A Session Initiation Protocol (SIP) Extension for the Identification of Services

draft-drage-sipping-service-identification-02

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on April 23, 2009.
Abstract

This document describes private extensions to the Session Initiation Protocol (SIP) that enable a network of trusted SIP servers to assert the service of authenticated users. The use of these extensions is only applicable inside an administrative domain with previously agreed-upon policies for generation, transport and usage of such information. This document does NOT offer a general service identification model suitable for use between different trust domains, or use in the Internet at large.

The document also defines a URN to identify both services and UA applications. This URN can be used to identify services within the SIP header fields defined in this document, and also within the framework defined for caller preferences and callee capabilities in to identify usage of both services and applications between end UAs.
1. Introduction

This document describes private extensions to the Session Initiation Protocol (SIP) that enable a network of trusted SIP servers to assert the service possibly subject to the user being entitled to that service. The use of these extensions is only applicable inside an administrative domain with previously agreed-upon policies for generation, transport and usage of such information. This document does NOT offer a general service model suitable for use between different trust domains, or use in the Internet at large.

The concept of "service" within SIP has no hard and fast rules. draft-ietf-sipping-service-identification [I-D.ietf-sipping-service-identification] provides general guidance on what constitutes a service within SIP and what does not.

This document also makes use of the terms "derived service identification" and "declarative service identification" as defined in draft-ietf-sipping-service-identification [I-D.ietf-sipping-service-identification].

During a session setup proxies may need to understand what service the request is related to in order to know what application server to contact or other service logic to invoke. The SIP INVITE request contains all of the information necessary to determine the service. However, the calculation of the service may be computational and database intensive. For example, a given trust domain's definition of a service might include request authorization. Moreover the analysis may require examination of the SDP.

For example, an INVITE request with video SDP directed to a video-on-demand Request-URI could be marked as an IPTV session. An INVITE request with push-to-talk over cellular (PoC) routes could be marked as a PoC session. An INVITE request with a Require header field containing an option tag of "foogame" could be marked as a foogame session.

NOTE: If the information contained within the SIP INVITE request is not sufficient to uniquely identify a service, the remedy is to extend the SIP signalling to capture the missing element. draft-ietf-sipping-service-identification [I-D.ietf-sipping-service-identification] provides further explanation.

By providing a mechanism to compute and store the results of the domain specific service calculation, i.e. the derived service identification, this optimization allows a single trusted proxy to perform an analysis of the request and authorize the requestor’s
permission to request such a service. The proxy may then include a
service identifier that relieves other trusted proxies and trusted
UAs from performing further duplicate analysis of the request for
their service identification purposes. In addition, this extension
allows user agent clients outside the trust domain to provide a hint
of the requested service.

This extension does not provide for the dialog or transaction to be
rejected if the service is not supported end-to-end. SIP provides
other mechanisms, such as the option-tag and use of the Require and
Proxy-Require header fields, where such functionality is required.
No explicitly signalled service identification exists and the session
proceeds for each node's definition of the service in use, on the
basis of information contained in SDP and in other SIP header fields.

This mechanism is specifically a mechanism to manage the information
needs of intermediate routing devices between the calling user and
the user represented by the Request-URI. In support of this
mechanism, a URN is defined to identify the services. This URN has
wider applicability to additionally identify services and terminal
applications. Between end users, caller preferences and callee
capabilities as specified in RFC 3840 [RFC3840] and RFC 3841
[RFC3841] provide an appropriate mechanism for indicating such
service and application identification. These mechanisms have been
extended by draft-rosenberg-sip-app-media-tag
[I-D.rosenberg-sip-app-media-tag] to provide further capabilities in
this area.

The mechanism proposed in this document relies on a new header field
called 'P-Asserted-Service' that contains a URN. This is supported
by a further new header field called 'P-Preferred-Service' that also
contains a URN, and which allows the UA to express a preference to
the decisions made on service within the trust domain.

P-Asserted-Service: urn-xxx:exampletelephony.version1

A proxy server which handles a request can, after authenticating the
originating user in some way (for example: Digest authentication), to
ensure that the user is entitled to that service, insert such a
P-Asserted-Service header field into the request and forward it to
other trusted proxies. A proxy that is about to forward a request to
a proxy server or UA that it does not trust removes all the
P-Asserted-Service header field values.

