Rbridges: TRILL Header Options

<draft-eastlake-trill-rbridge-options-00.txt>

Status of This Document

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Distribution of this document is unlimited. Comments should be sent to the TRILL working group mailing list <rbridge@postel.org>.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/1id-abstracts.html

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

Abstract

The TRILL base protocol specification, draft-ietf-trill-rbridge-protocol-07.txt, specifies minimal hooks for options. This early draft more fully describes a format and an initial set of options for purposes of discussion.
Table of Contents

Status of This Document.................................1
Abstract..1

Table of Contents..2

1. Introduction..3
1.1 Conventions used in this document....................3

2. TRILL Header Options....................................4
2.1 RBridge Option Handling Capabilities....................4
2.2 No Surprises...5
2.3 Options Format...5
2.3.1 Option TLV Format....................................6
2.3.2 The Padding Option................................7
2.3.3 Marshalling of Options..............................7

3. Specific Options..9
3.1 Flags Option..9
3.2 Flow ID Option..10
3.3 Port ID Option..10
3.4 TRILL Security Option................................11

4. Additions to Link State.................................13
5. IANA Considerations.....................................13
6. Security Considerations................................13
7. Acknowledgement..13

8. Normative References..................................14
9. Informative References................................14

Disclaimer..15
Additional IPR Provisions..................................15
Author’s Address...15
Expiration and File Name..................................16
1. Introduction

The base TRILL protocol specification appears in [Protocol]. That specification provides an options feature and describes some hooks to incorporate that feature but does not specify the structure of options or the details of any particular options.

This document provides a more detailed specification which might be suitable to replace section 3.5 of [Protocol].

1.1 Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.
2. TRILL Header Options

The TRILL Protocol includes an option capability in the TRILL Header (see [Protocol] Section 3.5). The Op-Length header field gives the length of the options in units of 4 octets which allows up to 124 octets of options area. If Op-Length is zero there are no options present; else, the options follow immediately after the Ingress Rbridge Nickname field.

As described below, provision is made for both hop-by-hop options, which could affect any RBridge which received a TRILL frame, and ingress-to-egress options, which would only affect the RBridge(s) where a TRILL frame is decapsulated. Provision is also made for both "critical" and "non-critical" options. An RBridge affected by a critical option that it does not understand MUST discard the frame. Non-critical options can be safely ignored. Option are also flagged as to whether the value associated with them can change (mutable options) or not (immutable options).

Warning: Most R Bridges are expected to be implemented to optimize the simplest and most common cases of frame forwarding and processing. The inclusion of any options may, and the inclusion of complex or lengthy options almost certainly will, cause frame processing using a "slow path" with markedly inferior performance to "fast path" processing. Limited slow path throughput may cause such frames to be lost.

2.1 RBridge Option Handling Capabilities

All Rbridges MUST be able to skip the number of 4-octet chunks indicated by the Op-Length field in order to find the inner frame, since Rbridges must be able to find the destination MAC address and VLAN tag in the inner frame. Transit Rbridges need such information to filter VLANs, IP multicast, and the like. Egress Rbridges need to find the inner frame to correctly decapsulate and dispose of the inner frame.

All Rbridge MUST be able to detect whether there are any critical options in a frame that are applicable to their processing of the frame as detailed below. If they do not implement all such critical options which are present, they MUST discard the frame.

Transit R Bridges MUST transparently forward any immutable ingress-to-egress options in frames they forward. Any changes made by a transit RBridge to a mutable ingress-to-egress option value MUST be a change permitted by the specification of that option. Note: Even though a transit RBridge may not examine or act on an ingress-to-egress option, the presence of that option may cause the frame to suffer
from slow path processing.

In addition, a transit RBridge MAY add a hop-by-hop option to a frame, MAY add a padding option if none is present, MAY remove an unnecessary padding option, MAY adjust the length of an existing padding option, and MAY remove a hop-by-hop option as specified for that option, MAY change the value and Length of a mutable option as permitted by that option’s specification, but MUST NOT add or remove an ingress-to-egress option. For any of these changes which alter the overall length of the TRILL Header options area, the transit RBridge also adjusts the Header Op-Length field.

2.2 No Surprises

RBridges advertise the options which they support in the core IS-IS instance. An RBridge is not required to support any options; however, an RBridge which supports any other option MUST also support the padding option.

