Abstract

Traffic traversing an SR domain is encapsulated in an outer IPv6 header for its journey through the SR domain.

To implement transport services strictly within the SR domain, the SR domain may require insertion or deletion of an SRH after the outer IPv6 header of the SR domain. Any segment within the SRH is strictly contained within the SR domain.

This document extends SRv6 Network Programming [I-D.ietf-spring-srv6-network-programming] with new SR endpoint and transit behaviors to be performed only within the SR domain in any packet owned by the domain.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute
1. Introduction

Packets transiting an SR Domain may be steered into an SR Policy for a variety of reasons. For example, a PLR router reroutes traffic on a TI-LFA repair path [I-D.ietf-rtgwg-segment-routing-ti-lfa] or when a Binding-SID is expanded [I-D.ietf-spring-segment-routing-policy].
This document extends the SRv6 Network Programming [I-D.ietf-spring-srv6-network-programming] model with new endpoint and transit behaviors enabling the insertion of an SRH after the outer IPv6 header of the SR domain. The operations described in this document must take into account the considerations described in [I-D.voyer-6man-extension-header-insertion].

2. SRv6 endpoint behaviors

SRv6 Network Programming Section 4 defines a base set of SRv6 endpoint behaviors. This is extended with the behaviors described in this section.

2.1. End.B6.Insert: Endpoint bound to an SRv6 policy

The "Endpoint bound to an SRv6 Policy" is a variant of the End behavior.

One of its applications is to express scalable traffic-engineering policies across multiple domains. It is the one of the SRv6 instantiations of a Binding SID [RFC8402].

An End.B6.Insert SID is never the last segment in a SID list, and any SID instantiation must be associated with an SR Policy B[I-D.ietf-spring-segment-routing-policy].

When N receives a packet whose IPv6 DA is S and S is a local End.B6.Insert SID, does:
S01. When an SRH is processed {
S02. If (Segments Left == 0) {
S03. Send an ICMP Parameter Problem message to the Source Address
 Code TBD-SRH (SR Upper-layer Header Error),
 Pointer set to the offset of the upper-layer header,
 interrupt packet processing and discard the packet
S04. }
S04. If (IPv6 Hop Limit <= 1) {
S05. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (Hop limit exceeded in transit),
 interrupt packet processing and discard the packet
S06. }
S07. max_LE = (Hdr Ext Len / 2) - 1
S08. If ((Last Entry > max_LE) or (Segments Left > (Last Entry+1)){
S09. Send an ICMP Parameter Problem to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 interrupt packet processing and discard the packet
S11. }
S12. Decrement Hop Limit by 1
S13. Insert a new SRH in between the IPv6 Header and the received
 SRH containing the list of segments of B
S14. Set the IPv6 DA to the first segment of B
S15. Resubmit the packet to the egress IPv6 FIB lookup and
 transmission to the new destination
S16. }

When processing the Upper-layer header of a packet matching a FIB
entry locally instantiated as an SRv6 End.B6.Insert SID, send an ICMP
parameter problem message to the Source Address and discard the
packet. Error code "SR Upper-layer Header Error", Pointer set to the
offset of the upper-layer header.

This is an optimization of the End.B6.Insert behavior.

End.B6.Insert.Red reduces the size of the new SRH by one SID by
avoiding the insertion of the first SID in the pushed SRH. In this
way, the first SID is only written in the DA and the packet is
forwarded according to it.

The new SRH is created as described in Section 4.1.1 of
[I-D.ietf-6man-segment-routing-header].
3. Transit behaviors

SRv6 Network Programming defines in Section 5 a set of transit behaviors. This is extended with the following behaviors defined in this section.

3.1. T.Insert: Transit with insertion of an SRv6 Policy

Node N receives two packets P1=(A, B2) and P2=(A, B2) (B3, B2, B1; SL=1). B2 is neither a local address nor SID of N.

N steers the transit packets P1 and P2 into an SRv6 Policy with one SID list <S1, S2, S3>.

The "T.Insert" transit insertion behavior is defined as follows:

1. insert the SRH (B2, S3, S2, S1; SL=3) ;; Ref1, Ref1bis
2. set the IPv6 DA = S1
3. forward along the shortest path to S1

Ref1: The received IPv6 DA is placed as last SID of the inserted SRH.

Ref1bis: The SRH is inserted [I-D.voyer-6man-extension-header-insertion] before any other IPv6 Routing Extension Header.

