Conveying Vendor-Specific Information in the Path Computation Element
(PCE) Communication Protocol (PCEP) extensions for stateful PCE.
draft-dhody-pce-stateful-pce-vendor-07

Abstract

A Stateful Path Computation Element (PCE) maintains information on
the current network state, including: computed Label Switched Path
(LSPs), reserved resources within the network, and pending path
computation requests. This information may then be considered when
computing new traffic engineered LSPs, and for associated and
dependent LSPs, received from Path Computation Clients (PCCs).

RFC 7470 defines a facility to carry vendor-specific information in
PCEP.

This document extends this capability for the stateful PCE messages.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 9, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.
1. Introduction

The Path Computation Element communication Protocol (PCEP) [RFC5440] provides mechanisms for Path Computation Elements (PCEs) to perform path computations in response to Path Computation Clients’ (PCCs) requests.

A stateful PCE is capable of considering, for the purposes of path computation, not only the network state in terms of links and nodes (referred to as the Traffic Engineering Database or TED) but also the status of active services (previously computed paths, and currently reserved resources, stored in the Label Switched Paths Database (LSP-DB)). [RFC8051] describes general considerations for a stateful PCE deployment and examines its applicability and benefits, as well as its challenges and limitations through a number of use cases.
[RFC8231] describes a set of extensions to PCEP to provide stateful control. A stateful PCE has access to not only the information carried by the network’s Interior Gateway Protocol (IGP), but also the set of active paths and their reserved resources for its computations. The additional state allows the PCE to compute constrained paths while considering individual LSPs and their interactions. [RFC8281] describes the set-up, maintenance and teardown of PCE-initiated LSPs under the stateful PCE model. These extensions added new messages in PCEP for stateful PCE.

[RFC7470] defined Vendor Information object that can be used to carry arbitrary, proprietary information such as vendor-specific constraints. It also defined VENDOR-INFORMATION-TLV that can be used to carry arbitrary information within any existing or future PCEP object that supports TLVs.

This document extend the usage of Vendor Information Object and VENDOR-INFORMATION-TLV to stateful PCE. The VENDOR-INFORMATION-TLV can be carried inside any of the new objects added in PCEP for stateful PCE as per [RFC7470], this document extend the PCEP messages to also include the Vendor Information Object as well.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. Procedures for the Vendor Information Object

A Path Computation LSP State Report message [RFC8231] (also referred to as PCRpt message) is a PCEP message sent by a PCC to a PCE to report the current state of an LSP. A PCC that wants to convey proprietary or vendor-specific information or metrics to a PCE does so by including a Vendor Information object in the PCRpt message. The contents and format of the object are described in Section 4 of [RFC7470]. The PCE determines how to interpret the information in the Vendor Information object by examining the Enterprise Number it contains.

The Vendor Information object is OPTIONAL in a PCRpt message. Multiple instances of the object MAY be used on a single PCRpt message. Different instances of the object can have different Enterprise Numbers.
The format of the PCRpt message (with [RFC8231] as base) is updated as follows:

```plaintext
<PCRpt Message> ::= <Common Header>
           <state-report-list>
Where:

<state-report-list> ::= <state-report>[<state-report-list>]

<state-report> ::= [<SRP>]
             <LSP>
             <path>
             [<vendor-info-list>]
Where:

<vendor-info-list> ::= <VENDOR-INFORMATION>
                     [<vendor-info-list>]

<path> is defined in [RFC8231].
```

A Path Computation LSP Update Request message (also referred to as PCUpd message) is a PCEP message sent by a PCE to a PCC to update attributes of an LSP. The Vendor Information object can be included in a PCUpd message to convey proprietary or vendor-specific information.

The format of the PCUpd message (with [RFC8231] as base) is updated as follows:

```plaintext
<PCUpd Message> ::= <Common Header>
           <update-request-list>
Where:

$update-request-list> ::= <update-request>[<update-request-list>]

$update-request> ::= <SRP>
           <LSP>
           <path>
           [<vendor-info-list>]
Where:

<vendor-info-list> ::= <VENDOR-INFORMATION>
                     [<vendor-info-list>]

<path> is defined in [RFC8231].
```

A Path Computation LSP Initiate Message (also referred to as PCInitiate message) is a PCEP message sent by a PCE to a PCC to trigger LSP instantiation or deletion. The Vendor Information object
can be included in a PCInitiate message to convey proprietary or vendor-specific information.

