PCEP Extensions for service segment used in Segment Routing
draft-dw-pce-service-segment-routing-00

Abstract

Segment Routing (SR) technology leverages the source routing and tunneling paradigms where a source node can choose a path without relying on hop-by-hop signaling. The same mechanism can also be utilized for Service Function Chaining (SFC) to steer packets through service functions performing specific services such as DPI, Firewall, accounting etc.

This document specifies extensions to the Path Computation Element Protocol (PCEP) that allow a stateful PCE to compute and instantiate SR-TE paths that have service functions (SF) (or service segments) involved.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 28, 2014.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document.
1. Introduction

Segment Routing (SR) enables Traffic Engineering (TE) without relying on a hop-by-hop signaling. It depends only on "segments" that are advertised by Interior Gateway Protocols (IGPs). These segments made by -

- Node Segment
- Adjacency Segment
- Anycast Segment
- IGP-Prefix Segment

Further to this list, a segment may also be identify a particular service or service function (SF). [I-D.filsfils-spring-segment-routing-use-cases] describes service-segment. A service-segment may also be used to represent a set of SF instances. In a case where it is required to steer the packet
through specific treatment or SF (DPI, firewall..) offered by node(s) in the path, a combination of node-segment and service-segment can be used.

A stateful PCE can be used for computing one or more SR-TE paths taking into account various constraints and objective functions. Once a path is chosen, the stateful PCE can instantiate an SR-TE path on a PCC using PCEP extensions specified in [I-D.sivabalan-pce-segment-routing].

An SR-TE path is defined as a path that consists of one or more SID(s) where each SID is associated with the identifier that represents the node or adjacency corresponding to the SID. This document extends the SR-TE path to use Service-SID(s) in the path as well.

The means by which the PCE learns about the Service-SID (e.g., learnt over a management interface or through a variety of other mechanisms) is beyond scope of this document.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC2119 [RFC2119].

2.1. Terminology

The following terminologies are used in this document:

- ERO: Explicit Route Object
- IGP: Interior Gateway Protocol
- LSR: Label Switching Router
- PCC: Path Computation Client
- PCE: Path Computation Element
- PCEP: Path Computation Element Protocol
- SF: Service Function
- SFC: Service Function Chaining
- SID: Segment Identifier
SR: Segment Routing
SR-ERO: Segment Routed Explicit Route Object
SR Path: Segment Routed Path
SR-TE: Segment Routed Traffic Engineering

3. Overview of PCEP Operation in SR Networks for Service Chaining

In SR networks, an ingress node of an SR path appends all outgoing packets with an SR header consisting of a list of Segment IDs (SIDs). The header has all necessary information to guide the packets from the ingress node to the egress node of the path, and hence there is no need for any signaling protocol. In the [I-D.sivabalan-pce-segment-routing], an SID represents either a nodal segment representing a path to a node or adjacency segment representing path over a specific adjacency. In this document, we allow SID also can represent a service segment representing a specific treatment or SF.

In a PCEP session, path information is carried in the Explicit Route Object (ERO), which consists of a sequence of subobjects. In this document, a PCE needs to specify EROs containing SID of service segments (or service-SID), and a PCC needs to be capable of processing such ERO sub-objects.

The SR-ERO Subobject defined in the [I-D.sivabalan-pce-segment-routing] can be used to carry SID of service segment. An SR-ERO containing SID of service segment can be included in the same PCEP messages specified in the [I-D.sivabalan-pce-segment-routing].

[Editor’s Note: Another option for [I-D.sivabalan-pce-segment-routing] is to define only the SR related sub-object which can be carried within the existing ERO object with no need to create a new SR-ERO object.]

When a PCEP session between a PCC and a PCE is established, the corresponding PCEP operation is same as defined in the [I-D.sivabalan-pce-segment-routing].

4. Object Formats

In the [I-D.sivabalan-pce-segment-routing], an SR-TE path is defined as a path that consists of one or more SID(s) where each SID is associated with the identifier that represents the node or adjacency corresponding to the SID. In this document, we allow the SR-TE path
to include one or more SID of service segments (called service-SID) that are inserted along with node segments in SR-TE path. A service-segment may also be used to represent a set of SF instances. The service-SID is local to the node where the service resides, thus a combination of node-segment and service-segment are used together.

