Sender Queue Info Option for the SCTP Socket API
draft-dreibholz-tsvwg-sctpsocket-sqinfo-18

Abstract

This document describes an extension to the SCTP sockets API for querying information about the sender queue.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 7, 2019.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
1. Introduction

This draft describes an extension to the SCTP sockets API (see [RFC6458], [I-D.dreibholz-.tsvwg-sctpsocket-multipath] [RFC4960]) which allows an application to query the sender queue utilization per stream. This information is necessary for applications to make efficient use of a mapping of streams to dissimilar paths. A detailed description including simulation results can be found in [PFLDNeT2010].

In particular, this API extension is useful when using the CMT-SCTP, CMT/RPv1-SCTP, CMT/RPv2-SCTP and MPTCP-like extensions (see [I-D.tuexen-.tsvwg-sctp-multipath], [Dre2012], [PAMS2012], [PAMS2011], [ConTEL2011], [SoftCOM2011], [Globecom2010]) for Concurrent Multipath Transfer (CMT) with SCTP.

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

3. Sender Queue Info (SCTP_SQINFO)

This socket option obtains the maximum sender queue size (in bytes), the current total sender queue utilization (in bytes) as well as the current utilization per stream (in bytes).

The following structure is used to obtain the sender queue information:
struct sctp_sndqueueinfo {
 sctp_assoc_t sq_assoc_id;
 uint32_t sq_queue_limit;
 uint32_t sq_total_queued;
 uint32_t sq_number_of_streams;
 uint32_t sq_queued_on_stream[];
};

sq_assoc_id: This parameter is ignored for one-to-one style sockets. For one-to-many style sockets this parameter indicates which association the user is performing an action upon. It is an error to use SCTP_{CURRENT|ALL}_ASSOC in sq_assoc_id.

sq_queue_limit: This field gives the maximum sender queue size in bytes.

sq_total_queued: This field gives the current total sender queue utilization in bytes.

sq_number_of_streams: This field gives the number of outgoing streams. That is, it will contain the number of valid sq_queued_on_stream entries.

sq_queued_on_stream: This array gives the current number of bytes queued for the streams 0 to sq_number_of_streams-1.

Note, that the caller of getsockopt() MUST provide a sctp_sndqueueinfo structure which can hold at least as many sq_queued_on_stream entries as the association’s number of outgoing streams. Otherwise, the getsockopt() call will fail and return an error.

4. Testbed Platform

A large-scale and realistic Internet testbed platform with support for the multi-homing feature of the underlying SCTP protocol is NorNet. A description of NorNet is provided in [PAMS2013-NorNet], [ComNets2013-Core], some further information can be found on the project website [NorNet-Website].

5. Security Considerations

Security considerations for the SCTP sockets API are described by [RFC6458].
6. IANA Considerations

This document does not require IANA actions.

7. Acknowledgments

The authors would like to thank Michael Tuexen and Irene Ruengeler for their support.

8. References

8.1. Normative References

[I-D.dreibholz-tsvwg-sctpsocket-multipath]

[I-D.tuexen-tsvwg-sctp-multipath]

8.2. Informative References

[ComNets2013-Core]

[ConTEL2011]

[Globecom2010]

[NorNet-Website]
[PAMS2011]

[PAMS2012]

[PAMS2013-NorNet]

[PFLDNeT2010]
[SoftCOM2011]
Dreibholz, T., Becke, M., Adhari, H., and E. Rathgeb,

Authors’ Addresses

Thomas Dreibholz
Simula Metropolitan Centre for Digital Engineering
Pilestredet 52
0167 Oslo, Oslo
Norway

Phone: +47-6782-8200
Fax: +47-6782-8201
Email: dreibh@simula.no
URI: https://www.simula.no/people/dreibh

Robin Seggelmann
Muenster University of Applied Sciences
Stegerwaldstrasse 39
48565 Steinfurt, Nordrhein-Westfalen
Germany

Email: seggelmann@fh-muenster.de

Martin Becke
HAW Hamburg, Informatics Department
Berliner Tor 7
20099 Hamburg, Hamburg
Germany

Phone: +49-40-42875-8104
Fax: +49-40-42875-8309
Email: martin.becke@haw-hamburg.de
URI: http://www.scimbe.de/about.html