The format of the PCInitiate message (with [RFC8281] as base) is updated as follows:

```
<PCInitiate Message> ::= <Common Header>
    <PCE-initiated-lsp-list>
Where:

<PCE-initiated-lsp-list> ::= <PCE-initiated-lsp-request>
    [<PCE-initiated-lsp-list>]

<PCE-initiated-lsp-request> ::= (<PCE-initiated-lsp-instantiation>|<PCE-initiated-lsp-deletion>)

<PCE-initiated-lsp-instantiation> ::= <SRP|
    <LSP>
    [<END-POINTS>]
    <ERO>
    [<attribute-list>]
    [<vendor-info-list>]

Where:

<vendor-info-list> ::= <VENDOR-INFORMATION>
    [<vendor-info-list>]

<PCE-initiated-lsp-deletion> and <attribute-list> is as per [RFC8281].

A legacy implementation that does not recognize the Vendor Information object will act according to the procedures set out in [RFC8231] and [RFC8281]. An implementation that supports the Vendor Information object, but receives one carrying an Enterprise Number that it does not support, SHOULD ignore the object in the same way as described in [RFC7470].

3. Procedures for the Vendor Information TLV

The Vendor Information TLV can be used to carry vendor-specific information that applies to a specific PCEP object by including the TLV in the object. This includes objects used in stateful PCE extension such as SRP and LSP object. All the procedures as per section 3 of [RFC7470].
4. Vendor Information Object and TLV

[RFC7470] specify the format of VENDOR-INFORMATION Object and VENDOR-INFORMATION-TLV.

5. Manageability Considerations

All manageability requirements and considerations listed in [RFC5440], [RFC7470] and [RFC8231] apply to PCEP protocol extensions defined in this document. In addition, requirements and considerations listed in this section apply.

5.1. Control of Function and Policy

As stated in [RFC7470], this capability, the associated vendor specific information and policy SHOULD made configurable. This information can be used in stateful messages as well.

5.2. Information and Data Models

The PCEP YANG module is specified in [I-D.ietf-pce-pcep-yang]. It is NOT RECOMMENDED that standard YANG module be augmented with details of vendor information. It MAY be extended to include the use of this information and the Enterprise Numbers that the object and TLVs contain.

5.3. Liveness Detection and Monitoring

Mechanisms defined in this document do not imply any new liveness detection and monitoring requirements in addition to those already listed in [RFC5440].

5.4. Verify Correct Operations

Mechanisms defined in this document do not imply any new operation verification requirements in addition to those already listed in [RFC5440] and [RFC8231].

5.5. Requirements On Other Protocols

Mechanisms defined in this document do not imply any new requirements on other protocols.

5.6. Impact On Network Operations

Mechanisms defined in [RFC5440] and [RFC8231] also apply to PCEP extensions defined in this document. Further, the mechanism
described in this document can help the operator to request control of the LSPs at a particular PCE.

6. IANA Considerations

There are no IANA consideration in this document.

7. Security Considerations

The protocol extensions defined in this document do not change the nature of PCEP. Therefore, the security considerations set out in [RFC5440], [RFC7470], [RFC8231] and [RFC8281] apply unchanged.

As stated in [RFC6952], PCEP implementations SHOULD support the TCP-AO [RFC5925] and not use TCP MD5 because of TCP MD5’s known vulnerabilities and weakness. PCEP also support Transport Layer Security (TLS) [RFC8253] as per the recommendations and best current practices in [RFC7525].

8. Acknowledgments

Thanks to Avantika, Mahendra Singh Negi, Udayasree Palle and Swapna K for their suggestions.

9. References

9.1. Normative References


9.2. Informative References


Appendix A. Contributor Addresses

Dhruv Dhody
Huawei Technologies
Divyashree Techno Park, Whitefield
Bangalore, Karnataka 560066
India

Authors’ Addresses

Cheng Li
Huawei Technologies
Huawei Campus, No. 156 Beiqing Rd.
Beijing 100095
China

Email: chengli13@huawei.com

Haomian Zheng
Huawei Technologies
F3 RnD Center, Huawei Industrial Base, Bantian, Longgang District
Shenzhen, Guangdong 518129
P.R.China

Email: zhenghaomian@huawei.com

Siva Sivabalan
Cisco Systems, Inc.
2000 Innovation Drive
Kanata, Ontario K2K 3E8
Canada

Email: msiva@cisco.com