After the T.Insert behavior, P1 and P2 respectively look like:

- (A, S1) (B2, S3, S2, S1; SL=3)
- (A, S1) (B2, S3, S2, S1; SL=3) (B3, B2, B1; SL=1)

3.2. T.Insert.Red: Transit with reduced insertion

The T.Insert.Red behavior is an optimization of the T.Insert behavior. It is defined as follows:

1. insert the SRH (B2, S3, S2; SL=3)
2. set the IPv6 DA = S1
3. forward along the shortest path to S1

T.Insert.Red will reduce the size of the SRH by one segment by avoiding the insertion of the first SID in the pushed SRH. In this way, the first segment is only introduced in the DA and the packet is forwarded according to it.

After the T.Insert.Red behavior, P1 and P2 respectively look like:
4. Acknowledgements

The authors would like to acknowledge Stefano Previdi, Dave Barach, Mark Townsley, Peter Fsenak, Thierry Couture, Kris Michielsen, Paul Wells, Robert Hanzl, Dan Ye, Gaurav Dawra, Faisal Iqbal, Jaganbabu Rajamanickam, David Toscano, Asif Islam, Jianda Liu, Yunpeng Zhang, Jiaoming Li, Narendra A.K, Mike Mc Gourty, Bhupendra Yadav, Sherif Toulan, Satish Damodaran, John Bettink, Kishore Nandyala Veera Venk, Jisu Bhattacharya and Saleem Hafeez.

5. Contributors

Daniel Bernier
Bell Canada
Canada
Email: daniel.bernier@bell.ca

Dirk Steinberg
Lapishills Consulting Limited
Cyprus
Email: dirk@lapishills.com

Robert Raszuk
Bloomberg LP
United States of America
Email: robert@raszuk.net

Bruno Decraene
Orange
France
Email: bruno.decraene@orange.com

Bart Peirens
Proximus
Belgium
Email: bart.peirens@proximus.com

Hani Elmalky
Ericsson
United States of America
Email: smynam@innovium.com

Wim Henderickx
Nokia
Belgium
Email: wim.henderickx@nokia.com

Shaowen Ma
Juniper
Singapore
Email: mashao@juniper.net

Ahmed Bashandy
Individual
United States of America
Email: abashandy.ietf@gmail.com

Francois Clad
Cisco Systems, Inc.
France
Email: fclad@cisco.com

Kamran Raza
Cisco Systems, Inc.
Canada
Email: skraza@cisco.com

Darren Dukes
Cisco Systems, Inc.
Canada
Email: ddukes@cisco.com

Patrice Brissete
Cisco Systems, Inc.
Canada
Email: pbrisset@cisco.com

Zafar Ali
Cisco Systems, Inc.
6. References

6.1. Normative References

[I-D.ietf-6man-segment-routing-header]

[I-D.ietf-spring-srv6-network-programming]

[I-D.voyer-6man-extension-header-insertion]

6.2. Informative References
Internet-Draft SRv6 NET-PGM extension: Insertion September 2019

[I-D.ietf-rtgwg-segment-routing-ti-lfa]
Litkowski, S., Bashandy, A., Filsfils, C., Decraene, B.,
Francois, F., daniel.voyer@bell.ca, d., Clad, F., and P.
Camarillo, "Topology Independent Fast Reroute using
Segment Routing", draft-ietf-rtgwg-segment-routing-ti-
lfa-01 (work in progress), March 2019.

[I-D.iotf-spring-segment-routing-policy]
Filsfils, C., Sivabalan, S., daniel.voyer@bell.ca, d.,
bogdanov@google.com, b., and P. Mattes, "Segment Routing
Policy Architecture", draft-ietf-spring-segment-routing-
policy-03 (work in progress), May 2019.

Authors’ Addresses

Clarence Filsfils (editor)
Cisco Systems, Inc.
Belgium

Email: cf@cisco.com

Pablo Camarillo Garvia (editor)
Cisco Systems, Inc.
Spain

Email: pcamaril@cisco.com

John Leddy
Individual Contributor
United States of America

Email: john@leddy.net

Daniel Voyer
Bell Canada
Canada

Email: daniel.voyer@bell.ca
Satoru Matsushima
SoftBank
1-9-1, Higashi-Shimbashi, Minato-Ku
Tokyo 105-7322
Japan

Email: satoru.matsushima@g.softbank.co.jp

Zhenbin Li
Huawei Technologies
China

Email: lizhenbin@huawei.com