No RBridge will receive a frame with a critical TRILL Header option it must apply for which it did not advertise support except due to errors or transient conditions. Should an RBridge receive a frame with an applicable critical option it does not implement, it MUST discard the frame.

If an RBridge is about to send a TRILL frame and the destination RBridge (or any of the destination RBridges if the frame is being multicast) would not understand a critical option in the frame which it might be required to apply, it is the responsibility of the transmitting RBridge to remove the option and make any necessary other adjustments to the frame before transmission or drop the frame. (The transmitting RBridge should understand the option or else it would not have received or generated that critical option.)

TRILL options are generally inappropriate for any "extension" which all RBridges in a campus would be required to understand or a critical hop-by-hop option which can not be backed out as described above in this section. The addition of such an "extension" would likely be a major change to the protocol and should probably be handled by a revision to the TRILL protocol version number.

2.3 Options Format

Section 2.3.1 below specifies the format of an individual option. Further details on the padding option are specified in Section 2.3.2. Section 2.3.3 describes the marshalling of options.
2.3.1 Option TLV Format

Options to the TRILL Header are TLV (type, length, value) encoded, with some flag bits, in the format shown in Figure 1.

```
| 0 1 2 3 4 5 6 7 | 0 1-7 |
+-----------------+--------+
| IE | NC |      Type       |MT|       Length       |value...
+-----------------+--------+
```

Figure 1. Option TLV Structure

The highest order bit of the first octet (IE) is zero for hop-by-hop options and one for ingress-to-egress options and the padding option. Hop-by-hop options are potentially applicable to every RBridge which receives the frame. Ingress-to-egress options are only added at the ingress RBridge and are always applicable at egress RBridges. Ingress-to-egress options MAY also be examined and acted upon by transit RBridges.

The next to highest order bit of the first octet (NC) is zero for critical options and one for non-critical options and the padding option. Non-critical options are those which can be safely ignored. Critical options are those which it is unsafe to ignore, for example options which indicate a change in the format of the remainder of the frame after the TRILL Header, such that attempts to parse this remainder could become confused without understanding the option.

The bottom six bits of the first octet give the option Type code. The option Type may constrain the values of the IE, NC, and MT bits.

The highest order bit of the second octet (MT) is zero for options with immutable values, that is where the value and Length will not change. It is one for such options that have a mutable value. The IE, NC, Type, and MT fields themselves are always immutable.

The Length field is the unsigned length of the option value in octets. It gives the amount of option value data, if any, beyond the initial two octets. The Length field MUST NOT be such that the option value extends beyond the end of the total options area as specified by the TRILL Header Op-Length. Thus, the value of Length can vary from zero to 122. The meaning of "Length" values of 123 through 127 is reserved and, when such values are detected, they cause the frame to be discarded.
2.3.2 The Padding Option

The padding option is used for padding at the end of the options area of a TRILL Header. A padding option is required if the total length of other options present is not an exact multiple of 4 octets or otherwise falls short of the space indicated by Op-Length.

The padding option is Type 0x37 and MUST have the IE, NC, and MT bits equal to one. An option with Type 0x37 where any of the IE, NC, and MT bits are zero is invalid and, if detected, causes the frame to be discarded.

A padding option MAY be included even if the length of the other options present is an exact multiple of 4 octets and the padding added MAY be larger than strictly necessary; for example, an ingress RBridge might choose to round Op-Length up to an even value and pad any options it includes in a TRILL Header up to an exact multiple of 8 octets to retain 64-bit alignment for the inner frame. All value octets in a padding option may be any value and need not be preserved by transit RBridges.

2.3.3 Marshalling of Options

In a TRILL Header with options, those options start immediately after the Ingress RBridge Nickname and completely fill the options area whose overall length is given in the Op-Length field.

Options MUST appear in ascending order by the value of their first octet considered as an unsigned 8 bit integer. As a result, all hop-by-hop options MUST be placed before all ingress-to-egress options and within each of those two categories, all critical options MUST appear before all non-critical options. The padding option, if present, MUST appear last. A particular option first octet value MUST NOT appear more than once in a TRILL Header. Frames which violate this paragraph are erroneous, will produce unspecified results, and MAY be discarded. ("MAY" is chosen to minimize the format checking burden required of transit RBridges.)

Options are 16-bit aligned. Should an option consist of an odd number of octets, the option is padded at the end with one octet which MUST be zero. Should the total length of the options (other than the padding option) in a frame not fill the area indicated by the TRILL Header Op-Length, a padding option MUST be used to fill the remaining space. This space will be 4*N or 2+4*N octets depending on whether the non-padding options present fill an even or odd number of double octets.

