Abstract

This document describes the Handle Resolution option for the ASAP protocol.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 19, 2017.

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Table of Contents

1. Introduction ... 2
 1.1. Scope ... 2
 1.2. Terminology 3
 1.3. Conventions 3
2. Handle Resolution Option 3
 2.1. Definition 3
3. Reference Implementation 3
4. Testbed Platform ... 4
5. Security Considerations 4
6. IANA Considerations 4
7. Acknowledgments ... 4
8. References ... 4
 8.1. Normative References 4
 8.2. Informative References 5
Author’s Address .. 6

1. Introduction

Reliable Server Pooling defines protocols for providing highly available services. The Aggregate Server Access Protocol (ASAP) provides session management and server selection for applications. Upon request for a server selection -- denoted as handle resolution -- an ENRP server returns a list of selected PE identities. The number of PE identities to be returned is not specified by RSerPool. Furthermore the ASAP protocol does not contain a way for letting the requesting instance specify it.

As shown in [Dre2006], [IJAIT2009], [IJHIT2008], selecting too many entries does not make sense for the application, but on the other hand also result in significant processing and network overhead. Furthermore, it has been shown in [LCN2005] that the number of requested elements is usually 1, but there are application cases where more PE identities have to be returned. That is, there should be a possibility to specify the number of requested PE items upon a handle resolution.

1.1. Scope

The Handle Resolution option defined in this draft simply defines an option to let the PU-side specify the desired number of PE identities from the ENRP server.
1.2. Terminology

The terms are commonly identified in related work and can be found in
the Aggregate Server Access Protocol and Endpoint Handlespace
Redundancy Protocol Common Parameters document RFC 5354 [RFC5354].

1.3. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

2. Handle Resolution Option

2.1. Definition

The Handle Resolution MAY be used once in an ASAP Handle Resolution
message sent from a PU to an ENRP server. It is defined as follows.

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|        Type = 0x803f         |            Length=8            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                             Items                             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Items: 32 bits (unsigned integer)

Contains the number of PE identities to be selected by the ENRP
server. Setting it to 0xffffffff denotes to obtain as many PE
identities as possible. A setting of 0 denotes to use the ENRP
server’s default value; this default MUST be used if there is no
Handle Resolution option given. The ENRP server SHOULD try to fulfil
the request for the given number of items.

Note, that the high-order bits of the type field are set to 10, which
means "skip this parameter and continue processing" if this parameter
type is not supported by the ENRP server. This allows for
interoperability with old implementations.

3. Reference Implementation

The RSerPool reference implementation RSPLIB can be found at
[RSerPool-Website]. It supports the functionalities defined by
[RFC5351], [RFC5352], [RFC5353], [RFC5354] and [RFC5356] as well as
the options [I-D.dreibholz-rserpool-delay],
[I-D.dreibholz-rserpool-enrp-takeover] and of course the option
4. Testbed Platform

A large-scale and realistic Internet testbed platform with support for the multi-homing feature of the underlying SCTP protocol is NorNet. A description of NorNet is provided in [PAMS2013-NorNet], some further information can be found on the project website [NorNet-Website].

5. Security Considerations

Security considerations for RSerPool systems are described by [RFC5355].

6. IANA Considerations

This document does not require additional IANA actions beyond those already identified in the ENRP and ASAP protocol specifications.

7. Acknowledgments

The author would like to thank Nihad Cosic, Dirk Hoffstadt, Michael Kohnen, Jobin Pulinthanath and Xing Zhou for their support.

8. References

8.1. Normative References

8.2. Informative References

[IJHIT2008]

[LCN2005]

[PAMS2013-NorNet]

[RSerPool-Website]

[NorNet-Website]

Author’s Address