETF Consensus as described in [RFC5226]. Specifically, new assignments are made via RFCs approved by the IESG. Typically, the IESG will seek input on prospective assignments from appropriate persons (e.g., a relevant...
Working Group if one exists). Early allocation [RFC7120] provides some latitude for allocation of these code points, but is reserved for features that are considered appropriately stable.

With some recent advancement, there is an enhanced need to experiment with PCEP. It is often necessary to use some sort of number or constant in order to actually test or experiment with the new function, even when testing in a closed environment. In order to run experiment, it is important that the value won’t collide not only with existing codepoints but any future allocation.

This document thus set apart some codepoints in PCEP registry and subregistries for experimental usage.

2. PCEP Messages

Some codepoints are requested to be set aside for experimentation with new PCEP messages. The suggested range is 246-255.

3. PCEP Objects

Some codepoints are requested to be set aside for experimentation with new PCEP objects. The suggested range is 224-255.

4. PCEP TLVs

Some codepoints are requested to be set aside for experimentation with new PCEP TLVs. The suggested range is 65280-65535.

5. Handling of unknown experimentation

A PCEP implementation that receives an experimental PCEP message, that it does not recognize, would react as per section 6.9 of [RFC5440] by sending a PCErr message with Error-value=2 (capability not supported).

A PCE that does not recognize an experimental PCEP object, MUST reject the entire PCEP message and MUST send a PCE error message with Error- Type="Unknown Object" or "Not supported object", defined as per [RFC5440].

As per section 7.1 of [RFC5440], unknown experimental PCEP TLV would be ignored.
6. IANA Considerations


6.1. New PCEP Messages

Within this registry IANA maintains a sub-registry for PCEP Messages (see PCEP Messages at <http://www.iana.org/assignments/pcep>).

Upon approval of this document, IANA is requested to make the following allocations:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Allocation Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>246-255</td>
<td>Unassigned</td>
<td>Experimental Use</td>
</tr>
</tbody>
</table>

6.2. New PCEP Objects

Within this registry IANA maintains a sub-registry for PCEP Objects (see PCEP Objects at <http://www.iana.org/assignments/pcep>).

Upon approval of this document, IANA is requested to make the following allocations:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Allocation Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>224-255</td>
<td>Unassigned</td>
<td>Experimental Use</td>
</tr>
</tbody>
</table>

6.3. New PCEP TLVs

Within this registry IANA maintains a sub-registry for PCEP TLVs (see PCEP TLV Type Indicators at <http://www.iana.org/assignments/pcep>).

Upon approval of this document, IANA is requested to make the following allocations:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Allocation Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>65280-65535</td>
<td>Unassigned</td>
<td>Experimental Use</td>
</tr>
</tbody>
</table>
7. Allocation Policy

The allocation policy for the IANA request in Section 6 is "Experimental". As per [RFC5226], IANA does not record specific assignments for any particular use for this policy.

As the experiment/standard progress and an early IANA allocation or RFC publication happens, the IANA defined codepoints are used and experimental code points are freed up.

8. Security Considerations

This document does not introduce any new security considerations to the existing protocol. Refer to [RFC5440] for further details of the specific security measures.

9. Acknowledgments

The authors would like to thank Ramon Casellas, Jeff Tantsura, Adrian Farrel, Jonathan Hardwick, Julien Mueric, Lou Berger, Michael Shroff, and Andrew Dolganow for their feedback and suggestions.

10. References

10.1. Normative References


10.2. Informative References


Appendix A. Other Codepoints

Based on the feedback from the WG, it was decided to focus only on the essentials in the scope of this document. For others, Experiments can use a new experimental TLV/Object instead.

Authors’ Addresses

Dhruv Dhody
Huawei Technologies
Divyashree Techno Park, Whitefield
Bangalore, Karnataka 560066
India
EMail: dhruv.ietf@gmail.com

Daniel King
Lancaster University
UK
EMail: d.king@lancaster.ac.uk