A transit RBridge determines that there are no critical options it
must consider if either the Op-Length field of the TRILL Header is zero, indicating no options are present, or if either of the top two bit of the first octet after Ingress RBridge Nickname are non-zero, indicating that no hop-by-hop critical options are present.

An egress RBridge can determine that there are no critical options it must consider if either the Op-Length field of the TRILL Header is zero, indicating no options are present, or if it scans the options present and finds none whose first octets have either 0b00 or 0b10 as their high order two bits. Since the options are required to be ordered, as soon as an option is encountered whose first octet has 0b11 as its high order bits, the scan can terminate; however, if the egress RBridge implements any non-critical ingress-to-egress options and there were remaining options, it would have to continue its scan.
3. Specific Options

The table below shows the state of TRILL Header option Type assignment. See Section 6 for IANA Considerations.

<table>
<thead>
<tr>
<th>Type</th>
<th>Purpose</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>reserved</td>
<td></td>
</tr>
<tr>
<td>0x01-0x03</td>
<td>available</td>
<td></td>
</tr>
<tr>
<td>0x04</td>
<td>Security</td>
<td>3.4</td>
</tr>
<tr>
<td>0x05-0x0F</td>
<td>available</td>
<td></td>
</tr>
<tr>
<td>0x10</td>
<td>Flags</td>
<td>3.1</td>
</tr>
<tr>
<td>0x11</td>
<td>Flow ID</td>
<td>3.2</td>
</tr>
<tr>
<td>0x12-0x2F</td>
<td>available</td>
<td></td>
</tr>
<tr>
<td>0x30</td>
<td>Port ID</td>
<td>3.3</td>
</tr>
<tr>
<td>0x31-0x3E</td>
<td>available</td>
<td></td>
</tr>
<tr>
<td>0x3F</td>
<td>Padding</td>
<td>2.3.2</td>
</tr>
</tbody>
</table>

Table 1. Options Types

The following subsections specify particular TRILL options.

3.1 Flags Option

The option provides a means of adding a variety of additional flags to the TRILL Header beyond, and in some cases of a different type than, the reserved bits in the TRILL Header.

The value of the flags option consists of additional flags, eight per octet, numbered from the high-order to the low-order bit. Thus flag 1 is the 0x80 bit of the first octet, flag 8 is the 0x01 bit of that octet, flag 9 is the 0x80 bit of the second octet, etc. The number of additional flags that can be defined is bounded only by the options space that can be available. All flags not present, because the would be in value octets beyond those specified by the option Length, are considered zero.

This option can appear up to four times in a frame to provide independent sets of all combinations of ingress-to-egress, hop-by-hop, non-critical, and critical flags. To simplify canonicalization for security, this option MUST NOT be included if all of the flag bits would be zero and the value MUST NOT have any trailing zero octets. Thus its Length must be at least 1 and at least the last octet of the value present must not be zero.

The option fields and flags are as follows:

- Type is 0x10.
3.2 Flow ID Option

In connection with multi-pathing of frames, it is desirable that frames which are part of the same flow follow the same path. Methods to determine flows are beyond the scope of TRILL however, it may be useful, once the flow of a frame has been determined, to preserve and transmit that information for use by subsequent RBridges.

This is a non-critical option. It is considered hop-by-hop because it can be added by a transit RBridge. It can also affect transit RBridge behavior. Because the ingress RBridge or even the originating end station, which may have some way of signaling the ingress RBridge beyond the scope of this document, may know the most about a frame, it is expected that this option would most commonly be added at the ingress RBridge. Once in a frame, the option SHOULD NOT be changed unless, for example, a campus is divided into regions such that different flow IDs would make the most sense in different regions.

The option fields and flags are as follows:

- Type is 0x11.
- Length is variable. [Should a fixed flow ID size be specified?]
- IE MUST be zero. This is a hop-by-hop option.
- NC and MT MUST be one. This is a non-critical mutable option.

3.3 Port ID Option

The purpose of the Port ID option is to avoid the destination MAC address to physical port mapping lookup at the egress RBridge. This might be beneficial for extremely high speed applications.