This document labels services by means of an informal URN. This
provides a hierarchical structure for defining services and
subservices, and provides an address that can be resolvable for
various purposes outside the scope of this document, e.g. to obtain
information about the service so described.
2. Applicability Statement

This document describes private extensions to SIP (see RFC 3261 [RFC3261]) that enable a network of trusted SIP servers to assert the service of end users or end systems. The use of these extensions is only applicable inside a ‘Trust Domain’ as defined in Short term requirements for Network Asserted Identity (see RFC 3324 [RFC3324]). Nodes in such a Trust Domain are explicitly trusted by its users and end-systems to publicly assert the service of each party, and that they have common and agreed upon definitions of services and homogeneous service offerings. The means by which the network determines the service to assert is outside the scope of this document (though it commonly entails some form of authentication).

The mechanism for defining a trust domain is to provide a certain set of specifications known as ‘Spec(T)’, and they specify compliance to that set of specifications. Spec(T) MUST specify behavior as documented in RFC 3324 [RFC3324].

This document does NOT offer a general service model suitable for inter-domain use or use in the Internet at large. Its assumptions about the trust relationship between the user and the network may not apply in many applications. For example, these extensions do not accommodate a model whereby end users can independently assert their service by use of the extensions defined here. End users assert their service by including the SIP and SDP parameters that correspond to the service they require. Furthermore, since the asserted services are not cryptographically certified, they are subject to forgery, replay, and falsification in any architecture that does not meet the requirements of RFC 3324 [RFC3324].

The asserted services also lack an indication of who specifically is asserting the service, and so it must be assumed that a member of the Trust Domain is asserting the service. Therefore, the information is only meaningful when securely received from a node known to be a member of the Trust Domain.

Despite these limitations, there are sufficiently useful specialized deployments that meet the assumptions described above, and can accept the limitations that result, to warrant informational publication of this mechanism.
3. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 [RFC2119].

Throughout this document requirements for or references to proxy servers or proxy behavior apply similarly to other intermediaries within a Trust Domain (ex: B2BUAs).

The term Trust Domain in this document has the meaning as defined in RFC 3324 [RFC3324].
4. Syntax of the Header Fields

The following syntax specification uses the augmented Backus-Naur Form (BNF) as described in RFC 4234 [RFC5234].

4.1. The P-Asserted-Service Header

The P-Asserted-Service header field is used among trusted SIP entities (typically intermediaries) to carry the service information of the user sending a SIP message.

The P-Asserted-Service header field carries information that is derived service identification. While a declarative service identification can assist in deriving the value transferred in this header, this should be in the form of streamlining the correct derived service identification.

PAssertedService = "P-Asserted-Service"
 HCOLON PAssertedService-value
PAssertedService-value = Service-ID *(COMMA Service-ID)

See Section 4.4 for the definition of Service-ID in ABNF.

Proxies can (and will) add and remove this header field.

Table 1 extends the headers defined in this document to Table 2 in SIP [RFC3261], Section 7.1 of the SIP-specific event notification [RFC3265], tables 1 and 2 in the SIP INFO method [RFC2976], tables 1 and 2 in Reliability of provisional responses in SIP [RFC3262], tables 1 and 2 in the SIP UPDATE method [RFC3311], tables 1 and 2 in the SIP extension for Instant Messaging [RFC3428], table 1 in the SIP REFER method [RFC3515] and tables 2 and 3 in the SIP PUBLISH method [RFC3903]:

<table>
<thead>
<tr>
<th>Header field</th>
<th>where proxy ACK BYE CAN INV OPT REG SUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Asserted-Service</td>
<td>R admr - - - o o - o</td>
</tr>
<tr>
<td>P-Asserted-Service</td>
<td>NOT PRA INF UPD MSG REF PUB</td>
</tr>
</tbody>
</table>

Table 1

There may be multiple P-Asserted-Service header fields. The semantics of multiple P-Asserted-Service header fields appearing in the same request is not defined.
4.2. The P-Preferred-Service Header

The P-Preferred-Service header field is used from a user agent to a trusted proxy to carry the preferred service of the user sending the SIP request that the user wishes to be used for the P-Asserted-Service field value that the trusted element will insert.

The P-Preferred-Service header field carries information that is declarative service identification. Such information should only be used to assist in deriving a derived service identification at the recipient entity.

\[
\text{P-PreferredService} = \"P-Preferred-Service\" \\
\text{ HCOLON PPreferredService-value} \\
\text{ PPreferredService-value} = \text{Service-ID} *(\text{COMMA Service-ID})
\]

See Section 4.4 for the definition of Service-ID in ABNF.

