Abstract

This document outlines multiple advanced use cases and integrations that ACME facilitates without any modifications or enhancements required to the base ACME specification. These use cases are not immediately obvious from reading the ACME specification and thus are explicitly documented here. The use cases include ACME issuance of subdomain certificates, and ACME integration with EST and TEAP.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 3, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 2
2. Terminology ... 2
3. ACME Issuance of Subdomain Certificates 3
4. ACME Integration with EST 5
5. ACME Integration with BRSKI 8
6. ACME Integration with TEAP 10
7. ACME Integration with TEAP-BRSKI 13
8. IANA Considerations 15
9. Security Considerations 16
10. Informative References 16
Appendix A. Comments 16
Authors’ Addresses ... 16

1. Introduction

ACME [RFC8555] defines a protocol that a certificate authority (CA) and an applicant can use to automate the process of domain name ownership validation and X.509 (PKIX) certificate issuance. The protocol is rich and flexible and enables multiple use cases that are not immediately obvious from reading the specification. This document explicitly outlines multiple advanced ACME use cases including:

- ACME issuance of subdomain certificates
- ACME integration with EST [RFC7030]
- ACME integration with BRSKI [I-D.ietf-anima-bootstrapping-keyinfra]
- ACME integration with TEAP [RFC7170]
- ACME integration with TEAP-BRSKI draft-lear-eap-teap-brski

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

The following terms are used in this document:
3. ACME Issuance of Subdomain Certificates

A typical ACME workflow for issuance of certificates is as follows:

1. client POSTs a newOrder request that contains a set of "identifiers"

2. server replies with a set of "authorizations" and a "finalize" URI

3. client sends POST-as-GET requests to retrieve the "authorizations", with the downloaded "authorization" object(s) containing the "identifier" that the client must prove control of

4. client proves control over the "identifier" in the "authorization" object by completing the specified challenge, for example, by publishing a DNS TXT record

5. client POSTs a CSR to the "finalize" API

ACME places the following restrictions on "identifiers":

- Section 7.1.4: the only type of "identifier" defined by the ACME specification is a fully qualified domain name: "The only type of identifier defined by this specification is a fully qualified domain name (type: "dns"). The domain name MUST be encoded in the form in which it would appear in a certificate."

- Section 7.4: the "identifier" in the CSR request must match the "identifier" in the newOrder request: "The CSR MUST indicate the
ACME does not mandate that the "identifier" in a newOrder request matches the "identifier" in "authorization" objects. This means that the ACME specification does not preclude an ACME server processing newOrder requests and issuing certificates for a subdomain without requiring a challenge to be fulfilled against that explicit subdomain. ACME server policy could allow issuance of certificates for a subdomain to a client where the client only has to fulfill an authorization challenge for the parent domain.

This allows a flow where a client proves ownership of "domain.com" and then successfully obtains a certificate for "sub.domain.com". The ACME pre-authorization flow makes most sense for this use case, and that is what is illustrated in the following call flow.

The client could pre-authorize for the parent domain once, and then issue multiple newOrder requests for certificates for multiple subdomains. This call flow illustrates the client only placing one newOrder request.

```
+--------+             +------+     +-----+
| Client |             | ACME |     | DNS |
+--------+             +------+     +-----+

STEP 1: Pre-Authorization of parent domain

<table>
<thead>
<tr>
<th>POST /newAuthz</th>
<th>&quot;domain.com&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>201 authorizations</td>
<td></td>
</tr>
</tbody>
</table>

Publish DNS TXT        "domain.com"
```
STEP 2: Place order for subdomain

POST /newOrder
"sub.domain.com"

201 status=ready

POST /finalize
CSR "sub.domain.com"

200 OK status=valid

POST /certificate

200 OK
PKI "sub.domain.com"

4. ACME Integration with EST

EST [RFC7030] defines a mechanism for clients to enroll with a PKI Registration Authority by sending CMC messages over HTTP. EST section 1 states:

"Architecturally, the EST service is located between a Certification Authority (CA) and a client. It performs several functions traditionally allocated to the Registration Authority (RA) role in a PKI."

EST section 1.1 states that:
"For certificate issuing services, the EST CA is reached through the EST server; the CA could be logically "behind" the EST server or embedded within it."