This option provides a 2 octet logical destination port and a 2 octet logical source port which, in some ways, could be considered extensions to the 6 octet inner destination and source MAC addresses in a frame. These logical port designators are local to the destination and source RBridges and may be any values those RBridges find convenient to efficiently map to their physical ports; however, the value 0x0000 is used to indicate that a logical port designator is unknown and the value 0xFFFF is reserved and MUST NOT appear in a port ID option.
RBridges that implement this option learn the Port ID for a remote MAC address from the source Port ID field in the Port ID option, if present, in frames they decapsulate in the same way they can learn the egress RBridge and VLAN. This information is timed out in the same manner and remote MAC address information. Such RBridges include their local Port ID in the source field of a Port ID option when encapsulating a frame if inclusion of this option is indicated by their local policy.

For known unicast TRILL data frames, one would expect ingress RBridges implementing this option to include it if sending to egress RBridges that also implement the option. For multi-destination TRILL data frames, inclusion of a Port ID option with a source port ID may make sense but the destination port ID is meaningless and ignored by egress RBridges.

The option fields and flags are as follows:

- Type is 0x30.
- Length MUST be 4.
- IE and NC MUST be one. This is an ingress-to-egress non-critical option.
- MT MUST be zero. This is an immutable option.

3.4 TRILL Security Option

[This is written in terms of authentication, which is all that is currently provided in IS-IS, but it could be extended to include encryption.]

TRILL provides an authentication option which builds on the IS-IS security keying and can be applied to any data frame which starts with a TRILL Header [RFC3567]. Although this option can be applied to TRILL IS-IS frames, it is primarily intended for TRILL data frames.

The first octet of the option value is the same algorithm selection code as for IS-IS. The value length for the option is variable and depends on the algorithm in the same way as the value in the IS-IS security TLV. Algorithm zero indicates a plain text password which must be configured in code which generates and checks this TLV and is NOT RECOMMENDED. Thus far, other algorithms have indicated HMAC signing of a canonical form of the message using a shared secret which must likewise be configured. [Arguably, to permit cut-through forwarding, the actual authentication code should be added to the end of the frame rather than in the options area. This would make the option more complex and would be an additional argument for it being critical.]
This option can appear up to twice in a frame, once for ingress-to-egress security and once for hop-by-hop security.

For algorithms which depend on the value of the frame (i.e., all strong authentication algorithms), the frame must be canonicalized before the authentication code is computed or verified. This is logically done by copying the frame and, in the copy, setting the TRILL Header Hop Count to zero, clearing the bytes of the Authentication Option after the algorithm selection code, and, for all mutable options, setting the option Length to zero and deleted any value octets. In addition, if an ingress-to-egress authentication code is being computed, since hop-by-hop options can be added or deleted in transit, all hop-by-hop options must be removed from the frame copy. Penultimately, any needed padding option must be reduced to its minimal length, that is, no padding option if the preceding options are an even multiple of 4 octets, or the minimum padding option of 0xFF80 if they are an odd multiple of 4 octets. Finally, the TRILL Header Op-Length must be adjusted downward as necessary to make it correct for the adjusted copy frame. The authentication code is then calculated using this copy and either inserted into the real frame for transmission or compared against the authentication code in the real frame for verification.

The option fields and flags are as follows:

- Type is 0x04.
- Length MUST be at least 1.
- IE is variable. There may be an ingress-to-egress or hop-by-hop security option in a frame or both.
- NC and MT MUST be zero. This is a critical immutable option.
4. Additions to Link State

Rbridges indicate in their link state which options they support and which critical ingress-to-egress and critical hop-by-hop flags they support within the Flags option.

5. IANA Considerations

IANA will create a subregistry within the TRILL registry for TRILL Option Types and initially populate it as specified in Table 1 in Section 2.4. New TRILL Option types are allocated by an IETF Standards action as modified by [RFC4020].

IANA will create a subregistry within the TRILL registry for flags in each of the four variations of the Flags option (the four combinations of critical and non-critical, ingress-to-egress and hop-by-hop). Such flags are allocated by an IESG consensus.

6. Security Considerations

TBD.

7. Acknowledgement

The Port ID option was initially suggested as part of the TRILL Header by Silvano Gai.
8. Normative References

9. Informative References

Disclaimer

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Additional IPR Provisions

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Copyright (C) The IETF Trust 2008 This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

Author’s Address

Donald E. Eastlake 3rd
Motorola Laboratories
111 Locke Drive
Marlborough, MA 01752
email: Donald.Eastlake@motorola.com
Expiration and File Name

This draft expires in August 2008.

Its file name is draft-eastlake-trill-options-00.txt.