Table 2 extends the headers defined in this document to Table 2 in SIP [RFC3261], Section 7.1 of the SIP-specific event notification [RFC3265], tables 1 and 2 in the SIP INFO method [RFC2976], tables 1 and 2 in Reliability of provisional responses in SIP [RFC3262], tables 1 and 2 in the SIP UPDATE method [RFC3311], tables 1 and 2 in the SIP extension for Instant Messaging [RFC3428], table 1 in the SIP REFER method [RFC3515] and tables 2 and 3 in the SIP PUBLISH method [RFC3903]:

<table>
<thead>
<tr>
<th>Header field</th>
<th>where</th>
<th>proxy</th>
<th>ACK</th>
<th>BYE</th>
<th>CAN</th>
<th>INV</th>
<th>OPT</th>
<th>REG</th>
<th>SUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Preferred-Service</td>
<td>R</td>
<td>dr</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Header field</th>
<th>proxy</th>
<th>NOT</th>
<th>PRA</th>
<th>INF</th>
<th>UPD</th>
<th>MSG</th>
<th>REF</th>
<th>PUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Preferred-Service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There may be multiple P-Preferred-Service header fields. The semantics of multiple P-Preferred-Service header fields appearing in the same request is not defined.

4.3. Service and Application Definition

Definition of services and their characteristics is outside the scope of this document. Other standards organizations, vendors and operators may define their own services and register them.

A hierarchical structure is defined consisting of service identifiers
or application identifiers, subservice identifiers.

The service and subservice identifiers identify the service as described in Section 1. The URN may also be used to identify a service or an application between end users for use within the context of RFC 3841 [RFC3841].

IANA maintains a registry of service identifier values that have been assigned. This registry is created by the actions of Section 8.2 of this document.

Subservice identifiers are not managed by IANA. It is the responsibility of the organisation that registered the service to manage the subservices.

4.4. Registration Template

Below, we include the registration template for the URN scheme according to RFC 3406 [RFC3406]. The URN scheme is defined as an informal NID.

Namespace ID: urn-xxx

Registration Information: Registration version: 1; registration date: 2007-04-21

Declared registrant of the namespace: TBD

Declaration of syntactic structure: The URN consists of a hierarchical service identifier or application identifier, with a sequence of labels separated by periods. The left-most label is the most significant one and is called ‘top-level service identifier’, while names to the right are called ‘sub-services’ or ‘sub-applications’. The set of allowable characters is the same as that for domain names (see RFC 1123 [RFC1123]) and a subset of the labels allowed in RFC 3958 [RFC3958]. Labels are case-insensitive and MUST be specified in all lower-case. For any given service identifier, labels can be removed right-to-left and the resulting URN is still valid, referring a more generic service, with the except of the top-level service identifier and possibly the first sub-service or sub-application identifier. In other words, if a service identifier ‘w.x.y.z’ exists, the URNs ‘w.x’ and ‘w.x.y’ are also valid service identifiers.

Service-ID = "urn-xxx:" urn-service-id
urn-service-id = top-level *("." sub-service-id)
top-level = let-dig [*26let-dig]
sub-service-id = let-dig [*let-dig]
let-dig = ALPHA / DIGIT / "-"

While the naming convention above uses the term "service" all the constructs are equally applicable to identifying applications within the UA.

Note to RFC editor: replace xxx with the assigned 3 numeric digit identifier.

Relevant ancillary documentation: None

Identifier uniqueness considerations: A service identifier identifies a service, and an application identifier an application indicated in the service or application registration (see IANA Considerations (Section 8)). Uniqueness is guaranteed by the IANA registration.

Identifier persistence considerations: The service or application identifier for the same service is or application expected to be persistent, although there naturally cannot be a guarantee that a particular service will continue to be available globally or at all times.

Process of identifier assignment: The process of identifier assignment is described in the IANA Considerations (Section 8).

Process for identifier resolution: There is no single global resolution service for service identifiers or application identifiers.

Rules for Lexical Equivalence: ‘service’ identifiers are compared according to case-insensitive string equality.

Conformance with URN Syntax: The BNF in the ‘Declaration of syntactic structure’ above constrains the syntax for this URN scheme.

Validation mechanism: Validation determines whether a given string is currently a validly-assigned URN (see RFC 3406 [RFC3406]). Due to the distributed nature of usage and since not all services are available everywhere, validation in this sense is not possible

Scope: The scope for this URN can be local to a single domain, or may be more widely used.
5. Usage of the P-Preferred-Service and P-Asserted-Service header fields

5.1. Usage of the P-Preferred-Service and P-Asserted-Service header fields in Requests

5.1.1. Procedures at User Agent Clients (UAC)

The UAC MAY insert a P-Preferred-Service in a request that creates a dialog, or a request outside of a dialog. This information can assist the proxies in identifying appropriate service capabilities to apply to the call. This information MUST NOT conflict with other SIP or SDP information included in the request. Furthermore, the SIP or SDP information needed to signal functionality of this service MUST be present. Thus if a service requires a video component, then the SDP has to include the media line associated with that video component; it cannot be assumed from the P-Preferred-Service header field value. Similarly if the service requires particular SIP functionality for which a SIP extension and a Require header field value is defined, then the request has to include that SIP signalling as well as the P-Preferred-Service header field value.