When the CA is logically "behind" the EST RA, EST does not specify how the RA communicates with the CA. EST section 1 states:

"The nature of communication between an EST server and a CA is not described in this document."

This section outlines how ACME could be used for communication between the EST RA and the CA. The example call flow shows the RA proving ownership of a parent domain, with individual client certificates being subdomains under that parent domain. This is an optimisation that reduces DNS and ACME traffic overhead. The RA could of course prove ownership of every explicit client certificate identifier.

The call flow also illustrates how the Pledge inserts relevant domain information into the CSR Subject and Subject Alternative Name fields.

todo: The details of how the pledge determines what information to include in the CSR are TBD. For example, the pledge could discover the DNS domain via DHCP Option 15, and prepend the identifier from the IDevID to this.

Note also that EST https://tools.ietf.org/html/rfc7030#section-4.2.1 states that the ChangeSubjectName attribute MAY be used, for example, if the Pledge uses its IDevID when requesting a CSR/LDevID with a different Subject, however this field does not appear to have widespread support across CAs.

+--------+ +--------+ +------+ +-----+
| Pledge | | EST RA | | ACME | | DNS |
+--------+ +--------+ +------+ +-----+

STEP 1: Pre-Authorization of parent domain

| POST /newAuthz |
| "domain.com" |
|-------------------------------------->

201 authorizations

Publish DNS TXT
<table>
<thead>
<tr>
<th>"domain.com"</th>
</tr>
</thead>
</table>
STEP 2: Pledge enrolls against RA

POST /simpleenroll

PCSK#10 CSR
"pledgeid.domain.com"

------------------------>

202 Retry-After

<------------------------

STEP 3: RA places ACME order

POST /newOrder
"pledgeid.domain.com"

------------------------>

201 status=ready

<------------------------

POST /finalize

PKCS#10 CSR
"pledgeid.domain.com"

------------------------>

200 OK status=valid

<------------------------

POST /certificate

------------------------>

200 OK

PEM
"pledgeid.domain.com"

<------------------------

STEP 4: Pledge retries enroll
5. ACME Integration with BRSKI

BRSKI [I-D.ietf-anima-bootstrapping-keyinfra] is based upon EST [RFC7030] and defines how to autonomic ally bootstrap PKI trust anchors into devices via means of signed vouchers. EST certificate enrollment may then optionally take place after trust has been established. BRSKI voucher exchange and trust establishment are based on EST extensions and the certificate enrollment part of BRSKI is fully based on EST. Similar to EST, BRSKI does not define how the EST RA communicates with the CA. Therefore, the mechanisms outlined in the previous section for using ACME as the communications protocol between the EST RA and the CA are equally applicable to BRSKI.

The following call flow shows how ACME may be integrated into a full BRSKI voucher plus EST enrollment workflow. For brevity, it assumes that the EST RA has previously proven ownership of a parent domain and that pledge certificate identifiers are a subdomain of that parent domain. The domain ownership exchanges between the RA, ACME and DNS are not shown. Similarly, not all BRSKI interactions are shown and only the key protocol flows involving voucher exchange and EST enrollment are shown.

[todo: similar to the EST section above, it is TBD exactly how the pledge determines what domain information to insert in the CSR. A possibility is that the Voucher response includes domain information and explicitly instructs the pledge what information to insert in the CSR. The RA could also instruct the Pledge to include a guid or a new unique random identifier in place of its MAC address, serial number, or whatever other identifying information is included in the IDevID.

+--------+ +--------+ +------+ +------+
| Pledge | | EST RA | | ACME | | MASA |
+--------+ +--------+ +------+ +------+
\[NOTE: Pre-Authorization of "domain.com" is complete]}
STEP 1: Pledge requests Voucher

POST /requestvoucher
------------------------>
POST /requestvoucher
------------------------>
200 OK Voucher
<---------------------->
200 OK Voucher
<---------------------->

STEP 2: Pledge enrolls against RA

POST /simpleenroll
PCSK#10 CSR
"pledgeid.domain.com"
------------------------>
202 Retry-After
<---------------------->