4.1. The SR-ERO Subobject extension for service segment support

The SR-ERO Subobject is defined in section 5.3.1 of [I-D.sivabalan-pce-segment-routing] and as an mandatory subobject used to advertise SID and NAI ('Node or Adjacency Identifier') associated with SID. In this document, we extend the existing SR-ERO Subobject as specified in section 5.3.1 of [I-D.sivabalan-pce-segment-routing] to represent service-SID of the service segment.

The SR-ERO Subobject as described in [I-D.sivabalan-pce-segment-routing]:

```
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |L|    Type     |     Length    |  ST   |     Flags     |F|S|C|M|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              SID                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      //                        NAI (variable)                       //
```

The L bit SHOULD NOT be set, so that the subobject represents a strict hop in the explicit route in case of service-segment.

Type

The Type is as per [I-D.sivabalan-pce-segment-routing].

Length

The Length is as per [I-D.sivabalan-pce-segment-routing].

ST
The ST (SID Type) field is set to specify service-SID. A new SID-Type values is to be assigned.

Flags

All flags (M, C, S, F bit) are as per [I-D.sivabalan-pce-segment-routing].

SID

The SID value represents an service segment as described in [I-D.filfs-spring-segment-routing-use-cases].

NAI

The NAI for service-segment may be defined in future.

4.2. Service Segment SR-ERO Processing

When the SID represents a service segment (as per the SID Type - ST field), its value is local to node segment offering the service. Thus Service-SID MUST be associated with a node-SID preceding it in the SR-ERO. Note that multiple services may be offered by the same node, and in this case node-SID maybe followed by multiple Service-SID. NAI value for service-SID may be defined in future.

If a service segment (or service-SID) cannot be associated with a node segment (or node-SID), PCEP speaker MUST send a PCE error with Error-Type = "Reception of an invalid object" and Error-Value = "Segment List Order Error".

The rest of the processing rules are as per [I-D.sivabalan-pce-segment-routing].

5. Backward Compatibility

Backward Compatibility consideration described in section 8 of [I-D.sivabalan-pce-segment-routing] can be applied for service segment support as well.
6. Management Considerations

Management consideration described in section 9 of
[I-D.sivabalan-pce-segment-routing] can be applied to service segment
support as well.

7. Security Considerations

The security considerations described in [RFC5440] and

8. IANA Considerations

TBD.

9. References

9.1. Normative References

[I-D.sivabalan-pce-segment-routing]
Sivabalan, S., Medved, J., Filsfils, C., Crabbe, E., and
R. Raszuk, "PCEP Extensions for Segment Routing", draft-
sivabalan-pce-segment-routing-02 (work in progress),
October 2013.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

9.2. Informative References

[I-D.filsfils-spring-segment-routing-use-cases]
Filsfils, C., Francois, P., Previdi, S., Decraene, B.,
Litkowski, S., Horneffer, M., Milojevic, I., Shakir, R.,
Ytti, S., Henderickx, W., Tantsura, J., Kini, S., and E.
Crabbe, "Segment Routing Use Cases", draft-filsfils-
spring-segment-routing-use-cases-00 (work in progress),
March 2014.

Appendix A. Examples

Consider the below example-
N1 is Ingress;
N4 is Egress;
N2 has two services hosted identified as SF1 and SF2;
N3 has one service hosted identified as SF3.
The service chain requires packet to steer through SF1, SF2, SF3.
The SR-ERO for the SR-TE path including the service segment would be:

$$\{\text{SID}_N2, \text{SID}_SF1, \text{SID}_SF2}, \{\text{SID}_N3, \text{SID}_SF3}, \{\text{SID}_N4}\}$$

Authors’ Addresses

Dhruv Dhody
Huawei
Leela Palace
Bangalore, Karnataka 560008
INDIA

Email: dhruv.ietf@gmail.com
Qin Wu
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China

Email: bill.wu@huawei.com