5.1.2. Procedures at Intermediate Proxies

A proxy in a Trust Domain can receive a request from a node that it trusts, or a node that it does not trust. When a proxy receives a request from a node it does not trust and it wishes to add a P-Asserted-Service header field, the proxy MUST identify the service appropriate to the capabilities (e.g. SDP) in the request, MAY authenticate the originator of the request (in order to determine whether the user is subscribed for that service), and use the identity which results from this checking and authentication to insert a P-Asserted-Service header field into the request.

If the proxy receives a request from a node that it trusts, it can use the information in the P-Asserted-Service header field, if any, as if it had authenticated the user itself.

If there is no P-Asserted-Service header field present, or it is not possible to match the request to a specific service as identified by the service identifier, a proxy MAY add one containing it using its own analysis of the information contained in the SIP request. If the proxy received the request from an element that it does not trust and there is a P-Asserted-Service header present, the proxy MUST replace that header field contents with a new analysis or remove this header field.

The analysis performed to identify such service identifiers is
outside the scope of this document. However, it is perfectly valid as a result of the analysis to not include any service identifier in the forwarded request, and thus not include a P-Asserted-Service header.

If a proxy forwards a request to a node outside the proxy’s trust domain, there MUST NOT be a P-Asserted-Service header field in the forwarded request.

5.1.3. Procedures at User Agent Servers (UAS)

For a UAS outside the trust domain, the P-Asserted-Service header is removed before it reaches this entity, therefore there are no procedures for such a device.

However, if a User Agent Server receives a request from a previous element that it does not trust, it MUST NOT use the P-Asserted-Service header field in any way.

If a UA is part of the Trust Domain from which it received a request containing a P-Asserted-Service header field, then it can use the value freely but it MUST ensure that it does not forward the information to any element that is not part of the Trust Domain.

5.2. Usage of the P-Preferred-Service and P-Asserted-Service header fields in Responses

There is no usage of these header field in responses.
6. Examples of Usage

In this example, proxy.example.com creates a P-Asserted-Service header field from the user identity it discovered from SIP Digest authentication, and the list of services appropriate to that user, and the services that correspond to the SDP information included in the request. It forwards this information to a trusted proxy which forwards it to a trusted gateway. Note that these examples consist of partial SIP messages that illustrate only those headers relevant to the authenticated identity problem.

* F1 useragent.example.com -> proxy.example.com

 INVITE sip:+14085551212@example.com SIP/2.0
 Via: SIP/2.0/TCP useragent.example.com;branch=z9hG4bK-123
 To: <sip:+14085551212@example.com>
 From: "Anonymous" <sip:anonymous@anonymous.invalid>;tag=9802748
 Call-ID: 245780247857024504
 CSeq: 1 INVITE
 Max-Forwards: 70

* F2 proxy.example.com -> useragent.example.com

 SIP/2.0 407 Proxy Authorization
 Via: SIP/2.0/TCP useragent.example.com;branch=z9hG4bK-123
 To: <sip:+14085551212@example.com>;tag=123456
 From: "Anonymous" <sip:anonymous@anonymous.invalid>;tag=9802748
 Call-ID: 245780247857024504
 CSeq: 1 INVITE
 Proxy-Authenticate: realm="sip.example.com"

* F3 useragent.example.com -> proxy.example.com

 INVITE sip:+14085551212@example.com SIP/2.0
 Via: SIP/2.0/TCP useragent.example.com;branch=z9hG4bK-124
 To: <sip:+14085551212@example.com>
 From: "Anonymous" <sip:anonymous@anonymous.invalid>;tag=9802748
 Call-ID: 245780247857024504
 CSeq: 2 INVITE
 Max-Forwards: 70
 Proxy-Authentication: realm="sip.example.com" user="fluffy"
* F4 proxy.example.com -> proxy.pstn.example (trusted)