STEP 3: RA places ACME order

POST /newOrder
"pledgeid.domain.com"
------------------------>
201 status=ready
<---------------------->
POST /finalize
PKCS#10 CSR
"pledgeid.domain.com"
------------------------>
200 OK status=valid
<---------------------->
POST /certificate
------------------------>
200 OK
PEM
"pledgeid.domain.com"
<---------------------->

STEP 4: Pledge retries enroll
6. ACME Integration with TEAP

TEAP [RFC7170] define a tunnel-based EAP method that enables secure communication between a peer and a server by using TLS to establish a mutually authenticated tunnel. TEAP enables certificate provisioning within the tunnel. TEAP does not define how the TEAP server communicates with the CA.

This section outlines how ACME could be used for communication between the TEAP server and the CA. The example call flow shows the TEAP server proving ownership of a parent domain, with individual client certificates being subdomains under that parent domain. This is an optimisation that reduces DNS and ACME traffic overhead. The TEAP server could of course prove ownership of every explicit client certificate identifier.

[todo: Similar to the previous section, it is TBD exactly how the Pledge determines what Subject/SAN to put in the CSR request.]

<table>
<thead>
<tr>
<th>Pledge</th>
<th>TEAP-Server</th>
<th>ACME</th>
<th>DNS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STEP 1: Pre-Authorization of parent domain

- POST /newAuthz
 - "domain.com"

 --------------->

- 201 authorizations

 <---------------

- Publish DNS TXT
 - "domain.com"

 --------------->

- POST /challenge
STEP 2: Establish EAP Outer Tunnel

EAP-Request/
 Type=Identity

EAP-Response/
 Type=Identity

EAP-Request/
 Type=TEAP,
 TEAP Start,
 Authority-ID TLV

EAP-Response/
 Type=TEAP,
 TLS(ClientHello)

EAP-Request/
 Type=TEAP,
 TLS(ServerHello,
 Certificate,
 ServerKeyExchange,
 CertificateRequest,
 ServerHelloDone)

EAP-Response/
 Type=TEAP,
 TLS(Certificate,
 ClientKeyExchange,
 CertificateVerify,
 ChangeCipherSpec,
 Finished)
STEP 3: Enroll for certificate

EAP-Request/
Type=TEAP,
{Request-Action TLV:
 Status=Failure,
 Action=Process-TLV,
 TLV=PKCS#10}

EAP-Response/
Type=TEAP,
{PKCS#10 TLV: "pledgeid.domain.com"}

POST /newOrder
"pledgeid.domain.com"

201 status=ready

POST /finalize
PKCS#10 CSR
"pledgeid.domain.com"

200 OK status=valid

POST /certificate

7. ACME Integration with TEAP-BRSKI

TEAP-BRSKI [I-D.lear-eap-teap-brski] defines how to execute BRSKI at layer 2 inside a TEAP tunnel. Similar to the TEAP proposal in the previous section, BRSKI-TEAP leverages the existing TEAP PKXS#10 and PKCS#7 mechanisms for certificate enrollment, and does not define how the TEAP server communicates with the CA.

This section outlines how ACME could be used for communication between the TEAP server and the CA, and how this fits in with the TEAP-BRSKI proposal.

[todo: Similar to the previous section, it is TBD exactly how the Pledge determines what Subject/SAN to put in the CSR request.]

+--------+ +-------------+ +------+ +------+
| Pledge | | TEAP-Server | | ACME | | MASA |
+--------+ +-------------+ +------+ +------+

NOTE: Pre-Authorization of "domain.com" is complete and EAP outer tunnel is established as outlined in the previous section

STEP 1: Perform BRSKI Flow

EAP-Request/
Type=TEAP,
STEP 2: Retrieve CA Configuration

STEP 3: Enroll for certificate
8. IANA Considerations

[todo]
9. Security Considerations

[todo]

10. Informative References

[I-D.ietf-anima-bootstrapping-keyinfra]

[I-D.lear-eap-teap-brski]
Lear, E., Friel, O., and N. Cam-Winget, "Bootstrapping Key Infrastructure over EAP", draft-lear-eap-teap-brski-02 (work in progress), February 2019.

Appendix A. Comments

Authors’ Addresses