INVITE sip:+14085551212@proxy.pstn.example SIP/2.0
Via: SIP/2.0/TCP useragent.example.com;branch=z9hG4bK-124
Via: SIP/2.0/TCP proxy.example.com;branch=z9hG4bK-abc
To: <sip:+14085551212@example.com>
From: "Anonymous" <sip:anonymous@anonymous.invalid>;tag=9802748
Call-ID: 245780247857024504
CSeq: 2 INVITE
Max-Forwards: 69
P-Asserted-Service: "urn-xxx:example-telephony.version1"

* F5 proxy.pstn.example -> gw.pstn.example (trusted)

INVITE sip:+14085551212@gw.pstn.example SIP/2.0
Via: SIP/2.0/TCP useragent.example.com;branch=z9hG4bK-124
Via: SIP/2.0/TCP proxy.example.com;branch=z9hG4bK-abc
Via: SIP/2.0/TCP proxy.pstn.example;branch=z9hG4bK-a1b2
To: <sip:+14085551212@example.com>
From: "Anonymous" <sip:anonymous@anonymous.invalid>;tag=9802748
Call-ID: 245780247857024504
CSeq: 2 INVITE
Max-Forwards: 68
P-Asserted-Service: urn-xxx:exampletelephony.version1
7. Security considerations

The mechanism provided in this document is a partial consideration of the problem of service identification in SIP. For example, these mechanisms provide no means by which end users can securely share service information end-to-end without a trusted service provider. This information is secured by transitive trust, which is only as reliable as the weakest link in the chain of trust.

The trust domain provides a set of servers where the characteristics of the service are agreed for that service identifier value, and that the calling user is entitled to use that service. [I-D.ietf-sipping-service-identification] identifies the impact of allowing such service identifier values to "leak" outside of the trust domain, including implications on fraud, interoperability and stifling of service innovation.
8. IANA considerations

8.1. P-Asserted-Service and P-Preferred-Service header fields

This document specifies two new SIP headers: P-Asserted-Service and P-Preferred-Service. Their syntax is given in Section 3. These headers are defined by the following information, which has been added to the header sub-registry under http://www.iana.org/assignments/sip-parameters.

<table>
<thead>
<tr>
<th>Header Name</th>
<th>compact</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Asserted-Service</td>
<td></td>
<td>[RFCxxxx]</td>
</tr>
<tr>
<td>P-Preferred-Service</td>
<td></td>
<td>[RFCxxxx]</td>
</tr>
</tbody>
</table>

Note to the RFC editor: substitute xxxx with the RFC number of this document.

8.2. Definition of Service-ID values

Top-level identifiers are identified by labels managed by IANA, according to the processes outlined in RFC 5226 [RFC5226] in a new registry called "Service-ID/Application-ID Labels". Thus, creating a new service at the top-level requires IANA action. The policy for adding service labels is 'specification required'. The following two identifiers are initially defined:

3gpp-service

3gpp-application

Subservice identifiers are not managed by IANA. It is the responsibility of the organisation that registered the service to manage the subservices.

Application identifiers are not managed by IANA. It is the responsibility of the organisation that registered the service to manage the applicable applications.

Entries in the registration table have the following format:
<table>
<thead>
<tr>
<th>Service/Application</th>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3gpp-service</td>
<td>RFCxxx</td>
<td>Communication services defined by 3GPP for use by the IM CN subsystem and its attached UAs</td>
</tr>
<tr>
<td>3gpp-application</td>
<td>RFCxxx</td>
<td>Applications defined by 3GPP for use by UAs attached to the IM CN subsystem</td>
</tr>
</tbody>
</table>
9. APPENDIX: Changes history

Note to RFC Editor: Please remove this entire appendix before publication

9.1. Changes between version -01 and version -02

1. Incorporation of terms "derived service identification" and "declarative service identification" from draft-ietf-sipping-service-identification.

2. Correction of the URN syntax in examples.

3. Appropriate introduction to table 1 and table 2 placing these in a normative context to those in other tables in other RFCs.

4. Addition to security considerations section to clarify trust domain concept.

5. References to RFC 3325 changed to RFC 3324 for definition of trust domain.

6. Reference to RFC 2234 updated to RFC 5234 because the later revision applies. No consequential technical change.

7. Reference to RFC 2434 updated to RFC 5226 because the later revision applies. No consequential technical change.

8. References updated to symbolic. Remove of reference identifiers from abstract.

10. References

10.1. Normative References

10.2. Informative References

Author’s Address

Keith Drage
Alcatel-Lucent
Quadrant, Stonehill Green, Westlea
Swindon, Wilts
UK

Email: drage@alcatel-lucent.com
Full Copyright Statement

Copyright (C) The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.